WO2017107261A1 - 基于ptp协议的多跳无线回程网络时间同步误差补偿方法 - Google Patents

基于ptp协议的多跳无线回程网络时间同步误差补偿方法 Download PDF

Info

Publication number
WO2017107261A1
WO2017107261A1 PCT/CN2016/070840 CN2016070840W WO2017107261A1 WO 2017107261 A1 WO2017107261 A1 WO 2017107261A1 CN 2016070840 W CN2016070840 W CN 2016070840W WO 2017107261 A1 WO2017107261 A1 WO 2017107261A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
time
message
synchronization
req
Prior art date
Application number
PCT/CN2016/070840
Other languages
English (en)
French (fr)
Inventor
曾鹏
王照伟
李志博
李栋
王金涛
Original Assignee
中国科学院沈阳自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院沈阳自动化研究所 filed Critical 中国科学院沈阳自动化研究所
Priority to US15/525,687 priority Critical patent/US10056999B2/en
Publication of WO2017107261A1 publication Critical patent/WO2017107261A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0673Clock or time synchronisation among packet nodes using intermediate nodes, e.g. modification of a received timestamp before further transmission to the next packet node, e.g. including internal delay time or residence time into the packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/147Signalling methods or messages providing extensions to protocols defined by standardisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/2866Architectures; Arrangements
    • H04L67/2885Hierarchically arranged intermediate devices, e.g. for hierarchical caching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • H04L7/0012Synchronisation information channels, e.g. clock distribution lines by comparing receiver clock with transmitter clock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/24Interfaces between hierarchically similar devices between backbone network devices

