WO2017105143A1 - 형광체 및 이를 구비한 발광 소자 - Google Patents

형광체 및 이를 구비한 발광 소자 Download PDF

Info

Publication number
WO2017105143A1
WO2017105143A1 PCT/KR2016/014828 KR2016014828W WO2017105143A1 WO 2017105143 A1 WO2017105143 A1 WO 2017105143A1 KR 2016014828 W KR2016014828 W KR 2016014828W WO 2017105143 A1 WO2017105143 A1 WO 2017105143A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light emitting
light
red
peak wavelength
Prior art date
Application number
PCT/KR2016/014828
Other languages
English (en)
French (fr)
Inventor
문지욱
송우석
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US16/063,165 priority Critical patent/US10336936B2/en
Publication of WO2017105143A1 publication Critical patent/WO2017105143A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • C09K11/572Chalcogenides
    • C09K11/576Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • Embodiments relate to a phosphor and a light emitting device including the same.
  • the light emitting device can be included in an illumination system.
  • a light emitting device is a device in which electrical energy is converted into light energy.
  • a light emitting diode LED
  • nitride semiconductors are receiving great attention in the field of optical devices and high power electronic devices due to their high thermal stability and wide bandgap energy.
  • blue light emitting devices, green light emitting devices, and ultraviolet light emitting devices using nitride semiconductors are commercially used and widely used.
  • LED emitting white light is a method of using a secondary light source that emits light from the phosphor by applying a phosphor, a method of obtaining a white light by applying a YAG: Ce phosphor emitting a yellow to a blue LED.
  • the above method has disadvantages in that efficiency is reduced due to quantum deficits and re-radiation efficiency occurring while using secondary light, and color rendering is not easy.
  • the conventional white LED backlight is a combination of a blue LED chip and a yellow phosphor, and the green and red components are lacking to express an unnatural color, and thus, the white LED backlight has been applied to a mobile phone or a notebook PC. Nevertheless, it is widely commercialized because of the advantages of easy driving and significantly lower price.
  • White LED devices made of blue chips and yellow phosphors are used for backlights used in mobile phones, personal digital assistants and the like.
  • yellow phosphors eg, peak emission appears between 550 nm and 610 nm
  • the spectrum of the LED contains excessive emission in the yellow region of this spectrum, which strongly reduces the color gamut of the backlight.
  • the color gamut is the area spanned between the color points of the red, green and blue pixels of the display in a chromaticity diagram, such as the CIE 1931 x, y chromaticity diagram.
  • the historical "golden standard" of displays is the NTSC gamut, which is limited to a set of three color point coordinates. Generally, over 70% of the NTSC is considered acceptable for many backlighting applications, The full range over 90% of NTSC is considered acceptable for most of these arbitrary uses.
  • CRI is an eight standard, commonly referred to as the General Color Rendering Index and abbreviated Ra, although 14 standard color samples are internationally specified and they can calculate a wider CRI (R1-14) as their average. It is generally defined as the mean value of the color samples R1-R8. Specifically, the R9 value for measuring color rendering for strong red is very important for various applications, especially for lighting or medical systems requiring high color rendering index.
  • the embodiment provides a phosphor for wavelength conversion into red light.
  • the embodiment provides a red phosphor having a narrow half width.
  • the embodiment provides a red phosphor and a light emitting device including the same.
  • the embodiment provides a phosphor that absorbs ultraviolet or blue excitation wavelengths and emits red light of 650 nm or more, and a light emitting device having the same.
  • the embodiment provides a light emitting device having a red phosphor, a green chip or a green phosphor, and a blue light emitting chip.
  • the phosphor according to the embodiment has a M 4 D 1 - x O y F: A x structure containing a divalent metal (M), a volatile earth element (A) of an activator, fluorine (F) and oxygen (O).
  • a phosphor composition wherein x satisfies 0.001 ⁇ x ⁇ 0.1, y satisfies 1 ⁇ y ⁇ 5, and M is at least one of Mg, Ca, Sr, Ba, and Zn, and D is Si , Ge Sn, Ti, Zr, Hf, at least one, F is fluorine (Fluorine), A is Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb Wherein the composition of the phosphor emits red light with an ultraviolet or blue wavelength as an excitation wavelength of a peak wavelength of 400 nm to 470 nm, wherein the red light has a peak wavelength of 655 nm to 670 n
  • the phosphor according to the embodiment includes a structure of composition Mg 4 Ge 1 - x O y F: Mn 4 + x , wherein x satisfies 0.001 ⁇ x ⁇ 0.1, and y satisfies 1 ⁇ y ⁇ 5.
  • the composition has a peak wavelength of 655 nm to 670 nm and a half width of 20 nm or less.
  • the light emitting device includes a light emitting chip; A first phosphor that emits a first peak wavelength by using light emitted from the light emitting chip as an excitation wavelength; And a second phosphor that emits a second peak wavelength by using light emitted from the light emitting chip as an excitation wavelength, wherein the first and second peak wavelengths have different colors, and the second phosphor is a divalent metal.
  • M a phosphor composition having an M 4 D 1 - x O y F:
  • M is at least one of Mg, Ca, Sr, Ba, and Zn, and D is Si, Ge Sn, Ti, Zr
  • At least one of Hf, F is fluorine
  • A includes at least one of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb.
  • the second peak wavelength emitted from the second phosphor has a peak wavelength of 655 nm to 670 nm and a half width of 20 nm or less.
  • a light emitting device having a new phosphor and a combination thereof can be provided.
  • color gamut can be improved.
  • the embodiment can provide a phosphor and a light emitting device including the same.
  • FIG. 1 is a cross-sectional view of a light emitting device including a red phosphor according to an embodiment.
  • FIG. 2 is a view showing another example of a light emitting device having a red phosphor according to an embodiment.
  • FIG 3 is a view showing another example of a light emitting device having a red phosphor according to an embodiment.
  • FIG. 4 is a view showing another example of a light emitting device having a red phosphor according to an embodiment.
  • FIG. 5 is a view showing a light emitting device having a film to which a red phosphor is added according to an embodiment.
  • FIG. 6 is a view illustrating a light unit having a film to which a red phosphor is added according to an embodiment.
  • FIG. 7 is a view illustrating another example of a light unit having a film to which a red phosphor is added according to an embodiment.
  • FIG. 8 illustrates an example of an excitation wavelength of a phosphor or a wavelength of a light emitting chip according to an embodiment.
  • FIG. 9 is a view showing a wavelength spectrum of a red phosphor according to the embodiment.
  • FIG. 10 is a view showing color coordinates of CIE 1976 due to light emitted from a light emitting device having a red phosphor according to an embodiment.
  • FIG. 11 is a perspective view illustrating a display device having a light emitting device according to an exemplary embodiment.
  • FIG. 12 is a perspective view illustrating a display device having a light emitting device according to an exemplary embodiment.
  • FIG. 13 is an exploded perspective view showing a lighting device having a light emitting device according to the embodiment.
  • the phosphor according to the embodiment is a red phosphor, containing a divalent metal (M), an element of an active agent (A), fluorine (F, Fluorine or Fluor) and oxygen (O), and a general formula M 4 D 1 - x O It may include a composition having a y F: A x structure or compositional formula.
  • M is at least one of Mg, Ca, Sr, Ba, Zn
  • D is at least one of Si, Ge Sn, Ti, Zr, Hf
  • F is fluorine
  • A is Mn, Ce
  • It may include at least one of Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb.
  • Element (A) of the active agent is Mn or 4 +, etc.
  • the transition metal ion 4 and can be appropriately selected according to the needs of various rare-earth ions or transition metal ion is selected from metal ions, for example, Eu 2 +, Ce + 3, Pr + 3, Nd + 3, Sm 3 +, Eu 3 +, Gd + 3, Tb + 3, Dy + 3, Ho + 3, Er + 3, Tm + 3, Yb 3+ and 3 of the a rare earth metal ion, Sm + 2, Eu + 2, Yb + 2, such as a divalent rare earth metal ions, such as Mn 2 + 2 are transition metal ions, such as Cr 3+ or Fe 3+ trivalent transition metal ions such as .
  • metal ions for example, Eu 2 +, Ce + 3, Pr + 3, Nd + 3, Sm 3 +, Eu 3 +, Gd + 3, Tb + 3, Dy + 3, Ho + 3, Er + 3, Tm + 3, Yb 3+ and 3 of the a rare earth metal ion, Sm + 2, Eu + 2, Yb + 2, such as a divalent rare earth metal ions, such as
  • the red phosphor may emit a peak wavelength having a long wavelength among deep red, for example, red wavelengths, using an ultraviolet or blue wavelength as an excitation wavelength.
  • the red phosphor may emit red peak wavelengths using a peak wavelength of 400 nm or more, for example, 400 nm to 470 nm as an excitation wavelength.
  • the red phosphor may emit a peak wavelength of 650 nm or more, for example, 655 nm to 670 nm.
  • the full width at half maximum (FWHM) of the peak wavelength of the red phosphor may be 25 nm or less, for example, 20 nm or less.
  • the half width of the peak wavelength of the red phosphor may be, for example, in the range of 10 nm to 20 nm.
  • the peak wavelength of the light emitted from the red phosphor is lower than the above range, high color reproduction is insignificant and there is a limit to improving NTSC.
  • the half width of the peak wavelength of the light emitted from the red phosphor is larger than the range, the improvement of the area ratio of NTSC and sRGB may be insignificant.
  • the embodiment can provide a phosphor composition having a peak wavelength and a narrow half width of a red wavelength, thereby improving color reproducibility of red and area ratio of NTSC and sRGB as shown in FIG. 10.
  • the composition of the red phosphor may be used as a specific embodiment, as a fluorine phosphor material activated with Mn 4 + x .
  • the composition of the red phosphor may have, for example, a structure or a composition of Mg 4 Ge 1- x O y F: Mn 4+ x .
  • X may satisfy 0.001 ⁇ x ⁇ 0.1, and y may satisfy 1 ⁇ y ⁇ 5.
  • Such a red phosphor may emit an ultraviolet or blue wavelength as an excitation wavelength, for example, a peak wavelength of 400 nm to 470 nm as shown in FIG. 8, and emit a peak wavelength of 650 nm or more such as 655 nm to 670 nm as shown in FIG. 9.
  • the full width at half maximum (FWHM) of the peak wavelength of the red phosphor may be 25 nm or less, for example, 20 nm or less.
  • the half width of the peak wavelength of the red phosphor may be, for example, in the range of 10 nm to 20 nm. Since the red phosphor having the structure or compositional formula of Mg 4 Ge 1 - x O y F: Mn 4 + x has a peak wavelength of long wavelength among red wavelengths and a half width of 25 nm or less, the color purity of red is further improved. I can let you.
  • the embodiment can provide a light emitting device including a light emitting chip having a peak wavelength of 400 nm to 470 nm and a red phosphor emitting a peak wavelength of 655 nm to 670 nm by the light emitting chip. Since the embodiment does not use the red light emitting chip, the bin management point is reduced, so that the yield may be increased, and may have an advantageous effect than when using the multi light emitting chip. In addition, since the red light emitting chip is not used, color temperature variation can be reduced and stable optical characteristics can be provided.
  • the embodiment includes a light emitting chip having a peak wavelength of 400 nm to 470 nm, a green phosphor emitting green light by the light of the light emitting chip, and a red phosphor according to an embodiment emitting a peak wavelength of 655 nm to 670 nm.
  • a light emitting device can be provided.
  • An embodiment provides a light emitting device including a light emitting chip having a peak wavelength of 400 nm to 470 nm, a green light emitting chip emitting green light, and a red phosphor according to an embodiment emitting a peak wavelength of 655 nm to 670 nm.
  • the light emitting device of the embodiment may be implemented as a white light emitting device.
  • a light emitting device having a red phosphor according to an embodiment will be described.
  • 1 is a cross-sectional view showing a light emitting device having a phosphor according to an embodiment.
  • the light emitting device 10 includes a molding member 41 having a body 11, a plurality of lead frames 21 and 23, a light emitting chip 25, and phosphors 31 and 33. .
  • the body 11 may be formed of a material having a reflectance higher than the transmittance, for example, a 70% or more reflectance with respect to a wavelength emitted by the light emitting chip 25.
  • the body 11 may be defined as a non-transparent material when the reflectance is 70% or more.
  • the body 11 may be formed of a resin-based insulating material, for example, a resin material such as polyphthalamide (PPA).
  • PPA polyphthalamide
  • the body 11 may include a metal oxide added to a resin material such as epoxy or silicon, and the metal oxide may include at least one of TiO 2 , SiO 2 , and Al 2 O 3 .
  • the body 11 may include a silicon-based, epoxy-based, or plastic material, and may be formed of a thermosetting resin, or a high heat resistance and high light resistance material.
  • the body 11 may be selectively added among an acid anhydride, an antioxidant, a release material, a light reflector, an inorganic filler, a curing catalyst, a light stabilizer, a lubricant, and titanium dioxide.
  • the body 11 may be molded by at least one selected from the group consisting of an epoxy resin, a modified epoxy resin, a silicone resin, a modified silicone resin, an acrylic resin, and a urethane resin.
  • an epoxy resin composed of triglycidyl isocyanurate, hydrogenated bisphenol A diglycidyl ether, or the like, an acid composed of hexahydro phthalic anhydride, 3-methylhexahydro phthalic anhydride 4-methylhexahydrophthalic anhydride, or the like.
  • the anhydride was added to the epoxy resin by adding DBU (1,8-Diazabicyclo (5,4,0) undecene-7) as a curing accelerator, ethylene glycol, titanium oxide pigment and glass fiber as a promoter, and partially by heating.
  • DBU 1,8-Diazabicyclo (5,4,0) undecene-7
  • the solid epoxy resin composition hardened by reaction and B staged can be used, It does not limit to this.
  • the light transmitted by mixing the light blocking material or the diffusion agent in the body 11 may be reduced.
  • the body 11 is appropriately mixed with at least one selected from the group consisting of a diffusing agent, a pigment, a fluorescent material, a reflective material, a light-shielding material, a light stabilizer, a lubricant in a thermosetting resin in order to have a predetermined function. You may also do it.
  • the body 11 may be formed of a transparent resin material or a resin material having a phosphor according to an embodiment for converting wavelengths of incident light.
  • the body 11 may be a material that transmits 70% or more of the light emitted from the light emitting chip 25.
  • the red phosphor disclosed in the embodiment may be added to the body 11.
  • the body 11 includes a cavity 15 recessed to a predetermined depth from an upper surface of the body 11 and having an open top.
  • the cavity 15 may be formed in a shape such as a concave cup structure, an open structure, or a recess structure, but is not limited thereto.
  • the cavity 15 has a width that gradually widens upward, thereby improving light extraction efficiency.
  • first and second lead frames 21 and 23 may be coupled to the body 11.
  • the first and second lead frames 21 and 23 may be disposed at the bottom of the cavity 15, and an outer portion of the first and second lead frames 21 and 23 may be disposed through the body 11. It may be exposed on at least one side of the body (11). Lower portions of the first lead frame 21 and the second lead frame 23 may be exposed to the lower portion of the body 11 and may be mounted on a circuit board to receive power.
  • first and second lead frames 21 and 23 at least one or both of the first and second lead frames 21 and 23 may be formed in a concave cup shape or bent. Can have At least one or both of the first and second lead frames 21 and 23 may include a recess or a recess recessed for engagement with the body 11, but is not limited thereto.
  • the light emitting chip 25 may be disposed in the concave cup shape, but is not limited thereto.
  • the first lead frame 21 and the second lead frame 23 are made of a metal material, for example, titanium (Ti), copper (Cu), nickel (Ni), gold (Au), chromium (Cr), and tantalum. It may include at least one of aluminum (Ta), platinum (Pt), tin (Sn), silver (Ag), and phosphorus (P), and may be formed in a single layer or multiple layers. Red phosphors according to the embodiment may be distributed on the bottom of the cavity 15, for example, the top surfaces of the first and second lead frames 21 and 23.
  • a metal material for example, titanium (Ti), copper (Cu), nickel (Ni), gold (Au), chromium (Cr), and tantalum. It may include at least one of aluminum (Ta), platinum (Pt), tin (Sn), silver (Ag), and phosphorus (P), and may be formed in a single layer or multiple layers. Red phosphors according to the embodiment may be distributed on the bottom of the cavity 15, for example, the top surfaces
