WO2017107200A1 - 通信方法、装置和系统 - Google Patents

通信方法、装置和系统 Download PDF

Info

Publication number
WO2017107200A1
WO2017107200A1 PCT/CN2015/098988 CN2015098988W WO2017107200A1 WO 2017107200 A1 WO2017107200 A1 WO 2017107200A1 CN 2015098988 W CN2015098988 W CN 2015098988W WO 2017107200 A1 WO2017107200 A1 WO 2017107200A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
detection
base station
cellular
sounding signal
Prior art date
Application number
PCT/CN2015/098988
Other languages
English (en)
French (fr)
Inventor
张弛
郭房富
古磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/098988 priority Critical patent/WO2017107200A1/zh
Publication of WO2017107200A1 publication Critical patent/WO2017107200A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a communication method, apparatus, and system.
  • the Device to Device (D2D) communication technology enables direct communication between short-distance terminals without using a third party, thereby sharing the heavy network load of the wireless cellular network, offloading cellular services, and supplementing the existing cellular network architecture. And bring a new profit income model.
  • D2D communication technology can also improve spectrum efficiency, achieve higher throughput performance and lower transmission delay.
  • the resources used for D2D communication between the terminal and the terminal are configured based on the D2D resource pool, and the resources used by the D2D communication are separated from the resources used by the cellular communication, thereby utilizing system resource utilization efficiency. Lower.
  • the present application describes a communication method, apparatus and system.
  • an embodiment of the present application provides a communication method, where the method includes: configuring, by a network side device, a first probe signal sending resource to a first D2D user equipment (UE) in at least one pair of D2D links, The second D2D UE in the at least one pair of D2D links configures the first sounding signal detection resource, and configures the second sounding signal sending resource to the cellular UE in the cellular link, where the first D2D user equipment is in the D2D link.
  • the transmitting end, the second D2D user equipment is a receiving end in the D2D link.
  • the network side device notifies the first UE of the first sounding signal to send a resource, notifies the second D2D UE of the first sounding signal detecting resource, and notifies the cellular UE of the second sounding signal to send a resource.
  • the first D2D UE may acquire the first sounding signal transmission resource that is configured and notified by the network side device, and send a first sounding signal according to the first sounding signal sending resource, where the cellular UE may acquire the network.
  • the second probe signal is configured to be sent by the side device, and the second probe signal is sent according to the second probe signal, and the second D2D UE may acquire the network device configuration and notify the A detection signal detection resource is configured to detect a second detection signal sent by the cellular UE according to the first detection signal detection resource.
  • the second D2D UE may further detect the first detection signal sent by the first D2D UE in the at least one D2D link.
  • a second D2D UE of the pair of D2D links detects the first sounding signal sent by the first D2D UE in the same D2D link, or may send the first signal sent by the first D2D UE in the other D2D link. The detection signal is detected. In this way, interference between different D2D UEs in the D2D link can be obtained, so that information can be provided for resource multiplexing scheduling between D2D links.
  • the network side device may configure and notify the second D2D UE of the third sounding signal sending resource, and configure and notify the first D2D UE to detect the second sounding signal.
  • the second D2D UE may send a third probe signal according to the third probe signal sending resource.
  • the first D2D UE may detect the second sounding signal sent by the second UE, and may also detect the third sounding signal sent by the second D2D UE.
  • the second D2D UE may further detect a second sounding signal sent by the second D2D UE in the other D2D link, and the first D2D UE may further detect the resource in the other D2D link according to the second sounding signal.
  • the first detection signal sent by the first D2D UE is detected.
  • the network side device may configure the second D2D UE and notify the reporting resource. If the first D2D UE is also configured with the probe signal reporting resource, the network side device may also The first D2D UE configuration reports resources. The D2D UE that detects the detection signal may report the detected detection result to the network side device in the reported resource.
  • the network side device may include at least one base station, and the first D2D UE and the second D2D UE and the cellular UE in the at least one D2D link may be served by the same base station, and the base station may The related resources are configured, and the base station may notify the corresponding UE under the coverage of the configured related resources.
  • the first D2D UE and the second D2D UE in the at least one D2D link are served by a first base station, where the cellular UE is served by a second base station, and the foregoing resource may be configured by the first base station or the second base station If the resource is configured by the first base station, the first base station notifies the first D2D UE and the second D2D UE of the related resources of the first D2D UE and the second D2D UE, and configures the The related resources of the UE are notified to the cellular UE by the second base station.
  • the second base station sends the related resource configured by the cellular UE to the cellular UE, and the related resources of the first D2D UE and the second D2D UE pass the first base station. Notifying the first D2D UE and the second D2D UE.
  • the at least one base station may also be connected to the control node, and the control node may configure the foregoing resource, and notify the corresponding UE under the coverage of the base station by the base station.
  • the base station notifies the first sounding signal to send a resource, the second sounding signal sends a resource, the third sounding signal sends a resource, the first sounding signal detects a resource, and the second sounding signal detects a resource or a Description
  • the allocation control information for indicating the related resource may be sent in the downlink control channel, for example, the downlink physical control channel or the downlink control information of the enhanced downlink physical control channel, or may be in the downlink data channel, for example, the downlink.
  • the allocation indication information is sent in the data sharing channel by dedicated radio resource control signaling.
  • the base station when the base station notifies the first detection signal detection resource or the second detection signal detection resource, the base station may also perform notification in an implicit manner.
  • the first probe signal transmission resource, the second probe signal transmission resource, or the third probe signal transmission resource are configured in a pre-configured resource pool, and the resources in the resource pool are configured as far as possible or all to the D2D UE and the cellular participating in the detection.
  • the UEs are configured with the same size of the probe signal transmission resources, and each D2D UE can consider the resources other than the probe signal transmission resources configured in the resource pool to be detection signal detection resources. With the method provided in this embodiment, the occupation of system resources when the resource notification is saved can be saved.
  • a timing relationship may exist between the allocated resource for sending the allocation indication information and the probe resource, or the allocated resource and the probe may be There is a timing relationship between resources and reported resources.
  • the UE may obtain the timing relationship in advance, or include the timing relationship in the allocation indication information, so that when receiving the allocation indication information, the UE may obtain the foregoing according to the time domain location of the allocated resource that is sent to the allocation indication information.
  • the time domain location of the resource or the resource is reported, and the resource resource is reported according to the frequency domain information indicated by the allocation indication information.
  • the method provided in this embodiment can reduce the system resource occupied by the allocation indication information.
  • the network side device receives a detection result that is detected by the second D2D UE to detect the second detection signal sent by the cellular UE. If the second D2D UE detects the first detection signal or the third detection signal, the second D2D UE may detect the first detection signal or the third detection signal. The result is reported to the network side device.
  • the base station may detect the first detection signal sent by the first D2D UE, and obtain a detection result.
  • the determining, by the base station, the detection result obtained by detecting the first detection signal sent by the first D2D UE and the detection result obtained by detecting, by the second D2D UE, the second detection signal sent by the cellular UE The cellular link and the at least one pair of D2D links are multiplexed with frequency resources.
  • the control node may obtain a detection result obtained by the base station detecting the first detection signal sent by the first D2D UE.
  • the control node may detect, according to the detection result that the base station detects the first detection signal sent by the first D2D UE, and the second detection signal sent by the second D2D UE to the cellular UE.
  • the test result is indeed The cellular link and the at least one pair of D2D links are frequency resource multiplexed.
  • the second D2D UE reports a detection result of detecting a sounding signal sent by the first D2D UE in the other D2D link, and the network side device may further determine a frequency resource between the multiple D2D links.
  • system resource utilization efficiency can be improved, system capacity and number of connections can be increased, and scalability of D2D communication can be enhanced, and D2D links and D2D links and cellular chains can also be reduced. Interference effects between the roads.
  • the detection result reported by the D2D UE may be an absolute quantization value of a result obtained by detecting the detection signal, such as a quantized value of the received power, or may be a result of detecting the detection signal.
  • the relative quantized value is, for example, an index value indicating the level of the absolute quantized value of the detection result, or may be a value indicating whether the signal strength is strong or weak.
  • the quantized value of the received power is a linear average of the power of the resource elements carrying the sounding signal.
  • the resource element may be all resource elements carrying the sounding signal, or may be part of all resource elements.
  • the D2D UE may report the measurement result by using bitmap information, and one bit information in the bitmap information indicates a result of the measured detection signal sent by one UE.
  • the first sounding signal transmitting resource allocated to the first D2D UE and the second sounding signal transmitting resource configured to the cellular UE do not overlap each other in at least one dimension of the configuration resource.
  • the sounding signal transmission resources are configured for the plurality of D2D UEs and the cellular UEs, the sounding signal transmission resources configured for the plurality of D2D UEs and the cellular UEs do not overlap each other in at least one dimension.
  • the configured sounding signal transmission resources may be configured in a frequency division manner or may be frequency division in different time domains. The granularity of frequency division can be a different number of subcarriers.
  • the configured first probe signal sending resource and the second probe signal sending resource may also be configured in a space division or code division manner.
  • the used reporting resources may be configured in a frequency division manner in the same time domain, and the frequency division granularity may be a different number of subcarriers.
  • the two D2D UEs may also occupy the same frequency resource, and the two D2D UEs may be distinguished by using a code division manner, and the D2D UE may use the configured ZC sequence to multiplex the same frequency resource report. Test results.
  • interference detection and reporting between multiple UEs can be implemented in a form that occupies less system resources. For the system, the required resource overhead is small, and the network side is suitable for a large number in the system. The UE needs to obtain interference between UEs.
  • the sounding signal may not carry information.
  • the sounding signal occupies less system resources and has lower requirements on the receiving side.
  • an embodiment of the present application provides a communication method, where a network side device configures and notifies a first D2D UE in at least two D2D links, and sends a probe signal to a resource in the at least two D2D links.
  • Second D2D UE with And the notification signal receiving resource is set, the first D2D UE is a transmitting end in the D2D link, and the second D2D UE is a receiving end in the D2D link.
  • the first D2D UE of the at least two D2D links sends a resource transmission sounding signal according to the sounding signal, and the second D2D UE of the at least two D2D links detects the resource detection according to the sounding signal.
  • the second D2D UE may report the detection result that is detected by the detection signal to the network side device.
  • the network side device can obtain interference between D2D UEs in different D2D links.
  • the network side device may determine, according to the detection result, whether different D2D links perform frequency resource concurrent multiplexing. The resource utilization efficiency of the system is further improved, and interference between D2D UEs between different links is reduced.
  • the embodiment of the present invention provides a network side device, which may be a base station or a control node.
  • an embodiment of the present invention provides a base station, which has a function of realizing the behavior of a base station in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the base station includes a processor and a transceiver configured to support the base station to perform the corresponding functions in the above methods.
  • the transmitter is configured to support communication between the base station and the UE, and send information or instructions involved in the foregoing method to the UE, and receive information or instructions sent by the base station.
  • the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • an embodiment of the present invention provides a UE, where the UE has a function of implementing UE behavior in the foregoing method design.
  • the UE may be a D2D UE or a cellular UE.
  • the function can be implemented by hardware, and the structure of the UE includes a transceiver and a processor.
  • the corresponding software implementation can also be performed by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • an embodiment of the present invention provides a control node, which may include a controller/processor, a memory, and a communication unit.
  • the controller/processor may be used to coordinate resource management and configuration between multiple base stations, and may be used to perform the resource configuration method described in the foregoing embodiments.
  • the memory can be used to store program code and data for the control node.
  • the communication unit is configured to support the control node to communicate with the base station, for example, to send information of the configured resource to the base station.
  • an embodiment of the present invention provides a communication system, where the system includes the base station and the UE, where the UE includes at least two D2D UEs and a cellular UE.
  • the control node in the above embodiment may also be included.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the base station, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the UE, including a program designed to perform the above aspects.
  • the D2D UE can obtain the interference of the cellular UE, provide accurate information input for the system resource scheduling decision, and provide the possibility of concurrently multiplexing the frequency resources between different links. Further, the network side device can also obtain the interference of the other UEs to the cellular UE, and the D2D UE reports the detection result of the detection signals sent by the other D2D UEs and the cellular UE to the base station, so that the network side can obtain the global interference between the UEs. information. Concurrent multiplexing of communication link frequency resources can not only improve system resource utilization efficiency, but also increase system capacity and number of connections and enhance the scalability of D2D communication. At the same time, it can reduce D2D links and D2D links. Interference effects between cellular links.
  • FIG. 1A is a schematic diagram of a communication system according to an embodiment of the present invention.
  • FIG. 1B is a schematic diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2A is a schematic diagram of resource configuration according to an embodiment of the present invention.
  • 2B is a schematic diagram of resource configuration according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another resource configuration according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another resource configuration according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another resource configuration according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a communication method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a control node according to an embodiment of the present invention.
  • an embodiment of the present invention provides a communication system 100.
  • the communication system 100 includes at least one base station (BS) and a plurality of UEs.
  • the plurality of UEs in the communication system 100 include at least two UEs that can be used for D2D communication and at least one UE that can be used for cellular communication.
  • D2D communication refers to communication directly between two UEs.
  • Cellular communication refers to communication between a UE and a base station.
  • the UE for D2D communication has a D2D communication function, and can directly perform D2D communication with other UEs having D2D communication functions.
  • a UE performing D2D communication may be referred to as a D2D UE or a D2D terminal.
  • the D2D UE may also have a cellular communication function, and may also perform cellular communication when there is a communication requirement with the base station.
  • a UE performing cellular communication has a function of performing cellular communication with a base station, and may also be referred to as a cellular UE or a cellular terminal.
  • the cellular UE may also have a D2D communication function, and may also perform D2D communication with other D2D UEs when communicating with other D2D UEs.
  • multiple UEs may be identified as UEs 40A-40C, D2D communication may be performed between the UE 40A and the UE 40B, and a D2D link exists between the UE 40A and the UE 40B.
  • a D2D link between two D2D UEs performing D2D communication may be referred to as a pair of D2D links, and two D2D UEs in a pair of D2D links may be a receiving end and a transmitting end, in one transmission, one of them
  • the D2D UE may be a transmitting end, and another D2D UE may be a receiving end.
  • the UE 40A may be a transmitting end in a D2D link
  • the UE 40B may be a receiving end in a D2D link. If the two D2D UEs support the simultaneous transceiving function, each of the D2D UEs may be both a transmitting end and a receiving end.
  • Cell communication may be performed between the UE 40C and the base station 20, and a cellular link exists between the UE 40C and the base station 20.
  • D2D communication may also be performed between the UE 40D and the UE 40E, and a D2D link exists between the 40D and the UE 40E, the UE 40D may be a transmitting end in a D2D link, and the UE 40E may be a D2D link.
  • the receiving end may also have a cellular communication function
  • the UE 40C may also have a D2D communication function.
  • the multiple UEs may all be under the coverage of the same base station, and the multiple UEs may be served by the same base station.
  • UEs 40A-40E are both located under the coverage of base station 20 and are served by base station 20.
  • the base station 20 may also be connected to a control node, for example, the base station 20 may be connected to the control node 60.
  • the multiple UEs in the communication system 100 may also be located under different base station coverage, that is, D2D UEs in different D2D links may be served by different base stations, D2D UEs and cells.
  • the UE may also be served by different base stations, in which case multiple base stations may be included in the communication system. For example, base station 20, base station 22, and base station 24 are included in FIG. 1B.
  • the UE 40A and the UE 40B are located under the coverage of the base station 22, the UE 40A and the UE 40B are served by the base station 22; the UE 40C is located under the coverage of the base station 20, and is served by the base station 20; the UE 40D and the UE 40E are located under the coverage of the base station 24, and the UE 40D and the UE 40E are The base station 24 serves.
  • the plurality of base stations can be controlled by one control node. For example, in FIG. 1B, base station 20, base station 22, and base station 24 can all be controlled by control node 60.
  • multiple base stations can exchange information with each other, and one of the base stations controls as a control node, and the base station as the control node can perform unified resource scheduling according to information sent by other base stations and information obtained and maintained by itself. Management, etc.
  • the base station 20 can be used as a control node.
  • the functions of the control node can also be implemented by other base stations.
  • the embodiments of the present invention are not limited.
  • the uplink resource in the system may be used, and optionally, the downlink resource in the system may also be used. If the D2D communication uses an uplink resource, the cellular link refers to a cellular uplink; if the D2D communication adopts a downlink resource, the cellular link refers to a cellular downlink.
  • the communication system 100 may be various radio access technology (RAT) systems, such as, for example, code division multiple access (CDMA), time division multiple access (time division). Multiple access (TDMA), frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division multiple access (single carrier FDMA, SC-FDMA) ) and other systems.
  • RAT radio access technology
  • CDMA code division multiple access
  • time division time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA2000 can cover the interim standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA system can implement a wireless technology such as a global system for mobile communication (GSM).
  • GSM global system for mobile communication
  • An OFDMA system can implement such as evolved universal radio land access (evolved UTRA, E-UTRA), ultra mobile broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA And other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • the various versions of 3GPP in long term evolution (LTE) and LTE-based evolution are new versions of UMTS that use E-UTRA.
  • the communication system 100 can also be applied to the communication technology of the future, and the technical solution provided by the embodiment of the present invention is applicable to the communication system that adopts the new communication technology, including the cellular communication and the D2D communication.
  • the system architecture and the service scenario described in the embodiments of the present invention are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the base station (for example, the base station 20, the base station 22, and the base station 24) is a device deployed in the radio access network to provide a wireless communication function for the UE.