Definitions

  • the invention relates to the field of wireless network communication, in particular to a time synchronization error compensation method for a multi-hop wireless backhaul network based on a PTP protocol.
  • Multi-hop Wireless Backhaul Networks are designed to provide high-speed, long-distance, non-line-of-sight and low-cost wireless access services, making up for wired backhaul networks with difficult wiring, high cost, and network coverage.
  • Limitations such as limitations and poor topology flexibility. Due to the harsh environment of the factory, difficult wiring, and in order to improve the production efficiency of the factory, new industrial applications such as digital oil field, smart grid wide-area interconnection, and industrial robot cooperative operation urgently need to build a wireless backhaul network with integrated management and control, complete regional coverage, and achieve measurement and Control and mixed transmission of information such as audio and video.
  • MWBNs have significant advantages.
  • the control information of the equipment often has strict requirements on the QoS of the MWBNs.
  • the reliability of the control signal is required to be 100%, and the delay and jitter requirements are in the ms level, that is, the MWBNs need to meet the requirements of high real-time and high reliability of control information transmission.
  • time synchronization technology is crucial in solving information fusion and collaborative processing, ensuring the real-time and reliability of information transmission.
  • the local time of the node is completed by counting the output pulses of the internal crystal oscillator, and the time information needs to be exchanged between the nodes to achieve synchronization. Therefore, due to the difference of internal crystal oscillators and the interference of network communication links in the factory environment, it is difficult to achieve accurate synchronization between nodes.
  • the IEEE 1588 v2 (Precision Time Protocol, PTP) protocol solves the problem of industrial wired Ethernet time synchronization based on the existing network communication protocol.
  • the current synchronization accuracy can reach 50 ns.
  • the key to achieving high-precision time synchronization in the PTP protocol is based on hardware timestamps and symmetric links.
  • the so-called hardware timestamp that is, the time stamp of sending and receiving network packets at the near physical layer.
  • the PTP protocol establishes the concept of transparent transmission clock, which effectively guarantees the symmetry of the uplink and downlink communication links, thereby improving the accuracy of time synchronization.
  • the current Wi-Fi chip is mostly a single-chip structure, that is, the selection of the Wi-Fi node timestamp can only be implemented above the MAC layer, and the forwarding delay error of the MAC layer queuing, PHY layer transmission, and the timestamp selection mechanism are serious. Affect the asymmetry of the link.
  • the existing methods mostly use the statistical principle to perform link delay compensation, which increases the number of messages in the network, and has poor real-time performance.
  • the experiment found that the synchronization accuracy of applying the PTP protocol directly to the wireless network can reach the ms level.
  • Wi-Fi-based MAC layer based on FPGA the development cost of the Wi-Fi-based MAC layer based on FPGA is too large, so it is not advisable to design a wireless network node based on the PTP protocol.
  • the technical problem to be solved by the present invention is to provide a time synchronization error compensation method for a multi-hop wireless backhaul network based on the PTP protocol, which is implemented on the basis of the current PTP Ethernet device.
  • the delay compensation of the wireless communication link of the PTP device thereby achieving high-precision time synchronization.
  • a time synchronization error compensation method for a multi-hop wireless backhaul network based on the PTP protocol comprising the following steps:
  • the nodes of the industrial site are built into a hierarchical multi-hop network structure
  • the root node is used as the master node, the leaf node is used as the slave node, and the master and slave nodes use the PTP protocol for time synchronization, and the synchronization mode is two-step;
  • the intermediate node i used for data forwarding between the master node and the slave node records time information about the PTP message when forwarding the message, and calculates additional time information based on the linear regression technique;
  • the intermediate node i is transmitting the follow message Follow_Up, the delay request response message Delay_Resp, and the synchronization report.
  • the Sync uses the modified header to bring extra time information;
  • the synchronization error compensation is completed according to the PTP protocol.
  • the two-step synchronization mode means that the time information of the synchronization message Sync is transmitted by using the follow message Follow_Up, and the time information of the delay request message Delay_Req is transmitted by using the delay request response message Delay_Resp.
  • the time information about the PTP message includes: the arrival time of the synchronization message Sync and the delay request message Delay_Req at the intermediate node i, Ts_arrived i and Td_arrived i , the departure time Ts_left i and Td_left i, and the message ID; Obtaining the time Ts_left i-1 of the synchronization message Sync leaving the node i-1 in the following message Follow_Up of the message Sync ID; obtaining the delay request response message Delay_Resp in accordance with the ID of the delay request message Delay_Req The delay request message Delay_Req arrives at the time of the node i-1 Td_arrived i-1 ; the node i-1 time correction value ⁇ i-1 obtained from the synchronization message Sync.
  • the additional time information includes: a local time correction value ⁇ i , a local forwarding time, and a link delay of the synchronization message Sync and the delay request message Delay_Req transmitted between the nodes i and i-1.
  • the calculating the additional time information based on the linear regression technique is specifically:
  • the intermediate node i stores the latest N sets of time information (Ts_arrived i , Ts_arrived i - Ts_left i-1 ), where (Ts_arrived i, k , Ts_arrived i, k -Ts_left i-1, k ) is the kth group of information. Based on the linear regression of the least squares method, the intermediate node i obtains the slope of the time offset between the nodes i and i-1 with respect to the arrival time Ts_arrived i :
  • the time offset between nodes i and i-1 is:
  • the local forwarding time of the synchronization message Sync and the delay request message Delay_Req is:
  • T_dwell i (T_left i -T_arrived i ) ⁇ i (6)
  • T_arrived i is Td_arrived i and T_left i is Td_left i ; for synchronous message Sync, T_arrived i is Ts_arrived i and T_left i is Ts_left i .
  • the link delay of the synchronization message Sync transmitted between nodes i and i-1 is:
  • linkDelay i-1,i (Ts_arrived i -Ts_left i-1 -offset i-1,i ) ⁇ i (7)
  • the link delay of the delay request message Delay_Req transmitted between nodes i and i-1 is:
  • linkDelay i,i-1 (Td_arrived i-1 -Td_left i +offset i-1,i ) ⁇ i (8)
  • the modified header format is: a PTP universal header format for transmitting the added time information by using a header 4-byte reserved field.
  • the additional time information of the piggyback is specifically:
  • the intermediate message Sync and the delay request message Delay_Req forwarding time and the link delay are respectively added to the respective header corrections.
  • the domain correctionField the synchronization message Sync leaving time Ts_left i and the delay request message Delay_Req arrival time Td_arrived i which are consistent with the two IDs are respectively written into the reserved field of the respective header 4 bytes;
  • the intermediate node i When sending the synchronization message Sync, the intermediate node i writes the local time correction value to the reserved field of the header 4 bytes.
  • the header correction field is: in the two-step synchronization, the domain value of the synchronization message Sync and the delay request message Delay_Req is 0, and the field values of the following message Follow_Up and the delayed request response message Delay_Resp are respectively Same
