WO2017104949A1 - Confocal microscope and image processing method using same - Google Patents

Confocal microscope and image processing method using same Download PDF

Info

Publication number
WO2017104949A1
WO2017104949A1 PCT/KR2016/010818 KR2016010818W WO2017104949A1 WO 2017104949 A1 WO2017104949 A1 WO 2017104949A1 KR 2016010818 W KR2016010818 W KR 2016010818W WO 2017104949 A1 WO2017104949 A1 WO 2017104949A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
lens
confocal microscope
photographing
image
Prior art date
Application number
PCT/KR2016/010818
Other languages
French (fr)
Korean (ko)
Inventor
김필한
안진효
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2017104949A1 publication Critical patent/WO2017104949A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes

Definitions

  • the present invention relates to a confocal microscope and an image processing method using the same.
  • a confocal microscope is a microscope having a resolution in the depth direction, and is widely used in various industries and bio fields because it can obtain three-dimensional information of a specimen.
  • Confocal microscopes are known to have about 40% better resolution than conventional microscopes, and their utility is superior in that they can acquire three-dimensional images without the need for physical sections.
  • an endoscopic microscope method is used to transmit a light source transmitted through an objective lens of a confocal microscope into a tissue through a small lens. It is difficult and there is a problem that the loss of the light source and the detection signal may occur in the process of transferring the light source from the objective lens to the small lens has been studied to improve this.
  • the technical problem to be achieved by the present invention is to provide a confocal microscope and an image processing method using the same that can be photographed and imaged finely inside the biological tissue.
  • the confocal microscope outputs at least two laser light sources having different wavelengths to a photographing site, and acquires a two-dimensional image by scanning light reflected from the photographing site in a confocal manner.
  • an optical probe which invades the photographing part transmits the light output from the photographing part to the photographing part, and transmits the light reflected from the photographing part to the photographing part, and combines the lens of the photographing part and the optical probe.
  • a coupling for controlling movement of the optical probe is provided to the optical probe.
  • the optical probe may include a needle tip invading into the living body, and a lens unit positioned inside the needle tip.
  • the lens unit may include a coupling lens positioned on the photographing unit side, an image lens positioned on the photographing part side, and a relay lens positioned between the coupling lens and the image lens.
  • the coupling lens, the image lens and the relay lens may be formed of a gradient-index (GRIN) lens.
  • GRIN gradient-index
  • the optical probe may further include a mirror unit positioned at an end of the lens unit and reflecting the light to change a traveling direction of the light.
  • the coupling part may include an x and y axis moving part for controlling the movement of the optical probe in the x and y axis directions, and a z axis moving part for controlling the movement of the optical probe in the z axis direction.
  • the needle tip may include a tubular body, and one end of the body may include an opening that exposes at least a portion of the lens unit.
  • the front end portion of the main body may have an incline in cross section.
  • the inclination angle of the tip portion may be 1 to 20 degrees.
  • a protective layer surrounding the needle tip may be further included.
  • the protective layer may be made of an optical adhesive film.
  • the photographing unit may include a light source unit for outputting at least two laser light sources having different wavelengths, an objective lens adjusted to focus the laser light source at the photographing site, and reading an image observed from the photographing site in a two-dimensional array form. It may include a scanning unit for generating a scanning image, and an image acquisition unit for passing the scanning image to a slit portion installed in a confocal plane to generate an image excited by the laser light source.
  • An image processing method using a confocal microscope comprises the steps of invading the optical probe to the in vivo imaging area through the skin, irradiating a laser light source to the imaging area, and the light reflected from the imaging site And receiving the received image.
  • the inside of the living tissue may be finely approached and photographed to image it.
  • the loss of the light source and the detection signal can be reduced.
  • FIG. 1 is a view showing a schematic configuration of a confocal microscope according to an embodiment of the present invention.
  • FIG. 2 is a view showing a detailed configuration of the confocal microscope according to an embodiment of the present invention.
  • FIG 3 is a view showing the structure of a confocal microscope optical probe according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a confocal microscope optical probe according to an embodiment of the present invention.
  • FIG. 5 is an exploded cross-sectional view of a structure of a confocal microscope optical probe according to one embodiment of the present invention.
  • FIG. 6 is a view showing the structure of the confocal microscope coupling portion according to an embodiment of the present invention.
  • FIG. 7 is a view showing the flow of an image processing method using a confocal microscope according to an embodiment of the present invention.
  • FIGS. 8 to 10 are diagrams showing photographing results obtained by using a confocal microscope according to an embodiment of the present invention.
  • FIG. 1 is a view showing a schematic configuration of a confocal microscope according to an embodiment of the present invention
  • Figure 2 is a view showing a detailed configuration of a confocal microscope according to an embodiment of the present invention.
  • the confocal microscope 1 includes a photographing unit 10, an optical probe 20, a coupling unit 30, and a computing unit 40.
  • the photographing unit 10 includes a light source unit 110, beam splitters 120a, 120b, 120c and 120d, a scan unit 130, an objective lens 140, and an image acquisition unit 150. It may include.
  • the light source unit 110 is an excitation light source of the image capturing unit 10 and irradiates light to excite the image capturing portion.
  • the light source unit 110 includes two or more light sources having different wavelengths in order to photograph the observation targets labeled with different fluorescent samples.
  • the light source unit 110 may include four laser light sources having a visible light band, and the laser light sources may have wavelength bands of 405 nm, 488 nm, 561 nm, and 640 nm, respectively.
  • the present invention is not limited thereto, and the number and wavelength of the light sources may vary.
  • the light irradiated from the light source unit 110 passes through the scan unit 130 through at least one or more beam splitters 120a, 120b, 120c, and 120d, and then passes through the objective lens 140 and the optical probe 20. Investigate the internal filming site.
  • the optical probe 20 invades the inside of the living tissue through the skin of the living tissue, transfers the light irradiated from the light source unit 110 to the imaging area inside the living tissue, and retransmits the reflected light from the inside of the living tissue 10. To pass).
  • the shape of the optical probe 20 may vary, but in the present invention, a needle-shaped optical probe that is easy to invade will be described as an example.
  • the coupling unit 30 serves to couple the optical probe 20 to the imaging unit 10 to be fixed, and the detailed configuration of the optical probe 20 and the coupling unit 30 will be described in more detail below. Do it.
  • the light reflected from inside the biological tissue is returned to the imaging unit 10 through the optical probe 20.
  • the reflected light passes through the objective lens 140 and the scan unit 130 in order, and is transmitted to the image acquisition unit 150.
  • the objective lens 140 is a lens into which the light of the fluorescent material excited by the light source unit 110 enters, and outputs an image signal in which an image of a photographing part labeled with the fluorescent material is formed to the scanning unit 130.
  • the objective lens 140 may be set to have a field of view of 250 ⁇ 250um 2 using a 40x objective lens or to have a field of view of 500 ⁇ 500um 2 using a 20x objective lens.
  • the present invention is not limited thereto and may be set to have various fields of view by setting a lens having an appropriate magnification.
  • the scan unit 130 reads an image signal incident through the objective lens 140 and configures the pixel in a 2D array form.
  • the scan unit 130 may include a polygonal rotation mirror and a galvanometer mirror. The rotating polygon mirror scans the X-line, and the galvano mirror scans the Y-line.
  • the image acquisition unit 150 passes the scanning image signal generated by the scan unit 130 to at least one beam splitter 151a, 151b, or 151c and separates each wavelength band.
  • the separated scanning image signal passes through a band pass filter (BPF) 152 and a condensing lens 153 to a slit portion 154 installed in a confocal plane and is a photomultiplier pipe. tube, PMT) (155).
  • BPF band pass filter
