WO2017105182A1 - Sistema de entrega de combustible rotatorio con estructura monolítica para aeronaves - Google Patents
Sistema de entrega de combustible rotatorio con estructura monolítica para aeronaves Download PDFInfo
- Publication number
- WO2017105182A1 WO2017105182A1 PCT/MX2015/000187 MX2015000187W WO2017105182A1 WO 2017105182 A1 WO2017105182 A1 WO 2017105182A1 MX 2015000187 W MX2015000187 W MX 2015000187W WO 2017105182 A1 WO2017105182 A1 WO 2017105182A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pump
- pressure
- fuel
- aircraft
- port
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
Definitions
- the proposed manufacturing method is the use of laser synthesized or DMLS; According to the invention, the bonding and brazing processes are eliminated as well as the EDM electro erosion processes with which it is currently used to manufacture these components.
- the advantages of using the DMLS is that a metallic component can be produced directly from the CAD model by means of additives.
- the material used is cobalt powder, chromium and nickel alloys.
- the idea in this patent is to prevent leaks in the joints and reduce additional post-manufacturing costs after the part is created.
- the disadvantages arise in the angles of attack of the laser, which due to the orientation allow micro fractures to originate at certain angles.
- Another disadvantage is the need to use a base component for the addition of metal as additive capable.
- the need to use the base component counteracts the advantage of making a component quickly, as the need for prefabricated components becomes evident.
- the Williams international patents show us a rotary injection system of the same type used by the FJ 44 series turbines.
- the invention described in the patent is based on the use of a series of components together to supply fuel to the turbine under any flight condition.
- the flight conditions are Consider depending on the altitude and the flight phase (takeoff, cruise speed and descent): the injection system must be able to deliver fuel even if the aircraft plummets or goes headlong.
- the way in which these devices are constructed is by means of components that are joined by strong welding methods and in different cases, bolts are used.
- Zolkiewsk proposes in his article a study based on rotational rigid disks with columns of variable cross-section mounted on them. Reference is made to the vibration caused when a transverse load is applied that varies with time orthogonally to the axis of the column and parallel to the disk.
- a mathematical modeling is presented that can be transferred without problems to different types of turbines and pumps. By means of equations of the rotational movement and introducing Coriolis forces and centrifugal forces a mathematical modeling of the transportation effect is made.
- the study proposes a comparison between two cases; one that has a column of uniform section and another of variable section; Results are compared based on dynamic flexibility using amplitude as a function of frequency, as well as a dynamic analysis based on the Galerking method. The results are overwhelming when comparing one with the other, which allows us to clearly model a similar system in reality and focus on reducing the natural frequency caused by imperfections in both machining and heat treatments that could cause Some mechanical failure.
- the article proposes an approach to optimize the design variables of a system of injection according to appropriate working conditions.
- the motivation of the article is based on the constant search for improvements from turbine manufacturers to increase fuel efficiency, reduce emissions and emitted sound and how exhaustive tests tend to consume a large amount of validation time.
- it proposes to optimize different variables such as the mass of the injector, the constant of the springs of the device, the diameter, mass of the valve, etc., in order to improve fuel consumption.
- the inventions described above need to be developed substantially to reduce weight, increase fuel consumption efficiency, increase mechanical stability by considerably reducing the amount of welded joints that prevent the occurrence of unwanted vibrations that can fracture metal components, minimize efficiency losses. due to leaks in the joints and reduce maintenance manufacturing costs.
- Figure 1 is a perspective view of the monolithic structure system of the fuel pump.
- Figure 2 is a perspective view of the monolithic structure system of the fuel pump at another angle.
- Figure 3 is a view of the pump cover described in the present invention.
- Figure 4 is a view of an intermediate cover of the pump of this invention.
- Figure 5 is a view of the pump impeller described in this invention.
- the system described in the present invention is a fuel pumping system for turbines in aircraft where the pump body (1) and the pump cover (6) together assembled show the complete body of the pump of the present invention; inside this body some other components are housed that will allow to establish and control pressure and flow in the pump;
- the fuel entering the system through the inlet port (2) is driven by means of the pump impeller (7) while an outlet pressure sensor (4) electronically controls the rotation of said impeller to maintain the flow and pressure required by the turbine.