  • the synchronization error compensation is completed according to the PTP protocol, specifically:
  • the slave node calculates the link average delay meanPathDelay according to the sending and receiving time of the synchronization message Sync and the delay request message Delay_Req, and the correction field value of the following message follow_Resp and the delay request response message Delay_Resp. And time offset shift:
  • meanPathDelay [(t2-t3)+(t4-t1)-correctionField of Follow_Up-correctionField of Delay_Resp]/2 (9)
  • t1 is the time for transmitting the synchronization message Sync for the main clock
  • t2 is the time for receiving the synchronization message Sync from the clock record
  • t3 is the time for sending the delay request message Delay_Req from the clock record
  • t4 is the main clock record. The time to delay request message Delay_Req.
  • the PTP protocol-based multi-hop wireless backhaul network time synchronization error compensation method proposed by the present invention fully considers the limitations of the existing equipment and the asymmetry of the wireless link, and reduces the report on the basis of not affecting the existing PTP protocol.
  • the invention is based on the existing PTP protocol and equipment, and reduces development costs
  • the invention uses the PTP packet header to correct the domain correctionField and the reserved domain reserved to transmit additional time information, thereby reducing the message overhead;
  • the invention utilizes the intermediate node to realize the forwarding time of the PTP message and the compensation of the link delay, which satisfies the real-time of the link delay correction and the high precision requirement of the synchronization error compensation, and improves the existing time synchronization precision. Practical.
  • FIG. 1 is a schematic diagram of an industrial wireless network of the present invention
  • Figure 2 shows the two-step synchronization principle under the PTP protocol
  • 3 is a schematic diagram of delay compensation of an intermediate node completing a link under the PTP protocol
  • FIG. 4 is a modified PTP packet header used by the present invention.
  • the method of the invention comprises the steps of: constructing a node in the field into a hierarchical multi-hop network structure; adopting a two-step synchronization mode under the PTP protocol; and using the intermediate node to complete the forwarding of the PTP synchronization message Sync and the delay request message Delay_Req Time and link delay detection and compensation to achieve time synchronization error compensation.
  • the hierarchical multi-hop wireless network structure constructed by the present invention.
  • the root node in the network is used as the time source, that is, the master node; the leaf node acts as the slave node, and communicates with the master node through multi-hop mode, and acts as an access node responsible for information fusion of the access network.
  • the intermediate node acts as a forwarding node to forward the uplink and downlink data packets, and completes the packet forwarding delay and link delay compensation.
  • the master clock periodically transmits the synchronization message Sync including the transmission time t1; the time t2 of receiving the synchronization message Sync from the clock record, and then sending the delay request message Delay_Req, and recording the transmission time t3; the master clock recording reception delay
  • the time t4 of the message Delay_Req is requested, and the delay request response message Delay_Resp including t4 is sent to the slave clock.
  • the slave clock calculates the link average delay meanPathDelay and time offset from the master clock based on the obtained four time values t1, t2, t3, and t4:
  • meanPathDelay is based on the symmetry of the uplink and downlink, that is, only the condition of uplink and downlink symmetry is established, and the link delay calculated according to equation (1) is the exact link delay.
  • this condition is not satisfied, that is, the delay and time offset of the master-slave link obtained by (1) and (2) have large errors.
  • the time synchronization accuracy is seriously degraded, so the time synchronization error needs to be compensated in real time.
  • the time of the network node is obtained by counting the pulse output of the local crystal oscillator, but the frequency of the node clock crystal oscillator is stable within a certain time range.
  • T time
  • T absolute time
  • the PTP protocol-based multi-hop wireless backhaul network time synchronization error compensation method is implemented by the method described below, as shown in FIG. 3 .
  • the intermediate node i records the arrival times Ts_arrived i and Td_arrived i of the synchronization message Sync and the delay request message Delay_Req, leaving time Ts_left i and Td_left i and the message ID;
  • the intermediate node i Sync synchronization packet arrives at node i-1 transmission time Ts_left i-1 and local time Ts_arrived i, N stores the latest set of time information (Ts_arrived i, Ts_arrived i -Ts_left i -1), The kth group information is (Ts_arrived i,k , Ts_arrived i, k -Ts_left i-1,k ), and based on the least squares linear regression technique, the time offset between nodes i and i-1 is obtained.
  • the slope of the arrival time Ts_arrived i is
  • the time offset between nodes i and i-1 is:
  • the local forwarding time of the synchronization message Sync and the delay request message Delay_Req is:
  • T_dwell i (T_left i -T_arrived i ) ⁇ i . (6)
  • T_arrived i is Td_arrived i and T_left i is Td_left i ; for synchronous message Sync, T_arrived i is Ts_arrived i and T_left i is Ts_left i .
  • the link delay of the synchronization message Sync transmitted between nodes i and i-1 is:
  • linkDelay i-1,i (Ts_arrived i -Ts_left i-1 -offset i-1,i ) ⁇ i (7)
  • the link delay of the delay request message Delay_Req transmitted between nodes i and i-1 is:
  • linkDelay i,i-1 (Td_arrived i-1 -Td_left i +offset i-1,i ) ⁇ i (8)
  • the intermediate node i When receiving the follow message Follow_Up and the delay request response message Delay_Resp, the intermediate node i adds the packet forwarding time and the link delay corresponding to the two IDs to the follow message Follow_Up and the delay request response.
  • the header of the message Delay_Resp is corrected in the correction field; when the follow message Follow_Up, the delay request response message Delay_Resp, and the synchronization message Sync are sent, the modified header is used to carry the synchronization message Sync transmission time Ts_left which is consistent with the message ID. i , delay request message Delay_Req arrival time Td_arrived i and time correction value ⁇ i ;
  • the slave node calculates the link average according to the transmission and reception time of the synchronization message Sync and the delay request message Delay_Req, and the correction field value of the follow message follow_Resp and the delay request response message Delay_Resp which are consistent with the two IDs.
  • meanPathDelay [(t2-t3)+(t4-t1)-correctionField of Follow_Up-correctionField of Delay_Resp]/2 (9)
  • the message correction field refers to a header correctionField field of a PTP message.
  • the field value of the synchronization message Sync and the delay request message Delay_Req is 0, and the message is followed.
  • the field values of the Follow_Up and the Delay Request Response message Delay_Resp are the forwarding delay and the link delay of the synchronization message Sync and the delay request message Delay_Req, respectively.
  • the modified header to transmit the added time information, that is, using the following message follow_Res, the delayed request response message Delay_Resp, and the header 4 byte reserved field of the synchronization message Sync to transmit the synchronization message Sync consistent with the message ID.
  • the time information of the transmission time Ts_left i , the delay request message Delay_Req arrival time Td_arrived i, and the time correction value ⁇ i are added.
  • the fields of the Sync, Delay_Req, follow_Up, and Delay_Resp packets are 0, 1, 8, and 9, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线网络通信技术,具体地说是一种基于PTP协议的多跳无线回程网络时间同步误差补偿方法。基于PTP协议,本发明利用中间节点统计收发PTP同步报文Sync和延时请求报文Delay_Req的时间戳,并基于线性回归技术检测并补偿同步报文Sync和延时请求报文Delay_Req在本地的转发时间以及节点间传输的链路时延,最终实现主从节点的无线链路非对称时延修正,完成时间同步误差补偿。本发明不修改现有的PTP协议,利用PTP报文的报头传输补偿时间、报文发送与到达时间以及时间修正值等额外时间信息,减少了报文开销,满足了时间同步误差补偿的实时性以及高精度要求,提高了现有的时间同步精度,实用性强。