  • the light emitting chip 25 is disposed on the first lead frame 21, and the light emitting chip 25 may be bonded onto the first lead frame 21 by a bonding member.
  • the light emitting chip 25 may be connected to at least one connection member 27 of the first and second lead frames 21 and 23, but is not limited thereto.
  • the connection member 27 includes a wire of conductive material, for example, metal.
  • the light emitting chip 25 emits a peak wavelength in the range of 400 nm to 600 nm in the wavelength range of visible light.
  • the light emitting chip 25 may emit ultraviolet or blue peak wavelengths.
  • the light emitting chip 25 may emit a blue peak wavelength, for example, a peak wavelength in a range of 400 nm to 470 nm as shown in FIG. 8.
  • the light emitting chip 25 may include at least one of a compound semiconductor of group II-VI elements and a compound semiconductor of group III-V elements.
  • the light emitting chip 25 may be formed of, for example, a compound selected from the group consisting of GaN, AlGaN, InGaN, AlInGaN, GaP, AlN, GaAs, AlGaAs, InP, and mixtures thereof.
  • At least one semiconductor layer constituting the light emitting chip 25 has an Al x In y Ga (1-xy) N composition formula (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). It may be formed of a compound semiconductor.
  • a molding member 41 is disposed in the cavity 15, and the molding member 41 includes phosphors 31 and 33 according to an embodiment.
  • the phosphors 31 and 33 include phosphors having different materials emitting different peak wavelengths.
  • the phosphors 31 and 33 include, for example, a first phosphor 31 and a second phosphor 33 emitting different peak wavelengths.
  • the first phosphor 31 may include one or two or more kinds of phosphors.
  • the first phosphor 31 may emit the first peak wavelength using the peak wavelength emitted from the light emitting chip 25 as the excitation wavelength.
  • the first peak wavelength may include, for example, green light.
  • the first phosphor 31 may include a green phosphor.
  • the green phosphor may emit a peak wavelength of 525 nm to 545 nm.
  • the first phosphor 31 may be, for example, (Y, Gd, Lu, Tb) 3 (Al, Ga) 5 O 12 : Ce, (Mg, Ca, Sr, Ba) 2 SiO 4 : Eu, (Ca, Sr ) 3 SiO 5 : Eu, (La, Ca) 3 Si 6 N11: Ce, ⁇ -SiAlON: Eu, ⁇ -SiAlON: Eu, Ba 3 Si 6 O 12 N 2 : Eu, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, CaSc 2 O 4 : Eu, BaAl 8 O 13 : Eu, (Ca, Sr, Ba) Al 2 O 4 : Eu, (Sr, Ca, Ba) (Al, Ga, In) 2 S 4 : Eu, (Ca, Sr) 8 (Mg, Zn) (SiO 4 ) 4 C l2 : Eu / Mn, (Ca, Sr, Ba) 3 MgSi 2 O 8 : Eu /
  • the first phosphor 31 is, for example, La 3 Si 6 N 11: Ce 3 +, BaSiN 2: Eu 2 +, Sr 1.5 Al 3 Si 9 N 16: Eu 2+, Ca 1. 5 A1 3 Si 9 N 16: Eu 2 +, CaSiA1 2 O 3 N 2: Eu 2 +, SrSiA1 2 O 3 N 2: Eu 2 +, CaSi 2 O 2 N 2: Eu 2+, SrSi 2 O 2 N 2: Eu 2 +, BaSi 2 O 2 N 2: Eu 2 +, Sr 2 Si 5 N 8: Ce 3 +, Ca 1. 5 Al 3 Si 9 N 16: it may include at least one of Ce + 3.
  • the first phosphor 31 may include a quantum dot, and the quantum dot may include a II-VI compound or a III-V compound semiconductor, and emit green light.
  • the quantum dots are, for example, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, GaN, GaP, GaAs, GaSb, InP, InAs, In, Sb, AlS, AlP, AlAs, PbS, PbSe, Ge, Si, CuInS 2 , Such as CuInSe 2 and the like, and combinations thereof.
  • the first phosphor 31 having the quantum dots may emit green light.
  • the second phosphor 33 may emit light having a long wavelength within a second peak wavelength, for example, a red peak wavelength according to an exemplary embodiment, using the light emitted from the light emitting chip 25 as an excitation wavelength.
  • the second phosphor 33 includes a red phosphor according to an embodiment.
  • the red phosphor contains a divalent metal (M), an element of the volatile activator (A), fluorine (F, Fluorine or Fluor) and oxygen (O), and a general formula M 4 D 1 - x O y F: A It may comprise a composition of the x structure.
  • M is at least one of Mg, Ca, Sr, Ba, Zn
  • D is at least one of Si, Ge Sn, Ti, Zr, Hf
  • F is fluorine
  • A is Mn, Ce
  • It may include at least one of Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb.
  • the M is Mg, wherein D is Ge, the A may tetravalent manganese Mn 4 +.
  • the mole percentage of A may be 10% or less, and the sum of the mole percentages of D and A may be 100%.
  • X may satisfy 0.001 ⁇ x ⁇ 0.1
  • y may satisfy 1 ⁇ y ⁇ 5.
  • the element D increases from 0.01 to 0.99
  • the element A may decrease from 0.99 to 0.01.
  • the second phosphor 33 may emit long wavelengths among deep red, for example, red wavelengths, by using an ultraviolet or blue wavelength emitted from the light emitting chip 25 as an excitation wavelength.
  • the deep red may be red having a wavelength close to 700 nm.
  • the second peak wavelength emitted from the second phosphor 33 may emit light of 650 nm or more, for example, a peak wavelength of 655 nm to 670 nm or a peak wavelength of 660 nm to 665 nm as shown in FIG. 9.
  • the half width of the peak wavelength of the second phosphor 33 may be 25 nm or less, for example, 20 nm or less.
  • the half width of the peak wavelength of the second phosphor 33 may be, for example, in a range of 10 nm to 20 nm.
  • the composition of the red phosphor may be used as a specific embodiment, as a fluorine phosphor material activated with Mn 4 + x .
  • the composition of the red phosphor may have, for example, a structure or compositional formula of Mg 4 Ge 1 - x O y F: Mn 4 + x .
  • the improvement of the area ratio of NTSC and sRGB may be insignificant.
  • the embodiment provides a phosphor composition having a long peak red wavelength and a narrow half-width, thereby improving color reproducibility and as compared to the area ratio of the color gamut of NTSC and 130% of the color gamut of sRGB as shown in FIG. You can improve it by more than%.
  • a light emitting device using color conversion such as a white light emitting device, implements white light using a blue light emitting chip and a yellow phosphor as a comparative example.
  • a blue light emitting element as a reference light source
  • YAG Yttrium Aluminum Garnet
  • the yellow phosphor is excited by the incident light and emits light.
  • the wide wavelength interval of blue and yellow because of the wide wavelength interval of blue and yellow, the glare effect due to color separation can be caused.
  • the color reproduction ratio of NTSC is limited to about 65%.
  • the color reproducibility may be more than 100% of that of NTSC by using a red, green, and blue light emitting device to implement white as a multi-chip.
  • white is implemented as a multi-chip in this way, the operating voltage is uneven for each chip, the output of the chip is changed according to the ambient temperature, color coordinates may vary, and a driving circuit should be added.
  • the color coordinate change caused by the red chip may become a problem according to the current and the temperature, and thus the overall color coordinate of the backlight unit may be changed.
  • blue light by the light emitting chip 25, green light by the first phosphor 31, and red light by the second phosphor 33 may be mixed with each other.
  • the mixed light may be emitted as white light. That is, a white light emitting element can be provided.
  • the content ratio of the second phosphor 33 may be added more than the content ratio of the first phosphor 31. have.
  • the first phosphor 31 may have a content ratio of 5% to 40%
  • the second phosphor 33 may have a content ratio of 60% to 95%.
  • red has a higher relative luminance than green
  • green may have a higher relative luminance than red
  • red may have a higher relative luminance than green.
  • the content ratio of the first and second phosphors 31 and 33 is out of the range, the improvement of color purity of green or red in NTSC, sRGB, BT2020, etc. may be insignificant, and high color reproduction may be difficult.
  • the content ratio of the first and second phosphors 33 may be in the above range.
  • the total weight of the phosphors in the molding member 41 may be 70 wt% or more, for example, 70 wt% to 150 wt%.
  • the blue distribution may be increased, and when it is larger than the range, the blue distribution may be reduced.
  • the color coordinates of the red light are, for example, in an area surrounded by four vertices (0.5100, 0.4800), (0.5100, 0.5100), (0.5300, 0.4900), (0.5300, 0.5055), and the green phosphor is, for example, four vertices ( 0.0900, 0.5200), (0.0850, 0.5250), (0.1100, 0,5250), (0.1050, 0.5400).
  • the red phosphor according to the embodiment may move u 'more than 0.05 (M1) in the u' and v 'chromaticity diagrams of CIE 1976 compared to NTSC. Since the red color of the red phosphor according to the embodiment is half-width wide and distributed in the long wavelength, the color purity of the red may be further increased.
  • the area ratio of the detected CIE 1976 shows that the red light is shifted to be 120% or more than the color gamut of NTSC and 130% or more than the color gamut of sRGB. Can be done.
  • the red color rendering index R9 may be improved, and a light spectrum having a high half color width may be provided by providing a red spectrum having a narrow half width.
  • the light emitting device 10 may further include a blue phosphor when the light emitting chip 25 is a UV light emitting chip, but is not limited thereto.
  • the first and second phosphors 31 and 33 may each be particles that emit a unique color, or may be provided in a form in which different fluorescent particles emitting two or three colors are mixed into one particle.
  • the particles may be in a range of 40 ⁇ m or less, for example, 1 to 30 ⁇ m, and when the size of the particles is smaller than the range, distribution control may be difficult, and when the particle size is larger than the range, brightness control may be difficult.
  • the light emitting device is a white light emitting device, depending on the color temperature warm white (warm white) of 2500K-4000K, cool white (6500K-7000K), neutral white (neutral white), pure white of 3000-4000K It may be implemented as a pure white device.
  • FIG. 2 is a view showing another example of a light emitting device having a phosphor according to an embodiment.
  • the same parts as FIG. 1 will be referred to the description of FIG. 1.
  • the light emitting device may include a plurality of molding members 42 and 43 in the cavity 15 of the body 11. Phosphors 31 and 33 may be disposed on any one of the plurality of molding members 42 and 43.
  • the plurality of molding members 42 and 43 may include first and second molding members 42 and 43, and the phosphors 31 and 33 may be disposed on the second molding member 43.
  • the thickness ratio may be in a range of 2: 1 to 1: 3, and when the thickness ratio of the second molding members 43 is smaller than the range, the thickness ratio may be transmitted.
  • the thickness of the light emitting device 10 may be thicker than the above range.
  • the phosphors 31 and 33 may be spaced apart from the light emitting chip 25.
  • the second molding member 43 may have a spacing of 0.2 mm or more from the light emitting chip 25, and a problem of deterioration of phosphor may occur when the spacing is narrower than 0.2 mm.
  • a phosphor for example, any kind of phosphor may not be added to the first molding member 42 in contact with the light emitting chip 25.
  • First and second phosphors 31 and 33 may be added to the second molding member 43 disposed on the first molding member 42. Accordingly, damages due to heat generated from the light emitting chip 25 may be reduced in the first and second phosphors 31 and 33.
  • the first molding member 42 and the second molding member 43 may include the same resin material, for example, silicon or epoxy.
  • the characteristics of the first and second phosphors 31 and 33 will be referred to the description of the embodiment.
  • FIG. 3 is a view showing another example of a light emitting device having a phosphor according to an embodiment.
  • the same parts as those described above will be referred to the description disclosed above.
  • the light emitting device may include a plurality of molding members 44, 45, and 46 in the cavity 15 of the body 11. Different kinds of phosphors 31 and 33 may be added to at least two of the plurality of molding members 45 and 46.
  • the cavity 15 may include a first molding member 44, a second molding member 45 on the first molding member 44, and a third molding member 46 on the second molding member 45.
  • the first molding member 44 is in contact with the light emitting chip 25, and any kind of phosphor may not be added therein.
  • the first phosphor 31 may be added to the second molding member 45, and the second phosphor 33 may be added to the third molding member 46.
  • the thickness ratio of the first to third molding members may be in the range of 2: 1: 1 to 3: 1: 1.
  • the thickness of the second molding member 45 may be thicker or thinner than the thickness of the first molding member 44, and may be the same as or different from the thickness of the third molding member 46.
  • the thickness ratio of the first molding member 43 is smaller than the range, the ability to disperse the transferred heat may be deteriorated, thereby causing a problem that heat may be transferred to the phosphor.
  • the thickness of 10 can be thickened.
  • the first to third molding members 44, 45, and 46 may be formed of the same translucent resin material or a resin material having a difference in refractive index, but is not limited thereto.
  • the characteristics of the first and second phosphors 31 and 33 will be referred to the description of the embodiment.
  • a phosphor having a lower peak wavelength band among the first and second phosphors 31 and 33 for example, the first phosphor 31.
  • a phosphor having a higher peak wavelength band among the first and second phosphors 31 and 33 for example, the second phosphor 33 is added to the molding member at a lower position than the molding member to which the first phosphor 31 is added.
  • each of the third phosphors 31 and 33 may be adjacent to or disposed on an upper surface of each of the molding members 45 and 46, but is not limited thereto.
  • FIG. 4 is a view showing another example of a light emitting device having a red phosphor according to an embodiment.
  • the same configuration as the above embodiment may be selectively applied with reference to the above-described description.
  • the light emitting device includes a body 11, a plurality of lead frames 21 and 23, light emitting chips 25 and 26, and a molding member 41 having a red phosphor 33.
  • the light emitting chips 25 and 26 may include light emitting chips 25 emitting blue light and light emitting chips 26 emitting green light.
  • the blue light emitting chip 25 and the green light emitting chip 26 may be connected in parallel with each other or in series with each other, but are not limited thereto.
  • the blue light emitting chip 25 and the green light emitting chip 26 may be disposed on the same single lead frame or on different lead frames, but are not limited thereto.
  • the red phosphor 33 is a phosphor according to an embodiment, which will be referred to the description disclosed above.
  • the light emitting device according to the embodiment may include a blue light emitting chip 25, a green light emitting chip 26, and a red phosphor 33.
  • the light emitting device has a high color reproducibility and a color reproducibility equivalent to that of using a red / green / blue chip, compared to a configuration using a yellow phosphor or a phosphor emitting a low peak peak wavelength among red wavelengths. Can provide, especially darker and more vivid red.
  • FIG. 5 is a view showing another example of a light emitting device having a phosphor according to the embodiment.
  • the same configuration as the above embodiment may be selectively applied with reference to the above-described description.
  • the light emitting device may include a molding member 49 in the cavity 15 of the body 11 and a film 30 having phosphors 31 and 33 on the body 11. .
  • Any kind of phosphor may not be added to the molding member 49. Accordingly, the influence of the phosphors 31 and 33 due to heat generated from the light emitting chip 25 can be reduced.
  • the film 30 is a transparent film and includes a resin material such as silicone or epoxy.
  • the content of the phosphors 31 and 33 in the film 30 will be referred to the description of the embodiment disclosed above.
  • the film 30 may include a glass material on which phosphors 31 and 33 are coated on an upper surface and / or a lower surface.
  • the film 30 may have an area larger than that of the upper surface of the molding member 49, thereby improving the wavelength conversion efficiency of the phosphors 31 and 33.
  • the film 30 may be fixed in contact with the exit surface of the molding member 49.
  • the width of the film 30 may be narrower than the sum of the widths of the lead frames 21 and 23 in the side cross-section, and may be smaller than the width of the body 11.
  • the film 30 may be attached to the upper surface of the body 11 with an adhesive.
  • the thickness of the film 30 may be equal to or smaller than the thickness of the molding member 49.
  • the width direction of the film 30 may be a direction in which the first and second lead frames 21 and 23 are arranged.
  • the phosphors 31 and 33 may include first and second phosphors 31 and 33 emitting different peak wavelengths.
  • the first and second phosphors 31 and 33 will be referred to the description disclosed in the embodiment.