  • the base station may include various forms of macro base stations, micro base stations (also Known as a small station), a relay station, an access point, and so on.
  • the name of a device having a base station function may be different, for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In a 3rd generation (3G) system, it is called a Node B or the like.
  • the foregoing apparatus for providing a wireless communication function to a UE is collectively referred to as a base station or a BS.
  • the control node is connected to one or more base stations, and may perform unified scheduling on resources in the system, and may allocate resources to the UE, perform resource reuse decision, or interfere with coordination.
  • the control node may connect a plurality of base stations and allocate resources for a plurality of D2D UEs and cellular UEs covered by the plurality of base stations. Resources may also be configured for a plurality of D2D UEs and cellular UEs covered by the base station shown in FIG. 1B.
  • the base station may be a Node B in a UMTS system
  • the control node may be a network controller.
  • the base station may be a small station
  • the control node may be a macro base station that covers the small station.
  • the control node may be a wireless network cross-system cooperative controller or the like, and the base station is a base station in the wireless network, which is not limited in the embodiment of the present invention.
  • the UE involved in the embodiments of the present invention may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem.
  • the UE may also be referred to as a mobile station (MS), a terminal, a terminal equipment, and may also include a subscriber unit, a cellular phone, and a smart phone. Phone), wireless data card, personal digital assistant (PDA) computer, tablet computer, wireless modem, handheld, laptop computer, cordless phone Or a wireless local loop (WLL) station, a machine type communication (MTC) terminal, or the like.
  • MS mobile station
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine type communication
  • the number and types of UEs included in the communication system 100 shown in FIG. 1A or FIG. 1B are merely exemplary, and the embodiments of the present invention are not limited thereto.
  • it may also include more cellular UEs that communicate with the base station, or more D2D UEs that perform D2D communication.
  • D2D UEs that perform D2D communication.
  • it is not described in the drawings.
  • the communication system 100 may not be limited to include the base station and
  • the UE may also include a core network device or a device for carrying a virtualized network function, etc., which will be apparent to those skilled in the art and will not be described in detail herein.
  • the resources used by the D2D UE in performing D2D communication are resource-configured based on the D2D resource pool, and since the resource pool used by the D2D communication and the resource pool used by the cellular communication are separated, No The method realizes joint unified scheduling of D2D communication and cellular communication, so that parallel resource multiplexing cannot be performed between the D2D link and the cellular link, and the same resources cannot be concurrently multiplexed between multiple D2D links.
  • the network side device may configure, for the D2D UE that is the transmitting end of the at least one pair of D2D links, a sounding resource for transmission, and provide at least one pair of D2D UEs that are receiving ends in the D2D link.
  • a sounding resource for detection is configured to configure a cellular UE in the cellular link with a sounding resource for transmission.
  • the D2D UE and the cellular UE as the transmitting end may send the sounding signal according to the sounding resource for transmitting, and therefore, the sounding resource for transmitting may also be referred to as a sounding signal transmitting resource.
  • the D2D UE as the receiving end detects the sounding signal transmitted by the cellular UE according to the sounding resource for detecting, and therefore, the sounding resource for detecting may also be referred to as a sounding signal detecting resource.
  • the base station that communicates with the cellular UE in the cellular link may detect, according to the configuration, the detection signal sent by the D2D UE that is the transmitting end to the detection signal sending resource of the D2D UE that is the transmitting end, to detect the D2D UE.
  • the D2D UE as the receiving end of the at least one pair of D2D links may be configured with a sounding signal for transmitting a sounding signal
  • the D2D UE as a transmitting end is configured with a sounding signal detecting resource for detecting other D2D UEs and The sounding signal sent by the cellular UE.
  • interference information between multiple UEs in D2D communication and cellular communication is obtained, and the obtained interference information can be used for resource coordination between the D2D link and the cellular link.
  • the base station can obtain the interference situation of the D2D UE to the cellular UE, the interference between the cellular link and the D2D link can also be coordinated to avoid interference of the cellular link by the D2D link.
  • the D2D UE configured with the detection signal detection resource may be configured to report the resource to the D2D UE, where the reporting resource is used to report the detection signal sent by the other UE to the network side device, or There are also detection results of detection signals sent by other D2D UEs.
  • the network side device can obtain the global detection result of the UE received by the UE in the D2D communication and the cellular communication according to the detection result reported by the D2D UE and the detection result obtained by the base station in the cellular link detecting the detection signal sent by the D2D UE. Interference situation.
  • Concurrent multiplexing if concurrent resource multiplexing can be performed between a D2D link and a cellular link, or between multiple D2D links, system resource utilization efficiency can be improved, system capacity and number of connections can be increased, and D2D communication can be enhanced.
  • the scalability at the same time, can also reduce the interference effects between D2D links and between D2D links and cellular links.
  • the network side device may be a base station, or a control node connected to the base station, or any network side device having resource configuration, resource scheduling, or resource multiplexing decision function.
  • the probe signal sending resource and the probe signal detecting resource may be configured by a base station.
  • the method further includes reporting the resource, and the related resource may also be configured by the control node or other network side device.
  • the configured resource may be notified to the corresponding D2D UE or the cellular UE.
  • the so-called notification of the resource to the UE means that the UE can learn the allocated resource, for example, the The information of the allocated resources is notified to the UE by display or implicitly.
  • the configured resource may be notified to the base station that covers the corresponding UE, and then notified by the base station to the UE under coverage.
  • the sounding signal sending resource and the sounding signal detecting resource may also be referred to as a sounding resource.
  • the base station or the control node may configure the sounding signal transmission resource for the UE in a frequency division manner on the same time domain resource.
  • the sounding signal transmission resources may be allocated in a time division manner, that is, the sounding signal transmission resources of different UEs may be configured in different time domains.
  • the sounding resource may be allocated in a space division manner, that is, the sounding signal transmission resources of different UEs may be configured in different spaces.
  • the sounding signal transmission resources of different UEs may not overlap in at least one resource dimension, including the time domain, the frequency domain, or the airspace.
  • the sounding resource of the sounding signal may be configured in a sub-carrier granularity at least in the frequency domain, for example, a minimum of one sub-carrier may be occupied.
  • the sounding resource may also occupy a plurality of subcarriers in the frequency domain, for example, may be configured with a resource block (RB) as a granularity, or configured with a half RB.
  • RB resource block
  • the UE may also be configured with multiple RBs for detecting signal transmission resources.
  • the sounding resource of the sounding signal may be at least a symbol in the time domain, for example, the minimum may be one symbol or multiple symbols. Therefore, in the embodiment of the present invention, only a small amount of resources are consumed, the D2D UE can obtain the interference situation of other UEs to itself, and the base station can also obtain the interference situation of the D2D UE to the cellular UE. This advantage is especially pronounced when the number of UEs involved in a communication system is large.
  • the base station or the control node may also configure the probe signal sending resource for the D2D UE and the UE that is the transmitting end in the D2D link by using the foregoing frequency division, time division, or space division.
  • the D2D UE supports simultaneous transmission and reception on different frequency domain resources, for example, UE 40A, UE 40B, UE 40D, and UE 40E support filtered orthogonal frequency division multiplexing (filtered orthogonal frequency multiplexing).
  • filtered orthogonal frequency division multiplexing filtered orthogonal frequency multiplexing
  • F-OFDM frequency division multiplexing
  • FBMC filter bank multi-carrier
  • the UE 40A-UE 40E may be configured to occupy one subcarrier or multiple subcarriers respectively according to the actual needs of the system, which is not limited herein.
  • the resource block P1a is used for the UE 40A to send the sounding signal, and the resource block P1a can also be used as the sounding signal detecting resource of the other D2D UEs, that is, the UE 40B, the UE 40D, and the UE 40E.
  • the resource block P1b is used for the UE 40B to send the sounding signal, and the resource block P1b can also be used as the sounding signal of the other D2D UEs, that is, the UE 40A, the UE 40D, and the UE 40E.
  • the resource block P1c is used for the UE 40C to transmit the sounding signal, and the resource block P1c can also be used as the sounding signal detecting resource of the D2D UE, that is, the UE 40A, the UE 40B, the UE 40D, and the UE 40E.
  • the resource block P1d is used for the UE 40D to transmit the sounding signal, and the resource block P1d can also be used as the sounding signal detecting resource of the other D2D UEs, that is, the UE 40A, the UE 40B, and the UE 40E.
  • the resource block P1e is used for the UE 40E to transmit the sounding signal, and the resource block P1e can also be used as the sounding signal detecting resource of the other D2D UEs, that is, the UE 40A, the UE 40B, and the UE 40D.
  • the resource blocks P1a, P1b, P1d and the resource block P1e are also used as the base station 20 to detect the detection signals transmitted by the UE 40A, the UE 40B, the UE 40D and the UE 40E, respectively, and the resource block P1c can also be used as the detection signal transmitted by the base station 20 to detect the UE 40C.
  • the base station 20 or the control node 60 may configure the D2D UE and the cellular UE as the transmitting end in the D2D link in the time-frequency resource P1.
  • the probe signal transmission resource is configured to configure the probe signal detection resource for the D2D UE as the receiver in the D2D link, for example, the probe signal transmission resource is configured for the UE 40A, the UE 40C, and the UE 40D, and the probe signal detection resource is configured for the UE 40B and the UE 40E.
  • the resource block P1a may be configured as a sounding signal transmission resource of the UE 40A
  • the resource block P1b may be configured as a sounding signal transmission resource of the UE 40C
  • the resource block P1c may be configured as a sounding signal transmission resource of the UE 40D, the resource blocks P1a, P1b, and P1c.
  • the probe signal detection resources of the UE 40B and the UE 40E may be configured.
  • the resource blocks P1a, P1b may also be used as the base station 20 to detect the detection signals transmitted by the UE 40A and the UE 40D.
  • the resource blocks P1a, P1b can also be used as the base station 20, the base station 22, and the base station 24 to detect the detection signals transmitted by the UE 40A and the UE 40D.
  • the time-frequency resource P2 can also be configured. Or, even if the time-frequency resource P1 can be configured to detect that the signal transmission resource satisfies the number of UEs that need to participate in the probe, the time-frequency resource P2 or other time-frequency resources can be configured. Therefore, the time-frequency resource P2 shown in FIG. 2A is optional (optional, O).
  • the D2D UE if the D2D UE does not support simultaneous transmission and reception on different frequency domain resources, the D2D UE cannot transmit other detection signals on the configured detection resources.
  • the detection signals sent by the D2D UE and the cellular UE are detected.
  • the detection signal transmission resource configured for the D2D UE may be distinguished according to the two ends of the D2D communication in the time domain, that is, two D2D UEs at both ends of the D2D link occupy different time domain resources, and the same time domain resource
  • the sounding resources allocated to the different D2D UEs are configured in a frequency division manner.
  • the sounding signal transmission resource may be configured on the different time-frequency resources.
  • the detection signal transmission resource of each of the UEs may be at least a sub-carrier granularity in the frequency domain, for example, a minimum of one subcarrier may be occupied, or multiple subcarriers may be occupied, for example, an RB. For granularity, etc., the smallest in the time domain can be symbolized as granularity and the like.
  • the sounding signal transmission resources configured to the UE 40A and the UE 40B are configured on different time-frequency resources P1 and P2.
  • the D2D communication between the UE 40D and the UE 40E configures the sounding signal transmission resources allocated to the UE 40D and the UE 40E on different time-frequency resources P1 and P2.
  • a sounding signal transmission resource is configured in both the time-frequency resources P1 and P2.
  • the UE 40A, the UE 40D, and the UE 40C occupy one resource block in order from top to bottom in a frequency division manner.
  • the UE 40B, the UE 40E, and the UE 40C occupy one resource block in order from top to bottom in a frequency division manner.
  • the resource block P1a is used by the UE 40A to send a sounding signal, and the resource block P1a can also be used as a sounding signal detecting resource of the UE 40B and the UE 40E.
  • the resource block P1d is used for the UE 40D to transmit a sounding signal, and the resource block P1d can also be used as a sounding signal detecting resource of the UE 40B and the UE 40E.
  • the resource block P1c is used for the UE 40C to transmit the sounding signal, and is also used for the sounding signal detection resources of the UE 40B and the UE 40E.
  • the resource block P2b is used for the UE 40B to transmit a sounding signal, and the resource block P2b can also be used as a sounding signal detecting resource of the UE 40A and the UE 40D.
  • the resource block P2e is used for the UE 40E to transmit a sounding signal, and the resource block P2b can also be used as a sounding signal detecting resource of the UE 40A and the UE 40D.
  • the resource block P2c is used for the UE 40C to transmit a sounding signal, and is used as a sounding signal detecting resource of the UE 40A and the UE 40D.
  • the resource blocks P1a, P1d and the resource blocks P2b, P2e are also used as the base station 20 to detect the detection signals transmitted by the UE 40A-UE 40E, respectively.
  • the resource blocks P1c and P2c may also be used as the base station 20 to detect the sounding signal transmitted by the UE 40C.
  • the base station may configure the probe signal transmission resource and the sounding signal detection resource for the D2D UE under the coverage, and configure the detection for the cellular UE.
  • Signaling resources The sounding signal transmission resources allocated to each UE by each base station are isolated from each other within a shared resource set, for example, occupying different resource blocks within the same time domain resource.
  • Each of the base stations may configure the resources for the respective covered UEs based on the unified control of the control node, or perform configuration of the resources by one of the base stations as the control node, and send the configuration information to other base stations, and notify the respective base stations by other base stations. Under the UE.
  • the UE 40A-UE 40E is frequency-divided in the time-frequency resource P1. It occupies one resource block in order from top to bottom.
  • the sounding signal or the detection resource of the UE covered by the base station 20, the base station 22 and the base station 24 can be configured by one of the base stations, for example, the base station 20, or under the unified scheduling of the control node 60.
  • a sounding resource is allocated to the probe signal of the UE 40A-UE 40E in the frequency resource P1.
  • the resource block P1a is configured as the sounding signal transmission resource of the UE 40A covered by the base station 22, and the resource block P1a is also used for the detection signal detection resources of the other D2D UEs, that is, the UE 40B, the UE 40D, and the UE 40E.
  • the resource block P1b is configured as the sounding signal transmission resource of the UE 40B covered by the base station 22, and the resource block P1b is also used for the detection signal detection resources of the other D2D UEs, that is, the UE 40A, the UE 40D, and the UE 40E.
  • the resource block P1c is configured as the sounding signal transmission resource of the UE 40C covered by the base station 20, and the resource block P1c is also used for the detection signal detection resources of the other D2D UEs, that is, the UE 40A, the UE 40B, the UE 40D, and the UE 40E.
  • the resource block P1d is configured as a sounding signal transmission resource of the UE 40D covered by the base station 24.
  • the resource block P1d is also used for other D2D UEs, that is, the UE 40A and the UE 40B.
  • the detection signal of the UE40E detects resources.
  • the resource block P1e is configured as the sounding signal transmission resource of the UE 40E covered by the base station 24.
  • the resource block P1e is also used for the detection signal detection resources of the other D2D UEs, that is, the UE 40A, the UE 40B, and the UE 40D.
  • the resource blocks P1a and P1b are also used by the base station 22, the base station 20, and the base station 24 to detect the sounding signals sent by the UE 40A and the UE 40B.
  • the resource blocks P1d and P1e are also used by the base station 24, the base station 22, and the base station 20 to detect the detection signals sent by the UE 40D and the UE 40E.
  • the resource block P1c can also be used by the base station 20, the base station 22 or the base station 24 to detect the detection signal transmitted by the UE 40C.
  • the detection signals of the UE 40A, the UE 40B, the UE 40D, and the UE 40E may be sent by referring to the configuration method shown in FIG. 3 .
  • the resource and sounding signal detection resources are configured, and the sounding signal transmission resources of the UE 40C are configured. Different from FIG. 3, in the communication system shown in FIG.
  • the UE does not support simultaneous transmission and reception on different frequency domain resources, and the corresponding resources of the UE 40A-UE 40E are caused by one of the base stations, for example, the base station 20 Or, in the unified scheduling of the control node 60, configured in the time-frequency resource P1 and the time-frequency resource P2.
  • the configuration subcarrier P1a is used as the sounding signal transmission resource of the UE 40A covered by the base station 22
  • the configuration subcarrier P2b is used as the sounding signal transmission resource of the UE 40B covered by the base station 22.
  • the configuration subcarrier P1d is used as a sounding signal transmission resource of the UE 40D covered by the base station 24, and the configuration subcarrier P2e is used as a sounding signal transmission resource of the UE 40E covered by the base station 24.
  • the configuration subcarriers P1c and P2c are used as sounding signal transmission resources of the UE 40C covered by the base station 20.
  • the configuration of the probe signal detection resource of the UE can be referred to FIG. 3.
  • the base station or the control node may also configure the reporting resource for the D2D UE configured with the detection signal detection resource.
  • the base station or the control node may configure the reported resource in a frequency division manner on the same time-frequency resource.
  • the minimum reporting resource may be in the sub-carrier granularity, for example, the minimum may occupy one sub-carrier, or may be multiple sub-carriers. Therefore, the D2D UE can report the detection result of the detected detection signal by occupying less resources.
  • the reporting resource may not be configured. For example, for the UE 40A, the UE 40B, the UE 40D, and the UE 40E configured with the sounding signal detection resources according to the manner shown in FIG.
