WO2017104281A1 - Device, method and program - Google Patents

Device, method and program Download PDF

Info

Publication number
WO2017104281A1
WO2017104281A1 PCT/JP2016/082491 JP2016082491W WO2017104281A1 WO 2017104281 A1 WO2017104281 A1 WO 2017104281A1 JP 2016082491 W JP2016082491 W JP 2016082491W WO 2017104281 A1 WO2017104281 A1 WO 2017104281A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearer
mec
eps
server
terminal device
Prior art date
Application number
PCT/JP2016/082491
Other languages
French (fr)
Japanese (ja)
Inventor
高野 裕昭
亮 澤井
齋藤 真
亮太 木村
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to DE112016005741.5T priority Critical patent/DE112016005741T5/en
Publication of WO2017104281A1 publication Critical patent/WO2017104281A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present disclosure relates to an apparatus, a method, and a program.
  • MEC mobile edge computing
  • the edge server is arranged at a position physically close to the terminal, so that communication delay is shortened compared to a general cloud server arranged in a concentrated manner, and applications that require high real-time performance are used. It becomes possible. Also, in MEC, high-speed network application processing can be realized regardless of the performance of the terminal by distributing the functions previously processed on the terminal side to the edge server close to the terminal.
  • the edge server can have various functions including, for example, a function as an application server and a function as a content server, and can provide various services to the terminal.
  • Non-Patent Document 1 The contents of the study in Non-Patent Document 1 and the like are still short after the study was started, and it is hard to say that MEC-related technologies have been sufficiently proposed.
  • a technique for appropriately setting a route for transmitting data to the edge server or transferring data from the edge server is one that has not been sufficiently proposed.
  • a terminal device between a terminal device and a P-GW (Packet Data Network Gateway) that is provided in the EPS and that provides content to the terminal device or passes through an application server that acquires content from the terminal device.
  • An apparatus includes a processing unit that performs communication using the first EPS bearer established in (1).
  • a P-GW Packet Data Network Gateway
  • an application server that obtains content from the terminal device or acquires content from the terminal device
  • the terminal device Communicating with a processor using a first EPS bearer established between them.
  • the computer is provided with a P-GW (Packet Data Network Gateway) via the application server that is provided inside the EPS and provides content to the terminal device or acquires content from the terminal device.
  • P-GW Packet Data Network Gateway
  • a program for functioning as a processing unit that performs communication using a first EPS bearer established with a terminal device is provided.
  • a mechanism for appropriately setting a route for transmitting data to the edge server or transferring data from the edge server is provided.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
  • FIG. 2 is an explanatory diagram illustrating an example of a schematic configuration of a system 1 according to an embodiment of the present disclosure.
  • FIG. It is a figure which shows an example of a structure of the LTE network in which MEC is not introduced. It is a figure which shows an example of a structure of the LTE network in which MEC was introduce
  • FIG. 10 is an explanatory diagram for explaining an example of a user traffic copy process according to the embodiment.
  • 10 is an explanatory diagram for explaining an example of a user traffic copy process according to the embodiment; It is explanatory drawing for demonstrating the architecture of the MEC bearer which concerns on 3rd Embodiment. It is a sequence diagram which shows an example of the MEC bearer establishment procedure which concerns on the embodiment. It is a block diagram which shows an example of a schematic structure of a server. It is a block diagram which shows the 1st example of schematic structure of eNB. It is a block diagram which shows the 2nd example of schematic structure of eNB. It is a block diagram which shows an example of a schematic structure of a smart phone. It is a block diagram which shows an example of a schematic structure of a car navigation apparatus.
  • elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numerals.
  • a plurality of elements having substantially the same functional configuration are differentiated as necessary, such as base stations 100A, 100B, and 100C.
  • base stations 100A, 100B, and 100C when there is no need to particularly distinguish each of a plurality of elements having substantially the same functional configuration, only the same reference numerals are given.
  • the base stations 100A, 100B, and 100C they are simply referred to as the base station 100.
  • FIG. 1 is an explanatory diagram illustrating an example of a schematic configuration of a system 1 according to an embodiment of the present disclosure.
  • the system 1 includes a wireless communication device 100, a terminal device 200, and an MEC server 300.
  • the wireless communication device 100 is a device that provides a wireless communication service to subordinate devices.
  • the wireless communication device 100A is a base station of a cellular system (or mobile communication system).
  • the base station 100A performs wireless communication with a device (for example, the terminal device 200A) located inside the cell 10A of the base station 100A.
  • the base station 100A transmits a downlink signal to the terminal device 200A and receives an uplink signal from the terminal device 200A.
  • the base station 100 is also called eNodeB (or eNB).
  • the eNodeB here may be an eNodeB defined in LTE or LTE-A, and may more generally mean a communication device.
  • the base station 100A is logically connected to other base stations through, for example, an X2 interface, and can transmit and receive control information and the like.
  • the base station 100A is logically connected to the core network 40 through, for example, an S1 interface, and can transmit and receive control information and the like. Note that communication between these devices can be physically relayed by various devices.
  • the radio communication device 100A shown in FIG. 1 is a macro cell base station, and the cell 10A is a macro cell.
  • the wireless communication devices 100B and 100C are master devices that operate the small cells 10B and 10C, respectively.
  • the master device 100B is a small cell base station that is fixedly installed.
  • the small cell base station 100B establishes a wireless backhaul link with the macro cell base station 100A and an access link with one or more terminal devices (for example, the terminal device 200B) in the small cell 10B.
  • the master device 100C is a dynamic AP (access point).
  • the dynamic AP 100C is a mobile device that dynamically operates the small cell 10C.
  • the dynamic AP 100C establishes a radio backhaul link with the macro cell base station 100A and an access link with one or more terminal devices (for example, the terminal device 200C) in the small cell 10C.
  • the dynamic AP 100C may be, for example, a terminal device equipped with hardware or software that can operate as a base station or a wireless access point.
  • the small cell 10C in this case is a locally formed network (Localized Network / Virtual cell).
  • the cell 10 may be operated according to any wireless communication scheme such as LTE, LTE-A (LTE-Advanced), GSM (registered trademark), UMTS, W-CDMA, CDMA200, WiMAX, WiMAX2, or IEEE 802.16, for example.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • GSM registered trademark
  • the small cell is a concept that can include various types of cells (for example, femtocells, nanocells, picocells, and microcells) that are smaller than the macrocells and that are arranged so as to overlap or not overlap with the macrocells.
  • the small cell is operated by a dedicated base station.
  • the small cell is operated by a terminal serving as a master device temporarily operating as a small cell base station.
  • So-called relay nodes can also be considered as a form of small cell base station.
  • a wireless communication device that functions as a master station of a relay node is also referred to as a donor base station.
  • the donor base station may mean a DeNB (Donor eNodeB) in LTE, or more generally a parent station of a relay node.
  • DeNB Donor eNodeB
  • Terminal device 200 The terminal device 200 can communicate in a cellular system (or mobile communication system).
  • the terminal device 200 performs wireless communication with a wireless communication device (for example, the base station 100A, the master device 100B, or 100C) of the cellular system.
  • a wireless communication device for example, the base station 100A, the master device 100B, or 100C
  • the terminal device 200A receives a downlink signal from the base station 100A and transmits an uplink signal to the base station 100A.
  • the terminal device 200 is also called a user.
  • the user may also be referred to as a UE (User Equipment).
  • the wireless communication device 100C is also referred to as UE-Relay.
  • the UE here may be a UE defined in LTE or LTE-A, and the UE-Relay may be Prose UE to Network Relay, which is discussed in 3GPP, and more generally communicated. It may mean equipment.
  • the application server 60 is a device that provides services to users.
  • the application server 60 is connected to a packet data network (PDN) 50.
  • the base station 100 is connected to the core network 40.
  • the core network 40 is connected to the PDN 50 via a gateway device.
  • the wireless communication apparatus 100 provides the service provided by the application server 60 to the MEC server 300 and the user via the packet data network 50, the core network 40, and the wireless communication path.
  • the MEC server 300 is a device that provides a service (for example, content) to a user.
  • the MEC server 300 can be provided in the wireless communication device 100.
  • the wireless communication device 100 provides the service provided by the MEC server 300 to the user via the wireless communication path.
  • the MEC server 300 may be realized as a logical functional entity, and may be formed integrally with the wireless communication device 100 or the like as shown in FIG. Of course, the MEC server 300 may be formed as an independent device as a physical entity.
  • the base station 100A provides the service provided by the MEC server 300A to the terminal device 200A connected to the macro cell 10. Also, the base station 100A provides the service provided by the MEC server 300A to the terminal device 200B connected to the small cell 10B via the master device 100B.
  • the master device 100B provides the service provided by the MEC server 300B to the terminal device 200B connected to the small cell 10B.
  • the master device 100C provides the service provided by the MEC server 300C to the terminal device 200C connected to the small cell 10C.
  • FIG. 2 is a diagram illustrating an example of a configuration of an LTE network in which an MEC has not been introduced.
  • the RAN Radio Access Network
  • the RAN includes a UE and an eNodeB.
  • the UE and the eNodeB are connected by a Uu interface, and the eNodeBs are connected by an X2 interface.
  • EPC Evolved Packet Core
  • MME Mobility Management Entity
  • HSS Home Subscriber Server
  • S-GW Serving Gateway
  • P-GW Packet Gateway
  • the MME and the HSS are connected by the S6a interface
  • the MME and the S-GW are connected by the S11 interface
  • the S-GW and the P-GW are connected by the S5 interface.
  • the eNodeB and the MME are connected by an S1-MME interface
  • the eNodeB and the S-GW are connected by an S1-U interface
  • the P-GW and the PDN are connected by an SGi interface.
  • the PDN includes, for example, an original server and a cache server.
  • the original server stores the original application provided to the UE.
  • an application or cache data is stored in the cache server.
  • the UE can reduce the processing load on the original server and the communication load related to the access to the original server.
  • the cache server is located outside the RAN and the EPC (ie, PDN)
  • the communication delay ie, response delay to the request from the UE
  • the UE request includes, for example, a static request such as downloading content stored in an http server and a dynamic request such as an operation for a specific application.
  • a static request such as downloading content stored in an http server
  • a dynamic request such as an operation for a specific application.
  • the response to the request becomes faster when the cache data and the application are arranged in an entity closer to the UE.
  • the response speed depends on the number of passing entities rather than the distance between the entities. This is because the processing delays in the input unit, processing unit, and output unit in each passing entity are accumulated by the number of entities.
  • the content means data in an arbitrary format such as an application, an image (moving image or still image), sound, or text.
  • an application server that provides content to the UE or acquires content from the UE is provided in an Evolved Packet System (EPS).
  • EPS is a network including EPC and eUTRAN (ie, eNodeB).
  • An application server provided in the EPS may be referred to as an edge server or an MEC server.
  • the application server is a concept including a cache server.
  • FIG. 3 and 4 are diagrams illustrating an example of a configuration of an LTE network in which an MEC is introduced.
  • an MEC server that caches content is provided in the eNodeB.
  • MEC servers that store content are provided in the eNodeB and the S-GW.
  • the UE obtains content from the MEC server located in the eNodeB, and obtains content from the MEC server located in the S-GW when there is no cache data requested from the MEC server located in the eNodeB. To do.
  • the UE can quickly acquire the content.
  • the S-GW is an entity serving as a handover anchor point.
  • the P-GW is a connection point between the mobile network and the outside (ie, PDN), assigns an IP address to the UE, and provides an IP address to be accessed outside the mobile network.
  • the P-GW also performs filtering of data coming from the outside.
  • the HSS is a database that stores subscriber information.
  • the MME processes various control signals, accesses the HSS, and performs processing such as authentication and authorization of each UE.
  • the EPC network is separated into a control plane and a user plane.
  • S-GW and P-GW are mainly related to the user plane, and MME and HSS are mainly related to the control plane.
  • the S-GW has a function of storing user data in order to be an anchor point for handover even in the configuration before the introduction of the MEC.
  • the eNodeB has no function of storing user data in the configuration before the introduction of the MEC, only has a function such as packet retransmission corresponding to a packet loss occurring in the Uu interface, and no content is stored.
  • the X2 interface has been used for data exchange during handover and cooperative control of interference.
  • Application caches in the MEC server include a stream cache that performs caching at the IP level and a content cache that performs caching at the application layer level.
  • the MEC server is assumed to support any type of cache. Since the content cache is mainly used at present, it is assumed that the MEC server particularly supports the content cache.
  • the application is activated and can be operated in the MEC server.
  • the cache data is recognized by the HTTP header, it is desirable that an application capable of handling HTTP can be operated in the MEC server.
  • the MEC server provides a specific application, it is desirable that the application be deployed and activated to be operational.
  • the data cached in the MEC server 300 includes data transmitted to the UE in the DL (Downlink) direction (hereinafter also referred to as DL data flow) and uploaded from the UE in the UL (Uplink) direction.
  • DL data flow Downlink
  • Uplink Uplink
  • UL data flow There are two types of data (hereinafter also referred to as UL data flow).
  • caching the DL data flow for example, when the UE accesses a web application and acquires some http data, if the same data is cached in the MEC server, the cache data is acquired. Can be mentioned.
  • the first use case is a case of uploading data such as photos generated by the UE itself.
  • the UE uploads a photo generated by itself, and the MEC server caches this photo.
  • the MEC server may transfer the cached photo to the server that stores the photo on the PDN, for example, at a timing when the transmission capacity in the core network has a margin. By shifting the transfer timing, the communication load of the core network is reduced.
  • the MEC server may transfer the cached photo to another UE, for example.
  • the sharing of the UL data flow cache with other UEs is useful, for example, in the case where a photograph taken by a spectator at a stadium is shared between spectators at the stadium.
  • the second use case is a case of uploading data acquired by the UE.
  • the UE uploads data acquired by D2D (Device to Device) communication or Wi-Fi (registered trademark), and the MEC server caches this data.
  • D2D Device to Device
  • Wi-Fi registered trademark
  • a store broadcasts product information by D2D communication or Wi-Fi, and the UE acquires the information and uploads it to the MEC server.
  • other UEs in the area of the store for example, within the range of the cell of the eNodeB where the MEC server is provided
  • the third use case is a case where data received from a different eNodeB is uploaded.
  • the UE uploads the data received from the eNodeB connected before the handover to the MEC server provided in the eNodeB connected after the handover.
  • the fourth use case is a case where the MTC terminal uploads data.
  • data for example, sales data of vending machines, gas use status data detected by a gas meter, and the like can be considered.
  • the number of MTC terminals is very large, and there is a problem that congestion occurs on the core network side when the MTC terminals try to upload data to the server on the PDN all at once.
  • these data do not require real-time properties, it is sufficient to arrive even after one hour, for example. That is, it can be said that the application regarding the data from the MTC terminal is resistant to delay.
  • the MEC server may cache the data uploaded from the MTC terminal, and transfer the cached data to the server on the PDN at a timing when there is a margin in the transmission capacity in the core network, for example.
  • the transmission capacity of the core network is more problematic in terms of the capacity of control signals than the capacity of user data. This is because many round trips of signaling are required to create a session. If a large number of MTC terminals simultaneously upload data, the signaling of the core network increases excessively.
  • the cache data of the UL data flow may be transferred in the DL direction (for example, UE) as described above, or may be transferred in the UL direction (for example, a server on the P-GW or PDN).
  • the former cache data is also referred to as DL cache data
  • the latter cache data is also referred to as UL cache data.
  • FIG. 5 is a diagram showing an example of the data flow of DL cache data.
  • the MEC server caches data uploaded by the UE, and transmits the cache data to the UE (typically, a UE different from the uploaded UE).
  • FIG. 6 is a diagram showing an example of the data flow of UL cache data.
  • the MEC server caches the data uploaded by the UE and transmits the cache data to the original server on the PDN.
  • some data may not be permitted to be handled as DL cache data.
  • data that can be shared with other UEs is allowed to be handled as DL cache data, and personal data is not allowed to be handled as DL cache data.
  • some data is not permitted to be handled as UL cache data.
  • data that requires aggregation such as data from an MTC terminal is permitted as UL cache data, and local data such as region limitation is not permitted as UL cache data.
  • whether or not the cache data can be transmitted in the DL direction (that is, to the UE) and whether or not the cache data can be transmitted in the UL direction (that is, to the PDN) is appropriately managed. Is desirable.
  • the bearer is a session and is a so-called earthen pipe for performing data transmission.
  • FIG. 7 is an explanatory diagram for explaining the architecture of the bearer.
  • the end-to-end service provided from the original server to the UE is provided by data transmission using an EPS bearer and an external bearer.
  • One EPS bearer is established corresponding to one kind of QoS. For example, when the UE wants to use two types of QoS at the same time, the UE establishes two EPS bearers corresponding to the two types of QoS with the P-GW.
  • the EPS bearer is a logical session (Virtual Connection), and actually includes a radio bearer, an S1 bearer, and an S5 bearer.
  • a radio bearer is a bearer established on the LTE-Uu interface between the UE and the eNodeB.
  • the S1 bearer is a bearer established on the S1 interface between the eNodeB and the S-GW.
  • the S5 bearer is a bearer established on the S5 interface between the S-GW and the P-GW.
  • FIG. 8 is an explanatory diagram for explaining the architecture of the EPS bearer.
  • the EPS bearer includes a default bearer and a dedicated bearer.
  • the UE When the UE establishes a bearer by exchanging signals with the MME, the UE first establishes a default bearer corresponding to the QoS determined as the default. Thereafter, the UE establishes a bearer corresponding to the necessary QoS as a dedicated bearer. A dedicated bearer cannot be established without a default bearer.
  • Each bearer is set with an ID for identifying the bearer.
  • This ID is used to identify a bearer used by one UE. Accordingly, by using both the UE ID and the bearer ID, each entity (eg, P-GW, S-GW, eNodeB, etc.) can identify each bearer.
  • This ID includes UL and DL.
  • FIG. 9 is an explanatory diagram for explaining the ID for UL and the ID for DL set in the bearer.
  • the ID set for the radio bearer includes “UL RB ID” for UL and “DL RB ID” for DL.
  • the S1 bearer there is a session (session exchanged by GTP Tunneling Protocol) distinguished by TEID (Tunneling End point ID), and the UL ID “UL S1 TEID” or the DL ID “ “DL S1 TEID” is set.
  • the S5 bearer has a session that is distinguished by TEID, and “UL S5 TEID” that is an ID for UL or “DL S5 TEID” that is an ID for DL is set.
  • the table below shows which entity assigns each ID. This means that the entity assigned the ID has established the corresponding session responsibly.
  • TEID is assigned by the entity on the endpoint side.
  • RB ID both UL and DL are allocated by eNodeB.
  • the following table shows a list of data flow using ID.
  • the UL data flow is transmitted in a session to which a UL ID is assigned, and the DL data flow is transmitted in a session to which a DL ID is assigned.
  • Each session ID has a one-to-one mapping relationship, and one ID is mapped to one ID. That is, one ID is not mapped to a plurality of IDs.
  • FIG. 10 is a sequence diagram showing an example of a procedure flow for establishing a default bearer. This sequence involves UE, eNodeB, MME, S-GW, P-GW, and PCRF (Policy and Charging Rules Function). As shown in FIG. 10, the default bearer is established with a request from the UE as a starting point. Requests are sent in the order of eNodeB, MME, S-GW, and P-GW, and approval is sent back in the opposite direction.
  • the PCRF is an entity that provides information related to QoS.
  • the UE transmits an attach request to the eNodeB (step S11), and the eNodeB transmits the message to the MME (step S12).
  • the MME transmits a default bearer generation request to the S-GW (step S13), and the S-GW transmits the message to the P-GW (step S14).
  • the P-GW communicates with the PCRF to establish an IP-CAN (IP Connectivity Access Network) session (step S15).
  • the P-GW transmits a default bearer generation response to the S-GW (step S16), and the S-GW transmits the message to the MME (step S17).
  • the MME transmits an attach accept to the eNodeB (step S18), and the eNodeB transmits RRC (Radio Resource Control) connection resetting to the UE (step S19).
  • the UE transmits RRC connection reconfiguration completion to the eNodeB (step S20), and the eNodeB transmits attachment completion to the MME (step S21).
  • the MME transmits a bearer update request to the S-GW (step S22), and the S-GW transmits a bearer update response to the MME (step S23).
  • FIG. 11 is a sequence diagram showing an example of a procedure flow for establishing a dedicated bearer. This sequence involves UE, eNodeB, MME, S-GW, P-GW and PCRF. As shown in FIG. 11, the establishment of the dedicated bearer is performed starting from a request from the PCRF, contrary to the default bearer. When the UE wants to create a dedicated bearer, the UE transmits a message to that effect to the application layer, and the application layer conveys the QoS necessary for the PCRF, thereby establishing the dedicated bearer starting from the UE.
  • the PCRF transmits an IP-CAN session change start to the P-GW (step S31).
  • the P-GW transmits a dedicated bearer generation request to the S-GW (step S32), and the S-GW transmits the message to the MME (step S33).
  • the MME transmits a dedicated bearer setup request to the eNodeB (step S34), and the eNodeB transmits RRC connection reconfiguration to the UE (step S35).
  • the UE transmits RRC connection reconfiguration completion to the eNodeB (step S36), and the eNodeB transmits a dedicated bearer setup response to the MME (step S37).
  • the MME transmits a dedicated bearer generation response to the S-GW (step S38), and the S-GW transmits the message to the P-GW (step S39).
  • the P-GW transmits an IP-CAN session change end to the PCRF (step S40).
  • TFT and SDF> One of technologies for executing QoS control is TFT (Traffic Flow Template). Hereinafter, the TFT will be described with reference to FIG.
  • FIG. 12 is an explanatory diagram for explaining the TFT.
  • the TFT is arranged in the P-GW for communication in the downlink direction, and is arranged in the UE for communication in the uplink direction. This arrangement is used in order for the TFT to filter the IP flow flowing into the EPS in consideration of QoS.
  • the functions performed in the TFT include mapping an IP flow to an EPS bearer and QoS control.
  • the QoS control here is a function such as limiting traffic within the set Maxbit rate.
  • the IP flow mapped to the EPS bearer is controlled not only in the UE and P-GW but also in the eNodeB and S-GW with priority control corresponding to QoS.
  • a TFT performs QoS control while mapping an IP flow to an EPS bearer that is a unit of QoS control performed in these various entities.
  • FIG. 13 is an explanatory diagram for explaining the TFT in more detail.
  • the TFT maps an IP flow to an SDF (Service Data Flow).
  • the TFT responds to the IP flow based on the QoS control information provided from the PCRF, and the source address (Source address), destination address (Destination address), and port number of the IP packet. Map to (ie, desired) QoS SDF.
  • the SDF is then mapped to the corresponding EPS bearer.
  • the SDF and EPS bearer have a one-to-one mapping relationship.
  • One SDF is associated with one EPS. However, a plurality of SDFs may be associated with the EPS bearer.
  • the TFT will be described in more detail.
  • the TFT is composed of a plurality of SDF templates (Service Data Flow templates).
  • SDF template is created corresponding to QoS, but the same QoS may be set in a plurality of SDF templates. In that case, IP flows filtered by a plurality of SDF templates in which the same QoS is set are mapped to one EPS bearer.
  • the SDF template also performs bearer mapping and the QoS control described above.
  • FIG. 14 is a block diagram illustrating an exemplary configuration of the base station 100 according to an embodiment of the present disclosure.
  • the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
  • Antenna unit 110 The antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
  • the wireless communication unit 120 transmits and receives signals.
  • the radio communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
  • the network communication unit 130 transmits and receives information.
  • the network communication unit 130 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base stations and core network nodes.
  • Storage unit 140 The storage unit 140 temporarily or permanently stores a program for operating the base station 100 and various data.
  • Processing unit 150 provides various functions of the base station 100.
  • the processing unit 150 includes a bearer establishment unit 151 and a communication processing unit 153.
  • the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
  • the bearer establishment unit 151 performs processing for establishing an MEC bearer described later.
  • the communication processing unit 153 performs processing for performing communication using the MEC bearer or the existing EPS bearer. The operations of the bearer establishment unit 151 and the communication processing unit 153 will be described in detail later.
  • FIG. 15 is a block diagram illustrating an exemplary configuration of the terminal device 200 according to an embodiment of the present disclosure.
  • the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
  • Antenna unit 210 The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
  • the wireless communication unit 220 transmits and receives signals.
  • the radio communication unit 220 receives a downlink signal from the base station and transmits an uplink signal to the base station.
  • Storage unit 230 The storage unit 230 temporarily or permanently stores a program for operating the terminal device 200 and various data.
  • the processing unit 240 provides various functions of the terminal device 200.
  • the processing unit 240 includes a bearer establishment unit 241 and a communication processing unit 243.
  • the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
  • the bearer establishment unit 241 performs processing for establishing an MEC bearer described later.
  • the communication processing unit 243 performs processing for performing communication using the MEC bearer or the existing EPS bearer. The operations of the bearer establishment unit 241 and the communication processing unit 243 will be described in detail later.
  • FIG. 16 is a block diagram illustrating an exemplary configuration of the MEC server 300 according to an embodiment of the present disclosure.
  • the MEC server 300 includes a communication unit 310, a storage unit 320, and a processing unit 330.
  • the communication unit 310 is an interface for performing communication with other devices.
  • the communication unit 310 communicates with the associated device.
  • the MEC server 300 when the MEC server 300 is formed as a logical entity and included in the base station 100, the communication unit 310 performs communication with, for example, the control unit of the base station 100.
  • the MEC server 300 may have an interface for performing direct communication with a device other than a device formed integrally.
  • Storage unit 320 temporarily or permanently stores a program for operating the MEC server 300 and various data.
  • the storage unit 320 may store various contents and applications provided to the user.
  • Processing unit 330 provides various functions of the MEC server 300.
  • the processing unit 330 includes a bearer establishment unit 331 and a communication processing unit 333.
  • the processing unit 330 may further include other components other than these components. That is, the processing unit 330 can perform operations other than the operations of these components.
  • the bearer establishment unit 331 performs processing for establishing an MEC bearer described later.
  • the communication processing unit 333 performs processing for performing communication using the MEC bearer or the existing EPS bearer. The operations of the bearer establishment unit 331 and the communication processing unit 333 will be described in detail later.
  • the base station 100 is also referred to as an eNodeB 100
  • the terminal device 200 is also referred to as a UE 200.
  • EPS Packet Control Protocol
  • data provided to the UE is managed in units of bearers.
  • One QoS is associated with one bearer. Therefore, if a different QoS is used, a different bearer is newly established.
  • the bearer here is an EPS bearer.
  • the three bearers that constitute the EPS bearer, that is, the S5 bearer, the S1 bearer, and the radio bearer have a one-to-one mapping relationship.
  • the bearer passing through the MEC server is not included in the EPS bearer.
  • the eNodeB or the like switches the destination of data transmitted by the EPS bearer to the MEC server.
  • a method for transmitting data to or from the MEC server it is conceivable that the eNodeB or the like switches the destination of data transmitted by the EPS bearer to the MEC server.
  • such a method has a great influence on the architecture of the EPS bearer, and is not an appropriate method. For example, when a data stream flows through a plurality of paths due to switching in the middle, the principle that an EPS bearer corresponds to one QoS breaks down, and it becomes difficult to associate a QoS with an EPS bearer.
  • a new EPS bearer that passes through the MEC server 300 is provided.
  • FIG. 17 is an explanatory diagram for describing a bearer newly defined in the present embodiment.
  • each entity (eNodeB 100, UE 200, MEC server 300, S-GW 41, and P-GW 42) included in the system 1 passes between the P-GW 42 and the UE 200 via the MEC server 300. Communication is performed using an established bearer (corresponding to a first EPS bearer). Further, each entity (eNodeB 100, UE 200, S-GW 41, and P-GW 42) included in the system 1 does not pass through the MEC server 300, but is a bearer (second EPS) established between the P-GW 42 and the UE 200. Communication using a bearer may be performed.
  • second EPS bearer
  • Each entity performs communication by selectively using a new EPS bearer that passes through the MEC server 300 and an existing EPS bearer that does not pass through the MEC server 300.
  • a bearer that does not pass through the MEC server 300 is referred to as an EPS bearer. Therefore, a bearer that passes through the MEC server 300 may not be referred to as an EPS bearer. Therefore, this new EPS bearer is also referred to as an MEC bearer.
  • an EPS bearer that does not pass through the MEC server 300 is also referred to as an existing EPS bearer.
  • the MEC bearer includes a bearer whose end is the MEC server 300. And the bearer which makes MEC server 300 an end is the 1st MEC bearer (MEC Bearer 1: equivalent to the 1st bearer) for communication with UE200, and the 2nd for communication with P-GW42. MEC bearers (MEC Bearer 2: equivalent to the second bearer).
  • MEC bearer includes both an uplink direction bearer, a downlink direction bearer. This is the same as the existing EPS bearer.
  • the IP packet carried by the bearer for input to the MEC server 300 is temporarily cached by the MEC server 300 and subjected to various processes. Then, at an arbitrary timing, the cached IP packet is carried by a bearer for output from the MEC server 300. Therefore, when a protocol that involves retransmission control by returning ACK / NACK such as TCP (Transmission Control Protocol) is used, inconvenience arises if the MEC server 300 is not an endpoint. This is because ACK / NACK is not returned while being cached. In this respect, since the MEC bearer is a bearer having the MEC server 300 as an end (that is, an end point), the bearer for the end-to-end service is separated into two. For this reason, the MEC server 300 according to the present embodiment can perform retransmission control by returning ACK / NACK.
  • TCP Transmission Control Protocol
  • FIG. 18 is an explanatory diagram for explaining the architecture of the MEC bearer.
  • the eNodeB 100A through which the first MEC bearer passes and the eNodeB 100B through which the second MEC bearer passes are distinguished, but the same eNodeB 100 may actually be used.
  • each of the first MEC bearer and the second MEC bearer includes a bearer having both ends of the MEC server 300 and the eNodeB 100.
  • a bearer having both ends of the MEC server 300 and the eNodeB 100A is referred to as an M1 bearer
  • a bearer having both ends of the MEC server 300 and the eNodeB 100B is referred to as an M2 bearer.
  • the first MEC bearer includes a radio bearer and an M1 bearer.
  • the second MEC bearer includes an M2 bearer, an S1 bearer, and an S5 bearer.
  • the MEC server 300 and the eNodeB 100A are connected by the M1 interface. Further, the MEC server 300 and the eNodeB 100B are connected by an M2 interface.
  • the bearer in the input direction to the MEC server 300 and the bearer in the output direction from the MEC server 300 are established.
  • the bearer in the input direction to the MEC server 300 and the bearer in the output direction from the MEC server 300 are established.
  • the M1 bearer and the M2 bearer are established separately.
  • the S5 bearer, S1 bearer, M2 bearer, M1 bearer, and radio bearer constituting the MEC bearer have a one-to-one mapping relationship.
  • the M1 bearer immediately transfers data to the M2 bearer depends on the upper application. That is, the bearer mapping itself is a one-to-one mapping, while whether or not the data flow is continuous in time depends on the application.
  • the MEC bearer uses the MEC server 300 as an endpoint, it can be said that it can respond to various application requests.
  • the MEC bearer is a dedicated bearer.
  • the MEC bearer is individually established for each UE 200 in a form accompanying the default bearer. This is the same as that in the existing EPS bearer, a dedicated bearer is individually established for each UE 200 in a form accompanying the default bearer. That is, it can be said that the bearer architecture according to the present embodiment has little change from the existing architecture.
  • the existing dedicated bearer is established from the back of the EPC (that is, the P-GW side) starting from the PCRF that controls QoS. This is because the newly established dedicated bearer is created based on the new QoS, so it is desirable for the PCRF to trigger.
  • the PCRF newly establishes a dedicated bearer based on the QoS request from the application server, and the application server and the UE exchange at the application level. Therefore, it can be interpreted that a dedicated bearer is established starting from the UE.
  • the M1 bearer and the M2 bearer may be established with a request to the eNodeB 100 as a trigger, or may be established with a request to the MEC server 300 as a trigger.
  • FIG. 19 is a sequence diagram showing an example of a procedure for establishing an MEC bearer.
  • the MEC server 300, UE 200, eNodeB 100, MME 43, S-GW 41, P-GW 42, and PCRF 44 are involved.
  • the PCRF 44 transmits an IP-CAN session change start to the P-GW 42 (step S102).
  • the P-GW 42 transmits an MEC bearer generation request to the S-GW 41 (step S104), and the S-GW 41 transmits the message to the MME 43 (step S106).
  • the MME 43 transmits an MEC bearer setup request to the eNodeB 100 (step S108), and the eNodeB 100 transmits the message to the MEC server 300 (step S110).
  • the M1 bearer and the M2 bearer are established.
  • the MEC server 300 transmits an MEC bearer setup response to the eNodeB 100 (step S112).
  • the eNodeB 100 transmits RRC connection reconfiguration to the UE 200 (step S114).
  • a radio bearer is established, and a first MEC bearer is established accordingly.
  • the first MEC bearer is established by establishing the radio bearer having both the eNodeB 100 and the UE 200 as both ends after the M1 bearer is established.
  • the UE 200 transmits RRC connection reconfiguration completion to the eNodeB 100 (step S116), and the eNodeB 100 transmits an MEC bearer setup response to the MME 43 (step S118).
  • the MME 43 transmits a MEC bearer generation response to the S-GW 41 (step S120), and the S-GW 41 transmits the message to the P-GW 42 (step S122).
  • the P-GW 42 transmits an IP-CAN session change end to the PCRF 44 (step S124).
  • the MEC server 300 is connected to a plurality of eNodeBs 100. This is because the aspect that the eNodeB 100 manages the MEC server 300 is thinned. Accordingly, an example of a procedure for establishing the M1 bearer and the M2 bearer by using a request from the MME 43 to the MEC server 300 as a trigger will be described with reference to FIG.
  • FIG. 20 is a sequence diagram showing an example of a procedure for establishing an MEC bearer.
  • the MEC server 300, UE 200, eNodeB 100, MME 43, S-GW 41, P-GW 42, and PCRF 44 are involved.
  • the PCRF 44 transmits an IP-CAN session change start to the P-GW 42 (step S202).
  • the P-GW 42 transmits an MEC bearer generation request to the S-GW 41 (step S204), and the S-GW 41 transmits the message to the MME 43 (step S206).
  • the MME 43 transmits an MEC bearer setup request to the MEC server 300 (step S208). At this timing, the M1 bearer and the M2 bearer are established.
  • the MEC server 300 transmits an MEC bearer setup response to the MME 43 (step S210).
  • the MME 43 transmits an MEC bearer setup request to the eNodeB 100 (step S212), and the eNodeB 100 transmits RRC connection reconfiguration to the UE 200 (step S214).
  • a radio bearer is established, and a first MEC bearer is established accordingly.
  • the UE 200 transmits RRC connection reconfiguration completion to the eNodeB 100 (step S216), and the eNodeB 100 transmits an MEC bearer setup response to the MME 43 (step S218).
  • the MME 43 transmits a MEC bearer generation response to the S-GW 41 (step S220), and the S-GW 41 transmits the message to the P-GW 42 (step S222).
  • the P-GW 42 transmits an IP-CAN session change end to the PCRF 44 (step S224).
  • the MEC bearer is defined. However, it is difficult to use this MEC bearer effectively in the existing TFT that performs bearer mapping. Specifically, referring to FIG. 12, the existing TFT only maps the IP flow to the EPS bearer so as to satisfy QoS, and does not have a function of mapping to the MEC bearer.
  • an architecture capable of mapping an IP flow to an MEC bearer is provided.
  • each entity of the system 1 communicates selectively using a new EPS bearer that passes through the MEC server 300 and an existing EPS bearer that does not pass through the MEC server 300. I do. Switching between the MEC bearer and the existing EPS bearer can be performed by the UE 200 or the filter of the P-GW 42. This filter is typically a TFT.
  • the TFT maps the user traffic addressed to the MEC server 300 to the SDF corresponding to the MEC bearer.
  • the TFT maps user traffic addressed to other devices (for example, UE 200 or P-GW 42) to an SDF corresponding to an existing EPS bearer.
  • FIG. 21 is an explanatory diagram for explaining bearer mapping by the TFT according to the present embodiment.
  • the TFT maps the IP flow to either the SDF corresponding to the existing EPS bearer or the SDF corresponding to the MEC bearer. This switching is performed based on, for example, the transmission source address, transmission destination address, and port number of the IP packet.
  • the TFT controls which SDF to map to among the plurality of SDFs corresponding to the existing EPS bearer based on the information for QoS control provided from the PCRF. The same applies to the MEC bearer.
  • the MEC server 300 can be used as a cache server. And as an example of the use of the MEC server 300 used as a cache server, the use which caches the same data as the user traffic which passes eNodeB100 is mentioned.
  • the TFT of the P-GW 42 or the UE 200 maps the copied user traffic to one of the MEC bearer or the existing EPS bearer and maps the original traffic to the other.
  • the same DL data flow can be transmitted from the P-GW 42 to the UE 200 and cached in the MEC server 300.
  • the same UL data flow can be transmitted from the UE 200 to the P-GW 42 and cached in the MEC server 300.
  • FIGS. 22 and 23 an example of user traffic copy processing will be described with reference to FIGS. 22 and 23.
  • FIG. 22 is an explanatory diagram for explaining an example of a user traffic copy process.
  • the TFT copies and maps the input original user traffic.
  • the TFT maps the copied IP flow to the MEC bearer, and maps the original IP flow to the existing EPS bearer.
  • the TFT maps the original IP flow to the existing EPS bearer, and copies and maps the original IP flow to the MEC bearer only when information indicating that it should be cached is input. With such a mechanism, the influence on the existing EPS bearer is minimized.
  • the TFT controls which SDF to map to among the plurality of SDFs corresponding to the existing EPS bearer based on the information for QoS control provided from the PCRF. The same applies to the MEC bearer.
  • FIG. 23 is an explanatory diagram for explaining an example of a user traffic copy process.
  • the TFT may map the input original user traffic and the input copied user traffic. That is, copying may be performed before the TFT. For example, the original IP flow is copied and input to the TFT only when information indicating that it should be cached is input, and otherwise, the original IP flow may not be copied. Then, the TFT may map the IP flow to an existing EPS bearer, and if a copied IP flow is input, it may map it to the MEC bearer. Note that the TFT controls which SDF to map to among the plurality of SDFs corresponding to the existing EPS bearer based on the information for QoS control provided from the PCRF. The same applies to the MEC bearer.
  • the IP packet is copied inside the P-GW 42 or the UE 200.
  • the P-GW 42 or the UE 200 rewrites the destination address information (IP address, port number, etc.) of the copied user traffic to the MEC server 300. Since the P-GW 42 and the UE 200 are not completely included in the EPS like the S-GW 41 and the eNodeB 100, the IP address and the like can be rewritten, and the transmission destination can be switched by the rewriting.
  • the P-GW 42 or the UE 200 can control whether or not to perform the copy process.
  • the P-GW 42 or the UE 200 performs a copy process when caching in parallel with the transmission of user traffic, and maps the user traffic to an existing EPS bearer without performing the copy process when the cache is unnecessary.
  • the P-GW 42 or the UE 200 maps user traffic to the MEC bearer without performing a copy process.
  • data related to data being downloaded by the UE 200 is cached in advance.
  • the MEC server 300 may be provided in an arbitrary device such as the S-GW 41. In that case, what is necessary is just to read eNodeB100 in description of each said embodiment into the apparatus with which the MEC server 300 is provided.
  • the MEC server 300 may be provided between entities.
  • entities such as the MEC server 300 and the S-GW 41.
  • this arrangement is an example, and the MEC server 300 may be provided between arbitrary entities.
  • MEC bearer The present embodiment has the same technical features as the first and second embodiments. For example, each entity included in the system 1 performs communication using the bearer established between the P-GW 42 and the UE 200 via the MEC server 300.
  • the MEC bearer includes a bearer whose end is the MEC server 300, more specifically, a first MEC bearer for communication with the UE 200, and a second MEC bearer for communication with the P-GW 42. Therefore, in the following, description of technical features similar to those of the first and second embodiments will be omitted, and technical features unique to the present embodiment will be mainly described. First, the architecture of the MEC bearer according to the present embodiment will be described with reference to FIG.
  • FIG. 24 is an explanatory diagram for explaining the architecture of the MEC bearer.
  • the first MEC bearer includes M1 bearers having both ends of the MEC server 300 and the eNodeB 100.
  • the second MEC bearer includes S1 bearers having both ends of the MEC server 300 and the S-GW 41.
  • the first MEC bearer includes a radio bearer and an M1 bearer.
  • the second MEC bearer includes an S1 bearer and an S5 bearer.
  • the bearer having both ends of the eNodeB 100 and the S-GW 41 is the S1 bearer.
  • the MEC server 300 and the S-GW 41 are connected.
  • the bearer at both ends is the S1 bearer. Accordingly, it can be said that the architecture of the present embodiment is little changed from the existing architecture when the eNodeB 100 and the MEC server 300 are regarded as one body.
  • each entity included in the system 1 performs communication by selectively using an MEC bearer that passes through the MEC server 300 and an existing EPS bearer that does not pass through the MEC server 300.
  • all IP flows pass through the MEC server 300 regardless of whether they are cached in the MEC server 300 or not.
  • the S-GW 41 and the eNodeB 100 are separated by the S1 bearer having both ends of the S-GW 41 and the MEC server 300 and the M1 bearer having both ends of the MEC server 300 and the eNodeB 100. Connected.
  • the MEC server 300 can cache and transfer the IP flow while performing retransmission control and the like.
  • the S-GW 41 and the eNodeB 100 are connected by the S1 bearer having the S-GW 41 and the eNodeB 100 at both ends. Since the MEC server 300 does not become an endpoint, the IP flow passes through the MEC server 300.
  • the architecture shown in FIG. 24 is simpler than the architecture shown in FIG. On the other hand, the architecture shown in FIG. 24 requires that the MEC server 300 has a function related to the S1 bearer.
  • the MEC server 300 may be arranged between the S-GW 41 and the P-GW 42. In that case, the distance between the UE 200 and the MEC server 300 becomes longer (more precisely, the number of entities existing between them increases), and it is difficult to achieve the initial purpose such as quick provision of content by introducing the MEC. Therefore, it is difficult to say that this is a desirable architecture. From these facts, it can be said that the architecture shown in FIGS. 18 and 24 is appropriate.
  • FIG. 25 is a sequence diagram showing an example of an MEC bearer establishment procedure.
  • UE 200, eNodeB 100, MEC server 300, MME 43, S-GW 41, P-GW 42, and PCRF 44 are involved.
  • the PCRF 44 transmits an IP-CAN session change start to the P-GW 42 (step S302).
  • the P-GW 42 transmits an MEC bearer generation request to the S-GW 41 (step S304), and the S-GW 41 transmits the message to the MME 43 (step S306).
  • the MME 43 transmits an MEC bearer setup request to the MEC server 300 (step S308), and the MEC server 300 transmits the message to the eNodeB 100 (step S310).
  • an M1 bearer is established.
  • the eNodeB 100 transmits RRC connection reconfiguration to the UE 200 (step S312).
  • a radio bearer is established, and a first MEC bearer is established accordingly.
  • the UE 200 transmits RRC connection reconfiguration completion to the eNodeB 100 (step S314).
  • the eNodeB 100 transmits an MEC bearer setup response to the MEC server 300 (step S316), and the MEC server 300 transmits the message to the MME 43 (step S318).
  • the MME 43 transmits an MEC bearer generation response to the S-GW 41 (step S320), and the S-GW 41 transmits the message to the P-GW 42 (step S322).
  • the P-GW 42 transmits an IP-CAN session change end to the PCRF 44 (step S324).
  • the MEC server 300 may be realized as any type of server such as a tower server, a rack server, or a blade server. Further, at least a part of the components of the MEC server 300 is realized in a module (for example, an integrated circuit module configured by one die or a card or a blade inserted in a slot of the blade server) mounted on the server. May be.
  • a module for example, an integrated circuit module configured by one die or a card or a blade inserted in a slot of the blade server mounted on the server. May be.
  • the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • the base station 100 may include a main body (also referred to as a base station apparatus) that controls wireless communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body.
  • RRHs Remote Radio Heads
  • various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function.
  • at least some components of the base station 100 may be realized in a base station apparatus or a module
  • the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
  • the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
  • MTC Machine Type Communication
  • the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • FIG. 26 is a block diagram illustrating an example of a schematic configuration of a server 700 to which the technology according to the present disclosure can be applied.
  • the server 700 includes a processor 701, a memory 702, a storage 703, a network interface 704, and a bus 706.
  • the processor 701 may be a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), for example, and controls various functions of the server 700.
  • the memory 702 includes a RAM (Random Access Memory) and a ROM (Read Only Memory), and stores programs and data executed by the processor 701.
  • the storage 703 may include a storage medium such as a semiconductor memory or a hard disk.
  • the network interface 704 is a wired communication interface for connecting the server 700 to the wired communication network 705.
  • the wired communication network 705 may be a core network such as EPC (Evolved Packet Core) or a PDN (Packet Data Network) such as the Internet.
  • EPC Evolved Packet Core
  • PDN Packet Data Network
  • the bus 706 connects the processor 701, the memory 702, the storage 703, and the network interface 704 to each other.
  • the bus 706 may include two or more buses with different speeds (eg, a high speed bus and a low speed bus).
  • one or more components included in the processing unit 330 described with reference to FIG. Also good.
  • a program for causing a processor to function as the one or more components is installed in the server 700, and the processor 701 is The program may be executed.
  • the server 700 may include a module including the processor 701 and the memory 702, and the one or more components may be mounted in the module. In this case, the module may store a program for causing the processor to function as the one or more components in the memory 702 and execute the program by the processor 701.
  • the server 700 or the module may be provided as an apparatus including the one or more components, and the program for causing a processor to function as the one or more components may be provided. .
  • a readable recording medium in which the program is recorded may be provided.
  • the communication unit 310 described with reference to FIG. 16 may be implemented in the network interface 704. Further, the storage unit 320 may be implemented in the memory 702 or the storage 703.
  • FIG. 27 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 27, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Note that although FIG. 27 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as shown in FIG. 27, and the plurality of BB processors 826 may correspond to a plurality of frequency bands used by the eNB 800, for example.
  • the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 27, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively.
  • 27 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the eNB 800 illustrated in FIG. 27 one or more components (bearer establishment unit 151 and / or communication processing unit 153) included in the processing unit 150 described with reference to FIG. 14 are implemented in the wireless communication interface 825. May be. Alternatively, at least some of these components may be implemented in the controller 821.
  • the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program.
  • the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • the radio communication unit 120 described with reference to FIG. 14 may be implemented in the radio communication interface 825 (for example, the RF circuit 827) in the eNB 800 illustrated in FIG. Further, the antenna unit 110 may be mounted on the antenna 810.
  • the network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
  • the storage unit 140 may be implemented in the memory 822.
  • FIG. 28 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 28, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. Note that although FIG. 28 illustrates an example in which the eNB 830 includes a plurality of antennas 840, the eNB 830 may include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 27 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
  • the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
  • 28 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as illustrated in FIG. 28, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. 28 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • one or more components (bearer establishment unit 151 and / or communication processing unit 153) included in the processing unit 150 described with reference to FIG. 14 include the wireless communication interface 855 and / or The wireless communication interface 863 may be implemented. Alternatively, at least some of these components may be implemented in the controller 851.
  • the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program.
  • the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 14 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
  • the antenna unit 110 may be mounted on the antenna 840.
  • the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
  • the storage unit 140 may be mounted in the memory 852.
  • FIG. 29 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 29 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 29 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
  • the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 29 via a power supply line partially shown by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the smartphone 900 shown in FIG. 29 one or more components (bearer establishment unit 241 and / or communication processing unit 243) included in the processing unit 240 described with reference to FIG. 15 are implemented in the wireless communication interface 912. May be. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919. As an example, the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed.
  • the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 15 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the antenna unit 210 may be mounted on the antenna 916.
  • the storage unit 230 may be mounted in the memory 902.
  • FIG. 30 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 30 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. Note that FIG. 30 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, but the car navigation apparatus 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 30 through a power supply line partially shown by broken lines in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program.
  • the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 15 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
  • the antenna unit 210 may be mounted on the antenna 937.
  • the storage unit 230 may be implemented in the memory 922.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as a device including the bearer establishment unit 241 and / or the communication processing unit 243.
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • each entity eNodeB 100, UE 200, MEC server 300, S-GW 41, and P-GW 42 included in the system 1 provides content to the UE 200 or acquires content from the UE 200. Communication using the MEC bearer established between the P-GW 42 and the UE 200 via the MEC server 300 to be performed. Each entity can transmit an IP flow to the MEC server 300 or transfer an IP flow from the MEC server 300 by using the MEC bearer.
  • switching between the existing EPS bearer and the MEC bearer is performed by the UE 200 or the TFT of the P-GW 42. Therefore, it is possible to realize the MEC bearer while maintaining the existing EPS bearer architecture.
  • a processing unit that performs communication using the EPS bearer A device comprising: (2) The apparatus according to (1), wherein the first EPS bearer includes a bearer whose end is the application server. (3) The bearer whose end is the application server includes a first bearer for communication with the terminal device and a second bearer for communication with the P-GW. apparatus. (4) The apparatus according to (3), wherein each of the first bearer and the second bearer includes a bearer having both ends of the application server and a base station.
  • the first bearer is established by establishing a bearer having both ends of the base station and the terminal device after a bearer having both ends of the application server and the base station is established.
  • the apparatus as described in 4).
  • (6) The apparatus according to (4) or (5), wherein a bearer having both ends of the application server and the base station is established by using a request to the base station as a trigger.
  • (7) The apparatus according to (4) or (5), wherein a bearer having both ends of the application server and the base station is established with a request to the application server as a trigger.
  • the first bearer includes a bearer having both ends of the application server and a base station
  • the second bearer includes a bearer having both ends of the application server and an S-GW (Serving Gateway).
  • the apparatus (9) The apparatus according to any one of (1) to (8), wherein the first EPS bearer is a dedicated bearer. (10) The device according to (9), wherein the first EPS bearer is individually established for each terminal device. (11) The processing unit performs communication using the second EPS bearer established between the P-GW and the terminal device without passing through the application server, The device according to any one of (1) to (10), wherein switching between using the first or second EPS bearer is performed by the terminal device or the filter of the P-GW. . (12) The filter maps user traffic addressed to the application server to an SDF (Service Data Flow) corresponding to the first EPS bearer, and maps user traffic addressed to another device to an SDF corresponding to the second EPS bearer.
  • SDF Service Data Flow
  • System 40 Core Network 50 Packet Data Network 60 Application Server 100 Wireless Communication Device, Base Station, eNodeB DESCRIPTION OF SYMBOLS 110 Antenna part 120 Wireless communication part 130 Network communication part 140 Storage part 150 Processing part 151 Bearer establishment part 153 Communication processing part 200 Terminal device, UE 210 Antenna unit 220 Wireless communication unit 230 Storage unit 240 Processing unit 241 Bearer establishment unit 243 Communication processing unit 300 MEC server 310 Communication unit 320 Storage unit 330 Processing unit 331 Bearer establishment unit 333 Communication processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