  • PMT photomultiplier pipe. tube
  • the beam splitters 151a, 151b, and 151c separate and arrange the scanning images generated from the scan unit 130, and may be formed of a dichroic beam splitter (DBS).
  • DBS dichroic beam splitter
  • the bandpass filter unit 152 is positioned in a path of light split from the beam splitters 151a, 151b, and 151c, acquires the separated light, and passes the light in the spectral region of the designated visible light region.
  • the photomultiplier tube 155 is positioned in the path of the light passed from the bandpass filter unit 152, detects the fluorescent signal passing through the bandpass filter unit 152, generates an electric signal, and generates the computing signal 40. )
  • the computing unit 40 acquires an image signal photographed by the photographing unit 10. In this case, the computing unit 40 may correct the photographing result in order to obtain a physically meaningful result.
  • the confocal microscope 1 including the optical probe 20 can directly invade the internal organ tissue through the skin of the living body, and can access internal organ tissues. Shooting can be freely controlled and the inside of the photographed tissue can be imaged. In addition, the confocal microscope 1 including the optical probe 20 can invade the exact position and reduce the loss of light source and detection signal that can occur due to the use of the optical fiber.
  • optical probe 20 will be described in detail with reference to FIGS. 3 to 5.
  • FIG. 3 is an exploded cross-sectional view of a structure of a confocal microscope optical probe according to an embodiment of the present invention
  • FIG. 4 is a view showing an example of a confocal microscope optical probe according to an embodiment of the present invention
  • 5 is a view showing the structure of a confocal microscope optical probe according to an embodiment of the present invention.
  • the optical probe 20 includes a needle tip 210 and a lens unit 220.
  • the needle tip 210 has a tubular body 211 having a circular or elliptical cross section in which the needle tip 210 is infiltrated to the imaging part, that is, the core of the biological tissue, and the inside thereof may be hollow because the hollow is formed.
  • the lens unit 220 is positioned inside the main body 211.
  • the tip 212 of the needle tip 210 main body 211 may be formed to have a predetermined slope as shown in FIG. 3 to facilitate invasion into the living body.
  • the inclination angle may be 1 degree to 20 degrees.
  • One end of the body 211 may include an opening 213 exposing at least a portion of the lens unit 220.
  • the opening portion 213 may be formed by removing one side of the side portion of the main body 211 so that its cross section has a semi-circular shape in order to capture the image closer to the photographing portion inside the biological tissue.
  • the needle tip 210 may have a diameter of 0.5 mm to 1.0 mm and may be invasive to the inside of the living body, and its length may be 10 mm to 30 mm.
  • the protective layer may be composed of an optical adhesive film.
  • the lens unit 220 transmits the light irradiated from the light source unit 110 to the image capturing site inside the biological tissue, and transmits the light reflected from the image capturing site located inside the biological tissue to the image capturing unit 10.
  • the lens unit 220 may have three lens structures having the same diameter as shown in FIG. 5, and the lens unit 220 according to the present exemplary embodiment is a coupling lens positioned near the photographing unit 10. And a relay lens 223 positioned between the coupling lens 221 and the image lens 222.
  • Each lens may be formed of a gradient-index (GRIN) lens, and the NA (Numerical Aperture) of the coupling lens 221 and the image lens 222 is 0.45 to 0.55, and the NA of the relay lens 223 is 0.15 to 0.25.
  • GRIN gradient-index
  • NA Numerical Aperture
  • the optical probe 20 may further include a mirror 230 attached to the distal end of the image lens 222.
  • the mirror unit 230 reflects light to change a path of light.
  • the mirror unit 230 may be coated with aluminum, and the laser light source passing through the lens unit 220 is irradiated to the photographing site.
  • the mirror unit 230 is disposed at an angle of 45 degrees to the longitudinal direction of the lens unit 220 to change the traveling direction of the laser light source in a second direction perpendicular to the first direction through which the laser light source passes through the lens unit 220.
  • the present invention is not limited thereto, and the mirror unit 230 may be disposed in various directions to change a traveling direction of the laser light source.
  • the confocal microscope 1 irradiates a laser light source to a photographing site in various directions as well as a depth direction in which the needle tip 210 invades living tissue, and transmits light reflected therefrom. Receive the image.
  • FIG. 6 is a view showing the structure of the coupling portion of the confocal microscope according to the present embodiment.
  • the coupling part 30 may include a main body part, an x and y axis moving part 320, including a plate 311, a rod part 312, and an adapter 313. It includes a z-axis moving unit 330, and the probe holder 340.
  • the x, y-axis moving part 320 controls the movement of the planar direction (x, y-axis) of the optical probe 20, and the z-axis moving part 330 is a depth (height) direction (of the optical probe 20) ( z-axis) control. Accordingly, the confocal microscope 1 according to the present embodiment finely and accurately controls the movement in the three-axis direction of the optical probe 20, so that the body tissue of the desired site can be photographed.
  • the probe holder 340 fixes the position of the optical probe 20 to the photographing unit 10, and may prevent the movement of the optical probe 20 while imaging the photographed portion.
  • FIG. 7 is a view showing the flow of an image processing method using a confocal microscope according to an embodiment of the present invention.
  • the confocal microscope invades the optical probe 20 to the in vivo photographing site through the skin (S100).
  • the optical probe 20 may include a needle tip 210 having an inclined tip portion 212 to facilitate penetration into the living body.
  • the needle tip 210 may include an opening 213 formed by removing one side of the side part such that its cross section has a semi-circle shape in order to obtain an image in close contact with a photographed part of the living body.
  • the needle tip 210 may further include a protective layer surrounding the outer surface of the needle tip to prevent foreign substances from infiltrating into the biological tissue.
  • the laser light source is irradiated to the imaging area inside the biological tissue (S200).
  • the laser light source is irradiated from the light source unit 110 of the imaging unit 10, and may have a wavelength band of 405nm, 488nm, 561nm, and 640nm, respectively.
  • the laser light source may be transmitted to the imaging area inside the biological tissue through the lens unit 200 of the optical probe 20.
  • the light is received from the photographed portion receives the image (S300).
  • the light reflected from inside the biological tissue is returned to the imaging unit 10 through the optical probe 20.
  • the reflected light passes through the objective lens 140 and the scan unit 130 in order to be transferred to the image acquisition unit 150, whereby the confocal microscope can acquire an image of the photographed portion.
  • the image processing method using confocal by directly invading through the skin of the living body and imaging it, it is possible to obtain an image of directly photographing internal organ tissues, which may occur due to the use of optical fibers.
  • the loss of the light source and the detection signal can be reduced.
  • FIGS. 8 to 10 are diagrams showing photographing results obtained by using a confocal microscope according to an embodiment of the present invention.
  • FIG. 8 is a view illustrating imaging results obtained by continuously photographing somatic cells and blood vessels existing in the epidermis and dermis of the skin while inserting the needle tip 210 in the depth direction from the surface of the skin. At this time, somatic cells were labeled with a green fluorescent signal, and blood vessels were labeled with a red fluorescent signal.
  • the skin is composed of the epidermis, the basement, the dermis, and the subcutaneous tissue, which are epithelial cells of the outermost layer. Referring to FIG. You can see that the image.
  • FIG. 9 is a diagram illustrating a photographing result obtained by photographing and imaging an inside of a cancer tissue located in a deep tissue part of a living body.
  • cancer cells, blood vessels inside the cancer tissue, and low oxygen regions were labeled with different fluorescent signals.
  • the confocal microscope according to the present embodiment is a simple transmission image of skin only.
  • the image signal can be obtained by penetrating the deep tissue of the living body.
  • FIG. 10 is a diagram showing the results of continuous imaging while penetrating the inside of cancer tissue located in the deep tissue part of the living body in the depth (z-axis) direction. Referring to FIG. 10, it can be seen that an image up to 6.8 mm deep of a living tissue is obtained.
  • the confocal microscope according to the present embodiment can confirm that imaging of a transmission depth that cannot be taken by a general confocal microscope is possible. have.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