- the fuel supply at the pump's inlet port (2) is also monitored by means of an inlet pressure sensor (5) that is located in the monolithic body, said inlet sensor (5) that detecting excess fuel inlet flow opens a pair of fuel return ports (3) that prevent The pump is overloaded with fuel to help maintain the correct pressure flow thereby redundant with the measurements taken with the outlet pressure sensor (4).
- the pump cover has a sealing system to maintain the pressure load, close the assembly and maintain the inlet pressure.
- this system has an intermediate cover (8) that helps regulate the pressure in the pump as a third safety and redundancy measure to minimize failures and keep fuel flow and pressure within the required limits.
- the rotation arrow (9) of the pump with its hollow shaft allows initializing the propulsion of the system minimizing the reaction time compared to a solid shaft due to the inertial force of the moving parts, which is of utmost importance for the object of the present invention since one of the most important factors to take care of within the fuel supply of an airplane turbine is the constant and adequate flow and pressure of fuel.
- part of the object of the present invention is to ensure the correct fuel flow and pressure at its outlet; in addition to minimizing the risks of fuel leakage failures by proposing a monolithic pumping inity.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Un sistema de entrega de combustible rotatorio con estructura monolítica para turbinas de aeronaves, que comprende un cuerpo de la bomba en donde todos los componentes se ensamblan para establecer y controlar la presión y el caudal de la bomba; un puerto de entrada de suministro de combustible a presión controlada; puertos de retorno de combustible; filtro de combustible; rotor de la bomba; puerto con sensor de presión de salida; cubierta de bomba con sistema de sellado para mantener la carga de presión, cerrar el ensamblaje y mantener la presión de entrada; tapadera intermedia de la bomba para regular la presión y flecha de rotación de la bomba, con eje hueco para inicializar la propulsión del sistema.
Description
SISTEMA DE ENTREGA DE COMBUSTIBLE ROTATORIO CON ESTRUCTURA
MONOLÍTICA PARA AERONAVES
CAMPO TÉCNICO DE LA INVENCIÓN El sector en el cual se aplica la presente invención de manera práctica es en la industria de aeronaves y otros sectores donde es necesario implementar sistemas efectivos en costo para suministrar combustible de manera precisa y segura bajo condiciones extremas de operación.
ANTECEDENTES
Los nuevos desarrollos en diseño y materiales van a tener un mayor impacto no sólo en el consumo de combustible de los futuros aviones sino que también la forma en la que son manufacturados. Lo que se está viendo hoy son saltos pequeños en la eficiencia de la aeronave con una posibilidad muy alta de alcanzar 15 a 20% en un futuro cercano. En la parte de diseño los principales fabricantes de turbinas de avión están experimentando con distintas arquitecturas que permitan mejorar la eficiencia global de la turbina y que puedan cumplir con las normativas del futuro. Tal es el caso del P&W que está buscando desacoplar los alabes de la turbina de alta presión para que ambos puedan operar en sus velocidad óptimas; y en otros casos, se está experimentando con turbinas de rotor abierto, diseño de los alabes, nuevos inyectores y materiales compuestos. Se está buscando mejoras de 15 a 20%.
De acuerdo al ACARE (Advisory Council for Aeroespace Research in Europe, por sus siglas en inglés), los objetivos para el año 2020 son reducir el consumo y las emisiones de C02 en un 20%, reducir el ruido percibido en un 50% y reducir las emisiones de NOx en un 80%, esto nos da una idea del nivel de exigencia que se les está dando a los fabricantes de turbinas en el mundo. Este tipo de organizaciones al igual que los premios CLEEN (Continuous Lower Energy Emissions and Noise) se producen de la necesidad de acelerar y madurar el desarrollo de tecnologías aeroespaciales que reduzcan el ruido, emisiones y consumo de combustible. Los combustibles alternativos también se encuentran bajo observación, cada vez más se observan vuelos de prueba para validar las nuevas mezclas de combustible. Tal es el caso
del Airbus A319 con una mezcla aprobada por la ASTM de 40/60 de combustible procedente del petróleo y completamente sintético. Por su parte, el ejército de los Estados Unidos, realizó un vuelo con una mezcla 50/50 de un bio-combustible llamado Camelina, a esto se sumó los mas de 600 millones de dólares para financiar bio-refinerías con el fin de acelerar la comercialización de las mismas.