Description

基于PTP协议的多跳无线回程网络时间同步误差补偿方法 技术领域
本发明涉及无线网络通信领域,具体地说是一种基于PTP协议的多跳无线回程网络时间同步误差补偿方法。
背景技术
多跳无线回程网络(Multi-hop Wireless Backhaul Networks,MWBNs)旨在提供高速、长距离、非视距以及低成本的无线接入服务,弥补了有线回程网络存在布线困难、成本高、网络覆盖面积受限以及拓扑结构灵活性差等问题的不足。由于工厂环境恶劣、布线困难,同时为了提高工厂生产效率,数字油田、智能电网广域互联、工业机器人协同操作等新型工业应用迫切需要构建管控一体化的无线回程网络,完成区域覆盖,实现测量与控制以及音视频等信息的混合传输。对于工业应用的新要求,MWBNs具有明显的优势。
然而设备的控制信息对MWBNs的QoS往往有着严格的需求,如控制信号的可靠性要求100%,时延和抖动要求为ms级,即MWBNs需要满足控制信息传输的高实时和高可靠等要求。时间同步技术作为MWBNs的一个关键技术,在解决信息融合与协同处理、保证信息传输的实时性和可靠性等问题上至关重要。然而节点的本地时间是通过对内部晶振的输出脉冲计数来完成,节点间需要交换时间信息来实现同步。因此,受内部晶振差异以及工厂环境下网络通信链路干扰的影响,节点间的时间很难实现精确同步。
IEEE 1588 v2(Precision Time Protocol,PTP)协议基于现有的网络通信协议,解决了工业有线以太网时间同步的问题,目前的同步精度可以达到50ns。但PTP协议实现高精度时间同步的关键是基于硬件时间戳和对称链路。所谓硬件时间戳,即在近物理层获取网络报文的收发时间戳。同时,为了进一步抵消链路非对称性的影响,PTP协议建立透传时钟的概念,有效保障了上下行通信链路的对称性,进而提高时间同步的精度。然而当前的Wi-Fi芯片多为单芯片结构,即Wi-Fi节点时间戳的选取只能在MAC层以上实现,MAC层排队、PHY层传输等转发时延误差以及时间戳的选取机制会严重影响链路的非对称性。现有方法多采用统计学原理进行链路时延补偿,增加了网络中的报文,同时实时性差。而且,实验发现将PTP协议直接应用到无线网络中的同步精度可达ms级。同时,开源的Wi-Fi芯片在目前的市场上无法获得,而基于FPGA设计Wi-Fi的MAC层所带来的开发成本太大,所以设计基于PTP协议的无线网络节点是不可取的。
发明内容
针对现有技术中存在的上述不足之处,本发明要解决的技术问题是提供一种基于PTP协议的多跳无线回程网络时间同步误差补偿方法,在当前的PTP以太网设备的基础上,实现PTP设备的无线通信链路的时延补偿,进而实现高精度的时间同步。
本发明为实现上述目的所采用的技术方案是:一种基于PTP协议的多跳无线回程网络时间同步误差补偿方法,包括以下步骤:
将工业现场的节点搭建成层次化的多跳网络结构;
把根节点作为主节点,叶子节点作为从节点,主从节点之间采用PTP协议进行时间同步,同步方式为two-step;
用于主节点和从节点之间数据转发的中间节点i在转发报文时,记录有关PTP报文的时间信息,并基于线性回归技术计算额外的时间信息;
中间节点i在发送跟随报文Follow_Up、延时请求响应报文Delay_Resp以及同步报 文Sync时利用修改后的报头捎带额外的时间信息;
从节点收到PTP报文时根据PTP协议完成同步误差补偿。
所述two-step同步方式是指:利用跟随报文Follow_Up传输同步报文Sync的时间信息,利用延时请求响应报文Delay_Resp传输延时请求报文Delay_Req的时间信息。
所述有关PTP报文的时间信息包括:同步报文Sync和延时请求报文Delay_Req在中间节点i的到达时间Ts_arrivedi与Td_arrivedi,离开时间Ts_lefti与Td_lefti以及报文ID;从与同步报文Sync的ID一致的跟随报文Follow_Up中获取同步报文Sync离开节点i-1的时间Ts_lefti-1;从与延时请求报文Delay_Req的ID一致的延时请求响应报文Delay_Resp中获取延时请求报文Delay_Req到达节点i-1的时间Td_arrivedi-1;从同步报文Sync中获取的节点i-1时间修正值βi-1
所述额外的时间信息包括:本地时间修正值βi、本地转发时间以及同步报文Sync和延时请求报文Delay_Req在节点i和i-1之间传输的链路时延。
所述基于线性回归技术计算额外的时间信息,具体为:
中间节点i存储最新的N组时间信息(Ts_arrivedi,Ts_arrivedi-Ts_lefti-1),其中(Ts_arrivedi,k,Ts_arrivedi,k-Ts_lefti-1,k)为第k组信息。基于最小二乘法的线性回归,中间节点i得到节点i和i-1之间的时间偏移相对于到达时间Ts_arrivedi的斜率:
Figure PCTCN2016070840-appb-000001
其中,
Figure PCTCN2016070840-appb-000002
Figure PCTCN2016070840-appb-000003
则节点i的时间修正值为:
βi=(1-αi-1,ii-1         (4)
节点i和i-1之间的时间偏移为:
Figure PCTCN2016070840-appb-000004
同步报文Sync和延时请求报文Delay_Req的本地转发时间为:
T_dwelli=(T_lefti-T_arrivedii       (6)
其中,对于延时请求报文Delay_Req而言,T_arrivedi为Td_arrivedi,T_lefti为Td_lefti;对于同步报文Sync而言,T_arrivedi为Ts_arrivedi,T_lefti为Ts_lefti
同步报文Sync在节点i和i-1之间传输的链路时延为:
linkDelayi-1,i=(Ts_arrivedi-Ts_lefti-1-offseti-1,ii    (7)
延时请求报文Delay_Req在节点i和i-1之间传输的链路时延为:
linkDelayi,i-1=(Td_arrivedi-1-Td_lefti+offseti-1,ii    (8)
所述修改后的报头格式为:将报头4字节reserved域用来传输增加的时间信息的PTP通用报头格式。
所述捎带额外的时间信息,具体为:
中间节点i在发送跟随报文Follow_Up、延时请求响应报文Delay_Resp时,将与二者ID一致的同步报文Sync和延时请求报文Delay_Req转发时间以及链路时延分别加到各自报头修正域correctionField中;将与二者ID一致的同步报文Sync离开时间Ts_lefti和延时请求报文Delay_Req到达时间Td_arrivedi分别写入各自报头4字节的reserved域;
中间节点i在发送同步报文Sync时,将本地时间修正值写入报头4字节的reserved域。
所述报头修正域为:在two-step同步中,同步报文Sync和延时请求报文Delay_Req的该域值为0,跟随报文Follow_Up和延时请求响应报文Delay_Resp的该域值分别为同 步报文Sync和延时请求报文Delay_Req在中间节点的转发时延以及链路时延。
所述从节点收到PTP报文时根据PTP协议完成同步误差补偿,具体为:
从节点根据同步报文Sync和延时请求报文Delay_Req的发送和接受时间、以及与二者ID一致的跟随报文Follow_Up和延时请求响应报文Delay_Resp的correctionField域值计算链路平均时延meanPathDelay和时间偏移shift:
meanPathDelay=[(t2-t3)+(t4-t1)-correctionField of Follow_Up-correctionField of Delay_Resp]/2        (9)