  • the first and second phosphors 31 and 33 may be spaced apart from the light emitting chip 25 to convert wavelengths of the light emitted through the emission surface of the molding member 49.
  • FIG. 6 is a view illustrating a light unit having a phosphor according to an embodiment.
  • one or a plurality of light emitting chips 25 and 25A are disposed on a circuit board 50, and a reflective member 55 is disposed around the light emitting chips 25 and 25A.
  • the film 30A having phosphors 31 and 33 may be disposed on the light emitting chips 25 and 25A.
  • the width of the film 30A may be wider than the area 60 between the reflective members 55 in the side cross section and may be smaller than the width of the reflective member 55. When the width of the film 30A is larger than the width of the reflective member 55, the film 30A may be exposed to the outside and light loss may occur.
  • the thickness of the film 30A may be smaller than the thickness of the reflective member 55.
  • the width direction of the film 30A may be a direction in which the light emitting chips 25 and 25A are arranged.
  • the circuit board 50 may have a circuit pattern and may be electrically connected to the light emitting chips 25 and 25A. When the plurality of light emitting chips 25 and 25A are disposed on the circuit board 50, the plurality of light emitting chips 25 and 25A may be connected in series or in parallel.
  • the circuit board 50 may be a printed circuit board (PCB) including a circuit pattern (not shown).
  • the circuit board 50 may include not only a general PCB but also a metal core PCB (MCPCB, Metal Core PCB), a flexible PCB (FPCB, Flexible PCB), and the like, but is not limited thereto.
  • a reflective material may be disposed on the upper surface of the circuit board 50 to reflect light.
  • the reflective member 55 may include a reflective material.
  • the reflective member 55 may include a silicon-based, epoxy-based, or plastic material, and may be formed of a thermosetting resin, or a high heat resistant and high light resistant material.
  • the reflective member 55 may be selectively added among an acid anhydride, an antioxidant, a release material, a light reflecting material, an inorganic filler, a curing catalyst, a light stabilizer, a lubricant, and titanium dioxide.
  • the reflective member 55 may be disposed around an outer circumference of the light emitting chips 25 and 25A to reflect light emitted from the light emitting chips 25 and 25A.
  • the region 60 between the circuit board 50 and the film 30A is a transparent region and may be formed of a material that transmits light.
  • the light transmitting material may be air or may include a resin material such as silicon or epoxy.
  • the film 30A may be disposed on the transparent region 60. When the resin 30 is filled in the transparent region 60, the film 30A may be in contact with the resin material.
  • the film 30A is a transparent film and includes a resin material such as silicone or epoxy.
  • the film 30A may include a glass material on which phosphors 31 and 33 are coated on or / or underneath.
  • the film 30A may further extend on the reflective member 55 to improve the wavelength conversion efficiency by the phosphors 31 and 33 therein.
  • the light emitting chips 25 and 25A may emit at least one of ultraviolet light and blue light.
  • the phosphors 31 and 33 may include the first and second phosphors 31 and 33, and the first and second phosphors 31 and 33 may include the phosphors disclosed in the embodiments. Let's do it.
  • FIG. 7 is a view illustrating a light unit having a red phosphor according to an embodiment.
  • one or a plurality of light emitting chips 25 and 26 are disposed on a circuit board 50, and a reflective member 55 is disposed around the light emitting chips 25 and 26.
  • the film 30A having the red phosphor 33 may be disposed on the light emitting chips 25 and 26.
  • the light emitting chips 25 and 26 may include a light emitting chip 25 emitting blue light and a light emitting chip 26 emitting green light.
  • the phosphor 33 emits red light by using the blue light emitted from the light emitting chip 25 as an excitation wavelength, and may include a red phosphor according to an embodiment.
  • the light unit may include white light emitting chips 25 and 26 and red phosphors 33 emitting light of different colors.
  • the light unit according to the embodiment has a high color reproducibility and a color reproducibility equivalent to that of using a red / green / blue chip, compared to a configuration using a yellow phosphor or a phosphor emitting a low peak peak wavelength among red wavelengths. Can provide, especially darker and more vivid red.
  • an optical lens for converting the directing angle of the light may be disposed on the molding member or the film according to the embodiment.
  • the optical lens may convert a path of light emitted through the molding member or the film and emit the light at a desired direction angle distribution.
  • the light emitting device or light unit according to the embodiment may be applied to a lighting system.
  • the lighting system includes a structure in which a plurality of light emitting elements are arranged, and includes a display device shown in FIGS. 11 and 12 and a lighting device shown in FIG. 13, and may include a lighting lamp, a traffic light, a vehicle headlamp, an electric signboard, and the like. have.
  • FIG. 11 is an exploded perspective view of a display device having a light emitting device according to the embodiment.
  • the display device 1000 includes a light guide plate 1041, a light source module 1031 providing light to the light guide plate 1041, and a reflective member 1022 under the light guide plate 1041. ), An optical sheet 1051 on the light guide plate 1041, a display panel 1061, a light guide plate 1041, a light source module 1031, and a reflective member 1022 on the optical sheet 1051.
  • the bottom cover 1011 may be included, but is not limited thereto.
  • the bottom cover 1011, the reflective sheet 1022, the light guide plate 1041, and the optical sheet 1051 may be defined as a light unit 1050.
  • the light guide plate 1041 diffuses light to serve as a surface light source.
  • the light guide plate 1041 is made of a transparent material, for example, acrylic resin-based, such as polymethyl metaacrylate (PMMA), polyethylene terephthlate (PET), polycarbonate (PC), cycloolefin copolymer (COC), and polyethylene naphthalate (PEN) It may include one of the resins.
  • PMMA polymethyl metaacrylate
  • PET polyethylene terephthlate
  • PC polycarbonate
  • COC cycloolefin copolymer
  • PEN polyethylene naphthalate
  • the light source module 1031 provides light to at least one side of the light guide plate 1041, and ultimately serves as a light source of the display device.
  • the light source module 1031 may include at least one, and may provide light directly or indirectly at one side of the light guide plate 1041.
  • the light source module 1031 may include a substrate 1033 and a light emitting device 1035 according to the above-described embodiment, and the light emitting device 1035 may be arranged on the circuit board 1033 at predetermined intervals. .
  • the circuit board 1033 may be a printed circuit board (PCB) including a circuit pattern (not shown).
  • the substrate 1033 may include not only a general PCB but also a metal core PCB (MCPCB, Metal Core PCB), a flexible PCB (FPCB, Flexible PCB) and the like, but is not limited thereto.
  • MCPCB Metal Core PCB
  • FPCB Flexible PCB
  • the circuit board 1033 may be removed.
  • a part of the heat dissipation plate may contact the upper surface of the bottom cover 1011.
  • the plurality of light emitting devices 1035 may be mounted on the circuit board 1033 such that an emission surface from which light is emitted is spaced apart from the light guide plate 1041 by a predetermined distance, but is not limited thereto.
  • the light emitting device 1035 may directly or indirectly provide light to a light incident part, which is one side of the light guide plate 1041, but is not limited thereto.
  • the reflective member 1022 may be disposed under the light guide plate 1041.
  • the reflective member 1022 may improve the luminance of the light unit 1050 by reflecting light incident to the lower surface of the light guide plate 1041 and pointing upward.
  • the reflective member 1022 may be formed of, for example, PET, PC, or PVC resin, but is not limited thereto.
  • the reflective member 1022 may be an upper surface of the bottom cover 1011, but is not limited thereto.
  • the bottom cover 1011 may accommodate the light guide plate 1041, the light source module 1031, the reflective member 1022, and the like. To this end, the bottom cover 1011 may be provided with an accommodating part 1012 having a box shape having an upper surface opened thereto, but is not limited thereto. The bottom cover 1011 may be combined with the top cover, but is not limited thereto.
  • the bottom cover 1011 may be formed of a metal material or a resin material, and may be manufactured using a process such as press molding or extrusion molding.
  • the bottom cover 1011 may include a metal or non-metal material having good thermal conductivity, but is not limited thereto.
  • the display panel 1061 is, for example, an LCD panel, and includes a first and second substrates of transparent materials facing each other, and a liquid crystal layer interposed between the first and second substrates.
  • a polarizer may be attached to at least one surface of the display panel 1061, but the polarizer is not limited thereto.
  • the display panel 1061 displays information by light passing through the optical sheet 1051.
  • the display device 1000 may be applied to various portable terminals, monitors of notebook computers, monitors of laptop computers, televisions, and the like.
  • the optical sheet 1051 is disposed between the display panel 1061 and the light guide plate 1041 and includes at least one light transmissive sheet.
  • the optical sheet 1051 may include at least one of a sheet such as, for example, a diffusion sheet, a horizontal and vertical prism sheet, and a brightness enhancement sheet.
  • the diffusion sheet diffuses the incident light
  • the horizontal and / or vertical prism sheet focuses the incident light into the display area
  • the brightness enhancement sheet reuses the lost light to improve the brightness.
  • a protective sheet may be disposed on the display panel 1061, but is not limited thereto.
  • the light guide plate 1041 and the optical sheet 1051 may be included as an optical member on the optical path of the light source module 1031, but are not limited thereto.
  • FIG. 12 is a diagram illustrating a display device having a light emitting device according to an exemplary embodiment.
  • the display device 1100 includes a bottom cover 1152, a circuit board 1120 on which the light emitting device 1124 disclosed above is arranged, an optical member 1154, and a display panel 1155. .
  • the circuit board 1120 and the light emitting device 1124 may be defined as a light source module 1160.
  • the bottom cover 1152, the at least one light source module 1160, and the optical member 1154 may be defined as a light unit 1150.
  • the bottom cover 1152 may include an accommodating part 1153, but is not limited thereto.
  • the light source module 1160 includes a circuit board 1120 and a plurality of light emitting devices 1062 arranged on the circuit board 1120.
  • the optical member 1154 may include at least one of a lens, a light guide plate, a diffusion sheet, horizontal and vertical prism sheets, and a brightness enhancement sheet.
  • the light guide plate may be made of a PC material or a poly methyl methacrylate (PMMA) material, and the light guide plate may be removed.
  • the diffusion sheet diffuses the incident light
  • the horizontal and vertical prism sheets focus the incident light onto the display area
  • the brightness enhancement sheet reuses the lost light to improve the brightness.
  • the optical member 1154 is disposed on the light source module 1160 and performs surface light, or diffuses, condenses, or the like the light emitted from the light source module 1160.
  • FIG. 13 is an exploded perspective view of a lighting apparatus having a light emitting device according to the embodiment.
  • the lighting apparatus may include a cover 2100, a light source module 2200, a heat radiator 2400, a power supply unit 2600, an inner case 2700, and a socket 2800. Can be.
  • the lighting apparatus according to the embodiment may further include any one or more of the member 2300 and the holder 2500.
  • the light source module 2200 may include a light emitting device according to an embodiment.
  • the cover 2100 may have a shape of a bulb or hemisphere, may be hollow, and may be provided in an open shape.
  • the cover 2100 may be optically coupled to the light source module 2200 and coupled to the radiator 2400.
  • the cover 2100 may have a coupling part coupled to the heat sink 2400.
  • An inner surface of the cover 2100 may be coated with a milky paint having a diffusion material. Using the milky white material, light from the light source module 2200 may be scattered and diffused to be emitted to the outside.
  • the cover 2100 may be made of glass, plastic, polypropylene (PP), polyethylene (PE), polycarbonate (PC), or the like.
  • polycarbonate is excellent in light resistance, heat resistance, and strength.
  • the cover 2100 may be transparent and opaque so that the light source module 2200 is visible from the outside.
  • the cover 2100 may be formed through blow molding.
  • the light source module 2200 may be disposed on one surface of the heat sink 2400. Thus, heat from the light source module 2200 is conducted to the heat sink 2400.
  • the light source module 2200 may include a light emitting element 2210, a connection plate 2230, and a connector 2250.
  • the member 2300 is disposed on an upper surface of the heat dissipator 2400, and includes a plurality of lighting elements 2210 and guide grooves 2310 into which the connector 2250 is inserted.
  • the guide groove 2310 corresponds to the board and the connector 2250 of the lighting device 2210.
  • the surface of the member 2300 may be coated or coated with a white paint.
  • the member 2300 is reflected on the inner surface of the cover 2100 to reflect the light returned to the light source module 2200 side again toward the cover 2100. Therefore, it is possible to improve the light efficiency of the lighting apparatus according to the embodiment.
  • the member 2300 may be made of an insulating material, for example.
  • the connection plate 2230 of the light source module 2200 may include an electrically conductive material. Therefore, electrical contact may be made between the radiator 2400 and the connection plate 2230.
  • the member 2300 may be formed of an insulating material to block an electrical short between the connection plate 2230 and the radiator 2400.
  • the radiator 2400 receives heat from the light source module 2200 and heat from the power supply unit 2600 to radiate heat.
  • the holder 2500 may block the accommodating groove 2719 of the insulating portion 2710 of the inner case 2700. Therefore, the power supply unit 2600 accommodated in the insulating unit 2710 of the inner case 2700 is sealed.
  • the holder 2500 has a guide protrusion 2510.
  • the guide protrusion 2510 may include a hole through which the protrusion 2610 of the power supply unit 2600 passes.
  • a lower portion of the radiator 2400 may be in close contact with the support 2370 of the inner case 2700.
  • the power supply unit 2600 processes or converts an electrical signal provided from the outside to provide the light source module 2200.
  • the power supply unit 2600 is accommodated in the accommodating groove 2725 of the inner case 2700, and is sealed in the inner case 2700 by the holder 2500.
  • the power supply unit 2600 may include a protrusion 2610, a guide unit 2630, a base 2650, and an extension unit 2670.
  • the guide part 2630 has a shape protruding outward from one side of the base 2650.
  • the guide part 2630 may be inserted into the holder 2500.
  • a plurality of parts may be disposed on one surface of the base 2650.
  • the plurality of components may include, for example, a DC converter, a driving chip for controlling the driving of the light source module 2200, an electrostatic discharge (ESD) protection element for protecting the light source module 2200, and the like. It is not limited to.
  • the extension part 2670 has a shape protruding outward from the other side of the base 2650.
  • the extension part 2670 is inserted into the connection part 2750 of the inner case 2700 and receives an electrical signal from the outside.
  • the extension part 2670 may be provided to be equal to or smaller than the width of the connection part 2750 of the inner case 2700.
  • the extension 2670 may be electrically connected to the socket 2800 through a wire.
  • the inner case 2700 may include a molding unit together with the power supply unit 2600 therein.
  • the molding part is a part where the molding liquid is hardened, so that the power supply part 2600 can be fixed inside the inner case 2700.
  • the color purity of the red color can be shifted to a deeper red color, thereby improving the color reproducibility in the lighting device or the display device.
  • the present invention can be applied to a light emitting device having a red phosphor in various light source systems.
  • the present invention can be applied to a display device or a lighting device using a light emitting device capable of high color reproduction.
  • the present invention can be applied to a display device or a lighting device by using a light emitting device having an improved color reproducibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