Los cambios en los procesos de manufactura también son muy importantes. Cada componente de la turbina es candidato a desgaste durante la operación; el reducir la cantidad de partes utilizadas en el diseño en si, hace de la manufactura de estos una operación una rentable, mejora la confiabilidad y reduce los mantenimientos. La revisión de patentes se reduce principalmente a las patentes de General Electric número US 8181891 B2 y titulo "monolithic fuel injector and related manufacturing method" asi como a las patentes de Williams International numero US 6925812 B2 de titulo "rotary injector"; US 8763405 B2 de titulo "Gas turbine engine rotary injection system and method". En la patente de General Electric, la invención se basa en un desarrollo de una cabeza inyección monolítica y la forma de manufactura rápida que la origina. El método de manufactura propuesto es la utilización del sintetizado láser o DMLS; de acuerdo a la invención, se eliminan los procesos de unión y soldadura fuerte así como los procesos de electro erosión EDM con el que actualmente se usa para fabricar estos componentes. Las ventajas de utilizar el DMLS es que se puede producir un componente metálico directamente del modelo CAD mediante capaz aditivas. El material utilizado es polvo de cobalto, cromo y aleaciones de níquel. La idea en esta patente es evitar las fugas en las uniones y reducir los costos de post manufactura adicionales después de creada la pieza. Las desventajas se presentan en los ángulos de ataque del láser, los cuales debido a la orientación permiten que se originen micro fracturas en ciertos ángulos. Otra desventaja es la necesidad de utilizar un componente base para la adición de metal a manera de capaz aditivas. La necesidad utilizar el componente base contrarresta la ventaja de realizar un componente de manera rápida, pues la necesidad de componentes prefabricado se hace evidente. Las patentes de Williams internacional, nos presentan un sistema de inyección rotatorio del mismo tipo que utilizan las turbinas de la serie FJ 44. La invención descrita en la patente sé basa en la utilización de una serie de componentes de manera conjunta para suministrar combustible a la turbina bajo cualquier condición de vuelo. Las condiciones de vuelo se
consideran dependiendo de la altitud y la fase de vuelo (despegue, velocidad crucero y descenso): el sistema de inyección deberá de ser capaz de entregar combustible aún si la aeronave cae en picada o va de cabeza. La manera en la que están construidos estos dispositivos es mediante componentes que son unidos mediante métodos soldadura fuerte y en distintos casos, se utilizan pernos.
Al ser un dispositivo que se encuentra girando sobre su propio eje a muy alta velocidad, cualquier desviación en su ensamble o construcción puede originar vibraciones que van afectar la estabilidad mecánica de los componentes. La principal diferencia entre la patente presentada y el proyecto propuesto, es la utilización de componentes monolíticos con la sección transversal más regular posible, por lo que se obtendrá un mejor desempeño.
La literatura científica para el desarrollo de componentes monolíticos para sistemas de inyección de grado aeroespacial al igual que en las patentes es reducida, principalmente derivados del recelo originado por las políticas de seguridad nacional sobre las cuales las empresas aeroespaciales están reguladas. Sin embargo, se hizo una revisión literaria a varios artículos de investigación en los cuales se pueden extrapolar ciertas características.
Zolkiewsk, propone en su artículo un estudio basado en discos rígidos rotacionales con columnas de sección transversal variable montadas sobre ellos. Se hace referencia a la vibración originada cuando se aplica una carga transversal que varía con el tiempo de manera ortogonal al eje de la columna y paralelo al disco. Se presenta una modelación matemática que puede ser trasladada sin problemas a distintos tipos de turbinas y bombas. Mediante ecuaciones del movimiento rotacional e introduciendo fuerzas del Coriolis y fuerzas centrífugas se hace una modelación matemática del efecto de transportación. El estudio propone una comparativa entre dos casos; uno que presenta una columna de sección uniforme y otro de sección variable; se comparan los resultados en base a la flexibilidad dinámica utilizando la amplitud en función de la frecuencia, así como un análisis dinámico basado en el método de Galerking. Los resultados son contundentes a la hora de comparar uno con el otro, lo que nos permite de manera clara modelar un sistema similar en la realidad y enfocarse en reducir la frecuencia natural originada de imperfecciones tanto en el maquinado como en los tratamientos térmicos que pudieran ocasionar alguna falla mecánica.