[Problem] To provide a configuration for appropriately establishing a pathway for transmitting data to an edge server or transferring data from the edge server. [Solution] A device provided with a processing unit which communicates using a first evolved packet system (EPS) bearer established between a packet data network gateway (P-GW) and a terminal device, via an application server which is provided within the EPS and either offers content to the terminal device or acquires content from the terminal device.

Description

装置、方法及びプログラムApparatus, method, and program
 本開示は、装置、方法及びプログラムに関する。 The present disclosure relates to an apparatus, a method, and a program.
 近年、スマートフォン等の端末と物理的に近い位置に設けられたサーバ(以下、エッジサーバとも称する)でデータ処理を行う、モバイルエッジコンピューティング(MEC:Mobile-Edge Computing)技術が注目を浴びている。例えば、下記非特許文献1では、MECに関する技術の標準規格について検討されている。 In recent years, mobile edge computing (MEC) technology that performs data processing with a server (hereinafter also referred to as an edge server) that is physically located near a terminal such as a smartphone has been attracting attention. . For example, in the following Non-Patent Document 1, a standard of technology related to MEC is studied.
 MECでは、端末と物理的に近い位置にエッジサーバが配置されるため、集中的に配置される一般的なクラウドサーバと比較して通信遅延が短縮され、高いリアルタイム性が求められるアプリケーションの利用が可能となる。また、MECでは、これまでは端末側で処理されていた機能を端末に近いエッジサーバに分散処理させることで、端末の性能によらず高速なネットワーク・アプリケーション処理を実現することができる。エッジサーバは、例えばアプリケーションサーバとしての機能、及びコンテンツサーバとしての機能を始め多様な機能を有し得、端末に多様なサービスを提供することができる。 In the MEC, the edge server is arranged at a position physically close to the terminal, so that communication delay is shortened compared to a general cloud server arranged in a concentrated manner, and applications that require high real-time performance are used. It becomes possible. Also, in MEC, high-speed network application processing can be realized regardless of the performance of the terminal by distributing the functions previously processed on the terminal side to the edge server close to the terminal. The edge server can have various functions including, for example, a function as an application server and a function as a content server, and can provide various services to the terminal.
 上記非特許文献1等における検討内容は、検討が開始されてから未だ日が浅く、MECに関する技術が十分に提案されているとはいいがたい。例えば、エッジサーバへデータを送信する又はエッジサーバからデータを転送するための経路を適切に設定するための技術も、十分には提案されていないものの一つである。 The contents of the study in Non-Patent Document 1 and the like are still short after the study was started, and it is hard to say that MEC-related technologies have been sufficiently proposed. For example, a technique for appropriately setting a route for transmitting data to the edge server or transferring data from the edge server is one that has not been sufficiently proposed.
 本開示によれば、EPS内部に設けられ端末装置へのコンテンツを提供する又は前記端末装置からコンテンツを取得するアプリケーションサーバを経由する、P-GW(Packet Data Network Gateway)と前記端末装置との間で確立される第1のEPSベアラを用いた通信を行う処理部、を備える装置が提供される。 According to the present disclosure, between a terminal device and a P-GW (Packet Data Network Gateway) that is provided in the EPS and that provides content to the terminal device or passes through an application server that acquires content from the terminal device. An apparatus is provided that includes a processing unit that performs communication using the first EPS bearer established in (1).
 また、本開示によれば、EPS内部に設けられ端末装置へのコンテンツを提供する又は前記端末装置からコンテンツを取得するアプリケーションサーバを経由する、P-GW(Packet Data Network Gateway)と前記端末装置との間で確立される第1のEPSベアラを用いた通信をプロセッサにより行うこと、を含む方法が提供される。 Further, according to the present disclosure, a P-GW (Packet Data Network Gateway) provided in the EPS and via an application server that obtains content from the terminal device or acquires content from the terminal device, and the terminal device Communicating with a processor using a first EPS bearer established between them.
 また、本開示によれば、コンピュータを、EPS内部に設けられ端末装置へのコンテンツを提供する又は前記端末装置からコンテンツを取得するアプリケーションサーバを経由する、P-GW(Packet Data Network Gateway)と前記端末装置との間で確立される第1のEPSベアラを用いた通信を行う処理部、として機能させるためのプログラムが提供される。 In addition, according to the present disclosure, the computer is provided with a P-GW (Packet Data Network Gateway) via the application server that is provided inside the EPS and provides content to the terminal device or acquires content from the terminal device. A program for functioning as a processing unit that performs communication using a first EPS bearer established with a terminal device is provided.
 以上説明したように本開示によれば、エッジサーバへデータを送信する又はエッジサーバからデータを転送するための経路を適切に設定するための仕組みが提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 As described above, according to the present disclosure, a mechanism for appropriately setting a route for transmitting data to the edge server or transferring data from the edge server is provided. Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の一実施形態に係るシステム1の概略的な構成の一例を示す説明図である。2 is an explanatory diagram illustrating an example of a schematic configuration of a system 1 according to an embodiment of the present disclosure. FIG. MECが未導入のLTEネットワークの構成の一例を示す図である。It is a figure which shows an example of a structure of the LTE network in which MEC is not introduced. MECが導入されたLTEネットワークの構成の一例を示す図である。It is a figure which shows an example of a structure of the LTE network in which MEC was introduce | transduced. MECが導入されたLTEネットワークの構成の一例を示す図である。It is a figure which shows an example of a structure of the LTE network in which MEC was introduce | transduced. DLキャッシュデータのデータの流れの一例を示す図である。It is a figure which shows an example of the data flow of DL cache data. ULキャッシュデータのデータの流れの一例を示す図である。It is a figure which shows an example of the data flow of UL cache data. ベアラのアーキテクチャを説明するための説明図である。It is explanatory drawing for demonstrating the architecture of a bearer. EPSベアラのアーキテクチャを説明するための説明図である。It is explanatory drawing for demonstrating the architecture of an EPS bearer. ベアラに設定されるUL用ID及びDL用IDを説明するための説明図である。It is explanatory drawing for demonstrating ID for UL and ID for DL set to a bearer. デフォルトベアラを確立するための手続きの流れの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the flow of the procedure for establishing a default bearer. 専用ベアラを確立するための手続きの流れの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the flow of the procedure for establishing a dedicated bearer. TFTについて説明するための説明図である。It is explanatory drawing for demonstrating TFT. TFTについてより詳しく説明するための説明図である。It is explanatory drawing for demonstrating in more detail about TFT. 同実施形態に係る基地局の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the base station which concerns on the same embodiment. 同実施形態に係る端末装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the terminal device which concerns on the same embodiment. 同実施形態に係るMECサーバの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the MEC server which concerns on the embodiment. 第1の実施形態に係るMECベアラを説明するための説明図である。It is explanatory drawing for demonstrating the MEC bearer which concerns on 1st Embodiment. 同実施形態に係るMECベアラのアーキテクチャを説明するための説明図である。It is explanatory drawing for demonstrating the architecture of the MEC bearer which concerns on the embodiment. 同実施形態に係るMECベアラの確立手続きの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the MEC bearer establishment procedure which concerns on the embodiment. 同実施形態に係るMECベアラの確立手続きの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the MEC bearer establishment procedure which concerns on the embodiment. 第2の実施形態に係るTFTによるベアラマッピングを説明するための説明図である。It is explanatory drawing for demonstrating the bearer mapping by TFT which concerns on 2nd Embodiment. 同実施形態に係るユーザトラフィックのコピー処理の一例を説明するための説明図である。FIG. 10 is an explanatory diagram for explaining an example of a user traffic copy process according to the embodiment; 同実施形態に係るユーザトラフィックのコピー処理の一例を説明するための説明図である。FIG. 10 is an explanatory diagram for explaining an example of a user traffic copy process according to the embodiment; 第3の実施形態に係るMECベアラのアーキテクチャを説明するための説明図である。It is explanatory drawing for demonstrating the architecture of the MEC bearer which concerns on 3rd Embodiment. 同実施形態に係るMECベアラの確立手続きの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the MEC bearer establishment procedure which concerns on the embodiment. サーバの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a server. eNBの概略的な構成の第1の例を示すブロック図である。It is a block diagram which shows the 1st example of schematic structure of eNB. eNBの概略的な構成の第2の例を示すブロック図である。It is a block diagram which shows the 2nd example of schematic structure of eNB. スマートフォンの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a smart phone. カーナビゲーション装置の概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a car navigation apparatus.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 また、本明細書及び図面において、実質的に同一の機能構成を有する要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の要素を、必要に応じて基地局100A、100B及び100Cのように区別する。ただし、実質的に同一の機能構成を有する複数の要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、基地局100A、100B及び100Cを特に区別する必要が無い場合には、単に基地局100と称する。 In the present specification and drawings, elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numerals. For example, a plurality of elements having substantially the same functional configuration are differentiated as necessary, such as base stations 100A, 100B, and 100C. However, when there is no need to particularly distinguish each of a plurality of elements having substantially the same functional configuration, only the same reference numerals are given. For example, when it is not necessary to distinguish the base stations 100A, 100B, and 100C, they are simply referred to as the base station 100.
 なお、説明は以下の順序で行うものとする。
  1.はじめに
   1.1.システムの概略的な構成
   1.2.MEC
   1.3.ベアラ
   1.4.TFT及びSDF
  2.各装置の構成例
   2.1.基地局の構成例
   2.2.端末装置の構成
   2.3.MECサーバの構成例
  3.第1の実施形態
   3.1.技術的課題
   3.2.技術的特徴
  4.第2の実施形態
   4.1.技術的課題
   4.2.技術的特徴
  5.第3の実施形態
   5.1.技術的課題
   5.2.技術的特徴
  6.応用例
  7.まとめ
The description will be made in the following order.
1. 1. Introduction 1.1. Schematic configuration of system 1.2. MEC
1.3. Bearer 1.4. TFT and SDF
2. Configuration example of each device 2.1. Configuration example of base station 2.2. Configuration of terminal device 2.3. 2. Configuration example of MEC server First embodiment 3.1. Technical issues 3.2. Technical features 4. Second Embodiment 4.1. Technical issues 4.2. Technical features 5. Third Embodiment 5.1. Technical issues 5.2. Technical features Application example 7. Summary
 <<1.はじめに>>
  <1.1.システムの概略的な構成>
 まず、図1を参照して、本開示の一実施形態に係るシステム1の概略的な構成を説明する。図1は、本開示の一実施形態に係るシステム1の概略的な構成の一例を示す説明図である。図1を参照すると、システム1は、無線通信装置100、端末装置200、及びMECサーバ300を含む。
<< 1. Introduction >>
<1.1. Schematic configuration of system>
First, a schematic configuration of a system 1 according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 1 is an explanatory diagram illustrating an example of a schematic configuration of a system 1 according to an embodiment of the present disclosure. Referring to FIG. 1, the system 1 includes a wireless communication device 100, a terminal device 200, and an MEC server 300.
  (1)無線通信装置100
 無線通信装置100は、配下の装置に無線通信サービスを提供する装置である。例えば、無線通信装置100Aは、セルラーシステム(又は移動体通信システム)の基地局である。基地局100Aは、基地局100Aのセル10Aの内部に位置する装置(例えば、端末装置200A)との無線通信を行う。例えば、基地局100Aは、端末装置200Aへのダウンリンク信号を送信し、端末装置200Aからのアップリンク信号を受信する。
(1) Wireless communication device 100
The wireless communication device 100 is a device that provides a wireless communication service to subordinate devices. For example, the wireless communication device 100A is a base station of a cellular system (or mobile communication system). The base station 100A performs wireless communication with a device (for example, the terminal device 200A) located inside the cell 10A of the base station 100A. For example, the base station 100A transmits a downlink signal to the terminal device 200A and receives an uplink signal from the terminal device 200A.
 ここでは、基地局100は、eNodeB(又はeNB)とも呼ばれる。ここでのeNodeBは、LTE又はLTE-Aにおいて定義されているeNodeBであってもよく、より一般的に通信機器を意味してもよい。 Here, the base station 100 is also called eNodeB (or eNB). The eNodeB here may be an eNodeB defined in LTE or LTE-A, and may more generally mean a communication device.
 基地局100Aは、他の基地局と例えばX2インタフェースにより論理的に接続されており、制御情報等の送受信が可能である。また、基地局100Aは、コアネットワーク40と例えばS1インタフェースにより論理的に接続されており、制御情報等の送受信が可能である。なお、これらの装置間の通信は、物理的には多様な装置により中継され得る。 The base station 100A is logically connected to other base stations through, for example, an X2 interface, and can transmit and receive control information and the like. The base station 100A is logically connected to the core network 40 through, for example, an S1 interface, and can transmit and receive control information and the like. Note that communication between these devices can be physically relayed by various devices.
 ここで、図1に示した無線通信装置100Aは、マクロセル基地局であり、セル10Aはマクロセルである。一方で、無線通信装置100B及び100Cは、スモールセル10B及び10Cをそれぞれ運用するマスタデバイスである。一例として、マスタデバイス100Bは、固定的に設置されるスモールセル基地局である。スモールセル基地局100Bは、マクロセル基地局100Aとの間で無線バックホールリンクを、スモールセル10B内の1つ以上の端末装置(例えば、端末装置200B)との間でアクセスリンクをそれぞれ確立する。マスタデバイス100Cは、ダイナミックAP(アクセスポイント)である。ダイナミックAP100Cは、スモールセル10Cを動的に運用する移動デバイスである。ダイナミックAP100Cは、マクロセル基地局100Aとの間で無線バックホールリンクを、スモールセル10C内の1つ以上の端末装置(例えば、端末装置200C)との間でアクセスリンクをそれぞれ確立する。ダイナミックAP100Cは、例えば、基地局又は無線アクセスポイントとして動作可能なハードウェア又はソフトウェアが搭載された端末装置であってよい。この場合のスモールセル10Cは、動的に形成される局所的なネットワーク(Localized Network/Virtual cell)である。 Here, the radio communication device 100A shown in FIG. 1 is a macro cell base station, and the cell 10A is a macro cell. On the other hand, the wireless communication devices 100B and 100C are master devices that operate the small cells 10B and 10C, respectively. As an example, the master device 100B is a small cell base station that is fixedly installed. The small cell base station 100B establishes a wireless backhaul link with the macro cell base station 100A and an access link with one or more terminal devices (for example, the terminal device 200B) in the small cell 10B. The master device 100C is a dynamic AP (access point). The dynamic AP 100C is a mobile device that dynamically operates the small cell 10C. The dynamic AP 100C establishes a radio backhaul link with the macro cell base station 100A and an access link with one or more terminal devices (for example, the terminal device 200C) in the small cell 10C. The dynamic AP 100C may be, for example, a terminal device equipped with hardware or software that can operate as a base station or a wireless access point. The small cell 10C in this case is a locally formed network (Localized Network / Virtual cell).
 セル10は、例えば、LTE、LTE-A(LTE-Advanced)、GSM(登録商標)、UMTS、W-CDMA、CDMA200、WiMAX、WiMAX2又はIEEE802.16などの任意の無線通信方式に従って運用されてよい。 The cell 10 may be operated according to any wireless communication scheme such as LTE, LTE-A (LTE-Advanced), GSM (registered trademark), UMTS, W-CDMA, CDMA200, WiMAX, WiMAX2, or IEEE 802.16, for example. .
 なお、スモールセルは、マクロセルと重複して又は重複せずに配置される、マクロセルよりも小さい様々な種類のセル(例えば、フェムトセル、ナノセル、ピコセル及びマイクロセルなど)を含み得る概念である。ある例では、スモールセルは、専用の基地局によって運用される。別の例では、スモールセルは、マスタデバイスとなる端末がスモールセル基地局として一時的に動作することにより運用される。いわゆるリレーノードもまた、スモールセル基地局の一形態であると見なすことができる。リレーノードの親局として機能する無線通信装置は、ドナー基地局とも称される。ドナー基地局は、LTEにおけるDeNB(Donor eNodeB)を意味してもよく、より一般的にリレーノードの親局を意味してもよい。 Note that the small cell is a concept that can include various types of cells (for example, femtocells, nanocells, picocells, and microcells) that are smaller than the macrocells and that are arranged so as to overlap or not overlap with the macrocells. In one example, the small cell is operated by a dedicated base station. In another example, the small cell is operated by a terminal serving as a master device temporarily operating as a small cell base station. So-called relay nodes can also be considered as a form of small cell base station. A wireless communication device that functions as a master station of a relay node is also referred to as a donor base station. The donor base station may mean a DeNB (Donor eNodeB) in LTE, or more generally a parent station of a relay node.
  (2)端末装置200
 端末装置200は、セルラーシステム(又は移動体通信システム)において通信可能である。端末装置200は、セルラーシステムの無線通信装置(例えば、基地局100A、マスタデバイス100B又は100C)との無線通信を行う。例えば、端末装置200Aは、基地局100Aからのダウンリンク信号を受信し、基地局100Aへのアップリンク信号を送信する。
(2) Terminal device 200
The terminal device 200 can communicate in a cellular system (or mobile communication system). The terminal device 200 performs wireless communication with a wireless communication device (for example, the base station 100A, the master device 100B, or 100C) of the cellular system. For example, the terminal device 200A receives a downlink signal from the base station 100A and transmits an uplink signal to the base station 100A.
 ここでは、端末装置200は、ユーザとも呼ばれる。当該ユーザは、UE(User Equipment)とも呼ばれ得る。また、無線通信装置100Cは、UE-Relayとも呼ばれる。ここでのUEは、LTE又はLTE-Aにおいて定義されているUEであってもよく、UE-Relayは、3GPPで議論されているProse UE to Network Relayであってもよく、より一般的に通信機器を意味してもよい。 Here, the terminal device 200 is also called a user. The user may also be referred to as a UE (User Equipment). The wireless communication device 100C is also referred to as UE-Relay. The UE here may be a UE defined in LTE or LTE-A, and the UE-Relay may be Prose UE to Network Relay, which is discussed in 3GPP, and more generally communicated. It may mean equipment.
  (3)アプリケーションサーバ60
 アプリケーションサーバ60は、ユーザへサービスを提供する装置である。アプリケーションサーバ60は、パケットデータネットワーク(PDN)50に接続される。他方、基地局100は、コアネットワーク40に接続される。コアネットワーク40は、ゲートウェイ装置を介してPDN50に接続される。このため、無線通信装置100は、アプリケーションサーバ60により提供されるサービスを、パケットデータネットワーク50、コアネットワーク40及び無線通信路を介してMECサーバ300、及びユーザへ提供する。
(3) Application server 60
The application server 60 is a device that provides services to users. The application server 60 is connected to a packet data network (PDN) 50. On the other hand, the base station 100 is connected to the core network 40. The core network 40 is connected to the PDN 50 via a gateway device. For this reason, the wireless communication apparatus 100 provides the service provided by the application server 60 to the MEC server 300 and the user via the packet data network 50, the core network 40, and the wireless communication path.
  (4)MECサーバ300
 MECサーバ300は、ユーザへサービス(例えば、コンテンツ等)を提供する装置である。MECサーバ300は、無線通信装置100に設けられ得る。その場合、無線通信装置100は、MECサーバ300により提供されるサービスを、無線通信路を介してユーザへ提供する。MECサーバ300は、論理的な機能エンティティとして実現されてもよく、図1に示すように無線通信装置100等と一体的に形成されてもよい。もちろん、MECサーバ300は、物理的なエンティティとして、独立した装置として形成されてもよい。
(4) MEC server 300
The MEC server 300 is a device that provides a service (for example, content) to a user. The MEC server 300 can be provided in the wireless communication device 100. In that case, the wireless communication device 100 provides the service provided by the MEC server 300 to the user via the wireless communication path. The MEC server 300 may be realized as a logical functional entity, and may be formed integrally with the wireless communication device 100 or the like as shown in FIG. Of course, the MEC server 300 may be formed as an independent device as a physical entity.
 例えば、基地局100Aは、MECサーバ300Aにより提供されるサービスを、マクロセル10に接続する端末装置200Aへ提供する。また、基地局100Aは、MECサーバ300Aにより提供されるサービスを、マスタデバイス100Bを介して、スモールセル10Bに接続する端末装置200Bへ提供する。 For example, the base station 100A provides the service provided by the MEC server 300A to the terminal device 200A connected to the macro cell 10. Also, the base station 100A provides the service provided by the MEC server 300A to the terminal device 200B connected to the small cell 10B via the master device 100B.
 また、マスタデバイス100Bは、MECサーバ300Bにより提供されるサービスを、スモールセル10Bに接続する端末装置200Bへ提供する。同様に、マスタデバイス100Cは、MECサーバ300Cにより提供されるサービスを、スモールセル10Cに接続する端末装置200Cへ提供する。 Further, the master device 100B provides the service provided by the MEC server 300B to the terminal device 200B connected to the small cell 10B. Similarly, the master device 100C provides the service provided by the MEC server 300C to the terminal device 200C connected to the small cell 10C.
  (5)補足
 以上、システム1の概略的な構成を示したが、本技術は図1に示した例に限定されない。例えば、システム1の構成として、マスタデバイスを含まない構成、SCE(Small Cell Enhancement)、HetNet(Heterogeneous Network)、MTC(Machine Type Communication)ネットワーク等が採用され得る。
(5) Supplement Although the schematic configuration of the system 1 has been described above, the present technology is not limited to the example illustrated in FIG. For example, as a configuration of the system 1, a configuration that does not include a master device, an SCE (Small Cell Enhancement), a HetNet (Heterogeneous Network), an MTC (Machine Type Communication) network, or the like may be employed.
  <1.2.MEC>
 続いて、図2~図6を参照して、MECについて説明する。
<1.2. MEC>
Next, the MEC will be described with reference to FIGS.
  (1)ネットワーク構成
 図2は、MECが未導入のLTEネットワークの構成の一例を示す図である。図2に示すように、RAN(Radio Access Network)は、UE及びeNodeBを含む。UEとeNodeBとは、Uuインタフェースにより接続されており、eNodeB同士はX2インタフェースにより接続されている。また、EPC(Evolved Packet Core)は、MME(Mobility Management Entity)、HSS(Home Subscriber Server)、S-GW(Serving Gateway)及びP-GW(PDN Gateway)を含む。MMEとHSSとは、S6aインタフェースにより接続されており、MMEとS-GWとは、S11インタフェースにより接続されており、S-GWとP-GWとは、S5インタフェースにより接続されている。eNodeBとMMEとは、S1-MMEインタフェースにより接続されており、eNodeBとS-GWとは、S1-Uインタフェースにより接続されており、P-GWとPDNとは、SGiインタフェースにより接続されている。
(1) Network Configuration FIG. 2 is a diagram illustrating an example of a configuration of an LTE network in which an MEC has not been introduced. As shown in FIG. 2, the RAN (Radio Access Network) includes a UE and an eNodeB. The UE and the eNodeB are connected by a Uu interface, and the eNodeBs are connected by an X2 interface. Further, EPC (Evolved Packet Core) includes MME (Mobility Management Entity), HSS (Home Subscriber Server), S-GW (Serving Gateway), and P-GW (PDN Gateway). The MME and the HSS are connected by the S6a interface, the MME and the S-GW are connected by the S11 interface, and the S-GW and the P-GW are connected by the S5 interface. The eNodeB and the MME are connected by an S1-MME interface, the eNodeB and the S-GW are connected by an S1-U interface, and the P-GW and the PDN are connected by an SGi interface.
 PDNは、例えばオリジナルサーバ、及びキャッシュサーバを含む。オリジナルサーバには、UEへ提供されるオリジナルのアプリケーションが記憶されている。キャッシュサーバには、例えばアプリケーション又はキャッシュデータが記憶されている。UEは、オリジナルサーバの代わりにキャッシュサーバへアクセスすることで、オリジナルサーバにおける処理負荷及びオリジナルサーバへのアクセスにかかる通信負荷を軽減することができる。ただし、キャッシュサーバがRAN及びEPCの外側(即ち、PDN)に配置されているので、UEとキャッシュサーバとの間で生じる通信遅延(即ち、UEからのリクエストに対する応答遅延)が依然として問題となっていた。 The PDN includes, for example, an original server and a cache server. The original server stores the original application provided to the UE. For example, an application or cache data is stored in the cache server. By accessing the cache server instead of the original server, the UE can reduce the processing load on the original server and the communication load related to the access to the original server. However, since the cache server is located outside the RAN and the EPC (ie, PDN), the communication delay (ie, response delay to the request from the UE) generated between the UE and the cache server is still a problem. It was.
 UEのリクエストには、例えばHttpサーバに記憶されたコンテンツをダウンロードするといった静的なリクエストと、特定のアプリケーションに対する操作などの動的なリクエストとがある。いずれにしろ、キャッシュデータ及びアプリケーションが、UEから近いエンティティに配置された方が、リクエストに対する応答が速くなることは自明である。ここで、典型的には、応答速度はエンティティ間の距離よりも経由するエンティティの数に依存する。なぜならば、経由する各々のエンティティにおける入力部、処理部及び出力部での処理遅延が、エンティティの数だけ累積するためである。なお、コンテンツとは、アプリケーション、画像(動画像又は静止画像)、音声、又はテキスト等の任意の形式のデータを意味するものとする。 The UE request includes, for example, a static request such as downloading content stored in an http server and a dynamic request such as an operation for a specific application. In any case, it is obvious that the response to the request becomes faster when the cache data and the application are arranged in an entity closer to the UE. Here, typically, the response speed depends on the number of passing entities rather than the distance between the entities. This is because the processing delays in the input unit, processing unit, and output unit in each passing entity are accumulated by the number of entities. The content means data in an arbitrary format such as an application, an image (moving image or still image), sound, or text.