실시예는 형광체 및 이를 포함하는 발광소자가 개시된다. 실시예에 개시된 형광체는, 2가 금속(M), 활성제의 원소(A), 플루오린(F)과 산소(O)를 함유하는 M4D1-xOyF:Ax 구조의 형광체 조성물을 포함하며, 상기 x는 0.001 ≤ x ≤ 0.1를 만족하며, y는 1 ≤ y ≤5를 만족하며, 상기 M은 Mg, Ca, Sr, Ba, Zn 중 적어도 하나이며, 상기 D는 Si, Ge Sn, Ti, Zr, Hf 중 적어도 하나이며, 상기 F는 플루오린(Fluorine)이며, 상기 A는 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb 중 적어도 하나를 포함하며, 상기 형광체의 조성물은 400nm 내지 470nm의 피크 파장을 여기 파장으로 하여 적색 광을 방출하며, 상기 적색 광은 655nm 내지 670nm의 피크 파장을 가지며, 20nm 이하의 반치 폭을 갖는다.

Description

형광체 및 이를 구비한 발광 소자
실시 예는 형광체 및 이를 포함하는 발광 소자에 관한 것이다. 상기 발광 소자는 조명 시스템에 포함될 수 있다.
발광소자(Light Emitting Device)는 전기에너지가 빛 에너지로 변환되는 특성의 소자로서, 예를 들어, LED(Light emitting diode)는 화합물 반도체의 조성비를 조절함으로써 다양한 색상구현이 가능하다. 예를 들어, 질화물 반도체는 높은 열적 안정성과 넓은 밴드갭 에너지에 의해 광소자 및 고출력 전자소자 분야에서 큰 관심을 받고 있다. 특히, 질화물 반도체를 이용한 청색(Blue) 발광소자, 녹색(Green) 발광소자, 자외선(UV) 발광소자 등은 상용화되어 널리 사용되고 있다.
백색광을 방출하는 LED는 형광체를 도포하여 형광체로부터 발광하는 2차 광원을 이용하는 방법으로서, 청색 LED에 황색을 내는 YAG:Ce 형광체를 도포하여 백색광을 얻는 방식이 일반적이다. 그러나, 상기 방법은 2차광을 이용하면서 발생하는 양자결손(quantum deficits) 및 재방사 효율에 기인한 효율감소가 수반되고, 색 렌더링(Color rendering)이 용이하지 않다는 단점이 있다.
따라서, 종래의 백색 LED 백라이트는 청색 LED칩과 황색 형광체를 조합한 것으로서, 녹색과 적색 성분이 결여되어 부자연스러운 색상을 표현할 수밖에 없어 휴대 전화, 노트북 PC의 화면에 이용하는 정도로 한정되어 적용되고 있다. 그럼에도, 구동이 용이하고 가격이 현저히 저렴하다는 이점 때문에 널리 상용화되어 있다.
청색 칩과 황색 형광체로 제조된 백색 LED 소자의 용도는 이동전화, 개인 휴대 정보 단말기 등에 사용되는 백라이트 용이다. 하지만, 황색 형광체(예컨대, 최고 방출이 550nm 내지 610nm 사이에서 나타남)의 사용으로 인해, 상기 LED의 스펙트럼은 이 스펙트럼의 황색 영역에서의 과도한 방출을 함유하여 백라이트의 색상범위를 강력하게 감소시킨다.
색상 범위(color gamut)는 색도도, 예컨대 CIE 1931 x, y 색도도에서 디스플레이의 적색, 녹색 및 청색 픽셀의 색점 간에 걸쳐진 영역이다. 디스플레이의 역사적인 "황금 기준(golden standard"는 3가지 색점 좌표 세트로 한정되는 NTSC 전범위(gamut)이다. 일반적으로 NTSC의 70%를 초과하는 전범위는 많은 백라이팅 용도에 허용성으로 간주되고 있고, NTSC의 90%를 초과하는 전범위는 대부분의 이러한 임의의 용도에 허용성으로 간주되고 있다.
황색 형광체를 이용하여 LED 백라이트의 전범위를 향상시킬 경우, 황색광은 제거되므로 LED 백라이트의 광도를 감소시킨다. 따라서, 패키지에 황색 형광체를 사용함이 없이 광도를 높일 수 있는 백색 LED의 개발이 유익할 것이다.
CRI는 14가지 표준 색 샘플이 국제적으로 특정되어 있고 이들의 평균값으로서 더 넓은 CRI(R1-14)를 계산할 수 있을지라도 일반적으로 일반 연색 지수(General Color Rendering Index)로 불리고 Ra 로 약칭되는 8가지 표준 색 샘플(R1-R8)의 평균값으로 일반적으로 정의된다. 구체적으로, 강한 적색에 대한 연색성을 측정하는 R9 값은 다양한 용도, 특히 고연색지수가 요구되는 조명이나 의료계에 매우 중요하게 요구되고 있다.
실시 예는 적색 광으로 파장 변환하는 형광체를 제공한다.
실시 예는 반치폭이 좁은 적색 형광체를 제공한다.
실시 예는 적색 형광체 및 이를 포함하는 발광소자를 제공한다.
실시 예는 자외선 또는 청색의 여기 파장을 흡수하여 650nm 이상의 적색 광을 발광하는 형광체 및 이를 구비한 발광 소자를 제공한다.
실시 예는 적색 형광체, 녹색 칩 또는 녹색 형광체 및 청색 발광 칩을 갖는 발광 소자를 제공한다.
실시예에 따른 형광체는, 2가 금속(M), 활성제의 휘토류 원소(A), 플루오린(F)과 산소(O)를 함유하는 M4D1 - xOyF:Ax 구조의 형광체 조성물을 포함하며, 상기 x는 0.001 ≤ x ≤ 0.1를 만족하며, y는 1 ≤ y ≤5를 만족하며, 상기 M은 Mg, Ca, Sr, Ba, Zn 중 적어도 하나이며, 상기 D는 Si, Ge Sn, Ti, Zr, Hf 중 적어도 하나이며, 상기 F는 플루오린(Fluorine)이며, 상기 A는 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb 중 적어도 하나를 포함하며, 상기 형광체의 조성물은 자외선 또는 청색 파장을 400nm 내지 470nm의 피크 파장을 여기 파장으로 하여 적색 광을 방출하며, 상기 적색 광은 655nm 내지 670nm의 피크 파장을 가지며 20nm 이하의 반치 폭을 갖는다.
실시 예에 따른 형광체는, 조성물 Mg4Ge1 - xOyF:Mn4 + x의 구조를 포함하며, 상기 x는 0.001 ≤ x ≤ 0.1를 만족하며, 상기 y는 1 ≤ y ≤5를 만족하며, 상기 조성물은 655nm 내지 670nm의 피크 파장을 가지며, 20nm 이하의 반치 폭을 갖는다.
실시 예에 따른 발광 소자는, 발광 칩; 상기 발광 칩으로부터 방출된 광을 여기 파장으로 하여 제1피크 파장을 발광하는 제1형광체; 상기 발광 칩으로부터 방출된 광을 여기 파장으로 하여 제2피크 파장을 발광하는 제2형광체를 포함하며, 상기 제1 및 제2피크 파장은 서로 다른 컬러를 가지며, 상기 제2형광체는, 2가 금속(M), 휘토류활성제의 원소(A), 플루오린(F, Fluorine or Fluor)와 산소(O)를 갖는 M4D1 - xOyF:Ax 구조의 형광체 조성물을 포함하며, 상기 x는 0.001 ≤ x ≤ 0.1를 만족하며, y는 1 ≤ y ≤5를 만족하며, 상기 M은 Mg, Ca, Sr, Ba, Zn 중 적어도 하나이며, 상기 D는 Si, Ge Sn, Ti, Zr, Hf 중 적어도 하나이며, 상기 F는 플루오린(Fluorine)이며, 상기 A는 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb 중 적어도 하나를 포함하며, 상기 제2형광체로부터 방출된 제2피크 파장은, 655nm 내지 670nm의 피크 파장을 가지며, 20nm 이하의 반치 폭을 갖는다.
실시예에 의하면 새로운 형광체 및 이들의 조합을 갖는 발광소자를 제공할 수 있다.
실시 예에 따른 적색 형광체를 이용하여 색재현율이 개선시켜 줄 수 있다.
실시예에 의하면, 연색성 지수(CRI: Color rendering index)를 높이고 R9를 개선시킨 발광 소자를 제공할 수 있다.
실시예는 형광체 및 이를 포함하는 발광장치를 제공할 수 있다.
도 1은 실시예에 따른 적색 형광체를 포함하는 발광소자의 단면도.
도 2는 실시 예에 따른 적색 형광체를 갖는 발광 소자의 다른 예를 나타낸 도면이다.
도 3은 실시 예에 따른 적색 형광체를 갖는 발광 소자의 다른 예를 나타낸 도면이다.
도 4는 실시 예에 따른 적색 형광체를 갖는 발광 소자의 다른 예를 나타낸 도면이다.
도 5는 실시 예에 따른 적색 형광체가 첨가된 필름을 갖는 발광 소자를 나타낸 도면이다.
도 6은 실시 예에 따른 적색 형광체가 첨가된 필름을 갖는 라이트 유닛을 나타낸 도면이다.
도 7은 실시 예에 따른 적색 형광체가 첨가된 필름을 갖는 라이트 유닛의 다른 예를 나타낸 도면이다.
도 8은 실시 예에 따른 형광체의 여기 파장 또는 발광 칩의 파장의 예를 나타낸 도면이다.
도 9는 실시 예에 따른 적색 형광체의 파장 스펙트럼을 나타낸 도면이다.
도 10은 실시 예에 따른 적색 형광체를 갖는 발광 소자로부터 방출된 광에 의한 CIE 1976의 색 좌표를 나타낸 도면이다.
도 11은 실시 예에 따른 발광 소자를 갖는 표시 장치를 나타낸 사시도이다.
도 12는 실시 예에 따른 발광 소자를 갖는 표시 장치를 나타낸 사시도이다.
도 13은 실시 예에 따른 발광 소자를 갖는 조명장치를 나타낸 분해 사시도이다.
본 실시 예들은 다른 형태로 변형되거나 여러 실시 예가 서로 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 각각의 실시 예로 한정되는 것은 아니다. 특정 실시 예에서 설명된 사항이 다른 실시 예에서 설명되어 있지 않더라도, 다른 실시 예에서 그 사항과 반대되거나 모순되는 설명이 없는 한, 다른 실시 예에 관련된 설명으로 이해될 수 있다. 예를 들어, 특정 실시 예에서 구성 A에 대한 특징을 설명하고 다른 실시 예에서 구성 B에 대한 특징을 설명하였다면, 구성 A와 구성 B가 결합된 실시 예가 명시적으로 기재되지 않더라도 반대되거나 모순되는 설명이 없는 한, 본 발명의 권리범위에 속하는 것으로 이해되어야 한다.
이하 상기의 목적을 구체적으로 실현할 수 있는 본 발명의 실시 예를 첨부한 도면을 참조하여 설명한다. 본 발명에 따른 실시예의 설명에 있어서, 각 element의 " 상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다. 또한 각 층의 상/위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
실시 예에 따른 형광체는 적색 형광체로서, 2가 금속(M), 활성제의 원소(A), 플루오린(F, Fluorine or Fluor)와 산소(O)를 함유하고 일반식 M4D1 - xOyF:Ax 구조 또는 조성식을 갖는 조성물을 포함할 수 있다. 여기서, M은 Mg, Ca, Sr, Ba, Zn 중 적어도 하나이며, D는 Si, Ge Sn, Ti, Zr, Hf 중 적어도 하나이며, F는 플루오린(Fluorine)이며, A는 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb 중 적어도 하나를 포함할 수 있다. 상기 x는 0.001 ≤ x ≤ 0.1를 만족하며, y는 1 ≤ y ≤5를 만족할 수 있다. 상기 원소 D가 0.01부터 0.99까지 증가하면 원소 A는 0.99부터 0.01까지 감소할 수 있다. 상기 활성제의 원소(A)는 Mn4 + 등의 4가 전이금속 이온이거나, 각종 희토류 이온이나 전이금속 이온에서 선택되는 금속 이온을 필요에 따라 적절히 선택할 수 있으며, 예를 들면, Eu2 + , Ce3 +, Pr3 +, Nd3 +, Sm3 +, Eu3 +, Gd3 +, Tb3 +, Dy3 +, Ho3 +, Er3 +, Tm3 +, Yb3+ 등의 3가 희토류금속 이온, Sm2 +, Eu2 +, Yb2 + 등의 2가 희토류금속 이온, Mn2 + 등의 2가 전이금속이온, Cr3+이나 Fe3+ 등의 3가 전이금속이온 등이다.
상기 적색 형광체는 자외선 또는 청색 파장을 여기 파장으로 하여 심적색 예컨대, 적색 파장 중에서 장 파장을 가지는 피크 파장을 발광할 수 있다. 상기 적색 형광체는 도 8과 같이, 400nm 이상 예컨대, 400nm 내지 470nm의 피크 파장을 여기 파장으로 하여 적색 피크 파장을 발광할 수 있다. 도 9와 같이 상기 적색 형광체는 650nm 이상 예컨대, 655nm 내지 670nm의 피크 파장을 발광할 수 있다. 상기 적색 형광체의 피크 파장의 반치 폭(FWHM: full width at half maximum)은 25nm 이하 예컨대, 20nm 이하일 수 있다. 상기 적색 형광체의 피크 파장의 반치 폭은 예컨대, 10nm 내지 20nm의 범위일 수 있다. 상기 적색 형광체로부터 방출된 광의 피크 파장이 상기 범위 보다 낮을 경우 고색재현이 미미하여 NTSC를 향상시키는 데 한계가 있다. 상기 적색 형광체로부터 방출된 광의 피크 파장의 반치 폭이 상기 범위보다 클 경우 NTSC 및 sRGB의 면적비의 개선이 미미할 수 있다. 실시 예는 적색 파장의 피크 파장과 좁은 반치 폭을 갖는 형광체 조성물을 제공하여, 도 10과 같이 적색의 색재현성을 개선시키고 NTSC 및 sRGB의 면적비를 개선시켜 줄 수 있다.
상기 적색 형광체의 조성물은 특정 구체 예로서, Mn4 + x로 활성화된 플루오린 형광체 물질로 사용될 수 있다. 상기 적색 형광체의 조성물은 예컨대, Mg4Ge1 -xOyF:Mn4+ x의 구조 또는 조성식을 가질 수 있다. 상기 x는 0.001 ≤ x ≤ 0.1를 만족하며, y는 1 ≤ y ≤5를 만족할 수 있다. 이러한 적색 형광체는 자외선 또는 청색 파장을 여기 파장 예컨대, 도 8과 같은, 400nm 내지 470nm의 피크 파장을 여기 파장으로 하고, 도 9와 같은 650nm 이상 예컨대, 655nm 내지 670nm의 피크 파장을 발광할 수 있다. 상기 적색 형광체의 피크 파장의 반치 폭(FWHM: full width at half maximum)은 25nm 이하 예컨대, 20nm 이하일 수 있다. 상기 적색 형광체의 피크 파장의 반치 폭은 예컨대, 10nm 내지 20nm의 범위일 수 있다. 상기 Mg4Ge1 - xOyF:Mn4 + x의 구조 또는 조성식을 갖는 적색 형광체가 적색 파장 중에서 장 파장의 피크 파장을 가지고 반치 폭이 25nm 이하를 가지기 때문에, 적색의 색 순도를 더 개선시켜 줄 수 있다.
실시 예는 400nm~470nm의 피크 파장을 가지는 발광 칩과, 상기 발광 칩에 의해 655nm 내지 670nm의 피크 파장을 발광하는 적색 형광체를 포함하는 발광 소자를 제공할 수 있다. 실시 예는 적색 발광 칩을 사용하지 않으므로, Bin 관리 포인트가 감소되어, 수율이 증대될 수 있고, 멀티 발광 칩을 사용하는 경우보다 유리한 효과를 가질 수 있다. 또한 적색 발광 칩을 사용하지 않으므로, 색 온도 변화를 줄일 수 있고 안정적인 광학 특성을 제공할 수 있다.
실시 예는 예는 400nm 내지 470nm의 피크 파장을 가지는 발광 칩과, 상기 발광 칩의 광에 의해 녹색 광을 발광하는 녹색 형광체와 655nm 내지 670nm의 피크 파장을 발광하는 실시 예에 따른 적색 형광체를 포함하는 발광 소자를 제공할 수 있다. 실시 예는 예는 400nm 내지 470nm의 피크 파장을 가지는 발광 칩과, 녹색 광을 발광하는 녹색 발광 칩과, 655nm 내지 670nm의 피크 파장을 발광하는 실시 예에 따른 적색 형광체를 포함하는 발광 소자를 제공할 수 있다. 실시 예의 발광 소자는 백색 발광 소자로 구현될 수 있다.
실시 예에 따른 적색 형광체를 갖는 발광 소자를 설명하기로 한다. 도 1은 실시 예에 따른 형광체를 갖는 발광 소자를 나타낸 단면도이다.