José Palomar nos presenta un modelo computacional para simular el proceso de inyección de una bomba de inyección rotatoria con el objetivo de ayudar en el proceso de diseño. El artículo propone un acercamiento para optimizar las variables de diseño de un sistema de
inyección de acuerdo a condiciones de trabajo apropiadas. La motivación del artículo se basa en la constante búsqueda de mejoras de los fabricantes de turbinas por incrementar la eficiencia de combustible, reducir las emisiones y el sonido emitido y cómo las pruebas exhaustivas tienden a consumir gran cantidad del tiempo de validación. Mediante una serie de algoritmos y funciones objetivo, propone optimizar distintas variables como la masa del inyector, la constante de los resortes del dispositivo, el diámetro, masa de la válvula, etc., con el fin de mejorar el consumo de combustible. Éstos modelos sin embargo, no pueden fiincionar correctamente de manera inversa, por lo que a partir de una eficiencia propuesta no puede generar los parámetros óptimos de las variables. La búsqueda de mejora continua que presenta nuestro proyecto, nos invita a buscar métodos alternativos que permitan incrementar el tiempo de validación del producto de una manera inteligente. La utilización de este tipo de modelo aunado al diseño computerizado y las simulaciones de vibraciones serán de gran utilidad a la hora de diseñar y fabricar los componentes monolíticos de una mejor manera. La tecnología detrás de un sistema monolítico se basa principalmente en la reducción de uniones y componentes, por lo que la fabricación de estos en una sola pieza requiere de métodos de manufactura avanzada.
Las invenciones antes descritas requieren ser desarrolladas sustancialmente para reducir el peso, incrementar la eficiencia de consumo combustible, incrementar la estabilidad mecánica reduciendo considerablemente la cantidad de uniones soldadas que prevengan la aparición de vibraciones no deseadas que puedan fracturar los componentes metálicos, minimizar pérdidas de eficiencia debido a fugas en las uniones y reducir los costos de manufactura mantenimiento.
SUMARIO DE LA INVENCIÓN
Los detalles característicos de la presente invención se muestran claramente en la siguiente descripción. Las figuras y ejemplos que la acompañan se utilizan para explicar el runcionamiento del dispositivo, por lo que no deben ser considerados como limitativos, para éste.
BREVE DESCRIPCIÓN DE FIGURAS
La figura 1 es una vista en perspectiva del sistema del estructura monolítica de la bomba de combustible.
La figura 2 es una vista en perspectiva del sistema del estructura monolítica de la bomba de combustible en otro ángulo.
La figura 3 es una vista de la cubierta de la bomba descrita en la presente invención. La figura 4 es una vista de una tapadera intermedia déla bomba de esta invención. La figura 5 es una vista del impelente de la bomba descrita en este invención.
DESCRIPCION DETALLADA DE LA INVENCIÓN
El sistema descrito en el presente invención se trata de un sistema de bombeo de combustible para turbinas en aeronaves donde el cuerpo de la bomba (1) y la cubierta de bomba (6) juntos ensamblados muestran el cuerpo completo la bomba de la presente invención; dentro de este cuerpo van alojados algunos otros componentes que permitirán establecer y controlar presión y flujo en la bomba; el combustible que ingresa al sistema por el puerto de entrada (2) es impulsado por medio del impelente de la bomba (7) mientras que un sensor de presión de salida (4) controla de manera electrónica la rotación de dicho impelente para mantener el flujo y presión requeridos por la turbina. El suministro de combustible que se tiene en el puerto de entrada (2) de la bomba también es monitoreado por medio de un sensor de presión de entrada (5) que se encuentra localizado en el cuerpo monolítico, dicho sensor de entrada (5) que al detectar un exceso de flujo de entrada de combustible abre un par de puertos de retorno (3) de combustible que evitan que
la bomba se sobrecargue de combustible para ayudar a mantener el flujo de presión correctos redundando así las medidas tomadas con el sensor de presión de salida (4).