 このような問題を解決するために、MECが考案された。MECでは、EPS(Evolved Packet System)の内部に、UEへのコンテンツを提供する又はUEからコンテンツを取得するアプリケーションサーバが設けられる。なお、EPSとは、EPC及びeUTRAN(即ち、eNodeB)を含むネットワークである。EPS内部に設けられるアプリケーションサーバは、エッジサーバ又はMECサーバとも称される場合がある。なお、アプリケーションサーバは、キャッシュサーバを含む概念である。 MEC was devised to solve this problem. In the MEC, an application server that provides content to the UE or acquires content from the UE is provided in an Evolved Packet System (EPS). Note that EPS is a network including EPC and eUTRAN (ie, eNodeB). An application server provided in the EPS may be referred to as an edge server or an MEC server. The application server is a concept including a cache server.
 図3及び図4は、MECが導入されたLTEネットワークの構成の一例を示す図である。図3では、コンテンツをキャッシュするMECサーバがeNodeBに設けられている。この構成によれば、図2に示した例と比較して、UEとMECサーバとの間に存在するエンティティの数が削減されるので、UEは迅速にコンテンツを取得することができる。図4では、コンテンツを記憶するMECサーバが、eNodeB及びS-GWに設けられている。例えば、UEは、eNodeBに配置されたMECサーバからコンテンツを取得しつつ、eNodeBに配置されたMECサーバに要求するキャッシュデータが存在しない場合に、S-GWに配置されたMECサーバからコンテンツを取得する。いずれにしろ、オリジナルサーバへのアクセスを回避することができるので、UEは迅速にコンテンツを取得することができる。 3 and 4 are diagrams illustrating an example of a configuration of an LTE network in which an MEC is introduced. In FIG. 3, an MEC server that caches content is provided in the eNodeB. According to this configuration, since the number of entities existing between the UE and the MEC server is reduced as compared with the example illustrated in FIG. 2, the UE can quickly acquire content. In FIG. 4, MEC servers that store content are provided in the eNodeB and the S-GW. For example, the UE obtains content from the MEC server located in the eNodeB, and obtains content from the MEC server located in the S-GW when there is no cache data requested from the MEC server located in the eNodeB. To do. In any case, since access to the original server can be avoided, the UE can quickly acquire the content.
  (2)各エンティティ
 以下では、図2~図4に登場するエンティティについて説明する。S-GWは、ハンドオーバのアンカーポイントとなるエンティティである。P-GWは、モバイルネットワークと外側(即ち、PDN)との接続点であり、IPアドレスをUEへ割り当て、モバイルネットワークの外側に対してアクセスすべきIPアドレスを提供する。P-GWは、外部から到来するデータのフィルタリング等も行う。HSSは、加入者情報を記憶するデータベースである。MMEは、様々な制御信号を処理していて、HSSにアクセスして各UEの認証(authentication)及び、権限付与(authorization)等の処理を行う。
(2) Each Entity Hereinafter, the entities appearing in FIGS. 2 to 4 will be described. The S-GW is an entity serving as a handover anchor point. The P-GW is a connection point between the mobile network and the outside (ie, PDN), assigns an IP address to the UE, and provides an IP address to be accessed outside the mobile network. The P-GW also performs filtering of data coming from the outside. The HSS is a database that stores subscriber information. The MME processes various control signals, accesses the HSS, and performs processing such as authentication and authorization of each UE.
 EPCネットワークは、制御プレーンとユーザプレーンとに分離されている。S-GW及びP-GWは主にユーザプレーンに関係し、MME及びHSSは主に制御プレーンに関係する。 The EPC network is separated into a control plane and a user plane. S-GW and P-GW are mainly related to the user plane, and MME and HSS are mainly related to the control plane.
 ここで、S-GWは、MEC導入前の構成でもハンドオーバのアンカーポイントなるために、ユーザデータを記憶する機能があった。一方で、eNodeBは、MEC導入前の構成ではユーザデータを記憶する機能はなく、Uuインタフェースで起きたパケットロスに対応したパケット再送等の機能があるだけで、コンテンツは記憶されていなかった。なお、X2インタフェースは、ハンドオーバ時のデータのやり取り、及び干渉の協調制御に用いられていた。 Here, the S-GW has a function of storing user data in order to be an anchor point for handover even in the configuration before the introduction of the MEC. On the other hand, the eNodeB has no function of storing user data in the configuration before the introduction of the MEC, only has a function such as packet retransmission corresponding to a packet loss occurring in the Uu interface, and no content is stored. The X2 interface has been used for data exchange during handover and cooperative control of interference.
  (3)MECサーバにおけるアプリケーション
 キャッシュには、IPレベルでキャッシュを行うストリームキャッシュと、アプリケーションレイヤレベルでキャッシュを行うコンテンツキャッシュとがある。MECサーバは、いずれの種類のキャッシュにも対応することが想定される。現在ではコンテンツキャッシュが主として使用されていることから、MECサーバは特にコンテンツキャッシュに対応することが想定される。
(3) Application caches in the MEC server include a stream cache that performs caching at the IP level and a content cache that performs caching at the application layer level. The MEC server is assumed to support any type of cache. Since the content cache is mainly used at present, it is assumed that the MEC server particularly supports the content cache.
 ここで、MECサーバにおいて、アプリケーションがアクティベートされて、動作可能な状態になっていることが重要である。第1に、キャッシュデータはHTTPヘッダにより認識されるため、MECサーバにおいてHTTPを取扱い可能なアプリケーションが動作可能な状態になっていることが望ましいためである。第2に、MECサーバが特定のアプリケーションを提供する場合、当該アプリケーションが配置され、且つ動作可能な状態にするためにアクティベートされていることが望ましいためである。 Here, it is important that the application is activated and can be operated in the MEC server. First, since the cache data is recognized by the HTTP header, it is desirable that an application capable of handling HTTP can be operated in the MEC server. Second, if the MEC server provides a specific application, it is desirable that the application be deployed and activated to be operational.
 MECに対応するアプリケーションの種類は多岐にわたる。データをキャッシュするキャッシュアプリケーションに関しては、MECサーバにおいてアクティベートされ動作可能な状態になっていたとしても、対象のデータがキャッシュされていない場合、UEはオリジナルサーバまでデータを取りに行くこととなる。そのため、キャッシュアプリケーションにおいて、事前にデータをキャッシュしておくことが望ましい。 ∙ There are a wide variety of applications that support MEC. With respect to a cache application that caches data, even if it is activated and operable in the MEC server, if the target data is not cached, the UE will retrieve the data to the original server. Therefore, it is desirable to cache data in advance in a cache application.
  (4)キャッシュ対象のデータ
 MECサーバ300においてキャッシュされるデータには、DL(Downlink)方向でUEへ送信されるデータ(以下、DLデータフローとも称する)と、UL(Uplink)方向でUEからアップロードされるデータ(以下、ULデータフローとも称する)と、の2種類がある。
(4) Data to be cached The data cached in the MEC server 300 includes data transmitted to the UE in the DL (Downlink) direction (hereinafter also referred to as DL data flow) and uploaded from the UE in the UL (Uplink) direction. There are two types of data (hereinafter also referred to as UL data flow).
 DLデータフローをキャッシュするユースケースとしては、例えばUEがWebアプリケーションにアクセスして何らかのhttpデータを取得する際に、MECサーバに同一のデータがキャッシュされている場合、そのキャッシュデータを取得するケースが挙げられる。 As a use case for caching the DL data flow, for example, when the UE accesses a web application and acquires some http data, if the same data is cached in the MEC server, the cache data is acquired. Can be mentioned.
 ULデータフローをキャッシュするユースケースの一例を、以下説明する。 An example of a use case for caching the UL data flow is described below.
 第1のユースケースは、UE自身が生成した写真等のデータをアップロードするケースである。詳しくは、UEは、自身が生成した写真をアップロードして、MECサーバはこの写真をキャッシュする。そして、MECサーバは、例えばコアネットワーク内の伝送容量に余裕があるタイミングで、キャッシュした写真をPDN上の写真を格納するサーバへ転送してもよい。転送タイミングをずらすことで、コアネットワークの通信負荷が軽減される。また、MECサーバは、例えばキャッシュした写真を他のUEへ転送してもよい。ULデータフローのキャッシュの他のUEとの共有は、例えばスタジアムで観客が撮った写真をそのスタジアムにいる観客同士で共有するようなケースに有用である。 The first use case is a case of uploading data such as photos generated by the UE itself. Specifically, the UE uploads a photo generated by itself, and the MEC server caches this photo. Then, the MEC server may transfer the cached photo to the server that stores the photo on the PDN, for example, at a timing when the transmission capacity in the core network has a margin. By shifting the transfer timing, the communication load of the core network is reduced. In addition, the MEC server may transfer the cached photo to another UE, for example. The sharing of the UL data flow cache with other UEs is useful, for example, in the case where a photograph taken by a spectator at a stadium is shared between spectators at the stadium.
 第2のユースケースは、UEが取得したデータをアップロードするケースである。例えば、UEは、D2D(Device to Device)通信又はWi-Fi(登録商標)により取得したデータをアップロードして、MECサーバはこのデータをキャッシュする。本ユースケースの具体例としては、例えば店舗が商品の情報をD2D通信又はWi-Fiによりブロードキャストし、UEがその情報を取得してMECサーバへアップロードする例が考えられる。その場合、その店舗の地域内(例えば、MECサーバが設けられたeNodeBのセルの範囲内)の他のUEは、キャッシュされた商品の情報を取得することができる。 The second use case is a case of uploading data acquired by the UE. For example, the UE uploads data acquired by D2D (Device to Device) communication or Wi-Fi (registered trademark), and the MEC server caches this data. As a specific example of this use case, for example, a store broadcasts product information by D2D communication or Wi-Fi, and the UE acquires the information and uploads it to the MEC server. In that case, other UEs in the area of the store (for example, within the range of the cell of the eNodeB where the MEC server is provided) can obtain the cached product information.
 第3のユースケースは、異なるeNodeBから受信したデータをアップロードするケースである。例えば、UEは、ハンドオーバ前に接続していたeNodeBから受信したデータを、ハンドオーバ後に接続したeNodeBに設けられたMECサーバへアップロードする。 The third use case is a case where data received from a different eNodeB is uploaded. For example, the UE uploads the data received from the eNodeB connected before the handover to the MEC server provided in the eNodeB connected after the handover.
 第4のユースケースは、MTC端末がデータをアップロードするケースである。そのようなデータとしては、例えば自動販売機の売り上げデータ、及びガスメーターにより検出されるガスの使用状況データ等が考えられる。MTC端末は数が非常に多い場合があり、MTC端末が一斉にデータをPDN上のサーバへアップロードしようとすると、コアネットワーク側で輻輳が生じるという問題がある。一方で、これらのデータはリアルタイム性が求められていないので、例えば1時間後にでも到達すれば十分である。即ち、MTC端末からのデータに関するアプリケーションは、遅延に対する耐性があると言える。そのため、MECサーバは、MTC端末からアップロードされたデータをキャッシュしておき、例えばコアネットワーク内の伝送容量に余裕があるタイミングで、キャッシュしたデータをPDN上のサーバへ転送してもよい。特に、コアネットワークの伝送容量は、ユーザデータの容量よりも制御信号の容量の方が問題になる。セッションをつくるためには、何往復もシグナリングが必要になるからである。大量のMTC端末が一斉にデータをアップロードすると、コアネットワークのシグナリングが過度に増加することとなる。 The fourth use case is a case where the MTC terminal uploads data. As such data, for example, sales data of vending machines, gas use status data detected by a gas meter, and the like can be considered. There are cases where the number of MTC terminals is very large, and there is a problem that congestion occurs on the core network side when the MTC terminals try to upload data to the server on the PDN all at once. On the other hand, since these data do not require real-time properties, it is sufficient to arrive even after one hour, for example. That is, it can be said that the application regarding the data from the MTC terminal is resistant to delay. Therefore, the MEC server may cache the data uploaded from the MTC terminal, and transfer the cached data to the server on the PDN at a timing when there is a margin in the transmission capacity in the core network, for example. In particular, the transmission capacity of the core network is more problematic in terms of the capacity of control signals than the capacity of user data. This is because many round trips of signaling are required to create a session. If a large number of MTC terminals simultaneously upload data, the signaling of the core network increases excessively.
 以上、ULデータフローをキャッシュするユースケースの一例を説明した。本明細書では、このようなULデータフローのキャッシュについて主に説明する。 In the above, an example of a use case for caching the UL data flow has been described. In the present specification, such a cache of UL data flow will be mainly described.
 ULデータフローのキャッシュデータは、上述したようにDL方向(例えば、UE)へ転送される場合もあれば、UL方向(例えば、P-GW又はPDN上のサーバ)へ転送されることもある。前者のキャッシュデータをDLキャッシュデータとも称し、後者のキャッシュデータをULキャッシュデータとも称する。 The cache data of the UL data flow may be transferred in the DL direction (for example, UE) as described above, or may be transferred in the UL direction (for example, a server on the P-GW or PDN). The former cache data is also referred to as DL cache data, and the latter cache data is also referred to as UL cache data.
 図5は、DLキャッシュデータのデータの流れの一例を示す図である。図5に示すように、MECサーバは、UEがアップロードしたデータをキャッシュし、UE(典型的には、アップロードしたUEとは異なるUE)へキャッシュデータを送信する。 FIG. 5 is a diagram showing an example of the data flow of DL cache data. As shown in FIG. 5, the MEC server caches data uploaded by the UE, and transmits the cache data to the UE (typically, a UE different from the uploaded UE).
 図6は、ULキャッシュデータのデータの流れの一例を示す図である。図6に示すように、MECサーバは、UEがアップロードしたデータをキャッシュし、PDN上のオリジナルサーバへキャッシュデータを送信する。 FIG. 6 is a diagram showing an example of the data flow of UL cache data. As shown in FIG. 6, the MEC server caches the data uploaded by the UE and transmits the cache data to the original server on the PDN.
 なお、データによっては、DLキャッシュデータとしての取り扱いが許可されるものとされないものがあると考えられる。例えば、他のUEと共有可能なデータはDLキャッシュデータとしての取り扱いが許可され、個人的なデータはDLキャッシュデータとしての取り扱いが許可されないと考えられる。同様に、データによっては、ULキャッシュデータとしての取り扱いが許可されるものとされないものがあると考えられる。例えば、MTC端末からのデータ等の集計を要するデータはULキャッシュデータとして許可され、地域限定等の局所的なデータはULキャッシュデータとして許可されないと考えられる。 Note that some data may not be permitted to be handled as DL cache data. For example, it is considered that data that can be shared with other UEs is allowed to be handled as DL cache data, and personal data is not allowed to be handled as DL cache data. Similarly, it is considered that some data is not permitted to be handled as UL cache data. For example, it is considered that data that requires aggregation such as data from an MTC terminal is permitted as UL cache data, and local data such as region limitation is not permitted as UL cache data.
 このような事情から、MECサーバにおいて、キャッシュデータをDL方向へ(即ち、UEへ)送信可能か否か、及びUL方向へ(即ち、PDNへ)送信可能か否かが適切に管理されることが望ましい。 Under such circumstances, in the MEC server, whether or not the cache data can be transmitted in the DL direction (that is, to the UE) and whether or not the cache data can be transmitted in the UL direction (that is, to the PDN) is appropriately managed. Is desirable.
  <1.3.ベアラ>
 続いて、図7~図11を参照して、EPSにおいて用いられるベアラ、特にEPSベアラについて説明する。ベアラとは、セッションのことであり、データ伝送を行うための言わば土管である。
<1.3. Bearer>
Next, bearers used in EPS, particularly EPS bearers, will be described with reference to FIGS. The bearer is a session and is a so-called earthen pipe for performing data transmission.
 図7は、ベアラのアーキテクチャを説明するための説明図である。図7に示すように、オリジナルサーバからUEへ提供されるエンドツーエンドサービスは、EPSベアラ及び外部(External)ベアラを用いたデータ伝送により提供される。EPSベアラは、1種類のQoSに対応して1つ確立される。UEは、例えば2種類のQoSを同時に使用したい場合、P-GWとの間で2種類のQoSに対応した2つのEPSベアラを確立する。 FIG. 7 is an explanatory diagram for explaining the architecture of the bearer. As shown in FIG. 7, the end-to-end service provided from the original server to the UE is provided by data transmission using an EPS bearer and an external bearer. One EPS bearer is established corresponding to one kind of QoS. For example, when the UE wants to use two types of QoS at the same time, the UE establishes two EPS bearers corresponding to the two types of QoS with the P-GW.
 EPSベアラは、論理的なセッション(Virtual Connection)であり、実際にはラジオベアラ、S1ベアラ、及びS5ベアラから成る。ラジオベアラは、UEとeNodeBとの間のLTE-Uuインタフェース上に確立されるベアラである。S1ベアラは、eNodeBとS-GWとの間のS1インタフェース上に確立されるベアラである。S5ベアラは、S-GWとP-GWとの間のS5インタフェース上に確立されるベアラである。 The EPS bearer is a logical session (Virtual Connection), and actually includes a radio bearer, an S1 bearer, and an S5 bearer. A radio bearer is a bearer established on the LTE-Uu interface between the UE and the eNodeB. The S1 bearer is a bearer established on the S1 interface between the eNodeB and the S-GW. The S5 bearer is a bearer established on the S5 interface between the S-GW and the P-GW.
 図8は、EPSベアラのアーキテクチャを説明するための説明図である。図8に示すように、EPSベアラは、デフォルトベアラ及び専用(Dedicated)ベアラから成る。UEは、MMEとの間で信号のやり取りを行ってベアラを確立する際、デフォルトとして決定されたQoSに対応するデフォルトベアラを最初に確立する。その後、UEは、必要なQoSに対応するベアラを専用ベアラとして確立する。専用ベアラは、デフォルトベアラなしには確立することができない。 FIG. 8 is an explanatory diagram for explaining the architecture of the EPS bearer. As shown in FIG. 8, the EPS bearer includes a default bearer and a dedicated bearer. When the UE establishes a bearer by exchanging signals with the MME, the UE first establishes a default bearer corresponding to the QoS determined as the default. Thereafter, the UE establishes a bearer corresponding to the necessary QoS as a dedicated bearer. A dedicated bearer cannot be established without a default bearer.
 各々のベアラには、ベアラを識別するためのIDが設定されている。このIDは、1つのUEが使用するベアラを識別するために使用される。従って、UEのIDとベアラのIDとの両方を用いることで、各エンティティ(例えば、P-GW、S-GW及びeNodeB等)は、各々のベアラを識別することが可能である。このIDには、UL用とDL用とがある。 Each bearer is set with an ID for identifying the bearer. This ID is used to identify a bearer used by one UE. Accordingly, by using both the UE ID and the bearer ID, each entity (eg, P-GW, S-GW, eNodeB, etc.) can identify each bearer. This ID includes UL and DL.
 図9は、ベアラに設定されるUL用ID及びDL用IDを説明するための説明図である。図9に示すように、EPSベアラの中では、ULのセッションとDLのセッションとが別々のIDで区別して存在している。例えば、ラジオベアラに設定されるIDには、UL用の「UL RB ID」とDL用の「DL RB ID」とがある。また、S1ベアラでは、TEID(Tunneling End point ID)で区別されるセッション(GTP Tunneling Protocolでやりとりされるセッション)があり、UL用のIDである「UL S1 TEID」又はDL用のIDである「DL S1 TEID」が設定される。また、S5ベアラには、TEIDで区別されるセッションがあり、UL用のIDである「UL S5 TEID」又はDL用のIDである「DL S5 TEID」が設定される。 FIG. 9 is an explanatory diagram for explaining the ID for UL and the ID for DL set in the bearer. As shown in FIG. 9, in an EPS bearer, a UL session and a DL session are distinguished from each other by different IDs. For example, the ID set for the radio bearer includes “UL RB ID” for UL and “DL RB ID” for DL. In addition, in the S1 bearer, there is a session (session exchanged by GTP Tunneling Protocol) distinguished by TEID (Tunneling End point ID), and the UL ID “UL S1 TEID” or the DL ID “ “DL S1 TEID” is set. Further, the S5 bearer has a session that is distinguished by TEID, and “UL S5 TEID” that is an ID for UL or “DL S5 TEID” that is an ID for DL is set.
 下記の表に、各IDがどのエンティティにより割り当てられるかを示した。IDを割り当てたエンティティが、責任を持って該当のセッションを確立したことを意味している。 The table below shows which entity assigns each ID. This means that the entity assigned the ID has established the corresponding session responsibly.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表を参照すると、TEIDは、エンドポイント側のエンティティにより割り当てられる。一方で、RB IDに関しては、ULもDLもeNodeBにより割り当てられる。 Referring to the above table, TEID is assigned by the entity on the endpoint side. On the other hand, regarding RB ID, both UL and DL are allocated by eNodeB.
 下記の表に、IDを用いたデータの流れの一覧を示した。下記の表に示すように、ULデータフローはUL用IDが割り当てられたセッションで伝送され、DLデータフローはDL用IDが割り当てられたセッションで伝送される。なお、各セッションのIDは、1対1マッピングの関係を有しており、1つのIDが1つのIDにマッピングされる。即ち、1つのIDが複数のIDにマッピングされることはない。 The following table shows a list of data flow using ID. As shown in the table below, the UL data flow is transmitted in a session to which a UL ID is assigned, and the DL data flow is transmitted in a session to which a DL ID is assigned. Each session ID has a one-to-one mapping relationship, and one ID is mapped to one ID. That is, one ID is not mapped to a plurality of IDs.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 続いて、図10及び図11を参照して、ベアラを確立するための手続きを説明する。 Subsequently, a procedure for establishing a bearer will be described with reference to FIG. 10 and FIG.
 図10は、デフォルトベアラを確立するための手続きの流れの一例を示すシーケンス図である。本シーケンスには、UE、eNodeB、MME、S-GW、P-GW及びPCRF(Policy and Charging Rules Function)が関与する。図10に示すように、デフォルトベアラの確立は、UEからのリクエストを起点として行われる。eNodeB、MME、S-GW、P-GWの順にリクエストが送信され、その逆方向に承認が送り返される。なお、PCRFは、QoSに関する情報を提供するエンティティである。 FIG. 10 is a sequence diagram showing an example of a procedure flow for establishing a default bearer. This sequence involves UE, eNodeB, MME, S-GW, P-GW, and PCRF (Policy and Charging Rules Function). As shown in FIG. 10, the default bearer is established with a request from the UE as a starting point. Requests are sent in the order of eNodeB, MME, S-GW, and P-GW, and approval is sent back in the opposite direction. The PCRF is an entity that provides information related to QoS.
 本シーケンスについて詳しく説明する。まず、UEはアタッチリクエストをeNodeBへ送信し(ステップS11)、eNodeBは当該メッセージをMMEへ送信する(ステップS12)。次いで、MMEはデフォルトベアラ生成リクエストをS-GWへ送信し(ステップS13)、S-GWは当該メッセージをP-GWへ送信する(ステップS14)。そして、P-GWは、PCRFとやり取りしてIP-CAN(IP Connectivity Access Network)セッションを確立する(ステップS15)。次に、P-GWはデフォルトベアラ生成レスポンスをS-GWへ送信し(ステップS16)、S-GWは当該メッセージをMMEへ送信する(ステップS17)。次いで、MMEは、アタッチアクセプトをeNodeBへ送信し(ステップS18)、eNodeBはRRC(Radio Resource Control)接続再設定をUEへ送信する(ステップS19)。次に、UEは、RRC接続再設定完了をeNodeBへ送信し(ステップS20)、eNodeBはアタッチ完了をMMEへ送信する(ステップS21)。次いで、MMEはベアラアップデートリクエストをS-GWへ送信し(ステップS22)、S-GWはベアラアップデートレスポンスをMMEへ送信する(ステップS23)。 】 This sequence will be explained in detail. First, the UE transmits an attach request to the eNodeB (step S11), and the eNodeB transmits the message to the MME (step S12). Next, the MME transmits a default bearer generation request to the S-GW (step S13), and the S-GW transmits the message to the P-GW (step S14). Then, the P-GW communicates with the PCRF to establish an IP-CAN (IP Connectivity Access Network) session (step S15). Next, the P-GW transmits a default bearer generation response to the S-GW (step S16), and the S-GW transmits the message to the MME (step S17). Next, the MME transmits an attach accept to the eNodeB (step S18), and the eNodeB transmits RRC (Radio Resource Control) connection resetting to the UE (step S19). Next, the UE transmits RRC connection reconfiguration completion to the eNodeB (step S20), and the eNodeB transmits attachment completion to the MME (step S21). Next, the MME transmits a bearer update request to the S-GW (step S22), and the S-GW transmits a bearer update response to the MME (step S23).
 図11は、専用ベアラを確立するための手続きの流れの一例を示すシーケンス図である。本シーケンスには、UE、eNodeB、MME、S-GW、P-GW及びPCRFが関与する。図11に示すように、専用ベアラの確立は、デフォルトベアラとは逆に、PCRFからのリクエストを起点として行われる。なお、UEが専用ベアラを作りたい場合、UEがその旨をアプリケーションレイヤに送信し、アプリケーションレイヤがPCRFに必要なQoSを伝えることで、UEを起点とする専用ベアラの確立が実現する。 FIG. 11 is a sequence diagram showing an example of a procedure flow for establishing a dedicated bearer. This sequence involves UE, eNodeB, MME, S-GW, P-GW and PCRF. As shown in FIG. 11, the establishment of the dedicated bearer is performed starting from a request from the PCRF, contrary to the default bearer. When the UE wants to create a dedicated bearer, the UE transmits a message to that effect to the application layer, and the application layer conveys the QoS necessary for the PCRF, thereby establishing the dedicated bearer starting from the UE.
 本シーケンスについて詳しく説明する。まず、PCRFは、IP-CANセッション変更開始をP-GWへ送信する(ステップS31)。次いで、P-GWは専用ベアラ生成リクエストをS-GWへ送信し(ステップS32)、S-GWは当該メッセージをMMEへ送信する(ステップS33)。次に、MMEは専用ベアラセットアップリクエストをeNodeBへ送信し(ステップS34)、eNodeBはRRC接続再設定をUEへ送信する(ステップS35)。次いで、UEは、RRC接続再設定完了をeNodeBへ送信し(ステップS36)、eNodeBは専用ベアラセットアップレスポンスをMMEへ送信する(ステップS37)。次に、MMEは専用ベアラ生成レスポンスをS-GWへ送信し(ステップS38)、S-GWは当該メッセージをP-GWへ送信する(ステップS39)。次いで、P-GWは、IP-CANセッション変更終了をPCRFへ送信する(ステップS40)。 】 This sequence will be explained in detail. First, the PCRF transmits an IP-CAN session change start to the P-GW (step S31). Next, the P-GW transmits a dedicated bearer generation request to the S-GW (step S32), and the S-GW transmits the message to the MME (step S33). Next, the MME transmits a dedicated bearer setup request to the eNodeB (step S34), and the eNodeB transmits RRC connection reconfiguration to the UE (step S35). Next, the UE transmits RRC connection reconfiguration completion to the eNodeB (step S36), and the eNodeB transmits a dedicated bearer setup response to the MME (step S37). Next, the MME transmits a dedicated bearer generation response to the S-GW (step S38), and the S-GW transmits the message to the P-GW (step S39). Next, the P-GW transmits an IP-CAN session change end to the PCRF (step S40).
  <1.4.TFT及びSDF>
 QoS制御を実行する技術のひとつに、TFT(Traffic Flow Template)がある。以下では、図12を参照して、TFTについて説明する。
<1.4. TFT and SDF>
One of technologies for executing QoS control is TFT (Traffic Flow Template). Hereinafter, the TFT will be described with reference to FIG.
 図12は、TFTについて説明するための説明図である。図12に示すように、TFTは、ダウンリンク方向の通信に関してはP-GWに配置され、アップリンク方向の通信に関してはUEに配置される。EPSに流入するIPフローを、TFTがQoSを考慮してフィルタリングするために、このような配置になっている。 FIG. 12 is an explanatory diagram for explaining the TFT. As shown in FIG. 12, the TFT is arranged in the P-GW for communication in the downlink direction, and is arranged in the UE for communication in the uplink direction. This arrangement is used in order for the TFT to filter the IP flow flowing into the EPS in consideration of QoS.
 TFTにおいて行われる機能には、IPフローをEPSベアラにマッピングすること、及びQoS制御が含まれる。ここでのQoS制御は、設定したMaxmum bit rate内にトラフィックを制限する等の機能である。EPSベアラにマッピングされたIPフローは、UE及びP-GWだけではなく、eNodeB及びS-GWにおいても、QoSに対応した優先度の制御が行われる。この様々なエンティティにおいて実施されるQoS制御の単位となるEPSベアラに、IPフローをマッピングしながらQoS制御も実施するのが、TFTである。 The functions performed in the TFT include mapping an IP flow to an EPS bearer and QoS control. The QoS control here is a function such as limiting traffic within the set Maxbit rate. The IP flow mapped to the EPS bearer is controlled not only in the UE and P-GW but also in the eNodeB and S-GW with priority control corresponding to QoS. A TFT performs QoS control while mapping an IP flow to an EPS bearer that is a unit of QoS control performed in these various entities.