도 1을 참조하면, 발광 소자(10)는 몸체(11), 복수의 리드 프레임(21,23), 발광 칩(25), 및 형광체(31,33)를 갖는 몰딩부재(41)를 포함한다.
상기 몸체(11)는 상기 발광 칩(25)에 의해 방출된 파장에 대해, 반사율이 투과율보다 더 높은 물질 예컨대, 70% 이상의 반사율을 갖는 재질로 형성될 수 있다. 상기 몸체(11)는 반사율이 70% 이상인 경우, 비 투광성의 재질로 정의될 수 있다. 상기 몸체(11)는 수지 계열의 절연 물질 예컨대, 폴리프탈아미드(PPA: Polyphthalamide)와 같은 수지 재질로 형성될 수 있다. 상기 몸체(11)는 에폭시 또는 실리콘과 같은 수지 재질에 금속 산화물이 첨가될 수 있으며, 상기 금속 산화물은 TiO2, SiO2, Al2O3중 적어도 하나를 포함할 수 있다.
상기 몸체(11)는 실리콘 계열, 또는 에폭시 계열, 또는 플라스틱 재질을 포함하며, 열 경화성 수지, 또는 고내열성, 고 내광성 재질로 형성될 수 있다. 또한 상기 몸체(11) 내에는 산무수물, 산화 방지제, 이형재, 광 반사재, 무기 충전재, 경화 촉매, 광 안정제, 윤활제, 이산화티탄 중에서 선택적으로 첨가될 수 있다. 상기 몸체(11)는 에폭시 수지, 변성 에폭시 수지, 실리콘 수지, 변성 실리콘 수지, 아크릴 수지, 우레탄 수지로 이루어지는 군으로부터 선택되는 적어도 1종에 의해 성형될 수 있다. 예를 들면, 트리글리시딜이소시아누레이트, 수소화 비스페놀 A 디글리시딜에테르 등으로 이루어지는 에폭시 수지와, 헥사히드로 무수 프탈산, 3-메틸헥사히드로 무수 프탈산4-메틸헥사히드로 무수프탈산 등으로 이루어지는 산무수물을, 에폭시 수지에 경화 촉진제로서 DBU(1,8-Diazabicyclo(5,4,0)undecene-7), 조촉매로서 에틸렌 그리콜, 산화티탄 안료, 글래스 섬유를 첨가하고, 가열에 의해 부분적으로 경화 반응시켜 B 스테이지화한 고형상 에폭시 수지 조성물을 사용할 수 있으며, 이에 대해 한정하지는 않는다.
상기 몸체(11) 내에 차광성 물질 또는 확산제를 혼합하여 투과하는 광을 저감시켜 줄 수 있다. 또한 상기 몸체(11)는 소정의 기능을 갖게 하기 위해서, 열 경화성수지에 확산제, 안료, 형광 물질, 반사성 물질, 차광성 물질, 광 안정제, 윤활제로 이루어지는 군으로부터 선택되는 적어도 1종을 적절히 혼합하여도 된다.
다른 예로서, 상기 몸체(11)는 투광성의 수지 물질 또는 입사 광의 파장을 변환시키는 실시 예에 따른 형광체를 갖는 수지 물질로 형성될 수 있다. 상기 몸체(11)는 투광성 재질로 형성된 경우, 상기 발광 칩(25)로부터 방출된 광에 대해 70% 이상의 광이 투과되는 물질일 수 있다. 예컨대, 상기 몸체(11)에는 실시 예에 개시된 적색 형광체가 첨가될 수 있다.
상기 몸체(11)는 상기 몸체(11)의 상면으로부터 소정 깊이로 함몰되며 상부가 오픈된 캐비티(15)를 포함한다. 상기 캐비티(15)는 오목한 컵 구조, 오픈 구조, 또는 리세스 구조와 같은 형태로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 상기 캐비티(15)는 위로 올라갈수록 점차 넓어지는 너비를 갖고 있어, 광 추출 효율을 개선시켜 줄 수 있다.
상기 몸체(11)에는 복수의 리드 프레임 예컨대, 제1 및 제2리드 프레임(21,23)이 결합될 수 있다. 상기 제1 및 제2리드 프레임(21,23)은 상기 캐비티(15)의 바닥에 배치될 수 있으며, 상기 제1 및 제2리드 프레임(21,23)의 외측부는 상기 몸체(11)를 통해 상기 몸체(11)의 적어도 한 측면에 노출될 수 있다. 상기 제1리드 프레임(21) 및 상기 제2리드 프레임(23)의 하부는 상기 몸체(11)의 하부로 노출될 수 있으며, 회로 기판 상에 탑재되어 전원을 공급받을 수 있다.
상기 제1 및 제2리드 프레임(21,23)의 다른 예로서, 상기 제1 및 제2리드 프레임(21,23) 중 적어도 하나 또는 모두는 오목한 컵 형상의 구조로 형성되거나, 절곡된 구조를 가질 수 있다. 상기 제1 및 제2리드 프레임(21,23) 중 적어도 하나 또는 모두는 몸체(11)와의 결합을 위해 리세스된 홈 또는 구멍을 포함할 수 있으며, 이에 대해 한정하지는 않는다. 상기 오목한 컵 형상 내에는 상기의 발광 칩(25)이 배치될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1리드 프레임(21) 및 제2리드 프레임(23)은 금속 재질, 예를 들어, 티타늄(Ti), 구리(Cu), 니켈(Ni), 금(Au), 크롬(Cr), 탄탈늄(Ta), 백금(Pt), 주석(Sn), 은(Ag), 인(P) 중 적어도 하나를 포함할 수 있으며, 단층 또는 다층으로 형성될 수 있다. 상기 캐비티(15)의 바닥 예컨대, 상기 제1,2리드 프레임(21,23)의 상면에는 실시 예에 따른 적색 형광체가 분포될 수 있다.
상기 제1리드 프레임(21) 위에는 발광 칩(25)이 배치되며, 상기 발광 칩(25)은 접합 부재로 상기 제1리드 프레임(21) 상에 접착될 수 있다. 상기 발광 칩(25)은 제1 및 제2리드 프레임(21,23) 중 적어도 하나의 연결 부재(27)로 연결될 수 있으며, 이에 대해 한정하지는 않는다. 상기 연결 부재(27)는 전도성 재질 예컨대, 금속 재질의 와이어를 포함한다.
상기 발광 칩(25)은 가시광선의 파장 범위 중에서 400nm 내지 600nm 범위의 피크 파장을 발광하게 된다. 상기 발광 칩(25)은 자외선 또는 청색 피크 파장을 발광할 수 있다. 상기 발광 칩(25)은 청색 피크 파장 예컨대, 도 8과 같이 400nm 내지 470nm 범위의 피크 파장을 발광할 수 있다.
상기 발광 칩(25)은 II-VI족 원소의 화합물 반도체 및 III-V족 원소의 화합물 반도체 중 적어도 하나를 포함할 수 있다. 상기 발광 칩(25)은 예컨대, GaN, AlGaN, InGaN, AlInGaN, GaP, AlN, GaAs, AlGaAs, InP 및 이들의 혼합물로 이루어진 군에서 선택되는 화합물로 형성될 수 있다. 상기 발광 칩(25)을 구성하는 적어도 하나의 반도체층은 AlxInyGa(1-x-y)N 조성식(0≤x≤1, 0≤y≤1, 0≤x+y≤1)을 갖는 화합물 반도체로 형성될 수 있다.
상기 캐비티(15)에는 몰딩부재(41)가 배치되며, 상기 몰딩부재(41)는 실시 예에 따른 형광체(31,33)를 포함한다. 상기 형광체(31,33)는 서로 다른 피크 파장을 발광하는 서로 다른 물질을 갖는 형광체들을 포함한다. 상기 형광체(31,33)는 예컨대, 서로 다른 피크 파장을 발광하는 제1형광체(31) 및 제2형광체(33)를 포함한다. 상기 제1형광체(31)는 한 종류 또는 두 종류 이상의 형광체를 포함할 수 있으며, 예컨대 발광 칩(25)으로부터 방출된 피크 파장을 여기 파장으로 하여 제1피크 파장을 발광할 수 있다. 상기 제1피크 파장은 예컨대, 녹색 광을 포함할 수 있다. 상기 제1형광체(31)은 녹색 형광체를 포함할 수 있다. 상기 녹색 형광체는 525nm 내지 545nm의 피크 파장을 발광할 수 있다.
상기 제1형광체(31)는 예컨대, (Y,Gd,Lu,Tb)3(Al,Ga)5O12:Ce, (Mg,Ca,Sr,Ba)2SiO4:Eu, (Ca,Sr)3SiO5:Eu, (La,Ca)3Si6N11:Ce, α-SiAlON:Eu, β-SiAlON:Eu, Ba3Si6O12N2:Eu, Ca3(Sc,Mg)2Si3O12:Ce, CaSc2O4:Eu, BaAl8O13:Eu, (Ca,Sr,Ba)Al2O4:Eu, (Sr,Ca,Ba)(Al,Ga,In)2S4:Eu, (Ca,Sr)8(Mg,Zn)(SiO4)4Cl2:Eu/Mn, (Ca,Sr,Ba)3MgSi2O8:Eu/Mn, (Ca,Sr,Ba)2(Mg,Zn)Si2O7:Eu, Zn2SiO4:Mn, (Y,Gd)BO3:Tb, ZnS:Cu,Cl/Al, ZnS:Ag,Cl/Al, (Sr,Ca)2Si5N8:Eu, (Li,Na,K)3ZrF7:Mn, (Li,Na,K)2(Ti,Zr)F6:Mn, (Ca,Sr,Ba)(Ti,Zr)F6:Mn, Ba0 . 65Zr0 .35F2. 7:Mn, (Sr,Ca)S:Eu, (Y,Gd)BO3:Eu, (Y,Gd)(V,P)O4:Eu, Y2O3:Eu, (Sr,Ca,Ba,Mg)5(PO4)3Cl:Eu, (Ca,Sr,Ba)MgAl10O17:Eu, (Ca,Sr,Ba)Si2O2N2:Eu, 3.5MgOㆍ0.5MgF2ㆍGeO2:Mn 등 중에서 한 종류 또는 2종류 이상이 선택될 수 있다.
상기 제1형광체(31)는 예컨대, La3Si6N11:Ce3 +, BaSiN2:Eu2 +, Sr1.5Al3Si9N16:Eu2+, Ca1 . 5A13Si9N16:Eu2 +, CaSiA12O3N2:Eu2 +, SrSiA12O3N2:Eu2 +, CaSi2O2N2:Eu2+, SrSi2O2N2:Eu2 +, BaSi2O2N2:Eu2 +, Sr2Si5N8:Ce3 +, Ca1 . 5Al3Si9N16:Ce3 + 중에서 적어도 하나를 포함할 수 있다.
상기 제1형광체(31)은 양자점(quantum dot)을 포함할 수 있으며, 상기 양자점은 II-VI 화합물, 또는 III-V족 화합물 반도체를 포함할 수 있으며, 녹색 광을 발광할 수 있다. 상기 양자점은 예컨대, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, GaN, GaP, GaAs, GaSb, InP, InAs, In,Sb, AlS, AlP, AlAs, PbS, PbSe, Ge, Si, CuInS2, CuInSe2 등과 같은 것들 및 이들의 조합이 될 수 있다. 상기 양자점을 갖는 제1형광체(31)은 녹색 광을 발광할 수 있다.
상기 제2형광체(33)는 상기 발광 칩(25)로부터 방출된 광을 여기 파장으로 하여 제2피크 파장 예컨대, 실시 예에 따른 적색 피크 파장 내에서 장 파장의 피크 파장을 발광할 수 있다. 상기 제2형광체(33)는 실시 예에 따른 적색 형광체를 포함한다. 상기 적색 형광체는 2가 금속(M), 휘토류활성제의 원소(A), 플루오린(F, Fluorine or Fluor)와 산소(O)를 함유하고 일반식 M4D1 - xOyF:Ax 구조의 조성물을 포함할 수 있다. 여기서, M은 Mg, Ca, Sr, Ba, Zn 중 적어도 하나이며, D는 Si, Ge Sn, Ti, Zr, Hf 중 적어도 하나이며, F는 플루오린(Fluorine)이며, A는 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb 중 적어도 하나를 포함할 수 있다. 여기서, 상기 M은 Mg이며, 상기 D는 Ge이며, 상기 A는 4가 망간 Mn4 + 을 포함할 수 있다. 상기 A의 몰 백분율은 10% 이하이며, 상기 D와 상기 A의 몰 백분율의 합은 100%일 수 있다. 상기 x는 0.001 ≤ x ≤ 0.1를 만족하며, y는 1 ≤ y ≤5를 만족할 수 있다. 상기 원소 D가 0.01부터 0.99까지 증가하면 원소 A는 0.99부터 0.01까지 감소할 수 있다.
상기 제2형광체(33)는 상기 발광 칩(25)으로부터 방출된 자외선 또는 청색 파장을 여기 파장으로 하여 심적색 예컨대, 적색 파장 중에서 장 파장을 발광할 수 있다. 상기 심적색은 파장이 700nm에 가까운 적색일 수 있다. 상기 제2형광체(33)로부터 방출된 제2피크 파장은 도 9와 같이 650nm 이상 예컨대, 655nm 내지 670nm의 피크 파장 또는 660nm 내지 665nm의 피크 파장을 발광할 수 있다. 상기 제2형광체(33)의 피크 파장의 반치 폭은 25nm 이하 예컨대, 20nm 이하일 수 있다. 상기 제2형광체(33)의 피크 파장의 반치 폭은 예컨대, 10nm 내지 20nm 범위일 수 있다. 상기 적색 형광체의 조성물은 특정 구체 예로서, Mn4 + x로 활성화된 플루오린 형광체 물질로 사용될 수 있다. 상기 적색 형광체의 조성물은 예컨대, Mg4Ge1 - xOyF:Mn4 + x의 구조 또는 조성식을 가질 수 있다. 상기 적색 형광체로부터 방출된 광의 피크 파장이 상기 피크 파장범위 보다 낮을 경우 고색재현이 미미하여 NTSC를 향상시키는 데 한계가 있다. 또한 상기 적색 형광체로부터 방출된 광의 반치 폭이 상기 범위 보다 클 경우 NTSC 및 sRGB의 면적비의 개선이 미미할 수 있다. 실시 예는 장파장의 적색 피크 파장과 좁은 반치 폭을 갖는 형광체 조성물을 제공하여, 색재현성을 개선시키고 도 10과 같이 NTSC의 색 영역의 면적비에 비해 120% 이상 및 sRGB의 색 영역의 면적비에 비해 130% 이상으로 개선시켜 줄 수 있다.
여기서, 백색 발광 소자와 같은 색 변환을 이용하는 발광 소자는 비교 예로서, 청색 발광 칩과 황색 형광체를 이용하여 백색 광을 구현하게 된다. 예를 들어, 청색 발광 소자를 기준 광원으로 사용하여, 이 청색 발광 소자에서 발광되는 청색 광이 황색 형광체인 YAG(Yttrium Aluminum Garnet) 형광체에 투사되면 입사된 빛에 의하여 황색 형광체가 여기되어 발광되는 빛은 500nm에서부터 780nm의 파장 대역에서 발광하게 되고, 이 빛들의 혼색에 의하여 백색이 발광될 수 있다. 그러나, 이러한 예에서, 청색과 황색의 파장 간격이 넓기 때문에 색 분리로 인한 섬광효과를 일으킬 수 있다. 또한 동일한 색 좌표, 색온도, 연색성 평가지수를 조절하기 용이하지 않으며, 주변온도에 따라 색 변환 현상이 발생할 수 있다. 특히, 이 발광 소자를 이용하여 백라이트 유닛을 제작할 경우 NTSC 대비 색재현율이 최대 65% 정도가 한계이다. 이에 반해, 적색, 녹색, 및 청색 발광 소자를 이용하여 멀티 칩으로 백색을 구현하는 방법으로 색재현율이 NTSC 대비 100%가 넘을 수 있다. 그러나, 이와 같이 멀티 칩으로 백색을 구현하는 경우, 칩마다 동작 전압이 불 균일하며, 주변 온도에 따라 칩의 출력이 변해 색 좌표가 달라지는 현상이 발생할 수 있고, 구동회로가 추가되어야 한다. 또한 적색 발광 칩을 사용하는 경우, 전류 및 온도에 따라 적색 칩에서 야기되는 색 좌표 변화가 문제가 될 수 있으며, 이로 인해 백라이트 유닛 전체 색좌표가 달라질 수 있다.
실시 예에 따른 발광 소자(10)는 상기 발광 칩(25)에 의한 청색 광, 상기 제1형광체(31)에 의한 녹색 광, 상기 제2형광체(33)에 의한 적색 광은 서로 혼색될 수 있으며, 상기 혼색된 광은 백색 광으로 방출될 수 있다. 즉, 백색의 발광 소자를 제공할 수 있다.
실시 예에 따른 상기 몰딩부재(41)에서의 형광체들(31,33)의 함량 비율을 보면, 상기 제2형광체(33)의 함량 비율이 제1형광체(31)의 함량 비율보다 더 첨가될 수 있다. 예컨대, 상기 제1형광체(31)는 5% 내지 40% 범위의 함량 비율이며, 상기 제2형광체(33)는 60% 내지 95% 범위의 함량 비율일 수 있다. 상기 제1형광체(31)의 함량 비율이 상기 범위 보다 작을 경우 녹색에 비해 적색이 더 높은 상대 광도를 가지게 되며, 상기 범위보다 높을 경우 녹색이 적색보다 더 높은 상대 광도를 가질 수 있다. 상기 제2형광체(33)의 함량 비율이 상기 범위보다 작을 경우 적색에 비해 녹색이 더 높은 상대 광도를 가지게 되며, 상기 범위보다 높을 경우 적색이 녹색보다 더 높은 상대 광도를 가질 수 있다. 상기 제1 및 제2형광체(31,33)의 함량 비율이 상기 범위를 벗어날 경우 NTSC, sRGB, BT2020 등에서 녹색 또는 적색의 색 순도의 개선이 미미하고 고색재현이 어려울 수 있다. 여기서, 상기 제1,2형광체(31,33)의 함량 비율의 합이 100%일 때, 상기 제1,2형광체(33)의 함량 비율은 상기의 범위일 수 있다.