The present invention relates to a confocal microscope and an image processing method using the same. A confocal microscope according to an embodiment of the present invention comprises: a photographing unit for outputting at least two laser light sources having different wavelengths to a photographing region, scanning a light reflected from the photographing region in a confocal manner, and then obtaining a two-dimensional image; an optical probe which is inserted into the photographing region to transfer a light output by the photographing unit to the photographing region and transfer the light reflected from the photographing region to the photographing unit; and a coupling unit for coupling a lens of the photographing unit and the optical probe and controlling a movement of the optical probe.

Description

공초점 현미경 및 이를 이용한 영상 처리 방법Confocal Microscope and Image Processing Method Using the Same
본 발명은 공초점 현미경 및 이를 이용한 영상 처리 방법에 관한 것이다. The present invention relates to a confocal microscope and an image processing method using the same.
공초점 현미경은 깊이 방향의 분해능을 갖는 현미경으로, 시편의 3차원 정보를 얻을 수 있어 각종 산업체와 바이오 분야에서 널리 사용된다. 공초점 현미경은 일반 현미경과 비교하여 약 40% 정도 해상도가 뛰어난 것으로 알려져 있으며, 특히 물리적인 절편을 만들 필요가 없이 3차원 영상 획득이 가능하다는 점에서 그 효용성이 월등하다 할 수 있다. A confocal microscope is a microscope having a resolution in the depth direction, and is widely used in various industries and bio fields because it can obtain three-dimensional information of a specimen. Confocal microscopes are known to have about 40% better resolution than conventional microscopes, and their utility is superior in that they can acquire three-dimensional images without the need for physical sections.
그러나 내 부로 접근이 불가능한 대물 렌즈의 한계 크기와 레이저 광원의 투과 깊이가 충분하지 않은 이유로 살아 있는 동물 모델에서 내부 조직의 구성을 촬영하고 이를 영상화 하기는 어렵다는 한계가 있다. However, it is difficult to photograph and image the composition of internal tissues in a live animal model because of the limited size of the objective lens which cannot be accessed internally and the penetration depth of the laser light source.
이러한 한계점으로 인하여 공초점 현미경을 이용한 세포 영상화 연구는 대부분 피부의 표피 상태만을 관찰하거나, 생체 외 샘플의 조직학적 분석을 통하여 이루어지고 있다. Due to these limitations, cell imaging studies using confocal microscopy are mostly performed by observing the epidermal state of skin or by histological analysis of in vitro samples.
이를 해결하기 위하여 공초점 현미경의 대물 렌즈를 투과한 광원을 소형 렌즈를 통해 조직의 내부로 전달하는 내시 현미경의 방법을 이용하고 있으나, 별도의 통로가 존재하지 않는 피부, 내부 장기 조직으로의 접근이 어렵고, 대물 렌즈에서 소형 렌즈로 광원을 전달하는 과정에서 광원 및 검출 신호의 손실이 발생할 수 있다는 문제점이 있어 이를 개선하기 위한 연구가 지속되고 있다. In order to solve this problem, an endoscopic microscope method is used to transmit a light source transmitted through an objective lens of a confocal microscope into a tissue through a small lens. It is difficult and there is a problem that the loss of the light source and the detection signal may occur in the process of transferring the light source from the objective lens to the small lens has been studied to improve this.
본 발명이 이루고자 하는 기술적 과제는 생체 조직 내부에 미세하게 접근하여 이를 촬영하고, 영상화할 수 있는 공초점 현미경 및 이를 이용한 영상 처리 방법을 제공하는 것이다.The technical problem to be achieved by the present invention is to provide a confocal microscope and an image processing method using the same that can be photographed and imaged finely inside the biological tissue.
본 발명의 실시예에 따른 공초점 현미경은 서로 다른 파장을 갖는 적어도 두 개의 레이저 광원을 촬영 부위로 출력하고, 상기 촬영 부위로부터 반사된 빛을 공초점 방식으로 스캐닝하여 2차원 영상을 획득하는 촬영부, 상기 촬영 부위에 침습하여, 상기 촬영부에서 출력한 빛을 상기 촬영 부위에 전달하고, 상기 촬영 부위로부터 반사된 빛을 상기 촬영부로 전달하는 광학 프로브, 그리고 상기 촬영부의 렌즈와 상기 광학 프로브를 결합시키고, 상기 광학 프로브의 이동을 제어하는 결합부를 포함한다. The confocal microscope according to the embodiment of the present invention outputs at least two laser light sources having different wavelengths to a photographing site, and acquires a two-dimensional image by scanning light reflected from the photographing site in a confocal manner. And an optical probe which invades the photographing part, transmits the light output from the photographing part to the photographing part, and transmits the light reflected from the photographing part to the photographing part, and combines the lens of the photographing part and the optical probe. And a coupling for controlling movement of the optical probe.
상기 광학 프로브는, 생체 내부로 침습하는 니들팁, 그리고 상기 니들팁의 내부에 위치하는 렌즈부를 포함할 수 있다.The optical probe may include a needle tip invading into the living body, and a lens unit positioned inside the needle tip.
상기 렌즈부는, 상기 촬영부 측에 위치하는 커플링렌즈, 상기 촬영 부위 측에 위치하는 영상렌즈, 그리고 상기 커플링렌즈와 상기 영상렌즈의 사이에 위치하는 중계렌즈를 포함할 수 있다. The lens unit may include a coupling lens positioned on the photographing unit side, an image lens positioned on the photographing part side, and a relay lens positioned between the coupling lens and the image lens.
상기 커플링렌즈, 상기 영상렌즈 그리고 상기 중계렌즈는 그린(gradient-index, GRIN) 렌즈로 이루어질 수 있다. The coupling lens, the image lens and the relay lens may be formed of a gradient-index (GRIN) lens.
상기 광학 프로브는, 상기 렌즈부의 끝단에 위치하고, 상기 빛을 반사함으로써, 빛의 진행 방향을 변경하는 거울부를 더 포함할 수 있다. The optical probe may further include a mirror unit positioned at an end of the lens unit and reflecting the light to change a traveling direction of the light.
상기 결합부는 상기 광학 프로브의 x,y축 방향의 이동을 제어하는 x,y축 이동부, 그리고 상기 광학 프로브의 z축 방향의 이동을 제어하는 z축 이동부를 포함할 수 있다.The coupling part may include an x and y axis moving part for controlling the movement of the optical probe in the x and y axis directions, and a z axis moving part for controlling the movement of the optical probe in the z axis direction.
상기 니들팁은 관 형상의 본체를 포함하고, 본체의 일단은 상기 렌즈부의 적어도 일부를 노출하는 개구부를 포함할 수 있다. The needle tip may include a tubular body, and one end of the body may include an opening that exposes at least a portion of the lens unit.
상기 본체의 선단부는 그 단면이 경사를 가질 수 있다. The front end portion of the main body may have an incline in cross section.
상기 선단부의 경사 각도는 1 내지 20도일 수 있다. The inclination angle of the tip portion may be 1 to 20 degrees.
상기 니들팁을 둘러싸는 보호층을 더 포함할 수 있다. A protective layer surrounding the needle tip may be further included.
상기 보호층은 광학 접착 필름으로 이루어질 수 있다. The protective layer may be made of an optical adhesive film.
상기 촬영부는, 서로 다른 파장을 갖는 적어도 두 개의 레이저 광원을 출력하는 광원부, 상기 레이저 광원이 상기 촬영 부위에서 초점을 맺도록 조절되는 대물 렌즈, 상기 촬영부위로부터 관측한 이미지를 읽어 2차원 배열 형태의 스캐닝 이미지를 생성하는 스캔부, 그리고 상기 스캐닝 이미지를 공초점면(confocal plane)에 설치된 슬릿부로 통과시켜 상기 레이저 광원에 의해 여기된 이미지를 생성하는 영상획득부를 포함할 수 있다. The photographing unit may include a light source unit for outputting at least two laser light sources having different wavelengths, an objective lens adjusted to focus the laser light source at the photographing site, and reading an image observed from the photographing site in a two-dimensional array form. It may include a scanning unit for generating a scanning image, and an image acquisition unit for passing the scanning image to a slit portion installed in a confocal plane to generate an image excited by the laser light source.
본 발명의 실시예에 따른 공초점 현미경을 이용한 영상 처리 방법은 피부를 통하여 생체 내 촬영 부위로 광학 프로브를 침습 시키는 단계, 상기 촬영 부위로 레이저 광원을 조사하는 단계, 그리고 상기 촬영 부위로부터 반사한 빛을 전달받아 영상을 획득하는 단계를 포함할 수 있다. An image processing method using a confocal microscope according to an embodiment of the present invention comprises the steps of invading the optical probe to the in vivo imaging area through the skin, irradiating a laser light source to the imaging area, and the light reflected from the imaging site And receiving the received image.
본 발명의 실시예에 따르면 생체 조직 내부에 미세하게 접근하고, 이를 촬영하여 영상화할 수 있다. 본 발명의 실시예에 따르면 광원 및 검출 신호의 손실을 줄일 수 있다. According to the exemplary embodiment of the present invention, the inside of the living tissue may be finely approached and photographed to image it. According to the exemplary embodiment of the present invention, the loss of the light source and the detection signal can be reduced.