  • the time-frequency resource R in the time-frequency resource R, one subcarrier is configured in order from top to bottom.
  • D2D UEs namely UE 40A, UE 40B, UE 40D, and UE 40E.
  • the subcarriers Ra, Rb, Rc, and Rd are used for reporting the reporting resources of the UE 40A, the UE 40B, the UE 40D, and the UE 40E, respectively.
  • the time-frequency resource R may be configured in the time-frequency resource R, and one sub-carrier is configured to be configured to the UE 40B and UE40D.
  • the base station or the control node may also configure the same time-frequency resource for different D2D UEs, may occupy one resource block (RB) in the frequency domain, or may be a sub-carrier granularity, for example, at least Two subcarriers, in the time domain, can be configured in units of subframes.
  • different D2D UEs can be distinguished in the code domain, that is, different codes are configured, and different D2D UEs are distinguished by code division.
  • the domain plus code domain mode is used to differentiate the reported resources allocated to different D2D UEs.
  • a code having orthogonal characteristics can be used for code division, for example, a Zadoff-Chu sequence (ZC sequence).
  • the resource block Rab is configured to the UE 40A and the UE 40B
  • the resource block Rde The UE 40D and the UE 40E are configured in the resource block Rab, and are configured in the ZC sequence a (ZCa) to the UE 40A for transmitting the detection result of the UE 40A, and the ZC sequence b (ZCb) is configured to the UE 40B for transmitting the detection result of the UE 40B.
  • the ZC sequence c (ZCc) is configured to the UE 40D for transmitting the detection result of the UE 40D
  • the ZC sequence d (ZCd) is configured to the UE 40E for transmitting the detection result of the UE 40E.
  • ZCa and ZCc may be the same or different
  • ZCb and ZCd may be the same or different.
  • the same frequency resource may be configured to the UE 40B and the UE 40D in the time-frequency resource R, and then the different allocations may be performed.
  • the ZC sequence distinguishes the detection results reported by the UE 40B and the UE 40D in a code division manner.
  • the D2D UEs serving as the transmitting end of the at least two D2D links may be configured with the probe signal sending resources.
  • the D2D UE as the receiving end of the at least two D2D links configures a sounding signal detection resource.
  • the D2D UE as the transmitting end may be configured with a sounding signal detection resource
  • the D2D UE as the receiving end may be configured with a sounding signal sending resource.
  • FIG. 1A to FIG. 5 are a distinguishing symbol for the described object, and may also be identified by any other form of symbol.
  • the application documents do not have a specifically defined meaning.
  • the detection result of the detection resource configured according to the configuration shown in FIG. 2A, FIG. 2B or FIG. 3 may be reported in the form of the report resource configured in FIG. 4, or may be reported in the form of the report resource configured as shown in FIG. 5.
  • a resource for transmitting a reference signal is further configured in the configured reporting resource, and the reference signal may be used by the network side to demodulate the reported detection result.
  • the sounding signal sent by the D2D UE and the cellular UE may carry information, such as carrying the identifier information of the transmitting UE, or the power level of the sounding signal.
  • the detection signal may not carry specific information.
  • the symbols to be mapped after modulation may be set to an arbitrary value (for example, all are set to all 1s).
  • the UE maps the symbol onto the configured sounding signal transmission resource.
  • the detection signal sent by the D2D UE and the cellular UE does not carry information having any actual meaning, the receiver only needs to perform energy-based detection, and Demodulation and decoding have low requirements on the receiver, and the detection signal occupies less system resources, thus saving system resources.
  • the network side device is configured to configure a sounding signal transmission resource for the D2D UE as the transmitting end of the cellular UE and the at least one pair of D2D links, and configure the sounding signal detection resource for the D2D UE that is the receiving end of the at least one pair of D2D links.
  • the network side device may further configure a sounding signal transmission resource for the D2D UE as the receiving end of the at least one pair of D2D links, and configure a sounding signal to the D2D UE that is the transmitting end of the at least one D2D link.
  • Detect resources For convenience of description, a D2D UE as a transmitting end in the D2D link may be referred to as a first D2D UE, and a D2D UE as a receiving end in the D2D link may be referred to as a second D2D UE, which will be the first D2D UE.
  • the probe signal transmission resource configured by the UE is referred to as a first probe signal transmission resource
  • the probe signal transmission resource configured for the cellular UE is referred to as a second probe signal transmission resource
  • the probe signal detection resource configuration configured for the second D2D UE is called
  • the detection signal transmission resource configured for the second D2D UE is referred to as a third detection signal transmission resource
  • the detection resource configured for the first D2D UE is referred to as a second detection signal detection resource.
  • the network side device may adopt the resource configuration method described in the foregoing embodiment of the present invention, and may refer to the related resource as shown in FIG. 2A, FIG. 2B or FIG.
  • the network side device may further configure the reporting resource for the second D2D UE according to the method described in the foregoing embodiment of the present invention. If the probe signal detection resource is configured for the first D2D UE, the report resource may also be configured for the first D2D UE.
  • the first D2D UE in the at least one pair of D2D links is notified of a sounding signal configured for the first D2D UE, and the second D2D is sent to the at least one pair of D2D links.
  • the UE notifies the probe signal detection resource configured for the second D2D UE, and notifies the cellular UE of the probe signal transmission resource configured for the cellular UE.
  • the second D2D UE is further notified to The sounding signal is configured by the second D2D UE, and the first D2D UE is notified of the sounding signal detection resource configured for the first D2D UE.
  • the base station that covers the D2D UE and/or the cellular UE notifies the corresponding resource to the D2D UE and/or the cellular UE that is covered by the base station.
  • the related resources may be notified by a base station to the D2D UE and the cellular UE covered by the base station.
  • the related resources may be notified to the UEs under coverage by at least two base stations.
  • the D2D UE can obtain the notified sounding signal transmission resource and/or the sounding signal detection resource
  • the cellular UE can obtain the sounding signal transmission resource according to the notification of the base station.
  • the base station may further notify the configured D2D UE of the configured signal detection resource, and the D2D UE may obtain the notified reporting resource.
  • the reporting resource may be used by the D2D UE to report the detection result detected on the detection signal detection resource to the network side.
  • the base station 20 can notify the UE 40A and the UE 40B of the related resources. If the UE 40D and the UE 40E are further included in the communication system 100, the base station 20 may notify the UE 40A and the UE 40B and the UE 40D and the UE 40E of related resources. The base station 20 can notify the UE 40C of the sounding signal transmission resource. Similarly, in FIG. 1B, the base stations that cover different UEs respectively notify related UEs of the related resources configured above.
  • the notified sounding signal transmission resource and the sounding signal detection resource may be configured according to the manner as shown in FIG. 2A, FIG. 2B or FIG.
  • the reporting resource of the notification may be configured according to the manner as described in FIG. 4 or FIG. 5 above, and details are not described herein.
  • the base station may send, by using the downlink control information, the indication information of the detection signal transmission resource, the sounding signal detection resource, or the reporting resource to the corresponding UE, to notify the corresponding UE of the configured sounding signal sending resource, the sounding signal detecting resource, and the reporting resource. .
  • the base station may send the allocation indication information by using a downlink control channel, such as a physical downlink control channel or an enhanced physical downlink control channel.
  • the base station may also send the allocation indication information to a corresponding UE in a downlink data channel, such as a physical downlink shared channel.
  • the allocation indication information may be transmitted to the corresponding UE through dedicated radio resource control signaling.
  • the base station 20 can notify the corresponding UE of the resources configured as shown in FIG. 2A to FIG. 5 by assigning the indication information.
  • the base station 20, the base station 22, and the base station 24 can respectively notify the respective UEs under the respective coverages of the resources configured according to FIG. 2A to FIG.
  • the allocation indication information may notify the probe signal sending resource and the sounding signal detecting resource that are configured to the D2D UE in an explicit manner, and may also notify the configured reporting resource in an explicit manner, and configure the sounding signal sending resource to the cellular UE.
  • the base station 20 may transmit the allocation indication information in an allocated resource such as the instant frequency resource A.
  • the allocation indication information may indicate that the detection signal transmission resource of the UE 40A is located in the resource block P1a of the time-frequency resource P1, the detection signal detection resource of the UE 40A is located in the resource block P1b-P1e of the time-frequency resource P1, and the reporting resource of the UE 40A is located in FIG.
  • the reporting resource of the UE 40A is located in the resource block Rab in the time-frequency resource R as shown in FIG. 5, and the ZC sequence used for code division is ZCa.
  • corresponding resources may be indicated in the same manner.
  • the base station 20, the base station 22, and the base station 24 can respectively transmit the points in the allocated resource A.
  • the indication information is allocated to the UE under coverage, and the foregoing resource allocated to the UE is indicated in the allocation indication information. Also, in FIG. 3, for the communication system shown in FIG.
  • the base station 20 can transmit the allocation indication information in the time-frequency resource A, that is, the allocated resource A.
  • the allocation indication information may indicate that the probe signal transmission resource of the UE 40A is located in the resource block P1a of the time-frequency resource P1, the sounding signal detection resource of the UE 40A is located in the resource blocks P2b, P2e and P2c of the time-frequency resource P2, and the reporting resource of the UE 40A is located as In the resource block Ra in the time-frequency resource R shown in FIG. 4, or the reporting resource of the UE 40A is located in the resource block Rab in the time-frequency resource R as shown in FIG. 5, and the ZC sequence used for code division is ZCa. .
  • the base station 20, the base station 22, and the base station 24 may respectively send allocation indication information to the UE under coverage in the allocated resource A, and indicate the foregoing resources allocated to the UE in the allocation indication information. .
  • the notification can also be performed in an implicit manner.
  • the base station 20 may configure each UE with the same size of the probe resource according to the number of UEs participating in the probe and fill the probe resource pool as much as possible. It can be pre-configured, or can be configured by the base station to be broadcasted to the UE under coverage, so that each D2D UE can send resources according to the resource pool and the configuration to its own probe signal, and configure it in the resource pool.
  • the detection signal sent by the other D2D UE and the cellular UE is detected on the resource other than the detection signal transmission resource, that is, the resource that is not allocated to the detection signal transmission resource.
  • the network side device may not need to configure the detecting resource for detecting the cellular UE. Therefore, in the allocation indication information sent by the base station, the cellular UE may be instructed not to perform detection signal detection. Alternatively, the network side device may not configure the sounding detection resource to the cellular UE, and the cellular UE does not perform the detection signal detection. For a cellular UE, since it does not establish a D2D link, the cellular UE itself may not perform detection signal detection by default.
  • the allocation resource and the detection resource may have a pre-configured timing relationship, and the allocation resource, the detection resource, and the reporting resource may also have a pre-configured timing relationship, and the allocation indication information may not include Time domain information for probing resources or reporting resources.
  • the UE may determine the time domain location of the probe resource or the reported resource according to the time domain location of the allocated resource and the configured timing relationship, and further determine the allocation indication according to the allocation indication.
  • the probe resource included in the information or the frequency domain location information of the reported resource, so that the probe resource or the report resource configured for itself can be determined. For example, referring to FIG. 2A, FIG. 2B or FIG.
  • the time domain location of the allocated resource A is n
  • the timing relationship between the probe resource P1 and the allocated resource A is: n+k, the reporting resource R and the probe resource P1, and the allocated resource A.
  • the timing relationship is: n+m+k.
  • the UE obtains the time domain location of the reporting resource R according to the timing relationship n+m+k, and obtains the reporting resource according to the frequency domain information in the allocation indication information or the frequency domain plus code domain information.
  • the n, m, and k may represent absolute time values, and may also represent relative time values. Or it may represent a value corresponding to the time unit number, such as a symbol, a time slot, a sequence of a subframe or a frame, etc., and may be an integer.
  • the cellular UE sends a sounding signal on the sounding signal transmission resource configured to the cellular UE, and the first D2D UE sends the sounding signal to the first D2D UE. And detecting, by the second D2D UE, the detection signal sent by the cellular UE on the detection signal detection resource.
  • the base station in the cellular link detects a sounding signal sent by the first D2D UE on a sounding signal transmission resource configured to the first D2D UE.
  • the second D2D UE in the pair of D2D links may also detect the detection signals sent by the first D2D UEs in the other D2D links.
  • the base station that communicates with the cellular UE may further detect the at least one pair of D2D links.
  • the sounding signal sent by the second D2D UE is described.
  • the second D2D UE in one D2D link may also receive the sounding signal transmitted by the second D2D UE in the other D2D link.
  • the first D2D UE of the at least one pair of D2D links may detect the sounding signal sent by the cellular UE, Alternatively, the sounding signal sent by the second D2D UE in the D2D link where the first D2D UE is located, and the sounding signal sent by the first D2D UE and/or the second D2D UE in the other D2D link may be detected.
  • the probe signal sent by the first D2D UE may be referred to as a first probe signal
  • the probe signal sent by the cellular UE may be referred to as a second probe signal
  • the probe signal sent by the second D2D UE may be used. It is called the third detection signal.
  • the D2D UE and the cellular UE may transmit in a one-to-many form when transmitting the sounding signal, or may also transmit in the form of a broadcast.
  • the D2D UE configured with the detection signal detection resource may detect the interference situation of the D2D UE or the cellular UE that sends the detection signal according to the received detection signal, and obtain a detection result.
  • the base station can detect the detection signal sent by the D2D UE, and obtain the detection result.
  • the detection result obtained by the D2D UE and the base station may be a quantized measurement value, for example, may be an absolute quantization value, such as a direct measurement of the quantized value of the received power of the received detection signal. Alternatively, the detected absolute quantized values may be converted to obtain relative quantized values.
  • the absolute quantized value is divided into N (N is a positive integer) range in advance, and each range corresponds to an index value, and the corresponding index value can be obtained according to the detected absolute quantized value, and the index value is used as the detection result. Or, it can be judged according to a preset threshold. Broken results. For example, if the detected detection signal strength is greater than the preset threshold, the detection result is recorded as “1”. Otherwise, if the detected detection signal strength is less than the preset threshold, the detection result is recorded as “0”. If the detected detection signal strength is equal to the preset threshold, the detection result may be recorded as "1" or may also be recorded as "0". Of course, when the detection signal strength is greater than the preset threshold, the detection result is recorded as “0”, otherwise it is recorded as “1”.
  • the detection result when the detection result is a quantized value of the received power of the sounding signal, the detection result may be an average value of the received power on a resource element (RE) carrying the sounding signal.
  • An RE occupies one symbol in the time domain and one subcarrier in the frequency domain.
  • the measurement node performing the detection signal detection performs the reception power measurement averaging process on the RE that carries the sounding signal transmitted by the measured node, for example, the RE of the detection signal that the D2D UE that performs the detection signal detection can carry the detection signal sent by the other D2D UE or the cellular UE.
  • the receiving power measurement averaging process is performed, and the base station may perform power measurement averaging processing on the RE that carries the sounding signal transmitted by the D2D UE.
  • the average value of the power on the RE carrying the sounding signal may be a linear average of the power on the RE carrying the sounding signal.
  • the measurement node may perform reception power averaging processing in the same frequency or different frequency state.
  • a gap may be configured, in one interval, in addition to the main Detection is performed on a frequency band other than the frequency band.
  • a transition protection time is required before and after the interval, and the interval may be configured according to an interval configured in an existing system, or a new interval may be configured.
  • measurements can be taken simultaneously on different frequency bands.
  • the D2D UE can perform reception power averaging processing in the connected state.
  • the number of REs of the bearer detection signal used to perform the received power averaging process in a particular measurement frequency bandwidth and measurement period may depend on the implementation of the measurement node when the measurement accuracy requirement condition is met.
  • the measurement node may average the power of all REs carrying the sounding signals transmitted by the measured node, or may average the power of some of the REs of all the REs carrying the sounding signals transmitted by the measured node.
  • the D2D UE performing D2D communication in the communication system can obtain the interference situation of other UEs, and the base station can obtain the interference situation of the D2D UE to the cellular UE, and can also obtain the interference situation of the D2D UE to the base station.
  • the solution of this embodiment may also include a portion 604.
  • the second D2D UE reports the detection result that is detected to the network side device.
  • the first D2D UE in at least one pair of D2D links also detects the detection signals sent by other UEs according to the configured detection signal detection, the first D2D UE may also perform detection detection. The result is reported to the network side device.
  • the D2D UE configured with the detection signal detection resource is further configured with a reporting resource
  • the D2D UE may report the detected detection result to the base station on the reporting resource.
  • the D2D UE may report the detection result to the base station 20 in the reporting resource.
  • the base station 20 may further report the detection result to the control node 60.
  • each D2D UE reports the detection result that is detected by itself to the base station that covers itself in the reporting resource, and then reports the received report result to the control node by each base station, or The reported information is uniformly aggregated to one of the base stations.
  • the content reported by the D2D UE is the absolute quantization value mentioned in the above section 603, and may also be a relative quantization value, or may also be "0" or "1" representing the signal strength indication.
  • the reported detection result may be bitmap information obtained according to the detection measurement result, where 0 or 1 in the bitmap reflects the interference situation of other UEs to the UE, that is, whether the interference of other UEs on the UE is affected.
  • Exceeding the threshold for example, the value of the bit in the bitmap information can be determined according to the detection result determination manner described in the above section 603.
  • the minimum granularity of the frequency domain in which the bitmap information occupies the reported resource may be one subcarrier.