 図13は、TFTについてより詳しく説明するための説明図である。図13に示すように、TFTは、IPフローをSDF(Service Data Flow)にマッピングする。このとき、TFTは、PCRFから提供されたQoS制御のための情報、並びにIPパケットの送信元アドレス(Source address)、送信先アドレス(Destination address)及びポート番号等に基づいて、IPフローに対応する(即ち、所望する)QoSのSDFにマッピングする。そして、SDFは、対応するEPSベアラにマッピングされる。なお、SDFとEPSベアラとは、1対1マッピングの関係を有する。1つのSDFは、1つのEPSに対応付けられる。ただし、EPSベアラには、複数のSDFが対応付けられてもよい。 FIG. 13 is an explanatory diagram for explaining the TFT in more detail. As shown in FIG. 13, the TFT maps an IP flow to an SDF (Service Data Flow). At this time, the TFT responds to the IP flow based on the QoS control information provided from the PCRF, and the source address (Source address), destination address (Destination address), and port number of the IP packet. Map to (ie, desired) QoS SDF. The SDF is then mapped to the corresponding EPS bearer. The SDF and EPS bearer have a one-to-one mapping relationship. One SDF is associated with one EPS. However, a plurality of SDFs may be associated with the EPS bearer.
 TFTについてさらに詳しく説明すると、TFTは、複数のSDFテンプレート(Service Data Flow template)により構成される。SDFテンプレートは、QoSに対応して作られるが、複数のSDFテンプレートに同じQoSが設定される場合がある。その場合は、同一のQoSが設定された複数のSDFテンプレートでフィルタリングされたIPフローは、1つのEPSベアラにマッピングされることになる。SDFテンプレートは、ベアラマッピング及び上述したQoS制御も行う。 The TFT will be described in more detail. The TFT is composed of a plurality of SDF templates (Service Data Flow templates). The SDF template is created corresponding to QoS, but the same QoS may be set in a plurality of SDF templates. In that case, IP flows filtered by a plurality of SDF templates in which the same QoS is set are mapped to one EPS bearer. The SDF template also performs bearer mapping and the QoS control described above.
 <<2.各装置の構成例>>
  <2.1.基地局の構成例>
 まず、図14を参照して、本開示の一実施形態に係る基地局100の構成を説明する。図14は、本開示の一実施形態に係る基地局100の構成の一例を示すブロック図である。図14を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
<< 2. Configuration example of each device >>
<2.1. Example of base station configuration>
First, the configuration of the base station 100 according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 14 is a block diagram illustrating an exemplary configuration of the base station 100 according to an embodiment of the present disclosure. Referring to FIG. 14, the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
 (1)アンテナ部110
 アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
(1) Antenna unit 110
The antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
 (2)無線通信部120
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
(2) Wireless communication unit 120
The wireless communication unit 120 transmits and receives signals. For example, the radio communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
 (3)ネットワーク通信部130
 ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
(3) Network communication unit 130
The network communication unit 130 transmits and receives information. For example, the network communication unit 130 transmits information to other nodes and receives information from other nodes. For example, the other nodes include other base stations and core network nodes.
 (4)記憶部140
 記憶部140は、基地局100の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
(4) Storage unit 140
The storage unit 140 temporarily or permanently stores a program for operating the base station 100 and various data.
 (5)処理部150
 処理部150は、基地局100の様々な機能を提供する。処理部150は、ベアラ確立部151及び通信処理部153を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
(5) Processing unit 150
The processing unit 150 provides various functions of the base station 100. The processing unit 150 includes a bearer establishment unit 151 and a communication processing unit 153. The processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
 ベアラ確立部151は、後述するMECベアラを確立するための処理を行う。通信処理部153は、MECベアラ又は既存のEPSベアラを用いた通信を行うための処理を行う。ベアラ確立部151及び通信処理部153の動作は、後に詳細に説明する。 The bearer establishment unit 151 performs processing for establishing an MEC bearer described later. The communication processing unit 153 performs processing for performing communication using the MEC bearer or the existing EPS bearer. The operations of the bearer establishment unit 151 and the communication processing unit 153 will be described in detail later.
  <2.2.端末装置の構成>
 続いて、図15を参照して、本開示の実施形態に係る端末装置200の構成の一例を説明する。図15は、本開示の一実施形態に係る端末装置200の構成の一例を示すブロック図である。図15を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
<2.2. Configuration of terminal device>
Next, an example of a configuration of the terminal device 200 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 15 is a block diagram illustrating an exemplary configuration of the terminal device 200 according to an embodiment of the present disclosure. Referring to FIG. 15, the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
 (1)アンテナ部210
 アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
(1) Antenna unit 210
The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
 (2)無線通信部220
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
(2) Wireless communication unit 220
The wireless communication unit 220 transmits and receives signals. For example, the radio communication unit 220 receives a downlink signal from the base station and transmits an uplink signal to the base station.
 (3)記憶部230
 記憶部230は、端末装置200の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
(3) Storage unit 230
The storage unit 230 temporarily or permanently stores a program for operating the terminal device 200 and various data.
 (4)処理部240
 処理部240は、端末装置200の様々な機能を提供する。処理部240は、ベアラ確立部241及び通信処理部243を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
(4) Processing unit 240
The processing unit 240 provides various functions of the terminal device 200. The processing unit 240 includes a bearer establishment unit 241 and a communication processing unit 243. Note that the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
 ベアラ確立部241は、後述するMECベアラを確立するための処理を行う。通信処理部243は、MECベアラ又は既存のEPSベアラを用いた通信を行うための処理を行う。ベアラ確立部241及び通信処理部243の動作は、後に詳細に説明する。 The bearer establishment unit 241 performs processing for establishing an MEC bearer described later. The communication processing unit 243 performs processing for performing communication using the MEC bearer or the existing EPS bearer. The operations of the bearer establishment unit 241 and the communication processing unit 243 will be described in detail later.
  <2.3.MECサーバの構成例>
 続いて、図16を参照して、本開示の一実施形態に係るMECサーバ300の構成の一例を説明する。図16は、本開示の一実施形態に係るMECサーバ300の構成の一例を示すブロック図である。図16を参照すると、MECサーバ300は、通信部310、記憶部320、及び処理部330を備える。
<2.3. Configuration example of MEC server>
Next, an example of the configuration of the MEC server 300 according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 16 is a block diagram illustrating an exemplary configuration of the MEC server 300 according to an embodiment of the present disclosure. Referring to FIG. 16, the MEC server 300 includes a communication unit 310, a storage unit 320, and a processing unit 330.
  (1)通信部310
 通信部310は、他の装置との間で通信を行うためのインタフェースである。例えば、通信部310は、対応付けられた装置との間で通信を行う。例えば、MECサーバ300が、論理エンティティとして形成され、基地局100に含まれる場合、通信部310は、例えば基地局100の制御部との間で通信を行う。MECサーバ300は、一体的に形成される装置以外の装置との間で、直接的に通信を行うためのインタフェースを有していてもよい。
(1) Communication unit 310
The communication unit 310 is an interface for performing communication with other devices. For example, the communication unit 310 communicates with the associated device. For example, when the MEC server 300 is formed as a logical entity and included in the base station 100, the communication unit 310 performs communication with, for example, the control unit of the base station 100. The MEC server 300 may have an interface for performing direct communication with a device other than a device formed integrally.
  (2)記憶部320
 記憶部320は、MECサーバ300の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。例えば、記憶部320は、ユーザへ提供される多様なコンテンツ、及びアプリケーションを記憶し得る。
(2) Storage unit 320
The storage unit 320 temporarily or permanently stores a program for operating the MEC server 300 and various data. For example, the storage unit 320 may store various contents and applications provided to the user.
  (3)処理部330
 処理部330は、MECサーバ300の様々な機能を提供する。処理部330は、ベアラ確立部331及び通信処理部333を含む。なお、処理部330は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部330は、これらの構成要素の動作以外の動作も行い得る。
(3) Processing unit 330
The processing unit 330 provides various functions of the MEC server 300. The processing unit 330 includes a bearer establishment unit 331 and a communication processing unit 333. Note that the processing unit 330 may further include other components other than these components. That is, the processing unit 330 can perform operations other than the operations of these components.
 ベアラ確立部331は、後述するMECベアラを確立するための処理を行う。通信処理部333は、MECベアラ又は既存のEPSベアラを用いた通信を行うための処理を行う。ベアラ確立部331及び通信処理部333の動作は、後に詳細に説明する。 The bearer establishment unit 331 performs processing for establishing an MEC bearer described later. The communication processing unit 333 performs processing for performing communication using the MEC bearer or the existing EPS bearer. The operations of the bearer establishment unit 331 and the communication processing unit 333 will be described in detail later.
 以上、各装置の構成例を説明した。以下では、説明の便宜上、基地局100をeNodeB100とも称し、端末装置200をUE200とも称する。 The configuration example of each device has been described above. Hereinafter, for convenience of explanation, the base station 100 is also referred to as an eNodeB 100, and the terminal device 200 is also referred to as a UE 200.
 <<3.第1の実施形態>>
  <3.1.技術的課題>
 EPSでは、UEに提供されるデータは、ベアラ単位で管理されている。1つのベアラには、1つのQoSが対応付けられる。従って、異なるQoSが使用される場合には、異なるベアラが新しく確立される。ここでのベアラとは、EPSベアラである。EPSベアラを構成する、S5ベアラ、S1ベアラ及びラジオベアラの3つのベアラは、各々1対1マッピングの関係を有する。そして、既存のアーキテクチャでは、EPSベアラには、MECサーバを経由するベアラは含まれない。MECサーバへの又はMECサーバからのデータを伝送するための方法の一例として、eNodeB等がEPSベアラで伝送されるデータの宛先を、MECサーバへスイッチングすることが考えられる。しかし、このような方法は、EPSベアラのアーキテクチャに多大な影響を与えることとなり、適切な方法とは言えない。例えば、途中でのスイッチングによって複数経路にデータストリームが流れるようになると、EPSベアラが1つのQoSに対応するという原則が崩れ、EPSベアラにQoSを対応付けることが困難になる。
<< 3. First Embodiment >>
<3.1. Technical issues>
In EPS, data provided to the UE is managed in units of bearers. One QoS is associated with one bearer. Therefore, if a different QoS is used, a different bearer is newly established. The bearer here is an EPS bearer. The three bearers that constitute the EPS bearer, that is, the S5 bearer, the S1 bearer, and the radio bearer have a one-to-one mapping relationship. In the existing architecture, the bearer passing through the MEC server is not included in the EPS bearer. As an example of a method for transmitting data to or from the MEC server, it is conceivable that the eNodeB or the like switches the destination of data transmitted by the EPS bearer to the MEC server. However, such a method has a great influence on the architecture of the EPS bearer, and is not an appropriate method. For example, when a data stream flows through a plurality of paths due to switching in the middle, the principle that an EPS bearer corresponds to one QoS breaks down, and it becomes difficult to associate a QoS with an EPS bearer.
 そこで、本実施形態では、MECサーバ300を経由する新たなEPSベアラを提供する。 Therefore, in this embodiment, a new EPS bearer that passes through the MEC server 300 is provided.
  <3.2.技術的特徴>
  (1)MECベアラ
 図17は、本実施形態で新たに定義されるベアラを説明するための説明図である。図17に示すように、システム1に含まれる各エンティティ(eNodeB100、UE200、MECサーバ300、S-GW41及びP-GW42は)は、MECサーバ300を経由する、P-GW42とUE200との間で確立されるベアラ(第1のEPSベアラに相当)を用いた通信を行う。また、システム1に含まれる各エンティティ(eNodeB100、UE200、S-GW41及びP-GW42は)は、MECサーバ300を経由しない、P-GW42とUE200との間で確立されるベアラ(第2のEPSベアラ)を用いた通信を行ってもよい。各エンティティは、MECサーバ300を経由する新たなEPSベアラと、MECサーバ300を経由しない既存のEPSベアラとを、選択的に用いて通信を行う。現状、MECサーバ300を経由しないベアラがEPSベアラと称されているので、MECサーバ300を経由するベアラがEPSベアラと称されないとも考えられる。そこで、この新たなEPSベアラを、MECベアラとも称する。これに対し、MECサーバ300を経由しないEPSベアラを、既存のEPSベアラとも称する。
<3.2. Technical features>
(1) MEC bearer FIG. 17 is an explanatory diagram for describing a bearer newly defined in the present embodiment. As shown in FIG. 17, each entity (eNodeB 100, UE 200, MEC server 300, S-GW 41, and P-GW 42) included in the system 1 passes between the P-GW 42 and the UE 200 via the MEC server 300. Communication is performed using an established bearer (corresponding to a first EPS bearer). Further, each entity (eNodeB 100, UE 200, S-GW 41, and P-GW 42) included in the system 1 does not pass through the MEC server 300, but is a bearer (second EPS) established between the P-GW 42 and the UE 200. Communication using a bearer may be performed. Each entity performs communication by selectively using a new EPS bearer that passes through the MEC server 300 and an existing EPS bearer that does not pass through the MEC server 300. Currently, a bearer that does not pass through the MEC server 300 is referred to as an EPS bearer. Therefore, a bearer that passes through the MEC server 300 may not be referred to as an EPS bearer. Therefore, this new EPS bearer is also referred to as an MEC bearer. In contrast, an EPS bearer that does not pass through the MEC server 300 is also referred to as an existing EPS bearer.
 MECベアラは、MECサーバ300を端部とするベアラを含む。そして、MECサーバ300を端部とするベアラは、UE200との通信のための第1のMECベアラ(MEC Bearer 1:第1のベアラに相当)、及びP-GW42との通信のための第2のMECベアラ(MEC Bearer 2:第2のベアラに相当)を含む。MECベアラは、アップリンク方向のベアラとダウンリンク方向とベアラとの両方を含む。このことは、既存のEPSベアラと同様である。 The MEC bearer includes a bearer whose end is the MEC server 300. And the bearer which makes MEC server 300 an end is the 1st MEC bearer (MEC Bearer 1: equivalent to the 1st bearer) for communication with UE200, and the 2nd for communication with P-GW42. MEC bearers (MEC Bearer 2: equivalent to the second bearer). The MEC bearer includes both an uplink direction bearer, a downlink direction bearer. This is the same as the existing EPS bearer.
 MECサーバ300への入力のためのベアラで運ばれたIPパケットは、一時的にMECサーバ300でキャッシュされ、各種処理がなされる。そして、任意のタイミングで、キャッシュされたIPパケットは、MECサーバ300からの出力のためのベアラで運ばれる。従って、TCP(Transmission Control Protocol)のようにACK/NACKの返送による再送制御を伴うプロトコルが用いられる場合、MECサーバ300がエンドポイントになっていないと不都合が起きる。キャッシュされている間はACK/NACKが返送されないためである。この点、MECベアラは、MECサーバ300を端部(即ち、エンドポイント)とするベアラであるので、エンドツーエンドサービスのためのベアラは2つに分離される。このため、本実施形態に係るMECサーバ300は、ACK/NACKを返送して、再送制御を行うことが可能となる。 The IP packet carried by the bearer for input to the MEC server 300 is temporarily cached by the MEC server 300 and subjected to various processes. Then, at an arbitrary timing, the cached IP packet is carried by a bearer for output from the MEC server 300. Therefore, when a protocol that involves retransmission control by returning ACK / NACK such as TCP (Transmission Control Protocol) is used, inconvenience arises if the MEC server 300 is not an endpoint. This is because ACK / NACK is not returned while being cached. In this respect, since the MEC bearer is a bearer having the MEC server 300 as an end (that is, an end point), the bearer for the end-to-end service is separated into two. For this reason, the MEC server 300 according to the present embodiment can perform retransmission control by returning ACK / NACK.
 図18は、MECベアラのアーキテクチャを説明するための説明図である。図18では、第1のMECベアラが経由するeNodeB100Aと、第2のMECベアラが経由するeNodeB100Bとを区別しているが、実際には同一のeNodeB100であってもよい。図18に示すように、第1のMECベアラ及び第2のMECベアラの各々は、MECサーバ300及びeNodeB100を両端とするベアラを含む。MECサーバ300とeNodeB100Aとを両端とするベアラをM1ベアラと称し、MECサーバ300とeNodeB100Bとを両端とするベアラをM2ベアラと称する。図18に示すように、第1のMECベアラは、ラジオベアラ及びM1ベアラから成る。また、第2のMECベアラは、M2ベアラ、S1ベアラ及びS5ベアラから成る。 FIG. 18 is an explanatory diagram for explaining the architecture of the MEC bearer. In FIG. 18, the eNodeB 100A through which the first MEC bearer passes and the eNodeB 100B through which the second MEC bearer passes are distinguished, but the same eNodeB 100 may actually be used. As illustrated in FIG. 18, each of the first MEC bearer and the second MEC bearer includes a bearer having both ends of the MEC server 300 and the eNodeB 100. A bearer having both ends of the MEC server 300 and the eNodeB 100A is referred to as an M1 bearer, and a bearer having both ends of the MEC server 300 and the eNodeB 100B is referred to as an M2 bearer. As shown in FIG. 18, the first MEC bearer includes a radio bearer and an M1 bearer. The second MEC bearer includes an M2 bearer, an S1 bearer, and an S5 bearer.
 MECサーバ300とeNodeB100Aとは、M1インタフェースにより接続される。また、MECサーバ300とeNodeB100Bとは、M2インタフェースにより接続される。ここで、ULデータフローに関しては、MECサーバ300への入力方向のベアラとMECサーバ300からの出力方向のベアラとが確立されることが望ましい。同様に、DLデータフローに関しても、MECサーバ300への入力方向のベアラとMECサーバ300からの出力方向のベアラとが確立されることが望ましい。これらの4種類のベアラを区別して確立するために、M1ベアラとM2ベアラとが、別々に確立されることが望ましい。 The MEC server 300 and the eNodeB 100A are connected by the M1 interface. Further, the MEC server 300 and the eNodeB 100B are connected by an M2 interface. Here, regarding the UL data flow, it is desirable that the bearer in the input direction to the MEC server 300 and the bearer in the output direction from the MEC server 300 are established. Similarly, regarding the DL data flow, it is desirable that the bearer in the input direction to the MEC server 300 and the bearer in the output direction from the MEC server 300 are established. In order to distinguish and establish these four types of bearers, it is desirable that the M1 bearer and the M2 bearer are established separately.
 MECベアラを構成するS5ベアラ、S1ベアラ、M2ベアラ、M1ベアラ及びラジオベアラは、1対1マッピングの関係を有する。ただ、実際には、M1ベアラがM2ベアラに即時にデータを受け渡すか否かは、上位のアプリケーションにより左右される。即ち、ベアラマッピング自体は1対1マッピングである一方、データフローが時間的に連続するか否かはアプリケーションに依存する。この点、図18に示したベアラアーキテクチャでは、MECベアラはMECサーバ300をエンドポイントとしているので、多様なアプリケーションの要求に対応可能である、と言える。 The S5 bearer, S1 bearer, M2 bearer, M1 bearer, and radio bearer constituting the MEC bearer have a one-to-one mapping relationship. However, in reality, whether or not the M1 bearer immediately transfers data to the M2 bearer depends on the upper application. That is, the bearer mapping itself is a one-to-one mapping, while whether or not the data flow is continuous in time depends on the application. In this regard, in the bearer architecture shown in FIG. 18, since the MEC bearer uses the MEC server 300 as an endpoint, it can be said that it can respond to various application requests.
  (2)ベアラ確立手続き
 MECベアラは、専用ベアラである。そして、MECベアラは、デフォルトベアラに付随する形で、UE200ごとに個別に確立される。このことは、既存のEPSベアラにおいて、専用ベアラがデフォルトベアラに付随する形でUE200ごとに個別に確立されることと同様である。即ち、本実施形態に係るベアラアーキテクチャは、既存のアーキテクチャからの変更が少ないと言える。
(2) Bearer establishment procedure The MEC bearer is a dedicated bearer. The MEC bearer is individually established for each UE 200 in a form accompanying the default bearer. This is the same as that in the existing EPS bearer, a dedicated bearer is individually established for each UE 200 in a form accompanying the default bearer. That is, it can be said that the bearer architecture according to the present embodiment has little change from the existing architecture.
 既存の専用ベアラは、図11に示したように、QoSを制御するPCRFが起点となって、EPCの奥の方(即ち、P-GW側)から確立される。これは、新たに確立される専用ベアラは、新たなQoSに基づき作られるため、PCRFがトリガをかけることが望ましいためである。実際には、PCRFは、アプリケーションサーバからのQoSのリクエストに基づいて専用ベアラを新たに確立するものであり、そのアプリケーションサーバとUEとはアプリケーションレベルでやり取りしている。そのため、UEが起点となって専用ベアラが確立されるとの解釈も可能である。 As shown in FIG. 11, the existing dedicated bearer is established from the back of the EPC (that is, the P-GW side) starting from the PCRF that controls QoS. This is because the newly established dedicated bearer is created based on the new QoS, so it is desirable for the PCRF to trigger. Actually, the PCRF newly establishes a dedicated bearer based on the QoS request from the application server, and the application server and the UE exchange at the application level. Therefore, it can be interpreted that a dedicated bearer is established starting from the UE.
 この点に関し、M1ベアラ及びM2ベアラは、eNodeB100へのリクエストをトリガとして確立されてもよいし、MECサーバ300へのリクエストをトリガとして確立されてもよい。典型的には、M1ベアラ及びM2ベアラは、eNodeB100へのリクエストをトリガとして確立されることが望ましい。eNodeB100に複数のMECサーバ300が接続されることが考えられるためである。また、M1ベアラ及びM2ベアラは、1度のeNodeB100へのリクエストにより、確立されることが望ましい。そこで、図19を参照しながら、MME43からeNodeB100へのリクエストをトリガとしてM1ベアラ及びM2ベアラを確立する手続きの一例を説明する。 In this regard, the M1 bearer and the M2 bearer may be established with a request to the eNodeB 100 as a trigger, or may be established with a request to the MEC server 300 as a trigger. Typically, it is desirable that the M1 bearer and the M2 bearer are established with a request to the eNodeB 100 as a trigger. This is because a plurality of MEC servers 300 may be connected to the eNodeB 100. Further, it is desirable that the M1 bearer and the M2 bearer are established by a single request to the eNodeB 100. Accordingly, an example of a procedure for establishing the M1 bearer and the M2 bearer by using a request from the MME 43 to the eNodeB 100 as a trigger will be described with reference to FIG.
 図19は、MECベアラの確立手続きの一例を示すシーケンス図である。本シーケンスには、MECサーバ300、UE200、eNodeB100、MME43、S-GW41、P-GW42及びPCRF44が関与する。 FIG. 19 is a sequence diagram showing an example of a procedure for establishing an MEC bearer. In this sequence, the MEC server 300, UE 200, eNodeB 100, MME 43, S-GW 41, P-GW 42, and PCRF 44 are involved.
 まず、PCRF44は、IP-CANセッション変更開始をP-GW42へ送信する(ステップS102)。次いで、P-GW42はMECベアラ生成リクエストをS-GW41へ送信し(ステップS104)、S-GW41は当該メッセージをMME43へ送信する(ステップS106)。次に、MME43はMECベアラセットアップリクエストをeNodeB100へ送信し(ステップS108)、eNodeB100は当該メッセージをMECサーバ300へ送信する(ステップS110)。このタイミングで、M1ベアラ及びM2ベアラが確立される。次いで、MECサーバ300は、MECベアラセットアップレスポンスをeNodeB100へ送信する(ステップS112)。次に、eNodeB100は、RRC接続再設定をUE200へ送信する(ステップS114)。このタイミングで、ラジオベアラが確立され、それに伴い第1のMECベアラが確立される。このように、第1のMECベアラは、M1ベアラが確立された後に、eNodeB100及びUE200を両端とするラジオベアラが確立されることで、確立される。次いで、UE200は、RRC接続再設定完了をeNodeB100へ送信し(ステップS116)、eNodeB100はMECベアラセットアップレスポンスをMME43へ送信する(ステップS118)。次に、MME43はMECベアラ生成レスポンスをS-GW41へ送信し(ステップS120)、S-GW41は当該メッセージをP-GW42へ送信する(ステップS122)。次いで、P-GW42は、IP-CANセッション変更終了をPCRF44へ送信する(ステップS124)。 First, the PCRF 44 transmits an IP-CAN session change start to the P-GW 42 (step S102). Next, the P-GW 42 transmits an MEC bearer generation request to the S-GW 41 (step S104), and the S-GW 41 transmits the message to the MME 43 (step S106). Next, the MME 43 transmits an MEC bearer setup request to the eNodeB 100 (step S108), and the eNodeB 100 transmits the message to the MEC server 300 (step S110). At this timing, the M1 bearer and the M2 bearer are established. Next, the MEC server 300 transmits an MEC bearer setup response to the eNodeB 100 (step S112). Next, the eNodeB 100 transmits RRC connection reconfiguration to the UE 200 (step S114). At this timing, a radio bearer is established, and a first MEC bearer is established accordingly. As described above, the first MEC bearer is established by establishing the radio bearer having both the eNodeB 100 and the UE 200 as both ends after the M1 bearer is established. Next, the UE 200 transmits RRC connection reconfiguration completion to the eNodeB 100 (step S116), and the eNodeB 100 transmits an MEC bearer setup response to the MME 43 (step S118). Next, the MME 43 transmits a MEC bearer generation response to the S-GW 41 (step S120), and the S-GW 41 transmits the message to the P-GW 42 (step S122). Next, the P-GW 42 transmits an IP-CAN session change end to the PCRF 44 (step S124).
 一方で、M1ベアラ及びM2ベアラを、MECサーバ300へのリクエストをトリガとして確立することが望ましい場合もあると考えられる。例えば、MECサーバ300が複数のeNodeB100に接続される場合である。この場合、eNodeB100がMECサーバ300を管理する、といった側面が薄まるためである。そこで、図20を参照しながら、MME43からMECサーバ300へのリクエストをトリガとしてM1ベアラ及びM2ベアラを確立する手続きの一例を説明する。 On the other hand, it may be desirable to establish the M1 bearer and the M2 bearer by using a request to the MEC server 300 as a trigger. For example, the MEC server 300 is connected to a plurality of eNodeBs 100. This is because the aspect that the eNodeB 100 manages the MEC server 300 is thinned. Accordingly, an example of a procedure for establishing the M1 bearer and the M2 bearer by using a request from the MME 43 to the MEC server 300 as a trigger will be described with reference to FIG.
 図20は、MECベアラの確立手続きの一例を示すシーケンス図である。本シーケンスには、MECサーバ300、UE200、eNodeB100、MME43、S-GW41、P-GW42及びPCRF44が関与する。 FIG. 20 is a sequence diagram showing an example of a procedure for establishing an MEC bearer. In this sequence, the MEC server 300, UE 200, eNodeB 100, MME 43, S-GW 41, P-GW 42, and PCRF 44 are involved.
