WO2017104562A1 - Solder powder, method for manufacturing same, and method for preparing solder paste using this powder - Google Patents

Solder powder, method for manufacturing same, and method for preparing solder paste using this powder Download PDF

Info

Publication number
WO2017104562A1
WO2017104562A1 PCT/JP2016/086694 JP2016086694W WO2017104562A1 WO 2017104562 A1 WO2017104562 A1 WO 2017104562A1 JP 2016086694 W JP2016086694 W JP 2016086694W WO 2017104562 A1 WO2017104562 A1 WO 2017104562A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
solder
copper
tin
nickel
Prior art date
Application number
PCT/JP2016/086694
Other languages
French (fr)
Japanese (ja)
Inventor
隆二 植杉
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020187019019A priority Critical patent/KR102189367B1/en
Priority to CN201680080194.8A priority patent/CN108602121B/en
Publication of WO2017104562A1 publication Critical patent/WO2017104562A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding

Definitions

  • the ratio of the activator is less than the lower limit value, the solder powder may not be melted and a sufficient bonding strength may not be obtained.
  • the upper limit value is exceeded, the activator may become solder powder during storage. This may cause a problem that the storage stability of the solder paste is lowered.
  • a viscosity stabilizer may be added to the solder flux. Examples of the viscosity stabilizer include polyphenols that can be dissolved in a solvent, phosphoric acid compounds, sulfur compounds, tocophenols, tocophenol derivatives, ascorbic acid, and ascorbic acid derivatives. If there are too many viscosity stabilizers, problems such as a decrease in the meltability of the solder powder may occur.
  • the amount of solder flux mixed when preparing the solder paste is preferably such that the proportion of the flux in 100% by mass of the prepared paste is 5 to 30% by mass. If it is less than the lower limit, it becomes difficult to form a paste due to insufficient flux, while if it exceeds the upper limit, the content of the flux in the paste is too high and the content of metal is reduced, and solder bumps of the desired size when melting the solder This is because it becomes difficult to obtain.
  • solder paste is made of the above-described solder powder of the present invention, melting at the time of reflow is fast and excellent in meltability, and after reflow, the melting solder powder forms an intermetallic compound having a high melting point, Since heat resistance increases, remelting due to heat hardly occurs. For this reason, the solder paste of the present invention can be suitably used for mounting electronic parts and the like exposed to a high temperature atmosphere.
  • the supernatant was discarded, and 100 mL of water was added thereto, followed by stirring for 10 minutes at a rotational speed of 300 rpm, and washing was performed four times. . Finally, this is dried in a vacuum dryer, the average particle size is 1.1 ⁇ m, copper is the central core, nickel is the first coating layer (diffusion prevention layer), and tin is the second coating layer. Solder powder formed on each (outermost layer) was obtained.
  • polyvinyl alcohol 500 polyvinyl alcohol having an average molecular weight of 500
  • copper powder having an average particle size of 0.18 ⁇ m is dispersed.
  • the dispersion was added and stirred at a rotational speed of 500 rpm for 10 minutes to obtain a dispersion in which nickel-coated copper powder having nickel deposited on the surface of the copper powder was dispersed.
  • the dispersion was allowed to stand for 60 minutes, and the produced powder was allowed to settle.
  • the ratio of the thickness of the diffusion prevention layer and the radius of the central core exceeds 0.51
  • the nickel ratio becomes too high and the meltability of the solder powder is lowered, so that the bonding strength may be impossible.
  • the coating layer made of tin was formed by barrel plating
  • a large amount of strongly agglomerated powder was generated. Therefore, the average particle size of the solder powder obtained using the laser diffraction scattering method was measured by SEM observation. While the value greatly different from the average particle size of the solder powder obtained was obtained, a good printed film could not be obtained, and the bonding strength could not be measured in any sample.
  • the present invention can be suitably used for producing solder powder that can be stored for a long period of time. Moreover, it can utilize suitably for mounting of electronic components, especially mounting of electronic components exposed to a high temperature atmosphere.

Abstract

In the present invention, a nickel metal salt is added to and mixed with a dispersion of copper powder, and the metal salt is dissolved to obtain a first solution in which the copper powder is dispersed. After adjusting the pH of the solution, a first reducing agent is added and mixed so as to reduce the nickel ions, and a dispersion is obtained in which the precipitated nickel coats the copper powder and is dispersed. This solution is subjected to solid-liquid separation and the solids are dried to obtain a metal powder in which copper nuclei are coated with a diffusion preventing layer made of nickel. A tin metal salt is added to and mixed with a dispersion liquid of the metal powder, and the metal salt is dissolved to obtain a second solution in which the metal powder is dispersed. After adjusting the pH of the solution, a second reducing agent is added and mixed so as to reduce the tin ions, and a dispersion is obtained in which the precipitated tin coats the metal powder and is dispersed. This solution is subjected to solid-liquid separation and the solids are dried to obtain a solder powder in which the metal powder is coated with a tin layer.