  • the UE may carry 8 bits of bitmap information in the reporting resource. If the number of detection signals sent by other UEs detected by the UE is less than or equal to 8, the UE only needs to use bitmap information with a length of 8 bits. And occupying one reporting resource for reporting; if the number of detecting signals sent by other UEs detected by the UE is greater than 8, that is, when the total number of bits to be reported is greater than 8 bits, the UE needs to divide the total number of bits indicating the detection result into Multiple 8-bit bitmap information, and occupying multiple reporting resources for reporting.
  • the content reported by the UE may also be a quantitative measurement value, which is not specifically limited in this embodiment of the present invention.
  • the two UEs configured to the same frequency domain location may use different ZC sequences for code domain differentiation, so that the two UEs may report the result. distinguish.
  • the base station 22 and the base station 24 may further report the detection result reported by the D2D UE and the detection result obtained by the self-detection to the control node 60, or
  • the base station 20 serves as a control node, and the base station 22 and the base station 24 can also transmit the detection result to the base station 20.
  • the base station can obtain the interference condition between the D2D link and the cellular link, and the multiple D2D links when there are at least two D2D links The interference situation between.
  • the base station can also generate global interference topology information according to the interference information, and provide a reliable basis for the concurrent resource reuse decision of the communication link in the communication system.
  • the technical solution provided by the embodiment of the present invention may further provide a method for multiplexing a communication link resource, which may further include:
  • the network side device determines to perform communication link frequency resource multiplexing according to the detection result reported by the second D2D UE and the detection result detected by the base station that communicates with the cellular UE.
  • the interference information between the D2D link and the cellular link may be obtained according to the detection result reported by the second D2D UE and the detection result detected by the base station that communicates with the cellular UE, thereby determining whether Concurrent
  • the frequency resources between the D2D link and the cellular link are multiplexed, that is, whether it is determined whether the D2D link and the cellular link can simultaneously use the same frequency resource.
  • whether the frequency resources between the at least two D2D links are concurrently multiplexed may be determined according to the detection result reported by the second D2D UE in the multiple D2D links.
  • the so-called concurrent multiplexing frequency resource that is, the same frequency resource is used at the same time. If the detection result obtained by detecting the detection result reported by the second D2D UE and the base station communicating with the cellular UE to the detection signal sent by the D2D UE, determining that there is no interference between the D2D link and the cellular link, or the interference is acceptable Within the scope, it is determined that frequency resources may be concurrently multiplexed between the D2D link and the cellular link, otherwise no multiplexing is performed. Or comparing the obtained quantized measured value with a preset threshold.
  • the decision may be between the D2D link and the cellular link.
  • the frequency resources are concurrently multiplexed, otherwise they are not reused.
  • the D2D link and the cellular link may be determined by the base station, or by the control node or the base station having the function of the control node, according to the interference information between the D2D link and the cellular link obtained above. Whether frequency resources are concurrently multiplexed or whether frequency resources are concurrently multiplexed between multiple D2D links. Thereby, the resource utilization efficiency in the communication system can be improved.
  • the network side device may obtain the UE between the UEs in the communication system and the UE. Interference to the base station.
  • frequency resource multiplexing between communication links can be performed more efficiently, thereby further improving system resource utilization efficiency.
  • the base station 20 makes a decision of concurrently multiplexing the communication link frequency resources. It is assumed that the D2D UE reports in the manner of the bitmap information, and the detection results reported by the four D2D UEs (the UE 40A, the UE 40B, the UE 40D, and the UE 40E) in the communication system 100 to the base station 20 and the detection results of the detection performed by the base station 20 according to the above 603 parts can be summarized. As shown in Table 1.
  • the "1" in the table indicates that the D2D UE or the base station 20 detects the strength of the detection signal of the corresponding detected object, and the "0" represents that the D2D UE or the base station 20 detects that the strength of the detection signal of the corresponding detected object is weak.
  • an interference topology map can be formed, and the base station 20 can determine which links can perform concurrent resource multiplexing according to the interference topology map.
  • the base station 20 can know:
  • the UE 40D transmission may have a serious impact on the reception of the UE 40B, so the link UE 40A ⁇ --> UE 40B, UE 40D ⁇ --> UE 40E cannot perform concurrent resource multiplexing;
  • the UE 40C transmission may have a serious impact on the reception of the UE 40B, so the link UE 40A ⁇ --> UE 40B and the link UE 40C ⁇ --> the base station 20 cannot perform concurrent resource multiplexing;
  • the base station 20 can determine that only the link UE 40D ⁇ -->UE40E and the link UE40C ⁇ -->the base station 20 can perform concurrent resource multiplexing, and the link UE40A ⁇ -->UE40B wants to connect with the above two links. Concurrency can only be used to schedule resources different from the above two links.
  • the method for detecting the probe resource and detecting the probe signal provided by the embodiment of the present invention can enable the D2D UE to obtain the interference of other UEs on the UE, and also enable the network side to obtain the interference effect of other UEs on the uplink of the UE UE. .
  • the detection result reporting method of the detection signal of the present invention can report the interference effect of the detected other UEs to the network side device by the D2D UE.
  • the network side device can be provided with necessary input for performing concurrent resource multiplexing decision between the D2D link and the cellular link, and/or between the D2D links, and the network side assisted Concurrent resource reuse between D2D links and cellular links, and/or D2D links, thereby increasing system resource utilization, increasing system capacity and number of connections, and enhancing scalability of D2D communications while reducing D2D links Interference effects between and between the D2D link and the cellular link.
  • the resource configuration method, the resource notification method, the interference detection method, and the communication link concurrent resource recovery provided by the embodiments of the present invention are respectively performed from the respective network elements and from the interaction between the network elements. It was introduced by various methods such as methods. It can be understood that each network element, such as a UE, a base station, a control node, etc., in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function. Those skilled in the art will readily appreciate that the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein.
  • FIG. 7 shows a possible structural diagram of a base station involved in the above embodiment.
  • the base station may be base station 20, base station 22 or base station 24 as shown in FIG. 1A or FIG. 1B.
  • the base station shown includes a transceiver 701, a controller/processor 702.
  • the transceiver 701 can be configured to support sending and receiving information between the base station and the UE in the foregoing embodiment, and support radio communication between the UE and other UEs.
  • the controller/processor 702 can be used to perform various functions for communicating with a UE or other network device.
  • On the uplink the uplink signal from the UE is received via the antenna, coordinated by the transceiver 701, and further processed by the controller/processor 702 to recover the traffic data and signaling information transmitted by the UE.
  • traffic data and signaling messages are processed by controller/processor 702 and mediated by transceiver 701 to generate downlink signals for transmission to the UE via the antenna.
  • the controller/processor 702 is further configured to perform a resource configuration method as described in the foregoing embodiment, and configure a probe signal sending resource to a D2D UE that is a transmitting end in at least one pair of D2D links, and provide the at least one pair of D2D links as
  • the D2D UE at the transmitting end configures the sounding signal detection resource, and configures the sounding signal transmission resource to the cellular UE.
  • the D2D UE as the transmitting end may be configured with a sounding signal detection resource
  • the D2D UE as the receiving end may be configured with a sounding signal sending resource
  • the D2D UE configured with the sounding signal detecting resource may also be configured with a reporting resource. .