상기 몰딩 부재(41) 내의 형광체들의 총 중량은 70wt% 이상일 수 있으며, 예컨대, 70wt% 내지 150wt% 범위일 수 있다. 상기 형광체들(31,33)의 총 중량이 상기 범위보다 작은 경우 청색 분포가 증가될 수 있고 상기 범위보다 큰 경우 청색 분포가 줄어들 수 있다.
실시 예의 발광 소자(10)는 도 10에 도시된 CIE 1976의 u', v' 색도도에서 적색 지점(Px)은 u'=0.51~0.53 및 v'=0.48~0.51, 녹색은 u'=0.08~0.11 및 v'=0.52~0.54, 및 청색은 u'=0.17~0.20 및 v'=0.08~0.12 범위에 존재함을 알 수 있다. 상기 적색 광의 색 좌표는 예컨대 4개의 꼭지점 (0.5100, 0.4800), (0.5100, 0.5100), (0.5300, 0.4900), (0.5300, 0.5055)에 의해 둘러싸인 영역 내에 있고, 상기 녹색 형광체는 예컨대, 4개의 꼭지점 (0.0900, 0.5200), (0.0850, 0.5250), (0.1100, 0,5250), (0.1050, 0.5400)에 의해 둘러싸인 영역 내에 있을 수 있다. 실시 예에 따른 적색 형광체는 CIE 1976의 u', v' 색도도에서 u'를 NTSC에 비해 0.05이상 이동(M1)시켜 줄 수 있다. 실시 예에 따른 적색 형광체에 의한 적색이 반치 폭이 좁고 장 파장에 분포하게 됨으로써, 적색의 색순도를 더 넓혀 줄 수 있다. 이에 따라 NTSC, sRGB 등에서 색 재현율, 특히 보다 사실적인 적색 재현율을 가질 수 있다. 실시 예에 따른 발광 소자를 LCD 모듈에 적용할 경우 검출된 CIE 1976에서의 면적비를 보면, 적색 광이 이동하여 전체적으로 NTSC의 색 영역에 비해 120% 이상, sRGB의 색 영역에 비해 130% 이상으로 구해질 수 있다.
실시 예에 따른 발광 소자(10)는 황색 형광체를 사용하지 않아, 적색 연색 지수(R9)를 개선시켜 줄 수 있고 또한 반치폭이 좁은 적색 스펙트럼을 제공함으로써, 고연색 지수를 가지는 조명을 만들 수 있다.
상기 발광 소자(10)는 상기 발광 칩(25)이 UV 발광 칩인 경우, 청색 형광체를 더 포함할 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1 및 제2형광체(31,33)는 각각 고유한 컬러를 발광하는 파티클이거나, 2컬러 또는 3컬러를 발광하는 서로 다른 형광 입자가 하나의 파티클로 혼합된 형태로 제공될 수 있다. 상기 파티클은 40㎛ 이하 예컨대, 1내지 30㎛ 범위일 수 있으며, 상기 파티클의 크기가 상기 범위보다 작은 경우 분포 제어가 어렵고 상기 범위보다 큰 경우 광도 제어가 어려울 수 있다.
실시 예에 따른 발광 소자는 백색 발광 소자로서, 색온도에 따라 2500K-4000K의 웜 화이트(warm white), 6500K-7000K의 쿨 화이트(cool white), 3000-4000K의 뉴트럴 화이트(neutral white), 퓨어 화이트(pure white) 소자로 구현될 수 있다.
도 2는 실시 예에 따른 형광체를 갖는 발광 소자의 다른 예를 나타낸 도면이다. 도 2를 설명함에 있어서, 도 1과 동일한 부분은 도 1의 설명을 참조하기로 한다.
도 2를 참조하면, 발광 소자는 몸체(11)의 캐비티(15)에 복수의 몰딩 부재(42,43)를 포함할 수 있다. 상기 복수의 몰딩 부재(42,43) 중 어느 하나에 형광체(31,33)가 배치될 수 있다. 상기 복수의 몰딩 부재(42,43)은 제1,2몰딩 부재(42,43)을 포함하며, 상기 형광체(31,33)는 상기 제2몰딩 부재(43)에 배치될 수 있다. 상기 제1 및 제2몰딩 부재(42,43)의 두께 비율을 보면, 2:1 내지 1:3의 범위일 수 있으며, 상기 제2몰딩 부재(43)의 두께 비율이 상기 범위보다 작은 경우 전달되는 열을 분산하는 능력이 저하될 수 있으며, 상기 범위보다 클 경우 발광 소자(10)의 두께가 두꺼워질 수 있는 문제가 있다.
상기 형광체(31,33)는 발광 칩(25)로부터 이격되어 배치될 수 있다. 상기 제2몰딩 부재(43)는 상기 발광 칩(25)로부터 0.2mm 이상의 간격을 가질 수 있으며, 상기 간격이 0.2mm 보다 좁은 경우 형광체의 열화 문제가 발생될 수 있다. 상기 발광 칩(25)에 접촉되는 제1몰딩 부재(42)에는 형광체 예컨대, 어떠한 종류의 형광체를 첨가하지 않을 수 있다. 상기 제1몰딩 부재(42) 상에 배치된 제2몰딩 부재(43) 내에는 제1 및 제2형광체(31,33)가 첨가될 수 있다. 이에 따라 상기 제1 및 제2형광체(31,33)는 상기 발광 칩(25)로부터 발생된 열에 의한 손해가 감소될 수 있다.
상기 제1몰딩 부재(42)와 상기 제2몰딩 부재(43)은 동일한 수지 재질 예컨대, 실리콘 또는 에폭시를 포함할 수 있다. 상기 제1 및 제2형광체(31,33)의 특징은 상기 실시 예의 설명을 참조하기로 한다.
도 3은 실시 예에 따른 형광체를 갖는 발광 소자의 다른 예를 나타낸 도면이다. 도 3를 설명함에 있어서, 상기에 개시된 구성과 동일한 부분은 상기에 개시된 설명을 참조하기로 한다.
도 3을 참조하면, 발광 소자는 몸체(11)의 캐비티(15)에 복수의 몰딩 부재(44,45,46)를 포함할 수 있다. 상기 복수의 몰딩 부재(45,46) 중 적어도 2개에는 서로 다른 종류의 형광체(31,33)가 첨가될 수 있다.
상기 캐비티(15)에 제1몰딩 부재(44), 상기 제1몰딩 부재(44) 위에 제2몰딩 부재(45) 및 상기 제2몰딩 부재(45) 위에 제3몰딩 부재(46)를 포함할 수 있다. 상기 제1몰딩 부재(44)는 발광 칩(25)에 접촉되며, 그 내부에는 어떠한 종류의 형광체가 첨가되지 않을 수 있다. 상기 제2몰딩 부재(45) 내에는 제1형광체(31)가 첨가되고, 제3몰딩 부재(46) 내에 제2형광체(33)가 첨가될 수 있다.
상기 제1내지 제3몰딩 부재(44,45,46)의 두께 비율을 보면, 2:1:1 내지 3:1:1 범위일 수 있다. 상기 제2몰딩 부재(45)의 두께는 상기 제1몰딩 부재(44)의 두께에 비해 두껍거나 얇을 수 있으며, 상기 제3몰딩 부재(46)의 두께와 동일하거나 다를 수 있다. 상기 제1몰딩 부재(43)의 두께 비율이 상기 범위보다 작은 경우 전달되는 열을 분산하는 능력이 저하되어 형광체에 열이 전달될 수 있는 문제가 발생될 수 있으며, 상기 범위보다 클 경우 발광 소자(10)의 두께가 두꺼워질 수 있는 문제가 있다.
상기 제1 내지 제3몰딩 부재(44,45,46)은 동일한 투광성 수지 재질이거나, 굴절률 차이가 있는 수지 재질로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 상기 제1 및 제2형광체(31,33)의 특징은 상기 실시 예의 설명을 참조하기로 한다.
다른 예로서, 캐비티(15) 내에 복수의 몰딩부재(44,45,46)가 배치된 경우, 제1 및 제2형광체(31,33) 중 피크 파장대역이 낮은 형광체 예컨대, 제1형광체(31)가 제2형광체(33)가 첨가된 몰딩부재 보다 낮은 위치에 있는 몰딩 부재에 첨가될 수 있다. 또는 반대로, 제1 및 제2형광체(31,33) 중 피크 파장대역이 높은 형광체 예컨대, 제2형광체(33)가 제1형광체(31)가 첨가된 몰딩부재보다 낮은 위치에 있는 몰딩 부재에 첨가될 수 있다. 또한 각 제3형광체(31,33)는 각 몰딩 부재(45,46)의 상면에 인접하거나 하면에 분포할 수 있으며, 이에 대해 한정하지는 않는다.
도 4는 실시 예에 따른 적색 형광체를 갖는 발광 소자의 다른 예를 나타낸 도면이다. 도 4를 설명함에 있어서, 상기의 실시 예와 동일한 구성은 상기에 개시된 설명을 참조하며 선택적으로 적용할 수 있다.
도 4를 참조하면, 발광 소자는 몸체(11), 복수의 리드 프레임(21,23), 발광 칩(25,26), 및 적색의 형광체(33)를 갖는 몰딩 부재(41)를 포함한다.
상기 발광 칩(25,26)은 청색 광을 발광하는 발광 칩(25)과, 녹색 광을 발광하는 발광 칩(26)을 포함할 수 있다. 상기 청색 발광 칩(25)와 녹색 발광 칩(26)은 서로 병렬로 연결되거나 서로 직렬로 연결될 수 있으며, 이에 대해 한정하지는 않는다. 상기 청색 발광 칩(25)와 녹색 발광 칩(26)은 동일한 하나의 리드 프레임 위에 배치되거나 서로 다른 리드 프레임 위에 배치될 수 있으며, 이에 대해 한정하지는 않는다. 상기 적색의 형광체(33)는 실시 예에 따른 형광체로서, 상기에 개시된 설명을 참조하기로 한다. 실시 예에 따른 발광 소자는 청색 발광 칩(25), 녹색 발광 칩(26), 그리고 적색의 형광체(33)를 포함하여, 백색의 발광 소자로 구현될 수 있다. 실시 예에 따른 발광 소자는 황색 형광체를 이용하거나 적색 파장 중에서 낮은 피크 피크 파장을 발광하는 형광체를 사용하는 구성에 비해, 색 재현율이 높고 Red/Green/Blue 칩을 사용하는 경우와 동등 수준인 색 재현율을 제공할 수 있으며, 특히 더 진하고 선명한 적색을 제공할 수 있다.
도 5는 실시 예에 따른 형광체를 갖는 발광 소자의 다른 예를 나타낸 도면이다. 도 5를 설명함에 있어서, 상기의 실시 예와 동일한 구성은 상기에 개시된 설명을 참조하며 선택적으로 적용할 수 있다.
도 5를 참조하면, 발광 소자는 몸체(11)의 캐비티(15) 내에 몰딩 부재(49), 및 상기 몸체(11) 상에 형광체(31,33)를 갖는 필름(30)을 포함할 수 있다.
상기 몰딩 부재(49)에는 어떠한 종류의 형광체가 첨가되지 않을 수 있다. 이에 따라 발광 칩(25)으로부터 발생된 열에 의해 상기 형광체(31,33)에 영향을 주는 것을 감소시켜 줄 수 있다.
상기 필름(30)은 투명한 필름으로서, 실리콘 또는 에폭시와 같은 수지 재질을 포함한다. 상기 필름(30) 내에서의 형광체(31,33)의 함량은 상기에 개시된 실시 예의 설명을 참조하기로 한다. 상기 필름(30)은 형광체(31,33)가 상면 또는/및 하면 상에 도포된 유리 재질을 포함할 수 있다. 상기 필름(30)은 상기 몰딩 부재(49)의 상면 면적보다 큰 면적을 가질 수 있어, 내부의 형광체들(31,33)에 의한 파장 변환 효율을 개선시켜 줄 수 있다. 상기 필름(30)은 몰딩 부재(49)의 출사면과 접촉되어 고정될 수 있다. 상기 필름(30)의 너비는 측 단면에서 상기 리드 프레임(21,23)들의 너비의 합보다 좁을 수 있고, 상기 몸체(11)의 너비보다 좁을 수 있다. 상기 필름(30)의 일부가 상기 몸체(11)의 외측으로 노출될 경우 광 손실이 발생될 수 있는 문제가 있다. 상기 필름(30)은 접착제로 몸체(11) 상면에 부착될 수 있다. 상기 필름(30)의 두께는 상기 몰딩 부재(49)의 두께와 같거나 작을 수 있다. 상기 필름(30)의 너비 방향은 상기 제1,2리드 프레임(21,23)이 배열되는 방향일 수 있다.
상기 형광체(31,33)는 서로 다른 피크 파장을 발광하는 제1 및 제2형광체(31,33)를 포함할 수 있다. 상기 제1 및 제2형광체(31,33)는 실시 예에 개시된 설명을 참조하기로 한다. 상기 제1 및 제2형광체(31,33)가 상기 발광 칩(25)으로부터 이격되어 배치됨으로써, 상기 몰딩 부재(49)의 출사면을 통해 방출된 광에 대해 파장 변환할 수 있다.
도 6은 실시 예에 따른 형광체를 갖는 라이트 유닛을 나타낸 도면이다.
도 6을 참조하면, 라이트 유닛은 회로 기판(50) 상에 하나 또는 복수의 발광 칩(25,25A)이 배치되며, 상기 발광 칩(25,25A)의 둘레에 반사 부재(55)가 배치되며, 상기 발광 칩(25,25A) 상에 형광체(31,33)를 갖는 필름(30A)이 배치될 수 있다. 상기 필름(30A)의 너비는 측 단면에서 반사 부재(55) 사이의 영역(60)보다는 넓을 수 있고 상기 반사부재(55)의 너비보다 좁을 수 있다. 상기 필름(30A)의 너비가 상기 반사부재(55)의 너비보다 큰 경우, 외부에 노출될 수 있어 광 손실이 발생될 수 있다. 상기 필름(30A)의 두께는 상기 반사 부재(55)의 두께보다 작을 수 있다. 상기 필름(30A)의 너비 방향은 상기 발광 칩(25,25A)이 배열되는 방향일 수 있다.
상기 회로 기판(50)은 회로 패턴을 가지고 상기 발광 칩(25,25A)과 전기적으로 연결될 수 있다. 상기 회로 기판(50) 상에 복수의 발광 칩(25,25A)이 배치된 경우, 상기 복수의 발광 칩(25,25A)은 직렬 또는 병렬로 연결될 수 있다.
상기 회로 기판(50)은 회로패턴(미도시)을 포함하는 인쇄회로기판(PCB, Printed Circuit Board)일 수 있다. 다만, 상기 회로 기판(50)은 일반 PCB 뿐 아니라, 메탈 코어 PCB(MCPCB, Metal Core PCB), 연성 PCB(FPCB, Flexible PCB) 등을 포함할 수도 있으며, 이에 대해 한정하지는 않는다. 상기 회로 기판(50)의 상면에는 반사 재질이 배치되어, 광을 반사할 수 있다.
상기 반사 부재(55)는 반사성 재질을 포함할 수 있으며, 예컨대 실리콘 계열, 또는 에폭시 계열, 또는 플라스틱 재질을 포함하며, 열 경화성 수지, 또는 고내열성, 고 내광성 재질로 형성될 수 있다. 또한 상기 반사 부재(55) 내에는 산무수물, 산화 방지제, 이형재, 광 반사재, 무기 충전재, 경화 촉매, 광 안정제, 윤활제, 이산화티탄 중에서 선택적으로 첨가될 수 있다. 상기 반사 부재(55)는 상기 발광 칩(25,25A)의 외측 둘레에 배치되어, 상기 발광 칩(25,25A)으로부터 방출된 광을 반사할 수 있다.
상기 회로 기판(50)과 상기 필름(30A) 사이의 영역(60)은 투명한 영역으로서, 광을 투과하는 재질로 형성될 수 있다. 상기 광을 투과하는 재질은 공기이거나 실리콘 또는 에폭시와 같은 수지 재질을 포함할 수 있다. 상기 투명한 영역(60) 상에는 상기 필름(30A)이 배치될 수 있다. 상기 필름(30A)은 상기 투명한 영역(60)에 수지 재질이 채워진 경우, 상기 수지 재질과 접촉될 수 있다.
상기 필름(30A)은 투명한 필름으로서, 실리콘 또는 에폭시와 같은 수지 재질을 포함한다. 상기 필름(30A)은 형광체(31,33)가 위 또는/및 아래에 도포된 유리 재질을 포함할 수 있다. 상기 필름(30A)은 상기 반사 부재(55) 상에 더 연장될 수 있어, 내부의 형광체(31,33)에 의한 파장 변환 효율을 개선시켜 줄 수 있다.
상기 발광 칩(25,25A)은 자외선 광 및 청색 광 중 적어도 하나를 발광할 수 있다. 상기 형광체(31,33)는 제1, 2형광체(31,33)를 포함하며 상기 제1, 2형광체(31,33)는 실시 예에 개시된 형광체를 포함할 수 있으며, 상기에 개시된 설명을 참조하기로 한다.
도 7은 실시 예에 따른 적색 형광체를 갖는 라이트 유닛을 나타낸 도면이다.