도 1은 본 발명의 한 실시예에 따른 공초점 현미경의 개략적인 구성도를 나타내는 도면이다. 1 is a view showing a schematic configuration of a confocal microscope according to an embodiment of the present invention.
도 2는 본 발명의 한 실시예에 따른 공초점 현미경의 세부적인 구성도를 나타내는 도면이다. 2 is a view showing a detailed configuration of the confocal microscope according to an embodiment of the present invention.
도 3은 본 발명의 한 실시예에 따른 공초점 현미경 광학 프로브의 구조를 나타내는 도면이다. 3 is a view showing the structure of a confocal microscope optical probe according to an embodiment of the present invention.
도 4는 본 발명의 한 실시예에 따른 공초점 현미경 광학 프로브를 예시적으로 보여 주는 도면이다. 4 is a diagram illustrating a confocal microscope optical probe according to an embodiment of the present invention.
도 5는 본 발명의 한 실시예에 따른 공초점 현미경 광학 프로브의 구조를 분해한 단면도를 나타내는 도면이다. 5 is an exploded cross-sectional view of a structure of a confocal microscope optical probe according to one embodiment of the present invention.
도 6은 본 발명의 한 실시예에 따른 공초점 현미경 결합부의 구조를 나타내는 도면이다. 6 is a view showing the structure of the confocal microscope coupling portion according to an embodiment of the present invention.
도 7은 본 발명의 한 실시예에 따른 공초점 현미경을 이용한 영상 처리 방법의 흐름을 나타내는 도면이다. 7 is a view showing the flow of an image processing method using a confocal microscope according to an embodiment of the present invention.
도 8 내지 도 10은 본 발명의 한 실시예에 따른 공초점 현미경을 이용하여 획득한 촬영 결과를 나타내는 도면이다. 8 to 10 are diagrams showing photographing results obtained by using a confocal microscope according to an embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise.
이제 본 발명의 실시예에 따른 공초점 현미경에 대하여 도면을 참고로 하여 상세하게 설명한다. A confocal microscope according to an embodiment of the present invention will now be described in detail with reference to the drawings.
도 1은 본 발명의 한 실시예에 따른 공초점 현미경의 개략적인 구성도를 나타내는 도면이고, 도 2는 본 발명의 한 실시예에 따른 공초점 현미경의 세부적인 구성도를 나타내는 도면이다. 1 is a view showing a schematic configuration of a confocal microscope according to an embodiment of the present invention, Figure 2 is a view showing a detailed configuration of a confocal microscope according to an embodiment of the present invention.
도 1을 참고하면, 본 실시예에 따른 공초점 현미경(1)은 촬영부(10), 광학 프로브(20), 결합부(30), 그리고 컴퓨팅부(40)를 포함한다. Referring to FIG. 1, the confocal microscope 1 according to the present embodiment includes a photographing unit 10, an optical probe 20, a coupling unit 30, and a computing unit 40.
촬영부(10)는 도 2에 도시된 바와 같이, 광원부(110), 빔 스플리터(120a, 120b, 120c, 120d), 스캔부(130), 대물렌즈(140), 그리고 영상획득부(150)를 포함할 수 있다. As shown in FIG. 2, the photographing unit 10 includes a light source unit 110, beam splitters 120a, 120b, 120c and 120d, a scan unit 130, an objective lens 140, and an image acquisition unit 150. It may include.
광원부(110)는 촬영부(10)의 여기 광원으로, 촬영 부위를 여기하도록 빛을 조사한다. 광원부(110)는 서로 다른 형광 시료로 표지한 관찰 대상을 촬영하기 위하여 서로 다른 파장을 갖는 두 개 이상의 광원을 포함한다. 본 실시예에서 광원부(110)는 가시광선 대역을 갖는 네 개의 레이저 광원으로 이루어지고, 레이저 광원은 각각 405nm, 488nm 561nm, 그리고 640nm의 파장 대역을 가질 수 있다. 그러나 반드시 이에 한하는 것은 아니며 광원의 개수와 파장은 다양하게 변경될 수 있다. The light source unit 110 is an excitation light source of the image capturing unit 10 and irradiates light to excite the image capturing portion. The light source unit 110 includes two or more light sources having different wavelengths in order to photograph the observation targets labeled with different fluorescent samples. In the present exemplary embodiment, the light source unit 110 may include four laser light sources having a visible light band, and the laser light sources may have wavelength bands of 405 nm, 488 nm, 561 nm, and 640 nm, respectively. However, the present invention is not limited thereto, and the number and wavelength of the light sources may vary.
광원부(110)에서 조사된 빛은 적어도 하나 이상의 빔 스플리터(120a, 120b, 120c, 120d)를 거쳐 스캔부(130)를 통과하고, 다음 대물렌즈(140)와 광학 프로브(20)를 거쳐 생체 조직 내부의 촬영 부위를 조사한다. The light irradiated from the light source unit 110 passes through the scan unit 130 through at least one or more beam splitters 120a, 120b, 120c, and 120d, and then passes through the objective lens 140 and the optical probe 20. Investigate the internal filming site.
광학 프로브(20)는 생체 조직의 피부를 통하여 그 내부로 침습하여, 광원부(110)에서 조사된 빛을 생체 조직 내부의 촬영 부위로 전달하고, 생체 조직 내부로부터 반사된 빛을 다시 촬영부(10)로 전달한다. 광학 프로브(20)의 모양은 다양할 수 있으나, 본 발명에서는 침습이 용이한 바늘(니들) 모양의 광학 프로브를 예로 들어 설명한다.The optical probe 20 invades the inside of the living tissue through the skin of the living tissue, transfers the light irradiated from the light source unit 110 to the imaging area inside the living tissue, and retransmits the reflected light from the inside of the living tissue 10. To pass). The shape of the optical probe 20 may vary, but in the present invention, a needle-shaped optical probe that is easy to invade will be described as an example.
이때, 결합부(30)는 광학 프로브(20)를 촬영부(10)에 고정하도록 결합하는 역할을 하며, 광학 프로브(20)와 결합부(30)의 세부 구성에 대해서는 하기에서 보다 상세하게 설명하도록 한다. At this time, the coupling unit 30 serves to couple the optical probe 20 to the imaging unit 10 to be fixed, and the detailed configuration of the optical probe 20 and the coupling unit 30 will be described in more detail below. Do it.
생체 조직 내부에서 반사된 빛은 광학 프로브(20)를 거쳐 촬영부(10)로 돌아오게 된다. 반사된 빛은 대물렌즈(140), 스캔부(130)를 차례로 통과하여, 영상획득부(150)로 전달된다.The light reflected from inside the biological tissue is returned to the imaging unit 10 through the optical probe 20. The reflected light passes through the objective lens 140 and the scan unit 130 in order, and is transmitted to the image acquisition unit 150.
대물렌즈(140)는 광원부(110)에 의하여 여기된 형광물질의 빛이 들어오는 렌즈로서, 형광 물질로 표지된 촬영 부위의 상이 맺어진 영상신호를 스캔부(130)로 출력한다. 본 실시예에서 대물렌즈(140)는 40배 대물렌즈를 이용하여 250×250um2 의 시야를 갖거나, 20배 대물렌즈를 이용하여 500×500um2 의 시야를 가지도록 설정될 수 있으나, 반드시 이에 한하는 것은 아니며 적절한 배율의 렌즈를 설정하여 다양한 시야를 갖도록 설정될 수 있다. The objective lens 140 is a lens into which the light of the fluorescent material excited by the light source unit 110 enters, and outputs an image signal in which an image of a photographing part labeled with the fluorescent material is formed to the scanning unit 130. In the present embodiment, the objective lens 140 may be set to have a field of view of 250 × 250um 2 using a 40x objective lens or to have a field of view of 500 × 500um 2 using a 20x objective lens. The present invention is not limited thereto and may be set to have various fields of view by setting a lens having an appropriate magnification.
스캔부(130)는 대물렌즈(140)를 통해 입사한 영상신호를 읽어 2차원 배열 형태의 픽셀로 구성한다. 이때 스캔부(130)는 회전 다각 거울(Polygonal Rotation Mirror), 그리고 갈바노 거울(galvanometer mirror)을 포함할 수 있다. 회전 다각 거울은 X-라인을 스캐닝 하고, 갈바노 거울은 Y-라인을 스캐닝한다. The scan unit 130 reads an image signal incident through the objective lens 140 and configures the pixel in a 2D array form. In this case, the scan unit 130 may include a polygonal rotation mirror and a galvanometer mirror. The rotating polygon mirror scans the X-line, and the galvano mirror scans the Y-line.
영상획득부(150)는 스캔부(130)로부터 생성된 스캐닝 이미지 신호를 적어도 하나 이상의 빔 스플리터(151a, 151b, 151c)로 통과시켜 각 파장 대역별로 분리한다. 분리된 스캐닝 이미지 신호는 대역통과필터부(Band Pass Filter, BPF)(152), 집광렌즈(153)를 거쳐 공초점면(confocal plane)에 설치된 슬릿부(154)로 통과하여 광전자증배관(Photomultiplier tube, PMT)(155)으로 전달된다. The image acquisition unit 150 passes the scanning image signal generated by the scan unit 130 to at least one beam splitter 151a, 151b, or 151c and separates each wavelength band. The separated scanning image signal passes through a band pass filter (BPF) 152 and a condensing lens 153 to a slit portion 154 installed in a confocal plane and is a photomultiplier pipe. tube, PMT) (155).