  • the controller/processor 702 may also be configured to perform the processes involved in the base station of FIG. 6 and/or other processes for the techniques described herein, such as for transmitting to a D2D UE configured with sounding signal transmission resources.
  • the detection signal is detected and the detection result is obtained.
  • the frequency resource multiplexing between the D2D link and the cellular link is performed according to the detection result reported by the D2D UE configured with the reporting resource.
  • the base station may also include a memory 703 that may be used to store program codes and data of the base station.
  • the base station may further include a communication unit 704 for supporting the base station to communicate with other network entities. For example, it is used to support communication between a base station and other communication network entities shown in FIG. 1A or FIG. 1B, such as control node 60 and the like.
  • Figure 7 only shows a simplified design of the base station.
  • the base station may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the present invention are within the scope of the present invention.
  • FIG. 8 shows a simplified schematic diagram of one possible design structure of a UE involved in the above embodiment, which may be one of UE 40A-UE 40E as shown in FIG. 1A or FIG. 1B.
  • the UE includes a transceiver 801, a controller/processor 802, and may also include a memory 803 and a modem processor 804.
  • Transceiver 801 conditions (e.g., analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • Transceiver 801 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) signals received from the antenna and provides input samples.
  • the modem processor 804 encoding
  • the processor 8041 receives the traffic data and signaling messages to be transmitted on the uplink and processes (eg, formats, codes, and interleaves) the traffic data and the signaling messages.
  • Modulator 8042 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • Demodulator 8044 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 8043 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the UE.
  • Encoder 8041, modulator 8042, demodulator 8044, and decoder 8043 may be implemented by a composite modem processor 804. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the controller/processor 802 performs control management on the actions of the UE for performing the processing performed by the UE in the above embodiment. If the UE is a D2D UE, such as the UE 40A, the UE 40B, the UE 40D, or the UE 40E in FIG. 1A or FIG. 1B, the controller/processor 802 may be configured to send a resource transmission detection signal according to the configured sounding signal. If the UE is configured with the sounding detection resource, the sounding signal sent by the cellular UE may be detected, or the sounding signal sent by the other D2D UE may be detected. If the UE is allocated the reporting resource, the result of the detection may be reported to the base station by the transceiver 801.
  • the controller/processor 802 can obtain a sounding signal transmission resource according to the configuration.
  • the controller/processor 802 is configured to support the UE in performing the content related to the UE in sections 601-605 of FIG.
  • the memory 803 is used to store program codes and data for the UE.
  • Fig. 9 is a diagram showing the control node involved in the above embodiment.
  • the control node may be the control node 60 shown in FIG. 1A or B.
  • the control node may include a controller processor 901, a memory 902, and a communication unit 903.
  • the controller/processor 901 can be used to coordinate resource management and configuration between multiple base stations, can be used to perform resource configuration in the foregoing embodiment, and can perform frequency resource multiplexing and decision between communication links. Wait.
  • Memory 902 can be used to store program code and data for the control node.
  • the communication unit 906 is configured to support the control node to communicate with the base station, for example, to send information of the configured resource to the base station.
  • the embodiment of the present invention provides a network side device according to the foregoing embodiment, and the network side device may be the base station as shown in FIG. 7, or the control node as shown in FIG.
  • the controller/processor for performing the above base station, UE, base station or control node of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and an on-site Program gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of the method or algorithm described in connection with the present disclosure may be implemented in a hardware manner, or may be This is accomplished by the processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线通信技术领域,提供了一种通信方法,该方法公开了网络侧设备给至少一对D2D链路中作为发送端的第一D2D用户设备配置并通知第一探测信号发送资源,给所述至少一对D2D链路中作为接收端第二D2D UE配置并通知第一探测信号检测资源,给蜂窝链路中的蜂窝UE配置并通知第二探测信号发送资源。所述第一探测信号发送资源用于所述第一UE发送第一探测信号,所述第二探测探测信号发送资源用于所述蜂窝UE发送第二探测信号,所述第一探测信号检测资源用于所述第二D2D UE对所述蜂窝UE发送的第二探测信号进行检测。通过本实施例提供的方案,可以获得D2D UE和蜂窝UE之间干扰的情况,为系统资源调度决策提供准确的信息输入。

Description

通信方法、装置和系统 技术领域
本发明涉及无线通信技术领域,尤其涉及一种通信方法、装置和系统。
背景技术
随着无线通信技术的发展以及智能终端的普及,无线蜂窝网络中终端的数量正处于爆发性增长阶段。端到端(Device to Device,D2D)通信技术可以实现近距离终端之间不借助第三方而直接进行通信,从而能够分担无线蜂窝网络繁重的网络负荷、卸载蜂窝业务、补充现有的蜂窝网络架构并带来新的利润收入模式。并且,基于近距离通信的天然优势,D2D通信技术还可以提升频谱效率、获得较高的吞吐性能和较低的传输时延。
在现有技术中,终端与终端之间进行D2D通信所使用的资源是基于D2D资源池进行配置的,且D2D通信使用的资源和蜂窝通信使用的资源是分隔开的,从而系统资源利用效率较低。
发明内容
本申请描述了一种通信方法、装置和系统。
一方面,本申请的实施例提供一种通信方法,该方法包括网络侧设备给至少一对D2D链路中的第一D2D用户设备(user equipment,UE)配置第一探测信号发送资源,给所述至少一对D2D链路中第二D2D UE配置第一探测信号检测资源,给蜂窝链路中的蜂窝UE配置第二探测信号发送资源,所述第一D2D用户设备为所述D2D链路中的发送端,所述第二D2D用户设备为所述D2D链路中的接收端。所述网络侧设备通知所述第一UE所述第一探测信号发送资源,通知所述第二D2D UE所述第一探测信号检测资源,通知所述蜂窝UE所述第二探测信号发送资源。所述第一D2D UE可以获取所述网络侧设备配置并通知的所述第一探测信号发送资源,根据所述第一探测信号发送资源发送第一探测信号,所述蜂窝UE可以获取所述网络侧设备配置并通知的所述第二探测信号发送资源,根据所述第二探测信号发送资源发送第二探测信号,所述第二D2D UE可以获取所述网络侧设备配置并通知的所述第一探测信号检测资源,根据所述第一探测信号检测资源对所述蜂窝UE发送的第二探测信号进行检测。通过本实施例提供的方案,可以获得D2D UE和蜂窝UE之间干扰的情况,为系统资源调度决策提供准确的信息输入,从而可以提高通信系统中资源利用效率。
在一个可能的设计中,所述第二D2D UE还可以对所述至少一个D2D链路中的第一D2D UE发送的第一探测信号进行检测。一对D2D链路中的一个第二D2D UE对同一D2D链路中的第一D2D UE发送的第一探测信号进行检测,或者,可以对其它D2D链路中的第一D2D UE发送的第一探测信号进行检测。这样,可以获得不同对D2D链路中D2D UE之间的干扰情况,从而可以为D2D链路之间的资源复用调度提供信息。
在一个可能的设计中,所述网络侧设备可以给所述第二D2D UE配置并通知第三探测信号发送资源,给所述第一D2D UE配置并通知第二探测信号检测资源。所述第二D2D UE可以根据所述第三探测信号发送资源发送第三探测信号。所述第一D2D UE可以对所述蜂窝UE发送的第二探测信号进行检测,还可以对所述第二D2D UE发送的第三探测信号进行检测。所述第二D2D UE还可以对其它D2D链路中第二D2D UE发送的第二探测信号进行检测,所述第一D2D UE还可以根据所述第二探测信号检测资源对其它D2D链路中第一D2D UE发送的第一探测信号进行检测。
在一个可能的设计中,所述网络侧设备可以给所述第二D2D UE配置并通知上报资源,若所述第一D2D UE也配置了探测信号上报资源,所述网络侧设备还可以给所述第一D2D UE配置上报资源。对探测信号进行检测的D2D UE可以将检测得到的检测结果在所述上报资源中上报给网络侧设备。
在一个可能的设计中,所述网络侧设备可以包括至少一个基站,所述至少一个D2D链路中的第一D2D UE和第二D2D UE以及蜂窝UE都可以由同一个基站服务,该基站可以配置上述相关资源,该基站可以将配置的相关资源通知给覆盖下的相应UE。或者,所述至少一个D2D链路中的第一D2D UE和第二D2D UE由第一基站服务,所述蜂窝UE由第二基站服务,可以由所述第一基站或第二基站配置上述资源,若上述资源由第一基站配置,所述第一基站将所述第一D2D UE和第二D2D UE的相关资源通知给所述第一D2D UE和第二D2D UE,将配置给所述蜂窝UE的相关资源通过所述第二基站通知给所述蜂窝UE。若上述资源由第二基站配置,所述第二基站给蜂窝UE配置的相关资源并通知给所述蜂窝UE,将所述第一D2D UE和第二D2D UE的相关资源通过所述第一基站通知给所述第一D2D UE和第二D2D UE。所述至少一个基站也可以与控制节点连接,所述控制节点可以配置上述资源,通过基站通知给基站覆盖下的相应UE。通过本实施例提供的方案,可以实现不同系统架构或具有不同功能的网络侧设备配置资源,具有很高的灵活性。
在一个可能的设计中,所述基站在通知所述第一探测信号发送资源,第二探测信号发送资源,第三探测信号发送资源,第一探测信号检测资源,第二探测信号检测资源或所述 上报资源时,可以在下行控制信道,例如下行物理控制信道或增强下行物理控制信道的下行控制信息中发送用于指示所述相关资源的分配指示信息,或者,也可以在下行数据信道,例如下行数据共享信道中通过专用无线资源控制信令发送所述分配指示信息。
在一个可能的设计中,所述基站在通知所述第一探测信号检测资源或第二探测信号检测资源时,也可以采用隐式的方式进行通知。所述第一探测信号发送资源、第二探测信号发送资源或第三探测信号发送资源在预先配置的资源池中进行配置,资源池中的资源尽量或者全部配置给所有参与检测的D2D UE和蜂窝UE,每个UE被配置的探测信号发送资源的尺寸相同,各个D2D UE可以将资源池中除配置给自己的探测信号发送资源之外的资源认为是探测信号检测资源。通过本实施例提供的方法,可以节省资源通知时对系统资源的占用。
在一个可能的设计中,在通知的所述探测资源或上报资源中,用于发送所述分配指示信息的分配资源和所述探测资源之间可以存在时序关系,或者,所述分配资源和探测资源以及上报资源之间存在时序关系。UE可以预先获得该时序关系,或者在分配指示信息中包含该时序关系,这样,UE在接收到分配指示信息时,就可以根据发送给分配指示信息所在的分配资源的时域位置,获得所述探测资源或上报资源的时域位置,并进一步根据分配指示信息指示的频域信息就可以获得探测资源或上报资源,通过该实施例提供的方法,可以减少分配指示信息占用的系统资源。
在一个可能的设计中,所述网络侧设备接收所述第二D2D UE对所述蜂窝UE发送的第二探测信号进行检测得到的检测结果。若所述第二D2D UE对所述第一探测信号,或者第三探测信号进行了检测,所述第二D2D UE可以将对所述第一探测信号,或者第三探测信号进行检测得到的检测结果上报给所述网络侧设备。
在一个可能的设计中,若所述网络侧设备为基站,所述基站可以对所述第一D2D UE发送的第一探测信号进行检测,获得检测结果。所述基站可以进一步根据对所述第一D2D UE发送的第一探测信号进行检测得到的检测结果以及所述第二D2D UE对所述蜂窝UE发送的第二探测信号进行检测得到的检测结果确定所述蜂窝链路和所述至少一对D2D链路进行频率资源复用。
在一个可能的设计中,若所述网络侧设备为与基站连接的控制节点,所述控制节点可以获取所述基站对所述第一D2D UE发送的第一探测信号进行检测获得的检测结果。所述控制节点可以根据所述基站对所述第一D2D UE发送的第一探测信号进行检测得到的检测结果以及所述第二D2D UE对所述蜂窝UE发送的第二探测信号进行检测得到的检测结果确 定所述蜂窝链路和所述至少一对D2D链路进行频率资源复用。可选地,所述第二D2D UE上报了对其它D2D链路中第一D2D UE发送的探测信号进行检测的检测结果,所述网络侧设备还可以确定多个D2D链路之间的频率资源复用。根据本实施例提供的技术方案,可以提高系统资源利用效率,还可以增加系统容量和连接数并增强D2D通信的可扩展性,同时,还可以降低D2D链路之间以及D2D链路与蜂窝链路之间的干扰影响。
在一个可能的设计中,所述D2D UE上报的检测结果可以是对探测信号进行检测获得的结果的绝对量化值,例如接收功率的量化值,或者也可以是对探测信号进行检测获得的结果的相对量化值,例如表示检测结果的绝对量化值等级水平的索引值,或者,也可以是表示信号强度为强或弱的值。
在一个可能的设计中,所述接收功率的量化值为承载所述探测信号的资源元素的功率的线性平均值。所述资源元素可以为承载所述探测信号的所有资源元素,或者也可以为所有资源元素中的部分资源元素。
在一个可能的设计中,所述D2D UE可以使用位图信息上报测量结果,所述位图信息中的一个比特信息表示测量的一个UE发送的探测信号的结果。
在一个可能的设计中,配置给所述第一D2D UE的第一探测信号发送资源、配置给蜂窝UE的第二探测信号发送资源在配置资源的至少一个维度上互不重叠。当给多个D2D UE和蜂窝UE配置探测信号发送资源时,给所述多个D2D UE和蜂窝UE配置的探测信号发送资源在至少一个维度上互不重叠。配置的探测信号发送资源可以以频分的方式进行配置,也可以在不同的时域上进行频分。进行频分的粒度可以为不同数量的子载波。配置的第一探测信号发送资源、第二探测信号发送资源也可以以空分或码分方式进行配置。当有多个D2D UE上报检测结果时,使用的上报资源可以在相同的时域以频分的方式进行配置,频分的粒度可以为不同数量的子载波。在配置的上报资源中,两个D2D UE也可以占用相同的频率资源,辅以码分的方式区分所述两个D2D UE,所述D2D UE可以使用配置的ZC序列复用相同的频率资源上报检测结果。通过本实施例提供的方法,可以以占用较少系统资源的形式实现多个UE之间的干扰检测以及上报,对系统而言,所需要的资源开销较少,适合网络侧在系统中存在大量UE时需要获取UE之间的干扰情况。
在一个可能的设计中,所述探测信号可以不携带信息,在该实施例提供的方法中,探测信号占用的系统资源较少,并且对接收方的要求较低。
另一方面,本申请的实施例提供一种通信方法,网络侧设备给至少两个D2D链路中的第一D2D UE配置并通知探测信号发送资源,给所述至少两个D2D链路中的第二D2D UE配 置并通知探测信号接收资源,所述第一D2D UE为D2D链路中的发送端,所述第二D2D UE为所述D2D链路中的接收端。所述至少两个D2D链路中的第一D2D UE根据所述探测信号发送资源发送探测信号,所述至少两个D2D链路中的第二D2D UE根据所述探测信号检测资源检测所述第一D2D UE发送的探测信号。所述第二D2D UE可以将对所述探测信号进行检测得到的检测结果上报给网络侧设备。根据本实施例提供的方案,网络侧设备可以获得不同D2D链路中D2D UE之间的干扰情况。可选地,所述网络侧设备可以根据所述检测结果确定不同D2D链路是否进行频率资源并发复用。进一步提高了系统的资源利用效率,减少了不同链路之间的D2D UE之间的干扰。
另一方面,本发明实施例提供了网络侧设备,该网络侧设备可以是一种基站,也可以是一种控制节点。