shift=t2-t1-meanPathDelay-correctionField of Follow_Up  (10)
完成时间同步误差补偿;
其中,t1为主时钟记录发送同步报文Sync的时间,t2为从时钟记录收到同步报文Sync的时间,t3为从时钟记录发送延时请求报文Delay_Req的时间,t4为主时钟记录收到延时请求报文Delay_Req的时间。
本发明提出的基于PTP协议的多跳无线回程网络时间同步误差补偿方法,充分考虑现有设备的局限性以及无线链路的非对称性问题,在不影响现有PTP协议的基础上,减少报文开销,实现链路时延的实时修正,完成时间同步误差补偿。具体表现在:
1.本发明基于现有的PTP协议和设备,降低了开发成本;
2.本发明利用PTP报文报头修正域correctionField和预留域reserved传输额外的时间信息,减少了报文开销;
3.本发明利用中间节点实现PTP报文的转发时间以及链路时延的补偿,满足了链路时延修正的实时性以及同步误差补偿的高精度要求,提高了现有的时间同步精度,实用性强。
附图说明
图1为本发明的工业无线网络示意图;
图2为PTP协议下two-step同步原理;
图3为PTP协议下中间节点完成链路时延补偿示意图;
图4为本发明采用的修改后的PTP报文报头。
具体实施方式
下面结合附图及实施例对本发明做进一步的详细说明。
本发明方法包括以下步骤:将现场的节点搭建成层次化的多跳网络结构;采用PTP协议下的two-step同步方式;利用中间节点完成PTP同步报文Sync和延时请求报文Delay_Req的转发时间以及链路时延检测与补偿,实现时间同步误差补偿。
如图1所示,本发明搭建的层次化多跳无线网络结构。将网络中的根节点作为时间源,即主节点;叶子节点作为从节点,通过多跳的方式实现与主节点的通信,并作为接入节点负责接入网的信息融合。而中间节点作为转发节点实现上下行链路数据包的转发,并完成报文转发时延以及链路时延补偿。
如图2所示,为所述的PTP协议下的two-step同步原理。主时钟周期性发送包含发送时间t1的同步报文Sync;从时钟记录收到同步报文Sync的时间t2,然后发送延时请求报文Delay_Req,并记录发送时间t3;主时钟记录收到延时请求报文Delay_Req的时间t4,并发送包含t4的延时请求响应报文Delay_Resp给从时钟。从时钟根据获得的4个时间值t1、t2、t3、t4来计算其与主时钟之间的链路平均时延meanPathDelay和时间偏移:
meanPathDelay=[(t2-t1)+(t4-t3)]/2      (1)
shift=[(t2-t1)-(t4-t3)]/2      (2)
显然,meanPathDelay的计算是建立在上下行链路对称的基础上,即只有上下行链路对称的条件成立,根据式(1)计算得到的链路时延才是精确的链路时延。但在实际的网络环境中,尤其是在多跳无线网络环境中,该条件并不满足,即由(1)和(2)得到的主从节点链路时延和时间偏移存在较大误差,造成时间同步精度严重下降,因此需要对时间同步误差进行实时补偿。
网络节点的时间都是通过对本地晶振输出脉冲计数获得,然而在一定时间范围内节点时钟晶振的频率是稳定的。同时,节点时间T和绝对时间t之间是线性关系,即T=α·t+β。所以,节点间的时间偏移与时间也成线性关系。
所述基于PTP协议的多跳无线回程网络时间同步误差补偿方法,通过以下描述的方法实现,如图3所示。
(1)中间节点i记录同步报文Sync和延时请求报文Delay_Req的到达时间Ts_arrivedi与Td_arrivedi,离开时间Ts_lefti与Td_lefti以及报文ID;
(2)中间节点i根据同步报文Sync在节点i-1的发送时间Ts_lefti-1和本地到达时间Ts_arrivedi,存储最新的N组时间信息(Ts_arrivedi,Ts_arrivedi-Ts_lefti-1),其中第k组信息为(Ts_arrivedi,k,Ts_arrivedi,k-Ts_lefti-1,k),并基于最小二乘法的线性回归技术,得到节点i和i-1之间的时间偏移相对于到达时间Ts_arrivedi的斜率:
Figure PCTCN2016070840-appb-000005
其中,
Figure PCTCN2016070840-appb-000006
Figure PCTCN2016070840-appb-000007
则节点i的时间修正值为:
βi=(1-αi-1,ii-1         (4)
节点i和i-1之间的时间偏移为:
Figure PCTCN2016070840-appb-000008
同步报文Sync和延时请求报文Delay_Req的本地转发时间为:
T_dwelli=(T_lefti-T_arrivedii.       (6)
其中,对于延时请求报文Delay_Req而言,T_arrivedi为Td_arrivedi,T_lefti为Td_lefti;对于同步报文Sync而言,T_arrivedi为Ts_arrivedi,T_lefti为Ts_lefti
同步报文Sync在节点i和i-1之间传输的链路时延为:
linkDelayi-1,i=(Ts_arrivedi-Ts_lefti-1-offseti-1,ii  (7)
延时请求报文Delay_Req在节点i和i-1之间传输的链路时延为:
linkDelayi,i-1=(Td_arrivedi-1-Td_lefti+offseti-1,ii   (8)
(3)中间节点i在收到跟随报文Follow_Up和延时请求响应报文Delay_Resp时,将与二者ID一致的报文转发时间以及链路时延加入到跟随报文Follow_Up和延时请求响应报文Delay_Resp的报头修正域correctionField中;在发送跟随报文Follow_Up、延时请求响应报文Delay_Resp以及同步报文Sync时采用修改后的报头分别捎带与报文ID一致的同步报文Sync发送时间Ts_lefti、延时请求报文Delay_Req到达时间Td_arrivedi以及时间修正值βi
(4)从节点根据同步报文Sync和延时请求报文Delay_Req的发送和接受时间、以及与二者ID一致的跟随报文Follow_Up和延时请求响应报文Delay_Resp的correctionField域值计算链路平均时延meanPathDelay和时间偏移shift:
meanPathDelay=[(t2-t3)+(t4-t1)-correctionField of Follow_Up-correctionField of Delay_Resp]/2         (9)
shift=t2-t1-meanPathDelay-correctionField of Follow_Up  (10)
完成时间同步误差补偿。
如图4所示,所述报文修正域是指PTP报文的报头correctionField域,在two-step时钟中,同步报文Sync和延时请求报文Delay_Req的该域值为0,跟随报文Follow_Up和延时请求响应报文Delay_Resp的该域值分别为同步报文Sync和延时请求报文Delay_Req在中间节点的转发时延和链路时延。所述利用修改后的报头传输增加的时间信息,即采用跟随报文Follow_Up、延时请求响应报文Delay_Resp以及同步报文Sync的报头4字节reserved域传递与报文ID一致的同步报文Sync发送时间Ts_lefti、延时请求报文Delay_Req到达时间Td_arrivedi以及时间修正值βi等增加的时间信息。同时,通过检查messageType域检测报文类型,Sync、Delay_Req、Follow_Up、Delay_Resp等报文的该域值分别为0、1、8、9。