빔 스플리터(151a, 151b, 151c)는 스캔부(130)로부터 생성된 스캐닝 이미지를 분리하여 정렬하는 것으로, 색선별광원분광기(Dichroic Beam Splitte, DBS)로 이루어질 수 있다.The beam splitters 151a, 151b, and 151c separate and arrange the scanning images generated from the scan unit 130, and may be formed of a dichroic beam splitter (DBS).
대역통과필터부(152)는 빔 스플리터(151a, 151b, 151c)로부터 분할된 빛의 경로에 위치하여, 분리된 빛을 획득하여 각각 지정된 가시광선 영역의 스펙트럼 영역의 빛을 통과시킨다. The bandpass filter unit 152 is positioned in a path of light split from the beam splitters 151a, 151b, and 151c, acquires the separated light, and passes the light in the spectral region of the designated visible light region.
광전자증배관(155)은 대역통과필터부(152)로부터 통과된 빛의 경로에 위치하여, 대역통과필터부(152)를 통과한 형광 신호를 감지하고, 전기 신호를 생성하고 이를 컴퓨팅부(40)로 출력한다. The photomultiplier tube 155 is positioned in the path of the light passed from the bandpass filter unit 152, detects the fluorescent signal passing through the bandpass filter unit 152, generates an electric signal, and generates the computing signal 40. )
컴퓨팅부(40)는 촬영부(10)에서 촬영된 영상 신호를 획득한다. 이때, 컴퓨팅부(40)는 물리적으로 의미 있는 결과를 얻기 위하여 촬영 결과값을 보정할 수 있다. The computing unit 40 acquires an image signal photographed by the photographing unit 10. In this case, the computing unit 40 may correct the photographing result in order to obtain a physically meaningful result.
이와 같이 광학 프로브(20)를 포함하는 공초점 현미경(1)은 생체의 피부를 통하여 내부로 직접 침습하여 내부 장기 조직으로의 접근이 가능하고, 광학 프로브(20)의 위치 제어를 통해 조직 내부의 촬영을 자유롭게 제어할 수 있고, 촬영된 조직 내부를 영상화할 수 있다. 또한, 광학 프로브(20)를 포함하는 공초점 현미경(1)은 정확한 위치를 침습할 수 있고, 광섬유의 사용으로 인해 발생할 수 있는 광원 및 검출 신호의 손실을 줄일 수 있다. As described above, the confocal microscope 1 including the optical probe 20 can directly invade the internal organ tissue through the skin of the living body, and can access internal organ tissues. Shooting can be freely controlled and the inside of the photographed tissue can be imaged. In addition, the confocal microscope 1 including the optical probe 20 can invade the exact position and reduce the loss of light source and detection signal that can occur due to the use of the optical fiber.
이하에서는 광학 프로브(20)에 대하여 도 3 내지 도 5를 참고로 하여 상세하게 설명한다. Hereinafter, the optical probe 20 will be described in detail with reference to FIGS. 3 to 5.
도 3은 본 발명의 한 실시예에 따른 공초점 현미경 광학 프로브의 구조를 분해한 단면도를 나타내는 도면이고, 도 4는 본 발명의 한 실시예에 따른 공초점 현미경 광학 프로브를 예시적으로 보여 주는 도면이며, 도 5는 본 발명의 한 실시예에 따른 공초점 현미경 광학 프로브의 구조를 나타내는 도면이다. 3 is an exploded cross-sectional view of a structure of a confocal microscope optical probe according to an embodiment of the present invention, and FIG. 4 is a view showing an example of a confocal microscope optical probe according to an embodiment of the present invention. 5 is a view showing the structure of a confocal microscope optical probe according to an embodiment of the present invention.
도 3에 도시한 바와 같이, 광학 프로브(20)는 니들팁(210), 그리고 렌즈부(220)를 포함한다. As shown in FIG. 3, the optical probe 20 includes a needle tip 210 and a lens unit 220.
니들팁(210)은 촬영 부위 즉, 생체 조직의 심부에 침습하기 위한 구성으로 그 단면이 원 또는 타원인 관 형상의 본체(211)를 가지며, 그 내부는 중공이 형성되어 비어 있을 수 있다. 본체(211)의 내부에는 렌즈부(220)가 위치한다. The needle tip 210 has a tubular body 211 having a circular or elliptical cross section in which the needle tip 210 is infiltrated to the imaging part, that is, the core of the biological tissue, and the inside thereof may be hollow because the hollow is formed. The lens unit 220 is positioned inside the main body 211.
본 실시예에서는 생체 내부로의 침습이 용이하도록 도 3에 도시된 바와 같이 니들팁(210) 본체(211)의 선단부(212)가 소정의 경사를 갖도록 형성될 수 있다. 이때, 그 경사 각도는 1도 내지 20도일 수 있다. In this embodiment, the tip 212 of the needle tip 210 main body 211 may be formed to have a predetermined slope as shown in FIG. 3 to facilitate invasion into the living body. At this time, the inclination angle may be 1 degree to 20 degrees.
본체(211)의 일단은 렌즈부(220)의 적어도 일부를 노출하는 개구부(213)를 포함할 수 있다. 본 실시예에서는 생체 조직 내부의 촬영 부위에 보다 밀착하여 촬영하기 위하여 개구부(213)는 그 단면이 반원 형상을 갖도록 본체(211)의 측면부 일측이 제거되어 형성될 수 있다. One end of the body 211 may include an opening 213 exposing at least a portion of the lens unit 220. In this embodiment, the opening portion 213 may be formed by removing one side of the side portion of the main body 211 so that its cross section has a semi-circular shape in order to capture the image closer to the photographing portion inside the biological tissue.
한편 니들팁(210)의 직경은 0.5mm 내지 1.0mm 로 생체 내부에 저 침습할 수 있고, 그 길이는 10mm 내지 30mm 일 수 있다. Meanwhile, the needle tip 210 may have a diameter of 0.5 mm to 1.0 mm and may be invasive to the inside of the living body, and its length may be 10 mm to 30 mm.
또한 생체 조직의 내부로 침습시 이물질의 유입을 방지하기 이하여, 니들팁(210)의 표면을 둘러싸는 보호층을 더 포함할 수 있다. 이때, 보호층은 광학 접착 필름으로 구성될 수 있다. In addition, to prevent the inflow of foreign matter when invading the inside of the biological tissue, it may further include a protective layer surrounding the surface of the needle tip (210). At this time, the protective layer may be composed of an optical adhesive film.
렌즈부(220)는 광원부(110)에서 조사된 빛을 생체 조직 내부 촬영 부위로 전달하고, 생체 조직 내부에 위치하는 촬영 부위로부터 반사한 빛을 다시 촬영부(10)로 전달한다. The lens unit 220 transmits the light irradiated from the light source unit 110 to the image capturing site inside the biological tissue, and transmits the light reflected from the image capturing site located inside the biological tissue to the image capturing unit 10.
렌즈부(220)는 도 5에 도시된 바와 같이 동일한 직경을 갖는 세 개의 렌즈 구조를 가질 수 있으며, 본 실시예에 따른 렌즈부(220)는 촬영부(10)와 가까운 쪽에 위치하는 커플링렌즈(221), 촬영 부위와 가까운 쪽에 위치하는 영상렌즈(222)와 커플링렌즈(221)와 영상렌즈(222)사이에 위치하는 중계렌즈(223)를 포함할 수 있다. The lens unit 220 may have three lens structures having the same diameter as shown in FIG. 5, and the lens unit 220 according to the present exemplary embodiment is a coupling lens positioned near the photographing unit 10. And a relay lens 223 positioned between the coupling lens 221 and the image lens 222.
각각의 렌즈는 그린(gradient-index, GRIN) 렌즈로 이루어질 수 있으며, 커플링렌즈(221)와 영상렌즈(222)의 NA(Numerical Aperture)는 0.45 내지 0.55이고, 중계렌즈(223)의 NA는 0.15 내지 0.25일수 있다. Each lens may be formed of a gradient-index (GRIN) lens, and the NA (Numerical Aperture) of the coupling lens 221 and the image lens 222 is 0.45 to 0.55, and the NA of the relay lens 223 is 0.15 to 0.25.
광학 프로브(20)는 도 5에 도시한 바와 같이, 영상 렌즈(222)의 말단부에 부착되는 거울부(230)를 더 포함할 수 있다. 거울부(230)는 빛을 반사시켜 빛의 진행 경로를 변경한다. 거울부(230)는 알루미늄 코팅될 수 있으며, 렌즈부(220)를 통과한 레이저 광원을 회선시켜 촬영 부위로 조사한다. As shown in FIG. 5, the optical probe 20 may further include a mirror 230 attached to the distal end of the image lens 222. The mirror unit 230 reflects light to change a path of light. The mirror unit 230 may be coated with aluminum, and the laser light source passing through the lens unit 220 is irradiated to the photographing site.
거울부(230)는 렌즈부(220)의 길이 방향과 45도 각도를 이루며 배치되어 레이저 광원이 렌즈부(220)를 통과하는 제1 방향과 수직하는 제2 방향으로 레이저 광원의 진행 방향을 변경할 수 있다. 그러나 반드시 이에 한하는 것은 아니며 거울부(230)는 다양한 방향으로 배치되어 레이저 광원의 진행 방향을 변경할 수 있다. 이에 따라, 본 실시예에 따른 공초점 현미경(1)은 니들팁(210)이 생체 조직으로 침습하는 깊이 방향뿐 아니라, 다양한 방향의 촬영 부위에 레이저 광원을 조사하고, 이로부터 반사된 빛을 전달 받아 영상을 획득할 수 있다. The mirror unit 230 is disposed at an angle of 45 degrees to the longitudinal direction of the lens unit 220 to change the traveling direction of the laser light source in a second direction perpendicular to the first direction through which the laser light source passes through the lens unit 220. Can be. However, the present invention is not limited thereto, and the mirror unit 230 may be disposed in various directions to change a traveling direction of the laser light source. Accordingly, the confocal microscope 1 according to the present embodiment irradiates a laser light source to a photographing site in various directions as well as a depth direction in which the needle tip 210 invades living tissue, and transmits light reflected therefrom. Receive the image.