另一方面,本发明实施例提供了一种基站,该基站具有实现上述方法实际中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,基站的结构中包括处理器和收发器,所述处理器被配置为支持基站执行上述方法中相应的功能。所述发射器用于支持基站与UE之间的通信,向UE发送上述方法中所涉及的信息或者指令,接收基站所发送的信息或指令。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
又一方面,本发明实施例提供了一种UE,该UE具有实现上述方法设计中UE行为的功能。所述UE可以为D2D UE,也可以为蜂窝UE。所述功能可以通过硬件实现,UE的结构中包括收发器和处理器。也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
又一方面,本发明实施例提供了一种控制节点,可以包括控制器/处理器,存储器以及通信单元。所述控制器/处理器可以用于协调多个基站之间的资源管理和配置,可以用于执行上述实施例描述的资源配置方法。存储器可以用于存储控制节点的程序代码和数据。所述通信单元,用于支持该控制节点与基站进行通信,譬如将所配置的资源的信息发送给基站。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的基站和UE,所述UE包括至少两个D2D UE和蜂窝UE。可选地,还可以包括上述实施例中的控制节点。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述UE所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
根据本发明实施例提供的技术方案,可以使D2D UE获得蜂窝UE对其的干扰,为系统资源调度决策提供准确的信息输入,为不同链路之间进行频率资源并发复用提供了可能。进一步,网络侧设备也可以获得其它UE对蜂窝UE的干扰,D2D UE将对其它D2D UE和蜂窝UE发送的探测信号的检测结果上报给基站,可以使网络侧获得全局的UE之间干扰的拓扑信息。通过通信链路频率资源并发复用,不仅可以提高系统资源利用效率,还可以增加系统容量和连接数并增强D2D通信的可扩展性,同时,还能降低D2D链路之间以及D2D链路与蜂窝链路之间的干扰影响。
附图说明
为了更清楚地说明本发明实施例,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1A为本发明实施例提供的一种通信系统示意图;
图1B为本发明实施例提供的一种通信系统示意图;
图2A为本发明实施例提供的一种资源配置示意图;
图2B为本发明实施例提供的一种资源配置示意图;;
图3为本发明实施例提供的另一种资源配置示意图;
图4为本发明实施例提供的另一种资源配置示意图;
图5为本发明实施例提供的另一种资源配置示意图;
图6为本发明实施例提供的通信方法的示意图;
图7为本发明实施例提供的一种基站的结构示意图;
图8为本发明实施例提供的一种UE的结构示意图;
图9为本发明实施例提供的一种控制节点的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
为了解决现有技术通信系统中资源利用效率低下的问题,本发明实施例基于图1A或图 1B所示的通信系统中提出了一种解决方案,用以提高通信系统中资源利用效率。如图1A和图1B所示,本发明实施例提供了一种通信系统100。该通信系统100至少包括至少一个基站(base station,BS)和多个UE。所述通信系统100中多个UE包括至少两个可以用于D2D通信的UE以及至少一个可以用于蜂窝通信的UE。D2D通信是指两个UE之间直接进行的通信。蜂窝通信是指UE和基站之间进行的通信。所述用于D2D通信的UE具有D2D通信功能,可以直接和其它具有D2D通信功能的UE进行D2D通信。进行D2D通信的UE可以称为D2D UE或D2D终端。所述D2D UE也可以具有蜂窝通信功能,存在与基站之间的通信需求时,也可以进行蜂窝通信。进行蜂窝通信的UE具有与基站进行蜂窝通信的功能,也可以称为蜂窝UE或蜂窝终端。蜂窝UE也可以具有D2D通信功能,在与其它D2D UE之间的通信需求时,也可以与其它D2D UE进行D2D通信。
譬如,在图1A和图1B中,多个UE可以分别标识为UE40A-40C,所述UE40A和UE40B之间可以进行D2D通信,所述UE40A和UE40B之间存在D2D链路。两个进行D2D通信的D2D UE之间的D2D链路可以称为一对D2D链路,一对D2D链路中的两个D2D UE可以互为接收端和发送端,在一次传输中,其中一个D2D UE可以为发送端,另一个D2D UE可以为接收端,例如所述UE40A可以为D2D链路中的发送端,所述UE40B可以为D2D链路中的接收端。若所述两个D2D UE都支持同时收发功能,则所述每个D2D UE可以同时既为发送端也为接收端。所述UE40C和基站20之间可以进行蜂窝通信,所述UE40C和基站20之间存在蜂窝链路。可选地,所述UE40D和UE40E之间也可以进行D2D通信,所述40D和UE40E之间存在D2D链路,所述UE40D可以为D2D链路中的发送端,所述UE40E可以为D2D链路中的接收端。当然,所述UE40A、UE40B、UE40D和UE40E也可以同时具有蜂窝通信功能,所述UE40C也可以具有D2D通信功能。
在本实施例的方案中,如图1A所述的通信系统100中,所述多个UE可以都位于同一个基站的覆盖之下,所述多个UE可以由同一个基站服务。例如,在图1A中,UE40A-40E都位于基站20的覆盖下,由基站20服务。可选地,所述基站20也可以与控制节点连接,譬如,所述基站20可以和控制节点60连接。
可选地,如图1B所示,通信系统100中所述多个UE也可以位于不同的基站覆盖之下,即不同的D2D链路中的D2D UE可以由不同的基站服务,D2D UE和蜂窝UE也可以由不同的基站服务,此时通信系统中可以包括多个基站。例如,图1B中包括基站20、基站22和基站24。UE40A和UE40B位于基站22覆盖之下,UE40A和UE40B由基站22服务;UE40C位于基站20覆盖之下,由基站20服务;UE40D和UE40E位于基站24覆盖之下,UE40D和UE40E由 基站24服务。所述多个基站可以由一个控制节点进行控制。例如图1B中,基站20、基站22和基站24都可以由控制节点60进行控制。或者,多个基站之间可以互相进行信息交互,由其中的一个基站作为控制节点进行控制,该作为控制节点的基站可以根据其它基站发送的信息以及自身获得和维护的信息进行统一的资源调度和管理等。例如,在图1A或图1B中,可以由基站20作为控制节点,当然,也可以由其它基站来实现该控制节点的功能。本发明实施例并不进行限制。
在本发明实施例中,所述D2D链路中D2D UE进行D2D通信时,可以使用系统中的上行资源,可选地,也可以使用系统中的下行资源。若D2D通信采用上行资源,所述蜂窝链路指蜂窝上行链路;若D2D通信采用采用下行资源,所述蜂窝链路指蜂窝下行链路。
在本发明实施例中,所述通信系统100可以为各种无线接入技术(radio access technology,RAT)系统,譬如例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95和IS-856标准。TDMA系统可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。此外,所述通信系统100还可以适用于面向未来的通信技术,只要采用新通信技术的通信系统包括蜂窝通信和D2D通信,都适用本发明实施例提供的技术方案。本发明实施例描述的系统架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例中,所述基站(例如基站20、基站22和基站24)是一种部署在无线接入网中用以为UE提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站(也 称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd generation,3G)系统中,称为节点B(Node B)等。为方便描述,本发明所有实施例中,上述为UE提供无线通信功能的装置统称为基站或BS。
本发明实施例中,所述控制节点连接一个或多个基站,可以对系统中的资源进行统一调度,可以给UE配置资源,进行资源复用决策,或者干扰协调等。在图1A所示的通信系统中,所述控制节点可以连接多个基站,并为所述多个基站覆盖下的多个D2D UE和蜂窝UE配置资源。也可以为图1B所示的基站覆盖下的多个D2D UE和蜂窝UE配置资源。例如,所述基站可以为UMTS系统中的Node B,所述控制节点可以为网络控制器。又例如,所述基站可以为小站,则所述控制节点可以为覆盖所述小站的宏基站。再例如,所述控制节点可以为无线网络跨制式协同控制器等,基站为无线网络中的基站,在本发明实施例中不作限定说明。
本发明实施例中所涉及到的UE可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述UE也可以称为移动台(mobile station,简称MS),终端(terminal),终端设备(terminal equipment),还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端等。为方便描述,本发明所有实施例中,上面提到的设备统称为UE。
需要说明的是,图1A或图1B所示的通信系统100中所包含的UE的数量和类型仅仅是一种例举,本发明实施例也并不限制于此。譬如,还可以包括更多与基站进行通信的蜂窝UE,或者包括更多进行D2D通信的D2D UE,为简明描述,不在附图中一一描述。此外,在如图1A或图1B所示的通信系统100中,尽管示出了基站20、基站22和基站24,以及多个UE,但所述通信系统100可以并不限于包括所述基站和UE,譬如还可以包括核心网设备或用于承载虚拟化网络功能的设备等,这些对于本领域普通技术人员而言是显而易见的,在此不一一详述。
由于在现有技术中,D2D UE在进行D2D通信时使用的资源是基于D2D资源池进行资源配置的,并且由于D2D通信使用的资源池和蜂窝通信使用的资源池是分隔开的,因此,无 法实现D2D通信与蜂窝通信的联合统一调度,从而D2D链路与蜂窝链路之间无法进行并行资源复用,多条D2D链路之间也无法进行并发复用相同的资源。
在本发明实施例提供的方案中,网络侧设备可以给至少一对D2D链路中作为发送端的D2D UE配置用于发射的探测资源,给至少一对所述D2D链路中作为接收端的D2D UE配置用于检测的探测资源,给蜂窝链路中的蜂窝UE配置用于发射的探测资源。所述作为发送端的D2D UE和蜂窝UE可以根据用于发射的探测资源发送探测信号,因此,用于发射的探测资源也可以称为探测信号发送资源。作为接收端的D2D UE根据用于检测的探测资源检测蜂窝UE发送的探测信号,因此,用于检测的探测资源也可以称为探测信号检测资源。所述蜂窝链路中与所述蜂窝UE进行通信的基站可以根据所述配置给所述作为发送端的D2D UE的探测信号发送资源检测所述作为发送端的D2D UE发送的探测信号,以检测D2D UE发送的探测信号对所述蜂窝UE的干扰情况。可选地,也可以给至少一对D2D链路中作为接收端的D2D UE配置探测信号发送资源,用于发送探测信号,给作为发送端的D2D UE配置探测信号检测资源,用于检测其它D2D UE和蜂窝UE发送的探测信号。从而,根据本发明实施例提供的方法,获得D2D通信和蜂窝通信中的多个UE之间的干扰信息,获得的干扰信息可以用于D2D链路和蜂窝链路之间的资源协调。并且由于基站能够获得D2D UE对蜂窝UE的干扰情况,也可以协调蜂窝链路和D2D链路之间的干扰情况,避免蜂窝链路受D2D链路的干扰。
在本实施例中,还可以给配置了探测信号检测资源的D2D UE配置上报资源,所述上报资源用于对其它UE发送的探测信号进行检测的D2D UE向网络侧设备上报对蜂窝UE、或者还有其它D2D UE发送的探测信号进行检测的检测结果。这样,网络侧设备就可以根据D2D UE的上报的检测结果和蜂窝链路中的基站对D2D UE发送的探测信号进行检测获得的检测结果,获得D2D通信和蜂窝通信中UE所受到其它UE的全局的干扰情况。并可以进一步根据D2D通信和蜂窝通信中的UE之间的干扰信息来确定D2D链路和蜂窝链路之间是否可以进行频率资源并发复用,以及多个D2D链路之间是否可以进行频率资源并发复用,若D2D链路和蜂窝链路之间,或多个D2D链路之间可以进行并发资源复用,则可以提高系统资源利用效率,还可以增加系统容量和连接数并增强D2D通信的可扩展性,同时,还可以降低D2D链路之间以及D2D链路与蜂窝链路之间的干扰影响。
本发明实施例中,所述网络侧设备可以为基站,或者为与所述基站连接的控制节点,或者具有资源配置,或资源调度,或资源复用决策功能的任何网络侧的设备。
在本发明实施例中,可以由基站配置所述探测信号发送资源、所述探测信号检测资源, 或者,进一步还包括上报资源,也可以由控制节点或其它网络侧设备配置所述相关资源。所述基站配置所述资源后,可以将所述配置的资源通知给相应的D2D UE或蜂窝UE,所谓的将资源通知给UE是指使得UE可以获知所分配的资源,例如,可以将所述分配的资源的信息通过显示或者隐式的方式通知给UE。所述控制节点配置所述资源后,可以将配置的资源通知给覆盖相应UE的基站,再由所述基站通知给覆盖下的UE。
在本发明实施例中,所述探测信号发送资源和探测信号检测资源也可以称为探测资源。所述基站或控制节点可以在相同的时域资源上以频分的方式为UE配置所述探测信号发送资源。或者,也可以以时分的方式分配所述探测信号发送资源,即可以将不同UE的探测信号发送资源配置在不同的时域。或者,也可以采用空分的方式分配所述探测信号发送资源,即可以将不同的UE的探测信号发送资源配置在不同的空间。总之,不同的UE的探测信号发送资源可以在至少一个资源维度上不重叠,所述资源维度包括时域、频域或者空域等。所述探测信号发送资源在频域上最小可以以子载波粒度进行配置,例如最小可以占用一个子载波。或者,所述探测信号发送资源在频域上也可以占用多个子载波,例如,可以以资源块(resource block,RB)为粒度进行配置,或者以半个RB进行配置等。当占用多个子载波时,多个子载波可以连续分布,也可以离散分布。当通信系统中需要进行检测的UE数量较少时,也可以给UE配置多个RB用于探测信号发送资源。所述探测信号发送资源在时域上最小可以以符号为粒度,例如,最小可以为一个符号,也可以为多个符号。因此,在本发明实施例中,仅耗用少量的资源,D2D UE就能够获得其它UE对自身的干扰情况,以及基站也能够获得D2D UE对蜂窝UE的干扰情况。尤其是当通信系统中涉及到的UE数量庞大时,这种优势更为明显。可选地,所述基站或控制节点也可以采用上述频分、时分或空分的方式为D2D链路中的作为发送端的D2D UE和蜂窝UE配置探测信号发送资源。
在本发明实施例图1A所示的通信系统中,若D2D UE支持在不同频域资源上同时进行收发,譬如,UE40A、UE40B、UE40D和UE40E都支持滤波正交频分复用(filtered orthogonal frequency division multiplexing,F-OFDM)技术或滤波器组多载波(filter bank multi-carrier,FBMC)技术,参见图2A,基站20或控制节点60可以在时频资源P1中配置给UE40A-UE40E的探测信号发送资源,UE40A-UE40E以频分的方式从上至下依次占用一个资源块。当然,在本实施例中,也可以根据系统的实际需要,配置UE40A-UE40E分别占用一个子载波或多个子载波,此处不作限制。其中,资源块P1a用于UE40A发送探测信号,资源块P1a还可以用作其它D2D UE即UE40B、UE40D和UE40E的探测信号检测资源。资源块P1b用于UE40B发送探测信号,资源块P1b还可以用作其它D2D UE即UE40A、UE40D和UE40E的探测信号 检测资源。资源块P1c用于UE40C发送探测信号,资源块P1c还可以用作D2D UE即UE40A、UE40B、UE40D和UE40E的探测信号检测资源。资源块P1d用于UE40D发送探测信号,资源块P1d还可以用作其它D2D UE即UE40A、UE40B和UE40E的探测信号检测资源。资源块P1e用于UE40E发送探测信号,资源块P1e还可以用作其它D2D UE即UE40A、UE40B和UE40D的探测信号检测资源。资源块P1a、P1b、P1d和资源块P1e还用作基站20分别检测UE40A、UE40B、UE40D和UE40E发送的探测信号,资源块P1c也可以用作基站20检测UE40C发送的探测信号。
在本发明实施例图1A或图1B所示的通信系统中,参见图2B,所述基站20或控制节点60可以在时频资源P1中为D2D链路中作为发送端的D2D UE和蜂窝UE配置探测信号发送资源,为D2D链路中作为接收端的D2D UE配置探测信号检测资源,如为UE40A、UE40C和UE40D配置探测信号发送资源,为UE40B和UE40E配置探测信号检测资源。所述资源块P1a可以配置为UE40A的探测信号发送资源,资源块P1b可以配置为UE40C的探测信号发送资源,资源块P1c可以配置为UE40D的探测信号发送资源,所述资源块P1a、P1b和P1c可以配置为UE40B和UE40E的探测信号检测资源。在图1A中,所述资源块P1a、P1b也可以用作所述基站20检测所述UE40A和UE40D发送的探测信号。在图1B中,所述资源块P1a、P1b也可以用作所述基站20、基站22和基站24检测所述UE40A和UE40D发送的探测信号。
在图2A或图2B所示的例子中,若需要参与探测的UE数量大于时频资源P1中可配置为探测信号发送资源的数量,则可选地,还可以在时频资源P2中进行配置,或者,即使时频资源P1中可配置为探测信号发送资源满足需要参与探测的UE的数量,也可以在时频资源P2或者在其它时频资源上进行配置。因此,图2A所示的时频资源P2是可选的(optional,O)。
在本发明实施例图1A所示的通信系统中,若D2D UE不支持在不同频域资源上同时进行收发,则D2D UE在配置到的探测资源上发射自己的探测信号的同时无法完成对其它D2D UE和蜂窝UE发送的探测信号进行检测。则对于配置给D2D UE的探测信号发送资源可以根据D2D通信的收发两端在时域上区分开,即D2D链路两端的两个D2D UE占用不同的时域资源上,而在同一时域资源上配置给不同的D2D UE的探测信号发送资源采用频分的方式进行配置。对于蜂窝UE,在所述不同的时频资源上可以都配置探测信号发送资源。所述每个UE(包含所述D2D UE和蜂窝UE)的探测信号发送资源在频域上最小可以以子载波为粒度,例如最小可以占用一个子载波,也可以占用多个子载波,譬如以RB为粒度等,在时域上最小可以以符号为粒度等等。参照图3,对于图1A中UE40A和UE40B之间的D2D通信,将配置给UE40A和UE40B的探测信号发送资源配置在不同的时频资源P1和P2上。类似地,将 UE40D和UE40E之间的D2D通信,将配置给UE40D和UE40E的探测信号发送资源配置在不同的时频资源P1和P2上。对于UE40C,在时频资源P1和P2中都配置探测信号发送资源。在时频资源P1中,UE40A、UE40D和UE40C以频分的方式从上至下依次占用一个资源块。在时频资源P2中,UE40B、UE40E和UE40C以频分的方式从上至下依次占用一个资源块。其中,资源块P1a用于UE40A发送探测信号,资源块P1a还可以用作UE40B和UE40E的探测信号检测资源。资源块P1d用于UE40D发送探测信号,资源块P1d还可以用作UE40B和UE40E的探测信号检测资源。资源块P1c用于UE40C发送探测信号,还用于UE40B和UE40E的探测信号检测资源。资源块P2b用于UE40B发送探测信号,资源块P2b还可以用作UE40A和UE40D的探测信号检测资源。资源块P2e用于UE40E发送探测信号,资源块P2b还可以用作UE40A和UE40D的探测信号检测资源。资源块P2c用于UE40C发送探测信号,以及用作UE40A和UE40D的探测信号检测资源。资源块P1a、P1d和资源块P2b、P2e还用作基站20分别检测UE40A-UE40E发送的探测信号。可选地,资源块P1c和P2c也可以用作基站20检测UE40C发送的探测信号。
在本发明实施例图1B所示的通信系统中,对于不同基站覆盖下的UE,可以由各个基站给其覆盖下的D2D UE配置探测信号发送资源和探测信号检测资源,以及给蜂窝UE配置探测信号发送资源。各个基站配置给每个UE的探测信号发送资源在共享的资源集合内相互隔离,例如在相同的时域资源内占用不同的资源块。各个基站可以基于控制节点的统一控制给各自覆盖的UE配置所述资源,或者由其中的一个基站作为控制节点进行所述资源配置,并将配置信息发送给其它基站,由其它基站通知给各自覆盖下的UE。
在本发明实施例图1B所示的通信系统中,若UE支持在不同频域资源上同时进行收发,和图2A或图2B所示类似,UE40A-UE40E以频分的方式在时频资源P1中从上至下依次占用一个资源块。不同的是,基站20、基站22和基站24覆盖下的UE的探测信号发送资源或检测资源可以由在其中的一个基站,例如基站20,或者在控制节点60的统一调度下进行配置,在时频资源P1中配置给UE40A-UE40E的探测信号发送资源。其中,将资源块P1a配置为基站22覆盖的UE40A的探测信号发送资源,资源块P1a还用于其它D2D UE,即UE40B、UE40D和UE40E的探测信号检测资源。将资源块P1b配置为基站22覆盖的UE40B的探测信号发送资源,资源块P1b还用于其它D2D UE,即UE40A、UE40D和UE40E的探测信号检测资源。将资源块P1c配置为基站20覆盖的UE40C的探测信号发送资源,资源块P1c还用于其它D2D UE,即UE40A、UE40B、UE40D和UE40E的探测信号检测资源。将资源块P1d配置为基站24覆盖的UE40D的探测信号发送资源,资源块P1d还用于其它D2D UE,即UE40A、UE40B 和UE40E的探测信号检测资源。将资源块P1e配置为基站24覆盖的UE40E的探测信号发送资源,资源块P1e还用于其它D2D UE,即UE40A、UE40B和UE40D的探测信号检测资源。其中资源块P1a和P1b还用于基站22、基站20和基站24检测UE40A和UE40B发送的探测信号,资源块P1d和P1e还用于基站24、基站22和基站20检测UE40D和UE40E发送的探测信号,资源块P1c还可以用于基站20、基站22或基站24检测UE40C发送的探测信号。