Description

ハンダ粉末及びその製造方法並びにこの粉末を用いたハンダ用ペーストの調製方法Solder powder, method for producing the same, and method for preparing solder paste using the powder
 本発明は、電子部品等の実装に用いられる、中心核が銅からなり、被覆層が錫層を含むハンダ粉末及びその製造方法並びにこの粉末を用いたハンダ用ペーストの調製方法に関する。なお、本国際出願は、2015年12月15日に出願した日本国特許出願第244270号(特願2015-244270)に基づく優先権を主張するものであり、特願2015-244270の全内容を本国際出願に援用する。 The present invention relates to a solder powder used for mounting electronic components and the like, the core of which is made of copper, and a coating layer containing a tin layer, a manufacturing method thereof, and a method of preparing a solder paste using this powder. Note that this international application claims priority based on Japanese Patent Application No. 244270 (Japanese Patent Application No. 2015-244270) filed on December 15, 2015. Incorporated into this international application.
 従来、中心核が銅からなり、被覆層が錫からなる、平均粒径が5μm以下のハンダ粉末が開示されている(例えば、特許文献1参照。)。このハンダ粉末は、環境の面から鉛フリーであって、微細であるため、印刷性に優れる。また中心核を構成する金属元素を銅とすることにより、リフロー時に被覆層のみならず中心核が溶融してCu-Sn合金を形成するため、形成されるCu-Sn合金により、ハンダの機械的強度が向上する。 Conventionally, a solder powder having an average particle diameter of 5 μm or less, in which the central core is made of copper and the coating layer is made of tin, has been disclosed (for example, see Patent Document 1). This solder powder is excellent in printability because it is lead-free and fine in terms of environment. Further, by using copper as the metal element constituting the central core, not only the coating layer but also the central core melts during reflow to form a Cu—Sn alloy. Strength is improved.
  しかしながら、特許文献1に記載された中心核が銅からなり、被覆層が錫からなるハンダ粉末は、ハンダ粉末を製造後、長期間保管すると、銅の錫への拡散係数が錫の銅への拡散係数よりも大きいため、中心核の銅が被覆層の錫に拡散し、中心核と被覆層の間にCuSn、CuSn等の融点の高い金属間化合物層を形成するか、又は中心核のすべての銅が被覆層の錫中に拡散し、被覆層全体が銅と錫との金属間化合物となるおそれがあった。 However, the solder powder in which the central core described in Patent Document 1 is made of copper and the coating layer is made of tin, when the solder powder is manufactured and stored for a long period of time, the diffusion coefficient of copper to tin becomes smaller than that of tin to copper. Since the diffusion coefficient is larger, the central core copper diffuses into the tin of the coating layer, and an intermetallic compound layer having a high melting point such as Cu 3 Sn or Cu 6 Sn 5 is formed between the central core and the coating layer, Alternatively, all the copper in the central core may diffuse into the tin of the coating layer, and the entire coating layer may become an intermetallic compound of copper and tin.
 この点を解決するため、Cuボールで構成される核層と、この核層を被覆する錫を主成分としたはんだ層とを備え、Cuボールとはんだ層との間にNiで構成された拡散防止層が形成されたCu核ボールが開示されている(例えば、特許文献2参照。)。この拡散防止層はCuボールを構成するCuがはんだ層に拡散することを防止する。この特許文献2には、Cuボールにはんだ層を形成する方法として、公知のバレルめっき等の電解めっき法、めっき槽に接続されたポンプがめっき槽中にめっき液に高速乱流を発生させ、めっき液の乱流によりCuボールにめっき被膜を形成する方法、めっき槽に振動板を設けて所定の周波数で振動させることによりめっき液が高速乱流攪拌され、めっき液の乱流によりCuボールにめっき被膜を形成する方法等が示され、CuボールにNiめっきを被覆した後、はんだ層を形成することが開示されている。 In order to solve this problem, a diffusion layer made of Ni is provided between the Cu ball and the solder layer, including a core layer made of Cu balls and a solder layer mainly composed of tin covering the core layer. A Cu core ball in which a prevention layer is formed is disclosed (for example, see Patent Document 2). This diffusion prevention layer prevents Cu constituting the Cu ball from diffusing into the solder layer. In Patent Document 2, as a method of forming a solder layer on a Cu ball, a known electrolytic plating method such as barrel plating, a pump connected to a plating tank generates a high-speed turbulent flow in the plating solution, A method of forming a plating film on a Cu ball by turbulent plating solution, a plating plate is vibrated at a predetermined frequency by providing a vibration plate in a plating tank, and the plating solution is stirred at high speed turbulence. A method of forming a plating film is shown, and it is disclosed that a solder layer is formed after coating a Cu ball with Ni plating.
  また特許文献2には、はんだ層がSnを40%以上含有し、Geを20ppm以上220ppm以下含有することが記載され、直径100μmのCuボールに膜厚(片側)2μmのNiめっきを被覆した後、膜厚(片側)18μmのSn-Ag-Cu-Geはんだめっき被膜を形成し、直径約140μmのCu核ボールが示される。 Patent Document 2 describes that the solder layer contains Sn of 40% or more and Ge of 20 ppm or more and 220 ppm or less, and after coating a Cu ball having a diameter of 100 μm with a Ni plating with a film thickness (one side) of 2 μm. A Sn-Ag-Cu-Ge solder plating film having a film thickness (one side) of 18 μm is formed, and a Cu core ball having a diameter of about 140 μm is shown.
特開2008-138266号公報(請求項1、段落[0005]、段落[0014])JP 2008-138266 A (Claim 1, paragraph [0005], paragraph [0014]) 特許第5652560号公報(請求項1、段落[0033]、段落[0035]、段落[0067]、段落[0068])Japanese Patent No. 5562560 (Claim 1, paragraph [0033], paragraph [0035], paragraph [0067], paragraph [0068])
 しかしながら、特許文献2に記載されているように、バレルめっき法等のNiめっきによりNiで構成された拡散防止層でCuボールを被覆する方法では、ボール同士の密着により凝集したボールを形成し易く、まためっき被膜の膜厚にばらつきが生じ易い不具合があった。また特許文献2に示されるCu核ボールのNiからなる拡散防止層はその厚さがCuボール(銅核)の半径を1とするときに0.02の比率であるため、Cuの錫への拡散を防止することが困難である問題点があった。 However, as described in Patent Document 2, in the method of covering Cu balls with a diffusion prevention layer composed of Ni by Ni plating such as barrel plating, it is easy to form agglomerated balls due to adhesion between the balls. In addition, there is a problem that the film thickness of the plating film tends to vary. Further, the diffusion prevention layer made of Ni of the Cu core ball shown in Patent Document 2 has a thickness of 0.02 when the radius of the Cu ball (copper core) is 1, so that the Cu to tin tin There is a problem that it is difficult to prevent diffusion.
  本発明の第1の目的は、粉末保管時に中心核の銅が錫層の錫に拡散せず、粉末同士が密着することなく、かつニッケルからなる拡散防止層の厚みのばらつきの小さいハンダ粉末を製造する方法及びこの粉末を用いたハンダ用ペーストを提供することにある。また本発明の第2の目的は、長期間保管したハンダ粉末を、保管前又は保管期間の短いハンダ粉末が溶融する温度で、リフローさせても、ハンダが十分に溶融しないことに起因した接合不良を生じないハンダ粉末及びその製造方法並びにこの粉末を用いたハンダ用ペーストの調製方法を提供することにある。更に本発明の第3の目的は、リフロー後、再溶融及び接合強度の低下が起こりにくく、特に高温雰囲気に晒される電子部品等の実装に好適なハンダ粉末及びその製造方法並びにこの粉末を用いたハンダ用ペーストの調製方法を提供することにある。 The first object of the present invention is to provide a solder powder in which the central core copper does not diffuse into the tin layer tin during powder storage, the powder does not adhere to each other, and the diffusion prevention layer made of nickel has a small variation in thickness. It is in providing the soldering paste using the manufacturing method and this powder. In addition, the second object of the present invention is a poor bonding caused by the fact that the solder does not melt sufficiently even if the solder powder stored for a long period of time is reflowed at a temperature at which the solder powder with a short storage period is melted. It is an object of the present invention to provide a solder powder that does not cause soldering, a method for producing the same, and a method for preparing a solder paste using the powder. Furthermore, the third object of the present invention is to use solder powder suitable for mounting electronic parts and the like that are not easily remelted and reduced in bonding strength after reflow and particularly exposed to a high-temperature atmosphere, a manufacturing method thereof, and this powder. It is to provide a method for preparing a solder paste.
 本発明の第1の観点は、図1に示すように、銅粉末が分散する第1分散液を調製する工程S1と、ニッケルの金属塩を銅粉末の第1分散液に添加混合してニッケルの金属塩が溶解し銅粉末が分散する第1溶解液を調製する工程S2と、第1溶解液のpHを調整する工程S3と、pH調整した第1溶解液に第1還元剤を添加混合することにより、ニッケルイオンが還元され、析出したニッケルが銅粉末を被覆して分散する第2分散液を調製する工程S4と、第2分散液を固液分離し、固液分離した固形分を乾燥して銅核をニッケルからなる拡散防止層が被覆してなる金属粉末を作製する工程S5と、この金属粉末が分散する第3分散液を調製する工程S6と、錫の金属塩を金属粉末の第3分散液に添加混合して錫の金属塩が溶解し金属粉末が分散する第2溶解液を調製する工程S7と、第2溶解液のpHを調整する工程S8と、このpH調整した第2溶解液に第2還元剤を添加混合することにより、錫イオンが還元され、析出した錫が金属粉末を被覆して分散する第4分散液を調製する工程S9と、第4分散液を固液分離し、固液分離した固形分を乾燥して金属粉末が錫層で被覆されたハンダ粉末を作製する工程S10とを含むハンダ粉末の製造方法である。 As shown in FIG. 1, the first aspect of the present invention is a step S1 for preparing a first dispersion in which copper powder is dispersed, and a nickel metal salt is added to and mixed with the first dispersion of copper powder. Step S2 for preparing the first solution in which the metal salt of the copper is dissolved and the copper powder is dispersed, Step S3 for adjusting the pH of the first solution, and adding and mixing the first reducing agent to the pH-adjusted first solution Step S4 for preparing a second dispersion in which nickel ions are reduced and the deposited nickel is coated with copper powder and dispersed, and the second dispersion is solid-liquid separated, and the solid content separated by solid-liquid separation is obtained. Step S5 for producing a metal powder in which a copper core is coated with a diffusion prevention layer made of nickel by drying, Step S6 for preparing a third dispersion in which this metal powder is dispersed, and a metal salt of tin as a metal powder In the third dispersion, the metal salt of tin is dissolved and the metal powder is dissolved. Step S7 for preparing the second solution to be dispersed, Step S8 for adjusting the pH of the second solution, and adding and mixing the second reducing agent to the pH-adjusted second solution, thereby reducing tin ions. Step S9 of preparing a fourth dispersion in which the deposited tin is coated with and dispersed by the metal powder, and solid-liquid separation of the fourth dispersion, and drying the solid content separated by solid-liquid separation, the metal powder becomes a tin layer. And a step S10 of producing a solder powder coated with a solder powder.
  本発明の第2の観点は、図2に示すように、銅核11をニッケルからなる拡散防止層12が被覆してなる金属粉末13が錫層14で被覆されたハンダ粉末10である。その特徴ある構成は、前記ハンダ粉末の平均粒径が1μm以上30μm以下であり、前記ハンダ粉末の全体量100質量%に対し、銅の含有割合が2質量%以上70質量%以下であり、前記ニッケルからなる拡散防止層の厚さが前記銅核の半径を1とするときに0.04以上0.51以下の比率であることにある。 The second aspect of the present invention is a solder powder 10 in which a metal powder 13 formed by coating a copper core 11 with a diffusion preventing layer 12 made of nickel is coated with a tin layer 14 as shown in FIG. The characteristic configuration is that the average particle size of the solder powder is 1 μm or more and 30 μm or less, and the copper content is 2% by mass or more and 70% by mass or less with respect to 100% by mass of the total amount of the solder powder, The thickness of the diffusion preventing layer made of nickel is in a ratio of 0.04 to 0.51 when the radius of the copper nucleus is 1.
 本発明の第3の観点は、第1の観点の方法により製造されたハンダ粉末或いは第2の観点のハンダ粉末とハンダ用フラックスを混合してペースト化することによりハンダ用ペーストを調製する方法である。 A third aspect of the present invention is a method for preparing a solder paste by mixing the solder powder manufactured by the method of the first aspect or the solder powder of the second aspect and a solder flux into a paste. is there.
 本発明の第4の観点は、第3の観点の方法により製造されたハンダ用ペーストを用いて電子部品を実装する方法である。 A fourth aspect of the present invention is a method of mounting an electronic component using a solder paste manufactured by the method of the third aspect.
 本発明の第1の観点のハンダ粉末の製造方法は、ニッケルからなる拡散防止層を、銅粉末が分散する第1溶解液中のニッケルイオンを還元することにより、銅核の表面に形成し、また錫層を、銅核をニッケルからなる拡散防止層が被覆してなる金属粉末の表面に形成し、これによりハンダ粉末を製造する。この結果、特許文献2に記載されるバレルめっき法等の方法と異なり、ハンダ粉末の層構造は、個々の粉末でばらつきが小さく、粉末同士が密着することがなく、かつニッケルからなる拡散防止層の厚みのばらつきも小さい。 The method for producing a solder powder according to the first aspect of the present invention comprises forming a diffusion preventing layer made of nickel on the surface of a copper nucleus by reducing nickel ions in the first solution in which the copper powder is dispersed, Further, a tin layer is formed on the surface of a metal powder formed by coating a copper core with a diffusion preventing layer made of nickel, thereby producing a solder powder. As a result, unlike the method such as the barrel plating method described in Patent Document 2, the layer structure of the solder powder has little variation among individual powders, the powders do not adhere to each other, and the diffusion prevention layer is made of nickel. Variation in the thickness of the film is small.