 まず、PCRF44は、IP-CANセッション変更開始をP-GW42へ送信する(ステップS202)。次いで、P-GW42はMECベアラ生成リクエストをS-GW41へ送信し(ステップS204)、S-GW41は当該メッセージをMME43へ送信する(ステップS206)。次に、MME43は、MECベアラセットアップリクエストをMECサーバ300へ送信する(ステップS208)。このタイミングで、M1ベアラ及びM2ベアラが確立される。次いで、MECサーバ300は、MECベアラセットアップレスポンスをMME43へ送信する(ステップS210)。次に、MME43は、MECベアラセットアップリクエストをeNodeB100へ送信し(ステップS212)、eNodeB100は、RRC接続再設定をUE200へ送信する(ステップS214)。このタイミングで、ラジオベアラが確立され、それに伴い第1のMECベアラが確立される。次いで、UE200は、RRC接続再設定完了をeNodeB100へ送信し(ステップS216)、eNodeB100はMECベアラセットアップレスポンスをMME43へ送信する(ステップS218)。次に、MME43はMECベアラ生成レスポンスをS-GW41へ送信し(ステップS220)、S-GW41は当該メッセージをP-GW42へ送信する(ステップS222)。次いで、P-GW42は、IP-CANセッション変更終了をPCRF44へ送信する(ステップS224)。 First, the PCRF 44 transmits an IP-CAN session change start to the P-GW 42 (step S202). Next, the P-GW 42 transmits an MEC bearer generation request to the S-GW 41 (step S204), and the S-GW 41 transmits the message to the MME 43 (step S206). Next, the MME 43 transmits an MEC bearer setup request to the MEC server 300 (step S208). At this timing, the M1 bearer and the M2 bearer are established. Next, the MEC server 300 transmits an MEC bearer setup response to the MME 43 (step S210). Next, the MME 43 transmits an MEC bearer setup request to the eNodeB 100 (step S212), and the eNodeB 100 transmits RRC connection reconfiguration to the UE 200 (step S214). At this timing, a radio bearer is established, and a first MEC bearer is established accordingly. Next, the UE 200 transmits RRC connection reconfiguration completion to the eNodeB 100 (step S216), and the eNodeB 100 transmits an MEC bearer setup response to the MME 43 (step S218). Next, the MME 43 transmits a MEC bearer generation response to the S-GW 41 (step S220), and the S-GW 41 transmits the message to the P-GW 42 (step S222). Next, the P-GW 42 transmits an IP-CAN session change end to the PCRF 44 (step S224).
 <<4.第2の実施形態>>
  <4.1.技術的課題>
 第1の実施形態により、MECベアラが定義された。しかし、ベアラマッピングを行う既存のTFTでは、このMECベアラを有効に使用することが困難であった。詳しくは、図12を参照すると、既存のTFTは、QoSを満足するようにIPフローをEPSベアラにマッピングするのみであって、MECベアラにマッピングする機能を有していない。
<< 4. Second Embodiment >>
<4.1. Technical issues>
According to the first embodiment, the MEC bearer is defined. However, it is difficult to use this MEC bearer effectively in the existing TFT that performs bearer mapping. Specifically, referring to FIG. 12, the existing TFT only maps the IP flow to the EPS bearer so as to satisfy QoS, and does not have a function of mapping to the MEC bearer.
 そこで、本実施形態では、IPフローをMECベアラにマッピングすることが可能なアーキテクチャを提供する。 Therefore, in this embodiment, an architecture capable of mapping an IP flow to an MEC bearer is provided.
  <4.2.技術的特徴>
 第1の実施形態において上記説明したように、システム1の各エンティティは、MECサーバ300を経由する新たなEPSベアラと、MECサーバ300を経由しない既存のEPSベアラとを、選択的に用いて通信を行う。このMECベアラと既存のEPSベアラのいずれを用いるかの切り替えは、UE200又はP-GW42のフィルタにより行われ得る。このフィルタは、典型的には、TFTである。
<4.2. Technical features>
As described above in the first embodiment, each entity of the system 1 communicates selectively using a new EPS bearer that passes through the MEC server 300 and an existing EPS bearer that does not pass through the MEC server 300. I do. Switching between the MEC bearer and the existing EPS bearer can be performed by the UE 200 or the filter of the P-GW 42. This filter is typically a TFT.
 TFTは、MECサーバ300宛てのユーザトラフィックを、MECベアラに対応するSDFにマッピングする。また、TFTは、他の装置(例えば、UE200又はP-GW42等)宛てのユーザトラフィックを、既存のEPSベアラに対応するSDFにマッピングする。これにより、MECベアラと既存のEPSベアラとの切り替えが可能となる。以下、図21を参照して、この点について詳しく説明する。 The TFT maps the user traffic addressed to the MEC server 300 to the SDF corresponding to the MEC bearer. In addition, the TFT maps user traffic addressed to other devices (for example, UE 200 or P-GW 42) to an SDF corresponding to an existing EPS bearer. As a result, switching between the MEC bearer and the existing EPS bearer becomes possible. Hereinafter, this point will be described in detail with reference to FIG.
 図21は、本実施形態に係るTFTによるベアラマッピングを説明するための説明図である。図21に示すように、TFTは、IPフローを、既存のEPSベアラに対応するSDF又はMECベアラに対応するSDFのいずれかにマッピングする。この切り替えは、例えばIPパケットの送信元アドレス、送信先アドレス及びポート番号等に基づいて行われる。なお、TFTは、PCRFから提供されたQoS制御のための情報に基づいて、既存のEPSベアラに対応する複数のSDFのうちどのSDFにマッピングするかを制御する。MECベアラについても同様である。 FIG. 21 is an explanatory diagram for explaining bearer mapping by the TFT according to the present embodiment. As shown in FIG. 21, the TFT maps the IP flow to either the SDF corresponding to the existing EPS bearer or the SDF corresponding to the MEC bearer. This switching is performed based on, for example, the transmission source address, transmission destination address, and port number of the IP packet. Note that the TFT controls which SDF to map to among the plurality of SDFs corresponding to the existing EPS bearer based on the information for QoS control provided from the PCRF. The same applies to the MEC bearer.
 MECサーバ300は、キャッシュサーバとして使用され得る。そして、キャッシュサーバとして使用されるMECサーバ300の用途の一例として、eNodeB100を通過するユーザトラフィックと同一のデータをキャッシュする用途が挙げられる。その場合、P-GW42又はUE200のTFTは、コピーされたユーザトラフィックをMECベアラ又は既存のEPSベアラの一方にマッピングし、オリジナルのトラフィックを他方にマッピングする。これにより、同一のDLデータフローが、P-GW42からUE200へ送信されると共にMECサーバ300にキャッシュされることが可能となる。また、同一のULデータフローが、UE200からP-GW42へ送信されると共にMECサーバ300にキャッシュされることが可能となる。以下、図22及び図23を参照して、ユーザトラフィックのコピー処理の一例を説明する。 The MEC server 300 can be used as a cache server. And as an example of the use of the MEC server 300 used as a cache server, the use which caches the same data as the user traffic which passes eNodeB100 is mentioned. In that case, the TFT of the P-GW 42 or the UE 200 maps the copied user traffic to one of the MEC bearer or the existing EPS bearer and maps the original traffic to the other. As a result, the same DL data flow can be transmitted from the P-GW 42 to the UE 200 and cached in the MEC server 300. Also, the same UL data flow can be transmitted from the UE 200 to the P-GW 42 and cached in the MEC server 300. Hereinafter, an example of user traffic copy processing will be described with reference to FIGS. 22 and 23.
 図22は、ユーザトラフィックのコピー処理の一例を説明するための説明図である。図22に示すように、TFTは、入力されたオリジナルのユーザトラフィックをコピーしてマッピングする。図22に示した例では、TFTは、コピーされたIPフローをMECベアラにマッピングし、オリジナルのIPフローを既存のEPSベアラにマッピングする。例えば、TFTは、オリジナルのIPフローを既存のEPSベアラにマッピングしておき、キャッシュすべきことを指示する情報が入力された場合にのみ、オリジナルのIPフローをコピーしてMECベアラにマッピングする。このような仕組みにより、既存のEPSベアラに与える影響が最小化される。なお、TFTは、PCRFから提供されたQoS制御のための情報に基づいて、既存のEPSベアラに対応する複数のSDFのうちどのSDFにマッピングするかを制御する。MECベアラについても同様である。 FIG. 22 is an explanatory diagram for explaining an example of a user traffic copy process. As shown in FIG. 22, the TFT copies and maps the input original user traffic. In the example shown in FIG. 22, the TFT maps the copied IP flow to the MEC bearer, and maps the original IP flow to the existing EPS bearer. For example, the TFT maps the original IP flow to the existing EPS bearer, and copies and maps the original IP flow to the MEC bearer only when information indicating that it should be cached is input. With such a mechanism, the influence on the existing EPS bearer is minimized. Note that the TFT controls which SDF to map to among the plurality of SDFs corresponding to the existing EPS bearer based on the information for QoS control provided from the PCRF. The same applies to the MEC bearer.
 図23は、ユーザトラフィックのコピー処理の一例を説明するための説明図である。図23に示すように、TFTは、入力されたオリジナルのユーザトラフィック及び入力されたコピーされたユーザトラフィックをマッピングしてもよい。即ち、TFTよりも前にコピーが行われてもよい。例えば、キャッシュすべきことを指示する情報が入力された場合にのみ、オリジナルのIPフローがコピーされてTFTに入力され、それ以外の場合はコピーされなくてもよい。そして、TFTは、IPフローを既存のEPSベアラにマッピングし、コピーされたIPフローが入力された場合はそれをMECベアラにマッピングしてもよい。なお、TFTは、PCRFから提供されたQoS制御のための情報に基づいて、既存のEPSベアラに対応する複数のSDFのうちどのSDFにマッピングするかを制御する。MECベアラについても同様である。 FIG. 23 is an explanatory diagram for explaining an example of a user traffic copy process. As shown in FIG. 23, the TFT may map the input original user traffic and the input copied user traffic. That is, copying may be performed before the TFT. For example, the original IP flow is copied and input to the TFT only when information indicating that it should be cached is input, and otherwise, the original IP flow may not be copied. Then, the TFT may map the IP flow to an existing EPS bearer, and if a copied IP flow is input, it may map it to the MEC bearer. Note that the TFT controls which SDF to map to among the plurality of SDFs corresponding to the existing EPS bearer based on the information for QoS control provided from the PCRF. The same applies to the MEC bearer.
 上記一例を挙げたコピー処理では、P-GW42又はUE200の内部でIPパケットのコピーが行われる。その際、P-GW42又はUE200は、コピーされたユーザトラフィックの宛先アドレス情報(IPアドレス及びポート番号等)をMECサーバ300宛てに書き換える。P-GW42及びUE200は、S-GW41及びeNodeB100のように完全にEPSの内部に含まれるわけではないので、IPアドレス等の書き換え等が可能であり、書き換えにより送信先の切り替えが実現される。 In the copy process given as an example, the IP packet is copied inside the P-GW 42 or the UE 200. At that time, the P-GW 42 or the UE 200 rewrites the destination address information (IP address, port number, etc.) of the copied user traffic to the MEC server 300. Since the P-GW 42 and the UE 200 are not completely included in the EPS like the S-GW 41 and the eNodeB 100, the IP address and the like can be rewritten, and the transmission destination can be switched by the rewriting.
 もちろん、P-GW42又はUE200は、コピー処理を行うか否かを制御可能である。例えば、P-GW42又はUE200は、ユーザトラフィックの伝送と同時並行でキャッシュする場合にはコピー処理を行い、キャッシュが不要な場合はコピー処理を行わずにユーザトラフィックを既存のEPSベアラにマッピングする。また、P-GW42又はUE200は、プリキャッシュする場合はコピー処理を行わずにユーザトラフィックをMECベアラにマッピングする。プリキャッシュの用途としては、例えばUE200がダウンロード中のデータに関連があるデータを、事前にキャッシュしておくことが挙げられる。 Of course, the P-GW 42 or the UE 200 can control whether or not to perform the copy process. For example, the P-GW 42 or the UE 200 performs a copy process when caching in parallel with the transmission of user traffic, and maps the user traffic to an existing EPS bearer without performing the copy process when the cache is unnecessary. Further, when pre-cache, the P-GW 42 or the UE 200 maps user traffic to the MEC bearer without performing a copy process. As an application of the pre-cache, for example, data related to data being downloaded by the UE 200 is cached in advance.
 <<5.第3の実施形態>>
  <5.1.技術的課題>
 上記各実施形態では、eNodeB100にMECサーバ300が設けられる例を説明したが、本技術はかかる例に限定されない。
<< 5. Third Embodiment >>
<5.1. Technical issues>
In each of the above embodiments, the example in which the MEC server 300 is provided in the eNodeB 100 has been described, but the present technology is not limited to such an example.
 例えば、MECサーバ300は、S-GW41等の任意の装置に設けられてもよい。その場合には、上記各実施形態の説明におけるeNodeB100を、MECサーバ300が設けられる装置に読み替えればよい。 For example, the MEC server 300 may be provided in an arbitrary device such as the S-GW 41. In that case, what is necessary is just to read eNodeB100 in description of each said embodiment into the apparatus with which the MEC server 300 is provided.
 他に、MECサーバ300は、エンティティ間に設けられてもよい。以下では、その場合の一例として、MECサーバ300がeNodeB100とS-GW41との間に設けられる場合について説明する。もちろん、この配置は一例であって、MECサーバ300は任意のエンティティ間に設けられてもよい。 In addition, the MEC server 300 may be provided between entities. Hereinafter, as an example of such a case, a case where the MEC server 300 is provided between the eNodeB 100 and the S-GW 41 will be described. Of course, this arrangement is an example, and the MEC server 300 may be provided between arbitrary entities.
  <5.2.技術的特徴>
  (1)MECベアラ
 本実施形態は、上記第1及び第2の実施形態と同様の技術的特徴を有する。例えば、システム1に含まれる各エンティティは、MECサーバ300を経由する、P-GW42とUE200との間で確立されるベアラを用いた通信を行う。また、MECベアラは、MECサーバ300を端部とするベアラ、より詳しくはUE200との通信のための第1のMECベアラ、及びP-GW42との通信のための第2のMECベアラを含む。そこで、以下では、上記第1及び第2の実施形態と同様の技術的特徴については説明を省略し、本実施形態に特有の技術的特徴を主に説明する。まず、図24を参照しながら、本実施形態に係るMECベアラのアーキテクチャを説明する。
<5.2. Technical features>
(1) MEC bearer The present embodiment has the same technical features as the first and second embodiments. For example, each entity included in the system 1 performs communication using the bearer established between the P-GW 42 and the UE 200 via the MEC server 300. The MEC bearer includes a bearer whose end is the MEC server 300, more specifically, a first MEC bearer for communication with the UE 200, and a second MEC bearer for communication with the P-GW 42. Therefore, in the following, description of technical features similar to those of the first and second embodiments will be omitted, and technical features unique to the present embodiment will be mainly described. First, the architecture of the MEC bearer according to the present embodiment will be described with reference to FIG.
 図24は、MECベアラのアーキテクチャを説明するための説明図である。図24に示すように、第1のMECベアラは、MECサーバ300及びeNodeB100を両端とするM1ベアラを含む。また、第2のMECベアラは、MECサーバ300及びS-GW41を両端とするS1ベアラを含む。図24に示すように、第1のMECベアラは、ラジオベアラ及びM1ベアラから成る。また、第2のMECベアラは、S1ベアラ及びS5ベアラから成る。図12を参照して上記説明したように、既存のベアラのアーキテクチャではeNodeB100とS-GW41とを両端とするベアラがS1ベアラであったところ、本実施形態ではMECサーバ300とS-GW41とを両端とするベアラをS1ベアラとしている。このことにより、本実施形態のアーキテクチャは、eNodeB100とMECサーバ300とを一体として見なした場合に、既存のアーキテクチャからの変更が少ないと言える。 FIG. 24 is an explanatory diagram for explaining the architecture of the MEC bearer. As shown in FIG. 24, the first MEC bearer includes M1 bearers having both ends of the MEC server 300 and the eNodeB 100. The second MEC bearer includes S1 bearers having both ends of the MEC server 300 and the S-GW 41. As shown in FIG. 24, the first MEC bearer includes a radio bearer and an M1 bearer. The second MEC bearer includes an S1 bearer and an S5 bearer. As described above with reference to FIG. 12, in the existing bearer architecture, the bearer having both ends of the eNodeB 100 and the S-GW 41 is the S1 bearer. In this embodiment, the MEC server 300 and the S-GW 41 are connected. The bearer at both ends is the S1 bearer. Accordingly, it can be said that the architecture of the present embodiment is little changed from the existing architecture when the eNodeB 100 and the MEC server 300 are regarded as one body.
 本実施形態においても、システム1に含まれる各エンティティは、MECサーバ300を経由するMECベアラと、MECサーバ300を経由しない既存のEPSベアラとを、選択的に用いて通信を行う。しかし、図24に示したアーキテクチャでは、MECサーバ300にキャッシュされるか否かを問わず、全てのIPフローがMECサーバ300を経由することとなる。図24に示したように、MECベアラにおいては、S-GW41とMECサーバ300とを両端とするS1ベアラ、及びMECサーバ300とeNodeB100とを両端とするM1ベアラにより、S-GW41とeNodeB100とは接続される。MECサーバ300がエンドポイントとなるので、MECサーバ300は、再送制御等を行いつつ、IPフローをキャッシュしたり転送したりすることが可能となる。一方で、図12に示したように、既存のEPSベアラにおいては、S-GW41とeNodeB100とを両端とするS1ベアラにより、S-GW41とeNodeB100とは接続される。MECサーバ300がエンドポイントとならないので、MECサーバ300をIPフローが素通りする。 Also in the present embodiment, each entity included in the system 1 performs communication by selectively using an MEC bearer that passes through the MEC server 300 and an existing EPS bearer that does not pass through the MEC server 300. However, in the architecture shown in FIG. 24, all IP flows pass through the MEC server 300 regardless of whether they are cached in the MEC server 300 or not. As shown in FIG. 24, in the MEC bearer, the S-GW 41 and the eNodeB 100 are separated by the S1 bearer having both ends of the S-GW 41 and the MEC server 300 and the M1 bearer having both ends of the MEC server 300 and the eNodeB 100. Connected. Since the MEC server 300 serves as an endpoint, the MEC server 300 can cache and transfer the IP flow while performing retransmission control and the like. On the other hand, as shown in FIG. 12, in the existing EPS bearer, the S-GW 41 and the eNodeB 100 are connected by the S1 bearer having the S-GW 41 and the eNodeB 100 at both ends. Since the MEC server 300 does not become an endpoint, the IP flow passes through the MEC server 300.
 図24に示したアーキテクチャは、図18に示したアーキテクチャと比較して、構成がシンプルになる。一方で、図24に示したアーキテクチャは、MECサーバ300がS1ベアラに関する機能を搭載することが要される。 The architecture shown in FIG. 24 is simpler than the architecture shown in FIG. On the other hand, the architecture shown in FIG. 24 requires that the MEC server 300 has a function related to the S1 bearer.
 他のアーキテクチャの一例として、MECサーバ300をeNodeB100とUE200との間に配置することも考えられる。その場合、MECサーバ300に、多様な無線アクセス機能を搭載することが要されるため、望ましいアーキテクチャであるとはいいがたい。また、他の一例として、MECサーバ300をS-GW41とP-GW42との間に配置することも考えられる。その場合、UE200とMECサーバ300との距離が遠くなり(より正確には、間に存在するエンティティ数が多くなり)、MEC導入によるコンテンツ提供の迅速化といった初期の目的を達成することが困難になるため、望ましいアーキテクチャであるとはいいがたい。これらのことから、図18及び図24に示したアーキテクチャは、適切なものであると言える。 As an example of another architecture, it is also possible to arrange the MEC server 300 between the eNodeB 100 and the UE 200. In that case, since it is necessary to mount various wireless access functions in the MEC server 300, it is difficult to say that this is a desirable architecture. As another example, the MEC server 300 may be arranged between the S-GW 41 and the P-GW 42. In that case, the distance between the UE 200 and the MEC server 300 becomes longer (more precisely, the number of entities existing between them increases), and it is difficult to achieve the initial purpose such as quick provision of content by introducing the MEC. Therefore, it is difficult to say that this is a desirable architecture. From these facts, it can be said that the architecture shown in FIGS. 18 and 24 is appropriate.
  (2)ベアラ確立手続き
 図25は、MECベアラの確立手続きの一例を示すシーケンス図である。本シーケンスには、UE200、eNodeB100、MECサーバ300、MME43、S-GW41、P-GW42及びPCRF44が関与する。
(2) Bearer establishment procedure FIG. 25 is a sequence diagram showing an example of an MEC bearer establishment procedure. In this sequence, UE 200, eNodeB 100, MEC server 300, MME 43, S-GW 41, P-GW 42, and PCRF 44 are involved.
 まず、PCRF44は、IP-CANセッション変更開始をP-GW42へ送信する(ステップS302)。次いで、P-GW42はMECベアラ生成リクエストをS-GW41へ送信し(ステップS304)、S-GW41は当該メッセージをMME43へ送信する(ステップS306)。次に、MME43はMECベアラセットアップリクエストをMECサーバ300へ送信し(ステップS308)、MECサーバ300は当該メッセージをeNodeB100へ送信する(ステップS310)。このタイミングで、M1ベアラが確立される。次いで、eNodeB100は、RRC接続再設定をUE200へ送信する(ステップS312)。このタイミングで、ラジオベアラが確立され、それに伴い第1のMECベアラが確立される。次に、UE200は、RRC接続再設定完了をeNodeB100へ送信する(ステップS314)。次いで、eNodeB100はMECベアラセットアップレスポンスをMECサーバ300へ送信し(ステップS316)、MECサーバ300は当該メッセージをMME43へ送信する(ステップS318)。次に、MME43はMECベアラ生成レスポンスをS-GW41へ送信し(ステップS320)、S-GW41は当該メッセージをP-GW42へ送信する(ステップS322)。次いで、P-GW42は、IP-CANセッション変更終了をPCRF44へ送信する(ステップS324)。 First, the PCRF 44 transmits an IP-CAN session change start to the P-GW 42 (step S302). Next, the P-GW 42 transmits an MEC bearer generation request to the S-GW 41 (step S304), and the S-GW 41 transmits the message to the MME 43 (step S306). Next, the MME 43 transmits an MEC bearer setup request to the MEC server 300 (step S308), and the MEC server 300 transmits the message to the eNodeB 100 (step S310). At this timing, an M1 bearer is established. Next, the eNodeB 100 transmits RRC connection reconfiguration to the UE 200 (step S312). At this timing, a radio bearer is established, and a first MEC bearer is established accordingly. Next, the UE 200 transmits RRC connection reconfiguration completion to the eNodeB 100 (step S314). Next, the eNodeB 100 transmits an MEC bearer setup response to the MEC server 300 (step S316), and the MEC server 300 transmits the message to the MME 43 (step S318). Next, the MME 43 transmits an MEC bearer generation response to the S-GW 41 (step S320), and the S-GW 41 transmits the message to the P-GW 42 (step S322). Next, the P-GW 42 transmits an IP-CAN session change end to the PCRF 44 (step S324).
 <<6.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、MECサーバ300は、タワーサーバ、ラックサーバ、又はブレードサーバなどのいずれかの種類のサーバとして実現されてもよい。また、MECサーバ300の少なくとも一部の構成要素は、サーバに搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール、又はブレードサーバのスロットに挿入されるカード若しくはブレード)において実現されてもよい。
<< 6. Application example >>
The technology according to the present disclosure can be applied to various products. For example, the MEC server 300 may be realized as any type of server such as a tower server, a rack server, or a blade server. Further, at least a part of the components of the MEC server 300 is realized in a module (for example, an integrated circuit module configured by one die or a card or a blade inserted in a slot of the blade server) mounted on the server. May be.
 また、例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。さらに、基地局100の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。 Further, for example, the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB. The small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB. Instead, the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station). The base station 100 may include a main body (also referred to as a base station apparatus) that controls wireless communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。 Further, for example, the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as. The terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication. Furthermore, at least some of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  <6.1.MECサーバ300に関する応用例>
 図26は、本開示に係る技術が適用され得るサーバ700の概略的な構成の一例を示すブロック図である。サーバ700は、プロセッサ701、メモリ702、ストレージ703、ネットワークインタフェース704及びバス706を備える。
<6.1. Application examples regarding the MEC server 300>
FIG. 26 is a block diagram illustrating an example of a schematic configuration of a server 700 to which the technology according to the present disclosure can be applied. The server 700 includes a processor 701, a memory 702, a storage 703, a network interface 704, and a bus 706.
 プロセッサ701は、例えばCPU(Central Processing Unit)又はDSP(Digital Signal Processor)であってよく、サーバ700の各種機能を制御する。メモリ702は、RAM(Random Access Memory)及びROM(Read Only Memory)を含み、プロセッサ701により実行されるプログラム及びデータを記憶する。ストレージ703は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。 The processor 701 may be a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), for example, and controls various functions of the server 700. The memory 702 includes a RAM (Random Access Memory) and a ROM (Read Only Memory), and stores programs and data executed by the processor 701. The storage 703 may include a storage medium such as a semiconductor memory or a hard disk.
 ネットワークインタフェース704は、サーバ700を有線通信ネットワーク705に接続するための有線通信インタフェースである。有線通信ネットワーク705は、EPC(Evolved Packet Core)などのコアネットワークであってもよく、又はインターネットなどのPDN(Packet Data Network)であってもよい。 The network interface 704 is a wired communication interface for connecting the server 700 to the wired communication network 705. The wired communication network 705 may be a core network such as EPC (Evolved Packet Core) or a PDN (Packet Data Network) such as the Internet.
 バス706は、プロセッサ701、メモリ702、ストレージ703及びネットワークインタフェース704を互いに接続する。バス706は、速度の異なる2つ以上のバス(例えば、高速バス及び低速バス)を含んでもよい。 The bus 706 connects the processor 701, the memory 702, the storage 703, and the network interface 704 to each other. The bus 706 may include two or more buses with different speeds (eg, a high speed bus and a low speed bus).
 図26に示したサーバ700において、図16を参照して説明した処理部330に含まれる1つ以上の構成要素(ベアラ確立部331及び/又は通信処理部333)は、プロセッサ701において実装されてもよい。一例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)がサーバ700にインストールされ、プロセッサ701が当該プログラムを実行してもよい。別の例として、サーバ700は、プロセッサ701及びメモリ702を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムをメモリ702に記憶し、当該プログラムをプロセッサ701により実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてサーバ700又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるための上記プログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the server 700 shown in FIG. 26, one or more components (bearer establishment unit 331 and / or communication processing unit 333) included in the processing unit 330 described with reference to FIG. Also good. As an example, a program for causing a processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components) is installed in the server 700, and the processor 701 is The program may be executed. As another example, the server 700 may include a module including the processor 701 and the memory 702, and the one or more components may be mounted in the module. In this case, the module may store a program for causing the processor to function as the one or more components in the memory 702 and execute the program by the processor 701. As described above, the server 700 or the module may be provided as an apparatus including the one or more components, and the program for causing a processor to function as the one or more components may be provided. . In addition, a readable recording medium in which the program is recorded may be provided.
 また、図26に示したサーバ700において、図16を参照して説明した通信部310は、ネットワークインタフェース704において実装されてもよい。また、記憶部320は、メモリ702又はストレージ703において実装されてもよい。 In the server 700 shown in FIG. 26, the communication unit 310 described with reference to FIG. 16 may be implemented in the network interface 704. Further, the storage unit 320 may be implemented in the memory 702 or the storage 703.
  <6.2.基地局に関する応用例>
 (第1の応用例)
 図27は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
<6.2. Application examples for base stations>
(First application example)