도 7을 참조하면, 라이트 유닛은 회로 기판(50) 상에 하나 또는 복수의 발광 칩(25,26)이 배치되며, 상기 발광 칩(25,26)의 둘레에 반사 부재(55)가 배치되며, 상기 발광 칩(25,26) 상에 적색의 형광체(33)를 갖는 필름(30A)이 배치될 수 있다.
상기 발광 칩(25,26)은 청색 광을 발광하는 발광 칩(25)와 녹색 광을 발광하는 발광 칩(26)을 포함할 수 있다. 상기 형광체(33)는 상기 발광 칩(25)으로부터 방출된 청색 광을 여기 파장으로 하여 적색 광을 발광하며, 실시 예에 따른 적색 형광체를 포함할 수 있다. 상기 라이트 유닛은 서로 다른 컬러를 발광하는 발광 칩(25,26)과 적색 형광체(33)를 포함하여, 백색 광을 제공할 수 있다. 실시 예에 따른 라이트 유닛은 황색 형광체를 이용하거나 적색 파장 중에서 낮은 피크 피크 파장을 발광하는 형광체를 사용하는 구성에 비해, 색 재현율이 높고 Red/Green/Blue 칩을 사용하는 경우와 동등 수준인 색 재현율을 제공할 수 있으며, 특히 더 진하고 선명한 적색을 제공할 수 있다.
실시 예에 따른 몰딩 부재 또는 필름 상에는 광의 지향각을 변환하는 광학 렌즈가 배치될 수 있다. 상기 광학 렌즈는 상기 몰딩 부재 또는 필름을 통해 방출된 광의 경로를 변환하여, 원하는 지향각 분포로 방사할 수 있다.
<조명 시스템>
실시예에 따른 발광 소자 또는 라이트 유닛은 조명 시스템에 적용될 수 있다. 상기 조명 시스템은 복수의 발광 소자가 어레이된 구조를 포함하며, 도 11 및 도 12에 도시된 표시 장치, 도 13에 도시된 조명 장치를 포함하고, 조명등, 신호등, 차량 전조등, 전광판 등이 포함될 수 있다.
도 11은 실시 예에 따른 발광 소자를 갖는 표시 장치의 분해 사시도이다.
도 11을 참조하면, 실시예에 따른 표시 장치(1000)는 도광판(1041)과, 상기 도광판(1041)에 빛을 제공하는 광원 모듈(1031)과, 상기 도광판(1041) 아래에 반사 부재(1022)와, 상기 도광판(1041) 위에 광학 시트(1051)와, 상기 광학 시트(1051) 위에 표시 패널(1061)과, 상기 도광판(1041), 광원 모듈(1031) 및 반사 부재(1022)를 수납하는 바텀 커버(1011)를 포함할 수 있으나, 이에 한정되지 않는다.
상기 바텀 커버(1011), 반사시트(1022), 도광판(1041), 광학 시트(1051)는 라이트 유닛(1050)으로 정의될 수 있다.
상기 도광판(1041)은 빛을 확산시켜 면광원화 시키는 역할을 한다. 상기 도광판(1041)은 투명한 재질로 이루어지며, 예를 들어, PMMA(polymethyl metaacrylate)와 같은 아크릴 수지 계열, PET(polyethylene terephthlate), PC(poly carbonate), COC(cycloolefin copolymer) 및 PEN(polyethylene naphthalate) 수지 중 하나를 포함할 수 있다.
상기 광원 모듈(1031)은 상기 도광판(1041)의 적어도 일 측면에 빛을 제공하며, 궁극적으로는 표시 장치의 광원으로써 작용하게 된다. 상기 광원 모듈(1031)은 적어도 하나를 포함하며, 상기 도광판(1041)의 일 측면에서 직접 또는 간접적으로 광을 제공할 수 있다. 상기 광원 모듈(1031)은 기판(1033)과 상기에 개시된 실시 예에 따른 발광 소자(1035)를 포함하며, 상기 발광 소자(1035)는 상기 회로 기판(1033) 상에 소정 간격으로 어레이될 수 있다.
상기 회로 기판(1033)은 회로패턴(미도시)을 포함하는 인쇄회로기판(PCB, Printed Circuit Board)일 수 있다. 다만, 상기 기판(1033)은 일반 PCB 뿐 아니라, 메탈 코어 PCB(MCPCB, Metal Core PCB), 연성 PCB(FPCB, Flexible PCB) 등을 포함할 수도 있으며, 이에 대해 한정하지는 않는다. 상기 발광 소자(1035)는 상기 바텀 커버(1011)의 측면 또는 방열 플레이트 상에 탑재될 경우, 상기 회로 기판(1033)은 제거될 수 있다. 여기서, 상기 방열 플레이트의 일부는 상기 바텀 커버(1011)의 상면에 접촉될 수 있다.
그리고, 상기 복수의 발광 소자(1035)는 상기 회로 기판(1033) 상에 빛이 방출되는 출사면이 상기 도광판(1041)과 소정 거리 이격되도록 탑재될 수 있으며, 이에 대해 한정하지는 않는다. 상기 발광 소자(1035)는 상기 도광판(1041)의 일측 면인 입광부에 광을 직접 또는 간접적으로 제공할 수 있으며, 이에 대해 한정하지는 않는다.
상기 도광판(1041) 아래에는 상기 반사 부재(1022)가 배치될 수 있다. 상기 반사 부재(1022)는 상기 도광판(1041)의 하면으로 입사된 빛을 반사시켜 위로 향하게 함으로써, 상기 라이트 유닛(1050)의 휘도를 향상시킬 수 있다. 상기 반사 부재(1022)는 예를 들어, PET, PC, PVC 레진 등으로 형성될 수 있으나, 이에 대해 한정하지는 않는다. 상기 반사 부재(1022)는 상기 바텀 커버(1011)의 상면일 수 있으며, 이에 대해 한정하지는 않는다.
상기 바텀 커버(1011)는 상기 도광판(1041), 광원 모듈(1031) 및 반사 부재(1022) 등을 수납할 수 있다. 이를 위해, 상기 바텀 커버(1011)는 상면이 개구된 박스(box) 형상을 갖는 수납부(1012)가 구비될 수 있으며, 이에 대해 한정하지는 않는다. 상기 바텀 커버(1011)는 탑 커버와 결합될 수 있으며, 이에 대해 한정하지는 않는다.
상기 바텀 커버(1011)는 금속 재질 또는 수지 재질로 형성될 수 있으며, 프레스 성형 또는 압출 성형 등의 공정을 이용하여 제조될 수 있다. 또한 상기 바텀 커버(1011)는 열 전도성이 좋은 금속 또는 비 금속 재료를 포함할 수 있으며, 이에 대해 한정하지는 않는다.
상기 표시 패널(1061)은 예컨대, LCD 패널로서, 서로 대향되는 투명한 재질의 제 1 및 제 2기판, 그리고 제 1 및 제 2기판 사이에 개재된 액정층을 포함한다. 상기 표시 패널(1061)의 적어도 일면에는 편광판이 부착될 수 있으며, 이러한 편광판의 부착 구조로 한정하지는 않는다. 상기 표시 패널(1061)은 광학 시트(1051)를 통과한 광에 의해 정보를 표시하게 된다. 이러한 표시 장치(1000)는 각 종 휴대 단말기, 노트북 컴퓨터의 모니터, 랩탑 컴퓨터의 모니터, 텔레비젼 등에 적용될 수 있다.
상기 광학 시트(1051)는 상기 표시 패널(1061)과 상기 도광판(1041) 사이에 배치되며, 적어도 한 장의 투광성 시트를 포함한다. 상기 광학 시트(1051)는 예컨대 확산 시트, 수평 및 수직 프리즘 시트, 및 휘도 강화 시트 등과 같은 시트 중에서 적어도 하나를 포함할 수 있다. 상기 확산 시트는 입사되는 광을 확산시켜 주고, 상기 수평 또는/및 수직 프리즘 시트는 입사되는 광을 표시 영역으로 집광시켜 주며, 상기 휘도 강화 시트는 손실되는 광을 재사용하여 휘도를 향상시켜 준다. 또한 상기 표시 패널(1061) 위에는 보호 시트가 배치될 수 있으며, 이에 대해 한정하지는 않는다.
여기서, 상기 광원 모듈(1031)의 광 경로 상에는 광학 부재로서, 상기 도광판(1041), 및 광학 시트(1051)를 포함할 수 있으며, 이에 대해 한정하지는 않는다.
도 12는 실시 예에 따른 발광 소자를 갖는 표시 장치를 나타낸 도면이다.
도 12를 참조하면, 표시 장치(1100)는 바텀 커버(1152), 상기에 개시된 발광 소자(1124)가 어레이된 회로 기판(1120), 광학 부재(1154), 및 표시 패널(1155)을 포함한다.
상기 회로 기판(1120)과 상기 발광 소자(1124)는 광원 모듈(1160)로 정의될 수 있다. 상기 바텀 커버(1152), 적어도 하나의 광원 모듈(1160), 광학 부재(1154)는 라이트 유닛(1150)으로 정의될 수 있다. 상기 바텀 커버(1152)에는 수납부(1153)를 구비할 수 있으며, 이에 대해 한정하지는 않는다. 상기의 광원 모듈(1160)은 회로 기판(1120) 및 상기 회로 기판(1120) 위에 배열된 복수의 발광 소자(1062)를 포함한다.
여기서, 상기 광학 부재(1154)는 렌즈, 도광판, 확산 시트, 수평 및 수직 프리즘 시트, 및 휘도 강화 시트 등에서 적어도 하나를 포함할 수 있다. 상기 도광판은 PC 재질 또는 PMMA(poly methyl methacrylate) 재질로 이루어질 수 있으며, 이러한 도광판은 제거될 수 있다. 상기 확산 시트는 입사되는 광을 확산시켜 주고, 상기 수평 및 수직 프리즘 시트는 입사되는 광을 표시 영역으로 집광시켜 주며, 상기 휘도 강화 시트는 손실되는 광을 재사용하여 휘도를 향상시켜 준다.
상기 광학 부재(1154)는 상기 광원 모듈(1160) 위에 배치되며, 상기 광원 모듈(1160)로부터 방출된 광을 면 광원하거나, 확산, 집광 등을 수행하게 된다.
도 13은 실시 예에 따른 발광소자를 갖는 조명장치의 분해 사시도이다.
도 13을 참조하면, 실시 예에 따른 조명 장치는 커버(2100), 광원 모듈(2200), 방열체(2400), 전원 제공부(2600), 내부 케이스(2700), 소켓(2800)을 포함할 수 있다. 또한, 실시 예에 따른 조명 장치는 부재(2300)와 홀더(2500) 중 어느 하나 이상을 더 포함할 수 있다. 상기 광원 모듈(2200)은 실시 예에 따른 발광소자를 포함할 수 있다.
예컨대, 상기 커버(2100)는 벌브(bulb) 또는 반구의 형상을 가지며, 속이 비어 있고, 일 부분이 개구된 형상으로 제공될 수 있다. 상기 커버(2100)는 상기 광원 모듈(2200)과 광학적으로 결합되고, 상기 방열체(2400)와 결합될 수 있다. 상기 커버(2100)는 상기 방열체(2400)와 결합하는 결합부를 가질 수 있다.
상기 커버(2100)의 내면에는 확산재를 갖는 유백색 도료가 코팅될 수 있다. 이러한 유백색 재료를 이용하여 상기 광원 모듈(2200)로부터의 빛을 산란 및 확산되어 외부로 방출시킬 수 있다.
상기 커버(2100)의 재질은 유리(glass), 플라스틱, 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리카보네이트(PC) 등일 수 있다. 여기서, 폴리카보네이트는 내광성, 내열성, 강도가 뛰어나다. 상기 커버(2100)는 외부에서 상기 광원 모듈(2200)이 보이도록 투명할 수 있고, 불투명할 수 있다. 상기 커버(2100)는 블로우(blow) 성형을 통해 형성될 수 있다.
상기 광원 모듈(2200)은 상기 방열체(2400)의 일 면에 배치될 수 있다. 따라서, 상기 광원 모듈(2200)로부터의 열은 상기 방열체(2400)로 전도된다. 상기 광원 모듈(2200)은 발광 소자(2210), 연결 플레이트(2230), 커넥터(2250)를 포함할 수 있다.
상기 부재(2300)는 상기 방열체(2400)의 상면 위에 배치되고, 복수의 조명소자(2210)들과 커넥터(2250)이 삽입되는 가이드홈(2310)들을 갖는다. 상기 가이드홈(2310)은 상기 조명소자(2210)의 기판 및 커넥터(2250)와 대응된다.
상기 부재(2300)의 표면은 백색의 도료로 도포 또는 코팅된 것일 수 있다. 이러한 상기 부재(2300)는 상기 커버(2100)의 내면에 반사되어 상기 광원 모듈(2200)측 방향으로 되돌아오는 빛을 다시 상기 커버(2100) 방향으로 반사한다. 따라서, 실시 예에 따른 조명 장치의 광 효율을 향상시킬 수 있다.
상기 부재(2300)는 예로서 절연 물질로 이루어질 수 있다. 상기 광원 모듈(2200)의 연결 플레이트(2230)는 전기 전도성의 물질을 포함할 수 있다. 따라서, 상기 방열체(2400)와 상기 연결 플레이트(2230) 사이에 전기적인 접촉이 이루어질 수 있다. 상기 부재(2300)는 절연 물질로 구성되어 상기 연결 플레이트(2230)와 상기 방열체(2400)의 전기적 단락을 차단할 수 있다. 상기 방열체(2400)는 상기 광원 모듈(2200)로부터의 열과 상기 전원 제공부(2600)로부터의 열을 전달받아 방열한다.
상기 홀더(2500)는 내부 케이스(2700)의 절연부(2710)의 수납홈(2719)을 막는다. 따라서, 상기 내부 케이스(2700)의 상기 절연부(2710)에 수납되는 상기 전원 제공부(2600)는 밀폐된다. 상기 홀더(2500)는 가이드 돌출부(2510)를 갖는다. 상기 가이드 돌출부(2510)는 상기 전원 제공부(2600)의 돌출부(2610)가 관통하는 홀을 구비할 수 있다. 상기 내부 케이스(2700)의 지지부(2370)에는 상기 방열체(2400)의 하부가 밀착될 수 있다.
상기 전원 제공부(2600)는 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 상기 광원 모듈(2200)로 제공한다. 상기 전원 제공부(2600)는 상기 내부 케이스(2700)의 수납홈(2719)에 수납되고, 상기 홀더(2500)에 의해 상기 내부 케이스(2700)의 내부에 밀폐된다.
상기 전원 제공부(2600)는 돌출부(2610), 가이드부(2630), 베이스(2650), 연장부(2670)를 포함할 수 있다.
상기 가이드부(2630)는 상기 베이스(2650)의 일 측에서 외부로 돌출된 형상을 갖는다. 상기 가이드부(2630)는 상기 홀더(2500)에 삽입될 수 있다. 상기 베이스(2650)의 일 면 위에 다수의 부품이 배치될 수 있다. 다수의 부품은 예를 들어, 직류변환장치, 상기 광원 모듈(2200)의 구동을 제어하는 구동칩, 상기 광원 모듈(2200)을 보호하기 위한 ESD(Electrostatic discharge) 보호 소자 등을 포함할 수 있으나 이에 대해 한정하지는 않는다.
상기 연장부(2670)는 상기 베이스(2650)의 다른 일 측에서 외부로 돌출된 형상을 갖는다. 상기 연장부(2670)는 상기 내부 케이스(2700)의 연결부(2750) 내부에 삽입되고, 외부로부터의 전기적 신호를 제공받는다. 예컨대, 상기 연장부(2670)는 상기 내부 케이스(2700)의 연결부(2750)의 폭과 같거나 작게 제공될 수 있다. 상기 연장부(2670)는 전선을 통해 소켓(2800)에 전기적으로 연결될 수 있다.
상기 내부 케이스(2700)는 내부에 상기 전원 제공부(2600)와 함께 몰딩부를 포함할 수 있다. 몰딩부는 몰딩 액체가 굳어진 부분으로서, 상기 전원 제공부(2600)가 상기 내부 케이스(2700) 내부에 고정될 수 있도록 한다.
실시 예에 따른 표시 장치 또는 조명 시스템에서는 실시 예에 개시된 적색 형광체를 포함함으로써, 적색의 색 순도를 보다 심적색으로 이동시켜 줄 수 있어, 조명 또는 표시 장치에서의 색 재현율을 향상시켜 줄 수 있다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 실시예를 한정하는 것이 아니며, 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 설정하는 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명은 적색 형광체를 갖는 발광 소자를 다양한 광원 시스템에 적용할 수 있다.
본 발명은 고색재현이 가능한 발광 소자를 이용하여 표시 장치 또는 조명 장치에 적용할 수 있다.
본 발명은 색재현율이 개선된 발광 소자를 이용하여 표시 장치 또는 조명 장치에 적용할 수 있다.