Claims (9)

  1. 一种基于PTP协议的多跳无线回程网络时间同步误差补偿方法,其特征在于,包括以下步骤:
    将工业现场的节点搭建成层次化的多跳网络结构;
    把根节点作为主节点,叶子节点作为从节点,主从节点之间采用PTP协议进行时间同步,同步方式为two-step;
    用于主节点和从节点之间数据转发的中间节点i在转发报文时,记录有关PTP报文的时间信息,并基于线性回归技术计算额外的时间信息;
    中间节点i在发送跟随报文Follow_Up、延时请求响应报文Delay_Resp以及同步报文Sync时利用修改后的报头捎带额外的时间信息;
    从节点收到PTP报文时根据PTP协议完成同步误差补偿。
  2. 根据权利要求1所述的基于PTP协议的多跳无线回程网络时间同步误差补偿方法,其特征在于,所述two-step同步方式是指:利用跟随报文Follow_Up传输同步报文Sync的时间信息,利用延时请求响应报文Delay_Resp传输延时请求报文Delay_Req的时间信息。
  3. 根据权利要求1所述的基于PTP协议的多跳无线回程网络时间同步误差补偿方法,其特征在于,所述有关PTP报文的时间信息包括:同步报文Sync和延时请求报文Delay_Req在中间节点i的到达时间Ts_arrivedi与Td_arrivedi,离开时间Ts_lefti与Td_lefti以及报文ID:从与同步报文Sync的ID一致的跟随报文Follow_Up中获取同步报文Sync离开节点i-1的时间Ts_lefti-1;从与延时请求报文Delay_Req的ID一致的延时请求响应报文Delay_Resp中获取延时请求报文Delay_Req到达节点i-1的时间Td_arrivedi-1;从同步报文Sync中获取的节点i-1时间修正值βi-1
  4. 根据权利要求1所述的基于PTP协议的多跳无线回程网络时间同步误差补偿方法,其特征在于,所述额外的时间信息包括:本地时间修正值βi、本地转发时间以及同步报文Sync和延时请求报文Delay_Req在节点i和i-1之间传输的链路时延。
  5. 根据权利要求1所述的基于PTP协议的多跳无线回程网络时间同步误差补偿方法,其特征在于,所述基于线性回归技术计算额外的时间信息,具体为:
    中间节点i存储最新的N组时间信息(Ts_arrivedi,Ts_arrivedi-Ts_lefti-1),其中(Ts_arrivedi,k,Ts_arrivedi,k-Ts_lefti-1,k)为第k组信息。基于最小二乘法的线性回归,中间节点i得到节点i和i-1之间的时间偏移相对于到达时间Ts_arrivedi的斜率:
    Figure PCTCN2016070840-appb-100001
    其中,
    Figure PCTCN2016070840-appb-100002
    Figure PCTCN2016070840-appb-100003
    则节点i的时间修正值为:
    βi=(1-αi-1,ii-1   (4)
    节点i和i-1之间的时间偏移为:
    Figure PCTCN2016070840-appb-100004
    同步报文Sync和延时请求报文Delay_Req的本地转发时间为:
    Figure PCTCN2016070840-appb-100005
    其中,对于延时请求报文Delay_Req而言,T_arrivedi为Td_arrivedi,T_lefti为Td_lefti
    对于同步报文Sync而言,T_arrivedi为Ts_arrivedi,T-lefti为Ts_lefti
    同步报文Sync在节点i和i-1之间传输的链路时延为:
    linkDelayi-1,i=(Ts_arrivedi-Ts_lefti-1-offseti-1,ii   (7)
    延时请求报文Delay_Req在节点i和i-1之间传输的链路时延为:
    linkDelayi,i-1=(Td_arrivedi-1-Td_lefti+offseti-1,ii   (8)
  6. 根据权利要求1所述的基于PTP协议的多跳无线回程网络时间同步误差补偿方法,其特征在于,所述修改后的报头格式为:将报头4字节reserved域用来传输增加的时间信息的PTP通用报头格式。
  7. 根据权利要求1所述的基于PTP协议的多跳无线回程网络时间同步误差补偿方法,其特征在于,所述捎带额外的时间信息,具体为:
    中间节点i在发送跟随报文Follow_Up、延时请求响应报文Delay_Resp时,将与二者ID一致的同步报文Sync和延时请求报文Delay_Req转发时间以及链路时延分别加到各自报头修正域correctionField中;将与二者ID一致的同步报文Sync离开时间Ts_lefti和延时请求报文Delay_Req到达时间Td_arrivedi分别写入各自报头4字节的reserved域;
    中间节点i在发送同步报文Sync时,将本地时间修正值写入报头4字节的reserved域。
  8. 根据权利要求7所述的基于PTP协议的多跳无线回程网络时间同步误差补偿方法,其特征在于,所述报头修正域为:在two-step同步中,同步报文Sync和延时请求报文Delay_Req的该域值为0,跟随报文Follow_Up和延时请求响应报文Delay_Resp的该域值分别为同步报文Sync和延时请求报文Delay_Req在中间节点的转发时延以及链路时延。
  9. 根据权利要求1所述的基于PTP协议的多跳无线回程网络时间同步误差补偿方法,其特征在于,所述从节点收到PTP报文时根据PTP协议完成同步误差补偿,具体为:
    从节点根据同步报文Sync和延时请求报文Delay_Req的发送和接受时间、以及与二者ID一致的跟随报文Follow_Up和延时请求响应报文Delay_Resp的correctionField域值计算链路平均时延meanPathDelay和时间偏移shift:
    meanPathDelay=[(t2-t3)+(t4-t1)-correctionField ofFollow_Up-
    correctionField ofDelay_Resp]/2   (9)
    shift=t2-t1-meanPathDelay-correctionField of Follow_Up(10)完成时间同步误差补偿;
    其中,t1为主时钟记录发送同步报文Sync的时间,t2为从时钟记录收到同步报文Sync的时间,t3为从时钟记录发送延时请求报文Delay_Req的时间,t4为主时钟记录收到延时请求报文Delay_Req的时间。
PCT/CN2016/070840 2015-12-24 2016-01-14 基于ptp协议的多跳无线回程网络时间同步误差补偿方法 WO2017107261A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/525,687 US10056999B2 (en) 2015-12-24 2016-01-14 Time synchronization error compensation method for multi-hop wireless backhaul network based on PTP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510988867.7 2015-12-24
CN201510988867.7A CN106921456B (zh) 2015-12-24 2015-12-24 基于ptp协议的多跳无线回程网络时间同步误差补偿方法

Publications (1)

Publication Number Publication Date
WO2017107261A1 true WO2017107261A1 (zh) 2017-06-29

Family

ID=59088838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070840 WO2017107261A1 (zh) 2015-12-24 2016-01-14 基于ptp协议的多跳无线回程网络时间同步误差补偿方法

Country Status (3)

Country Link
US (1) US10056999B2 (zh)
CN (1) CN106921456B (zh)
WO (1) WO2017107261A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019023515A1 (en) 2017-07-26 2019-01-31 Aviat Networks, Inc. TRANSPARENT RADIO CLOCK DISTRIBUTED OVER A WIRELESS NETWORK
US20220006547A1 (en) * 2019-01-21 2022-01-06 Hoptroff London Limited Systems and methods for testing time distribution
CN114629586A (zh) * 2022-03-14 2022-06-14 中国船舶重工集团公司第七0七研究所 一种网口ptp授时功能扩展装置及扩展方法
US11476963B2 (en) 2017-07-26 2022-10-18 Aviat U.S., Inc. Airframe timestamping technique for point-to-point radio links