  図2に示すように、本発明の第2の観点のハンダ粉末10は、銅核11をニッケルからなる拡散防止層12が被覆してなる金属粉末13が錫層14で被覆され、ニッケルからなる拡散防止層12の厚さが銅核の半径を1とするときに0.04以上0.51以下の比率である。即ち、本発明のハンダ粉末10では、銅核11と錫層14の間に所定の厚さのニッケルからなる拡散防止層12が介装されるので、従来の銅核とこれを被覆する錫層からなるハンダ粉末のハンダ特性を大幅に変えることなく、中心核の銅が錫層の錫に拡散することは勿論、錫層の錫が中心核の銅に拡散することを防止できる。この結果、長期間保管したハンダ粉末を、保管前又は保管期間の短いハンダ粉末が溶融する温度で、リフローさせても、ハンダが十分に溶融しないことに起因した接合不良を生じることがない優れた効果を奏する。また、リフロー後は、CuSn、CuSn、NiSn、NiSn、NiSn、NiSn、(Ni,Cu)Sn、(Ni,Cu)Sn等の融点の高い金属間化合物及び銅からなる接合層が形成されるため、リフロー後、再溶融及び接合強度の低下が起こりにくく、特に高温雰囲気に晒される電子部品等に好適に実装される。 As shown in FIG. 2, the solder powder 10 according to the second aspect of the present invention is made of nickel, in which a copper powder 11 is coated with a metal layer 13 formed by coating a diffusion prevention layer 12 made of nickel with a tin layer 14. The thickness of the diffusion preventing layer 12 is a ratio of 0.04 to 0.51 when the radius of the copper nucleus is 1. That is, in the solder powder 10 of the present invention, since the diffusion prevention layer 12 made of nickel having a predetermined thickness is interposed between the copper core 11 and the tin layer 14, the conventional copper core and the tin layer covering the copper core Without drastically changing the solder characteristics of the solder powder made of the above, it is possible to prevent the copper in the central core from diffusing into the tin in the tin layer, and to prevent the tin in the tin layer from diffusing into the copper in the central core. As a result, even if the solder powder stored for a long time is reflowed at a temperature at which the solder powder having a short storage period or before storage is melted, it does not cause poor bonding due to the fact that the solder is not sufficiently melted. There is an effect. Further, after reflow, Cu 3 Sn, Cu 6 Sn 5, Ni 3 Sn, Ni 3 Sn 2, Ni 3 Sn 4, NiSn 3, (Ni, Cu) 3 Sn 4, (Ni, Cu) 6 Sn 5 or the like Since a bonding layer made of an intermetallic compound and copper having a high melting point is formed, remelting and a decrease in bonding strength are unlikely to occur after reflow, and it is particularly suitable for electronic parts exposed to a high temperature atmosphere.
 本発明の第3の観点の方法で調製されたハンダ用ペーストは、上記本発明のハンダ粉末を用いて得られる。そのため、このハンダ用ペーストは、リフロー時の溶融が速く、溶融性に優れる。 The solder paste prepared by the method of the third aspect of the present invention is obtained using the solder powder of the present invention. Therefore, this solder paste is rapidly melted during reflow and has excellent meltability.
 本発明の第4の観点の電子部品を実装する方法では、上記本発明のハンダ用ペーストを用いるため、リフロー時にはハンダ用ペーストの溶融の速さ、優れた溶融性により、簡便に、かつ高い精度で実装することができる。この電子部品を実装した接合体は、リフロー時に被覆層のみならず中心核が溶融してCu-Sn合金又はSn-Ni-Cu合金を形成するため、形成されるCu-Sn合金又はSn-Ni-Cu合金により、ハンダ接合後に高温雰囲気に晒されても、再溶融及び接合強度の低下が起こりにくい。 In the method of mounting the electronic component according to the fourth aspect of the present invention, the solder paste of the present invention is used. Therefore, during reflow, the melting speed of the solder paste and the excellent meltability make it easy and highly accurate. Can be implemented. In the joined body on which this electronic component is mounted, not only the coating layer but also the central core melts during reflow to form a Cu—Sn alloy or Sn—Ni—Cu alloy, so that the formed Cu—Sn alloy or Sn—Ni is formed. -Due to the Cu alloy, even if it is exposed to a high temperature atmosphere after soldering, remelting and reduction in bonding strength are unlikely to occur.
本実施形態のハンダ粉末の製造工程を示す図である。It is a figure which shows the manufacturing process of the solder powder of this embodiment. 本実施形態の銅核をニッケルからなる拡散防止層が被覆してなる金属粉末が錫層で被覆されたハンダ粉末の断面構造図である。1 is a cross-sectional structure diagram of a solder powder in which a metal powder obtained by coating a copper core of this embodiment with a diffusion prevention layer made of nickel is coated with a tin layer.
 次に本発明を実施するための形態を図面に基づいて説明する。 Next, modes for carrying out the present invention will be described with reference to the drawings.
〔ハンダ粉末の製造方法〕
 中心核の形成のために銅粉末を使用する。先ず、図1のステップS1及びS2に示すように、銅粉末と分散剤を溶媒に添加混合して銅粉末が分散する第1分散液を調製し、これにニッケルを含む化合物を添加混合して銅粉末が分散し、ニッケルを含む化合物が溶解した第1溶解液を調製する。この銅粉末は、0.1μm以上27μm以下の平均粒径を有することが好ましい。この下限値未満では、ハンダ粉末の平均粒径が1μm未満になり易く、比表面積が高くなり、粉末の表面酸化層の影響によりハンダの溶融性が低下する。また上限値を超えると、ハンダ粉末の平均粒径が30μmを超え易くなる。30μmを越えると、バンプを形成する場合においてバンプのコプラナリティが低下するという不具合を生じ、また、パターン表面をハンダでコートする場合に塗布ムラが生じ、パターン全面を均一にコートできないという不具合を生じる。銅粉末の平均粒径は2~20μmであることが更に好ましい。この銅粉末は、還元反応による化学的手法で得られる他、アトマイズ法のような物理的手法によって得られる。なお、本明細書において、粉末の平均粒径とは、レーザー回折散乱法を用いた粒度分布測定装置(堀場製作所社製、レーザー回折/散乱式粒子径分布測定装置LA-950)にて測定した体積累積中位径(Median径、D50)をいう。
[Method for producing solder powder]
Copper powder is used for the formation of the central core. First, as shown in steps S1 and S2 of FIG. 1, a first dispersion in which copper powder is dispersed is prepared by adding and mixing copper powder and a dispersant to a solvent, and a compound containing nickel is added and mixed therein. A first solution in which the copper powder is dispersed and the nickel-containing compound is dissolved is prepared. The copper powder preferably has an average particle size of 0.1 μm or more and 27 μm or less. Below this lower limit, the average particle size of the solder powder tends to be less than 1 μm, the specific surface area becomes high, and the meltability of the solder is lowered due to the influence of the surface oxide layer of the powder. If the upper limit is exceeded, the average particle size of the solder powder tends to exceed 30 μm. When the thickness exceeds 30 μm, there is a problem that the coplanarity of the bump is lowered when the bump is formed, and there is a problem that coating unevenness occurs when the pattern surface is coated with solder, and the entire pattern cannot be coated uniformly. The average particle size of the copper powder is more preferably 2 to 20 μm. This copper powder can be obtained not only by a chemical method using a reduction reaction but also by a physical method such as an atomizing method. In the present specification, the average particle diameter of the powder was measured by a particle size distribution measuring apparatus using a laser diffraction / scattering method (manufactured by Horiba, Ltd., laser diffraction / scattering particle diameter distribution measuring apparatus LA-950). Volume cumulative median diameter (Median diameter, D 50 ).
 第1溶解液中における銅粉末及びニッケル化合物の割合は、ハンダ粉末製造後に、各金属元素の含有割合が後述する範囲になるように調整する。ニッケル化合物としては、塩化ニッケル(II)、硫酸ニッケル(II)、硝酸ニッケル(II)等が挙げられる。溶媒としては、水、アルコール、エーテル、ケトン、エステル等が挙げられる。また、分散剤としては、セルロース系、ビニル系、多価アルコール等が挙げられ、その他にゼラチン、カゼイン等を用いることができる。 The ratio of the copper powder and the nickel compound in the first solution is adjusted so that the content ratio of each metal element is within the range described later after the solder powder is manufactured. Examples of the nickel compound include nickel chloride (II), nickel sulfate (II), nickel nitrate (II) and the like. Examples of the solvent include water, alcohol, ether, ketone, ester and the like. Examples of the dispersant include cellulose-based, vinyl-based, and polyhydric alcohols. In addition, gelatin, casein, and the like can be used.
  図1のステップS3に示すように、調製した第1溶解液のpH調整を行う。pHは、生成したハンダ粉末の再溶解等を考慮して、0.1~2.0の範囲に調整するのが好ましい。なお、溶媒に上記ニッケル化合物を添加して溶解させた後、錯化剤を加えて、ニッケルを錯体化した後に、分散剤を添加しても良い。錯化剤を加えることでpHがアルカリ側でもニッケルイオンが沈殿せず、広い範囲での合成が可能となる。錯化剤としては、コハク酸、酒石酸、グリコール酸、乳酸、フタル酸、リンゴ酸、クエン酸、シュウ酸、エチレンジアミン四酢酸、イミノ二酢酸、ニトリロ三酢酸又はその塩等が挙げられる。 PH As shown in step S3 of FIG. 1, pH adjustment of the prepared first solution is performed. The pH is preferably adjusted to a range of 0.1 to 2.0 in consideration of redissolution of the generated solder powder. In addition, after adding the said nickel compound to a solvent and making it melt | dissolve, after adding a complexing agent and complexing nickel, you may add a dispersing agent. By adding a complexing agent, nickel ions do not precipitate even when the pH is alkaline, and synthesis in a wide range is possible. Examples of the complexing agent include succinic acid, tartaric acid, glycolic acid, lactic acid, phthalic acid, malic acid, citric acid, oxalic acid, ethylenediaminetetraacetic acid, iminodiacetic acid, nitrilotriacetic acid, and salts thereof.
  次いで、還元剤を溶解した水溶液を調製し、この水溶液のpHを、第1溶解液と同程度に調整する。還元剤としては、ホスフィン酸ナトリウム等のリン酸系化合物、テトラヒドロホウ酸ナトリウム、ジメチルアミンボラン等のホウ素水素化物、ヒドラジン等の窒素化合物、三価のチタンイオンや2価のクロムイオン等の金属イオン等が挙げられる。 Next, an aqueous solution in which the reducing agent is dissolved is prepared, and the pH of the aqueous solution is adjusted to the same level as the first dissolved solution. Reducing agents include phosphoric acid compounds such as sodium phosphinate, boron hydrides such as sodium tetrahydroborate and dimethylamine borane, nitrogen compounds such as hydrazine, metal ions such as trivalent titanium ions and divalent chromium ions. Etc.
  次に、図1のステップS4に示すように、上記ニッケルイオンを含む第1溶解液に還元剤水溶液を添加して混合することにより、第1溶解液中のニッケルイオンが還元され、析出したニッケルが銅粉末を被覆して分散する第2分散液を調製する。第1溶解液と還元剤水溶液を混合する方法としては、容器内の溶解液に所定の添加速度で還元剤水溶液を滴下し、スターラ等で攪拌する方法や、所定の径を有する反応チューブを用い、この反応チューブ内に両液を所定の流量で注ぎ込み、混合させる方法等が挙げられる。 Next, as shown in step S4 of FIG. 1, by adding and mixing the reducing agent aqueous solution to the first solution containing nickel ions, the nickel ions in the first solution are reduced and precipitated nickel. Prepare a second dispersion in which the copper powder is coated and dispersed. As a method of mixing the first solution and the reducing agent aqueous solution, a method in which the reducing agent aqueous solution is dropped into the solution in the container at a predetermined addition rate and stirred with a stirrer or a reaction tube having a predetermined diameter is used. A method of pouring both solutions into the reaction tube at a predetermined flow rate and mixing them may be mentioned.
  次に、図1のステップS5に示すように、この第2分散液を、デカンテーション等によって固液分離し、回収した固形分を水又はpHを0.5~2に調整した塩酸水溶液、硝酸水溶液、硫酸水溶液、或いはメタノール、エタノール、アセトン等で洗浄する。洗浄後は、再度固液分離して固形分を回収する。洗浄から固液分離までの工程を、好ましくは2~5回繰り返す。回収した固形分を真空乾燥させることにより、銅からなる中心核(銅核)と、この中心核を被覆するニッケル層(ニッケルからなる拡散防止層)で構成されたCu核Ni層付きの金属粉末を作製する。 Next, as shown in step S5 of FIG. 1, the second dispersion is subjected to solid-liquid separation by decantation or the like, and the recovered solid content is water or a hydrochloric acid aqueous solution adjusted to pH 0.5 to 2, nitric acid. Wash with aqueous solution, sulfuric acid aqueous solution, methanol, ethanol, acetone or the like. After washing, the solid content is recovered by solid-liquid separation again. The steps from washing to solid-liquid separation are preferably repeated 2 to 5 times. The collected solid content is vacuum-dried to form a metal powder with a Cu core Ni layer composed of a central core made of copper (copper core) and a nickel layer (a diffusion prevention layer made of nickel) covering the central core. Is made.
  次に、図1のステップS6及びS7に示すように、上記金属粉末と分散剤を溶媒に添加混合してCu核Ni層付きの金属粉末が分散する第3分散液を調製し、これに錫を含む化合物を添加混合してCu核Ni層付きの金属粉末が分散し、錫を含む化合物が溶解した第2溶解液を調製する。錫化合物としては、塩化錫(II)、硫酸錫(II)、酢酸錫(II)、シュウ酸錫(II)等が挙げられる。錫を含む化合物の添加割合は、ハンダ粉末製造後に、各金属元素の含有割合が後述する範囲になるように調整する。分散媒及び溶媒には、上述したのと同じ分散媒及び溶媒が用いられる。 Next, as shown in steps S6 and S7 of FIG. 1, the above-mentioned metal powder and dispersant are added to a solvent and mixed to prepare a third dispersion in which the metal powder with the Cu core Ni layer is dispersed. A second solution is prepared in which a metal powder with a Cu core Ni layer is dispersed and a compound containing tin is dissolved. Examples of tin compounds include tin (II) chloride, tin (II) sulfate, tin (II) acetate, and tin (II) oxalate. The addition ratio of the compound containing tin is adjusted so that the content ratio of each metal element is in the range described later after the solder powder is manufactured. As the dispersion medium and the solvent, the same dispersion medium and solvent as described above are used.
  図1のステップS8に示すように、調製した第2溶解液のpH調整を行う。pHは、生成したハンダ粉末の再溶解等を考慮して、0.1~2.0の範囲に調整するのが好ましい。なお、溶媒に上記錫化合物を添加して溶解させた後、錯化剤を加えて、錫を錯体化した後に、分散剤を添加しても良い。錯化剤を加えることでpHがアルカリ側でも錫イオンが沈殿せず、広い範囲での合成が可能となる。錯化剤としては、上述したものと同じ錯化剤が用いられる。 PH As shown in step S8 of FIG. 1, pH adjustment of the prepared second solution is performed. The pH is preferably adjusted to a range of 0.1 to 2.0 in consideration of redissolution of the generated solder powder. In addition, after adding the said tin compound to a solvent and making it melt | dissolve, after adding a complexing agent and complexing tin, you may add a dispersing agent. By adding a complexing agent, tin ions do not precipitate even when the pH is alkaline, and synthesis in a wide range is possible. As the complexing agent, the same complexing agent as described above is used.
 次に、図1のステップS9に示すように、上記錫イオンを含む第2溶解液に上述した還元剤と同じ還元剤を溶解した還元剤水溶液を上述した方法と同じ方法で添加混合することにより、第2溶解液中の錫イオンが還元され、析出した錫がCu核Ni層付きの金属粉末を被覆して分散する第4分散液を調製する。 Next, as shown in step S9 of FIG. 1, a reducing agent aqueous solution in which the same reducing agent as the reducing agent described above is dissolved in the second dissolving liquid containing the tin ions is added and mixed by the same method as described above. Then, a fourth dispersion is prepared in which tin ions in the second solution are reduced, and the precipitated tin coats and disperses the metal powder with the Cu core Ni layer.
 最後に、図1のステップS10に示すように、この第4分散液を、上述した方法と同じ方法で洗浄し固液分離して固形分を回収する。洗浄から固液分離までの工程を、好ましくは2~5回繰り返す。回収した固形分を真空乾燥させることにより、Cu核Ni層付きの金属粉末を錫層で被覆されたハンダ粉末を作製する。 Finally, as shown in step S10 of FIG. 1, this fourth dispersion is washed by the same method as described above, and solid-liquid separated to recover the solid content. The steps from washing to solid-liquid separation are preferably repeated 2 to 5 times. The collected solid content is vacuum dried to produce a solder powder in which a metal powder with a Cu core Ni layer is coated with a tin layer.
〔ハンダ粉末〕
  図2に示すように、上記方法で作製されたハンダ粉末10は、中心核の銅核11をニッケルからなる拡散防止層12が被覆してなる金属粉末13が錫層14で被覆される。このハンダ粉末は、このように、銅からなる中心核が、融点の低い錫層の被覆層で被覆された構造になっているため、リフロー時の溶融性に優れる。また、粉末を構成する一つの金属粒子内において、銅と錫が含まれるため、リフロー時の溶融ムラや組成ズレが起こりにくく、高い接合強度が得られる。更に、ハンダ粉末が中心核と被覆層の間にニッケルからなる拡散防止層を有するため、銅の錫への拡散及び錫の銅への拡散を防止することができる。更に、リフロー後は、CuSn、CuSn、NiSn、NiSn、NiSn、NiSn、(Ni,Cu)Sn、(Ni,Cu)Sn等の融点の高い金属間化合物及び銅からなる接合層が形成されるため、リフロー後、再溶融及び接合強度の低下が起こりにくく、特に高温雰囲気に晒される電子部品等に好適に実装される。
[Solder powder]
As shown in FIG. 2, the solder powder 10 manufactured by the above method is coated with a tin layer 14 with a metal powder 13 in which a copper core 11 as a central core is covered with a diffusion prevention layer 12 made of nickel. As described above, the solder powder has a structure in which the central core made of copper is coated with the coating layer of the tin layer having a low melting point, and therefore, the solder powder has excellent meltability at the time of reflow. In addition, since copper and tin are contained in one metal particle constituting the powder, melting unevenness and composition deviation during reflow hardly occur, and high bonding strength can be obtained. Furthermore, since the solder powder has a diffusion preventing layer made of nickel between the central core and the coating layer, diffusion of copper into tin and diffusion of tin into copper can be prevented. Furthermore, after reflow, Cu 3 Sn, Cu 6 Sn 5 , Ni 3 Sn, Ni 3 Sn 2 , Ni 3 Sn 4 , NiSn 3 , (Ni, Cu) 3 Sn 4 , (Ni, Cu) 6 Sn 5, etc. Since a bonding layer made of an intermetallic compound and copper having a high melting point is formed, remelting and a decrease in bonding strength are unlikely to occur after reflow, and it is particularly suitable for electronic parts exposed to a high temperature atmosphere.
  ニッケルからなる拡散防止層12は、その厚さが銅核の半径を1とするときに0.04以上0.51以下の比率である。好ましくは0.05以上0.20以下の比率である。0.04未満では銅又は錫の拡散を防止できなくなり、0.51を超えるとハンダ粉末の溶融性が低下する。
ここから
The diffusion preventing layer 12 made of nickel has a thickness of 0.04 or more and 0.51 or less when the radius of the copper nucleus is 1. The ratio is preferably 0.05 or more and 0.20 or less. If it is less than 0.04, it becomes impossible to prevent the diffusion of copper or tin, and if it exceeds 0.51, the meltability of the solder powder decreases.
from here
 上記方法で作製されたハンダ粉末10は、平均粒径が1μm以上30μm以下である。ハンダ粉末の平均粒径を1μm以上30μm以下に限定したのは、上述した理由による。 The solder powder 10 produced by the above method has an average particle size of 1 μm or more and 30 μm or less. The reason why the average particle size of the solder powder is limited to 1 μm or more and 30 μm or less is as described above.
 また、上記方法で作製されたハンダ粉末10は、粉末の全体量100質量%に対し、銅の含有割合が2質量%以上70質量%以下である。従来のハンダ粉末では、Sn-Pb系共晶ハンダ(組成比 Sn:Pb=63:37質量%)の代替として使用されるため、融点が近く、共晶組成が求められるという理由から、銅の割合を0.5~1.5質量%の割合で含有させている。一方、上記方法で作製されたハンダ粉末では、これより2質量%より多く含ませることにより、リフロー後に、880~600℃程度の高い凝固開始温度を有するSn-Cu合金又は800~400℃程度の高い凝固開始温度を有するSn-Ni-Cu合金を形成する。なお、銅の含有割合が少なくても、リフロー後は、錫よりも凝固開始温度の高いSn-Cu合金又はSn-Ni-Cu合金を形成するが、銅をより多く含有させることで、凝固開始温度が更に上昇するのは、合金中に高い融点を有する金属間化合物の比率がより一層高くなるという理由からである。これにより、このハンダ粉末を含むハンダ用ペーストのリフローによって形成されるハンダバンプでは、耐熱性が大幅に向上し、再溶融及び接合強度の低下を防止することができる。このため、特に高温雰囲気に晒される電子部品等の実装に用いられる高温ハンダとして好適に用いることができる。銅の含有割合が2質量%未満では、凝固開始温度が低くなることから、リフロー後に形成されるハンダバンプにおいて十分な耐熱性が得られず、高温雰囲気での使用の際に再溶融が起こり、高温ハンダとして用いることができない。一方、70質量%を越えると凝固開始温度が高くなりすぎて、ハンダが十分に溶融しないため、接合不良が発生するという不具合が生じる。このうち、粉末の全体量100質量%に占める銅の含有割合は、10~60質量%とするのが好ましい。 The solder powder 10 produced by the above method has a copper content of 2% by mass or more and 70% by mass or less with respect to 100% by mass of the total amount of the powder. Since conventional solder powder is used as an alternative to Sn—Pb eutectic solder (composition ratio Sn: Pb = 63: 37% by mass), the melting point is close and the eutectic composition is required. The proportion is contained in a proportion of 0.5 to 1.5% by mass. On the other hand, in the solder powder produced by the above method, by adding more than 2% by mass, a Sn—Cu alloy having a high solidification start temperature of about 880 to 600 ° C. or about 800 to 400 ° C. is obtained after reflow. An Sn—Ni—Cu alloy having a high solidification start temperature is formed. Even if the content of copper is small, after reflowing, Sn—Cu alloy or Sn—Ni—Cu alloy having a higher solidification start temperature than tin is formed, but solidification starts by containing more copper. The temperature is further increased because the ratio of intermetallic compounds having a high melting point in the alloy is further increased. Thereby, in the solder bump formed by reflow of the solder paste containing this solder powder, the heat resistance is greatly improved, and remelting and reduction in bonding strength can be prevented. For this reason, it can be suitably used as a high-temperature solder used for mounting electronic components exposed to a high-temperature atmosphere. If the copper content is less than 2% by mass, the solidification start temperature will be low, so that sufficient heat resistance will not be obtained in the solder bumps formed after reflow, and remelting will occur when used in a high temperature atmosphere. It cannot be used as solder. On the other hand, if it exceeds 70% by mass, the solidification start temperature becomes too high, and the solder does not melt sufficiently, resulting in a problem that bonding failure occurs. Of these, the copper content in the total amount of powder of 100% by mass is preferably 10 to 60% by mass.
 また、ハンダ粉末中のニッケルの含有割合は、ハンダ粉末の全体量100質量%に対して1質量%以上15質量%未満、好ましくは2~10質量%である。この含有割合に応じて、前述したニッケルからなる拡散防止層の厚さが決められる。ニッケルの含有割合が1質量%未満では銅又は錫の拡散を防止することが困難であり、15質量%を超えるとハンダ粉末の溶融性が低下するという不具合を生じる。 Further, the content ratio of nickel in the solder powder is 1% by mass or more and less than 15% by mass, preferably 2 to 10% by mass with respect to 100% by mass of the total amount of the solder powder. According to this content ratio, the thickness of the diffusion preventing layer made of nickel is determined. If the nickel content is less than 1% by mass, it is difficult to prevent the diffusion of copper or tin. If the nickel content exceeds 15% by mass, the meltability of the solder powder decreases.
  更に、ハンダ粉末中の錫の含有割合は、粉末中の上記銅及びニッケル以外の残部、即ちハンダ粉末の全体量100質量%に対して29質量%以上97質量%未満、好ましくは40~90質量%である。錫の含有割合が29質量%未満では、リフロー時においてハンダ粉末に必要とされる低融点を示さないからである。また、97質量%以上では、結果的に銅の含有割合が少なくなり、リフロー後に形成されるハンダバンプの耐熱性が低下する。即ち、高温雰囲気に実装後のハンダが晒されると実装後のハンダが再溶融するか、又はハンダの一部において液相が生じて、基板等との接合強度が低下するおそれがある。 Further, the content ratio of tin in the solder powder is 29% by mass or more and less than 97% by mass, preferably 40 to 90% by mass with respect to the balance other than the copper and nickel in the powder, that is, 100% by mass of the total amount of the solder powder. %. This is because when the tin content is less than 29% by mass, the low melting point required for the solder powder is not exhibited during reflow. Moreover, if it is 97 mass% or more, the content rate of copper will decrease as a result and the heat resistance of the solder bump formed after reflow will fall. That is, when the solder after mounting is exposed to a high temperature atmosphere, the solder after mounting may be remelted or a liquid phase may be generated in a part of the solder, which may reduce the bonding strength with the substrate or the like.
〔ハンダ用ペースト及びその調製方法〕
 上記方法で作製されたハンダ粉末は、ハンダ用フラックスと混合してペースト化して得られるハンダ用ペーストの材料として好適に用いられる。ハンダ用ペーストの調製は、ハンダ粉末とハンダ用フラックスとを所定の割合で混合してペースト化することにより行われる。ハンダ用ペーストの調製に用いられるハンダ用フラックスは、特に限定されないが、溶剤、ロジン、チキソ剤及び活性剤等の各成分を混合して調製されたフラックスを用いることができる。
[Solder paste and its preparation method]
The solder powder produced by the above method is suitably used as a material for a solder paste obtained by mixing with a solder flux to form a paste. The solder paste is prepared by mixing solder powder and solder flux at a predetermined ratio to form a paste. The solder flux used for the preparation of the solder paste is not particularly limited, but a flux prepared by mixing components such as a solvent, rosin, thixotropic agent and activator can be used.
 上記ハンダ用フラックスの調製に好適な溶剤としては、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、テトラエチレングリコール、2-エチル-1,3-ヘキサンジオール、α-テルピネオール等の沸点が180℃以上である有機溶剤が挙げられる。また、ロジンとしては、ガムロジン、水添ロジン、重合ロジン、エステルロジン等が挙げられる。 Solvents suitable for the preparation of the solder flux include diethylene glycol monohexyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, tetraethylene glycol, 2-ethyl-1,3-hexanediol, α-terpineol and the like having a boiling point of 180. An organic solvent having a temperature of not lower than ° C. can be mentioned. Examples of the rosin include gum rosin, hydrogenated rosin, polymerized rosin, and ester rosin.
 また、チキソ剤としては、硬化ひまし油、脂肪酸アマイド、天然油脂、合成油脂、N,N’-エチレンビス-12-ヒドロキシステアリルアミド、12-ヒドロキシステアリン酸、1,2,3,4-ジベンジリデン-D-ソルビトール及びその誘導体等が挙げられる。 Examples of thixotropic agents include hardened castor oil, fatty acid amide, natural fats and oils, synthetic fats and oils, N, N′-ethylenebis-12-hydroxystearylamide, 12-hydroxystearic acid, 1,2,3,4-dibenzylidene- And D-sorbitol and its derivatives.
 また、活性剤としては、ハロゲン化水素酸アミン塩が好ましく、具体的には、トリエタノールアミン、ジフェニルグアニジン、エタノールアミン、ブチルアミン、アミノプロパノール、ポリオキシエチレンオレイルアミン、ポリオキシエチレンラウレルアミン、ポリオキシエチレンステアリルアミン、ジエチルアミン、トリエチルアミン、メトキシプロピルアミン、ジメチルアミノプロピルアミン、ジブチルアミノプロピルアミン、エチルヘキシルアミン、エトキシプロピルアミン、エチルヘキシルオキシプロピルアミン、ビスプロピルアミン、イソプロピルアミン、ジイソプロピルアミン、ピペリジン、2,6-ジメチルピペリジン、アニリン、メチルアミン、エチルアミン、ブチルアミン、3-アミノ-1-プロペン、イソプロピルアミン、ジメチルヘキシルアミン、シクロヘキシルアミン等のアミンの塩化水素酸塩又は臭化水素酸塩が挙げられる。 The activator is preferably a hydrohalic acid amine salt, specifically, triethanolamine, diphenylguanidine, ethanolamine, butylamine, aminopropanol, polyoxyethylene oleylamine, polyoxyethylene laurelamine, polyoxyethylene. Stearylamine, diethylamine, triethylamine, methoxypropylamine, dimethylaminopropylamine, dibutylaminopropylamine, ethylhexylamine, ethoxypropylamine, ethylhexyloxypropylamine, bispropylamine, isopropylamine, diisopropylamine, piperidine, 2,6-dimethyl Piperidine, aniline, methylamine, ethylamine, butylamine, 3-amino-1-propene, isopropyl alcohol Emissions, dimethyl hexyl amines, hydrochloric acid salt or hydrobromide of an amine such as cyclohexylamine.
 ハンダ用フラックスは、上記各成分を所定の割合で混合することにより得られる。フラックス全体量100質量%中に占める溶剤の割合は30~60質量%、チキソ剤の割合は1~10質量%、活性剤の割合は0.1~10質量%とするのが好ましい。溶剤の割合が下限値未満では、フラックスの粘度が高くなりすぎるため、これを用いたハンダ用ペーストの粘度も応じて高くなり、ハンダの充填性低下や塗布ムラが多発する等、印刷性が低下する不具合を生じる場合がある。一方、上限値を越えるとフラックスの粘度が低くなりすぎるため、これを用いたハンダ用ペーストの粘度も応じて低くなることから、ハンダ粉末とフラックス成分が沈降分離する不具合を生じる場合がある。また、チキソ剤の割合が下限値未満では、ハンダ用ペーストの粘度が低くなりすぎるため、ハンダ粉末とフラックス成分が沈降分離するという不具合を生じる場合がある。一方、上限値を越えるとハンダ用ペーストの粘度が高くなりすぎるため、ハンダ充填性や塗布ムラ等の印刷性低下という不具合を生じる場合がある。また、活性剤の割合が下限値未満では、ハンダ粉末が溶融せず、十分な接合強度が得られないという不具合を生じる場合があり、一方、上限値を越えると保管中に活性剤がハンダ粉末と反応し易くなるため、ハンダ用ペーストの保存安定性が低下するという不具合を生じる場合がある。この他、ハンダ用フラックスには、粘度安定剤を添加しても良い。粘度安定剤としては、溶剤に溶解可能なポリフェノール類、リン酸系化合物、硫黄系化合物、トコフェノール、トコフェノールの誘導体、アルコルビン酸、アルコルビン酸の誘導体等が挙げられる。粘度安定剤は、多すぎるとハンダ粉末の溶融性が低下する等の不具合が生じる場合があるため、10質量%以下とするのが好ましい。 The solder flux can be obtained by mixing the above components at a predetermined ratio. The proportion of the solvent in the total amount of flux of 100% by mass is preferably 30 to 60% by mass, the proportion of the thixotropic agent is 1 to 10% by mass, and the proportion of the activator is preferably 0.1 to 10% by mass. If the solvent ratio is less than the lower limit, the viscosity of the flux will be too high, so the viscosity of the solder paste using this will also increase accordingly, resulting in poor printability, such as poor solder filling and uneven coating. May cause malfunctions. On the other hand, when the upper limit is exceeded, the viscosity of the flux becomes too low, and the viscosity of the solder paste using the flux also decreases accordingly, which may cause a problem that the solder powder and the flux component settle and separate. In addition, when the ratio of the thixotropic agent is less than the lower limit, the viscosity of the solder paste becomes too low, which may cause a problem that the solder powder and the flux component are settled and separated. On the other hand, when the upper limit is exceeded, the viscosity of the solder paste becomes too high, which may cause problems such as poor solderability and poor printability such as coating unevenness. In addition, if the ratio of the activator is less than the lower limit value, the solder powder may not be melted and a sufficient bonding strength may not be obtained. On the other hand, if the upper limit value is exceeded, the activator may become solder powder during storage. This may cause a problem that the storage stability of the solder paste is lowered. In addition, a viscosity stabilizer may be added to the solder flux. Examples of the viscosity stabilizer include polyphenols that can be dissolved in a solvent, phosphoric acid compounds, sulfur compounds, tocophenols, tocophenol derivatives, ascorbic acid, and ascorbic acid derivatives. If there are too many viscosity stabilizers, problems such as a decrease in the meltability of the solder powder may occur.