La cubierta de la bomba cuenta con un sistema de sellado para mantener la carga de presión, cerrar el ensamble y mantener la presión de entrada. Además este sistema cuenta con una tapadera intermedia (8) que ayuda a regular la presión en la bomba como una tercera medida de seguridad y de redundancia para minimizar al máximo las fallas y mantener dentro de los límites requerido el flujo y la presión de combustible.
La flecha de rotación (9) de la bomba con su eje hueco permite inicializar la propulsión del sistema minimizando el tiempo de reacción en comparación con un eje solido debido a la fuerza inercial de las partes en movimiento, lo cual es de suma importancia para el objeto de la presente invención ya que uno de los factores más importantes a cuidar dentro del suministro de combustible de una turbina de avión es el flujo y la presión constante y adecuadas de combustible. De ahí que parte del objeto de la presente invención es garantizar el flujo y presión de combustible correctos en su salida; además de minimizar los riesgos de fallos por fuga de combustible al proponer una inidad monolítica de bombeo.
Claims
REIVINDICACIONES se reclama es: 1. Una bomba de propulsión de combustible, de estructura monolítica, diseñada para reducir fugas y mantener una presión y flujo de combustible sin variaciones y mejorar la eficiencia de las turbinas en aeronaves, que comprende:
a) Cuerpo monolítico de la bomba, en donde todos los componentes se ensamblan para establecer y controlar presión y flujo en la bomba; b) Puerto de entrada de suministro de combustible a presión controlada;
c) Puertos de retorno de combustible;
d) Filtro de combustible;
e) Rotor de la bomba;
f) Puerto con sensor de presión de salida;
g) Puerto con sensor de presión de entrada;
h) Cubierta de bomba con sistema de sellado para mantener la carga de presión, cerrar el ensamble y mantener la presión de entrada;
i) Impelente de la bomba para establecer la potencia hidráulica de salida y aumentar la capacidad de impulso de la bomba propulsora;
j) Tapadera intermedia de la bomba para regular la presión en la bomba;
k) Flecha de rotación de la bomba, con eje hueco para inicializar la propulsión del sistema.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/MX2015/000187 WO2017105182A1 (es) | 2015-12-14 | 2015-12-14 | Sistema de entrega de combustible rotatorio con estructura monolítica para aeronaves |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/MX2015/000187 WO2017105182A1 (es) | 2015-12-14 | 2015-12-14 | Sistema de entrega de combustible rotatorio con estructura monolítica para aeronaves |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017105182A1 true WO2017105182A1 (es) | 2017-06-22 |
Family
ID=59056945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/MX2015/000187 WO2017105182A1 (es) | 2015-12-14 | 2015-12-14 | Sistema de entrega de combustible rotatorio con estructura monolítica para aeronaves |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017105182A1 (es) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11739749B2 (en) | 2021-06-25 | 2023-08-29 | Collins Engine Nozzles, Inc. | Additively manufactured fluid pumps and portions thereof |
US11846300B2 (en) | 2021-06-25 | 2023-12-19 | Collins Engine Nozzles, Inc. | Fluid pumps |
EP4338868A1 (en) * | 2022-09-14 | 2024-03-20 | Collins Engine Nozzles, Inc. | Fluid pumps |
US12012971B2 (en) | 2021-06-25 | 2024-06-18 | Collins Engine Nozzles, Inc. | Fluid pumps |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2761387A (en) * | 1950-09-25 | 1956-09-04 | Gen Motors Corp | Fuel system |
US3782109A (en) * | 1972-04-14 | 1974-01-01 | United Aircraft Corp | Fuel control |
US3878676A (en) * | 1973-09-17 | 1975-04-22 | Gen Motors Corp | Fuel metering |
WO1991011350A2 (es) * | 1990-02-05 | 1991-08-08 | Transpar Iberica, S.A. | Bomba impulsora de liquido limpiador para vehiculos automoviles |