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102391798B1 (ko) * 2016-01-06 2022-04-27 현대자동차주식회사 차량의 시간 정보에 기초한 도메인의 시간 동기화 방법
CN106998302B (zh) * 2016-01-26 2020-04-14 华为技术有限公司 一种业务流量的分配方法及装置
WO2018138366A1 (en) * 2017-01-27 2018-08-02 Lane Gmbh Method and system for transmitting alternative image content of a physical display to different viewers
US10355799B2 (en) * 2017-09-28 2019-07-16 Ciena Corporation Pseudowire clock recovery
CN109995604B (zh) * 2017-12-29 2023-05-16 华为技术有限公司 一种灵活以太网时延测量方法及相关设备
CN111989960B (zh) * 2018-04-18 2024-05-03 杜塞尔多夫华为技术有限公司 针对ue侧行链路和/或上行链路通信的基于网络的时间同步的技术
US11050501B2 (en) * 2018-06-14 2021-06-29 Microchip Technology Incorporated Performing PHY-level hardware timestamping and time synchronization in cost-sensitive environments
US10820290B2 (en) 2018-08-13 2020-10-27 At&T Intellectual Property I, L.P. Over the air synchronization by means of a protocol in a next generation wireless network
CN109068384A (zh) * 2018-08-23 2018-12-21 平安科技(深圳)有限公司 一种时间同步方法及系统
JP7200636B2 (ja) * 2018-12-04 2023-01-10 日本電信電話株式会社 伝送装置、時刻伝送システム、および、遅延測定方法
CN110176973B (zh) * 2019-05-17 2020-12-04 固高科技(深圳)有限公司 时钟同步的方法、系统、计算机设备和存储介质
US11876609B2 (en) * 2019-07-18 2024-01-16 Nippon Telegraph And Telephone Corporation Time sync device, time sync method, and program
US11064449B2 (en) 2019-08-16 2021-07-13 At&T Intellectual Property I, L.P. Over the air synchronization of network nodes
CN112583477B (zh) * 2019-09-27 2023-08-04 深圳市中兴微电子技术有限公司 一种延时测量方法、系统和存储介质
CN112865900B (zh) * 2019-11-27 2025-01-28 中兴通讯股份有限公司 一种时间同步方法、装置、系统及存储介质
CN113014344B (zh) * 2019-12-19 2022-04-15 中国科学院沈阳自动化研究所 一种冗余网络的时间同步方法
CN113014515B (zh) * 2019-12-19 2022-05-06 中国科学院沈阳自动化研究所 一种支持异构网络时间同步时延补偿的方法和交换机
KR102820588B1 (ko) * 2020-01-30 2025-06-16 삼성전자 주식회사 이동통신 네트워크의 미디어 처리 및 전송에 대한 지연을 할당하기 위한 장치와 방법
CN111342926A (zh) * 2020-02-28 2020-06-26 盛科网络(苏州)有限公司 一种ptp在非对称网络中时间同步的优化方法
CN111443756B (zh) * 2020-03-31 2021-09-10 上海北斗导航创新研究院 一种计算机与带硬件触发功能设备的时钟驯服方法及系统
CN111867042B (zh) * 2020-04-15 2022-11-04 北京云联慧通科技有限公司 具有时间差检测功能的mesh网络同步的方法
US11463973B2 (en) * 2020-04-28 2022-10-04 Microsoft Technology Licensing, Llc Clock synchronization using wireless side channel
CN111698076B (zh) * 2020-06-03 2023-05-30 河北工业大学 一种基于时间补偿的精确通信同步方法及系统
CN111726189B (zh) * 2020-06-15 2022-11-11 合肥哈工轩辕智能科技有限公司 基于时间戳标记电路的双核系统时钟同步方法及装置
CN111726188B (zh) * 2020-06-15 2022-11-04 合肥哈工轩辕智能科技有限公司 Airt-ros实时系统与非实时系统时钟同步方法及装置
CN111884749B (zh) * 2020-07-24 2022-05-20 中国科学院精密测量科学与技术创新研究院 一种基于时钟分相的高精度固定周期ptp时间同步方法
CN111835449A (zh) * 2020-07-30 2020-10-27 山东超越数控电子股份有限公司 一种基于ptp协议的局域网高精度时钟同步方法及装置
CN112153443B (zh) * 2020-09-01 2022-02-22 青岛海信传媒网络技术有限公司 Pts获取方法和显示设备
TWI795678B (zh) * 2020-09-30 2023-03-11 優達科技股份有限公司 同步裝置和同步方法
CN112600641A (zh) * 2020-12-31 2021-04-02 深圳市英特瑞半导体科技有限公司 一种网络设备时间同步方法、装置、设备及存储介质
CN115085846A (zh) * 2021-03-11 2022-09-20 中国科学院沈阳自动化研究所 一种面向多控制器协同应用的错峰时钟同步方法
CN113260040B (zh) * 2021-05-31 2021-10-22 深圳市爱图仕影像器材有限公司 时间码同步方法及网络系统
CN114025364B (zh) * 2021-09-24 2024-10-18 重庆川仪自动化股份有限公司 一种基于冲突算法降低通信时延的方法和系统
CN113965288B (zh) * 2021-10-26 2023-08-22 昆高新芯微电子(江苏)有限公司 提高精确时间协议ptp时间同步精度的方法和装置
CN114726471B (zh) * 2022-03-21 2024-08-06 国网湖南省电力有限公司 基于hplc的配电场域网时钟精准同步方法及装置
CN115314146B (zh) * 2022-08-09 2024-08-06 中国电信股份有限公司 多跳组网下时间同步方法、装置、电子设备及存储介质
CN117938298B (zh) * 2024-02-02 2024-08-27 中国科学院精密测量科学与技术创新研究院 一种提升ptp时间同步精度的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034629A1 (en) * 2007-09-05 2009-03-11 Technische Universität Kaiserlautern Method, computer program product and system for the tick synchronization of nodes in a wireless multi-hop network
CN103138865A (zh) * 2013-01-25 2013-06-05 杭州华三通信技术有限公司 一种时间同步方法和装置
CN104507156A (zh) * 2014-12-17 2015-04-08 西南大学 针对无线网络的基于ieee 1588ptp机制的时间同步改进方法
CN104754722A (zh) * 2013-12-26 2015-07-01 中国科学院沈阳自动化研究所 一种面向层次化异构网络的时间同步方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070070299A (ko) * 2005-07-06 2007-07-04 삼성전자주식회사 레지덴셜 이더넷 시스템에서의 시간 동기화 방법
CN101455014B (zh) * 2006-02-22 2013-05-29 西门子企业通讯有限责任两合公司 传送所发送的或者所接收的消息的发送时间信息或者接收时间信息的方法和装置
CN101795423A (zh) * 2009-02-04 2010-08-04 中兴通讯股份有限公司 无源光网络系统的时间同步方法及其同步系统
CN102035639B (zh) * 2009-09-30 2014-09-17 华为技术有限公司 时间同步方法、装置和系统
US9661645B2 (en) * 2010-03-26 2017-05-23 Nokia Solutions And Networks Oy Carrier selection and/or reselection
CN102932905B (zh) * 2011-08-10 2017-06-16 中兴通讯股份有限公司 自动补偿1588链路非对称性时延的实现方法及系统
JP5768624B2 (ja) * 2011-09-26 2015-08-26 富士通株式会社 中継装置及び中継方法
JP5566366B2 (ja) * 2011-11-29 2014-08-06 シャープ株式会社 電子機器システム及び電子機器
US9106353B2 (en) * 2011-12-13 2015-08-11 Jds Uniphase Corporation Time synchronization for network testing equipment
IL217232A0 (en) * 2011-12-27 2012-03-29 Eci Telecom Ltd Technique for monitoring and management of data networks
US8954609B1 (en) * 2012-04-25 2015-02-10 Juniper Networks, Inc. Time adjustment using time-to-live values
EP2701318B1 (en) * 2012-08-22 2015-04-15 Alcatel Lucent A method for synchronizing distributed clocks by the precision time protocol, in a telecommunication network
US8873589B2 (en) * 2012-09-04 2014-10-28 Khalifa University Of Science, Technology And Research Methods and devices for clock synchronization
US8879586B2 (en) * 2012-12-20 2014-11-04 Broadcom Corporation Inband timestamping
US9698926B2 (en) * 2013-03-15 2017-07-04 Microsemi Frequency And Time Corporation Distributed two-step clock
JP6171595B2 (ja) * 2013-06-07 2017-08-02 富士通株式会社 パケット中継装置及びパケット送信装置
US9184861B2 (en) * 2013-10-01 2015-11-10 Khalifa University of Science, Technology, and Research Method and devices for synchronization
US20150092796A1 (en) * 2013-10-02 2015-04-02 Khalifa University of Science, Technology, and Research Method and devices for time and frequency synchronization
US9270607B2 (en) * 2013-12-09 2016-02-23 Khalifa University Of Science, Technology And Research Method and devices for packet selection
US9671822B2 (en) * 2014-12-11 2017-06-06 Khalifa University Of Science, Technology And Research Method and devices for time transfer using end-to-end transparent clocks
US9295018B1 (en) * 2014-12-17 2016-03-22 Telefonaktiebolaget L M Ericsson (Publ) Communication network nodes and methods performed therein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034629A1 (en) * 2007-09-05 2009-03-11 Technische Universität Kaiserlautern Method, computer program product and system for the tick synchronization of nodes in a wireless multi-hop network
CN103138865A (zh) * 2013-01-25 2013-06-05 杭州华三通信技术有限公司 一种时间同步方法和装置
CN104754722A (zh) * 2013-12-26 2015-07-01 中国科学院沈阳自动化研究所 一种面向层次化异构网络的时间同步方法
CN104507156A (zh) * 2014-12-17 2015-04-08 西南大学 针对无线网络的基于ieee 1588ptp机制的时间同步改进方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019023515A1 (en) 2017-07-26 2019-01-31 Aviat Networks, Inc. TRANSPARENT RADIO CLOCK DISTRIBUTED OVER A WIRELESS NETWORK
EP3659278A4 (en) * 2017-07-26 2021-05-05 Aviat Networks, Inc. TRANSPARENT RADIO CLOCK DISTRIBUTED ON A WIRELESS NETWORK
US11381490B2 (en) 2017-07-26 2022-07-05 Avlat U.S., Inc. Distributed radio transparent clock over a wireless network
US11476963B2 (en) 2017-07-26 2022-10-18 Aviat U.S., Inc. Airframe timestamping technique for point-to-point radio links
US11777829B2 (en) 2017-07-26 2023-10-03 Aviat U.S., Inc. Distributed radio transparent clock over a wireless network
US12155550B2 (en) 2017-07-26 2024-11-26 Aviat U.S., Inc. Distributed radio transparent clock over a wireless network
US20220006547A1 (en) * 2019-01-21 2022-01-06 Hoptroff London Limited Systems and methods for testing time distribution
US12341603B2 (en) * 2019-01-21 2025-06-24 Hoptroff London Limited Systems and methods for testing time distribution
CN114629586A (zh) * 2022-03-14 2022-06-14 中国船舶重工集团公司第七0七研究所 一种网口ptp授时功能扩展装置及扩展方法

Also Published As

Publication number Publication date
CN106921456A (zh) 2017-07-04
CN106921456B (zh) 2018-06-19
US20170366287A1 (en) 2017-12-21
US10056999B2 (en) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2017107261A1 (zh) 基于ptp协议的多跳无线回程网络时间同步误差补偿方法
CN104507156B (zh) 针对无线网络的基于ieee 1588ptp机制的时间同步改进方法
CN106992830B (zh) 一种fc-ae-1553网络中的时钟同步方法
CN103929293B (zh) 非对称延迟的时间同步方法及系统
CN103201971B (zh) 用于同步具有节点之间的聚合连接的分组交换网络的主时钟和从时钟的方法以及相关联的同步装置
CN102332973B (zh) 一种链状网络的实时通信与时钟同步方法
CN113645686B (zh) 一种带运动补偿的无线自组织网络时间同步方法
CN104754722B (zh) 一种面向层次化异构网络的时间同步方法
US20210153151A1 (en) Time Synchronization Offset Adjustment Method and Apparatus, Terminal, and Access Layer Device
CN102006157B (zh) 一种时间同步的方法和系统
EP2541815B1 (en) Clock synchronization network
WO2021004005A1 (zh) 时间戳抖动补偿方法及系统
TW201123792A (en) Network slave node and time synchronization method in network applying the same
CN111193997B (zh) 一种uwb定位系统的到达时间差测量与校准方法
CN108650050A (zh) 一种分布式网络时钟同步方法
CN105577349A (zh) 一种机载网络ieee1588协议主从时钟端口同步方法
CN102710410A (zh) 一种ntp网络和ptp网络之间时钟同步的方法
CN103178918B (zh) 基于tdma的工厂自动化无线网络时间同步方法
CN103108388A (zh) 无线传感器网络时钟同步方法、装置及系统
CN104993900B (zh) 一种基于ieee1588时钟模型的同步校正方法
CN103138828B (zh) 网络节点时钟同步方法和时钟同步网络
CN114389735A (zh) 一种基于ieee802.1as冗余主时钟的时钟同步方法
WO2011074529A1 (ja) 時刻同期システム、スレーブノード、時刻同期方法及び時刻同期用プログラム
CN102647782B (zh) 一种物理线路时延确定方法、时钟同步方法及其设备
CN112887046B (zh) 一种边界时钟和普通时钟数字化时间同步方法及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15525687

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877075

Country of ref document: EP

Kind code of ref document: A1