 ハンダ用ペーストを調製する際のハンダ用フラックスの混合量は、調製後のペースト100質量%中に占める該フラックスの割合が5~30質量%になる量にするのが好ましい。下限値未満ではフラックス不足でペースト化が困難になり、一方、上限値を越えるとペースト中のフラックスの含有割合が多すぎて金属の含有割合が少なくなってしまい、ハンダ溶融時に所望のサイズのハンダバンプを得るのが困難になるからである。 The amount of solder flux mixed when preparing the solder paste is preferably such that the proportion of the flux in 100% by mass of the prepared paste is 5 to 30% by mass. If it is less than the lower limit, it becomes difficult to form a paste due to insufficient flux, while if it exceeds the upper limit, the content of the flux in the paste is too high and the content of metal is reduced, and solder bumps of the desired size when melting the solder This is because it becomes difficult to obtain.
 このハンダ用ペーストは、上記本発明のハンダ粉末を材料としているため、リフロー時の溶融が速く、溶融性に優れる一方、リフロー後は、溶融するハンダ粉末が融点の高い金属間化合物を形成し、耐熱性が上昇するため、熱による再溶融が起こりにくい。このため、本発明のハンダ用ペーストは、特に高温雰囲気に晒される電子部品等の実装に好適に用いることができる。 Since this solder paste is made of the above-described solder powder of the present invention, melting at the time of reflow is fast and excellent in meltability, and after reflow, the melting solder powder forms an intermetallic compound having a high melting point, Since heat resistance increases, remelting due to heat hardly occurs. For this reason, the solder paste of the present invention can be suitably used for mounting electronic parts and the like exposed to a high temperature atmosphere.
〔ハンダ用ペーストを用いた電子部品の実装方法と接合体〕
 上記方法で調製されたハンダ用ペーストを用いてシリコンチップ、LEDチップ等の電子部品を各種放熱基板、FR4(Flame Retardant Type 4)基板、コバール等の基板に実装するには、ピン転写法にて上記基板の所定位置にハンダ用ペーストを転写するか、又は印刷法により所定位置にハンダ用ペーストを印刷する。次いで、転写又は印刷されたペースト上に電子部品であるチップ素子を搭載する。この状態で、リフロー炉にて窒素雰囲気中、250~400℃の温度で、5~120分間保持して、ハンダ粉末をリフローする。場合によっては、チップと基板とを加圧しながら接合してもよい。これにより、チップ素子と基板とを接合させて接合体を得て、電子部品を基板に実装する。
[Electronic component mounting method and joint using solder paste]
To mount electronic parts such as silicon chips and LED chips on various heat dissipation boards, FR4 (Flame Retardant Type 4) boards, and Kovar boards using the solder paste prepared by the above method, use the pin transfer method. The solder paste is transferred to a predetermined position of the substrate, or the solder paste is printed at a predetermined position by a printing method. Next, a chip element which is an electronic component is mounted on the transferred or printed paste. In this state, the solder powder is reflowed by holding in a reflow furnace in a nitrogen atmosphere at a temperature of 250 to 400 ° C. for 5 to 120 minutes. In some cases, the chip and the substrate may be joined while being pressed. Thus, the chip element and the substrate are bonded to obtain a bonded body, and the electronic component is mounted on the substrate.
 次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.
 <実施例1>
 先ず、水50mLに硫酸ニッケル(II)を4.35×10-3mol、ホスフィン酸ナトリウムを9.66×10-4mol、クエン酸ナトリウムを3.29×10-4molを加え、スターラーを用いて回転速度300rpmにて5分間攪拌し、溶解液を調製した。この溶解液を硫酸にてpHを5.0に調整した後、分散剤としてポリビニルアルコール500(平均分子量が500のポリビニルアルコール)を0.2g加え、更に回転速度300rpmにて10分間攪拌した。次いで、この溶解液に、水50mLに分散剤としてポリビニルアルコール500(平均分子量が500のポリビニルアルコール)を0.2g溶解し、かつ、平均粒径が0.18μmの銅粉末3.40gを分散させた分散液を添加し、回転速度500rpmにて10分間攪拌し、銅粉末表面にニッケルを析出させたニッケル被覆銅粉末が分散する分散液を得た。この分散液を60分間静置して生成した粉末を沈降させた後、上澄み液を捨て、ここに水100mLを加えて回転速度300rpmにて10分間攪拌する操作を4回繰返し、洗浄を行った。最後にこれを真空乾燥機にて乾燥することにより、銅を中心核に、ニッケルを第1被覆層(拡散防止層)とする粉末を得た。
<Example 1>
First, 4.35 × 10 −3 mol of nickel (II) sulfate, 9.66 × 10 −4 mol of sodium phosphinate and 3.29 × 10 −4 mol of sodium citrate are added to 50 mL of water, and a stirrer is added. The mixture was stirred at a rotational speed of 300 rpm for 5 minutes to prepare a solution. After adjusting the pH of this solution to 5.0 with sulfuric acid, 0.2 g of polyvinyl alcohol 500 (polyvinyl alcohol having an average molecular weight of 500) was added as a dispersant, and the mixture was further stirred at a rotation speed of 300 rpm for 10 minutes. Next, 0.2 g of polyvinyl alcohol 500 (polyvinyl alcohol having an average molecular weight of 500) as a dispersant is dissolved in 50 mL of water in this solution, and 3.40 g of copper powder having an average particle size of 0.18 μm is dispersed. The dispersion was added and stirred at a rotational speed of 500 rpm for 10 minutes to obtain a dispersion in which nickel-coated copper powder having nickel deposited on the surface of the copper powder was dispersed. The dispersion was allowed to stand for 60 minutes, and the produced powder was allowed to settle. Then, the supernatant was discarded, and 100 mL of water was added thereto, followed by stirring for 10 minutes at a rotational speed of 300 rpm, and washing was performed four times. . Finally, this was dried with a vacuum dryer to obtain a powder having copper as the central core and nickel as the first coating layer (diffusion prevention layer).
 引続き、水50mLに上記粉末0.37gを分散させて分散液を調製した。この分散液に硫酸錫(II)2.56×10-2molを加え、スターラーを用いて回転速度300rpmにて5分間撹拌し、混合液を調製した。この混合液を硫酸にてpHを0.5に調整した後、分散剤としてポリビニルアルコール500(平均分子量が500のポリビニルアルコール)を0.5g加え、更に回転速度300rpmにて10分間撹拌した。次いで、この混合液にpHを0.5に調整した1.58mol/Lの2価クロムイオン水溶液50mLを、添加速度50mL/minにて加え、回転速度500rpmにて10分間撹拌して錫イオンを還元することにより、ニッケル被覆銅粉末表面に錫を析出させた最外層が錫のニッケル被覆銅粉末が分散する分散液を得た。この分散液を60分間静置して生成した粉末を沈降させた後、上澄み液を捨て、ここに水100mLを加えて回転速度300rpmにて10分間攪拌する操作を4回繰返し、洗浄を行った。最後にこれを真空乾燥機にて乾燥することにより、平均粒径が1.1μmであって、銅を中心核に、ニッケルを第1被覆層(拡散防止層)に、錫を第2被覆層(最外層)にそれぞれ形成したハンダ粉末を得た。 Subsequently, 0.37 g of the above powder was dispersed in 50 mL of water to prepare a dispersion. To this dispersion, 2.56 × 10 −2 mol of tin (II) sulfate was added and stirred for 5 minutes at a rotational speed of 300 rpm using a stirrer to prepare a mixed solution. After adjusting the pH of this mixed solution to 0.5 with sulfuric acid, 0.5 g of polyvinyl alcohol 500 (polyvinyl alcohol having an average molecular weight of 500) was added as a dispersant, and the mixture was further stirred at a rotation speed of 300 rpm for 10 minutes. Next, 50 mL of a 1.58 mol / L divalent chromium ion aqueous solution whose pH was adjusted to 0.5 was added to this mixed solution at an addition rate of 50 mL / min, and stirred at a rotational speed of 500 rpm for 10 minutes to remove tin ions. By carrying out reduction, a dispersion liquid in which the nickel-coated copper powder having tin as the outermost layer in which tin was deposited on the surface of the nickel-coated copper powder was obtained. The dispersion was allowed to stand for 60 minutes, and the produced powder was allowed to settle. Then, the supernatant was discarded, and 100 mL of water was added thereto, followed by stirring for 10 minutes at a rotational speed of 300 rpm, and washing was performed four times. . Finally, this is dried in a vacuum dryer, the average particle size is 1.1 μm, copper is the central core, nickel is the first coating layer (diffusion prevention layer), and tin is the second coating layer. Solder powder formed on each (outermost layer) was obtained.
 <実施例2~28、比較例1~55>
 実施例2~28、比較例1~55においても、用いる銅粉末の粒径及び銅粉末の添加量、硫酸ニッケル(II)及び硫酸錫(II)の添加量、並びに他成分の割合を調整することにより、所定の銅中心核の半径、ニッケル拡散防止層及び錫最外層の厚さ、更には所定の粒径のハンダ粉末に制御したこと以外は、実施例1と同様にしてハンダ粉末を得た。
<Examples 2 to 28, Comparative Examples 1 to 55>
Also in Examples 2 to 28 and Comparative Examples 1 to 55, the particle diameter of the copper powder to be used, the addition amount of the copper powder, the addition amounts of nickel (II) sulfate and tin (II) sulfate, and the ratio of other components are adjusted. Thus, a solder powder was obtained in the same manner as in Example 1 except that the predetermined copper central core radius, the thickness of the nickel diffusion preventing layer and the tin outermost layer, and the solder powder having a predetermined particle diameter were controlled. It was.
 <比較例56>
 先ず、水50mLに硫酸ニッケル(II)を4.35×10-3mol、ホスフィン酸ナトリウムを9.66×10-4mol、クエン酸ナトリウムを3.29×10-4molを加え、スターラーを用いて回転速度300rpmにて5分間攪拌し、溶解液を調製した。この溶解液を硫酸にてpHを5.0に調整した後、分散剤としてポリビニルアルコール500(平均分子量が500のポリビニルアルコール)を0.2g加え、更に回転速度300rpmにて10分間攪拌した。次いで、この溶解液に、水50mLに分散剤としてポリビニルアルコール500(平均分子量が500のポリビニルアルコール)を0.2g溶解し、かつ、平均粒径が0.18μmの銅粉末3.40gを分散させた分散液を添加し、回転速度500rpmにて10分間攪拌し、銅粉末表面にニッケルを析出させたニッケル被覆銅粉末が分散する分散液を得た。この分散液を60分間静置して生成した粉末を沈降させた後、上澄み液を捨て、ここに水100mLを加えて回転速度300rpmにて10分間攪拌する操作を4回繰返し、洗浄を行った。最後にこれを真空乾燥機にて乾燥することにより、銅を中心核に、ニッケルを第1被覆層(拡散防止層)とする粉末を得た。
<Comparative Example 56>
First, 4.35 × 10 −3 mol of nickel (II) sulfate, 9.66 × 10 −4 mol of sodium phosphinate and 3.29 × 10 −4 mol of sodium citrate are added to 50 mL of water, and a stirrer is added. The mixture was stirred at a rotational speed of 300 rpm for 5 minutes to prepare a solution. After adjusting the pH of this solution to 5.0 with sulfuric acid, 0.2 g of polyvinyl alcohol 500 (polyvinyl alcohol having an average molecular weight of 500) was added as a dispersant, and the mixture was further stirred at a rotation speed of 300 rpm for 10 minutes. Next, 0.2 g of polyvinyl alcohol 500 (polyvinyl alcohol having an average molecular weight of 500) as a dispersant is dissolved in 50 mL of water in this solution, and 3.40 g of copper powder having an average particle size of 0.18 μm is dispersed. The dispersion was added and stirred at a rotational speed of 500 rpm for 10 minutes to obtain a dispersion in which nickel-coated copper powder having nickel deposited on the surface of the copper powder was dispersed. The dispersion was allowed to stand for 60 minutes, and the produced powder was allowed to settle. Then, the supernatant was discarded, and 100 mL of water was added thereto, followed by stirring for 10 minutes at a rotational speed of 300 rpm, and washing was performed four times. . Finally, this was dried with a vacuum dryer to obtain a powder having copper as the central core and nickel as the first coating layer (diffusion prevention layer).
 引続き、(株)山本鍍金試験器製のミニバレル装置を使用して、上記銅を中心核にニッケルを拡散防止層とする粉末に錫めっきを行った。用いためっき液組成として、錫酸ナトリウム100g/L、水酸化ナトリウム10g/L及び酢酸ナトリウム15g/Lのめっき液150mLに粉末5.0gを分散させた液を使用した。更にめっき処理条件は、陽極に錫を、浴温を50℃、バレル回転速度19rpm、電圧0.8Vとした。錫めっき膜厚については、処理時間で調整し、この比較例では、0.3時間処理を行うことにより、ニッケル被覆銅粉末表面に錫を析出させた最外層が錫のニッケル被覆銅粉末が分散する分散液を得た。この分散液を60分間静置して生成した粉末を沈降させた後、上澄み液を捨て、ここに水100mLを加えて回転速度300rpmにて10分間攪拌する操作を4回繰返し、洗浄を行った。最後にこれを真空乾燥機にて乾燥することにより、平均粒径が3.3μmであって、銅を中心核に、ニッケルを第1被覆層(拡散防止層)に、錫を第2被覆層(最外層)にそれぞれ形成したハンダ粉末を得た。 Subsequently, tin plating was performed on the powder having the above copper as the central core and nickel as the diffusion preventing layer, using a mini barrel apparatus manufactured by Yamamoto Gold Tester Co., Ltd. As a plating solution composition used, a solution in which 5.0 g of powder was dispersed in 150 mL of a plating solution of sodium stannate 100 g / L, sodium hydroxide 10 g / L and sodium acetate 15 g / L was used. Further, the plating conditions were tin for the anode, bath temperature of 50 ° C., barrel rotation speed of 19 rpm, and voltage of 0.8V. The tin plating film thickness is adjusted by the treatment time. In this comparative example, the nickel-coated copper powder with tin as the outermost layer on which the tin is deposited on the nickel-coated copper powder surface is dispersed by performing the treatment for 0.3 hour. A dispersion was obtained. The dispersion was allowed to stand for 60 minutes, and the produced powder was allowed to settle. Then, the supernatant was discarded, and 100 mL of water was added thereto, followed by stirring for 10 minutes at a rotational speed of 300 rpm, and washing was performed four times. . Finally, this is dried in a vacuum dryer, the average particle size is 3.3 μm, copper is the central core, nickel is the first coating layer (diffusion prevention layer), and tin is the second coating layer. Solder powder formed on each (outermost layer) was obtained.
 <比較例57~65>
 比較例57~65においても、用いる銅粉末の粒径及び銅粉末の添加量、硫酸ニッケル(II)及び硫酸錫(II)の添加量、並びに他成分の割合及び処理条件を調整することにより、所定の銅中心核の半径、ニッケル拡散防止層及び錫最外層の厚さ、更には所定の粒径のハンダ粉末に制御したこと以外は、比較例56と同様にしてハンダ粉末を得た。
<Comparative Examples 57 to 65>
Also in Comparative Examples 57 to 65, by adjusting the particle size of the copper powder to be used and the addition amount of the copper powder, the addition amount of nickel (II) sulfate and tin (II) sulfate, the ratio of other components and the treatment conditions, A solder powder was obtained in the same manner as in Comparative Example 56, except that the predetermined radius of the copper core, the thickness of the nickel diffusion preventing layer and the outermost tin layer, and the solder powder having a predetermined particle diameter were controlled.
 <比較試験及び評価>
 実施例1~28及び比較例1~65で得られたハンダ粉末について、次に述べる方法により、ハンダ粉末の銅の含有割合[質量%]、平均粒径[μm]、銅からなる中心核の平均半径[μm]、ニッケルからなる拡散防止層の平均厚さ[μm]、錫からなる被覆層の平均厚さ[μm]を測定した。これらの結果を以下の表1~表5に示す。また、これらのハンダ粉末を用いてハンダ用ペーストをそれぞれ調製し、リフロー時の最大保持温度を変えたときの接合強度を評価した。これらの結果を以下の表6~表10に示す。なお、銅からなる中心核の平均半径と、ニッケルからなる拡散防止層の平均厚さと、錫からなる被覆層の平均厚さとの和をハンダ粉末の平均半径とした。
<Comparison test and evaluation>
For the solder powders obtained in Examples 1 to 28 and Comparative Examples 1 to 65, the copper content of the solder powder [% by mass], the average particle size [μm], The average radius [μm], the average thickness [μm] of the diffusion preventing layer made of nickel, and the average thickness [μm] of the coating layer made of tin were measured. These results are shown in Tables 1 to 5 below. In addition, solder pastes were prepared using these solder powders, and the bonding strength when the maximum holding temperature during reflow was changed was evaluated. These results are shown in Tables 6 to 10 below. The sum of the average radius of the central core made of copper, the average thickness of the diffusion preventing layer made of nickel, and the average thickness of the coating layer made of tin was taken as the average radius of the solder powder.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (1) ハンダ粉末の銅の含有割合の分析:誘導結合プラズマ発光分光分析(島津製作所社製 ICP発光分析装置:ICPS-7510)によりハンダ粉末の銅の含有割合の分析を行った。 (1) Analysis of copper content in solder powder: The copper content of solder powder was analyzed by inductively coupled plasma emission spectroscopic analysis (ICP emission analysis device: ICPS-7510 manufactured by Shimadzu Corporation).
 (2) ハンダ粉末の平均粒径:レーザー回折散乱法を用いた粒度分布測定装置(堀場製作所社製、レーザー回折/散乱式粒子径分布測定装置LA-950)にて粒径分布を測定し、その体積累積中位径(Median径、D50)をハンダ粉末の平均粒径とした。 (2) Average particle size of solder powder: The particle size distribution was measured with a particle size distribution measuring device using a laser diffraction scattering method (Horiba, Ltd., laser diffraction / scattering type particle size distribution measuring device LA-950). The volume cumulative median diameter (Median diameter, D 50 ) was defined as the average particle diameter of the solder powder.
 (3) 銅からなる中心核の半径、ニッケルからなる拡散防止層の厚さ及び錫からなる被覆層の厚さの測定:ハンダ粉末を熱硬化性エポキシ樹脂に埋め込み、ハンダ粉末の断面を乾式研磨した後、電子顕微鏡(Scanning Electron Microscope、SEM)を用いて観察し、ハンダ粒子30個について、各々銅からなる中心核の半径、ニッケルからなる拡散防止層の厚さ及び錫からなる被覆層の厚さを測定し、各々の平均値を求めた。更に、上記測定から得られたニッケルからなる拡散防止層の厚さ及び銅からなる中心核の半径の平均値より厚さの平均値の比率(拡散防止層厚さ/中心核の半径)を算出した。 (3) Measurement of the radius of the central core made of copper, the thickness of the diffusion prevention layer made of nickel, and the thickness of the coating layer made of tin: the solder powder was embedded in a thermosetting epoxy resin, and the cross section of the solder powder was dry-polished Then, using an electron microscope (Scanning Electron Microscope, SEM), about 30 solder particles, the radius of the central core made of copper, the thickness of the diffusion prevention layer made of nickel, and the thickness of the coating layer made of tin The thickness was measured and the average value of each was obtained. Further, the ratio of the average thickness value (the thickness of the diffusion prevention layer / the radius of the central core) is calculated from the thickness of the diffusion prevention layer made of nickel obtained from the above measurement and the average value of the radius of the central core made of copper. did.
 (4) ハンダ粉末の凝集性:レーザー回折散乱法を用いた粒度分布測定装置(堀場製作所社製、レーザー回折/散乱式粒子径分布測定装置LA-950)にて粒径分布を測定し、得られた粒径分布プロファイルにおいて、所望の粒径の分布ピークの他に、それよりも大きい粒径側に分布ピークを有する2つ以上の粒径プロファイルを有する場合を凝集「有り」とし、そのようなピークが見られない場合を凝集「無し」とする方法により判断した。 (4) Aggregation of solder powder: Obtained by measuring the particle size distribution with a particle size distribution measuring device (Horiba, Ltd., laser diffraction / scattering particle size distribution measuring device LA-950) using a laser diffraction scattering method. In the obtained particle size distribution profile, in addition to the distribution peak of the desired particle size, the case where there are two or more particle size profiles having a distribution peak on the larger particle size side is regarded as “aggregation”, as such A case where no peak was observed was judged by a method of “no aggregation”.
 (5) 接合強度:溶剤として50質量%のジエチレングリコールモノヘキシルエーテルと、ロジンとして46質量%の重合ロジン(軟化点95℃)と、活性剤としてシクロヘキシルアミン臭化水素酸塩1.0質量%と、チキソ剤として硬化ひまし油3.0質量%とを混合してフラックスを調製した。次に、このフラックスと、実施例1~28及び比較例1~65で得られたハンダ粉末とを、フラックスを88質量%、ハンダ粉末を12質量%の割合で混合してハンダ用ペーストをそれぞれ調製した。 (5) Cohesive strength: 50% by mass of diethylene glycol monohexyl ether as a solvent, 46% by mass of polymerized rosin (softening point 95 ° C.) as rosin, and 1.0% by mass of cyclohexylamine hydrobromide as an activator A flux was prepared by mixing 3.0% by mass of hardened castor oil as a thixotropic agent. Next, this flux and the solder powders obtained in Examples 1 to 28 and Comparative Examples 1 to 65 were mixed at a ratio of 88 mass% flux and 12 mass% solder powder to obtain solder pastes, respectively. Prepared.
 上記調製したペーストをピン転写法にて先端部の直径100μmのピンを用いて0.5mm厚のコバール(Fe-Ni-Co系合金)基板の所定位置に転写した。なお、コバール基板上にはNiメッキ、更にその上にAuフラッシュメッキを行った。続いて、転写されたペースト上に0.9mm□のLEDチップを搭載した。更に、加圧用治具を用いて、LEDチップ及び基板とを1.0MPaの圧力で加圧しながら、赤外線加熱炉にて窒素雰囲気中、0.17時間、所定の最大保持温度でリフローし、LEDチップとコバール基板とを接合させることにより、接合サンプルを得た。なお、上記リフロー時の最大保持温度を250℃、300℃、350℃の異なる温度に設定し、実施例又は比較例ごとにそれぞれ3つずつ接合サンプルを得た。 The paste prepared above was transferred to a predetermined position on a 0.5 mm thick Kovar (Fe—Ni—Co alloy) substrate using a pin having a diameter of 100 μm by a pin transfer method. The Kovar substrate was Ni-plated, and further Au flash-plated. Subsequently, a 0.9 mm □ LED chip was mounted on the transferred paste. Further, using a pressurizing jig, the LED chip and the substrate are pressed at a pressure of 1.0 MPa, and reflowed at a predetermined maximum holding temperature in a nitrogen atmosphere in an infrared heating furnace for 0.17 hours, and the LED A bonded sample was obtained by bonding the chip and the Kovar substrate. In addition, the maximum holding temperature at the time of the reflow was set to different temperatures of 250 ° C., 300 ° C., and 350 ° C., and three bonded samples were obtained for each of the examples or comparative examples.
 上記接合したコバール基板及びLEDチップとの接合強度について、JIS Z 3198-7に記されている鉛フリーハンダ試験方法-第7部の「チップ部品におけるハンダ接合のシェア強度測定方法」に準拠して、室温及び300℃で0日及び30日保管後の条件下で接合シェア強度をそれぞれ測定し、室温におけるシェア強度を100としたときの300℃での0日及び30日保管後の相対的シェア強度を求めた。表中、「優」は、相対的シェア強度が90以上であった場合を示し、「良」は、90未満から80以上であった場合を示し、「可」は、80未満から70以上であった場合を示し、「不可」は、70未満であった場合を示す。 Regarding the bonding strength between the above-mentioned Kovar substrate and LED chip, in accordance with “Lead-free solder test method described in JIS Z 3198-7—Part 7:“ Measurement method of solder joint shear strength in chip components ” , Measured the joint shear strength under the conditions after storage at room temperature and 300 ° C for 0 day and 30 days, respectively, and relative share after storage at 300 ° C for 0 day and 30 days when the shear strength at room temperature is 100 The strength was determined. In the table, “excellent” indicates a case where the relative share strength is 90 or more, “good” indicates a case where it is less than 90 to 80 or more, and “good” indicates less than 80 to 70 or more. “Not possible” indicates a case of less than 70.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表6~表10から実施例1~28と比較例1~65とを比較すると次のことが分かった。 From Tables 6 to 10, the following was found when Examples 1 to 28 and Comparative Examples 1 to 65 were compared.
  ハンダ粉末の平均粒径が0.5μmの比較例では、粒径が小さすぎるため、粉末表面の酸化膜の影響で、ハンダ粉末を保管する前から、ハンダ粉末が溶融しなかった。ニッケルからなる拡散防止層の厚さが前記銅核の半径を1とするときに0.03の比較例では、拡散防止層の厚さが薄すぎるため、銅又は錫の拡散を防止できず、接合強度が不可となる場合があった。また、銅の含有量が75質量%程度の比較例では、銅の含有量が多すぎるため、凝固開始温度が高くなりすぎ、リフロー時にハンダが溶融しない場合があった。また、銅の含有量が1.5質量%程度の比較例では、銅の含有量が少なすぎ、凝固開始温度が低くなり、十分な耐熱性が得られなかったため、接合強度が不可となる場合があった。 比較 In the comparative example in which the average particle size of the solder powder was 0.5 μm, the particle size was too small, so the solder powder did not melt before storing the solder powder due to the effect of the oxide film on the powder surface. When the thickness of the diffusion prevention layer made of nickel is 0.03 when the radius of the copper nucleus is 1, the diffusion prevention layer is too thin to prevent the diffusion of copper or tin. In some cases, the bonding strength becomes impossible. Moreover, in the comparative example with a copper content of about 75% by mass, since the copper content is too high, the solidification start temperature becomes too high, and the solder may not melt during reflow. Moreover, in the comparative example in which the copper content is about 1.5% by mass, the copper content is too low, the solidification start temperature becomes low, and sufficient heat resistance cannot be obtained, so that the bonding strength becomes impossible. was there.
 ハンダ粉末の平均粒径が40μm程度の比較例では、粒径が大きすぎ、リフロー後において大きなボイド(空孔)を有した接合層となり緻密な接合層が得られなかったため、接合強度が不可となる場合があった。また拡散防止層の厚さと中心核の半径の比率が0.04よりも小さい比較例では、拡散防止効果が小さいため、錫からなる被覆層へ銅が拡散することにより、ハンダ粉末の溶融性が低下し、不可となる場合があった。反対に拡散防止層の厚さと中心核の半径の比率が0.51を超えた比較例では、ニッケルの比率が高くなり過ぎ、ハンダ粉末の溶融性が低下したため、接合強度が不可となる場合があった。バレルめっきにより錫からなる被覆層を形成した比較例では、強固に凝集した粉末が大量に生成したため、レーザー回折散乱法を用いて得られたハンダ粉末の平均粒径とSEM観察により測定して得られたハンダ粉末の平均粒径との値において大きく異なる値が得られるとともに、良好な印刷膜が得られず、いずれのサンプルにおいても接合強度の測定ができなかった。 In the comparative example in which the average particle size of the solder powder is about 40 μm, the particle size is too large, and after the reflow, a bonding layer having large voids (voids) is obtained and a dense bonding layer cannot be obtained. There was a case. Further, in the comparative example in which the ratio of the thickness of the diffusion prevention layer to the radius of the central core is smaller than 0.04, the diffusion prevention effect is small, so that copper diffuses into the coating layer made of tin, so that the meltability of the solder powder is increased. In some cases, it declined and became impossible. On the contrary, in the comparative example in which the ratio of the thickness of the diffusion prevention layer and the radius of the central core exceeds 0.51, the nickel ratio becomes too high and the meltability of the solder powder is lowered, so that the bonding strength may be impossible. there were. In the comparative example in which the coating layer made of tin was formed by barrel plating, a large amount of strongly agglomerated powder was generated. Therefore, the average particle size of the solder powder obtained using the laser diffraction scattering method was measured by SEM observation. While the value greatly different from the average particle size of the solder powder obtained was obtained, a good printed film could not be obtained, and the bonding strength could not be measured in any sample.
 これに対して、ハンダ粉末の平均粒径が1μm以上30μm以下の範囲内にあり、ハンダ粉末の全体量100質量%に対し、銅の含有割合が2質量%以上70質量%以下の範囲内にあり、ニッケルからなる拡散防止層の厚さが前記銅核の半径を1とするときに0.04以上0.51以下の範囲内にある実施例1~28では、凝集した粉末が殆ど無く良好な印刷膜が得られると同時に、ハンダ粉末を保管前及び30日保管後の各250℃、300℃、350℃のすべてのリフロー温度において接合強度が可、良又は優であった。 On the other hand, the average particle size of the solder powder is in the range of 1 to 30 μm, and the copper content is in the range of 2 to 70% by mass with respect to 100% by mass of the total amount of the solder powder. In Examples 1-28 in which the thickness of the diffusion-preventing layer made of nickel is in the range of 0.04 to 0.51 when the radius of the copper nucleus is 1, the aggregated powder is almost free and good At the same time, the joint strength was good, good or excellent at all reflow temperatures of 250 ° C., 300 ° C., and 350 ° C. before and after storing the solder powder for 30 days.
 本発明は、長期間保管することがあるハンダ粉末を製造することに好適に利用できる。また電子部品の実装、特に高温雰囲気に晒される電子部品の実装に好適に利用できる。 The present invention can be suitably used for producing solder powder that can be stored for a long period of time. Moreover, it can utilize suitably for mounting of electronic components, especially mounting of electronic components exposed to a high temperature atmosphere.

Claims (4)

  1.  銅粉末の第1分散液を調製する工程と、
     ニッケルの金属塩を前記銅粉末の第1分散液に添加混合して前記ニッケルの金属塩が溶解し前記銅粉末が分散する第1溶解液を調製する工程と、
     前記第1溶解液のpHを調整する工程と、
     前記pH調整した第1溶解液に第1還元剤を添加混合することにより、ニッケルイオンが還元され、析出したニッケルが銅粉末を被覆して分散する第2分散液を調製する工程と、
     前記第2分散液を固液分離し、前記固液分離した固形分を乾燥して銅核をニッケルからなる拡散防止層が被覆してなる金属粉末を作製する工程と、
     前記金属粉末の第3分散液を調製する工程と、
     錫の金属塩を前記金属粉末の第3分散液に添加混合して前記錫の金属塩が溶解し前記金属粉末が分散する第2溶解液を調製する工程と、
     前記第2溶解液のpHを調整する工程と、
     前記pH調整した第2溶解液に第2還元剤を添加混合することにより、錫イオンが還元され、析出した錫が前記金属粉末を被覆して分散する第4分散液を調製する工程と、
     前記第4分散液を固液分離し、前記固液分離した固形分を乾燥して前記金属粉末が錫層で被覆されたハンダ粉末を作製する工程と
     を含むハンダ粉末の製造方法。
    Preparing a first dispersion of copper powder;
    Adding a nickel metal salt to the first dispersion of copper powder to prepare a first solution in which the nickel metal salt is dissolved and the copper powder is dispersed;
    Adjusting the pH of the first solution;
    A step of preparing a second dispersion in which nickel ions are reduced by adding and mixing the first reducing agent to the pH-adjusted first solution, and the deposited nickel covers and disperses the copper powder;
    Solid-liquid separation of the second dispersion, drying the solid-solid separated solids to produce a metal powder having a copper core coated with a diffusion preventing layer made of nickel;
    Preparing a third dispersion of the metal powder;
    Adding and mixing a tin metal salt to the third dispersion of the metal powder to prepare a second solution in which the metal salt of the tin is dissolved and the metal powder is dispersed;
    Adjusting the pH of the second solution;
    A step of preparing a fourth dispersion in which tin ions are reduced by adding and mixing a second reducing agent to the pH-adjusted second solution, and the deposited tin covers and disperses the metal powder;
    Solid-liquid separation of the fourth dispersion, and drying the solid-liquid separated solid to produce a solder powder coated with the tin powder with the metal powder.
  2.   銅核をニッケルからなる拡散防止層が被覆してなる金属粉末が錫層で被覆されたハンダ粉末において、
     前記ハンダ粉末の平均粒径が1μm以上30μm以下であり、
     前記ハンダ粉末の全体量100質量%に対し、銅の含有割合が2質量%以上70質量%以下であり、
     前記ニッケルからなる拡散防止層の厚さが前記銅核の半径を1とするときに0.04以上0.51以下の比率である
     ことを特徴とするハンダ粉末。
    In the solder powder in which the metal powder formed by coating the copper core with the diffusion preventing layer made of nickel is coated with the tin layer,
    The average particle size of the solder powder is 1 μm or more and 30 μm or less,
    The total content of the solder powder is 100% by mass, and the copper content is 2% by mass or more and 70% by mass or less.
    Solder powder characterized in that the thickness of the diffusion preventing layer made of nickel is a ratio of 0.04 or more and 0.51 or less when the radius of the copper nucleus is 1.
  3.  請求項1記載の方法により製造されたハンダ粉末或いは請求項2記載のハンダ粉末とハンダ用フラックスを混合してペースト化することによりハンダ用ペーストを製造する方法。 A method for producing a solder paste by mixing the solder powder produced by the method of claim 1 or the solder powder of claim 2 and a solder flux into a paste.
  4.  請求項3記載の方法により製造されたハンダ用ペーストを用いて電子部品を実装する方法。 A method for mounting an electronic component using the solder paste manufactured by the method according to claim 3.
PCT/JP2016/086694 2015-12-15 2016-12-09 Solder powder, method for manufacturing same, and method for preparing solder paste using this powder WO2017104562A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187019019A KR102189367B1 (en) 2015-12-15 2016-12-09 Solder powder and its manufacturing method, and a method of preparing solder paste using this powder
CN201680080194.8A CN108602121B (en) 2015-12-15 2016-12-09 Solder powder, method for producing the same, and method for producing soldering paste using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015244270A JP6587099B2 (en) 2015-12-15 2015-12-15 Solder powder, method for producing the same, and method for preparing solder paste using the powder
JP2015-244270 2015-12-15