Claims (10)

  1. 2가 금속(M), 활성제의 원소(A), 플루오린(F, Fluorine or Fluor)와 산소(O)를 함유하는 M4D1 - xOyF:Ax 구조의 형광체 조성물을 포함하며, 상기 x는 0.001 ≤ x ≤ 0.1를 만족하며, y는 1 ≤ y ≤5를 만족하며,
    상기 M은 Mg, Ca, Sr, Ba, Zn 중 적어도 하나이며,
    상기 D는 Si, Ge Sn, Ti, Zr, Hf 중 적어도 하나이며,
    상기 F는 플루오린(Fluorine)이며,
    상기 A는 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb 중 적어도 하나를 포함하며,
    상기 형광체의 조성물은 400nm 내지 470nm의 피크 파장을 여기 파장으로 하여 적색 광을 방출하며,
    상기 적색 광은 655nm 내지 670nm의 피크 파장을 가지며, 20nm 이하의 반치 폭을 갖는 형광체.
  2. 제1항에 있어서,
    상기 M은 Mg이며, 상기 D는 Ge이며, 상기 A는 Mn을 포함하며,
    상기 Mn은 4가 망간인 Mn4+ 포함하는 형광체.
  3. 조성물 Mg4Ge1-xOyF:Mn4+ x의 구조를 포함하며,
    상기 x는 0.001 ≤ x ≤ 0.1를 만족하며, 상기 y는 1 ≤ y ≤5를 만족하며,
    상기 조성물은 655nm 내지 670nm의 피크 파장을 가지며, 20nm 이하의 반치 폭을 갖는 형광체.
  4. 제3항에 있어서,
    상기 반치 폭은 10nm 내지 20nm를 갖는 형광체.
  5. 발광 칩;
    상기 발광 칩으로부터 방출된 광을 여기 파장으로 하여 제1피크 파장을 발광하는 제1형광체;
    상기 발광 칩으로부터 방출된 광을 여기 파장으로 하여 제2피크 파장을 발광하는 제2형광체를 포함하며,
    상기 제1 및 제2피크 파장은 서로 다른 컬러를 가지며,
    상기 제2형광체는, 2가 금속(M), 활성제의 원소(A), 플루오린(F, Fluorine or Fluor)와 산소(O)를 갖는 M4D1 - xOyF:Ax 구조의 형광체 조성물을 포함하며, 상기 x는 0.001 ≤ x ≤ 0.1를 만족하며, y는 1 ≤ y ≤5를 만족하며,
    상기 M은 Mg, Ca, Sr, Ba, Zn 중 적어도 하나이며,
    상기 D는 Si, Ge Sn, Ti, Zr, Hf 중 적어도 하나이며,
    상기 F는 플루오린(Fluorine)이며,
    상기 A는 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb 중 적어도 하나를 포함하며,
    상기 제2형광체로부터 방출된 제2피크 파장은, 655nm 내지 670nm의 피크 파장을 가지며, 20nm 이하의 반치 폭을 갖는 발광소자.
  6. 제5항에 있어서,
    상기 제2형광체는 Mg4Ge1 - xOyF:Mn4 + x의 구조를 포함하는 발광 소자.
  7. 제5항에 있어서,
    상기 제1형광체는 녹색 형광체를 포함하는 발광 소자.
  8. 제5항 내지 제7항 중 어느 한 항에 있어서,
    상기 발광 칩은 청색 광 또는 자외선 광을 발광하는 발광 소자.
  9. 제8항에 있어서,
    상기 반치 폭은 10nm 내지 20nm 범위를 갖는 발광 소자.
  10. 제9항에 있어서,
    상기 발광 칩 상에 몰딩 부재 또는 필름을 포함하며,
    상기 제1 및 제2형광체는 상기 몰딩 부재 또는 필름 내에 배치되며,
    상기 제1,2형광체의 함량 비율이 100%인 경우, 상기 제2형광체의 함량 비율은 상기 제1형광체의 함량 비율보다 높고 60% 내지 95% 범위의 함량 비율을 갖는 발광 소자.
PCT/KR2016/014828 2015-12-18 2016-12-16 형광체 및 이를 구비한 발광 소자 WO2017105143A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/063,165 US10336936B2 (en) 2015-12-18 2016-12-16 Phosphor and light emitting device having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150182149A KR102533820B1 (ko) 2015-12-18 2015-12-18 형광체 및 이를 구비한 발광 소자
KR10-2015-0182149 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017105143A1 true WO2017105143A1 (ko) 2017-06-22

Family

ID=59057247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014828 WO2017105143A1 (ko) 2015-12-18 2016-12-16 형광체 및 이를 구비한 발광 소자

Country Status (3)

Country Link
US (1) US10336936B2 (ko)
KR (1) KR102533820B1 (ko)
WO (1) WO2017105143A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102225843B1 (ko) * 2019-08-20 2021-03-09 고려대학교 산학협력단 하향변환 발광 조합체 및 이를 제조하는 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040070870A (ko) * 2003-02-05 2004-08-11 서울반도체 주식회사 고휘도 백색 발광 소자
US20050224828A1 (en) * 2004-04-02 2005-10-13 Oon Su L Using multiple types of phosphor in combination with a light emitting device
KR20110042126A (ko) * 2008-08-29 2011-04-22 필립스 루미리즈 라이팅 캄파니 엘엘씨 파장 변환 반도체 발광 장치 및 필터를 포함하는 광원
KR20120039631A (ko) * 2009-06-16 2012-04-25 더 리전츠 오브 더 유니버시티 오브 캘리포니아 옥시플루오라이드 형광체들 및 옥시플루오라이드 형광체를 포함하는 고체 조명 제품용 백색 발광 다이오드들
KR20150067588A (ko) * 2013-12-10 2015-06-18 삼성전자주식회사 발광장치 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462983B2 (en) 2003-06-27 2008-12-09 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. White light emitting device
US7404652B2 (en) * 2004-12-15 2008-07-29 Avago Technologies Ecbu Ip Pte Ltd Light-emitting diode flash module with enhanced spectral emission
US7648649B2 (en) 2005-02-02 2010-01-19 Lumination Llc Red line emitting phosphors for use in led applications
US7535524B2 (en) * 2005-04-18 2009-05-19 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Display panel with wavelength converting material and control interface to switchably control independent projection or non-projection of primary and secondary IMAGES
KR101026307B1 (ko) 2006-05-05 2011-03-31 프리즘, 인코포레이티드 디스플레이 시스템 및 장치용 형광체 조성물 및 다른 형광 물질

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040070870A (ko) * 2003-02-05 2004-08-11 서울반도체 주식회사 고휘도 백색 발광 소자
US20050224828A1 (en) * 2004-04-02 2005-10-13 Oon Su L Using multiple types of phosphor in combination with a light emitting device
KR20110042126A (ko) * 2008-08-29 2011-04-22 필립스 루미리즈 라이팅 캄파니 엘엘씨 파장 변환 반도체 발광 장치 및 필터를 포함하는 광원
KR20120039631A (ko) * 2009-06-16 2012-04-25 더 리전츠 오브 더 유니버시티 오브 캘리포니아 옥시플루오라이드 형광체들 및 옥시플루오라이드 형광체를 포함하는 고체 조명 제품용 백색 발광 다이오드들
KR20150067588A (ko) * 2013-12-10 2015-06-18 삼성전자주식회사 발광장치 제조방법

Also Published As

Publication number Publication date
KR102533820B1 (ko) 2023-05-18
US10336936B2 (en) 2019-07-02
KR20170073350A (ko) 2017-06-28
US20190002761A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
US10305011B2 (en) Light emitting apparatus
EP2824721B1 (en) Light emitting device
WO2017200268A1 (ko) 발광소자 패키지 및 조명장치
WO2019098596A1 (ko) 조명 모듈 및 이를 구비한 조명 장치
US10262979B2 (en) Light emitting device
WO2010071386A2 (ko) 발광소자 패키지, 백라이트 유닛, 디스플레이 장치 및 조명장치
US9202990B2 (en) Light emitting diode package and backlight unit including the same
WO2017188795A1 (ko) 형광체 조성물, 이를 포함하는 발광 소자 패키지 및 조명 장치
WO2017074035A1 (ko) 발광소자 패키지, 및 이를 포함하는 조명시스템
US10008641B2 (en) Phosphor composition and light emitting device package having the same
KR20170073356A (ko) 형광체, 발광 소자 및 이를 구비한 라이트 유닛
WO2017105143A1 (ko) 형광체 및 이를 구비한 발광 소자
JP2003249112A (ja) 面状発光装置及びそれを用いたディスプレイ装置
KR102528015B1 (ko) 발광 소자 및 이를 구비한 조명 시스템
US9190580B2 (en) Phosphor and light emitting device having the same
KR102509024B1 (ko) 발광 소자 및 이를 구비한 조명 장치
KR102514150B1 (ko) 발광 소자 및 이를 구비한 조명 장치
KR102494856B1 (ko) 형광체, 발광 소자 및 이를 구비한 라이트 유닛
KR102486037B1 (ko) 발광 소자, 발광 소자 패키지 및 이를 포함하는 발광 장치
WO2015182855A1 (ko) 산질화물계 형광체를 포함하는 발광 소자 패키지 및 이를 포함하는 조명 장치
KR102224077B1 (ko) 발광소자
KR102098318B1 (ko) 형광체 및 이를 구비한 발광 소자
KR102131340B1 (ko) 발광 소자 및 이를 구비한 조명 시스템
WO2016056836A1 (ko) 발광 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16876085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16876085

Country of ref document: EP

Kind code of ref document: A1