FIG. 27 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied. The eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図27に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図27にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。 Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820. The eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 27, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Note that although FIG. 27 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。 The base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。 The controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node. The memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。 The network interface 823 is a communication interface for connecting the base station device 820 to the core network 824. The controller 821 may communicate with the core network node or other eNB via the network interface 823. In that case, the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface). The network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul. When the network interface 823 is a wireless communication interface, the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。 The wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810. The wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like. The BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP). Various signal processing of (Packet Data Convergence Protocol) is executed. The BB processor 826 may have some or all of the logical functions described above instead of the controller 821. The BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good. Further, the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade. On the other hand, the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
 無線通信インタフェース825は、図27に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図27に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図27には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。 The wireless communication interface 825 includes a plurality of BB processors 826 as shown in FIG. 27, and the plurality of BB processors 826 may correspond to a plurality of frequency bands used by the eNB 800, for example. In addition, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 27, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively. 27 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
 図27に示したeNB800において、図14を参照して説明した処理部150に含まれる1つ以上の構成要素(ベアラ確立部151及び/又は通信処理部153)は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the eNB 800 illustrated in FIG. 27, one or more components (bearer establishment unit 151 and / or communication processing unit 153) included in the processing unit 150 described with reference to FIG. 14 are implemented in the wireless communication interface 825. May be. Alternatively, at least some of these components may be implemented in the controller 821. As an example, the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program. Good. As described above, the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図27に示したeNB800において、図14を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。また、記憶部140は、メモリ822において実装されてもよい。 27, the radio communication unit 120 described with reference to FIG. 14 may be implemented in the radio communication interface 825 (for example, the RF circuit 827) in the eNB 800 illustrated in FIG. Further, the antenna unit 110 may be mounted on the antenna 810. The network communication unit 130 may be implemented in the controller 821 and / or the network interface 823. In addition, the storage unit 140 may be implemented in the memory 822.
 (第2の応用例)
 図28は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
(Second application example)
FIG. 28 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied. The eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図28に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図28にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。 Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860. The eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 28, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. Note that although FIG. 28 illustrates an example in which the eNB 830 includes a plurality of antennas 840, the eNB 830 may include a single antenna 840.
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図27を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。 The base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857. The controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図27を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図28に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図28には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。 The wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840. The wireless communication interface 855 may typically include a BB processor 856 and the like. The BB processor 856 is the same as the BB processor 826 described with reference to FIG. 27 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857. The wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG. 28, and the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 28 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。 The connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860. The connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。 In addition, the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。 The connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850. The connection interface 861 may be a communication module for communication on the high-speed line.
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図28に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図28には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。 The wireless communication interface 863 transmits and receives wireless signals via the antenna 840. The wireless communication interface 863 may typically include an RF circuit 864 and the like. The RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840. The wireless communication interface 863 includes a plurality of RF circuits 864 as illustrated in FIG. 28, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. 28 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
 図28に示したeNB830において、図14を参照して説明した処理部150に含まれる1つ以上の構成要素(ベアラ確立部151及び/又は通信処理部153)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the eNB 830 illustrated in FIG. 28, one or more components (bearer establishment unit 151 and / or communication processing unit 153) included in the processing unit 150 described with reference to FIG. 14 include the wireless communication interface 855 and / or The wireless communication interface 863 may be implemented. Alternatively, at least some of these components may be implemented in the controller 851. As an example, the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program. Good. As described above, the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図28に示したeNB830において、例えば、図14を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。また、記憶部140は、メモリ852において実装されてもよい。 28, for example, the wireless communication unit 120 described with reference to FIG. 14 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864). The antenna unit 110 may be mounted on the antenna 840. The network communication unit 130 may be implemented in the controller 851 and / or the network interface 853. The storage unit 140 may be mounted in the memory 852.
  <6.3.端末装置に関する応用例>
 (第1の応用例)
 図29は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
<6.3. Application examples related to terminal devices>
(First application example)
FIG. 29 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied. The smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915. One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。 The processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900. The memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data. The storage 903 can include a storage medium such as a semiconductor memory or a hard disk. The external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。 The camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image. The sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor. The microphone 908 converts sound input to the smartphone 900 into an audio signal. The input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user. The display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900. The speaker 911 converts an audio signal output from the smartphone 900 into audio.
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図29に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図29には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。 The wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication. The wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like. The BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication. On the other hand, the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916. The wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated. The wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 29 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。 Furthermore, the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method. In that case, a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。 Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図29に示したように複数のアンテナ916を有してもよい。なお、図29にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。 Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912. The smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 29 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。 Furthermore, the smartphone 900 may include an antenna 916 for each wireless communication method. In that case, the antenna switch 915 may be omitted from the configuration of the smartphone 900.
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図29に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。 The bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. . The battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 29 via a power supply line partially shown by a broken line in the drawing. For example, the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
 図29に示したスマートフォン900において、図15を参照して説明した処理部240に含まれる1つ以上の構成要素(ベアラ確立部241及び/又は通信処理部243)は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the smartphone 900 shown in FIG. 29, one or more components (bearer establishment unit 241 and / or communication processing unit 243) included in the processing unit 240 described with reference to FIG. 15 are implemented in the wireless communication interface 912. May be. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919. As an example, the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed. As described above, the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図29に示したスマートフォン900において、例えば、図15を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。また、記憶部230は、メモリ902において実装されてもよい。 29, for example, the wireless communication unit 220 described with reference to FIG. 15 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914). The antenna unit 210 may be mounted on the antenna 916. The storage unit 230 may be mounted in the memory 902.
 (第2の応用例)
 図30は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
(Second application example)
FIG. 30 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied. The car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication. The interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。 The processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920. The memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。 The GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites. The sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor. The data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。 The content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928. The input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user. The display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced. The speaker 931 outputs the navigation function or the audio of the content to be played back.
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図30に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図30には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。 The wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication. The wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like. The BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication. On the other hand, the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937. The wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated. The wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 30 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。 Further, the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method. A BB processor 934 and an RF circuit 935 may be included for each communication method.
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。 Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図30に示したように複数のアンテナ937を有してもよい。なお、図30にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。 Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933. The car navigation device 920 may include a plurality of antennas 937 as shown in FIG. Note that FIG. 30 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, but the car navigation apparatus 920 may include a single antenna 937.
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。 Furthermore, the car navigation device 920 may include an antenna 937 for each wireless communication method. In that case, the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図30に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。 The battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 30 through a power supply line partially shown by broken lines in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
 図30に示したカーナビゲーション装置920において、図15を参照して説明した処理部240に含まれる1つ以上の構成要素(ベアラ確立部241及び/又は通信処理部243)は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the car navigation device 920 shown in FIG. 30, one or more components (bearer establishment unit 241 and / or communication processing unit 243) included in the processing unit 240 described with reference to FIG. May be implemented. Alternatively, at least some of these components may be implemented in the processor 921. As an example, the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program. May be. As described above, the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図30に示したカーナビゲーション装置920において、例えば、図15を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。また、記憶部230は、メモリ922において実装されてもよい。 Further, in the car navigation device 920 shown in FIG. 30, for example, the wireless communication unit 220 described with reference to FIG. 15 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935). The antenna unit 210 may be mounted on the antenna 937. Further, the storage unit 230 may be implemented in the memory 922.
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、ベアラ確立部241及び/又は通信処理部243を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。 Also, the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as a device including the bearer establishment unit 241 and / or the communication processing unit 243. The vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
 <<7.まとめ>>
 以上、図1~図30を参照して、本開示の一実施形態について詳細に説明した。上記説明したように、システム1に含まれる各エンティティ(eNodeB100、UE200、MECサーバ300、S-GW41及びP-GW42)は、EPS内部に設けられUE200へのコンテンツを提供する又はUE200からコンテンツを取得するMECサーバ300を経由する、P-GW42とUE200との間で確立されるMECベアラを用いた通信を行う。各エンティティは、MECベアラを用いることで、MECサーバ300へIPフローを送信したり、又はMECサーバ300からのIPフローを転送したりすることが可能となる。
<< 7. Summary >>
The embodiment of the present disclosure has been described in detail above with reference to FIGS. As described above, each entity (eNodeB 100, UE 200, MEC server 300, S-GW 41, and P-GW 42) included in the system 1 provides content to the UE 200 or acquires content from the UE 200. Communication using the MEC bearer established between the P-GW 42 and the UE 200 via the MEC server 300 to be performed. Each entity can transmit an IP flow to the MEC server 300 or transfer an IP flow from the MEC server 300 by using the MEC bearer.
 また、既存のEPSベアラとMECベアラとの切り替えは、UE200又はP-GW42のTFTにより行われることとなる。そのため、既存のEPSベアラのアーキテクチャが保たれたまま、MECベアラを実現することが可能である。 Further, switching between the existing EPS bearer and the MEC bearer is performed by the UE 200 or the TFT of the P-GW 42. Therefore, it is possible to realize the MEC bearer while maintaining the existing EPS bearer architecture.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書においてフローチャート及びシーケンス図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。 In addition, the processes described using the flowcharts and sequence diagrams in this specification do not necessarily have to be executed in the order shown. Some processing steps may be performed in parallel. Further, additional processing steps may be employed, and some processing steps may be omitted.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 EPS内部に設けられ端末装置へのコンテンツを提供する又は前記端末装置からコンテンツを取得するアプリケーションサーバを経由する、P-GW(Packet Data Network Gateway)と前記端末装置との間で確立される第1のEPSベアラを用いた通信を行う処理部、
を備える装置。
(2)
 前記第1のEPSベアラは、前記アプリケーションサーバを端部とするベアラを含む、前記(1)に記載の装置。
(3)
 前記アプリケーションサーバを端部とするベアラは、前記端末装置との通信のための第1のベアラ、及び前記P-GWとの通信のための第2のベアラを含む、前記(2)に記載の装置。
(4)
 前記第1のベアラ及び第2のベアラの各々は、前記アプリケーションサーバ及び基地局を両端とするベアラを含む、前記(3)に記載の装置。
(5)
 前記第1のベアラは、前記アプリケーションサーバ及び前記基地局を両端とするベアラが確立された後に、前記基地局及び前記端末装置を両端とするベアラが確立されることで、確立される、前記(4)に記載の装置。
(6)
 前記アプリケーションサーバ及び前記基地局を両端とするベアラは、前記基地局へのリクエストをトリガとして確立される、前記(4)又は(5)に記載の装置。
(7)
 前記アプリケーションサーバ及び前記基地局を両端とするベアラは、前記アプリケーションサーバへのリクエストをトリガとして確立される、前記(4)又は(5)に記載の装置。
(8)
 前記第1のベアラは、前記アプリケーションサーバ及び基地局を両端とするベアラを含み、前記第2のベアラは、前記アプリケーションサーバ及びS-GW(Serving Gateway)を両端とするベアラを含む、前記(3)に記載の装置。
(9)
 前記第1のEPSベアラは、専用ベアラ(Dedicated Bearer)である、前記(1)~(8)のいずれか一項に記載の装置。
(10)
 前記第1のEPSベアラは、前記端末装置ごとに個別に確立される、前記(9)に記載の装置。
(11)
 前記処理部は、前記アプリケーションサーバを経由しない、前記P-GWと前記端末装置との間で確立される第2のEPSベアラを用いた通信を行い、
 前記第1又は前記第2のEPSベアラのいずれを用いるかの切り替えは、前記端末装置又は前記P-GWのフィルタにより行われる、前記(1)~(10)のいずれか一項に記載の装置。
(12)
 前記フィルタは、前記アプリケーションサーバ宛てのユーザトラフィックを前記第1のEPSベアラに対応するSDF(Service Data Flow)にマッピングし、他の装置宛てのユーザトラフィック前記第2のEPSベアラに対応するSDFにマッピングする、前記(11)に記載の装置。
(13)
 前記フィルタは、コピーされたユーザトラフィックを前記第1又は前記第2のEPSベアラの一方にマッピングし、オリジナルのユーザトラフィックを他方にマッピングする、前記(11)又は(12)に記載の装置。
(14)
 前記フィルタは、コピーされたユーザトラフィックを前記第1のEPSベアラにマッピングし、オリジナルのユーザトラフィックを前記第2のEPSベアラにマッピングする、前記(13)に記載の装置。
(15)
 前記処理部は、コピーされたユーザトラフィックの宛先アドレス情報を前記アプリケーションサーバ宛てに書き換える、前記(13)又は(14)に記載の装置。
(16)
 前記フィルタは、入力されたオリジナルのユーザトラフィックをコピーしてマッピングする、前記(13)~(15)のいずれか一項に記載の装置。
(17)
 前記フィルタは、入力されたオリジナルのユーザトラフィック及び入力されたコピーされたユーザトラフィックをマッピングする、前記(13)~(15)のいずれか一項に記載の装置。
(18)
 前記フィルタは、TFT(Traffic Flow Templates)である、前記(11)~(17)のいずれか一項に記載の装置。
(19)
 EPS内部に設けられ端末装置へのコンテンツを提供する又は前記端末装置からコンテンツを取得するアプリケーションサーバを経由する、P-GW(Packet Data Network Gateway)と前記端末装置との間で確立される第1のEPSベアラを用いた通信をプロセッサにより行うこと、
を含む方法。
(20)
 コンピュータを、
 EPS内部に設けられ端末装置へのコンテンツを提供する又は前記端末装置からコンテンツを取得するアプリケーションサーバを経由する、P-GW(Packet Data Network Gateway)と前記端末装置との間で確立される第1のEPSベアラを用いた通信を行う処理部、
として機能させるためのプログラム。
The following configurations also belong to the technical scope of the present disclosure.
(1)
First established between a P-GW (Packet Data Network Gateway) and the terminal device via an application server provided in the EPS and providing content to the terminal device or acquiring content from the terminal device A processing unit that performs communication using the EPS bearer,
A device comprising:
(2)
The apparatus according to (1), wherein the first EPS bearer includes a bearer whose end is the application server.
(3)
The bearer whose end is the application server includes a first bearer for communication with the terminal device and a second bearer for communication with the P-GW. apparatus.
(4)
The apparatus according to (3), wherein each of the first bearer and the second bearer includes a bearer having both ends of the application server and a base station.
(5)
The first bearer is established by establishing a bearer having both ends of the base station and the terminal device after a bearer having both ends of the application server and the base station is established. The apparatus as described in 4).
(6)
The apparatus according to (4) or (5), wherein a bearer having both ends of the application server and the base station is established by using a request to the base station as a trigger.
(7)
The apparatus according to (4) or (5), wherein a bearer having both ends of the application server and the base station is established with a request to the application server as a trigger.
(8)
The first bearer includes a bearer having both ends of the application server and a base station, and the second bearer includes a bearer having both ends of the application server and an S-GW (Serving Gateway). ) Device.
(9)
The apparatus according to any one of (1) to (8), wherein the first EPS bearer is a dedicated bearer.
(10)
The device according to (9), wherein the first EPS bearer is individually established for each terminal device.
(11)
The processing unit performs communication using the second EPS bearer established between the P-GW and the terminal device without passing through the application server,
The device according to any one of (1) to (10), wherein switching between using the first or second EPS bearer is performed by the terminal device or the filter of the P-GW. .
(12)
The filter maps user traffic addressed to the application server to an SDF (Service Data Flow) corresponding to the first EPS bearer, and maps user traffic addressed to another device to an SDF corresponding to the second EPS bearer. The apparatus according to (11) above.
(13)
The apparatus according to (11) or (12), wherein the filter maps the copied user traffic to one of the first or second EPS bearer and maps the original user traffic to the other.
(14)
The apparatus according to (13), wherein the filter maps copied user traffic to the first EPS bearer and maps original user traffic to the second EPS bearer.
(15)
The apparatus according to (13) or (14), wherein the processing unit rewrites destination address information of the copied user traffic to the application server.
(16)
The apparatus according to any one of (13) to (15), wherein the filter copies and maps input original user traffic.
(17)
The apparatus according to any one of (13) to (15), wherein the filter maps input original user traffic and input copied user traffic.
(18)
The apparatus according to any one of (11) to (17), wherein the filter is a TFT (Traffic Flow Templates).
(19)
First established between a P-GW (Packet Data Network Gateway) and the terminal device via an application server provided in the EPS and providing content to the terminal device or acquiring content from the terminal device Communication using the EPS bearer of the processor,
Including methods.
(20)
Computer
First established between a P-GW (Packet Data Network Gateway) and the terminal device via an application server provided in the EPS and providing content to the terminal device or acquiring content from the terminal device A processing unit that performs communication using the EPS bearer,
Program to function as.
 1    システム
 40   コアネットワーク
 50   パケットデータネットワーク
 60   アプリケーションサーバ
 100  無線通信装置、基地局、eNodeB
 110  アンテナ部
 120  無線通信部
 130  ネットワーク通信部
 140  記憶部
 150  処理部
 151  ベアラ確立部
 153  通信処理部
 200  端末装置、UE
 210  アンテナ部
 220  無線通信部
 230  記憶部
 240  処理部
 241  ベアラ確立部
 243  通信処理部
 300  MECサーバ
 310  通信部
 320  記憶部
 330  処理部
 331  ベアラ確立部
 333  通信処理部
1 System 40 Core Network 50 Packet Data Network 60 Application Server 100 Wireless Communication Device, Base Station, eNodeB
DESCRIPTION OF SYMBOLS 110 Antenna part 120 Wireless communication part 130 Network communication part 140 Storage part 150 Processing part 151 Bearer establishment part 153 Communication processing part 200 Terminal device, UE
210 Antenna unit 220 Wireless communication unit 230 Storage unit 240 Processing unit 241 Bearer establishment unit 243 Communication processing unit 300 MEC server 310 Communication unit 320 Storage unit 330 Processing unit 331 Bearer establishment unit 333 Communication processing unit