Publications (1)

Publication Number Publication Date
WO2017104562A1 true WO2017104562A1 (en) 2017-06-22

Family

ID=59056603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086694 WO2017104562A1 (en) 2015-12-15 2016-12-09 Solder powder, method for manufacturing same, and method for preparing solder paste using this powder

Country Status (5)

Country Link
JP (1) JP6587099B2 (en)
KR (1) KR102189367B1 (en)
CN (1) CN108602121B (en)
TW (1) TWI668065B (en)
WO (1) WO2017104562A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7267791B2 (en) * 2019-03-19 2023-05-02 株式会社Kelk Thermoelectric module and optical module
CN111036897A (en) * 2019-12-24 2020-04-21 深圳第三代半导体研究院 Preparation method of interconnection material with micro-nano core-shell structure
KR102489331B1 (en) * 2019-12-31 2023-01-17 덕산하이메탈(주) Solder ball and the manufacturing method thereof
KR102314236B1 (en) * 2020-09-22 2021-10-19 엘티메탈 주식회사 Bonding paste with high temperature stability and manufacturing method thereof
CN112475313B (en) * 2020-11-11 2023-04-28 昆明理工大学 Method for preparing nanoscale solder additive through chemical reaction
CN113751922A (en) * 2021-10-11 2021-12-07 中国科学院电工研究所 Lead-free solder and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138771A (en) * 1974-04-23 1975-11-05
JP2006028630A (en) * 2004-07-22 2006-02-02 Mitsui Mining & Smelting Co Ltd Nickel-coated copper powder and method for producing nickel-coated copper powder
JP2007081141A (en) * 2005-09-14 2007-03-29 Nippon Steel Materials Co Ltd Cu core ball and manufacturing method therefor
JP2012152782A (en) * 2011-01-26 2012-08-16 Mitsubishi Materials Corp Solder powder and method for producing the same
WO2013141166A1 (en) * 2012-03-23 2013-09-26 株式会社Neomaxマテリアル Solder-coated ball and method for manufacturing same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2335602A1 (en) 1975-12-16 1977-07-15 Univ Virginia MICROBIAL DETECTION AND ENUMERATION METHOD AND APPARATUS USED
JP2002120086A (en) * 2000-10-12 2002-04-23 Sanyo Electric Co Ltd Lead-free solder and its production method
JP4144694B2 (en) 2002-11-01 2008-09-03 三井金属鉱業株式会社 Tin-coated copper powder, method for producing the tin-coated copper powder, and conductive paste using the tin-coated copper powder
JP4791685B2 (en) * 2003-05-22 2011-10-12 シャープ株式会社 Conductive ball, electrode structure, method of forming electrode of electronic component, electronic component and electronic device
JP2007075856A (en) * 2005-09-14 2007-03-29 Nippon Steel Materials Co Ltd Cu CORE BALL
EP2017031B1 (en) * 2006-04-26 2017-09-13 Senju Metal Industry Co., Ltd Solder paste
JP2008138266A (en) 2006-12-04 2008-06-19 Mitsubishi Materials Corp Solder powder, and solder paste using the same
WO2008132933A1 (en) * 2007-04-13 2008-11-06 Sekisui Chemical Co., Ltd. Electroconductive fine particles, anisotropic electroconductive material, and electroconductive connection structure
JP5754582B2 (en) * 2011-02-28 2015-07-29 三菱マテリアル株式会社 Precoat solder paste
CN102528025A (en) * 2012-01-31 2012-07-04 南昌航空大学 Method for preparing core-shell type copper-based alloy powder capable of resisting high-temperature oxidization
CN103857483B (en) * 2012-04-23 2018-09-25 Lg化学株式会社 The core-shell particles for preparing the method for core-shell particles and being prepared by this method
JP6079374B2 (en) * 2013-03-29 2017-02-15 三菱マテリアル株式会社 Solder powder manufacturing method and solder paste using the powder
WO2015068685A1 (en) * 2013-11-05 2015-05-14 千住金属工業株式会社 Cu CORE BALL, SOLDER PASTE, FORMED SOLDER, Cu CORE COLUMN, AND SOLDER JOINT
JP5652560B1 (en) * 2014-02-04 2015-01-14 千住金属工業株式会社 Cu core ball, solder paste, foam solder and solder joint
CN103894603B (en) * 2014-04-11 2016-04-27 上海理凯材料科技有限公司 The method of zinc-plated copper powder is prepared in electronation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138771A (en) * 1974-04-23 1975-11-05
JP2006028630A (en) * 2004-07-22 2006-02-02 Mitsui Mining & Smelting Co Ltd Nickel-coated copper powder and method for producing nickel-coated copper powder
JP2007081141A (en) * 2005-09-14 2007-03-29 Nippon Steel Materials Co Ltd Cu core ball and manufacturing method therefor
JP2012152782A (en) * 2011-01-26 2012-08-16 Mitsubishi Materials Corp Solder powder and method for producing the same
WO2013141166A1 (en) * 2012-03-23 2013-09-26 株式会社Neomaxマテリアル Solder-coated ball and method for manufacturing same

Also Published As

Publication number Publication date
TW201739545A (en) 2017-11-16
TWI668065B (en) 2019-08-11
KR102189367B1 (en) 2020-12-09
CN108602121A (en) 2018-09-28
JP2017110251A (en) 2017-06-22
CN108602121B (en) 2020-08-04
KR20180093979A (en) 2018-08-22
JP6587099B2 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
JP6587099B2 (en) Solder powder, method for producing the same, and method for preparing solder paste using the powder
JP6079374B2 (en) Solder powder manufacturing method and solder paste using the powder
JP6428407B2 (en) Method for producing solder powder and method for producing solder paste using the powder
JP6079375B2 (en) Solder powder, method for producing the same, and solder paste using the powder
JPWO2014168026A1 (en) Solder paste
JP2005319470A (en) Lead-free solder material, electronic circuit board and their production method
JP6428408B2 (en) Method for producing solder powder and method for producing solder paste using the powder
WO2017094713A1 (en) Solder powder and preparation method for solder paste using said powder
JP6428409B2 (en) Solder powder and solder paste using this powder
US8652269B2 (en) Flux composition and soldering paste composition
JP6720515B2 (en) Au-Sn solder powder and solder paste containing this powder
JP6645318B2 (en) Joining powder, method for producing this powder, and method for producing paste for joining using this powder
JP6645317B2 (en) Joining powder, method for producing this powder, and method for producing paste for joining using this powder
JP2018135568A (en) Joining powder and its production method
JP6507970B2 (en) Au-based solder powder and solder paste containing this powder
JP2018135553A (en) Joining powder and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187019019

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019019

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 16875542

Country of ref document: EP

Kind code of ref document: A1