在本发明实施例图1B所示的通信系统中,若UE不支持在不同频域资源上同时进行收发,可以参照图3所示的配置方法,对UE40A、UE40B、UE40D和UE40E的探测信号发送资源和探测信号检测资源,以及对UE40C的探测信号发送资源进行配置。与图3所描述的不同的是,在图1B所示的通信系统中UE不支持在不同频域资源上同时收发的情况,UE40A-UE40E的相应资源是由在其中的一个基站,例如基站20,或者在控制节点60的统一调度下,在时频资源P1和时频资源P2中进行配置的。例如,配置子载波P1a用作基站22覆盖的UE40A的探测信号发送资源,配置子载波P2b用作基站22覆盖的UE40B的探测信号发送资源。配置子载波P1d用作基站24覆盖的UE40D的探测信号发送资源,配置子载波P2e用作基站24覆盖的UE40E的探测信号发送资源。配置子载波P1c和P2c用作基站20覆盖的UE40C的探测信号发送资源。UE的探测信号检测资源的配置可以参考图3所示。
在本发明实施例中,基站或控制节点还可以给配置了探测信号检测资源的D2D UE配置上报资源。所述基站或控制节点可以在相同的时频资源上以频分的方式配置所述上报资源。所述上报资源最小可以以子载波为粒度,例如最小可以占用一个子载波,或者,也可以为多个子载波。因此,可以通过占用较少资源的方式实现D2D UE对检测到的探测信号的检测结果的上报。对于蜂窝UE,可以不配置上报资源。例如,对于根据图2A所示的方式配置了探测信号检测资源的UE40A、UE40B、UE40D和UE40E,则可以参照图4,在时频资源R中,从上至下依次配置一个子载波分别配置给D2D UE,即UE40A、UE40B、UE40D和UE40E。子载波Ra、Rb、Rc和Rd分别用于UE40A、UE40B、UE40D和UE40E上报检测结果的上报资源。对于根据图2B所述的方式配置了探测信号检测资源的UE40B和UE40D,也可以参考图4所示的方式,在时频资源R中,从上至下依次配置一个子载波分别配置给UE40B和UE40D。
可选地,基站或控制节点还可以给不同的D2D UE配置相同的时频资源,在频域上可以占用一个资源块(resource block,RB),或者也可以是以子载波为粒度,譬如至少两个子载波,在时域上,可以以子帧为单位进行配置。在该相同的时频资源上,对于不同的D2D UE可以在码域上进行区分,即配置不同的码,以码分的方式区分不同的D2D UE,采用频 域加码域的方式进行区分配置给不同的D2D UE的上报资源。其中,可以采用具有正交特性的序列进行码分,例如扎道夫-朱序列(Zadoff-Chu sequence,ZC序列)。例如,对于根据图2A所示的方式配置了探测信号检测资源的UE40A、UE40B、UE40D和UE40E,则可以参照图5,在时频资源R中,资源块Rab配置给UE40A和UE40B,资源块Rde配置给UE40D和UE40E,在资源块Rab中,以ZC序列a(ZCa)配置给UE40A,用于发送UE40A的检测结果,ZC序列b(ZCb)配置给UE40B,用于发送UE40B的检测结果。在资源块Rde中,以ZC序列c(ZCc)配置给UE40D,用于发送UE40D的检测结果,ZC序列d(ZCd)配置给UE40E,用于发送UE40E的检测结果。在不同的资源块中,ZCa和ZCc可以相同也可以不同,ZCb和ZCd可以相同也可以不同。对于根据图2B所述的方式配置了探测信号检测资源的UE40B和UE40D,也可以参考图5所示的方式,在时频资源R中,可以配置相同的频率资源给UE40B和UE40D,然后分配不同的ZC序列以码分的方式区分所述UE40B和UE40D上报的检测结果。
在上述图2A、图2B和图3中所示的资源配置方式仅仅是一种例举,并不限制于图示所示。譬如,也可以根据资源调度的需要,若仅需要获取不同D2D链路中D2D UE之间的干扰情况,则可以给至少两个D2D链路中作为发送端的D2D UE配置探测信号发送资源,给所述至少两个D2D链路中作为接收端的D2D UE配置探测信号检测资源。可选地,也可以给所述作为发送端的D2D UE配置探测信号检测资源,给所述作为接收端的D2D UE配置探测信号发送资源。
在上述图1A-图5中的A-E、P1、P2、R、a-e、Ra-Re、Rab、Rde等是对所描述对象一种区分符号,也可以用其它任何形式的符号来标识,在本申请文件中不具有特别限定的含义。
根据图2A、图2B或图3所示配置的探测资源进行检测的检测结果,即可以采用图4所配置的上报资源形式上报,也可以采用如图5所配置的上报资源形式进行上报。
在配置的上报资源中,还配置有用于发送参考信号的资源,所述参考信号可以用于网络侧对上报的检测结果进行解调。
在本发明实施例中,所述D2D UE和蜂窝UE发送的探测信号可以携带信息,譬如携带发送端UE的标识信息,或者发送探测信号的功率水平等。或者所述探测信号也可以不携带具体信息,此时,可将调制后待映射的符号设置为任意值(例如均设置为全1)。UE将该符号映射至配置的探测信号发送资源上。在本发明实施例中,若所述D2D UE和蜂窝UE发送的探测信号不携带具有任何实际含义的信息,那么接收方只需进行基于能量的检测,无需 解调解码,对接收方的要求低,该探测信号所占用的系统资源也比较少,因此,可以节省系统资源。
下面结合图6,对本发明实施例提供的技术方案进行说明。
在601部分,网络侧设备配置为蜂窝UE和至少一对D2D链路中作为发送端的D2D UE配置探测信号发送资源,为所述至少一对D2D链路中作为接收端的D2D UE配置探测信号检测资源。
可选地,所述网络侧设备还可以为所述至少一对D2D链路中作为接收端的D2D UE配置探测信号发送资源,向所述至少一个的D2D链路中作为发送端的D2D UE配置探测信号检测资源。为便于描述,可以将所述D2D链路中作为发送端的D2D UE称为第一D2D UE,将所述D2D链路中作为接收端的D2D UE称为第二D2D UE,将为所述第一D2D UE配置的探测信号发送资源称为第一探测信号发送资源,为所述蜂窝UE配置的探测信号发送资源称为第二探测信号发送资源,为所述第二D2D UE配置的探测信号检测资源称为第一探测信号检测资源,为所述第二D2D UE配置的探测信号发送资源称为第三探测信号发送资源,为所述第一D2D UE配置的检测资源称为第二探测信号检测资源。
在本实施例中,所述网络侧设备可以采用上述本发明实施例描述的资源配置方法,以及可以参考如图2A、图2B或者图3配置所述相关资源。
可选地,所述网络侧设备还可以根据上述本发明实施例描述的方法为所述第二D2D UE配置上报资源。若为所述第一D2D UE配置了探测信号检测资源,则也可以为所述第一D2D UE配置上报资源。
在602部分,向所述至少一对D2D链路中所述第一D2D UE通知为所述第一D2D UE配置的探测信号发送资源,向所述至少一对D2D链路中所述第二D2D UE通知为所述第二D2D UE配置的探测信号检测资源,并向所述蜂窝UE通知为所述蜂窝UE配置的探测信号发送资源。
可选地,若在601部分中,若为所述第二D2D UE配置了探测信号发送资源,为所述第一D2D UE配置了探测信号检测资源,则还向所述第二D2D UE通知为所述第二D2D UE配置的探测信号发送资源,向所述第一D2D UE通知为所述第一D2D UE配置的探测信号检测资源。
在本实施例中,由覆盖D2D UE和/或蜂窝UE的基站向该基站覆盖下的所述D2D UE和/或蜂窝UE通知相应资源。所述至少两个D2D UE之间存在D2D链路。例如,在图1A所示的通信系统中,则可以由一个基站将所述相关资源通知给该基站覆盖下的D2D UE和蜂窝UE。 在图1B所示的通信系统中,则可以由至少两个基站,将所述相关资源通知给分别覆盖下的UE。根据基站的通知,D2D UE可以获得所通知的探测信号发送资源和/或探测信号检测资源,所述蜂窝UE可以根据基站的通知获得探测信号发送资源。
可选地,所述基站还可以向配置了探测信号检测资源的D2D UE通知配置的上报资源,则所述D2D UE可以获得所通知的上报资源。所述上报资源可以用于所述D2D UE向网络侧上报在所述探测信号检测资源上检测得到的检测结果。
例如,在图1A中,若通信系统100中包括UE40A和UE40B,则基站20可以向UE40A和UE40B通知所述相关资源。若通信系统100中还包括UE40D和UE40E,则基站20可以向UE40A和UE40B以及UE40D和UE40E通知相关资源。基站20可以向UE40C通知探测信号发送资源。同样,在图1B中,覆盖不同UE的基站分别将上述配置的相关资源通知给相应的UE。所述通知的探测信号发送资源和探测信号检测资源可以是根据如图2A、图2B或图3所示的方式配置的。所述通知的上报资源可以是根据如上述图4或图5所述的方式配置的,在此不一一赘述。
基站可以通过下行控制信息将指示探测信号发送资源、探测信号检测资源或上报资源的分配指示信息发送给相应UE,以将配置的探测信号发送资源和探测信号检测资源和上报资源通知给相应的UE。所述基站可以通过下行控制信道,例如物理下行控制信道或者增强物理下行控制信道发送所述分配指示信息。可选地,所述基站也可以在下行数据信道,例如物理下行共享信道中将所述分配指示信息发送给相应的UE。例如,可以通过专用无线资源控制信令将所述分配指示信息发送给相应的UE。在图1A中,基站20可以通过分配指示信息,将如图2A至图5所配置的资源通知给相应的UE。在图1B中,基站20、基站22和基站24可以分别将根据图2A至图5所配置的资源分别通知给各自覆盖下的相应的UE。
所述分配指示信息可以以明示的方式通知配置给D2D UE的探测信号发送资源和探测信号检测资源,还可以以明示的方式通知配置的上报资源,以及配置给蜂窝UE的探测信号发送资源。例如,在图2A中,对于如图1A所示的通信系统中,基站20可以在分配资源如即时频资源A中发送所述分配指示信息。所述分配指示信息中可以指示UE40A的探测信号发送资源位于时频资源P1的资源块P1a,UE40A的探测信号检测资源位于时频资源P1的资源块P1b-P1e,UE40A的上报资源位于如图4所示的时频资源R中的资源块Ra中,或者UE40A的上报资源位于如图5所示的时频资源R中的资源块Rab中,并且用于进行码分的ZC序列为ZCa。类似的,对于其它D2D UE和蜂窝UE可以采用同样明示的方式指示相应的资源。对于如图1B所示的通信系统中,可以分别由基站20、基站22和基站24在分配资源A中发送分 配指示信息给覆盖下的UE,在分配指示信息中指示配置给该UE的上述资源。同样,在图3中,对于如图1A所示的通信系统中,基站20可以在时频资源A,即分配资源A中发送所述分配指示信息。所述分配指示信息中可以指示UE40A的探测信号发送资源位于时频资源P1的资源块P1a,UE40A的探测信号检测资源位于时频资源P2的资源块P2b,P2e和P2c,UE40A的上报资源位于如图4所示的时频资源R中的资源块Ra中,或者UE40A的上报资源位于如图5所示的时频资源R中的资源块Rab中,并且用于进行码分的ZC序列为ZCa。类似的,对于其它D2D UE和蜂窝UE可以采用同样明示的方式指示相应的资源。对于如图1B所示的通信系统中,可以分别由基站20、基站22和基站24在分配资源A中发送分配指示信息给覆盖下的UE,在分配指示信息中指示配置给该UE的上述资源。
对于配置给D2D UE的探测信号检测资源,也可以通过隐式的方式进行通知。例如,参考图2A或图2B,基站20在为UE配置探测信号发送资源时,可以根据参与探测的UE数目给每个UE配置相同大小的探测资源并尽可能占满探测资源池,该资源池可以预配置,或者也可以由基站配置后以广播的形式发送给覆盖下的UE,这样每个D2D UE就可以根据资源池以及配置给自己的探测信号发送资源,在资源池中配置给自己的探测信号发送资源之外的资源上,也即没有分给自己作为探测信号发送资源的资源上对其它D2D UE和蜂窝UE发送的探测信号进行检测。
在本发明实施例中,网络侧设备可以无需给蜂窝UE配置用于检测的探测资源。因此,在基站发送的分配指示信息中,可以指示蜂窝UE无需做探测信号检测。或者,网络侧设备可以不配置探测信号检测资源给蜂窝UE,则蜂窝UE也即不会进行探测信号检测。对于蜂窝UE而言,由于其没有建立D2D链路,因此,蜂窝UE自己也可以默认不进行探测信号检测。
在本发明实施例中,所述分配资源和探测资源可以有预先配置的时序关系,所述分配资源、探测资源和上报资源也可以有预先配置的时序关系,则分配指示信息中也可以不包含探测资源或上报资源的时域信息。UE在接收到基站发送的分配指示信息后,根据发送分配指示信息的分配资源的时域位置以及所述配置的时序关系,就可以确定探测资源或上报资源的时域位置,并进一步根据分配指示信息中包含的探测资源或上报资源的频域位置信息,从而可以确定配置给自己的探测资源或上报资源。例如参考图2A、图2B或图3,例如,分配资源A的时域位置为n,探测资源P1和分配资源A的时序关系为:n+k,上报资源R和探测资源P1、分配资源A的时序关系为:n+m+k。则UE若在时域位置n接收到基站发送的分配指示信息,则UE根据时序关系n+k,可以获得探测资源的时域位置n+k,并根据分配指示 信息中指示的探测信号发送资源的频域位置最终获得配置的探测资源。此外,UE根据时序关系n+m+k获得上报资源R的时域位置,并根据分配指示信息中的频域信息,或者频域加码域信息获得上报资源。所述n、m和k可以表示绝对时间值,也可以表示相对时间值。或者可以表示时间单元序号对应的值,例如符号、时隙、子帧或帧的序号等,可以为整数。
在603部分中,所述蜂窝UE在所述配置给所述蜂窝UE的探测信号发送资源上发送探测信号,所述第一D2D UE在配置给所述第一D2D UE的探测信号发送资源上发送探测信号,所述第二D2D UE在探测信号检测资源上对蜂窝UE发送的探测信号进行检测。所述蜂窝链路中的基站在配置给所述第一D2D UE的探测信号发送资源上对所述第一D2D UE发送的探测信号进行检测。
当存在多个D2D链路时,一对D2D链路中的第二D2D UE还可以检测其它D2D链路中第一D2D UE发送的探测信号。
若所述至少一对D2D链路中的第二D2D UE也被配置了探测信号发送资源,则所述与所述蜂窝UE进行通信的基站还可以检测所述至少一对D2D链路中的所述第二D2D UE发送的探测信号。一个D2D链路中的第二D2D UE还可以接收其它D2D链路中第二D2D UE发送的探测信号。
若所述至少一对D2D链路中的第一D2D UE也被配置了探测信号检测资源,则所述至少一对D2D链路中的第一D2D UE可以检测所述蜂窝UE发送的探测信号,或者,还可以检测该第一D2D UE所在D2D链路中第二D2D UE发送的探测信号,以及其它D2D链路中第一D2D UE和/或第二D2D UE发送的探测信号。为便于表述,可以将所述第一D2D UE发送的探测信号称为第一探测信号,将所述蜂窝UE发送的探测信号称为第二探测信号,将所述第二D2D UE发送的探测信号称为第三探测信号。
所述D2D UE和蜂窝UE在发送探测信号时,可采用一对多(one-to-many)的形式进行发送,或者,也可以采用广播的形式进行发送。
配置了探测信号检测资源的D2D UE可以根据接收到的探测信号,检测发送该探测信号的D2D UE或者蜂窝UE对自身的干扰情况,获得检测结果。基站可以对D2D UE发送的探测信号进行检测,获得检测结果。所述D2D UE和所述基站获得的检测结果可以为量化的测量值,例如可以是绝对量化值,譬如直接测量接收到的探测信号的接收功率的量化值。或者,也可以将检测到的绝对量化值进行转换,获得相对量化值。譬如,预先将绝对量化值分成N(N为正整数)个范围,每个范围对应索引值,则可以根据检测得到的绝对量化值获得对应的索引值,以所述索引值作为检测结果。或者,也可以是根据预先设定的门限判 断得到的结果。例如,若检测到的探测信号的强度大于预设门限,则将检测结果记为“1”,否则,若检测到的探测信号强度小于预设门限,则将检测结果记为“0”。若检测到的探测信号的强度等于预设门限时,可以将检测结果记为“1”,或者也可以记为“0”。当然,也可以将探测信号强度大于预设门限时,将检测结果记为“0”,否则记为“1”。
在本发明实施例中,所述检测结果为探测信号的接收功率的量化值时,该检测结果可以为承载探测信号的资源元素(resource element,RE)上接收功率的平均值。一个RE在时域上占用一个符号,在频域上占用一个子载波。进行探测信号检测的测量节点在承载被测量节点发送的探测信号的RE上进行接收功率测量平均处理,例如,进行探测信号检测的D2D UE可以在承载其它D2D UE或蜂窝UE发送的探测信号的RE上进行接收功率测量平均处理,基站可以在承载D2D UE发送的探测信号的RE上进行功率测量平均处理。所述承载探测信号的RE上功率的平均值可以为承载所述探测信号的RE上功率的线性平均。进行探测信号检测测量节点可以在同频或异频状态进行接收功率平均处理,对于不支持在不同频带上同时进行探测信号检测的节点,可以配置间隔(gap),在一个间隔内,在除主频带以外的一个频带上进行检测。间隔前后需要有转换保护时间,所述间隔可以根据现有系统中配置的间隔,也可以配置新的间隔。对于能够支持在不同频带上同时进行探测信号检测的节点,可以在不同频带上同时进行测量。D2D UE可以在连接态进行接收功率平均处理。
在特定测量频率带宽和测量周期中用于进行接收功率平均处理的承载检测信号的RE的个数可以取决于在满足测量精度需求条件时测量节点的实现。例如,测量节点可以将承载被测量节点发送的探测信号的所有RE的功率都进行平均处理,或者,也可以将承载被测量节点发送的探测信号的所有RE中的部分RE的功率进行平均处理。
根据上述方法,可以使得通信系统中进行D2D通信的D2D UE获得其它UE对其干扰情况,以及基站可以获得D2D UE对蜂窝UE的干扰情况,还可以获得D2D UE对基站的干扰情况。
本实施例的方案还可以包括604部分。在604部分,所述第二D2D UE将进行检测得到的检测结果上报给网络侧设备。
如上所描述,若至少一对D2D链路中的第一D2D UE也根据配置的探测信号检测进行对其它UE发送的探测信号进行了检测,所述第一D2D UE也可以将进行检测得到的检测结果上报给网络侧设备。
可选地,若给所述配置了探测信号检测资源的D2D UE还配置了上报资源,所述D2D UE可以在所述上报资源上将检测得到的检测结果上报给基站。在如图1A所示的通信系统 中,所述D2D UE可以在所述上报资源中将所述检测结果上报给基站20。所述基站20也可以进一步将所述检测结果上报给控制节点60。在如图1B所示的通信系统中,各个D2D UE将自己检测得到的检测结果在上报资源中上报给覆盖自己的基站,然后由各个基站将接收到的上报结果上报给控制节点,或者,可以将上报信息统一汇聚到其中的一个基站。
所述D2D UE上报的内容是上述603部分中提及的绝对量化值,也可以是相对量化值,或者也可以是代表信号强度指示的“0”或“1”。例如,所述上报的检测结果可以是根据检测测量结果获得的位图(bitmap)信息,该位图中的0或1反映了其它UE对本UE的干扰情况,即其它UE对本UE的干扰影响是否超过门限,例如,可以根据上述603部分中描述的检测结果确定方式确定该位图信息中的比特的取值。所述位图信息占用上报资源的频域的最小粒度可以是一个子载波。例如,UE可以在上报资源携带8比特(bit)的位图信息,若该UE检测的其它UE发送的探测信号的个数小于等于8,那么该UE只需要用长度为8比特的位图信息,且占据一个上报资源进行上报;若UE检测的其它UE发送的探测信号的个数大于8,即需要上报的总比特数大于8比特时,该UE需要将表示检测结果的总比特数分割为多个8比特的位图信息,且占据多个上报资源进行上报。当然,UE上报的内容也可以是量化测量值,本发明实施例不对此做具体限定。
若D2D UE被配置使用如图5所示配置的上报资源,则两个被配置到相同频域位置的UE,可以使用不同的ZC序列进行码域区分,从而可以实现对两个UE上报结果的区分。
在本发明实施例中,对于如图1B所示的通信系统中,基站22和基站24可以进一步将接收到D2D UE上报的检测结果以及自己检测得到的检测结果上报给控制节点60,或者,若基站20作为控制节点,则基站22和基站24也可以将检测结果发送给基站20。
根据本实施例601至604部分所描述的D2D链路干扰检测方法,能够使基站获得D2D链路和蜂窝链路之间的干扰状况,以及当存在至少两个D2D链路时多个D2D链路之间的干扰状况。基站也可以根据这些干扰信息生成全局的干扰拓扑信息,为通信系统中通信链路的并发资源复用决策提供可靠的依据。
本发明实施例提供的技术方案还可以进一步提供通信链路资源复用的方法,除前述601至604部分之外,还可以进一步包括:
605部分:网络侧设备根据所述第二D2D UE上报的检测结果和与所述蜂窝UE进行通信的基站检测得到的检测结果确定进行通信链路频率资源复用。
在本实施例中,可以根据所述第二D2D UE上报的检测结果和与所述蜂窝UE通信的基站检测得到的检测结果获得D2D链路和蜂窝链路之间的干扰信息,从而可以决定是否并发 复用D2D链路和蜂窝链路之间的频率资源,也即,是否确定所述D2D链路和蜂窝链路是否可以同时使用相同的频率资源。可选地,若存在多条D2D链路,可以根据多条D2D链路中的第二D2D UE上报的检测结果决定是否并发复用所述至少两条D2D链路之间的频率资源。在本发明实施例中,所谓并发复用频率资源,即同时使用相同的频率资源。若根据第二D2D UE上报的检测结果以及与蜂窝UE通信的基站对D2D UE发送的探测信号进行检测得到的检测结果,确定D2D链路和蜂窝链路之间不存在干扰,或者干扰在可接受范围内,则决定可以所述D2D链路和蜂窝链路之间进行频率资源并发复用,否则不进行复用。或者根据获得的量化的测量值与预设的门限进行比较,若比较结果显示链路之间不存在干扰,或者干扰在可接受范围内,则决定可以所述D2D链路和蜂窝链路之间进行频率资源并发复用,否则不进行复用。在本实施例中,可以由基站,或者,也可以由控制节点或具有控制节点功能的基站根据上述获得的所述D2D链路和蜂窝链路之间干扰信息决定D2D链路和蜂窝链路之间是否进行频率资源并发复用,或者多个D2D链路之间是否进行频率资源并发复用。从而,可以提高通信系统中资源利用效率。
可选地,根据上述描述,若至少D2D链路中所述第一D2D UE也进行探测信号检测,并上报了检测结果,则可以网络侧设备可以获得通信系统内全局的UE之间,以及UE对基站的干扰情况。尤其对于D2D链路中的D2D UE之间互相进行数据收发的情况,能够更有效率地进行通信链路之间的频率资源复用,从而进一步提高系统资源利用效率。
以如图1A所示的通信系统为例,由基站20进行通信链路频率资源并发复用的决策。假设D2D UE使用位图信息的方式上报,通信系统100内的4个D2D UE(UE40A、UE40B、UE40D和UE40E)上报给基站20的检测结果以及基站20根据上述603部分进行检测的检测结果可以总结如表1。表中的“1”代表D2D UE或基站20检测到相应被检测对象的探测信号的强度强,“0”代表D2D UE或基站20检测到相应被检测对象的探测信号的强度弱。
Figure PCTCN2015098988-appb-000001
表1
需要注意的是,在表1中,UE40A与UE40B之间、UE40D与UE40E之间是两对D2D UE进行D2D通信,UE40C与基站20之间进行蜂窝通信,因此,这些之间的检测结果反映的是非干扰的、有用信号强度。
如表1的信息汇聚到基站20中,可以形成一张干扰拓扑图,基站20就可以根据该干扰拓扑图来决定哪些链路之间可以进行并发资源复用。根据图1A中的链路UE40A<-->UE40B、UE40D<-->UE40E和UE40C<-->基站20,结合表1,基站20可以得知:
UE40D的发射会给UE40B的接收产生严重影响,因此链路UE40A<-->UE40B、UE40D<-->UE40E不能进行并发资源复用;
UE40C的发射会给UE40B的接收产生严重影响,因此链路UE40A<-->UE40B和链路UE40C<-->基站20不能进行并发资源复用;
基站20综上判断可知,只有链路UE40D<-->UE40E与链路UE40C<-->基站20可以进行并发资源复用,而链路UE40A<-->UE40B如果想与上述两条链路并发只能为其调度不同于上述两条链路的资源。
通过本发明实施例提供的探测资源配置、对探测信号进行检测的方法,可以让D2D UE获得其它UE对自身的干扰影响,同时也能让网络侧获得其它UE对蜂窝UE上行链路的干扰影响。而通过本发明的探测信号的检测结果上报方法,可以将D2D UE将探测到的其它UE对其的干扰影响结果上报给网络侧设备。结合以上两方面,通过本发明实施例可以向网络侧设备提供执行D2D链路与蜂窝链路之间、和/或D2D链路之间并发资源复用决策的必要输入,进而实现网络侧辅助的D2D链路与蜂窝链路间、和/或D2D链路之间的并发资源复用,从而提高系统资源利用率、增加系统容量和连接数并增强D2D通信的可扩展性,同时降低D2D链路之间以及D2D链路与蜂窝链路之间的干扰影响。
上述本发明提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本发明实施例提供的资源配置方法,资源通知方法,干扰检测方法和通信链路并发资源复用方法等各方案进行了介绍。可以理解的是,各个网元,例如UE、基站,控制节点等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图7示出了上述实施例中所涉及的基站的一种可能的结构示意图。该基站可以是如图1A或图1B中所示的基站20、基站22或基站24。
所示基站包括收发器701,控制器/处理器702。所述收发器701可以用于支持基站与上述实施例中的所述的UE之间收发信息,以及支持所述UE与其它UE之间进行无线电通信。所述控制器/处理器702可以用于执行各种用于与UE或其他网络设备通信的功能。在上行链路,来自所述UE的上行链路信号经由天线接收,由收发器701进行调解,并进一步由控制器/处理器702进行处理来恢复UE所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器702进行处理,并由收发器701进行调解来产生下行链路信号,并经由天线发射给UE。所述控制器/处理器702还用于执行如上述实施例描述的资源配置方法,给至少一对D2D链路中作为发送端的D2D UE配置探测信号发送资源,给至少一对D2D链路中作为发送端的D2D UE配置探测信号检测资源,给所述蜂窝UE配置探测信号发送资源。可选地,也可以给所述作为发送端的D2D UE配置探测信号检测资源,给所述作为接收端的D2D UE配置探测信号发送资源,还可以为配置了探测信号检测资源的D2D UE配置上报资源等。所述控制器/处理器702还可以用于执行图6中涉及基站的处理过程和/或用于本申请所描述的技术的其他过程,譬如,对配置了探测信号发送资源的D2D UE发送的探测信号进行检测,获得检测结果。根据配置了上报资源的D2D UE上报的检测结果进行D2D链路和蜂窝链路之间的频率资源复用等。所述基站还可以包括存储器703,可以用于存储基站的程序代码和数据。所述基站还可以包括通信单元704,用于支持基站与其他网络实体进行通信。例如,用于支持基站与图1A或图1B中示出的其他通信网络实体间进行通信,例如控制节点60等。
可以理解的是,图7仅仅示出了基站的简化设计。在实际应用中,基站可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的基站都在本发明的保护范围之内。
图8示出了上述实施例中所涉及的UE的一种可能的设计结构的简化示意图,所述UE可以是如图1A或图1B所示中的UE40A-UE40E中的一个。所述UE包括收发器801,控制器/处理器802,还可以包括存储器803和调制解调处理器804。
收发器801调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。收发器801调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器804中,编码 器8041接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器8042进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器8044处理(例如,解调)该输入采样并提供符号估计。解码器8043处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信令消息。编码器8041、调制器8042、解调器8044和解码器8043可以由合成的调制解调处理器804来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器802对UE的动作进行控制管理,用于执行上述实施例中由UE进行的处理。若所述UE为D2D UE,譬如图1A或图1B中的UE40A、UE40B、UE40D或UE40E,所述控制器/处理器802可以用于根据配置的探测信号发送资源发送探测信号。若该UE被配置了探测信号检测资源,则可以对蜂窝UE发送的探测信号进行检测,或者还对其它D2D UE发送的探测信号进行检测。若该UE被分配了上报资源,还可以通过收发器801将检测的结果上报给基站。若所述UE为蜂窝UE,譬如图1A或B中的UE40C,则所述控制器/处理器802可以根据配置获得探测信号发送资源。作为示例,控制器/处理器802用于支持UE执行图6中的601-605部分中涉及UE的内容。存储器803用于存储用于所述UE的程序代码和数据。
图9示出了上述实施例中涉及到的控制节点的示意图。所述控制节点可以为图1A或B所示的控制节点60。控制节点可以包括控制器处理器901,存储器902以及通信单元903。所述控制器/处理器901可以用于协调多个基站之间的资源管理和配置,可以用于执行上述实施例进行资源配置,并可以进行通信链路之间的频率资源复用的及决策等。存储器902可以用于存储控制节点的程序代码和数据。所述通信单元906,用于支持该控制节点与基站进行通信,譬如将所配置的资源的信息发送给基站。
本发明实施例提供了一种上述实施例所述的网络侧设备,该网络侧设备可以为图7所述的基站,或如图9所述的控制节点。
用于执行本发明上述基站,UE、基站或控制节点的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是 由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (25)

  1. 一种通信方法,其特征在于,包括:
    网络侧设备给至少一对端到端D2D链路中第一D2D用户设备UE配置第一探测信号发送资源,给所述至少一对D2D链路中第二D2D UE配置第一探测信号检测资源,给蜂窝链路中蜂窝UE配置第二探测信号发送资源,所述第一D2D用户设备为所述D2D链路中的发送端,所述第二D2D用户设备为所述D2D链路中的接收端;
    所述网络侧设备将所述第一探测信号发送资源通知给所述第一D2D UE通知,将所述第一探测信号检测资源通知给所述第二D2D UE,将所述第二探测信号发送资源通知给所述蜂窝UE,所述第一探测信号发送资源用于所述第一D2D UE发送第一探测信号,所述第二探测探测信号发送资源用于所述蜂窝UE发送第二探测信号,所述第一探测信号检测资源用于所述第二D2D UE对所述蜂窝UE发送的第二探测信号进行检测。
  2. 根据权利要求1所述的方法,其特征在于,所述第一探测信号检测资源还用于所述第二D2D UE对所述第一D2D UE发送的第一探测信号进行检测。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备给所述第二D2D UE配置第三探测信号发送资源,给所述第一D2D UE配置第二探测信号检测资源;
    所述网络侧设备将所述第三探测信号发送资源通知给所述第二D2D UE,将所述第二探测信号检测资源通知给所述第一D2D UE,所述第三探测信号发送资源用于所述第二D2D UE发送第三探测信号,所述第二探测信号检测资源用于所述第一D2D UE对所述蜂窝UE发送的第二探测信号、所述第二D2D UE发送的第三探测信号进行检测。
  4. 根据权利要求3所述的方法,其特征在于,若存在至少两对D2D链路,所述第一探测信号检测资源还用于每对D2D链路中第二D2D UE对其它D2D链路中第二D2D UE发送的第三探测信号进行检测;
    所述第二探测信号检测资源还用于每对D2D链路中第一D2D UE对其它D2D链路中第一D2D UE发送的第一探测信号进行检测。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述第一探测信号发送 资源和所述第二探测信号发送资源在至少一个资源维度上互不重叠,所述至少一个资源维度包括时域、频域或者空域。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备接收所述第二D2D UE对所述蜂窝UE发送的第二探测信号进行检测得到的检测结果。
  7. 根据权利要求1-6任一所述的方法,其特征在于,若所述网络侧设备为基站,所述方法还包括,所述基站对所述第一D2D UE发送的第一探测信号进行检测,获得检测结果;或者,
    所述网络侧设备为与基站连接的控制节点,所述方法还包括:所述控制节点获取所述基站对所述第一D2D UE发送的第一探测信号进行检测获得的检测结果。
  8. 根据权利要求7所述的方法,其特征在于,其特征在于,若所述网络侧设备为基站,所述基站对所述第一D2D UE发送的第一探测信号进行检测得到的检测结果,以及所述第二D2D UE对所述蜂窝UE发送的第二探测信号进行检测得到的检测结果在进行确定对所述蜂窝链路和所述至少一对D2D链路进行频率资源复用中被使用;或者,
    若所述网络侧设备为与基站连接的控制节点,所述基站对所述第一D2D UE发送的第一探测信号进行检测得到的检测结果,以及所述第二D2D UE对所述蜂窝UE发送的第二探测信号进行检测得到的检测结果在进行确定对所述蜂窝链路和所述至少一对D2D链路进行频率资源复用中被使用。
  9. 根据权利要求6所述的方法,其特征在于,所述网络侧设备接收的检测结果是承载所述第二探测信号的资源元素的功率的线性平均值。
  10. 根据权利要求7或8所述的方法,其特征在于,所述基站获得的检测结果是承载所述第一探测信号的资源元素的功率的线性平均值。
  11. 一种网络侧设备,其特征在于,包括:
    处理器,用于给至少一对端到端D2D链路中第一D2D用户设备UE配置第一探测信号发送资源,给所述至少一对D2D链路中第二D2D UE配置第一探测信号检测资源,给蜂窝链路中蜂窝UE配置第二探测信号发送资源,所述第一D2D用户设备为所述D2D链路中的发送端,所述第二D2D用户设备为所述D2D链路中的 接收端;
    收发器,用于将所述第一探测信号发送资源通知给所述第一UE,将所述第一探测信号检测资源通知给所述第二D2D UE,将所述第二探测信号发送资源通知给所述蜂窝UE,所述第一探测信号发送资源用于所述第一UE发送第一探测信号,所述第二探测探测信号发送资源用于所述蜂窝UE发送第二探测信号,所述第一探测信号检测资源用于所述第二D2D UE对所述蜂窝UE发送的第二探测信号进行检测。
  12. 根据权利要求11所述的网络侧设备,其特征在于,所述第一探测信号检测资源还用于所述第二D2D UE对所述第一D2D UE发送的第一探测信号进行检测。
  13. 根据权利要求11或12配置的网络侧设备,其特征在于,所述处理器还用于给所述第二D2D UE配置第三探测信号发送资源,给所述第一D2D UE配置第二探测信号检测资源;
    所述收发器还用于将所述第三探测信号发送资源通知给所述第二D2D UE,将所述第二探测信号检测资源通知给所述第一D2D UE,所述第三探测信号发送资源用于所述第二D2D UE发送第三探测信号,所述第二探测信号检测资源用于所述第一D2D UE对所述蜂窝UE发送的第二探测信号、所述第二D2D UE发送的第三探测信号进行检测。
  14. 根据权利要求13所述的网络侧设备,其特征在于,若存在至少两对D2D链路,所述第一探测信号检测资源还用于每对D2D链路中第二D2D UE对其它D2D链路中第二D2D UE发送的第三探测信号进行检测;
    所述第二探测信号检测资源还用于每对D2D链路中第一D2D UE对其它D2D链路中第一D2D UE发送的第一探测信号进行检测。
  15. 根据权利要求11-14任一所述的网络侧设备,其特征在于,所述第一探测信号发送资源和所述第二探测信号发送资源在至少一个资源维度上互不重叠,所述至少一个资源维度包括时域、频域或者空域。
  16. 根据权利要求11-15任一所述的网络侧设备,其特征在于,所述收发器还用于接收所述第二D2D UE对所述蜂窝UE发送的第二探测信号进行检测得到的检测结果。
  17. 根据权利要求11-16任一所述的网络侧设备,其特征在于,所述网络侧设备为基站,所述处理器还用于对所述第一D2D UE发送的第一探测信号进行检测,获得检测结果;或者,
    所述网络侧设备为与基站连接的控制节点,所述收发器还用于获取所述基站对所述第一D2D UE发送的第一探测信号进行检测获得的检测结果。
  18. 根据权利要求17所述的网络侧设备,其特征在于,若所述网络侧设备为基站,所述处理器对所述第一D2D UE发送的第一探测信号进行检测得到的检测结果,以及所述第二D2D UE对所述蜂窝UE发送的第二探测信号进行检测得到的检测结果在进行确定对所述蜂窝链路和所述至少一对D2D链路进行频率资源复用中使用;或者,
    若所述网络侧设备为与基站连接的控制节点,所述基站对所述第一D2D UE发送的第一探测信号进行检测得到的检测结果以及所述第二D2D UE对所述蜂窝UE发送的第二探测信号进行检测得到的检测结果在进行确定对所述蜂窝链路和所述至少一对D2D链路进行频率资源复用中使用。
  19. 根据权利要求16所述的网络侧设备,其特征在于,所述收发器接收的检测结果是承载所述第二探测信号的资源元素的功率的线性平均值。
  20. 根据权利要求17或18所述的网络侧设备,其特征在于,所述处理器获得的检测结果是承载所述第一探测信号的资源元素的功率的线性平均值。
  21. 一种用户设备UE,其特征在于,所述UE用作为至少一对D2D链路中的接收端,该UE包括:
    收发器,用于获取网络侧设备配置的第一探测信号检测资源;
    处理器,用于根据所述第一探测信号检测资源对蜂窝UE在所述网络侧设备配置的第二探测信号发送资源上发送的第二探测信号进行检测。
  22. 根据权利要求21所述UE,其特征在于,所述收发器还用于将对所述蜂窝UE发送的第二探测信号进行检测得到的检测结果上报给所述网络侧设备。
  23. 根据权利要求21或22所述的UE,其特征在于,所述处理器还用于根据所述第一探测信号检测资源对所述至少一对D2D链路中的发送端在所述网络侧设备配置的第一探测信号发送资源发送的第一探测信号进行检测。
  24. 根据权利要求21-23任一所述的UE,其特征在于,所述第一探测信号发 送资源和所述第二探测信号发送资源在至少一个资源维度上互不重叠,所述至少一个资源维度包括时域、频域或者空域。
  25. 根据权利要求22至24任一所述的UE,其特征在于,所述上报给所述网络侧设备的检测结果是承载所述第二探测信号的资源元素的功率的线性平均值。
PCT/CN2015/098988 2015-12-25 2015-12-25 通信方法、装置和系统 WO2017107200A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/098988 WO2017107200A1 (zh) 2015-12-25 2015-12-25 通信方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/098988 WO2017107200A1 (zh) 2015-12-25 2015-12-25 通信方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2017107200A1 true WO2017107200A1 (zh) 2017-06-29

Family

ID=59088673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098988 WO2017107200A1 (zh) 2015-12-25 2015-12-25 通信方法、装置和系统

Country Status (1)

Country Link
WO (1) WO2017107200A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013074463A1 (en) * 2011-11-14 2013-05-23 Kyocera Corporation Transmission of device to device sounding reference signals using macrocell communication resources
CN103796214A (zh) * 2012-11-02 2014-05-14 华为技术有限公司 避免d2d传输干扰的处理方法、用户设备和基站
CN104144426A (zh) * 2013-05-07 2014-11-12 中兴通讯股份有限公司 一种端到端用户动态复用蜂窝用户资源的方法及基站
CN104244392A (zh) * 2013-06-24 2014-12-24 华为技术有限公司 避免d2d传输造成上行干扰的方法、基站和用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013074463A1 (en) * 2011-11-14 2013-05-23 Kyocera Corporation Transmission of device to device sounding reference signals using macrocell communication resources
CN103796214A (zh) * 2012-11-02 2014-05-14 华为技术有限公司 避免d2d传输干扰的处理方法、用户设备和基站
CN104144426A (zh) * 2013-05-07 2014-11-12 中兴通讯股份有限公司 一种端到端用户动态复用蜂窝用户资源的方法及基站
CN104244392A (zh) * 2013-06-24 2014-12-24 华为技术有限公司 避免d2d传输造成上行干扰的方法、基站和用户设备

Similar Documents

Publication Publication Date Title
US11122555B2 (en) Data transmission method, terminal device, and base station system
JP6676753B2 (ja) バンドルされた送信を用いたmtcのためのdrxおよびsps
US20200053528A1 (en) Multiplexing of physical sidelink control channel (pscch) and physical sidelink shared channel (pssch)
US8811207B2 (en) Allocating control data to user equipment
KR20210024194A (ko) Nr 비면허에 대한 rrm 측정 향상을 위한 방법 및 장치
CN105453684B (zh) 在蜂窝移动通信系统中用于请求调度的方法和设备
US11825431B2 (en) Method and apparatus for S-SSB transmission
WO2014048184A1 (zh) 基站设备、终端设备及通信系统
CN111034287B (zh) 资源配置方法、确定方法及其装置、通信系统
US11696313B2 (en) Sidelink sensing and resource allocation enhancement for power saving
CN111867095A (zh) 一种通信方法与终端装置
WO2021089797A1 (en) Methods for use of priority indication associated with cg/sps transmission
US20190289579A1 (en) Information sending method and apparatus and information receiving method and apparatus
WO2021190521A1 (zh) 由用户设备执行的方法以及用户设备
US10306646B2 (en) Method for device-to-device communication, base station and user equipment
US20210204312A1 (en) Downlink control information transmission method and apparatus
WO2017024565A1 (zh) 数据传输方法、装置及系统
JP6256607B2 (ja) 通信システム、基地局及び通信端末
WO2018058584A1 (zh) 发送或接收信道状态信息的方法和设备
US11910242B2 (en) Flexible resource reservation indication in sidelink
WO2022077467A1 (zh) 用于资源确定的方法及装置
WO2017107200A1 (zh) 通信方法、装置和系统
WO2021025174A1 (en) User equipment, base station apparatus, and method
KR20120049804A (ko) 무선통신 시스템에서 자원 할당 방법 및 장치
US11627499B2 (en) Reclaiming reservations in sidelink communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911197

Country of ref document: EP

Kind code of ref document: A1