Claims (20)

  1.  EPS内部に設けられ端末装置へのコンテンツを提供する又は前記端末装置からコンテンツを取得するアプリケーションサーバを経由する、P-GW(Packet Data Network Gateway)と前記端末装置との間で確立される第1のEPSベアラを用いた通信を行う処理部、
    を備える装置。
    First established between a P-GW (Packet Data Network Gateway) and the terminal device via an application server provided in the EPS and providing content to the terminal device or acquiring content from the terminal device A processing unit that performs communication using the EPS bearer,
    A device comprising:
  2.  前記第1のEPSベアラは、前記アプリケーションサーバを端部とするベアラを含む、請求項1に記載の装置。 The apparatus according to claim 1, wherein the first EPS bearer includes a bearer whose end is the application server.
  3.  前記アプリケーションサーバを端部とするベアラは、前記端末装置との通信のための第1のベアラ、及び前記P-GWとの通信のための第2のベアラを含む、請求項2に記載の装置。 The apparatus according to claim 2, wherein the bearer whose end is the application server includes a first bearer for communication with the terminal apparatus and a second bearer for communication with the P-GW. .
  4.  前記第1のベアラ及び第2のベアラの各々は、前記アプリケーションサーバ及び基地局を両端とするベアラを含む、請求項3に記載の装置。 The apparatus according to claim 3, wherein each of the first bearer and the second bearer includes a bearer having both ends of the application server and a base station.
  5.  前記第1のベアラは、前記アプリケーションサーバ及び前記基地局を両端とするベアラが確立された後に、前記基地局及び前記端末装置を両端とするベアラが確立されることで、確立される、請求項4に記載の装置。 The first bearer is established by establishing a bearer having both ends of the base station and the terminal device after a bearer having both ends of the application server and the base station is established. 4. The apparatus according to 4.
  6.  前記アプリケーションサーバ及び前記基地局を両端とするベアラは、前記基地局へのリクエストをトリガとして確立される、請求項4に記載の装置。 The apparatus according to claim 4, wherein a bearer having both ends of the application server and the base station is established with a request to the base station as a trigger.
  7.  前記アプリケーションサーバ及び前記基地局を両端とするベアラは、前記アプリケーションサーバへのリクエストをトリガとして確立される、請求項4に記載の装置。 The apparatus according to claim 4, wherein a bearer having both ends of the application server and the base station is established with a request to the application server as a trigger.
  8.  前記第1のベアラは、前記アプリケーションサーバ及び基地局を両端とするベアラを含み、前記第2のベアラは、前記アプリケーションサーバ及びS-GW(Serving Gateway)を両端とするベアラを含む、請求項3に記載の装置。 The first bearer includes a bearer having both ends of the application server and a base station, and the second bearer includes a bearer having both ends of the application server and an S-GW (Serving Gateway). The device described in 1.
  9.  前記第1のEPSベアラは、専用ベアラ(Dedicated Bearer)である、請求項1に記載の装置。 The apparatus according to claim 1, wherein the first EPS bearer is a dedicated bearer.
  10.  前記第1のEPSベアラは、前記端末装置ごとに個別に確立される、請求項9に記載の装置。 The apparatus according to claim 9, wherein the first EPS bearer is individually established for each terminal apparatus.
  11.  前記処理部は、前記アプリケーションサーバを経由しない、前記P-GWと前記端末装置との間で確立される第2のEPSベアラを用いた通信を行い、
     前記第1又は前記第2のEPSベアラのいずれを用いるかの切り替えは、前記端末装置又は前記P-GWのフィルタにより行われる、請求項1に記載の装置。
    The processing unit performs communication using the second EPS bearer established between the P-GW and the terminal device without passing through the application server,
    The apparatus according to claim 1, wherein switching between using the first EPS bearer or the second EPS bearer is performed by the terminal apparatus or the P-GW filter.
  12.  前記フィルタは、前記アプリケーションサーバ宛てのユーザトラフィックを前記第1のEPSベアラに対応するSDF(Service Data Flow)にマッピングし、他の装置宛てのユーザトラフィック前記第2のEPSベアラに対応するSDFにマッピングする、請求項11に記載の装置。 The filter maps user traffic addressed to the application server to an SDF (Service Data Flow) corresponding to the first EPS bearer, and maps user traffic addressed to another device to an SDF corresponding to the second EPS bearer. The apparatus of claim 11.
  13.  前記フィルタは、コピーされたユーザトラフィックを前記第1又は前記第2のEPSベアラの一方にマッピングし、オリジナルのユーザトラフィックを他方にマッピングする、請求項11に記載の装置。 12. The apparatus of claim 11, wherein the filter maps the copied user traffic to one of the first or second EPS bearers and maps the original user traffic to the other.
  14.  前記フィルタは、コピーされたユーザトラフィックを前記第1のEPSベアラにマッピングし、オリジナルのユーザトラフィックを前記第2のEPSベアラにマッピングする、請求項13に記載の装置。 The apparatus according to claim 13, wherein the filter maps copied user traffic to the first EPS bearer and maps original user traffic to the second EPS bearer.
  15.  前記処理部は、コピーされたユーザトラフィックの宛先アドレス情報を前記アプリケーションサーバ宛てに書き換える、請求項13に記載の装置。 The apparatus according to claim 13, wherein the processing unit rewrites destination address information of the copied user traffic to the application server.
  16.  前記フィルタは、入力されたオリジナルのユーザトラフィックをコピーしてマッピングする、請求項13に記載の装置。 The apparatus according to claim 13, wherein the filter copies and maps the input original user traffic.
  17.  前記フィルタは、入力されたオリジナルのユーザトラフィック及び入力されたコピーされたユーザトラフィックをマッピングする、請求項13に記載の装置。 14. The apparatus of claim 13, wherein the filter maps input original user traffic and input copied user traffic.
  18.  前記フィルタは、TFT(Traffic Flow Templates)である、請求項11に記載の装置。 The apparatus according to claim 11, wherein the filter is a TFT (Traffic Flow Templates).
  19.  EPS内部に設けられ端末装置へのコンテンツを提供する又は前記端末装置からコンテンツを取得するアプリケーションサーバを経由する、P-GW(Packet Data Network Gateway)と前記端末装置との間で確立される第1のEPSベアラを用いた通信をプロセッサにより行うこと、
    を含む方法。
    First established between a P-GW (Packet Data Network Gateway) and the terminal device via an application server provided in the EPS and providing content to the terminal device or acquiring content from the terminal device Communication using the EPS bearer of the processor,
    Including methods.
  20.  コンピュータを、
     EPS内部に設けられ端末装置へのコンテンツを提供する又は前記端末装置からコンテンツを取得するアプリケーションサーバを経由する、P-GW(Packet Data Network Gateway)と前記端末装置との間で確立される第1のEPSベアラを用いた通信を行う処理部、
    として機能させるためのプログラム。
    Computer
    First established between a P-GW (Packet Data Network Gateway) and the terminal device via an application server provided in the EPS and providing content to the terminal device or acquiring content from the terminal device A processing unit that performs communication using the EPS bearer,
    Program to function as.
PCT/JP2016/082491 2015-12-15 2016-11-01 Device, method and program WO2017104281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112016005741.5T DE112016005741T5 (en) 2015-12-15 2016-11-01 Device, method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015243695 2015-12-15
JP2015-243695 2015-12-15