US20050066649A1 (en) * | 2003-09-30 | 2005-03-31 | William Lorenz | High accuracy fuel metering system for turbine engines |
-
2015
- 2015-12-14 WO PCT/MX2015/000187 patent/WO2017105182A1/es active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2761387A (en) * | 1950-09-25 | 1956-09-04 | Gen Motors Corp | Fuel system |
US3782109A (en) * | 1972-04-14 | 1974-01-01 | United Aircraft Corp | Fuel control |
US3878676A (en) * | 1973-09-17 | 1975-04-22 | Gen Motors Corp | Fuel metering |
WO1991011350A2 (es) * | 1990-02-05 | 1991-08-08 | Transpar Iberica, S.A. | Bomba impulsora de liquido limpiador para vehiculos automoviles |
US20050066649A1 (en) * | 2003-09-30 | 2005-03-31 | William Lorenz | High accuracy fuel metering system for turbine engines |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11739749B2 (en) | 2021-06-25 | 2023-08-29 | Collins Engine Nozzles, Inc. | Additively manufactured fluid pumps and portions thereof |
US11846300B2 (en) | 2021-06-25 | 2023-12-19 | Collins Engine Nozzles, Inc. | Fluid pumps |
US12012971B2 (en) | 2021-06-25 | 2024-06-18 | Collins Engine Nozzles, Inc. | Fluid pumps |
EP4338868A1 (en) * | 2022-09-14 | 2024-03-20 | Collins Engine Nozzles, Inc. | Fluid pumps |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017105182A1 (es) | Sistema de entrega de combustible rotatorio con estructura monolítica para aeronaves | |
ES2913083T3 (es) | Motor de turbina de gas | |
ES2606859T3 (es) | Accionador transversal fluídico | |
JP6563631B2 (ja) | ロック用スペーサアセンブリ | |
Talbotec et al. | Snecma counter rotating fan aerodynamic design logic & tests results | |
Persico et al. | Aerodynamic design and analysis of centrifugal turbine cascades | |
BR102015015377B1 (pt) | Conjunto de motor de turbina a gás, e, sistema de controle ambiental de uma aeronave | |
JP2015078689A (ja) | ロック用スペーサアセンブリ | |
Sangan | Measurement of ingress through gas turbine rim seals | |
He et al. | Mechanisms of lean on the performance of transonic centrifugal compressor impellers | |
WO2017105204A1 (es) | Aparato monolítico rotatorio de bombeo de combustible para turbinas propulsoras de jets | |
Guillaume | On the design of waste heat recovery organic Rankine cycle systems for engines of long-haul trucks | |
Capata et al. | A hybrid propulsion system for a high-endurance UAV: Configuration selection, aerodynamic study, and gas turbine bench tests | |
Copeland et al. | The effect of unequal admission on the performance and loss generation in a double-entry turbocharger turbine | |
Kenny | The history and future of the centrifugal compressor in aviation gas turbines | |
Deng et al. | Improvement of a theoretical analysis method for Tesla turbines | |
WO2016122297A1 (es) | Bomba de combustible con estructura monolítica | |
Sun et al. | Thermodynamics of the Wave Disk Engine | |
Fernández-Villacé et al. | Simulation of a combined cycle for high speed propulsion | |
Yang et al. | Unsteady response of performance for centrifugal compressor under pulsating backpressure condition | |
Fathy et al. | Micro TJE centrifugal compressor performance prediction Tamer S. | |
Бойко et al. | Determination of the throttle performances of a turboshaft GTE based on the method of mathematical modeling using one and two-dimensional approaches to the compressor parameters calculation | |
Laskowski et al. | An investigation of turbine wheelspace cooling flow interactions with a transonic hot gas path—part 2: Cfd simulations | |
McClearn et al. | The testing of a small-scale wave rotor for use as a modified brayton-cycle engine | |
Sadrehaghighi | Essentials of Turbo machinery in CFD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15910828 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15910828 Country of ref document: EP Kind code of ref document: A1 |