이하에서는 결합부(30)에 대하여 도 6을 참고로 하여 상세하게 설명한다. 도 6은 본 실시예에 따른 공초점 현미경의 결합부 구조를 나타내는 도면이다. Hereinafter, the coupling unit 30 will be described in detail with reference to FIG. 6. 6 is a view showing the structure of the coupling portion of the confocal microscope according to the present embodiment.
도 6을 참고하면, 본 실시예에 따른 결합부(30)는, 플레이트(311), 막대부(312), 및 어댑터(313)로 구성되는 본체부, x,y축 이동부(320), z축 이동부(330), 그리고 프로브홀더(340)을 포함한다. Referring to FIG. 6, the coupling part 30 according to the present exemplary embodiment may include a main body part, an x and y axis moving part 320, including a plate 311, a rod part 312, and an adapter 313. It includes a z-axis moving unit 330, and the probe holder 340.
x,y축 이동부(320)는 광학 프로브(20)의 평면 방향(x, y축)의 이동을 제어하고, z축 이동부(330)는 광학 프로브(20)의 깊이(높이) 방향(z축)의 이동을 제어한다. 이에 따라 본 실시예에 따른 공초점 현미경(1)은 광학 프로브(20)의 3축 방향으로의 이동을 미세하고, 정확하게 제어함으로써, 원하는 부위의 체내 조직을 촬영할 수 있다. The x, y-axis moving part 320 controls the movement of the planar direction (x, y-axis) of the optical probe 20, and the z-axis moving part 330 is a depth (height) direction (of the optical probe 20) ( z-axis) control. Accordingly, the confocal microscope 1 according to the present embodiment finely and accurately controls the movement in the three-axis direction of the optical probe 20, so that the body tissue of the desired site can be photographed.
프로브 홀더(340)는 광학 프로브(20)의 위치를 촬영부(10)에 고정하는 것으로, 촬영 부위를 영상화 하는 동안 광학 프로브(20)의 움직임을 방지할 수 있다. The probe holder 340 fixes the position of the optical probe 20 to the photographing unit 10, and may prevent the movement of the optical probe 20 while imaging the photographed portion.
도 7은 본 발명의 한 실시예에 따른 공초점 현미경을 이용한 영상 처리 방법의 흐름을 나타내는 도면이다. 7 is a view showing the flow of an image processing method using a confocal microscope according to an embodiment of the present invention.
도 7을 참고하면, 본 발명의 한 실시예에 따른 공초점 현미경은 피부를 통하여 생체 내 촬영 부위로 광학 프로브(20)를 침습시킨다(S100). 광학 프로브(20)는 생체 내부로의 침입이 용이하도록 경사진 선단부(212)를 갖는 니들팁(210)을 포함할 수 있다.Referring to FIG. 7, the confocal microscope according to the embodiment of the present invention invades the optical probe 20 to the in vivo photographing site through the skin (S100). The optical probe 20 may include a needle tip 210 having an inclined tip portion 212 to facilitate penetration into the living body.
니들팁(210)은 생체 내부의 촬영 부위와 밀착하여 영상을 획득하기 위하여, 그 단면이 반원 형상을 갖도록 측면부의 일측을 제거하여 형성한 개구부(213)를 포함할 수 있다.  The needle tip 210 may include an opening 213 formed by removing one side of the side part such that its cross section has a semi-circle shape in order to obtain an image in close contact with a photographed part of the living body.
또한, 니들팁(210)은 생체 조직 내부로 침투시 이물질의 유입을 방지하기 위하여 그 외부 표면을 둘러싸는 보호층을 더 포함할 수 있다. In addition, the needle tip 210 may further include a protective layer surrounding the outer surface of the needle tip to prevent foreign substances from infiltrating into the biological tissue.
다음, 생체 조직 내부의 촬영 부위로 레이저 광원을 조사한다(S200). 레이저 광원은 촬영부(10)의 광원부(110)에서 조사되며, 각각 405nm, 488nm, 561nm, 그리고 640nm의 파장 대역을 가질 수 있다. 레이저 광원은 광학 프로브(20)의 렌즈부(200)를 통하여 생체 조직 내부의 촬영 부위로 전달될 수 있다. Next, the laser light source is irradiated to the imaging area inside the biological tissue (S200). The laser light source is irradiated from the light source unit 110 of the imaging unit 10, and may have a wavelength band of 405nm, 488nm, 561nm, and 640nm, respectively. The laser light source may be transmitted to the imaging area inside the biological tissue through the lens unit 200 of the optical probe 20.
그 다음, 촬영 부위로부터 반사된 광을 전달받아 영상을 획득한다(S300). 생체 조직 내부에서 반사된 빛은 광학 프로브(20)를 거쳐 촬영부(10)로 돌아오게 된다. 반사된 빛은 대물 렌즈(140), 스캔부(130)를 차례로 통과하여 영상획득부(150)로 전달됨으로써, 공초점 현미경은 촬영 부위의 영상을 획득할 수 있다. Then, the light is received from the photographed portion receives the image (S300). The light reflected from inside the biological tissue is returned to the imaging unit 10 through the optical probe 20. The reflected light passes through the objective lens 140 and the scan unit 130 in order to be transferred to the image acquisition unit 150, whereby the confocal microscope can acquire an image of the photographed portion.
본 발명의 실시예에 따른 공초점을 이용한 영상 처리 방법은 생체의 피부를 통하여 내부로 직접 침습하고 이를 영상화 함으로써, 내부 장기 조직을 직접 촬영한 영상을 획득 할 수 있으며, 광섬유의 사용으로 인해 발생할 수 있는 광원 및 검출 신호의 손실을 줄일 수 있다. In the image processing method using confocal according to an embodiment of the present invention, by directly invading through the skin of the living body and imaging it, it is possible to obtain an image of directly photographing internal organ tissues, which may occur due to the use of optical fibers. The loss of the light source and the detection signal can be reduced.
도 8 내지 도 10은 본 발명의 한 실시예에 따른 공초점 현미경을 이용하여 획득한 촬영 결과를 나타내는 도면이다.8 to 10 are diagrams showing photographing results obtained by using a confocal microscope according to an embodiment of the present invention.
도 8은 피부의 표면에서 깊이 방향으로 니들팁(210)을 삽입하면서 피부의 표피와 진피 내에 존재하는 체세포와 혈관을 연속적으로 촬영하여 영상화한 촬영 결과를 나타낸 도면이다. 이때, 체세포는 녹색 형광 신호로 표지하고, 혈관은 적색 형광 신호로 표지하였다. FIG. 8 is a view illustrating imaging results obtained by continuously photographing somatic cells and blood vessels existing in the epidermis and dermis of the skin while inserting the needle tip 210 in the depth direction from the surface of the skin. At this time, somatic cells were labeled with a green fluorescent signal, and blood vessels were labeled with a red fluorescent signal.
피부는 최외곽 층의 상피 세포인 표피와 기저부, 진피, 그리고 피하 조직으로 구성되어 있는데, 도 8을 참고하면 일반적인 광학 현미경만으로는 침투하여 영상화 할 수 없었던 피부의 기저부에 위치한 진피층의 혈관과 세포의 분포를 영상화 한 것을 확인할 수 있다. The skin is composed of the epidermis, the basement, the dermis, and the subcutaneous tissue, which are epithelial cells of the outermost layer. Referring to FIG. You can see that the image.
도 9는 생체의 조직 심부 내에 위치하는 암 조직 내부를 촬영하여 영상화한 촬영 결과를 나타내는 도면이다. 조직 내부의 효과적인 영상화를 수행하기 위하여 본 실시예에서는 암세포와 암 조직 내부의 혈관, 저 산소 영역을 각기 다른 형광 신호로 표지하였다. FIG. 9 is a diagram illustrating a photographing result obtained by photographing and imaging an inside of a cancer tissue located in a deep tissue part of a living body. In order to perform effective imaging inside the tissue, in this embodiment, cancer cells, blood vessels inside the cancer tissue, and low oxygen regions were labeled with different fluorescent signals.
도 9를 참고하면, 녹색으로 표지한 암세포와 적색으로 표지한 암 조직 내부의 혈관, 청색으로 표지한 저 산소 영역의 영상을 촬영하였고, 본 실시예에 따른 공초점 현미경은 단순한 피부의 투과 촬영뿐 아니라, 생체의 조직 심부에 침투하여 영상 신호를 획득할 수 있음을 확인할 수 있다. Referring to FIG. 9, images of cancer cells labeled with green and blood vessels inside with cancer tissues labeled with red and low oxygen regions labeled with blue were photographed. The confocal microscope according to the present embodiment is a simple transmission image of skin only. In addition, it can be seen that the image signal can be obtained by penetrating the deep tissue of the living body.
도 10은 생체의 조직 심부 내에 위치하는 암 조직 내부를 깊이(z축) 방향으로 침투하면서 연속하여 촬영한 결과를 나타내는 도면이다. 도 10을 참고하면, 생체 조직의 6.8mm 깊이까지의 영상을 획득한 것을 확인할 수 있으며, 본 실시예에 따른 공초점 현미경은 일반적인 공초점 현미경으로는 촬영이 불가능한 투과 깊이의 영상화가 가능한 것을 확인할 수 있다. FIG. 10 is a diagram showing the results of continuous imaging while penetrating the inside of cancer tissue located in the deep tissue part of the living body in the depth (z-axis) direction. Referring to FIG. 10, it can be seen that an image up to 6.8 mm deep of a living tissue is obtained. The confocal microscope according to the present embodiment can confirm that imaging of a transmission depth that cannot be taken by a general confocal microscope is possible. have.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (13)

  1. 서로 다른 파장을 갖는 적어도 두 개의 레이저 광원을 촬영 부위로 출력하고, 상기 촬영 부위로부터 반사된 빛을 공초점 방식으로 스캐닝하여 2차원 영상을 획득하는 촬영부, A photographing unit which outputs at least two laser light sources having different wavelengths to a photographing part, and acquires a 2D image by scanning light reflected from the photographing part by a confocal method;
    상기 촬영 부위에 침습하여, 상기 촬영부에서 출력한 빛을 상기 촬영 부위에 전달하고, 상기 촬영 부위로부터 반사된 빛을 상기 촬영부로 전달하는 광학 프로브, 그리고An optical probe which invades the photographing part, transmits the light output from the photographing part to the photographing part, and transmits the light reflected from the photographing part to the photographing part;
    상기 촬영부의 렌즈와 상기 광학 프로브를 결합시키고, 상기 광학 프로브의 이동을 제어하는 결합부를 포함하고,A coupling unit for coupling the lens of the photographing unit and the optical probe and controlling the movement of the optical probe,
    상기 광학 프로브는 니들 형상을 갖는 공초점 현미경. The optical probe has a needle shape confocal microscope.
  2. 제1항에서, In claim 1,
    상기 광학 프로브는,The optical probe,
    생체 내부로 침습하는 니들팁, 그리고 A needle tip that invades the living body, and
    상기 니들팁의 내부에 위치하는 렌즈부를 포함하는 공초점 현미경. Confocal microscope including a lens portion located inside the needle tip.
  3. 제2항에서,In claim 2,
    상기 렌즈부는, The lens unit,
    상기 촬영부 측에 위치하는 커플링렌즈, A coupling lens positioned on the photographing unit side;
    상기 촬영 부위 측에 위치하는 영상렌즈, 그리고An image lens positioned at the side of the photographing portion, and
    상기 커플링렌즈와 상기 영상렌즈의 사이에 위치하는 중계렌즈를 포함하는 공초점 현미경. A confocal microscope comprising a relay lens positioned between the coupling lens and the image lens.
  4. 제3항에서,In claim 3,
    상기 커플링렌즈, 상기 영상렌즈 그리고 상기 중계렌즈는 그린(gradient-index, GRIN) 렌즈로 이루어진 공초점 현미경.The coupling lens, the image lens and the relay lens is a confocal microscope consisting of a gradient (index-index, GRIN) lens.
  5. 제2항에서,In claim 2,
    상기 광학 프로브는, The optical probe,
    상기 렌즈부의 끝단에 위치하고, 상기 빛을 반사함으로써, 빛의 진행 방향을 변경하는 거울부를 더 포함하는 공초점 현미경. Located at the end of the lens portion, by reflecting the light, the confocal microscope further comprises a mirror for changing the direction of travel of the light.
  6. 제1항에서,In claim 1,
    상기 결합부는 상기 광학 프로브의 x,y축 방향의 이동을 제어하는 x,y축 이동부, 그리고The coupling unit, x, y-axis moving unit for controlling the movement in the x, y axis direction of the optical probe, and
    상기 광학 프로브의 z축 방향의 이동을 제어하는 z축 이동부를 포함하는 공초점 현미경.A confocal microscope including a z-axis moving unit for controlling the movement in the z-axis direction of the optical probe.
  7. 제2항에서,In claim 2,
    상기 니들팁은 관 형상의 본체를 포함하고, 본체의 일단은 상기 렌즈부의 적어도 일부를 노출하는 개구부를 포함하는 공초점 현미경.The needle tip includes a tubular body and one end of the body includes an opening that exposes at least a portion of the lens portion.
  8. 제7항에서,In claim 7,
    상기 본체의 선단부는 그 단면이 경사를 갖는 공초점 현미경.A confocal microscope having a tip of the main body having an inclined cross section.
  9. 제8항에서,In claim 8,
    상기 선단부의 경사 각도는 1 내지 20도인 공초점 현미경.The inclination angle of the tip portion is a confocal microscope of 1 to 20 degrees.
  10. 제2항에서,In claim 2,
    상기 니들팁을 둘러싸는 보호층을 더 포함하는 공초점 현미경.A confocal microscope further comprising a protective layer surrounding the needle tip.
  11. 제10항에서,In claim 10,
    상기 보호층은 광학 접착 필름으로 이루어지는 공초점 현미경.The protective layer is a confocal microscope composed of an optical adhesive film.
  12. 제1항에서, In claim 1,
    상기 촬영부는, The photographing unit,
    서로 다른 파장을 갖는 적어도 두 개의 레이저 광원을 출력하는 광원부,A light source unit for outputting at least two laser light sources having different wavelengths,
    상기 레이저 광원이 상기 촬영 부위에서 초점을 맺도록 조절되는 대물 렌즈, An objective lens in which the laser light source is adjusted to focus at the photographing site;
    상기 촬영부위로부터 관측한 이미지를 읽어 2차원 배열 형태의 스캐닝 이미지를 생성하는 스캔부, 그리고A scanning unit which reads the image observed from the photographing site and generates a scanning image in a 2D array form, and
    상기 스캐닝 이미지를 공초점면(confocal plane)에 설치된 슬릿부로 통과시켜 상기 레이저 광원에 의해 여기된 이미지를 생성하는 영상획득부를 포함하는 공초점 현미경. And an image acquisition unit for passing the scanning image to a slit unit installed in a confocal plane to generate an image excited by the laser light source.
  13. 공초점 현미경을 이용한 영상 처리 방법으로써,As an image processing method using a confocal microscope,
    피부를 통하여 생체 내 촬영 부위로 광학 프로브를 침습 시키는 단계,Invading the optical probe through the skin to the in vivo imaging area,
    상기 촬영 부위로 서로 다른 파장을 갖는 적어도 두 개의 레이저 광원을 조사하는 단계, 그리고Irradiating at least two laser light sources having different wavelengths to the imaging area, and
    상기 촬영 부위로부터 반사한 빛을 전달받아 영상을 획득하는 단계를 포함하는 공초점 현미경을 이용한 영상 처리 방법.The image processing method using a confocal microscope comprising the step of obtaining an image by receiving the light reflected from the photographed portion.
PCT/KR2016/010818 2015-08-04 2016-09-27 Confocal microscope and image processing method using same WO2017104949A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20150109841 2015-08-04
KR10-2015-0179848 2015-12-16
KR1020150179848A KR101898220B1 (en) 2015-08-04 2015-12-16 Confocal microscopy and method of processing image using the same

Publications (1)

Publication Number Publication Date
WO2017104949A1 true WO2017104949A1 (en) 2017-06-22

Family

ID=58121124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010818 WO2017104949A1 (en) 2015-08-04 2016-09-27 Confocal microscope and image processing method using same

Country Status (2)

Country Link
KR (1) KR101898220B1 (en)
WO (1) WO2017104949A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109965987A (en) * 2019-02-20 2019-07-05 广州乔铁医疗科技有限公司 Visor outside a kind of robot with common focus point migration function
CN113242715A (en) * 2018-10-17 2021-08-10 韩国科学技术院 Microscopic image acquisition system and microscopic image providing method for deep tissue in vivo

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102355866B1 (en) * 2018-08-30 2022-01-25 성균관대학교산학협력단 Miniature image relay endoscopy probe and multi-photon endoscopy including the same
KR102258893B1 (en) * 2019-11-28 2021-05-31 재단법인대구경북과학기술원 Vertical resolution optimization device of endomicroscope, the system and the method thereof
KR20210100253A (en) 2020-02-05 2021-08-17 삼성디스플레이 주식회사 Apparatus for optical instection
KR20230059228A (en) 2021-10-26 2023-05-03 포항공과대학교 산학협력단 Device and method for imaging and examining cells on the surface of living tissue using moxifloxacin
KR102579826B1 (en) * 2022-12-09 2023-09-18 (주) 브이픽스메디칼 Method, apparatus and system for providing medical diagnosis assistance information based on artificial intelligence
KR102643066B1 (en) * 2022-12-09 2024-03-04 (주) 브이픽스메디칼 Method, apparatus and system for providing medical diagnosis assistance information using pseudo coloring based on artificial intelligence

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317437A (en) * 2003-04-18 2004-11-11 Olympus Corp Optical imaging apparatus
JP2010503884A (en) * 2006-09-14 2010-02-04 パーキンエルマー・シンガポール・プライベート・リミテッド Improved scanning confocal microscopy and related technologies
US20120184842A1 (en) * 2009-09-17 2012-07-19 Mauna Kea Technologies Method, an optical probe and a confocal microscopy system for inspecting a solid organ
US20120268578A1 (en) * 2009-08-26 2012-10-25 Tomophase Corporation Optical tissue imaging based on optical frequency domain imaging
JP5552050B2 (en) * 2008-06-27 2014-07-16 テルモ株式会社 Indwelling needle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1928306B1 (en) * 2005-09-29 2021-01-13 General Hospital Corporation Optical coherence tomography systems and methods including fluorescence microscopic imaging of one or more biological structures
JP2014202550A (en) * 2013-04-03 2014-10-27 オリンパス株式会社 Optical analytic device and optical analytic method using single light emission particle detection in plural wavelength bands

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317437A (en) * 2003-04-18 2004-11-11 Olympus Corp Optical imaging apparatus
JP2010503884A (en) * 2006-09-14 2010-02-04 パーキンエルマー・シンガポール・プライベート・リミテッド Improved scanning confocal microscopy and related technologies
JP5552050B2 (en) * 2008-06-27 2014-07-16 テルモ株式会社 Indwelling needle
US20120268578A1 (en) * 2009-08-26 2012-10-25 Tomophase Corporation Optical tissue imaging based on optical frequency domain imaging
US20120184842A1 (en) * 2009-09-17 2012-07-19 Mauna Kea Technologies Method, an optical probe and a confocal microscopy system for inspecting a solid organ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242715A (en) * 2018-10-17 2021-08-10 韩国科学技术院 Microscopic image acquisition system and microscopic image providing method for deep tissue in vivo
CN109965987A (en) * 2019-02-20 2019-07-05 广州乔铁医疗科技有限公司 Visor outside a kind of robot with common focus point migration function

Also Published As

Publication number Publication date
KR101898220B1 (en) 2018-09-12
KR20170016773A (en) 2017-02-14

Similar Documents

Publication Publication Date Title
WO2017104949A1 (en) Confocal microscope and image processing method using same
CN101909509B (en) Multi-path, multi-magnification, non-confocal fluorescence emission endoscopy apparatus and methods
Yin et al. Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology
JP7109031B2 (en) A system for axially resolved light collection from tapered waveguides
US8705184B2 (en) Multi-path, multi-magnification, non-confocal fluorescence emission endoscopy apparatus and methods
US20200367735A1 (en) Imaging system and method using multicore fiber
US20130324858A1 (en) Multi-path, multi-magnification, non-confocal fluorescence emission endoscopy apparatus and methods
Lane et al. Confocal fluorescence microendoscopy of bronchial epithelium
CN112834410B (en) Sheet light microscopic imaging method and device based on double-core optical fiber light control
US20210231942A1 (en) System for in vivo microscopic imaging of deep tissue, and microscopic imaging method
Koucky et al. Axial response of high-resolution microendoscopy in scattering media
Wei et al. Dual-axis confocal microscopy for point-of-care pathology
CN112816449B (en) Dual-wavelength dual-scale nano-drug living body imaging system and time sequence control method
Thapa et al. Field portable grin-lens based micro-endoscopic system with oblique-illumination for cancer screening
WO2018021717A1 (en) Endomicroscopic coupling module
JP3255373B2 (en) In vivo measuring device
WO2020080721A1 (en) Microscopic image acquisition system of in-vivo deep tissue and microscopic image providing method therefor
Cha et al. Gene transfection efficacy assessment of human cervical cancer cells using dual-mode fluorescence microendoscopy
EP2140292A2 (en) Optical biopsy device
CN113390844A (en) Multi-scale optical fiber fluorescence microscopic imaging system
CN113533277A (en) Light sheet fluorescence microscopic imaging method and device based on four-core optical fiber active light control
CN109758098B (en) Variable focal length type cavity endoscope detection device and laser scanning cavity endoscope
Shi et al. Fast confocal endomicroscopy based on multi-fiber parallel scanning
Gmitro et al. Optical biopsy with confocal microendoscopy
WO2023137131A1 (en) Miniature multispectral fluorescence imaging and cell collection probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875891

Country of ref document: EP

Kind code of ref document: A1