Publications (1)

Publication Number Publication Date
WO2017104281A1 true WO2017104281A1 (en) 2017-06-22

Family

ID=59056022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082491 WO2017104281A1 (en) 2015-12-15 2016-11-01 Device, method and program

Country Status (2)

Country Link
DE (1) DE112016005741T5 (en)
WO (1) WO2017104281A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6357255B1 (en) * 2017-03-16 2018-07-11 ソフトバンク株式会社 system
CN111163532A (en) * 2018-11-08 2020-05-15 中国电信股份有限公司 Method for establishing special bearing and mobile edge computing equipment
CN116367116A (en) * 2023-04-26 2023-06-30 泉州市铁通电子设备有限公司 Railway LTE locomotive wireless communication equipment
JP7315077B1 (en) 2022-08-26 2023-07-26 沖電気工業株式会社 Control device, control method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014515222A (en) * 2011-04-07 2014-06-26 インターデイジタル パテント ホールディングス インコーポレイテッド Method and apparatus for local data caching
WO2016128055A1 (en) * 2015-02-12 2016-08-18 Nokia Solutions And Networks Oy Access control to services in a network
WO2016134772A1 (en) * 2015-02-26 2016-09-01 Nokia Solutions And Networks Oy Charging and control of edge services

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014515222A (en) * 2011-04-07 2014-06-26 インターデイジタル パテント ホールディングス インコーポレイテッド Method and apparatus for local data caching
WO2016128055A1 (en) * 2015-02-12 2016-08-18 Nokia Solutions And Networks Oy Access control to services in a network
WO2016134772A1 (en) * 2015-02-26 2016-09-01 Nokia Solutions And Networks Oy Charging and control of edge services

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Mobile-Edge Computing", INTRODUCTORY TECHNICAL WHITE PAPER, September 2014 (2014-09-01), pages 1 - 36, XP055599655 *
VODAFONE: "Impact on Lawful Interception of Mobile Edge Computing", 3GPP TSG SA3-LI MEETING #55, October 2014 (2014-10-01), XP050895700 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6357255B1 (en) * 2017-03-16 2018-07-11 ソフトバンク株式会社 system
JP2018156260A (en) * 2017-03-16 2018-10-04 ソフトバンク株式会社 system
CN111163532A (en) * 2018-11-08 2020-05-15 中国电信股份有限公司 Method for establishing special bearing and mobile edge computing equipment
JP7315077B1 (en) 2022-08-26 2023-07-26 沖電気工業株式会社 Control device, control method, and program
JP2024031529A (en) * 2022-08-26 2024-03-07 沖電気工業株式会社 Control apparatus, control method, and program
CN116367116A (en) * 2023-04-26 2023-06-30 泉州市铁通电子设备有限公司 Railway LTE locomotive wireless communication equipment
CN116367116B (en) * 2023-04-26 2023-12-22 泉州市铁通电子设备有限公司 Railway LTE locomotive wireless communication equipment

Also Published As

Publication number Publication date
DE112016005741T5 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
KR102490841B1 (en) Setting up and configuring the adaptive layer in a unified access backhauled network
US11190982B2 (en) Control device, base station, terminal device, and control method
US11172539B2 (en) Base station and terminal device
JP2023078319A (en) Terminal device, wireless communication device, wireless communication method, and computer program
WO2018105263A1 (en) Terminal device, method, and recording medium
CN107736044B (en) System, method and terminal equipment
WO2021223666A1 (en) Electronic apparatus, radio communication method, and computer-readable storage medium
WO2017043204A1 (en) Device, method and program
JP7124821B2 (en) Electronic device and wireless communication method
CN110546989B (en) Electronic device in wireless communication system and wireless communication method
WO2017104281A1 (en) Device, method and program
JP6855838B2 (en) Terminal devices, methods and programs
WO2017098810A1 (en) Device, method, and program
WO2017168999A1 (en) Wireless communication device, server, and method
JP2018515030A (en) Provision of services
TWI769134B (en) Communication device, communication method and communication program
CN116709467A (en) Method and device for accessing communication network
WO2021109868A1 (en) Communication method and communication apparatus
WO2017110193A1 (en) Server, method, and program
WO2016002332A1 (en) Device, method, and program
WO2017094360A1 (en) Device, method and program
WO2024027676A1 (en) Apparatus and method for handover in hierarchical federated learning network, and medium
US20230180308A1 (en) Electronic device, wireless communication method, and computer readable storage medium
WO2023070684A1 (en) Wireless communication method, and device
WO2022233011A1 (en) Method for establishing connection, and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875266

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016005741

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP