WO2017098810A1 - Device, method, and program - Google Patents

Device, method, and program Download PDF

Info

Publication number
WO2017098810A1
WO2017098810A1 PCT/JP2016/080849 JP2016080849W WO2017098810A1 WO 2017098810 A1 WO2017098810 A1 WO 2017098810A1 JP 2016080849 W JP2016080849 W JP 2016080849W WO 2017098810 A1 WO2017098810 A1 WO 2017098810A1
Authority
WO
WIPO (PCT)
Prior art keywords
server
apn
mec
bearer
connection request
Prior art date
Application number
PCT/JP2016/080849
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤 真
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to DE112016005590.0T priority Critical patent/DE112016005590T5/en
Publication of WO2017098810A1 publication Critical patent/WO2017098810A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • H04L65/1033Signalling gateways
    • H04L65/104Signalling gateways in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present disclosure relates to an apparatus, a method, and a program.
  • MEC mobile edge computing
  • the edge server is arranged at a position physically close to the terminal, so that communication delay is shortened compared to a general cloud server arranged in a concentrated manner, and applications that require high real-time performance are used. It becomes possible. Also, in MEC, high-speed network application processing can be realized regardless of the performance of the terminal by distributing the functions previously processed on the terminal side to the edge server close to the terminal.
  • the edge server can have various functions including, for example, a function as an application server and a function as a content server, and can provide various services to the terminal.
  • the present disclosure proposes an apparatus, a method, and a program that can set a communication path between servers in the MEC in a more preferable manner.
  • an acquisition unit that acquires a connection request associated with an APN (Access Point Name) indicating a connection destination, the APN, and a gateway that is connected to connect to a server specified by the APN
  • An apparatus comprising: a control unit that sets a bearer between a request source of the connection request and the server specified by the APN associated with the connection request based on associated management information
  • a transmission unit that transmits a connection request associated with an APN (Access Point Name) indicating a connection destination to an external device, the APN, and a connection to the server specified by the APN
  • APN Access Point Name
  • a device comprising: a device.
  • a connection request associated with an APN (Access Point Name) indicating a connection destination is acquired, and the processor is connected to connect to the APN and a server specified by the APN. And setting a bearer between the requester of the connection request and the server specified by the APN associated with the connection request based on management information associated with the gateway Is provided.
  • APN Access Point Name
  • a connection request associated with an APN (Access Point Name) indicating a connection destination is transmitted to an external device, and the processor connects to the APN and a server specified by the APN. Based on the management information associated with the gateway that passes through, the communication is performed with the server via the bearer set to connect to the server specified by the APN associated with the connection request. And a method is provided.
  • APN Access Point Name
  • connection request in which an APN (Access Point Name) indicating a connection destination is associated with a computer is acquired, and the APN and a server designated by the APN are connected. And setting a bearer between the request source of the connection request and the server specified by the APN associated with the connection request based on management information associated with the gateway, A program is provided.
  • APN Access Point Name
  • a connection request in which an APN (Access Point Name) indicating a connection destination is associated with a computer is transmitted to an external device, and the APN and a server specified by the APN are connected.
  • the communication is performed with the server via the bearer set to connect to the server specified by the APN associated with the connection request.
  • a program for executing the program is provided.
  • an apparatus, a method, and a program capable of setting a communication path between servers in an MEC in a more preferable aspect are provided.
  • FIG. 2 is an explanatory diagram for describing an example of a schematic configuration of a system 1 according to an embodiment of the present disclosure.
  • FIG. It is a block diagram showing an example of composition of MEC server 300 concerning the embodiment.
  • 2 is an explanatory diagram for describing an example of a schematic configuration of a system 1 according to a first embodiment of the present disclosure.
  • FIG. It is a sequence diagram which shows an example of the flow of the process which concerns on release of a default bearer. It is a sequence diagram which shows an example of the flow of the process which concerns on release of a default bearer.
  • FIG. 9 is an explanatory diagram for describing an example of a schematic configuration of a system 1 according to a second embodiment of the present disclosure. An example of information recorded in the GW mapping list is shown.
  • wrist is shown. It is explanatory drawing for demonstrating the outline
  • FIG. 1 is an explanatory diagram for explaining the outline of the MEC.
  • a communication path for a UE (User Equipment) to access an application and content in the current mobile communication (in which MEC is not introduced) represented by LTE (Long Term Evolution) is shown at the top. Is shown.
  • LTE Long Term Evolution
  • an example of a communication path for the UE to access the application and the content when the MEC is introduced is shown in the lower part.
  • the application and the content are held inside the EPC (side closer to the UE).
  • an MEC server that is, an edge server formed integrally with the base station functions as an application server and a content server. Therefore, in order to execute an application or acquire content, the UE only performs communication inside the EPC only (because there can be exchange with a server outside the EPC). Good. Therefore, by introducing MEC, not only communication with extremely low delay becomes possible, but also traffic other than the access link (for example, backhaul link, EPC, and relay network) can be reduced.
  • the reduction in communication delay and the reduction of traffic other than the access link can contribute to an improvement in throughput and a reduction in power consumption on the UE and network side.
  • introduction of the MEC can bring various advantages to users, network providers, and service providers. Since MEC performs distributed processing of data on the local side (that is, the side closer to the UE), application to an application rooted in a region and application to a distributed computer are expected.
  • FIG. 1 shows an example in which the MEC server is formed integrally with the base station, the present technology is not limited to such an example.
  • the MEC server may be formed as a device different from the base station, or may be physically separated from the base station.
  • FIG. 2 is an explanatory diagram for explaining the platform of the MEC server.
  • the 3GPP radio network element (3GPP Radio Network Element), which is the lowest layer component, is a base station facility such as an antenna and an amplifier.
  • the hosting infrastructure is composed of hardware resources such as server equipment and a virtualization layer formed by software that virtualizes them. Server technology can be provided.
  • An application platform (Application Platform) runs on this virtual server. Note that a physical server on which hardware resources such as server equipment operate corresponds to an example of a “physical server”.
  • the virtualization manager manages the creation and disappearance of VMs (Virtual Machines), which are the devices on which each top-level application (MEC App) operates. Since each application can be executed by different companies, the virtualization manager is required to consider security and separation of allocated resources, but can apply general cloud infrastructure technology.
  • VMs Virtual Machines
  • MEC App top-level application
  • Application Platform Service is a collection of common services characteristic of MEC.
  • the Traffic Offload Function is a switching control such as routing between when a request from the UE is processed by an application on the MEC server and when an application on the Internet (parent application on the data server) is processed. I do.
  • Radio Network Information Services are radio status information such as the strength of radio waves between a base station and a UE (for example, formed integrally) corresponding to the MEC server by each application on the MEC server. Information is obtained from the underlying wireless network and provided to the application.
  • Communication Services provides a route when each application on the MEC server communicates with a UE or an application on the Internet.
  • the service registry authenticates whether the application is legitimate, registers it, and answers inquiries from other entities.
  • Each VM and each application on the VM operate on the application platform described above, and provide various services to the UE in place of or in cooperation with the application on the Internet.
  • the hosting infrastructure management system (Hosting Infrastructure Management System), application platform management system (Application Platform Management System), and application management system (Application Management System) manage and coordinate each corresponding entity on the MEC server.
  • FIG. 3 is an explanatory diagram for explaining an example of the basic architecture of EPC (Evolved Packet Core).
  • UE User Equipment
  • eNB evolved Node B
  • a P-GW Packet Data Network Gateway
  • EPC Packet Data Network Gateway
  • PDN Packet Data Network Gateway
  • S-GW Serving Gateway
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • EPC Evolved Universal Terrestrial Radio Access Network
  • OCS Online Charging System
  • OFCS Offline Charging System
  • PCRF Policy and Charging Rule Function
  • MME Mobility Management Entity
  • HSS Home Subscriber Server
  • the solid line in the figure means the user plane, and the broken line means the control plane.
  • UE is connected to eNB and connected to EPC via S-GW based on control of MME and HSS. Further, the UE connects to the Internet (ie, PDN) via the P-GW, and connects to a content server on the Internet based on a request from an application on the UE.
  • the connection between the UE and the PDN is established by setting a bearer.
  • a bearer means a series of physical or logical paths for transferring user data. An example of a bearer configuration in an end-to-end service from a UE to a device on the Internet is shown in FIG.
  • FIG. 4 is an explanatory diagram for explaining an example of the configuration of the bearer.
  • the bearer set between UE and eNB is also called a radio bearer.
  • a bearer set between the eNB and the UE is also referred to as an S1 bearer.
  • the bearer set between UE and S-GW is also named E-RAB (E-UTRAN Radio Access Bearer) generically.
  • a bearer set between the S-GW and the P-GW is also referred to as an S5 / S8 bearer.
  • a bearer set between the UE and the P-GW is also collectively referred to as an EPS (Evolved Packet System) bearer.
  • EPS Evolved Packet System
  • the LTE-A (LTE Advanced) standard also proposes a configuration in which a radio relay station (RN: Relay Node) that relays radio transmission between the UE and the eNB is provided.
  • RN Relay Node
  • FIG. 5 is an explanatory diagram for explaining an example of the configuration of a bearer when a radio relay station is provided.
  • DeNB Donor eNodeB
  • the bearer set between the UE and the DeNB is also referred to as an S1 / Un bearer.
  • FIG. 6 shows an example of a protocol stack in communication between eNB, DeNB, and RN. As shown in FIGS. 5 and 6, each between DeNB and DeNB and between RN and DeNB is equivalent to a bearer used for the X2 interface mapped one-to-one.
  • the EPS bearer is set between, for example, a UE and one or more P-GWs specified by an APN (Access Point Name). There are one default bearer (Default Bearer) and one or more settable individual bearers (Dedicated Bearer) in EPS bearers that can be set between one APN. In each bearer, SDF (Service Data Flow) is exchanged. Tables 1 and 2 below show an overview of bearer QoS.
  • FIG. 7 is a sequence diagram showing an example of the flow of the UE attach procedure executed in the EPS.
  • the UE transmits an attach request signal specifying the APN to the MME (step S11).
  • the APN specified here is also referred to as a default APN.
  • various processes such as identification, authentication, and encryption are performed between the UE and the HSS (step S12).
  • the MME performs user authentication based on the authentication information acquired from the HSS, and acquires and manages contract information necessary for bearer setting from the HSS.
  • the MME transmits a location registration request (Location Request) signal to the HSS (step S13), and receives a location registration response (Location Request Response) signal from the HSS (step S14).
  • the MME selects the bearer setting destination S-GW and P-GW, and transmits a bearer request signal to the selected S-GW (step S15).
  • the MME performs an APN-FQDN (Fully Qualified Domain Name) using, for example, a DNS resolver (Domain Name System resolver) function, and selects a P-GW that can connect to the PDN for which a connection request has been made.
  • the MME selects an S-GW based on a policy such as a collaboration base based on a TAI (Tracking Area Identification) described in the cell ID acquired from the eNB.
  • TAI Track Area Identification
  • the S-GW performs bearer establishment procedures for the P-GW specified in the bearer setting request signal (step S16).
  • the P-GW acquires charging information to be applied in cooperation with the PCRF, and further performs connection processing to the PDN.
  • the S-GW transmits a bearer request request response signal to the MME (step S17).
  • the MME transmits a radio bearer setting request (Radio Bearer) signal including information received from the S-GW, that is, information indicating that the attach request has been accepted, to the eNB (step S18).
  • the eNB transmits a radio bearer setting request (Radio Bearer) signal including information indicating that the attach request has been accepted to the UE, and establishes a radio bearer with the UE (step S19).
  • the eNB receives a radio bearer response signal from the UE (step S20)
  • the eNB transmits a radio bearer response signal to the MME (step S21).
  • the UE transmits an attach completion signal to the MME.
  • the bearer set in this way is a default bearer.
  • uplink user plane traffic data via S-GW and P-GW from UE to PDN (for example, application server on PDN). Also, downlink user plane traffic data can be transmitted from the PDN to the UE via the S-GW and P-GW.
  • PDN for example, application server on PDN.
  • a bearer update request signal is transmitted from the MME to the S-GW (step S23)
  • the S-GW performs a bearer update procedure (step S24) and a bearer update request response (Bearer).
  • An Update Request Response signal is transmitted to the MME (step S25).
  • FIG. 8 is an explanatory diagram for explaining an example of an LTE network configuration in which an MEC server is introduced.
  • the LTE network configuration is composed of E-UTRAN in the wireless network and EPC in the core network.
  • EPC EPC in the core network.
  • EPS E-UTRAN
  • the UE accesses the Internet via the P-GW specified by the APN.
  • P-GW specified by the APN.
  • user data passes through the eNB, S-GW, and P-GW.
  • the UE accesses the MEC server via the P-GW specified by the APN. That is, when the UE communicates with the MEC server, typically, user data passes through the eNB, S-GW, and P-GW.
  • the UE connects to a MEC server that can be specified by a URI (Uniform Resource Identifier) or an IP address by performing an attach procedure.
  • a MEC server that can be specified by a URI (Uniform Resource Identifier) or an IP address by performing an attach procedure.
  • user plane traffic from the UE is once carried to the P-GW.
  • the P-GW removes the header (for example, GTP (general packet radio service) Tunnel Protocol) header used in the EPC from the user packet.
  • GTP general packet radio service
  • the P-GW transmits user data to the destination address specified by the URI or IP address specified by the UE.
  • a UE when a UE specifies a URI and tries to connect, it normally starts a DNS resolver and acquires an IP address that means the URI before trying to connect. Specifically, after the connection with the P-GW is established, the UE acquires an IP address with the DNS server in the PDN or the DNS server in the EPC. In the EPC, the MME may be responsible for the DNS resolver function. Since the acquired IP address of the MEC server is an address in the EPC, a connection from the P-GW to the MEC server via the EPC is established.
  • FIG. 9 is an explanatory diagram for explaining another example of the LTE network configuration in which the MEC server is introduced, and an example of a method for realizing connectivity from the UE to the MEC server arranged in the eNB. It is shown. That is, as a method for realizing connectivity from the UE to the MEC server arranged in the eNB, for example, it is conceivable to use a switch (SW) function such as a virtualization technique or a packet switching technique.
  • SW switch
  • the MEC server is used in cooperation with an MEC server located at another location, an application server on the Internet, or the like. obtain.
  • an application server on the Internet or the like.
  • the MEC server indicated by the reference symbol MEC-1 establishes communication with an application server operating on the Internet.
  • the 3GPP rules do not clarify how to establish a communication path between MEC servers that are not entities of the wireless core network.
  • an interface for establishing a communication path between MEC servers via devices such as eNB, RN, and S-GW is not defined. Therefore, the present disclosure proposes a mechanism for setting a communication path between MEC servers in a more preferable manner.
  • the present technology will be described assuming an EPS in LTE as a network architecture.
  • the present technology can be applied to UMTS (Universal Mobile Telecommunications System) in 3G, and can also be applied to any other network architecture.
  • UMTS Universal Mobile Telecommunications System
  • FIG. 10 is an explanatory diagram for describing an example of a schematic configuration of the system 1 according to an embodiment of the present disclosure.
  • the system 1 includes a wireless communication device 100, a terminal device 200, and an MEC server 300.
  • the terminal device 200 is also called a user.
  • the user may also be referred to as a UE. That is, the UE 200 described above may correspond to the terminal device 200 illustrated in FIG.
  • the wireless communication device 100C is also called UE-Relay.
  • the UE here may be a UE defined in LTE or LTE-A, and the UE-Relay may be Prose UE to Network Relay as discussed in 3GPP, and more generally It may mean equipment.
  • the wireless communication device 100 is a device that provides a wireless communication service to subordinate devices.
  • the wireless communication device 100A is a base station of a cellular system (or mobile communication system).
  • the base station 100A performs wireless communication with a device (for example, the terminal device 200A) located inside the cell 10A of the base station 100A.
  • the base station 100A transmits a downlink signal to the terminal device 200A and receives an uplink signal from the terminal device 200A.
  • the base station 100A is logically connected to other base stations through, for example, an X2 interface, and can transmit and receive control information and the like.
  • the base station 100A is logically connected to the core network 40 through, for example, an S1 interface, and can transmit and receive control information and the like. Note that communication between these devices can be physically relayed by various devices.
  • the radio communication device 100A shown in FIG. 10 is a macro cell base station, and the cell 10 is a macro cell.
  • the wireless communication devices 100B and 100C are master devices that operate the small cells 10B and 10C, respectively.
  • the master device 100B is a small cell base station that is fixedly installed.
  • the small cell base station 100B establishes a wireless backhaul link with the macro cell base station 100A and an access link with one or more terminal devices (for example, the terminal device 200B) in the small cell 10B.
  • the wireless communication device 100B may be a relay node defined by 3GPP.
  • the master device 100C is a dynamic AP (access point).
  • the dynamic AP 100C is a mobile device that dynamically operates the small cell 10C.
  • the dynamic AP 100C establishes a radio backhaul link with the macro cell base station 100A and an access link with one or more terminal devices (for example, the terminal device 200C) in the small cell 10C.
  • the dynamic AP 100C may be, for example, a terminal device equipped with hardware or software that can operate as a base station or a wireless access point.
  • the small cell 10C in this case is a locally formed network (Localized Network / Virtual cell).
  • the cell 10 may be operated according to any wireless communication scheme such as LTE, LTE-A (LTE-Advanced), GSM (registered trademark), UMTS, W-CDMA, CDMA200, WiMAX, WiMAX2, or IEEE 802.16, for example.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • GSM registered trademark
  • the small cell is a concept that can include various types of cells (for example, femtocells, nanocells, picocells, and microcells) that are smaller than the macrocells and that are arranged so as to overlap or not overlap with the macrocells.
  • the small cell is operated by a dedicated base station.
  • the small cell is operated by a terminal serving as a master device temporarily operating as a small cell base station.
  • So-called relay nodes can also be considered as a form of small cell base station.
  • a wireless communication device that functions as a master station of a relay node is also referred to as a donor base station.
  • the donor base station may mean a DeNB in LTE, and more generally may mean a parent station of a relay node.
  • Terminal device 200 The terminal device 200 can communicate in a cellular system (or mobile communication system).
  • the terminal device 200 performs wireless communication with a wireless communication device (for example, the base station 100A, the master device 100B, or 100C) of the cellular system.
  • a wireless communication device for example, the base station 100A, the master device 100B, or 100C
  • the terminal device 200A receives a downlink signal from the base station 100A and transmits an uplink signal to the base station 100A.
  • the application server 60 is a device that provides services to users.
  • the application server 60 is connected to a packet data network (PDN) 50.
  • the base station 100 is connected to the core network 40.
  • the core network 40 is connected to the PDN 50 via a gateway device (P-GW in FIG. 8).
  • P-GW gateway device
  • the MEC server 300 is a service providing apparatus that provides a service (application, content, or the like) to a user.
  • the MEC server 300 can be provided in the wireless communication device 100.
  • the wireless communication device 100 provides the service provided by the MEC server 300 to the user via the wireless communication path.
  • the MEC server 300 may be realized as a logical functional entity, and may be formed integrally with the wireless communication device 100 or the like as shown in FIG.
  • the base station 100A provides the service provided by the MEC server 300A to the terminal device 200A connected to the macro cell 10. Also, the base station 100A provides the service provided by the MEC server 300A to the terminal device 200B connected to the small cell 10B via the master device 100B.
  • the master device 100B provides the service provided by the MEC server 300B to the terminal device 200B connected to the small cell 10B.
  • the master device 100C provides the service provided by the MEC server 300C to the terminal device 200C connected to the small cell 10C.
  • FIG. 11 is a block diagram illustrating an exemplary configuration of the MEC server 300 according to an embodiment of the present disclosure.
  • the MEC server 300 includes a communication unit 310, a storage unit 320, and a processing unit 330.
  • the communication unit 310 is an interface for performing communication with other devices. For example, the communication unit 310 communicates with the corresponding wireless communication device 100.
  • the communication unit 310 performs communication with, for example, the control unit of the wireless communication device 100.
  • the MEC server 300 may have an interface for performing direct communication with a device other than a device formed integrally.
  • the storage unit 320 temporarily or permanently stores a program for operating the MEC server 300 and various data.
  • the MEC server 300 may store various contents and applications provided to the user.
  • Processing unit 330 provides various functions of the MEC server 300.
  • the processing unit 330 includes an MEC platform 331, a VNF (Virtual Network Function) 333, and a service providing unit 335.
  • the processing unit 330 may further include other components other than these components. That is, the processing unit 330 can perform operations other than the operations of these components.
  • the MEC platform 331 is as described above with reference to FIG.
  • VNF333 is a software package for realizing a network function.
  • the VNF 333 operates on a virtual machine called NFVI (Network Functions Virtualisation Infrastructure).
  • NFVI Network Functions Virtualisation Infrastructure
  • the specifications of VNF and NFVI are being studied by ETSI's NFV ISG (Network Functions Virtualization Industry Specification Group). For details, refer to “ETSI,“ GS NFV-SWA 001 V1.1.1 (2014-12) ”, December 2014, [November 19, 2015 search], Internet ⁇ http: // www. etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf> ”.
  • the VNF 333 may mean the VNF under consideration of this specification, or may more generally mean a virtualized network function.
  • the service providing unit 335 has a function of providing various services.
  • the service providing unit 335 is realized as an MEC application that operates on the MEC platform 331.
  • an application that operates on the MEC server 300 is also referred to as an MEC application.
  • the MEC application operating on the MEC server 300 may be an instance of an application copied from the application server 60, or may be an application placed directly on the MEC server 300.
  • FIG. 12 is a block diagram illustrating an exemplary configuration of the application server 60 according to an embodiment of the present disclosure.
  • the application server 60 includes a communication unit 61, a storage unit 62, and a processing unit 63.
  • the communication unit 61 is an interface for performing communication with other devices. For example, the communication unit 61 communicates with other devices on the PDN.
  • Storage unit 62 temporarily or permanently stores a program for operating the application server 60 and various data.
  • the application server 60 can store various contents and applications provided to the user.
  • Processing unit 63 provides various functions of the application server 60.
  • the processing unit 63 corresponds to, for example, a CPU (Central Processing Unit).
  • the processing unit 63 includes a service providing unit 64.
  • the processing unit 330 may further include other components other than this component. That is, the processing unit 330 can perform operations other than the operations of the constituent elements.
  • the service providing unit 64 has a function of providing various services. Typically, the service providing unit 64 is realized as an application.
  • An application that operates on the application server 60 and has a corresponding relationship with the MEC application that operates on the MEC server 300 is also referred to as an MEC application.
  • an application that operates on the terminal device 200 and has a corresponding relationship with the MEC application that operates on the MEC server 300 is also referred to as an MEC application.
  • the radio communication device 100 is also referred to as an eNB 100
  • the terminal device 200 is also referred to as a UE 200.
  • the MEC server is arranged at an arbitrary location (for example, RN, eNB, S-GW, etc.), and the packet route is set by a switch function (SW) such as DPI (Deep Packet Inspection).
  • SW switch function
  • DPI Deep Packet Inspection
  • FIG. 13 is an explanatory diagram for explaining an example of a schematic configuration of the system 1 according to the present embodiment, and a configuration for realizing connectivity between the MEC server 300 and the UE 200 by DPI.
  • the system 1 includes an eNB 100, a UE 200, an MEC server 300, an S-GW 41, a P-GW 42, an MME 43, an HSS 44, a PDN 50, and an application server 60.
  • the MEC DPI 333A and the MEC router 333B operate as VNFs.
  • the MEC application 335 operates on the MEC server 300.
  • the solid line in a figure means a user plane (it is also called a data plane), and a broken line means a control plane.
  • the MEC DPI 333A has a function of performing a peep (for example, DPI) on the acquired packet. For example, the MEC DPI 333A removes the GTP-U (GTP for User Plane) header of the packet transmitted from the eNB 100 to the S-GW 41, peeks at the IP header, and stores the information stored in the contents (for example, the packet Destination IP address) is acquired.
  • a peep for example, DPI
  • the MEC router 333B has a function of switching packet paths. For example, when the destination IP address acquired by the MEC DPI 333A indicates the MEC application 335, the MEC router 333B directly transmits the packet to the MEC application 335 instead of the S-GW 41. At that time, the MEC router 333B may transmit the packet after adding a GTP-U header designating the MEC server 300 to the packet. On the other hand, if the destination IP address acquired by the MEC DPI 333A does not indicate the MEC application 335, the MEC router 333B adds the GTP-U header once removed to the packet and transmits the packet to the S-GW 41.
  • the MEC router 333B holds information for identifying the GTP-U header and the S-GW 41 for each UE 200 until the default bearer (that is, tunneling) between the eNB 100 and the S-GW 41 is released.
  • the MEC router 333B retains this information until it detects the release of the default bearer between the eNB 100 and the S-GW 41.
  • release of the default bearer can be detected in a plurality of ways.
  • FIGS. 14 to 17 are sequence diagrams illustrating an example of a flow of processing relating to release of a default bearer. As a specific example, as shown in FIG.
  • FIG. 14 when a UE performs a detach procedure (Detach Procedure), the UE receives a detach accept signal from the MME, and then releases a connection (signaling connection release).
  • the release of the default bearer may be detected by the eNB receiving the signal.
  • the MME, HSS, or P-GW performs the detach procedure
  • the release of the default bearer may be detected by the eNB 100 receiving the connection release signal.
  • FIG. 15 shows an example when the MME performs a detach procedure.
  • FIG. 16 shows an example in which the HSS performs a detach procedure.
  • FIG. 17 shows an example when the P-GW performs a detach procedure.
  • release of a default bearer may be detected by eNB100 failing in detection of UE200 like the case where the power supply of UE200 is turned off.
  • FIG. 18 is an explanatory diagram for describing an example of a configuration for realizing connectivity between MEC servers by DPI.
  • the example illustrated in FIG. 18 illustrates an example of establishing a connection between the first MEC server 300-1 installed in the eNB 100 and the second MEC server 300-2 installed in the S-GW 41. ing.
  • a path indicated by a thick line corresponds to a communication path between the MEC application operating on the first MEC server 300-1 and the MEC application operating on the second MEC server 300-2.
  • the first MEC server 300-1 uses the service discovery function provided from the MEC platform to identify another MEC server located in the vicinity (in other words, the aggregation point located at the upper level). Identification information (for example, an IP address for specifying the second MEC server 300-2) is acquired. In the following description, it is assumed that the IP address of the other MEC server is acquired as identification information for specifying the other MEC server.
  • the first MEC server 300-1 adds a GTP header for identifying the acquired IP address and the S-GW 41 to a packet to be transmitted (for example, a packet from the MEC application 335-1).
  • the packet is sent to the MEC router 333B-1.
  • the MEC router 333B-1 transfers the packet sent from the first MEC server 300-1 to the S-GW 41.
  • the S-GW 41 replaces the GTP header of the packet transferred from the MEC router 333B-1 with the GTP header for connecting to the P-GW 42, and replaces the packet with the MEC DPI 333A-2 of the second MEC server 300-2. Send to.
  • the MEC DPI 333A-2 removes the GTP header from the received packet and acquires an IP address indicating the destination of the packet.
  • the MEC router 333B-2 switches the route of the packet according to the destination indicated by the acquired IP address. For example, if the acquired IP address indicates the MEC application 335-2 that operates on the second MEC server 300-2, the MEC router 333B-2 sends the packet to the MEC application instead of the P-GW 42. Send directly to 335-2. If the acquired IP address does not indicate the MEC application 335-2 running on the second MEC server 300-2, the packet is transmitted to the P-GW.
  • the packet is transmitted from the first MEC server 300-1 to the second MEC server 300-2.
  • packet transmission from the second MEC server 300-2 to the first MEC server 300-1 is also realized by the same procedure.
  • the description has been given focusing on the case where the connection between the MEC servers installed in the eNB and the S-GW is established.
  • the present embodiment is not necessarily limited to the same mode.
  • the connection between the MEC servers may be established by the same procedure for each of the RN and the eNB, the eNB and the eNB, and the RN and the S-GW. Is possible.
  • the shortest communication path that does not pass through the P-GW 42 is set between the UE 200 and the MEC application 335.
  • a communication path can be set between MEC servers.
  • DPI is performed by the MEC DPI 333A on all packets transmitted from the UE 200 or the MEC server 300. Therefore, the processing load for DPI increases and the processing delay time increases. Also, a header group (for example, IP header, UDP header, GTP-U header, etc.) removal function, a removed header group storage function, a management function for managing the UE 200 and MEC server 300 and a list of header groups, and a header Additional functions of the group are required. This also causes scalability issues. Furthermore, a mechanism for avoiding the security and confidentiality problems of user data that may be caused by the DPI function is required.
  • a header group for example, IP header, UDP header, GTP-U header, etc.
  • the MEC server 300 itself needs to have a wireless communication interface.
  • FIG. 19 is an explanatory diagram for explaining an example of the architecture of the MEC server.
  • the MEC server includes hardware such as a commercial off-the-shelf (COTS), a computer, a memory, and an input / output (I / O) interface.
  • COTS commercial off-the-shelf
  • a KVM Kernel-based Virtual Machine
  • a container engine operate on these hardware, and an MEC platform and a plurality of VMs, VNFs, and applications operate on the hardware.
  • a KVM hypervisor may be operated on the host OS, and the MEC platform, VM, VNF, and application may be operated on the KVM hypervisor.
  • a container engine may be operated on the host OS, and the MEC platform, VM, VNF, and application may be operated on the container engine.
  • the KVM hypervisor and the container engine may be operated on the host OS, and the MEC platform, the VM, the VNF, and the application may be operated on the KVM hypervisor and the container engine.
  • vMME Virtual MME
  • MME Mobility Management Entity
  • VM Virtual Machine
  • the vS-GW in which the S-GW is virtualized operates as the VNF-2 on the VM-2.
  • vP-GW in which P-GW is virtualized operates as VNF-3 on VM-3.
  • vHSS in which HSS is virtualized operates as VNF-4 on VM-4.
  • the vPCRF in which the PCRF is virtualized operates as the VNF-5 on the VM-5.
  • a vRAN in which a RAN (Radio Access Network) is virtualized operates as the VNF-6 on the VM-6.
  • VNF-7 on VM-7 a functional entity that provides an RNIS (Radio Network Information Services) function operates.
  • a functional entity that provides a location function operates as VNF-8 on the VM-8.
  • a functional entity that provides a mobility function operates as VNF-9 on VM-9.
  • VNF-10 on the VM-10 a functional entity that provides management functions such as instance movement management and state management operates.
  • a functional entity that provides a service discovery function operates as VNF-11 on VM-11.
  • the service discovery function is information (for example, an IP address, etc.) that is provided by a function providing platform (for example, MEC platform) on the MEC server and that identifies other MEC servers to which applications and the like are connected. And a function that provides search results of available services.
  • an MEC application may operate as an application on the VM-12. Also, the MEC application may run on the KVM hypervisor. For example, in the example shown in FIG. 19, a first MEC application (Appl-1) and a second MEC application (Appl-2) are operating as applications on the KVM hypervisor.
  • VNF Voice over IP
  • OSS Operations System Supports
  • BSS Business system Supports
  • VNF is considered.
  • an existing device for example, a base station, PCRF, HHS, MME, etc.
  • this VNF operates via the API to exchange communication.
  • a protocol and an interface will be separately described later together with an embodiment of the present disclosure.
  • a functional entity virtualized on the MEC server is given a name “v” indicating virtual (Virtual), such as vMME, vP-GW, and vS-GW. It shall be.
  • FIG. 20 is an explanatory diagram for explaining an example of the architecture of a network including an MEC server.
  • the access from the network management function such as OSS and BSS to the functional entity virtualized on the MEC server is managed by the MEC platform to be the same as the access to the existing functional entity.
  • the VNF manager and the MEC manager monitor the operation of the virtual entity such as the functional entity virtualized on the MEC server and the MEC application, and perform the operation of the application according to the monitoring result. Control.
  • the virtualization infrastructure manager includes hardware such as COTS (commercial off-the-shelf), computer, memory, and I / O (Input / Output) interface, and a KVM hypervisor and a container operating on the hardware. Monitor engine operation. Then, the virtualization infrastructure manager controls the operation of the hardware, the KVM hypervisor and the container engine that operate on the hardware, according to the monitoring result.
  • the VNF manager and MEC manager, and the virtualization infrastructure manager may operate in cooperation with each other.
  • the operations of the network management function, the VNF manager, the MEC manager, and the virtualization infrastructure manager may be autonomous based on management by an orchestrator.
  • FIG. 21 is an explanatory diagram for explaining an example of a schematic configuration of the system 1 according to the present embodiment.
  • the system 1 includes an eNB 100, DeNBs 110-1 and 110-2, RNs 120-1 and 120-2, a UE 200, MEC servers 300-0 to 300-5, and an S-GW 41. , P-GW 42, MME 43, HSS 44, OCS 45, OFCS 46, PCRF 47, PDN 50, and application server 60.
  • information described in parentheses indicates identification information of the node.
  • the MEC server 300-0 is associated with the base station 100 (for example, formed integrally).
  • MEC servers 300-1 and 300-3 are associated with RNs 120-1 and 120-2, respectively.
  • the MEC servers 300-2 and 300-4 are associated with the DeNBs 110-1 and 110-2.
  • the MEC server 300-5 is associated with the S-GW 41.
  • a VNF corresponding to the characteristics of the MEC server is operating on the MEC platform.
  • MEC server 300-1 associated with the RN 120-1 vDeNB, vS-GW, vP-GW, and MEC Storage-1 are operating on the MEC platform.
  • MEC Storage-1 is a location where an MEC application such as an application server or the like that operates on the MEC server 300-1 is stored.
  • MEC Storage-1 may be a place where VMs and containers are stored.
  • MEC application when simply described as “MEC application”, unless otherwise specified, it may include an operation base of an MEC application operating on an MEC server such as an application server.
  • vDeNB when the vDeNB, vS-GW, and vP-GW operating on the MEC server 300-1 are explicitly indicated, they may be referred to as vDeNB_1, vS-GW_1, and vP-GW_1. Also,
  • the vDeNB_3, vS-GW_3, vP-GW_3, and the MEC application are operating on the MEC platform.
  • the MEC server 300-0 associated with the eNB 100 vS-GW_0, vP-GW_0, and the MEC application are operating on the MEC platform.
  • the MEC server 300-2 associated with the DeNB 110-1 vS-GW_2, vP-GW_2, and an MEC application are operating on the MEC platform.
  • vS-GW_4, vP-GW_4, and the MEC application are operating on the MEC platform.
  • the vP-GW_5 and the MEC application operate on the MEC platform.
  • a VNF that virtualizes other functional entities in the mobile communication network such as vMME, vHSS, and vPCRF
  • the solid line in a figure means a user plane and a broken line means a control plane.
  • the part indicated by a bold line means a communication path (virtual bearer described later) that is virtually set.
  • a virtualized VNF (vDeNB, vS-GW / vP-GW) or the like may operate on the NFV platform or other virtual infrastructure.
  • the MME 43 sets (that is, establishes) a bearer between the MEC servers 300.
  • the MME 43 first generates management information (hereinafter also referred to as “GW mapping list”) for specifying a connection path between the MEC servers 300 in advance.
  • the GW mapping list includes, for example, an APN for connecting to each MEC server 300 (that is, an APN for specifying the vP-GW of the MEC server 300), and a gateway through which the MEC server 300 is connected. (For example, P-GW, S-GW, vP-GW, and vS-GW) are recorded in association with each other.
  • FIG. 22 shows an example of information recorded in the GW mapping list.
  • the identification information of a wireless network node for example, RN, eNB, DeNB, etc.
  • the APN indicating the connection destination
  • the server for example, MEC server
  • It is recorded in association with a list of gateways through which a connection is established.
  • the numbers in parentheses indicate the number of physical hops.
  • an entry indicating a connection relationship between the note indicated by “RN_1” and the server specified by “vAPN # 5” includes a DeNB 110- 1, information indicating each of S-GW 41 and vP-GW_5 in the MEC server 300-5 is recorded.
  • FIG. 23 shows another example of information recorded in the GW mapping list.
  • an APN indicating each of a connection source and a connection destination and a list of gateways through which a connection between servers designated by each APN is established are recorded in association with each other.
  • the numbers in parentheses indicate the number of physical hops.
  • attention is paid to a case where a connection is established between the MEC server 300-1 designated by “APN # 1” and the MEC server 300-2 designated by “APN # 2”.
  • an entry indicating the connection relationship between the servers designated by “APN # 1” and “vAPN # 2” includes an RN 120-1 and a DeNB 110-1 that are routed at the time of connection.
  • VS-GW_2 and vP-GW_2 in the MEC server 300-2 And information indicating each of them is recorded.
  • Information recorded in the GW mapping list such as identification information (P-GW ID, etc.) indicating each node and identification information (vAPN, PDN ID, etc.) specifying each server is stored in the HSS 44 in advance, for example. Recorded and managed (Provisioning / Commissioning). In other words, the MME 43 may generate a GW mapping list based on information acquired from the HSS 44, for example.
  • the MME 43 When the MME 43 receives a connection request associated with an APN indicating a connection destination from the MEC server 300, the MME 43 designates the MEC server 300 serving as a request source and the APN associated with the connection request based on the GW mapping list.
  • a bearer is set up with another MEC server 300 that performs the operation.
  • the outline of the bearer set by the MME 43 will be described between the MEC server 300-1 (MEC-Server-1) and the MEC server 300-2 (MEC-Server-2) in FIG. A case where a bearer is set between them will be described as an example.
  • FIG. 24 is an explanatory diagram for explaining an outline of a bearer set between MEC servers.
  • the MME 43 determines whether the MEC server 300-1 and 300-2 are based on the GW mapping list. Identify a list of gateways through which to establish a connection. Accordingly, for example, the vP-GW_1 and vS-GW_2 of the MEC server 300-1, the RN 120-1 indicated by “RN_1”, the DeNB 110-1 indicated by “DeNB_1”, and the MEC server 300-2. vS-GW_2 and vP-GW_2 are specified.
  • a physical configuration such as RN, eNB, DeNB, P-GW, and S-GW corresponds to an example of “first gateway”.
  • a virtual configuration such as vP-GW and vS-GW on the MEC server 300 corresponds to an example of “second gateway”.
  • the MME 43 sets a bearer among the identified vP-GW_1, vS-GW_2, DeNB_1 (ie, RN120-1), DeNB_1 (ie, DeNB110-1), vS-GW_2, and vP-GW_2. To do. Note that details of a series of processing flows related to the setting of each bearer will be separately described later as an example.
  • the MME 43 sets a series of bearers set between the vP-GW_1, vS-GW_2, DeNB_1 (ie, RN120-1), DeNB_1 (ie, DeNB110-1), vS-GW_2, and vP-GW_2.
  • it may be set as a virtual bearer.
  • a series of bearers between the vP-GW_1 of the MEC server 300-1 (MEC-Server-1) and the vP-GW_2 of the MEC server 300-2 (MEC-Server-2) It becomes possible to virtualize as a bearer.
  • the above-described virtual bearer is also referred to as “MEC bearer”.
  • a path to the vP-GW is virtualized and provided as VNF in the MEC server 300, for example, a plurality of MEC servers 300 It is also possible to extend the MEC bearer between the services operating in each.
  • the service in this description includes, for example, a service provided for each OTT (Over-The-Top) such as a service provider, an application that operates individually, a VM, a container, and the like.
  • the MME 43 sets a bearer between services operating on the MEC servers 300-1 and 300-2.
  • the MME 43 in addition to the connection request associated with the APN indicating the connection destination from the MEC server 300-1, information for specifying a service that operates on the MEC server 300-2 that is the connection destination (for example, , URI, IP address, etc.).
  • Information for specifying a service operating on the MEC server 300-2 can be acquired by using, for example, a service discovery function provided by the MEC platform.
  • the MME 43 specifies a list of gateways through which the connection between the MEC servers 300-1 and 300-2 is established based on the GW mapping list based on the GW mapping list. And MME43 sets a bearer between each specified gateway. As a result, a series of bearers is set between the vP-GW_1 of the MEC server 300-1 (MEC-Server-1) and the vP-GW_2 of the MEC server 300-2 (MEC-Server-2).
  • the MME 43 virtualizes the path from the vP-GW_2 to the service operating in the MEC server 300-2 as VNF in the MEC server 300-2. To set up a bearer. The same applies to the MEC server 300-1 side.
  • the MME 43 connects a bearer that virtualizes the route from the vP-GW to the service in each of the MEC servers 300-1 and 300-1, and the vP-GW of each of the MEC servers 300-1 and 300-2.
  • a bearer that is, MEC bearers.
  • MEC bearers virtual bearers
  • a bearer obtained by virtualizing a series of bearers between the vP-GW_1 of the MEC server 300-1 and the vP-GW_2 of the MEC server 300-2 is further added to the MEC servers 300-1 and 300-. It is possible to extend the service between the two services.
  • FIGS. 25 and 26 are diagrams illustrating an example of a protocol stack for communication between MEC servers, and correspond to an example of setting a bearer between the MEC servers 300-1 and 300-2 illustrated in FIG. To do.
  • FIG. 25 shows an example of an architecture when GTP-U is not included in the protocol stack of the MEC server 300.
  • the GTP and GRE (Generic Routing Encapsulation) protocols are terminated by the vP-GW of the MEC server 300.
  • FIG. 26 shows an example of an architecture in the case where GTP-U is included in the protocol stack of the MEC server 300.
  • the GTP and GRE protocols are terminated at a point (for example, an IP address) that identifies the MEC server 300 itself.
  • the path to the vP-GW is virtualized and provided as VNF in the MEC server 300, so that the bearer can be extended to the MEC server 300.
  • the bearer method defined in 3GPP is extended to the MEC server 300, so that, for example, flow-based QoS is applied to bidirectional communication between the MEC servers 300. It is also possible to do.
  • FIGS. 27 and 28 are diagrams illustrating an example of the configuration of the MEC bearer.
  • FIG. 27 shows an example of the configuration of the MEC bearer when the GTP and GRE protocols are terminated at a point (for example, an IP address, etc.) that identifies the MEC server 300 itself, as shown in FIG. Is shown.
  • FIG. 28 shows an example of the configuration of the MEC bearer when the GTP and GRE protocols are terminated in the vP-GW of the MEC server 300 as shown in FIG.
  • the target to which the APN is assigned is not necessarily limited to the MEC server 300 alone.
  • an APN may be assigned for each OTT such as a service provider or for each application.
  • each service provided by the OTT is individually based on the APN. It becomes possible to specify. It is also possible to assign an APN for each VM in which an application is mounted or for each container.
  • FIG. 29 and FIG. 30A are diagrams showing an example of the configuration of the MEC bearer.
  • an MEC bearer for example, an extended MEC bearer
  • FIG. 29 shows an example of the configuration of the MEC bearer when the GTP and GRE protocols are terminated at a point (for example, an IP address, etc.) that identifies the MEC server 300 itself, as shown in FIG. Yes.
  • FIG. 30A shows an example of the configuration of the MEC bearer when the GTP and GRE protocols are terminated in the vP-GW of the MEC server 300 as shown in FIG.
  • FIG. 30B is a diagram illustrating an example of the configuration of the MEC bearer, and illustrates an example in which an MEC bearer is set for each container.
  • FIG. 30C is a diagram illustrating an example of the configuration of the MEC bearer, and illustrates an example in which an MEC bearer is set for each VM.
  • FIG. 31 is an explanatory diagram for explaining an example of a bearer configuration in the system 1 according to the present embodiment, and shows an example when the MEC server 300 provides a service to the UE.
  • the MEC server 300-1 MEC-Server-1
  • MEC-Server-2 MEC-Server-2
  • An EPS bearer is set between the UE and the MEC server 300-1
  • an MEC bearer is set between the MEC server 300-1 and the MEC server 300-2.
  • the MEC server 300-1 (MEC-Server-1) provides a service to the UE in cooperation with the application server 60.
  • an EPS bearer is set between the UE and the MEC server 300-1
  • an MEC bearer is set between the MEC server 300-1 and the application server 60.
  • the system 1 according to the present embodiment can provide a bearer that satisfies the QoS requested by the service in a more preferable manner.
  • FIG. 32 is a sequence diagram illustrating an example of the flow of bearer setting processing executed in the system 1 according to the first example of the present embodiment.
  • this sequence includes OSS, HSS 44, MME 43, MEC server 300-1 (MEC-Server-1), RN 120-1 (RN_1), DeNB 110-1 (DeNB_1), and S-GW 41.
  • MEC server 300-2 MEC-Server-2
  • a list of identification information (such as P-GW ID) indicating each node and identification information (APN, PDN ID, etc.) specifying each server is registered in the HSS 44. (S301).
  • the MME 43 generates a GW mapping list based on the information registered in the HSS 44 (S303). The generation of the GW mapping list only needs to be executed in advance, and the same process need not be executed every time the MEC bearer is set between the MEC servers 300.
  • a description will be given focusing on processing for setting MEC bearers between the MEC servers 300 based on an instruction from the OSS. For example, when moving application information between the MEC servers 300, a network administrator or the like designates the MEC server 300 that is the destination of application information to the OSS via the UI (for example, GUI). Then, instruct the transfer of the information.
  • UI for example, GUI
  • the OSS requests the MME 43 to set the MEC bearer between the MEC server 300-1 and the MEC server 300-2.
  • the MEC bearer setting request signal is transmitted from the OSS to the MME 43 (S305).
  • the MEC bearer setting request corresponds to an example of a “connection request”.
  • the MME 43 collates the APN for connecting to the MEC servers 300-1 and 300-2 with the GW mapping list, and the MEC server 300-1 to the MEC server 300 -2 specifies a list of gateways through which connection is made (S307).
  • S307 a list of gateways through which connection is made.
  • -GW_2 and vP-GW_2 are identified.
  • the identification of the P-GW corresponding to the APN is executed based on, for example, a mechanism such as DNS (FQDN: Fully Qualified Domain Name).
  • the identification of the GW in which each MEC server 300 is installed can be executed based on information registered in advance based on an instruction from an OTT or the like such as a service provider, as in the TAI List allocation policy. Good.
  • the MEC server 300 uses the function (for example, API) provided by the MEC platform, so that the location information of the connected nodes (for example, Radio Nodes such as eNodeB, NodeB, Relay Node, DeNodeB, etc.) And the acquired position information may be notified to the MME 43.
  • the MME 43 instructs the vS-GW_1 of the MEC server 300-1 to establish an S5 / S8 bearer with the vP-GW_1.
  • vS-GW_1 establishes an S5 / S8 bearer with vP-GW_1.
  • the MME 43 instructs the vDeNB_1 of the MEC server 300-1 to establish an S1-U bearer with the RN 120-1.
  • vDeNB_1 sets up an S1-U bearer with RN 120-1 (S309).
  • the MME 43 instructs the vS-GW_2 of the MEC server 300-2 to establish an S5 / S8 bearer with the vP-GW_2. Upon receiving this instruction, vS-GW_2 establishes an S5 / S8 bearer with vP-GW_2. Also, the MME 43 instructs the vS-GW_2 of the MEC server 300-2 to establish an S1-U bearer with the DeNB 110-1. Upon receiving this instruction, vS-GW_2 establishes an S1-U bearer with DeNB 110-1 (S313). When the bearer setting is completed, a response to the MEC bearer setting request is transmitted from the MEC server 300-2 to the MME 43 (S315).
  • the MME 43 instructs the DeNB 110-1 via the S-GW 41 to establish an S1-U / Un bearer between the DeNB 110-1 and the RN 120-1 (S317).
  • DeNB-1 sets up an S1-U / Un bearer between DeNB 110-1 and RN 120-1 (S319).
  • a response to the MEC bearer setting request is transmitted from the S-GW 41 to the MME 43 (S321).
  • a series of bearers for connecting the MEC server 300-1 and the MEC server 300-2 is set, and data transfer between the MEC server 300-1 and the MEC server 300-2 is performed via the bearer. Communication between applications becomes possible.
  • identification information for example, an IP address
  • a new bearer tunnelel
  • the MME 43 sets the MEC bearer by virtualizing a series of bearers set between the MEC server 300-1 and the MEC server 300-2.
  • the MME 43 confirms the completion of the setting of each bearer between the MEC server 300-1 and the MEC server 300-2 (that is, the bearer between the gateways specified based on the GW mapping list), the MME bearer requests for setting the MEC bearer Is sent to the OSS (S323).
  • the MEC server 300-1 and the MEC server 300-2 are connected by the MEC bearer (S325).
  • the MEC server 300-1 can transmit application information to the MEC server 300-2 via the set MEC bearer (S327).
  • protocol stack in the communication between the MEC server 300-1 and the MEC server 300-2 in the first embodiment is as described above with reference to FIGS.
  • FIG. 33 is a sequence diagram showing an example of the flow of the bearer setting process executed in the system 1 according to the second example of the present embodiment.
  • this sequence includes OSS, HSS 44, MME 43, UE 200, MEC server 300-1 (MEC-Server-1), RN 120-1 (RN_1), DeNB 110-1 (DeNB_1), S -GW 41 and MEC server 300-2 (MEC-Server-2) are involved.
  • the application Appl-1 on the MEC server 300-1 starts to operate (S405).
  • the application Appl-1 needs to cooperate with the application Appl-2 operating on the MEC server 300-2 in order to provide the service to the UE 200.
  • the application Appl-1 uses the service discovery function provided from the MEC platform, thereby connecting information (for example, APN) to the MEC server 300-2 in which the application Appl-2 is stored. ) Is acquired (S407).
  • the application Appl-1 requests the MME 43 to set the MEC bearer between the MEC server 300-1 and the MEC server 300-2 based on the acquired APN.
  • a setting request signal for the MEC bearer associated with the APN is transmitted from the MEC server 300-1 to the MME 43 (S409).
  • the partner to which the application App-1 makes a MEC bearer setting request may be a vMME implemented as VNF in the MEC server 300-1.
  • the interface (in other words, the communication path) between the application Appl-1 and the MME 43 can be established by mounting the vS-GW realized as VNF.
  • SCEF Service Capability Exposure Function
  • the processes indicated by reference numerals S411 to S425 are the same as the processes indicated by reference numerals S307 to S321 in FIG. That is, the MME 43 collates the APN associated with the connection request from the application Appl-1 with the GW mapping list, and obtains a list of gateways through which the MEC server 300-1 connects to the MEC server 300-2. Specify (S411). Then, the MME 43 instructs the vS-GW_1 and vDeNB_1 of the MEC server 300-1 and vS-GW_2 and S-GW 41 of the MEC server 300-2 to establish a bearer. As a result, a series of bearers for connecting the MEC server 300-1 and the MEC server 300-2 is set.
  • identification information for example, an IP address
  • vP-GW_2 a new bearer (tunnel) is set as a default bearer between the communication point of the MEC server 300-2.
  • the MME 43 sets an MEC bearer by virtualizing a series of bearers set between the MEC server 300-1 and the MEC server 300-2 (S413 to S425).
  • the MME 43 When the MME 43 confirms the completion of the setting of each bearer between the MEC server 300-1 and the MEC server 300-2, the MME 43 sends a response to the setting request of the MEC bearer to the application Appl ⁇ operating on the MEC server 300-1. 1 (S427).
  • the MEC server 300-1 and the MEC server 300-2 are connected by the MEC bearer (S429).
  • the MEC bearer S429
  • communication between the application Appl-1 operating on the MEC server 300-1 and the application Appl-2 operating on the MEC server 300-2 is enabled via the set MEC bearer.
  • the application Appl-1 can cooperate with the application Appl-2 through the set MEC bearer (S431).
  • the MEC bearer set in this embodiment may be, for example, an MEC bearer set between the MEC servers 300-1 and 300-2, or between the applications Appl-1 and Appl-2 (that is, between VMs or It may be an extended MEC bearer set between containers).
  • the cooperation between the MEC servers 300-1 and 300-2 has been described.
  • the present invention is not necessarily limited to the same configuration.
  • three or more MEC servers can be linked.
  • the three or more MEC bearers can be linked to each other.
  • protocol stack in the communication between the MEC server 300-1 and the MEC server 300-2 in the second embodiment is as described above with reference to FIGS.
  • FIG. 34 is a sequence diagram showing an example of the flow of bearer setting processing executed in the system 1 according to the third example of the present embodiment.
  • this sequence includes OSS, HSS 44, MME 43, UE 200, MEC server 300-1 (MEC-Server-1), RN 120-1 (RN_1), DeNB 110-1 (DeNB_1), S -GW41, DeNB110-2 (DeNB_2), RN120-2 (RN_2), and MEC server 300-3 (MEC-Server-3) are involved.
  • the application Appl-1 on the MEC server 300-1 starts to operate (S505).
  • the UE 200 moves from the cell provided by the RN 120-1 to the cell provided by the RN 120-2, so that the UE 200 uses the other MEC server 300 to provide the service to the UE 200.
  • the application Appl-1 uses a service discovery function provided from the MEC platform to provide a service to the UE 200 in a more suitable environment (for example, maximum delay, minimum guaranteed bandwidth). Etc.) to discover the MEC server 300 that can provide the environment.
  • the application App1-1 for example, the location information of the UE 200 that is connected and the currently connected node (for example, RN, Information such as eNB, DeNB, NB) may be used.
  • the application Appl-1 acquires information (for example, vAPN) for connecting to the MEC server 300-3 (S507).
  • the application Appl-1 has acquired the APN as information for connecting to the MEC server 300-3.
  • the type of information to be performed is not particularly limited.
  • the application Appl-1 may acquire a URI and an IP address as information for connecting to the MEC server 300-3.
  • the application Appl-1 (or another application providing the service) issues a request for setting the MEC bearer between the MEC server 300-1 and the MEC server 300-3 to the MME 43 based on the acquired APN. Do.
  • a setting request signal for the MEC bearer associated with the APN is transmitted from the MEC server 300-1 to the MME 43 (S509).
  • the interface from the MEC server 300-1 to the MME 43 is realized by, for example, an S1-MME interface via a node such as eNB or RN, or an S11 interface via an S-GW.
  • an interface provided by SCEF may be used.
  • the MEC server 300-1 (or an application operating on the MEC server 300-1) can connect to the MME 43 by using, for example, SCEF and make a bearer setting request.
  • the MEC server 300-1 can also monitor the bearer setting status (for example, whether the bearer setting is completed) by using SCEF. The details of SCEF will be described later.
  • the MME 43 Upon receiving the MEC bearer setting request from the application Appl-1, the MME 43 collates the APN for connecting to each of the MEC servers 300-1 and 300-3 with the GW mapping list, and the MEC server 300-1 A list of gateways through which to connect to the MEC server 300-3 is specified (S511).
  • 2 and vDeNB_3, vS-GW_3, and vP-GW_3 in the MEC server 300-3 are specified.
  • the MME 43 instructs the vS-GW_1 of the MEC server 300-1 to establish an S5 / S8 bearer with the vP-GW_1.
  • vS-GW_1 establishes an S5 / S8 bearer with vP-GW_1.
  • the MME 43 instructs the vDeNB_1 of the MEC server 300-1 to establish an S1-U bearer with the RN 120-1.
  • vDeNB_1 sets up an S1-U bearer with RN 120-1 (S513).
  • a response to the MEC bearer setting request is transmitted from the MEC server 300-1 to the MME 43 (S515).
  • the MME 43 instructs the vS-GW_3 of the MEC server 300-3 to establish an S5 / S8 bearer with the vP-GW_2.
  • vS-GW_3 establishes an S5 / S8 bearer with vP-GW_3.
  • the MME 43 instructs the vDeNB_3 of the MEC server 300-3 to establish an S1-U bearer with the RN 120-2.
  • vDeNB_3 sets up an S1-U bearer with RN 120-2 (S517).
  • a response to the MEC bearer setting request is transmitted from the MEC server 300-3 to the MME 43 (S519).
  • the MME 43 instructs the DeNB 110-1 via the S-GW 41 to establish an S1-U / Un bearer between the DeNB 110-1 and the RN 120-1.
  • DeNB-1 sets up an S1-U / Un bearer between DeNB 110-1 and RN 120-1 (S523).
  • the MME 43 instructs the DeNB 110-2 via the S-GW 41 to establish an S1-U / Un bearer between the DeNB 110-2 and the RN 120-2.
  • DeNB-2 sets up an S1-U / Un bearer between DeNB 110-2 and RN 120-2 (S529).
  • the MME 43 instructs the S-GW 41 to establish S1-U / Un bearers between the DeNB 110-1 and the S-GW 41 and between the DeNB 110-2 and the S-GW 41, respectively.
  • the S-GW 41 sets S1-U / Un bearers between the DeNB 110-1 and the S-GW 41 and between the DeNB 110-2 and the S-GW 41 (S525, S527).
  • S531 a response to the MEC bearer setting request is transmitted from the S-GW 41 to the MME 43 (S531).
  • the MME 43 sets the MEC bearer by virtualizing a series of bearers set between the MEC server 300-1 and the MEC server 300-3.
  • the bearers described above are already set (established). Thus, when there is a bearer that has already been set, it is not always necessary to set a new bearer, and a bearer that has already been set may be used. Further, the bearers set by the above processing between the DeNB 110-1 and the DeNB 110-2, between the RN 120-1 and the DeNB 110-1, and between the RN 120-2 and the DeNB 110-2 are as follows. It is equivalent to a bearer used for an X2 interface mapped one-to-one.
  • the MME 43 When the MME 43 confirms the completion of the setting of each bearer between the MEC server 300-1 and the MEC server 300-3, the MME 43 sends a response to the MEC bearer setting request as an application Appl- 1 is transmitted (S533).
  • the MEC server 300-1 and the MEC server 300-3 are connected by the MEC bearer (S535). This makes it possible to transfer application information between the MEC server 300-1 and the MEC server 300-3 via the set MEC bearer.
  • the application Appl that takes over the information of the application Appl-1 on the MEC server 300-3. -3 can be operated.
  • the application Appl-3 may be operated on the MEC server 300-3, and the application Appl-3 and the application Appl-1 operating on the MEC server 300-1 may be linked to each other. .
  • the bearer from the UE 200 to the application Appl-1 is , May be released based on an instruction from the MME 43.
  • the MME 43 may receive an instruction from the UE 200 or an application and instruct to release the bearer.
  • the MEC bearer set in this embodiment may be, for example, an MEC bearer set between the MEC servers 300-1 and 300-3, or between the applications Appl-1 and Appl-3 (between VMs and containers). It may be an extended MEC bearer that is set at the same time.
  • the application Appl-1 is replaced with the application Appl-1 by providing the service received from the application Appl-1. -3 can continue to be received.
  • This also allows the UE 200 to have a more suitable environment (for example, an environment that satisfies the maximum delay, the minimum guaranteed bandwidth, etc.) even in a situation where the UE 200 moves between cells provided by each of the RNs 120-1 and 120-2. It becomes possible to receive service provision.
  • FIGS. 35 to 37 and FIGS. 38 to 40 show examples of protocol stacks in communication between the MEC server 300-1 and the MEC server 300-3 in the third embodiment.
  • FIGS. 35 to 37 and FIGS. 38 to 40 are diagrams showing examples of protocol stacks for communication between MEC servers.
  • FIGS. 35 to 37 show an example of the architecture in the case where the protocol stack of the MEC server 300 does not include GTP-U.
  • the GTP and GRE protocols are terminated by the vP-GW of the MEC server 300.
  • FIG. 38 to FIG. 40 show an example of the architecture when the protocol stack of the MEC server 300 includes GTP-U.
  • the GTP and GRE protocols are terminated at a point that identifies the MEC server 300 itself, or a point that identifies a VM or a container (for example, an IP address). .
  • FIG. 41 is an explanatory diagram for describing an overview of a fourth example of the present embodiment.
  • FIG. 41 shows an example of a configuration for controlling access from the MEC server 300 located on the Visited PLMN side to the MEC server located on the Home PLMN side.
  • the Visited PLMN indicates a PLMN provided by another operator (for example, a carrier) different from the contracted party of the UE (that is, a PLMN connected by roaming).
  • Home PLMN indicates a PLMN provided by an operator that is a contract destination of the UE.
  • the access from the MEC server located on the Visited PLMN side to the service operating on the Home PLMN side MEC server can be accessed from the vPL-GW on the Home PLMN side from the vS-GW on the Visited PLMN side. Done through.
  • the MME on the Visited PLMN side changes from the MEC server located on the Visited PLMN side to the MEC on the Home PLMN side. Control access to the server 300.
  • the MME on the Visited PLMN side is based on the access policy for roaming registered in the HSS on the Home PLMN side, for example, “OTT-2” to which “vAPN-H2” is assigned from the MEC server on the Visited PLMN side. Access to services provided by is prohibited. Also, the MME on the Visited PLMN side permits access to the service provided by “OTT-1” to which “vAPN-H1” is allocated from the MEC server on the Visited PLMN side based on the access policy.
  • an MEC server (or service) operating on the Visited PLMN side and an MEC server (or service) operating on the Home PLMN side are used. ) Is controlled.
  • the Visited PLMN side MME is based on the roaming access policy registered in the Home PLMN side HSS, and “VAPN-H1” is allocated from the Visited PLMN side MEC server.
  • the setting of the MEC bearer to the service provided by “1” is permitted.
  • the MME on the Visited PLMN side prohibits the setting of the MEC bearer from the Visited PLMN side MEC server to the service provided by “OTT-2” to which “vAPN-H2” is allocated. .
  • the above-described access control at the time of roaming includes, for example, access control between MEC servers installed in networks of different carriers, and access control considering an MEC server installed in a relay base station having mobility. It is possible to apply. Further, the access control described above may be applied to so-called local breakout.
  • FIG. 42 is an explanatory diagram for explaining the outline of the fourth example of the present embodiment, and shows an example of the architecture of the PCC.
  • the PCRF is a functional entity that performs policy and charging control.
  • the PCRF executes QoS switching or the like according to the charging status by linking with an online charging system (OCS: Online Charging System) or an offline charging system (OFCS: Offline Charging System).
  • OCS Online Charging System
  • OFCS Offline Charging System
  • PCEF Policy and Charging Enforcement Function
  • the PCEF can be mounted on, for example, the P-GW described above.
  • BBERF Border Biding and Event Reporting Functions
  • BBERF executes policy control according to information notified from the PCRF, similarly to PCEF.
  • BBERF executes cooperation processing with QoS control unique to the access system, such as identification of a radio access bearer that transfers a packet received from the P-GW to the eNB.
  • BBERF can be implemented in the above-described S-GW, for example.
  • the MEC server described above may correspond to an AF (Application Function) shown in FIG.
  • an Rx interface for sharing (notifying) information such as QoS is defined as an interface from the AF (that is, the MEC server) to the PCRF. Therefore, an interface for making a QoS request from the AF to the PCRF is not defined, and the PCRF switches the QoS according to information notified from the AF.
  • SCEF provides an interface that enables the exchange of information by accessing the network function in EPC from SCS (Service Capability Server) or AS (Application Serve).
  • SCS Service Capability Server
  • AS Application Serve
  • FIG. 43 is an explanatory diagram for describing an example of an interface realized by application of SCEF.
  • SCEF for example, an interface for making a QoS request to the PCRF from the SCS or AS is provided.
  • a policy for example, QoS
  • QoS can be set for the PCRF from the MEC server (or an application running on the MEC server).
  • FIG. 44 is an explanatory diagram for describing another example of an interface realized by application of SCEF.
  • application of SCEF provides, for example, an interface between the SCS and AS and the HSS.
  • an MEC server or an application running on the MEC server
  • sends a connection request to another MEC server that is, an MEC bearer setting request
  • another MEC server that is, an MEC bearer setting request
  • FIG. 45 to 47 are explanatory diagrams for explaining another example of an interface realized by application of SCEF.
  • SCEF when SCEF is applied, for example, an MEC server (or an application operating on the MEC server) issues a bearer (for example, MEC bearer) setting request to the MME.
  • a bearer setting request is made from the MEC server to the MME
  • the bearer setting status is monitored via the interface provided by the application of SCEF. It is also possible to do.
  • FIG. 46 shows an example of a flow of a series of processes related to the monitoring request.
  • FIG. 47 shows an example of a flow of a series of processes related to the monitoring event report.
  • FIGS. 48 and 49 show an example of an architecture for applying an ADC to an MEC server.
  • the ADC can be included in the TDF as shown in FIG.
  • the ADC may be included in a vPCEF operating on the vP-GW as shown in FIG.
  • FIG. 50A shows an example of a protocol stack in communication between MMEs.
  • the MEC server is installed in a wireless communication network that has not been defined so far without maximizing the use of the existing network protocol and changing the existing network device. It is possible to realize a communication path between servers (MEC servers).
  • a plurality of MEC servers can be linked regardless of inside or outside the wireless communication network. For this reason, for example, even for an application in which service provision is restricted, it is possible to provide a service in a more favorable manner to the user by cooperation between the MEC servers. Furthermore, since a plurality of MEC servers having different computing resources can be linked, so-called distributed processing type services can be provided via a wireless communication network.
  • the EBS bearer specified by LTE to the MEC server for connection between the MEC servers.
  • the QoS mechanism in LTE can be applied to communication (for example, bidirectional communication) between MEC servers.
  • the present embodiment it is possible to use both the SDN (Software-Defined Networking) / NFV mechanism and the existing 3GPP mechanism. Therefore, for example, application to an IoT network expected to be developed in the future and a 5G network realized in the future is possible.
  • SDN Software-Defined Networking
  • the network function is virtualized by VDN of SDN / NFV, thereby realizing communication between servers (between MEC servers) without performing DPI for all packets. It becomes possible. Therefore, for example, it is possible to reduce the load on the system accompanying the execution of DPI. Further, since it is not necessary to perform DPI, it is not always necessary to install an MEC server between network devices, and it becomes easier to install the MEC server in an existing network.
  • an APN assigning an APN to an MEC server and using a mechanism such as HSS, MME, and PCRF, for example, an OTT (for example, a service provided by the MEC server) For each provider), it is possible to authenticate and specify a connectable MEC server.
  • an EPS bearer which is an existing framework of 3GPP, for each APN. Therefore, for example, it is possible to provide appropriate QoS for each service.
  • the present embodiment it is possible to acquire information (for example, APN) for specifying the MEC server by using the service discovery function provided by the MEC platform. Therefore, for example, based on an instruction from the OSS, UE, or an application (for example, an application operating on the MEC server), a communication path between the MEC servers is established, and application information is moved between the MEC servers. Is also possible.
  • a service can be provided to the UE.
  • the example in which the MME sets the MEC bearer between the MEC servers operating in the eNB, the DeNB, the RN, and the like has been described for the LTE wireless communication access accommodating network.
  • the application target of the present embodiment is not necessarily limited to the LTE wireless communication access accommodating network.
  • the APN is not limited to the designation of the P-GW but can be applied to, for example, a GGSN (GPRS Support Node). Therefore, this embodiment can be applied to a system in which GGSN is used, for example.
  • FIG. 50B is a diagram illustrating an example of an EPC network architecture.
  • the SGSN plays the same role as the MME in the LTE radio communication access accommodating network. Therefore, for example, the SGSN may generate a GW mapping list based on information recorded and managed in advance in the HSS, and set an MEC bearer between MEC servers operating on the RNC or NodeB based on the GW mapping list. .
  • the MEC server 300 or the application server 60 may be realized as any type of server such as a tower server, a rack server, or a blade server.
  • at least a part of the components of the MEC server 300 or the application server 60 is a module mounted on the server (for example, an integrated circuit module configured by one die, or a card or blade inserted into a slot of the blade server ).
  • the MEC server 300 may be realized as any kind of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the MEC server 300 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • the MEC server 300 may include a main body (also referred to as a base station device) that controls wireless communication, and one or more RRHs (Remote Radio Heads) that are arranged at a location different from the main body.
  • RRHs Remote Radio Heads
  • various types of terminals described later may operate as the MEC server 300 by temporarily or semi-permanently executing the base station function.
  • at least some components of the MEC server 300 may be realized in a base station device or a module for the base station device.
  • the MEC server 300 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
  • the MEC server 300 is a terminal that performs M2M (Machine To Machine) communication (also referred to as MTC (Machine Type Communication) terminal), such as surveillance cameras, gateway terminals of various sensor devices, cars, buses, trains, airplanes, etc. You may implement
  • at least a part of the components of the MEC server 300 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • FIG. 51 is a block diagram illustrating an example of a schematic configuration of a server 700 to which the technology according to the present disclosure can be applied.
  • the server 700 includes a processor 701, a memory 702, a storage 703, a network interface 704, and a bus 706.
  • the processor 701 may be a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), for example, and controls various functions of the server 700.
  • the memory 702 includes a RAM (Random Access Memory) and a ROM (Read Only Memory), and stores programs and data executed by the processor 701.
  • the storage 703 may include a storage medium such as a semiconductor memory or a hard disk.
  • the network interface 704 is a wired communication interface for connecting the server 700 to the wired communication network 705.
  • the wired communication network 705 may be a core network such as EPC (Evolved Packet Core) or a PDN (Packet Data Network) such as the Internet.
  • EPC Evolved Packet Core
  • PDN Packet Data Network
  • the bus 706 connects the processor 701, the memory 702, the storage 703, and the network interface 704 to each other.
  • the bus 706 may include two or more buses with different speeds (eg, a high speed bus and a low speed bus).
  • one or more components included in the MEC server 300 described with reference to FIG. May be.
  • a program for causing a processor to function as the one or more components is installed in the server 700, and the processor 701 is The program may be executed.
  • the server 700 may include a module including the processor 701 and the memory 702, and the one or more components may be mounted in the module. In this case, the module may store a program for causing the processor to function as the one or more components in the memory 702 and execute the program by the processor 701.
  • the server 700 or the module may be provided as an apparatus including the one or more components, and the program for causing a processor to function as the one or more components may be provided. .
  • a readable recording medium in which the program is recorded may be provided.
  • one or more components (service providing unit 64) included in the application server 60 described with reference to FIG. 12 may be implemented in the processor 701.
  • a program for causing a processor to function as the one or more components is installed in the server 700, and the processor 701 is The program may be executed.
  • the server 700 may include a module including the processor 701 and the memory 702, and the one or more components may be mounted in the module. In this case, the module may store a program for causing the processor to function as the one or more components in the memory 702 and execute the program by the processor 701.
  • the server 700 or the module may be provided as an apparatus including the one or more components, and the program for causing a processor to function as the one or more components may be provided. .
  • a readable recording medium in which the program is recorded may be provided.
  • FIG. 52 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 52, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. 52 illustrates an example in which the eNB 800 includes a plurality of antennas 810, but the eNB 800 may include a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 52, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 52, and the plurality of RF circuits 827 may respectively correspond to a plurality of antenna elements, for example. 52 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program.
  • the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • FIG. 53 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840, and the plurality of antennas 840 may correspond to a plurality of frequency bands used by the eNB 830, for example.
  • FIG. 53 illustrates an example in which the eNB 830 includes a plurality of antennas 840, but the eNB 830 may include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 52 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
  • the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 53, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively.
  • FIG. 53 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, but the wireless communication interface 863 may include a single RF circuit 864.
  • one or more components (MEC platform 331, VNF 333, and / or service providing unit 335) included in the MEC server 300 described with reference to FIG. 11 include the wireless communication interface 855 and / or Alternatively, the wireless communication interface 863 may be implemented. Alternatively, at least some of these components may be implemented in the controller 851.
  • the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program.
  • the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • FIG. 54 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as shown in FIG. 54 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that FIG. 54 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, but the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
  • the battery 918 supplies power to each block of the smartphone 900 shown in FIG. 54 via a power supply line partially shown by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed.
  • the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • FIG. 55 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 55 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. FIG. 55 shows an example in which the car navigation apparatus 920 includes a plurality of antennas 937, but the car navigation apparatus 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation apparatus 920 shown in FIG. 55 via a power supply line partially shown by a broken line in the figure. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program.
  • the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good.
  • a readable recording medium in which the program is recorded may be provided.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as a device including the MEC platform 331, the VNF 333, and / or the service providing unit 335.
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the MME 43 acquires a connection request associated with an APN (Access Point Name) indicating a connection destination. Then, the MME 43 specifies the request source of the connection request and the APN associated with the connection request based on the management information in which the APN and the gateway through which to connect to the server designated by the APN are associated. A bearer is set between the server and the server to be executed.
  • a communication path between servers in the MEC that is, between MEC servers
  • a control unit for setting a bearer between the server and An apparatus comprising: (2) The controller is Identifying at least one gateway through which to connect to the server specified by the APN associated with the connection request based on the management information; A bearer is set between each of the request source, the server, and the identified at least one gateway; The apparatus according to (1) above.
  • the control unit includes a series of bearers set between the request source, the server specified by the APN, and the gateway that is connected to connect to the server. Is set as a virtual bearer that connects the two.
  • the server specified by the APN is a virtual server operating on a physical server of a mobile communication network;
  • the controller is Based on the management information, as at least one of the gateways, a first gateway on a mobile communication network that is connected to the physical server on which the virtual server specified by the APN operates, the physical server, A virtual second gateway for connecting to the virtual server, At least a bearer is set between the identified first gateway, the physical server, the identified second gateway, and the virtual server.
  • the apparatus according to (2) or (3).
  • the APN is associated with the server; The control unit sets a bearer between the connection request source and the server indicated by the APN associated with the connection request based on the management information.
  • the device according to any one of the above.
  • the APN is associated with an application that operates on the server specified by the APN, The acquisition unit acquires the connection request in which the APN and identification information for specifying the application operating on the server are associated with each other, The control unit sets a bearer between the server specified by the APN associated with the connection request and the application indicated by the APN based on the identification information.
  • the apparatus according to any one of (1) to (4).
  • the APN is associated with a service provider;
  • the control unit sets the bearer between the request source and the server for providing the service by the provider indicated by the APN associated with the connection request based on the management information.
  • the apparatus according to any one of (1) to (4).
  • the APN is associated with a virtual machine operating on the server specified by the APN,
  • the acquisition unit acquires the connection request in which the APN is associated with identification information for specifying the virtual machine operating on the server,
  • the control unit sets a bearer between the server specified by the APN associated with the connection request and the virtual machine indicated by the APN based on the identification information.
  • the apparatus according to any one of (1) to (4).
  • the APN is associated with a container operating on the server designated by the APN
  • the acquisition unit acquires the connection request in which the APN and identification information for specifying the container operating on the server are associated with each other,
  • the control unit sets a bearer between the server specified by the APN associated with the connection request and the container indicated by the APN based on the identification information.
  • the apparatus according to any one of (1) to (4).
  • (10) The apparatus according to any one of (1) to (9), wherein the control unit controls a type of bearer set for each APN.
  • (11) The apparatus according to any one of (1) to (10), wherein the control unit selectively restricts connection to the server designated by the APN for each APN.
  • a transmission unit that transmits a connection request associated with an APN (Access Point Name) indicating a connection destination to an external device; Based on the management information in which the APN and the gateway through which to connect to the server designated by the APN are associated, set to connect to the server designated by the APN associated with the connection request A processing unit that performs communication with the server via the bearer; An apparatus comprising: (13) Obtaining a connection request associated with an APN (Access Point Name) indicating a connection destination; Based on the management information in which the processor associates the APN and the gateway through which to connect to the server designated by the APN, the request source of the connection request and the APN associated with the connection request are Setting up a bearer with the server to be designated; Including the method.
  • APN Access Point Name

Abstract

[Problem] To set a communication path between servers in mobile-edge computing (MEC) in a more appropriate mode. [Solution] A device provided with: an acquisition unit that acquires a connection request with which an access point name (APN) indicating a connection destination is associated; and a control unit that, on the basis of management information in which the APN and a gateway via which the device is connected to a server designated by the APN are associated, sets a bearer between a request source of the connection request and the server designated by the APN associated with the connection request.

Description

装置、方法、及びプログラムApparatus, method, and program
 本開示は、装置、方法、及びプログラムに関する。 The present disclosure relates to an apparatus, a method, and a program.
 近年、スマートフォン等の端末と物理的に近い位置に設けられたサーバ(以下、エッジサーバとも称する)でデータ処理を行う、モバイルエッジコンピューティング(MEC:Mobile-Edge Computing)技術が注目を浴びている。例えば、下記非特許文献1では、MECに関する技術の標準規格について検討されている。 In recent years, mobile edge computing (MEC) technology that performs data processing with a server (hereinafter also referred to as an edge server) that is physically located near a terminal such as a smartphone has been attracting attention. . For example, in the following Non-Patent Document 1, a standard of technology related to MEC is studied.
 MECでは、端末と物理的に近い位置にエッジサーバが配置されるため、集中的に配置される一般的なクラウドサーバと比較して通信遅延が短縮され、高いリアルタイム性が求められるアプリケーションの利用が可能となる。また、MECでは、これまでは端末側で処理されていた機能を端末に近いエッジサーバに分散処理させることで、端末の性能によらず高速なネットワーク・アプリケーション処理を実現することができる。エッジサーバは、例えばアプリケーションサーバとしての機能、及びコンテンツサーバとしての機能を始め多様な機能を有し得、端末に多様なサービスを提供することができる。 In the MEC, the edge server is arranged at a position physically close to the terminal, so that communication delay is shortened compared to a general cloud server arranged in a concentrated manner, and applications that require high real-time performance are used. It becomes possible. Also, in MEC, high-speed network application processing can be realized regardless of the performance of the terminal by distributing the functions previously processed on the terminal side to the edge server close to the terminal. The edge server can have various functions including, for example, a function as an application server and a function as a content server, and can provide various services to the terminal.
 一方で、上記非特許文献1等に開示されている検討内容も含め、MECに関する技術については、検討が開始されてから未だ日が浅く、十分な提案がなされているとは言い難い状況にある。例えば、MECにおけるサーバ間の通信経路をより好適な態様で設定するための技術についても、十分な提案がなされていない。 On the other hand, the technology related to MEC, including the contents of the investigations disclosed in Non-Patent Document 1 and the like, is still short since the examination began, and it is difficult to say that sufficient proposals have been made. . For example, no sufficient proposal has been made for a technique for setting a communication path between servers in the MEC in a more preferable manner.
 そこで、本開示では、MECにおけるサーバ間の通信経路をより好適な態様で設定することが可能な装置、方法、及びプログラムを提案する。 Therefore, the present disclosure proposes an apparatus, a method, and a program that can set a communication path between servers in the MEC in a more preferable manner.
 本開示によれば、接続先を示すAPN(Access Point Name)が関連付けられた接続要求を取得する取得部と、前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイと、が関連付けられた管理情報に基づき、前記接続要求の要求元と、前記接続要求に関連付けられた前記APNが指定する前記サーバと、の間にベアラを設定する制御部と、を備える、装置が提供される。 According to the present disclosure, an acquisition unit that acquires a connection request associated with an APN (Access Point Name) indicating a connection destination, the APN, and a gateway that is connected to connect to a server specified by the APN, An apparatus is provided, comprising: a control unit that sets a bearer between a request source of the connection request and the server specified by the APN associated with the connection request based on associated management information The
 また、本開示によれば、接続先を示すAPN(Access Point Name)が関連付けられた接続要求を外部装置に送信する送信部と、前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイとが関連付けられた管理情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバに接続するために設定されたベアラを介して、当該サーバとの間で通信を実行する処理部と、を備える、装置が提供される。 Further, according to the present disclosure, a transmission unit that transmits a connection request associated with an APN (Access Point Name) indicating a connection destination to an external device, the APN, and a connection to the server specified by the APN A process of performing communication with the server via a bearer set to connect to the server specified by the APN associated with the connection request based on management information associated with the gateway A device comprising: a device.
 また、本開示によれば、接続先を示すAPN(Access Point Name)が関連付けられた接続要求を取得することと、プロセッサが、前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイと、が関連付けられた管理情報に基づき、前記接続要求の要求元と、前記接続要求に関連付けられた前記APNが指定する前記サーバと、の間にベアラを設定することと、を含む、方法が提供される。 Further, according to the present disclosure, a connection request associated with an APN (Access Point Name) indicating a connection destination is acquired, and the processor is connected to connect to the APN and a server specified by the APN. And setting a bearer between the requester of the connection request and the server specified by the APN associated with the connection request based on management information associated with the gateway Is provided.
 また、本開示によれば、接続先を示すAPN(Access Point Name)が関連付けられた接続要求を外部装置に送信することと、プロセッサが、前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイとが関連付けられた管理情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバに接続するために設定されたベアラを介して、当該サーバとの間で通信を実行することと、を含む、方法が提供される。 Further, according to the present disclosure, a connection request associated with an APN (Access Point Name) indicating a connection destination is transmitted to an external device, and the processor connects to the APN and a server specified by the APN. Based on the management information associated with the gateway that passes through, the communication is performed with the server via the bearer set to connect to the server specified by the APN associated with the connection request. And a method is provided.
 また、本開示によれば、コンピュータに、接続先を示すAPN(Access Point Name)が関連付けられた接続要求を取得することと、前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイと、が関連付けられた管理情報に基づき、前記接続要求の要求元と、前記接続要求に関連付けられた前記APNが指定する前記サーバと、の間にベアラを設定することと、を実行させる、プログラムが提供される。 Further, according to the present disclosure, a connection request in which an APN (Access Point Name) indicating a connection destination is associated with a computer is acquired, and the APN and a server designated by the APN are connected. And setting a bearer between the request source of the connection request and the server specified by the APN associated with the connection request based on management information associated with the gateway, A program is provided.
 また、本開示によれば、コンピュータに、接続先を示すAPN(Access Point Name)が関連付けられた接続要求を外部装置に送信することと、前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイとが関連付けられた管理情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバに接続するために設定されたベアラを介して、当該サーバとの間で通信を実行することと、を実行させる、プログラムが提供される。 According to the present disclosure, a connection request in which an APN (Access Point Name) indicating a connection destination is associated with a computer is transmitted to an external device, and the APN and a server specified by the APN are connected. Based on the management information associated with the gateway that passes through, the communication is performed with the server via the bearer set to connect to the server specified by the APN associated with the connection request. And a program for executing the program is provided.
 以上説明したように本開示によれば、MECにおけるサーバ間の通信経路をより好適な態様で設定することが可能な装置、方法、及びプログラムが提供される。 As described above, according to the present disclosure, an apparatus, a method, and a program capable of setting a communication path between servers in an MEC in a more preferable aspect are provided.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
MECの概要を説明するための説明図である。It is explanatory drawing for demonstrating the outline | summary of MEC. MECサーバのプラットフォームを説明するための説明図である。It is explanatory drawing for demonstrating the platform of a MEC server. EPCの基本的なアーキテクチャの一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the basic architecture of EPC. ベアラの構成の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of a structure of a bearer. 無線中継局を設ける場合におけるベアラの構成の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of a structure of the bearer in the case of providing a radio relay station. eNB、DeNB、及びRN間の通信におけるプロトコルスタックの一例を示している。An example of the protocol stack in communication between eNB, DeNB, and RN is shown. EPSにおいて実行されるUEのアタッチ手続きの処理の流れの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the flow of the process of the attach procedure of UE performed in EPS. MECサーバを導入したLTEのネットワーク構成の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the network structure of LTE which introduced the MEC server. MECサーバを導入したLTEのネットワーク構成の他の一例について説明するための説明図である。It is explanatory drawing for demonstrating another example of the network configuration of LTE which introduce | transduced the MEC server. 本開示の一実施形態に係るシステム1の概略的な構成の一例について説明するための説明図である。2 is an explanatory diagram for describing an example of a schematic configuration of a system 1 according to an embodiment of the present disclosure. FIG. 同実施形態に係るMECサーバ300の構成の一例を示すブロック図である。It is a block diagram showing an example of composition of MEC server 300 concerning the embodiment. 同実施形態に係るアプリケーションサーバ60の構成の一例を示すブロック図である。It is a block diagram showing an example of composition of application server 60 concerning the embodiment. 本開示の第1の実施形態に係るシステム1の概略的な構成の一例を説明するための説明図である。2 is an explanatory diagram for describing an example of a schematic configuration of a system 1 according to a first embodiment of the present disclosure. FIG. デフォルトベアラの解放に係る処理の流れの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the flow of the process which concerns on release of a default bearer. デフォルトベアラの解放に係る処理の流れの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the flow of the process which concerns on release of a default bearer. デフォルトベアラの解放に係る処理の流れの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the flow of the process which concerns on release of a default bearer. デフォルトベアラの解放に係る処理の流れの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the flow of the process which concerns on release of a default bearer. DPIによりMECサーバ間の接続性を実現するための構成の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the structure for implement | achieving the connectivity between MEC servers by DPI. MECサーバのアーキテクチャの一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the architecture of a MEC server. MECサーバが導入されたシステムの構成の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of a structure of the system by which the MEC server was introduced. 本開示の第2の実施形態に係るシステム1の概略的な構成の一例について説明するための説明図である。FIG. 9 is an explanatory diagram for describing an example of a schematic configuration of a system 1 according to a second embodiment of the present disclosure. GWマッピングリストに記録される情報の一例を示している。An example of information recorded in the GW mapping list is shown. GWマッピングリストに記録される情報の他の一例を示している。The other example of the information recorded on a GW mapping list | wrist is shown. MECサーバ間に設定されるベアラの概要について説明するための説明図である。It is explanatory drawing for demonstrating the outline | summary of the bearer set between MEC servers. MECサーバ間における通信のプロトコルスタックの一例を示した図である。It is the figure which showed an example of the protocol stack of communication between MEC servers. MECサーバ間における通信のプロトコルスタックの一例を示した図である。It is the figure which showed an example of the protocol stack of communication between MEC servers. MECベアラの構成の一例を示した図である。It is the figure which showed an example of the structure of a MEC bearer. MECベアラの構成の一例を示した図である。It is the figure which showed an example of the structure of a MEC bearer. MECベアラの構成の一例を示した図である。It is the figure which showed an example of the structure of a MEC bearer. MECベアラの構成の一例を示した図である。It is the figure which showed an example of the structure of a MEC bearer. MECベアラの構成の一例を示した図である。It is the figure which showed an example of the structure of a MEC bearer. MECベアラの構成の一例を示した図である。It is the figure which showed an example of the structure of a MEC bearer. 同実施形態に係るシステム1におけるベアラ構成の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the bearer structure in the system 1 which concerns on the embodiment. 同実施形態の第1の実施例に係るシステムにおいて実行されるベアラ設定処理の流れの一例について示したシーケンス図である。It is the sequence diagram shown about the example of the flow of the bearer setting process performed in the system which concerns on the 1st Example of the embodiment. 同実施形態の第2の実施例に係るシステムにおいて実行されるベアラ設定処理の流れの一例について示したシーケンス図である。It is the sequence diagram shown about the example of the flow of the bearer setting process performed in the system which concerns on the 2nd Example of the embodiment. 同実施形態の第3の実施例に係るシステムにおいて実行されるベアラ設定処理の流れの一例について示したシーケンス図である。It is the sequence diagram shown about the example of the flow of the bearer setting process performed in the system which concerns on the 3rd Example of the embodiment. MECサーバ間における通信のプロトコルスタックの一例を示した図である。It is the figure which showed an example of the protocol stack of communication between MEC servers. MECサーバ間における通信のプロトコルスタックの一例を示した図である。It is the figure which showed an example of the protocol stack of communication between MEC servers. MECサーバ間における通信のプロトコルスタックの一例を示した図である。It is the figure which showed an example of the protocol stack of communication between MEC servers. MECサーバ間における通信のプロトコルスタックの一例を示した図である。It is the figure which showed an example of the protocol stack of communication between MEC servers. MECサーバ間における通信のプロトコルスタックの一例を示した図である。It is the figure which showed an example of the protocol stack of communication between MEC servers. MECサーバ間における通信のプロトコルスタックの一例を示した図である。It is the figure which showed an example of the protocol stack of communication between MEC servers. 同実施形態の第4の実施例の概要について説明するための説明図である。It is explanatory drawing for demonstrating the outline | summary of the 4th Example of the embodiment. 同実施形態の第5の実施例の概要について説明するための説明図である。It is explanatory drawing for demonstrating the outline | summary of the 5th Example of the embodiment. SCEFの適用により実現されるインタフェースの一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the interface implement | achieved by application of SCEF. SCEFの適用により実現されるインタフェースの他の一例について説明するための説明図である。It is explanatory drawing for demonstrating another example of the interface implement | achieved by application of SCEF. SCEFの適用により実現されるインタフェースの他の一例について説明するための説明図である。It is explanatory drawing for demonstrating another example of the interface implement | achieved by application of SCEF. SCEFの適用により実現されるインタフェースの他の一例について説明するための説明図である。It is explanatory drawing for demonstrating another example of the interface implement | achieved by application of SCEF. SCEFの適用により実現されるインタフェースの他の一例について説明するための説明図である。It is explanatory drawing for demonstrating another example of the interface implement | achieved by application of SCEF. MECサーバに対してADCを適用するためのアーキテクチャの一例を示している。2 shows an example of an architecture for applying an ADC to an MEC server. MECサーバに対してADCを適用するためのアーキテクチャの一例を示している。2 shows an example of an architecture for applying an ADC to an MEC server. MME間の通信におけるプロトコルスタックの一例を示した図である。It is the figure which showed an example of the protocol stack in communication between MME. EPCネットワークアーキテクチャの一例を示した図である。It is the figure which showed an example of the EPC network architecture. サーバの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a server. eNBの概略的な構成の第1の例を示すブロック図である。It is a block diagram which shows the 1st example of schematic structure of eNB. eNBの概略的な構成の第2の例を示すブロック図である。It is a block diagram which shows the 2nd example of schematic structure of eNB. スマートフォンの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a smart phone. カーナビゲーション装置の概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a car navigation apparatus.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.はじめに
  1.1.MEC
  1.2.ベアラ
  1.3.技術的課題
 2.構成例
  2.1.システムの構成例
  2.2.MECサーバの構成例
  2.3.アプリケーションサーバの構成例
 3.第1の実施形態
  3.1.技術的特徴
  3.2.評価
 4.第2の実施形態
  4.1.技術的特徴
  4.2.第1の実施例
  4.3.第2の実施例
  4.4.第3の実施例
  4.5.第4の実施例
  4.6.第5の実施例
  4.7.評価
 5.応用例
  5.1.サーバに関する応用例
  5.2.基地局に関する応用例
  5.3.端末装置に関する応用例
 6.むすび
The description will be made in the following order.
1. 1. Introduction 1.1. MEC
1.2. Bearer 1.3. Technical issues Configuration example 2.1. System configuration example 2.2. Configuration example of MEC server 2.3. 2. Configuration example of application server First embodiment 3.1. Technical features 3.2. Evaluation 4. Second Embodiment 4.1. Technical features 4.2. First Example 4.3. Second embodiment 4.4. Third Example 4.5. Fourth Example 4.6. Fifth embodiment 4.7. Evaluation 5. Application example 5.1. Application examples related to servers 5.2. Application examples related to base stations 5.3. 5. Application examples related to terminal devices Conclusion
 <<1.はじめに>>
  <1.1.MEC>
  (1)概要
 まず、図1を参照して、MECの概要を説明する。
<< 1. Introduction >>
<1.1. MEC>
(1) Overview First, an overview of MEC will be described with reference to FIG.
 図1は、MECの概要を説明するための説明図である。図1では、上段に、LTE(Long Term Evolution)に代表される現状の(MECが導入されていない)移動体通信において、UE(User Equipment)がアプリケーション及びコンテンツにアクセスするための通信経路の一例を示している。また、下段に、MECが導入された場合の、UEがアプリケーション及びコンテンツにアクセスするための通信経路の一例を示している。 FIG. 1 is an explanatory diagram for explaining the outline of the MEC. In FIG. 1, an example of a communication path for a UE (User Equipment) to access an application and content in the current mobile communication (in which MEC is not introduced) represented by LTE (Long Term Evolution) is shown at the top. Is shown. In addition, an example of a communication path for the UE to access the application and the content when the MEC is introduced is shown in the lower part.
 図1の上段に示すように、現状の移動体通信においては、アプリケーション及びコンテンツはEPC(Evolved Packet Core)より外側(UEから遠い側)であるIPネットワークに配置されている。よって、UEは、アプリケーションを実行したり、コンテンツを入手したりするために、データセンタまでの途中の経路上にある中継網(例えば、Backbone network)、EPC、バックホールリンク、基地局、及びアクセスリンクを全て経由して通信していた。そのため、膨大なネットワークコスト及び遅延が発生していた。 As shown in the upper part of FIG. 1, in the current mobile communication, applications and contents are arranged in an IP network that is outside (a side far from the UE) from EPC (Evolved Packet Core). Therefore, the UE can execute an application or obtain content, and a relay network (eg, backbone network), EPC, backhaul link, base station, and access on the way to the data center. Communicating via all links. Therefore, enormous network costs and delays have occurred.
 一方で、図1の下段に示すように、MECにおいては、アプリケーション及びコンテンツは、EPCの内側(UEに近い側)に保持される。例えば、図1に示した例では、基地局と一体的に形成されたMECサーバ(即ち、エッジサーバ)が、アプリケーションサーバ及びコンテンツサーバとして機能する。よって、UEは、アプリケーションを実行したり、コンテンツを入手したりするためには、EPCより内側でのみ主要な(厳密には、EPC外のサーバとのやり取りも存在しうるため)通信を行えばよい。そのため、MECを導入することで、極低遅延の通信が可能になるだけでなく、アクセスリンク以外(例えば、バックホールリンク、EPC、及び中継網)のトラフィックの削減も可能になる。さらに、通信の低遅延化及びアクセスリンク以外のトラフィック削減は、スループットの向上、並びにUE及びネットワーク側の低消費電力化にも貢献し得る。このように、MECの導入により、ユーザ、ネットワーク提供者、サービス提供者に対して、さまざまなメリットが生まれ得る。MECは、よりローカル側(即ち、UEに近い側)でデータを分散処理するので、特に地域に根付いたアプリケーションへの応用、分散コンピュータへの応用が期待される。 On the other hand, as shown in the lower part of FIG. 1, in the MEC, the application and the content are held inside the EPC (side closer to the UE). For example, in the example shown in FIG. 1, an MEC server (that is, an edge server) formed integrally with the base station functions as an application server and a content server. Therefore, in order to execute an application or acquire content, the UE only performs communication inside the EPC only (because there can be exchange with a server outside the EPC). Good. Therefore, by introducing MEC, not only communication with extremely low delay becomes possible, but also traffic other than the access link (for example, backhaul link, EPC, and relay network) can be reduced. Furthermore, the reduction in communication delay and the reduction of traffic other than the access link can contribute to an improvement in throughput and a reduction in power consumption on the UE and network side. As described above, introduction of the MEC can bring various advantages to users, network providers, and service providers. Since MEC performs distributed processing of data on the local side (that is, the side closer to the UE), application to an application rooted in a region and application to a distributed computer are expected.
 なお、図1では、MECサーバが基地局と一体的に形成された例を示しているが、本技術は係る例に限定されない。MECサーバは、基地局とは異なる装置として形成されてもよいし、基地局と物理的に離れていてもよい。 Although FIG. 1 shows an example in which the MEC server is formed integrally with the base station, the present technology is not limited to such an example. The MEC server may be formed as a device different from the base station, or may be physically separated from the base station.
  (2)プラットフォーム
 続いて、図2を参照して、MECサーバのプラットフォームを説明する。
(2) Platform Next, the platform of the MEC server will be described with reference to FIG.
 図2は、MECサーバのプラットフォームを説明するための説明図である。最下層の構成要素である3GPP無線ネットワーク要素(3GPP Radio Network Element)は、アンテナ及びアンプ等の基地局設備である。その上の、ホスティング基盤(Hosting Infrastructure)は、サーバ機材等のハードウェア資源(Hardware Resources)と、それらを仮想化するソフトウェアによって形成される仮想化層(Virtualization Layer)とから成り、一般的な仮想サーバ技術の提供が可能である。この仮想サーバ上で、アプリケーションプラットフォーム(Application Platform)が動作する。なお、サーバ機材等のハードウェア資源が動作する物理的なサーバが「物理サーバ」の一例に相当する。 FIG. 2 is an explanatory diagram for explaining the platform of the MEC server. The 3GPP radio network element (3GPP Radio Network Element), which is the lowest layer component, is a base station facility such as an antenna and an amplifier. On top of that, the hosting infrastructure is composed of hardware resources such as server equipment and a virtualization layer formed by software that virtualizes them. Server technology can be provided. An application platform (Application Platform) runs on this virtual server. Note that a physical server on which hardware resources such as server equipment operate corresponds to an example of a “physical server”.
 仮想化マネージャ(Virtualization Manager)は、最上位の各アプリケーション(MEC App)が動作する器であるVM(Virtual Machine)の生成及び消滅等の管理を行う。各アプリケーションは異なる企業によって実行され得るので、仮想化マネージャはセキュリティ及び割当てるリソースの分離等の配慮が求められるものの、一般的なクラウド基盤技術の適用が可能である。 The virtualization manager manages the creation and disappearance of VMs (Virtual Machines), which are the devices on which each top-level application (MEC App) operates. Since each application can be executed by different companies, the virtualization manager is required to consider security and separation of allocated resources, but can apply general cloud infrastructure technology.
 アプリケーションプラットフォームサービス(Application Platform Service)は、MECに特徴的な共通サービスの集合体である。トラフィックオフロード機能(Traffic Offload Function)は、UEからの要求をMECサーバ上のアプリケーションが処理する場合とインターネット上のアプリケーション(データサーバ上の親アプリケーション)が処理する場合とで、ルーティング等の切換制御を行う。無線ネットワーク情報サービス(Radio Network Information Services)は、MECサーバ上の各アプリケーションが、MECサーバに対応する(例えば、一体的に形成された)基地局とUE間の電波の強さ等の無線状況情報を必要とする場合、下層の無線ネットワークから情報を取得してアプリケーションに提供する。通信サービス(Communication Services)は、MECサーバ上の各アプリケーションがUE又はインターネット上のアプリケーションと通信する時の経路を提供する。サービスレジストリ(Service Registry)は、MECサーバ上の各アプリケーションの生成又は動作要求があった場合に、そのアプリケーションが正統なものか認証し、登録し、他のエンティティからの問い合わせに答える。 Application Platform Service (Application Platform Service) is a collection of common services characteristic of MEC. The Traffic Offload Function is a switching control such as routing between when a request from the UE is processed by an application on the MEC server and when an application on the Internet (parent application on the data server) is processed. I do. Radio Network Information Services are radio status information such as the strength of radio waves between a base station and a UE (for example, formed integrally) corresponding to the MEC server by each application on the MEC server. Information is obtained from the underlying wireless network and provided to the application. Communication Services provides a route when each application on the MEC server communicates with a UE or an application on the Internet. When there is a request for generating or operating each application on the MEC server, the service registry authenticates whether the application is legitimate, registers it, and answers inquiries from other entities.
 以上説明したアプリケーションプラットフォームの上で、各VMや当該VM上の各アプリケーションが動作し、インターネット上のアプリケーションに代わって又は協働により各種サービスをUEに提供する。 Each VM and each application on the VM operate on the application platform described above, and provide various services to the UE in place of or in cooperation with the application on the Internet.
 MECサーバは、多数の基地局に設置することが想定されているので、多数のMECサーバ同士を管理及び連携させる仕組みの検討も求められる。ホスティング基盤管理システム(Hosting Infrastructure Management System)、アプリケーションプラットフォーム管理システム(Application Platform Management System)、アプリケーション管理システム(Application Management System)は、MECサーバ上の対応する各エンティティを管理し、連携させる。 Since the MEC server is assumed to be installed in a large number of base stations, it is also necessary to examine a mechanism for managing and linking a large number of MEC servers. The hosting infrastructure management system (Hosting Infrastructure Management System), application platform management system (Application Platform Management System), and application management system (Application Management System) manage and coordinate each corresponding entity on the MEC server.
  (3)標準化の動向
 欧州においては、2014年10月に、ETSIにISG(Industry Specification Groups)が設置され、MECの標準化作業が開始された。最初の仕様は2016年末目標とし、現在標準化作業が進められている。より詳しくは、ETSI ISG NFV(Network Function Virtualization)及び3GPPなどの協力の元、MEC実現のためのAPI(Application Programming Interface)の標準化が中心に標準化が進められている。
(3) Trends in standardization In Europe, ISG (Industry Specification Groups) was established in ETSI in October 2014, and MEC standardization work was started. The first specification is targeted at the end of 2016, and standardization work is currently underway. More specifically, standardization is proceeding mainly with standardization of API (Application Programming Interface) for MEC implementation under the cooperation of ETSI ISG NFV (Network Function Virtualization) and 3GPP.
  <1.2.ベアラ>
 次いで、図3~図7を参照して、ベアラについて説明する。まず、図3を参照してコアネットワークのアーキテクチャを説明する。
<1.2. Bearer>
Next, the bearer will be described with reference to FIGS. First, the architecture of the core network will be described with reference to FIG.
 図3は、EPC(Evolved Packet Core)の基本的なアーキテクチャの一例を説明するための説明図である。UE(User Equipment)は、端末装置であり、ユーザとも称される。eNB(evolved Node B)は、基地局である。P-GW(PDN(Packet Data Network) Gateway)は、EPCとPDN(例えば、インターネット、外部IPネットワーク、クラウド等を含む概念)との接続点であり、ユーザパケットをPDNとの間でやり取りする。S-GW(Serving Gateway)は、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)とEPCとの接続点であり、ユーザパケットのルーティング機能及び転送機能を提供する。OCS(Online Charging System)は、リアルタイムで課金制御を行う機能エンティティである。OFCS(Offline Charging System)は、オフラインで課金制御を行う機能エンティティである。PCRF(Policy and Charging Rule Function)は、ポリシー及び課金制御を行う機能エンティティである。MME(Mobility Management Entity)は、モビリティを管理する機能エンティティである。HSS(Home Subscriber Server)は、加入者情報を管理する機能エンティティである。図中の実線はユーザプレーンを意味し、破線は制御プレーンを意味する。 FIG. 3 is an explanatory diagram for explaining an example of the basic architecture of EPC (Evolved Packet Core). UE (User Equipment) is a terminal device and is also referred to as a user. eNB (evolved Node B) is a base station. A P-GW (PDN (Packet Data Network) Gateway) is a connection point between an EPC and a PDN (for example, a concept including the Internet, an external IP network, a cloud, etc.), and exchanges user packets with the PDN. S-GW (Serving Gateway) is a connection point between E-UTRAN (Evolved Universal Terrestrial Radio Access Network) and EPC, and provides user packet routing and forwarding functions. OCS (Online Charging System) is a functional entity that controls billing in real time. OFCS (Offline Charging System) is a functional entity that performs charging control offline. PCRF (Policy and Charging Rule Function) is a functional entity that performs policy and charging control. MME (Mobility Management Entity) is a functional entity that manages mobility. HSS (Home Subscriber Server) is a functional entity that manages subscriber information. The solid line in the figure means the user plane, and the broken line means the control plane.
 UEは、eNBに接続され、MME及びHSSの制御に基づいて、S-GWを経由してEPCに接続される。さらに、UEは、P-GWを経由してインターネット(即ち、PDN)へ接続して、UE上のアプリケーションの要求に基づきインターネット上のコンテンツサーバ等と接続する。UEとPDNとの接続の確立は、ベアラの設定により行われる。ベアラとは、ユーザデータを転送するための一連の物理的又は論理的なパスを意味する。UEからインターネット上の装置までのエンドツーエンドサービスにおけるベアラの構成例を、図4に示した。 UE is connected to eNB and connected to EPC via S-GW based on control of MME and HSS. Further, the UE connects to the Internet (ie, PDN) via the P-GW, and connects to a content server on the Internet based on a request from an application on the UE. The connection between the UE and the PDN is established by setting a bearer. A bearer means a series of physical or logical paths for transferring user data. An example of a bearer configuration in an end-to-end service from a UE to a device on the Internet is shown in FIG.
 図4は、ベアラの構成の一例を説明するための説明図である。図4に示すように、UEとeNBとの間に設定されるベアラは、無線ベアラ(Radio Bearer)とも称される。eNBとUEとの間に設定されるベアラは、S1ベアラとも称される。そして、UEからS-GWまでの間に設定されるベアラは、E-RAB(E-UTRAN Radio Access Bearer)とも総称される。また、S-GWとP-GWとの間に設定されるベアラは、S5/S8ベアラとも称される。そして、UEからP-GWまでの間に設定されるベアラは、EPS(Evolved Packet System)ベアラとも総称される。また、P-GWとインターネット上の装置との間に設定されるベアラは、外部ベアラ(External Bearer)とも称される。 FIG. 4 is an explanatory diagram for explaining an example of the configuration of the bearer. As shown in FIG. 4, the bearer set between UE and eNB is also called a radio bearer. A bearer set between the eNB and the UE is also referred to as an S1 bearer. And the bearer set between UE and S-GW is also named E-RAB (E-UTRAN Radio Access Bearer) generically. A bearer set between the S-GW and the P-GW is also referred to as an S5 / S8 bearer. A bearer set between the UE and the P-GW is also collectively referred to as an EPS (Evolved Packet System) bearer. A bearer set between the P-GW and a device on the Internet is also referred to as an external bearer.
 また、LTE-A(LTE Advanced)の規格では、UEとeNBとの間の無線伝送を中継する無線中継局(RN:Relay Node)を設ける構成についても提案されている。例えば、図5は、無線中継局を設ける場合におけるベアラの構成の一例について説明するための説明図である。なお、以降の説明では、eNBのうち、特に、RNが接続されるeNBを明示的に示す場合には、「DeNB(Donor eNodeB)」と称する場合がある。図5に示すように、UEとDeNBとの間に設定されるベアラは、S1/Unベアラとも称される。 The LTE-A (LTE Advanced) standard also proposes a configuration in which a radio relay station (RN: Relay Node) that relays radio transmission between the UE and the eNB is provided. For example, FIG. 5 is an explanatory diagram for explaining an example of the configuration of a bearer when a radio relay station is provided. In the following description, among eNBs, especially when an eNB to which an RN is connected is explicitly indicated, it may be referred to as “DeNB (Donor eNodeB)”. As illustrated in FIG. 5, the bearer set between the UE and the DeNB is also referred to as an S1 / Un bearer.
 また、図6は、eNB、DeNB、及びRN間の通信におけるプロトコルスタックの一例を示している。図5及び図6に示すように、DeNBとDeNBとの間と、RNとDeNBとの間とのそれぞれは、1対1でマッピングされるX2インタフェース用に利用されるベアラと等価である。 FIG. 6 shows an example of a protocol stack in communication between eNB, DeNB, and RN. As shown in FIGS. 5 and 6, each between DeNB and DeNB and between RN and DeNB is equivalent to a bearer used for the X2 interface mapped one-to-one.
 ここで、本技術において注目するEPSベアラについてより詳しく説明する。EPSベアラは、例えば、UEとAPN(Access Point Name)により指定された一つ以上のP-GWとの間に各々設定される。ひとつのAPNとの間に設定され得るEPSベアラには、1つのデフォルトベアラ(Default Bearer)と1つ以上設定可能な個別ベアラ(Dedicated Bearer)とがある。そして、各々のベアラにおいて、SDF(Service Data Flow)がやり取りされる。下記の表1及び表2に、ベアラQoSの概要を示した。 Here, the EPS bearer of interest in this technology will be described in more detail. The EPS bearer is set between, for example, a UE and one or more P-GWs specified by an APN (Access Point Name). There are one default bearer (Default Bearer) and one or more settable individual bearers (Dedicated Bearer) in EPS bearers that can be set between one APN. In each bearer, SDF (Service Data Flow) is exchanged. Tables 1 and 2 below show an overview of bearer QoS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、図7は、EPSにおいて実行されるUEのアタッチ手続き(Attach Procedure)の処理の流れの一例を示すシーケンス図である。 FIG. 7 is a sequence diagram showing an example of the flow of the UE attach procedure executed in the EPS.
 まず、UEは、APNを指定したアタッチ要求(Attach Request)信号をMMEへ送信する(ステップS11)。ここで指定されるAPNは、デフォルトAPNとも称される。次いで、UEからHSSまでの間で、識別、認証及び暗号化等の各種処理が行われる(ステップS12)。このとき、MMEは、HSSから取得した認証情報に基づいてユーザ認証を行い、HSSからベアラ設定に必要な契約情報を取得して管理する。次に、MMEは、位置登録要求(Location Request)信号をHSSへ送信し(ステップS13)、HSSから位置登録応答(Location Request Response)信号を受信する(ステップS14)。 First, the UE transmits an attach request signal specifying the APN to the MME (step S11). The APN specified here is also referred to as a default APN. Next, various processes such as identification, authentication, and encryption are performed between the UE and the HSS (step S12). At this time, the MME performs user authentication based on the authentication information acquired from the HSS, and acquires and manages contract information necessary for bearer setting from the HSS. Next, the MME transmits a location registration request (Location Request) signal to the HSS (step S13), and receives a location registration response (Location Request Response) signal from the HSS (step S14).
 そして、MMEは、UEから通知されたAPNに基づいて、ベアラ設定先のS-GW及びP-GWの選択を行い、選択したS-GWへベアラ設定要求(Bearer Request)信号を送信する(ステップS15)。その際、MMEは、例えばDNSリゾルバ(Domain Name System resolver)機能により、APN-FQDN(Fully Qualified Domain Name)を行い、接続要求が行われたPDNへの接続が可能なP-GWを選択する。また、MMEは、eNBから取得されたセルIDに記載されているTAI(Tracking Area Identification)に基づいて、例えばcollocation baseなどのポリシーに基づきS-GWを選択する。 Then, based on the APN notified from the UE, the MME selects the bearer setting destination S-GW and P-GW, and transmits a bearer request signal to the selected S-GW (step S15). At that time, the MME performs an APN-FQDN (Fully Qualified Domain Name) using, for example, a DNS resolver (Domain Name System resolver) function, and selects a P-GW that can connect to the PDN for which a connection request has been made. Also, the MME selects an S-GW based on a policy such as a collaboration base based on a TAI (Tracking Area Identification) described in the cell ID acquired from the eNB.
 次いで、S-GWは、ベアラ設定要求信号において指定されたP-GWに対して、ベアラ確立手続き(Bearer establishment procedures)を行う(ステップS16)。このベアラ確立手続きにおいては、P-GWは、PCRFと連携して適用すべき課金情報を取得し、さらにPDNへの接続処理を実施する。S-GWは、P-GWとの間のベアラ設定が完了すると、ベアラ設定要求応答(Bearer Request Response)信号をMMEへ送信する(ステップS17)。 Next, the S-GW performs bearer establishment procedures for the P-GW specified in the bearer setting request signal (step S16). In this bearer establishment procedure, the P-GW acquires charging information to be applied in cooperation with the PCRF, and further performs connection processing to the PDN. When the bearer setting with the P-GW is completed, the S-GW transmits a bearer request request response signal to the MME (step S17).
 MMEは、S-GWから受信した情報、即ちアタッチ要求が受け入れられた旨の情報を含む無線ベアラ設定要求(Radio Bearer)信号を、eNBへ送信する(ステップS18)。eNBは、アタッチ要求が受け入れられた旨の情報を含む無線ベアラ設定要求(Radio Bearer)信号をUEへ送信し、UEとの間で無線ベアラを確立する(ステップS19)。eNBは、UEから無線ベアラ設定応答(Radio Bearer Response)信号を受信すると(ステップS20)、無線ベアラ設定応答(Radio Bearer Response)信号をMMEへ送信する(ステップS21)。そして、UEは、アタッチ完了信号をMMEへ送信する。このようにして設定されるベアラは、デフォルトベアラである。 The MME transmits a radio bearer setting request (Radio Bearer) signal including information received from the S-GW, that is, information indicating that the attach request has been accepted, to the eNB (step S18). The eNB transmits a radio bearer setting request (Radio Bearer) signal including information indicating that the attach request has been accepted to the UE, and establishes a radio bearer with the UE (step S19). When the eNB receives a radio bearer response signal from the UE (step S20), the eNB transmits a radio bearer response signal to the MME (step S21). Then, the UE transmits an attach completion signal to the MME. The bearer set in this way is a default bearer.
 これにより、UEからPDN(例えば、PDN上のアプリケーションサーバ)への、S-GW及びP-GWを経由したアップリンクユーザプレーントラフィックデータの送信が可能となる。また、PDNからUEへの、S-GW及びP-GWを経由したダウンリンクユーザプレーントラフィックデータの送信が可能となる。 This enables transmission of uplink user plane traffic data via S-GW and P-GW from UE to PDN (for example, application server on PDN). Also, downlink user plane traffic data can be transmitted from the PDN to the UE via the S-GW and P-GW.
 MMEからベアラ更新要求(Bearer Update Request)信号がS-GWへ送信されると(ステップS23)、S-GWはベアラ更新手続き(Bearer update procedure)を行い(ステップS24)、ベアラ更新要求応答(Bearer Update Request Response)信号をMMEへ送信する(ステップS25)。 When a bearer update request signal is transmitted from the MME to the S-GW (step S23), the S-GW performs a bearer update procedure (step S24) and a bearer update request response (Bearer). An Update Request Response signal is transmitted to the MME (step S25).
 以上により、処理は終了する。なお、ここでの処理は、「3GPP,“3GPP TS24.301 V8.1.0”,2009年3月,[平成27年11月19日検索],インターネット<http://www.arib.or.jp/IMT-2000/V730Jul09/5_Appendix/Rel8/24/24301-810.pdf>」に詳しく記載されている。 This completes the process. The processing here is “3GPP,“ 3GPP TS24.301 V8.1.0 ”, March 2009, [searched on November 19, 2015], Internet <http: //www.arib.or .jp / IMT-2000 / V730Jul09 / 5_Appendix / Rel8 / 24 / 24301-810.pdf> ”.
  <1.3.技術的課題>
 続いて、本開示の一実施形態の技術的課題について説明する。
<1.3. Technical issues>
Subsequently, a technical problem of an embodiment of the present disclosure will be described.
 図8は、MECサーバを導入したLTEのネットワーク構成の一例を説明するための説明図である。図8に示すように、LTEのネットワーク構成は、無線ネットワークのE-UTRANとコアネットワークのEPCとから成る。このような構成は、EPSとも称され得る。UEは、APNにより指定したP-GWを経由してインターネットにアクセスする。また、UEがインターネット上にあるコンテンツサーバとの間で通信を行う場合、典型的には、ユーザデータは、eNB、S-GW、及びP-GWを経由することとなる。 FIG. 8 is an explanatory diagram for explaining an example of an LTE network configuration in which an MEC server is introduced. As shown in FIG. 8, the LTE network configuration is composed of E-UTRAN in the wireless network and EPC in the core network. Such a configuration may also be referred to as EPS. The UE accesses the Internet via the P-GW specified by the APN. When the UE communicates with a content server on the Internet, typically, user data passes through the eNB, S-GW, and P-GW.
 同様に、図8に示す例では、UEが、MECサーバにアクセスする場合においても、APNにより指定したP-GWを経由して当該MECサーバにアクセスすることとなる。即ち、UEがMECサーバと通信を行う場合には、典型的には、ユーザデータは、eNB、S-GW、及びP-GWを経由することとなる。 Similarly, in the example shown in FIG. 8, even when the UE accesses the MEC server, the UE accesses the MEC server via the P-GW specified by the APN. That is, when the UE communicates with the MEC server, typically, user data passes through the eNB, S-GW, and P-GW.
 ここで、通信経路の設定手続きについてより詳細に説明する。まず、UEは、アタッチ手続きを行うことで、URI(Uniform Resource Identifier)又はIPアドレスで指定可能なMECサーバに接続する。ただし、UEからのユーザプレーントラフィックは、一旦P-GWまで運ばれる。P-GWは、ユーザパケットから、EPC内で利用されるヘッダ(例えば、GTP(GPRS(general packet radio service) Tunnel Protocol)ヘッダ)を取り除く。そして、P-GWは、UEが指定したURI又はIPアドレスにより特定される宛先アドレスへ、ユーザデータを送信する。 Here, the communication path setting procedure will be described in more detail. First, the UE connects to a MEC server that can be specified by a URI (Uniform Resource Identifier) or an IP address by performing an attach procedure. However, user plane traffic from the UE is once carried to the P-GW. The P-GW removes the header (for example, GTP (general packet radio service) Tunnel Protocol) header used in the EPC from the user packet. Then, the P-GW transmits user data to the destination address specified by the URI or IP address specified by the UE.
 ここで、UEは、URIを指定して接続を試みる際、通常はDNSリゾルバを起動して、URIが意味するIPアドレスを取得してから接続を試みる。具体的には、UEは、P-GWとの接続が確立された後、PDNにあるDNSサーバ又はEPC内にあるDNSサーバとの間で、IPアドレスの取得を行う。なお、EPC内では、MMEがDNSリソルバ機能を担ってもよい。取得されたMECサーバのIPアドレスは、EPC内のアドレスであるので、P-GWからMECサーバへEPCを経由した接続が確立される。 Here, when a UE specifies a URI and tries to connect, it normally starts a DNS resolver and acquires an IP address that means the URI before trying to connect. Specifically, after the connection with the P-GW is established, the UE acquires an IP address with the DNS server in the PDN or the DNS server in the EPC. In the EPC, the MME may be responsible for the DNS resolver function. Since the acquired IP address of the MEC server is an address in the EPC, a connection from the P-GW to the MEC server via the EPC is established.
 このように、MECが導入されたとしても、現状の移動体通信ネットワークの仕組みによれば冗長な通信経路が設定されてしまい、期待される効果を得ることは困難である。 As described above, even if the MEC is introduced, a redundant communication path is set according to the structure of the current mobile communication network, and it is difficult to obtain an expected effect.
 これに対して、例えば、eNBのように、アプリケーションの利用者(換言すると、UE)により近い場所にMECサーバを設置し、無線アクセスの電波状況や利用状況を把握して所謂QoSを提供することで、より低遅延のレスポンスの実現が見込まれる。例えば、図9は、MECサーバを導入したLTEのネットワーク構成の他の一例について説明するための説明図であり、eNBに配置されたMECサーバへのUEからの接続性を実現する方法の一例が示されている。即ち、eNBに配置されたMECサーバへのUEからの接続性を実現する方法としては、例えば、仮想化技術や、パケット切り替え技術等のスイッチ(SW)機能を利用することが考えられる。 On the other hand, for example, as in eNB, an MEC server is installed in a place closer to an application user (in other words, UE), and the so-called QoS is provided by grasping the radio wave status and usage status of radio access. Therefore, it is expected to realize a response with a lower delay. For example, FIG. 9 is an explanatory diagram for explaining another example of the LTE network configuration in which the MEC server is introduced, and an example of a method for realizing connectivity from the UE to the MEC server arranged in the eNB. It is shown. That is, as a method for realizing connectivity from the UE to the MEC server arranged in the eNB, for example, it is conceivable to use a switch (SW) function such as a virtualization technique or a packet switching technique.
 一方で、UEからMECサーバ上のアプリケーションが利用される場合には、MECサーバは、他の場所に配置されたMECサーバや、インターネット上のアプリケーションサーバ等と連携しながら利用されるケースが想定され得る。具体的な一例として、図9に示す例の場合には、参照符号MEC-1で示されたMECサーバは、インターネット上で動作するアプリケーションサーバとの間で通信を確立する場合が想定され得る。 On the other hand, when an application on the MEC server is used from the UE, it is assumed that the MEC server is used in cooperation with an MEC server located at another location, an application server on the Internet, or the like. obtain. As a specific example, in the case of the example shown in FIG. 9, it can be assumed that the MEC server indicated by the reference symbol MEC-1 establishes communication with an application server operating on the Internet.
 これに対して、現時点において3GPPの規約では、無線コアネットワークのエンティティではないMECサーバ間における通信経路の確立方法が明確になっていない。具体的には、3GPPが規定する規約においては、例えば、eNB、RN、S-GW等の機器を介した、MECサーバ間の通信経路を確立するためのインタフェースが定義されていない。そのため、本開示では、MECサーバ間における通信経路をより好適な態様で設定するための仕組みについて提案する。 On the other hand, at present, the 3GPP rules do not clarify how to establish a communication path between MEC servers that are not entities of the wireless core network. Specifically, in the regulations stipulated by 3GPP, for example, an interface for establishing a communication path between MEC servers via devices such as eNB, RN, and S-GW is not defined. Therefore, the present disclosure proposes a mechanism for setting a communication path between MEC servers in a more preferable manner.
 なお、本明細書では、ネットワークのアーキテクチャとして、LTEにおけるEPSを想定して本技術を説明する。ただし、本技術は3GにおけるUMTS(Universal Mobile Telecommunications System)においても適用可能であるし、その他の任意のネットワークアーキテクチャにおいても適用可能である。 In this specification, the present technology will be described assuming an EPS in LTE as a network architecture. However, the present technology can be applied to UMTS (Universal Mobile Telecommunications System) in 3G, and can also be applied to any other network architecture.
 <<2.構成例>>
  <2.1.システムの構成例>
 まず、図10を参照して、本開示の一実施形態に係るシステム1の概略的な構成の一例について説明する。図10は、本開示の一実施形態に係るシステム1の概略的な構成の一例について説明するための説明図である。図10に示すように、システム1は、無線通信装置100、端末装置200、及びMECサーバ300を含む。ここでは、端末装置200は、ユーザとも呼ばれる。当該ユーザは、UEとも呼ばれ得る。即ち、前述したUE200は、図10に示す端末装置200に相当し得る。無線通信装置100Cは、UE-Relayとも呼ばれる。ここでのUEは、LTE又はLTE-Aにおいて定義されているUEであってもよく、UE-Relayは、3GPPで議論されているProse UE to Network Relayであってもよく、より一般的に通信機器を意味してもよい。
<< 2. Configuration example >>
<2.1. System configuration example>
First, an example of a schematic configuration of the system 1 according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 10 is an explanatory diagram for describing an example of a schematic configuration of the system 1 according to an embodiment of the present disclosure. As illustrated in FIG. 10, the system 1 includes a wireless communication device 100, a terminal device 200, and an MEC server 300. Here, the terminal device 200 is also called a user. The user may also be referred to as a UE. That is, the UE 200 described above may correspond to the terminal device 200 illustrated in FIG. The wireless communication device 100C is also called UE-Relay. The UE here may be a UE defined in LTE or LTE-A, and the UE-Relay may be Prose UE to Network Relay as discussed in 3GPP, and more generally It may mean equipment.
  (1)無線通信装置100
 無線通信装置100は、配下の装置に無線通信サービスを提供する装置である。例えば、無線通信装置100Aは、セルラーシステム(又は移動体通信システム)の基地局である。基地局100Aは、基地局100Aのセル10Aの内部に位置する装置(例えば、端末装置200A)との無線通信を行う。例えば、基地局100Aは、端末装置200Aへのダウンリンク信号を送信し、端末装置200Aからのアップリンク信号を受信する。
(1) Wireless communication device 100
The wireless communication device 100 is a device that provides a wireless communication service to subordinate devices. For example, the wireless communication device 100A is a base station of a cellular system (or mobile communication system). The base station 100A performs wireless communication with a device (for example, the terminal device 200A) located inside the cell 10A of the base station 100A. For example, the base station 100A transmits a downlink signal to the terminal device 200A and receives an uplink signal from the terminal device 200A.
 基地局100Aは、他の基地局と例えばX2インタフェースにより論理的に接続されており、制御情報等の送受信が可能である。また、基地局100Aは、コアネットワーク40と例えばS1インタフェースにより論理的に接続されており、制御情報等の送受信が可能である。なお、これらの装置間の通信は、物理的には多様な装置により中継され得る。 The base station 100A is logically connected to other base stations through, for example, an X2 interface, and can transmit and receive control information and the like. The base station 100A is logically connected to the core network 40 through, for example, an S1 interface, and can transmit and receive control information and the like. Note that communication between these devices can be physically relayed by various devices.
 ここで、図10に示した無線通信装置100Aは、マクロセル基地局であり、セル10はマクロセルである。一方で、無線通信装置100B及び100Cは、スモールセル10B及び10Cをそれぞれ運用するマスタデバイスである。一例として、マスタデバイス100Bは、固定的に設置されるスモールセル基地局である。スモールセル基地局100Bは、マクロセル基地局100Aとの間で無線バックホールリンクを、スモールセル10B内の1つ以上の端末装置(例えば、端末装置200B)との間でアクセスリンクをそれぞれ確立する。なお、無線通信装置100Bは、3GPPで定義されるリレーノードであってもよい。マスタデバイス100Cは、ダイナミックAP(アクセスポイント)である。ダイナミックAP100Cは、スモールセル10Cを動的に運用する移動デバイスである。ダイナミックAP100Cは、マクロセル基地局100Aとの間で無線バックホールリンクを、スモールセル10C内の1つ以上の端末装置(例えば、端末装置200C)との間でアクセスリンクをそれぞれ確立する。ダイナミックAP100Cは、例えば、基地局又は無線アクセスポイントとして動作可能なハードウェア又はソフトウェアが搭載された端末装置であってよい。この場合のスモールセル10Cは、動的に形成される局所的なネットワーク(Localized Network/Virtual cell)である。 Here, the radio communication device 100A shown in FIG. 10 is a macro cell base station, and the cell 10 is a macro cell. On the other hand, the wireless communication devices 100B and 100C are master devices that operate the small cells 10B and 10C, respectively. As an example, the master device 100B is a small cell base station that is fixedly installed. The small cell base station 100B establishes a wireless backhaul link with the macro cell base station 100A and an access link with one or more terminal devices (for example, the terminal device 200B) in the small cell 10B. Note that the wireless communication device 100B may be a relay node defined by 3GPP. The master device 100C is a dynamic AP (access point). The dynamic AP 100C is a mobile device that dynamically operates the small cell 10C. The dynamic AP 100C establishes a radio backhaul link with the macro cell base station 100A and an access link with one or more terminal devices (for example, the terminal device 200C) in the small cell 10C. The dynamic AP 100C may be, for example, a terminal device equipped with hardware or software that can operate as a base station or a wireless access point. The small cell 10C in this case is a locally formed network (Localized Network / Virtual cell).
 セル10は、例えば、LTE、LTE-A(LTE-Advanced)、GSM(登録商標)、UMTS、W-CDMA、CDMA200、WiMAX、WiMAX2又はIEEE802.16などの任意の無線通信方式に従って運用されてよい。 The cell 10 may be operated according to any wireless communication scheme such as LTE, LTE-A (LTE-Advanced), GSM (registered trademark), UMTS, W-CDMA, CDMA200, WiMAX, WiMAX2, or IEEE 802.16, for example. .
 なお、スモールセルは、マクロセルと重複して又は重複せずに配置される、マクロセルよりも小さい様々な種類のセル(例えば、フェムトセル、ナノセル、ピコセル及びマイクロセルなど)を含み得る概念である。ある例では、スモールセルは、専用の基地局によって運用される。別の例では、スモールセルは、マスタデバイスとなる端末がスモールセル基地局として一時的に動作することにより運用される。いわゆるリレーノードもまた、スモールセル基地局の一形態であると見なすことができる。リレーノードの親局として機能する無線通信装置は、ドナー基地局とも称される。ドナー基地局は、LTEにおけるDeNBを意味してもよく、より一般的にリレーノードの親局を意味してもよい。 Note that the small cell is a concept that can include various types of cells (for example, femtocells, nanocells, picocells, and microcells) that are smaller than the macrocells and that are arranged so as to overlap or not overlap with the macrocells. In one example, the small cell is operated by a dedicated base station. In another example, the small cell is operated by a terminal serving as a master device temporarily operating as a small cell base station. So-called relay nodes can also be considered as a form of small cell base station. A wireless communication device that functions as a master station of a relay node is also referred to as a donor base station. The donor base station may mean a DeNB in LTE, and more generally may mean a parent station of a relay node.
  (2)端末装置200
 端末装置200は、セルラーシステム(又は移動体通信システム)において通信可能である。端末装置200は、セルラーシステムの無線通信装置(例えば、基地局100A、マスタデバイス100B又は100C)との無線通信を行う。例えば、端末装置200Aは、基地局100Aからのダウンリンク信号を受信し、基地局100Aへのアップリンク信号を送信する。
(2) Terminal device 200
The terminal device 200 can communicate in a cellular system (or mobile communication system). The terminal device 200 performs wireless communication with a wireless communication device (for example, the base station 100A, the master device 100B, or 100C) of the cellular system. For example, the terminal device 200A receives a downlink signal from the base station 100A and transmits an uplink signal to the base station 100A.
  (3)アプリケーションサーバ60
 アプリケーションサーバ60は、ユーザへサービスを提供する装置である。アプリケーションサーバ60は、パケットデータネットワーク(PDN)50に接続される。他方、基地局100は、コアネットワーク40に接続される。コアネットワーク40は、ゲートウェイ装置(図8におけるP-GW)を介してPDN50に接続される。このため、無線通信装置100は、アプリケーションサーバ60により提供されるサービスを、パケットデータネットワーク50、コアネットワーク40及び無線通信路を介してMECサーバ300、及びユーザへ提供する。
(3) Application server 60
The application server 60 is a device that provides services to users. The application server 60 is connected to a packet data network (PDN) 50. On the other hand, the base station 100 is connected to the core network 40. The core network 40 is connected to the PDN 50 via a gateway device (P-GW in FIG. 8). For this reason, the wireless communication apparatus 100 provides the service provided by the application server 60 to the MEC server 300 and the user via the packet data network 50, the core network 40, and the wireless communication path.
  (4)MECサーバ300
 MECサーバ300は、ユーザへサービス(アプリケーション又はコンテンツ等)を提供するサービス提供装置である。MECサーバ300は、無線通信装置100に設けられ得る。その場合、無線通信装置100は、MECサーバ300により提供されるサービスを、無線通信路を介してユーザへ提供する。MECサーバ300は、論理的な機能エンティティとして実現されてもよく、図10に示すように無線通信装置100等と一体的に形成されてもよい。
(4) MEC server 300
The MEC server 300 is a service providing apparatus that provides a service (application, content, or the like) to a user. The MEC server 300 can be provided in the wireless communication device 100. In that case, the wireless communication device 100 provides the service provided by the MEC server 300 to the user via the wireless communication path. The MEC server 300 may be realized as a logical functional entity, and may be formed integrally with the wireless communication device 100 or the like as shown in FIG.
 例えば、基地局100Aは、MECサーバ300Aにより提供されるサービスを、マクロセル10に接続する端末装置200Aへ提供する。また、基地局100Aは、MECサーバ300Aにより提供されるサービスを、マスタデバイス100Bを介して、スモールセル10Bに接続する端末装置200Bへ提供する。 For example, the base station 100A provides the service provided by the MEC server 300A to the terminal device 200A connected to the macro cell 10. Also, the base station 100A provides the service provided by the MEC server 300A to the terminal device 200B connected to the small cell 10B via the master device 100B.
 また、マスタデバイス100Bは、MECサーバ300Bにより提供されるサービスを、スモールセル10Bに接続する端末装置200Bへ提供する。同様に、マスタデバイス100Cは、MECサーバ300Cにより提供されるサービスを、スモールセル10Cに接続する端末装置200Cへ提供する。 Further, the master device 100B provides the service provided by the MEC server 300B to the terminal device 200B connected to the small cell 10B. Similarly, the master device 100C provides the service provided by the MEC server 300C to the terminal device 200C connected to the small cell 10C.
  (5)補足
 以上、システム1の概略的な構成を示したが、本技術は図10に示した例に限定されない。例えば、システム1の構成として、マスタデバイスを含まない構成、SCE(Small Cell Enhancement)、HetNet(Heterogeneous Network)、MTC(Machine Type Communication)ネットワーク等が採用され得る。
(5) Supplement Although the schematic configuration of the system 1 has been described above, the present technology is not limited to the example illustrated in FIG. For example, as a configuration of the system 1, a configuration that does not include a master device, an SCE (Small Cell Enhancement), a HetNet (Heterogeneous Network), an MTC (Machine Type Communication) network, or the like may be employed.
  <2.2.MECサーバの構成例>
 続いて、図11を参照して、本開示の一実施形態に係るMECサーバ300の構成の一例を説明する。図11は、本開示の一実施形態に係るMECサーバ300の構成の一例を示すブロック図である。図11を参照すると、MECサーバ300は、通信部310、記憶部320、及び処理部330を備える。
<2.2. Configuration example of MEC server>
Next, an example of the configuration of the MEC server 300 according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 11 is a block diagram illustrating an exemplary configuration of the MEC server 300 according to an embodiment of the present disclosure. Referring to FIG. 11, the MEC server 300 includes a communication unit 310, a storage unit 320, and a processing unit 330.
  (1)通信部310
 通信部310は、他の装置との間で通信を行うためのインタフェースである。例えば、通信部310は、対応する無線通信装置100との間で通信を行う。MECサーバ300が、論理エンティティとして形成され、無線通信装置100に含まれる場合、通信部310は、例えば無線通信装置100の制御部との間で通信を行う。MECサーバ300は、一体的に形成される装置以外の装置との間で、直接的に通信を行うためのインタフェースを有していてもよい。
(1) Communication unit 310
The communication unit 310 is an interface for performing communication with other devices. For example, the communication unit 310 communicates with the corresponding wireless communication device 100. When the MEC server 300 is formed as a logical entity and included in the wireless communication device 100, the communication unit 310 performs communication with, for example, the control unit of the wireless communication device 100. The MEC server 300 may have an interface for performing direct communication with a device other than a device formed integrally.
  (2)記憶部320
 記憶部320は、MECサーバ300の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。例えば、MECサーバ300は、ユーザへ提供される多様なコンテンツ、及びアプリケーションを記憶し得る。
(2) Storage unit 320
The storage unit 320 temporarily or permanently stores a program for operating the MEC server 300 and various data. For example, the MEC server 300 may store various contents and applications provided to the user.
  (3)処理部330
 処理部330は、MECサーバ300の様々な機能を提供する。処理部330は、MECプラットフォーム331、VNF(Virtual Network Function)333及びサービス提供部335を含む。なお、処理部330は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部330は、これらの構成要素の動作以外の動作も行い得る。
(3) Processing unit 330
The processing unit 330 provides various functions of the MEC server 300. The processing unit 330 includes an MEC platform 331, a VNF (Virtual Network Function) 333, and a service providing unit 335. Note that the processing unit 330 may further include other components other than these components. That is, the processing unit 330 can perform operations other than the operations of these components.
 MECプラットフォーム331については、図2を参照して上記説明した通りである。 The MEC platform 331 is as described above with reference to FIG.
 VNF333は、ネットワーク機能を実現するためのソフトウエアパッケージである。VNF333は、NFVI(Network Functions Virtualisation Infrastructure)と称される仮想マシン上で動作する。VNF及びNFVIについては、ETSIのNFV ISG(Network Functions Virtualisation Industry Specification Group)により仕様が検討されている。その詳細は、例えば「ETSI,“GS NFV-SWA 001 V1.1.1 (2014-12)”,2014年12月,[平成27年11月19日検索],インターネット<http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf>」に記載されている。VNF333は、この仕様検討中のVNFを意味してもよいし、より一般的に仮想化されたネットワーク機能を意味してもよい。 VNF333 is a software package for realizing a network function. The VNF 333 operates on a virtual machine called NFVI (Network Functions Virtualisation Infrastructure). The specifications of VNF and NFVI are being studied by ETSI's NFV ISG (Network Functions Virtualization Industry Specification Group). For details, refer to “ETSI,“ GS NFV-SWA 001 V1.1.1 (2014-12) ”, December 2014, [November 19, 2015 search], Internet <http: // www. etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf> ”. The VNF 333 may mean the VNF under consideration of this specification, or may more generally mean a virtualized network function.
 サービス提供部335は、多様なサービスを提供する機能を有する。典型的には、サービス提供部335は、MECプラットフォーム331上で動作するMECアプリケーションとして実現される。なお、本明細書では、MECサーバ300上で動作するアプリケーションを、MECアプリケーションとも称する。例えば、MECサーバ300上で動作するMECアプリケーションは、アプリケーションサーバ60からコピーされたアプリケーションのインスタンスであってもよく、MECサーバ300上に直接置かれたアプリケーションであってもよい。 The service providing unit 335 has a function of providing various services. Typically, the service providing unit 335 is realized as an MEC application that operates on the MEC platform 331. In this specification, an application that operates on the MEC server 300 is also referred to as an MEC application. For example, the MEC application operating on the MEC server 300 may be an instance of an application copied from the application server 60, or may be an application placed directly on the MEC server 300.
  <2.3.アプリケーションサーバの構成例>
 続いて、図12を参照して、本開示の一実施形態に係るアプリケーションサーバ60の構成の一例を説明する。図12は、本開示の一実施形態に係るアプリケーションサーバ60の構成の一例を示すブロック図である。図12を参照すると、アプリケーションサーバ60は、通信部61、記憶部62、及び処理部63を備える。
<2.3. Application server configuration example>
Next, an example of the configuration of the application server 60 according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 12 is a block diagram illustrating an exemplary configuration of the application server 60 according to an embodiment of the present disclosure. Referring to FIG. 12, the application server 60 includes a communication unit 61, a storage unit 62, and a processing unit 63.
  (1)通信部61
 通信部61は、他の装置との間で通信を行うためのインタフェースである。例えば、通信部61は、PDN上の他の装置との間で通信を行う。
(1) Communication unit 61
The communication unit 61 is an interface for performing communication with other devices. For example, the communication unit 61 communicates with other devices on the PDN.
  (2)記憶部62
 記憶部62は、アプリケーションサーバ60の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。例えば、アプリケーションサーバ60は、ユーザへ提供される多様なコンテンツ、及びアプリケーションを記憶し得る。
(2) Storage unit 62
The storage unit 62 temporarily or permanently stores a program for operating the application server 60 and various data. For example, the application server 60 can store various contents and applications provided to the user.
  (3)処理部63
 処理部63は、アプリケーションサーバ60の様々な機能を提供する。処理部63は、例えばCPU(Central Processing Unit)等に相当する。処理部63は、サービス提供部64を含む。なお、処理部330は、この構成要素以外の他の構成要素をさらに含み得る。即ち、処理部330は、この構成要素の動作以外の動作も行い得る。
(3) Processing unit 63
The processing unit 63 provides various functions of the application server 60. The processing unit 63 corresponds to, for example, a CPU (Central Processing Unit). The processing unit 63 includes a service providing unit 64. Note that the processing unit 330 may further include other components other than this component. That is, the processing unit 330 can perform operations other than the operations of the constituent elements.
 サービス提供部64は、多様なサービスを提供する機能を有する。典型的には、サービス提供部64は、アプリケーションとして実現される。 The service providing unit 64 has a function of providing various services. Typically, the service providing unit 64 is realized as an application.
 なお、アプリケーションサーバ60上で動作するアプリケーションであって、MECサーバ300上で動作するMECアプリケーションと対応関係を有するアプリケーションも、MECアプリケーションとも称する。同様に、端末装置200上で動作するアプリケーションであって、MECサーバ300上で動作するMECアプリケーションと対応関係を有するアプリケーションも、MECアプリケーションとも称する。 An application that operates on the application server 60 and has a corresponding relationship with the MEC application that operates on the MEC server 300 is also referred to as an MEC application. Similarly, an application that operates on the terminal device 200 and has a corresponding relationship with the MEC application that operates on the MEC server 300 is also referred to as an MEC application.
 以上、各装置の構成例を説明した。以下では、説明の便宜上、無線通信装置100をeNB100とも称し、端末装置200をUE200とも称する。 The configuration example of each device has been described above. Hereinafter, for convenience of explanation, the radio communication device 100 is also referred to as an eNB 100, and the terminal device 200 is also referred to as a UE 200.
 <<3.第1の実施形態>>
 上述した課題に対する解決策の1つとして、MECサーバを任意の場所(例えば、RN、eNB、S-GW等)に配置し、DPI(Deep Packet Inspection)等のスイッチ機能(SW)によりパケット経路を切り替えることで、UEとの間の接続性を実現する仕組みが検討されている。そこで本実施形態として、DPI(Deep Packet Inspection)によりパケットの経路を切り替える形態の一例について説明する。
<< 3. First Embodiment >>
As one of the solutions to the above-mentioned problems, the MEC server is arranged at an arbitrary location (for example, RN, eNB, S-GW, etc.), and the packet route is set by a switch function (SW) such as DPI (Deep Packet Inspection). A mechanism for realizing connectivity with the UE by switching is being studied. Therefore, as an embodiment, an example of a mode for switching packet paths by DPI (Deep Packet Inspection) will be described.
  <3.1.技術的特徴>
 例えば、図13は、本実施形態に係るシステム1の概略的な構成の一例を説明するための説明図であり、DPIによりMECサーバ300とUE200との間の接続性を実現するための構成の一例について示している。図13に示すように、システム1は、eNB100と、UE200と、MECサーバ300と、S-GW41と、P-GW42と、MME43と、HSS44と、PDN50と、アプリケーションサーバ60とを含む。図13に示す例では、MECサーバ300上において、VNFとして、MEC DPI333A及びMECルータ333Bが動作している。また、MECサーバ300上では、MECアプリケーション335が動作する。なお、図中の実線はユーザプレーン(データプレーンとも称する)を意味し、破線は制御プレーンを意味する。
<3.1. Technical features>
For example, FIG. 13 is an explanatory diagram for explaining an example of a schematic configuration of the system 1 according to the present embodiment, and a configuration for realizing connectivity between the MEC server 300 and the UE 200 by DPI. An example is shown. As illustrated in FIG. 13, the system 1 includes an eNB 100, a UE 200, an MEC server 300, an S-GW 41, a P-GW 42, an MME 43, an HSS 44, a PDN 50, and an application server 60. In the example shown in FIG. 13, on the MEC server 300, the MEC DPI 333A and the MEC router 333B operate as VNFs. Further, the MEC application 335 operates on the MEC server 300. In addition, the solid line in a figure means a user plane (it is also called a data plane), and a broken line means a control plane.
 MEC DPI333Aは、取得したパケットを対象としてのぞき見(例えば、DPI)を行う機能を有する。例えば、MEC DPI333Aは、eNB100からS-GW41へ送信されるパケットのGTP-U(GTP for User Plane)ヘッダを取り除き、IPヘッダをのぞき見して、その中身に格納された情報(例えば、パケットの宛先IPアドレス)を取得する。 The MEC DPI 333A has a function of performing a peep (for example, DPI) on the acquired packet. For example, the MEC DPI 333A removes the GTP-U (GTP for User Plane) header of the packet transmitted from the eNB 100 to the S-GW 41, peeks at the IP header, and stores the information stored in the contents (for example, the packet Destination IP address) is acquired.
 MECルータ333Bは、パケットの経路を切り替える機能を有する。例えば、MECルータ333Bは、MEC DPI333Aにより取得された宛先IPアドレスがMECアプリケーション335を示すものである場合、当該パケットをS-GW41ではなくMECアプリケーション335へ直接的に送信する。その際、MECルータ333Bは、MECサーバ300を指定するGTP-Uヘッダをパケットに付加した上で送信してもよい。一方で、MECルータ333Bは、MEC DPI333Aにより取得された宛先IPアドレスがMECアプリケーション335を示すものではない場合、一度取り除いたGTP-Uヘッダをパケットに再度付加して、S-GW41へ送信する。 The MEC router 333B has a function of switching packet paths. For example, when the destination IP address acquired by the MEC DPI 333A indicates the MEC application 335, the MEC router 333B directly transmits the packet to the MEC application 335 instead of the S-GW 41. At that time, the MEC router 333B may transmit the packet after adding a GTP-U header designating the MEC server 300 to the packet. On the other hand, if the destination IP address acquired by the MEC DPI 333A does not indicate the MEC application 335, the MEC router 333B adds the GTP-U header once removed to the packet and transmits the packet to the S-GW 41.
 そのために、MECルータ333Bは、eNB100とS-GW41とのデフォルトベアラ(即ち、トンネリング)が解放されるまでの間、UE200毎のGTP-Uヘッダ及びS-GW41を特定する情報を保持する。典型的には、MECルータ333Bは、eNB100とS-GW41とのデフォルトベアラの解放を検知するまで、これらの情報を保持する。ここで、デフォルトベアラの解放は、複数通りに検知され得る。例えば、図14~図17は、デフォルトベアラの解放に係る処理の流れの一例を示すシーケンス図である。具体的な一例として、図14に示すように、UEが自らデタッチ手続き(Detach Procedure)を行う場合、MMEからのデタッチ受け入れ(detach accept)信号をUEが受信し、その後コネクション解放(signaling connection release)信号をeNBが受信したことにより、デフォルトベアラの解放が検知されてもよい。また、MME、HSS又はP-GWがデタッチ手続きを行う場合、同じくコネクション解放信号をeNB100が受信したことにより、デフォルトベアラの解放が検知されてもよい。例えば、図15は、MMEがデタッチ手続きを行う場合の一例を示している。また、図16は、HSSがデタッチ手続きを行う場合の一例を示している。同様に、図17は、P-GWがデタッチ手続きを行う場合の一例を示している。なお、図14~図17に示した、デフォルトベアラの解放に係る処理の流れの一例については、一般的に知られている内容のため詳細な説明は省略する。また、UE200の電源がオフになった場合のように、eNB100がUE200の検出に失敗したことにより、デフォルトベアラの解放が検知されてもよい。 Therefore, the MEC router 333B holds information for identifying the GTP-U header and the S-GW 41 for each UE 200 until the default bearer (that is, tunneling) between the eNB 100 and the S-GW 41 is released. Typically, the MEC router 333B retains this information until it detects the release of the default bearer between the eNB 100 and the S-GW 41. Here, release of the default bearer can be detected in a plurality of ways. For example, FIGS. 14 to 17 are sequence diagrams illustrating an example of a flow of processing relating to release of a default bearer. As a specific example, as shown in FIG. 14, when a UE performs a detach procedure (Detach Procedure), the UE receives a detach accept signal from the MME, and then releases a connection (signaling connection release). The release of the default bearer may be detected by the eNB receiving the signal. When the MME, HSS, or P-GW performs the detach procedure, the release of the default bearer may be detected by the eNB 100 receiving the connection release signal. For example, FIG. 15 shows an example when the MME performs a detach procedure. FIG. 16 shows an example in which the HSS performs a detach procedure. Similarly, FIG. 17 shows an example when the P-GW performs a detach procedure. Note that an example of the flow of processing related to the release of the default bearer shown in FIGS. 14 to 17 is generally known, and detailed description thereof is omitted. Moreover, release of a default bearer may be detected by eNB100 failing in detection of UE200 like the case where the power supply of UE200 is turned off.
 次いで、上述したDPIに基づく方式により、UEからMECサーバへの接続性を実現した場合におけるMECサーバ間の接続方法に着目する。例えば、図18は、DPIによりMECサーバ間の接続性を実現するための構成の一例について説明するための説明図である。図18に示す例では、eNB100に設置された第1のMECサーバ300-1と、S-GW41に設置された第2のMECサーバ300-2との間の接続を確立する場合の一例を示している。図17において、太線で示された経路が、第1のMECサーバ300-1で動作するMECアプリケーションと、第2のMECサーバ300-2で動作するMECアプリケーションとの間の通信経路に相当する。 Next, attention is paid to the connection method between the MEC servers when the connectivity from the UE to the MEC server is realized by the method based on the DPI. For example, FIG. 18 is an explanatory diagram for describing an example of a configuration for realizing connectivity between MEC servers by DPI. The example illustrated in FIG. 18 illustrates an example of establishing a connection between the first MEC server 300-1 installed in the eNB 100 and the second MEC server 300-2 installed in the S-GW 41. ing. In FIG. 17, a path indicated by a thick line corresponds to a communication path between the MEC application operating on the first MEC server 300-1 and the MEC application operating on the second MEC server 300-2.
 ここで、図18において太線で示した、第1のMECサーバ300-1と第2のMECサーバ300-2との間の通信経路の確立手順の概要について説明する。 Here, an outline of a procedure for establishing a communication path between the first MEC server 300-1 and the second MEC server 300-2, which is indicated by a bold line in FIG. 18, will be described.
 まず、第1のMECサーバ300-1は、MECプラットフォームから提供されるサービスディスカバリ機能を利用することで、近傍(換言すると、上位に位置する集約ポイント)に位置する他のMECサーバを特定するための識別情報(例えば、第2のMECサーバ300-2を特定するためのIPアドレス等)を取得する。なお、以降の説明では、他のMECサーバを特定するための識別情報として、当該他のMECサーバのIPアドレスが取得されたものとして説明する。 First, the first MEC server 300-1 uses the service discovery function provided from the MEC platform to identify another MEC server located in the vicinity (in other words, the aggregation point located at the upper level). Identification information (for example, an IP address for specifying the second MEC server 300-2) is acquired. In the following description, it is assumed that the IP address of the other MEC server is acquired as identification information for specifying the other MEC server.
 次いで、第1のMECサーバ300-1は、取得したIPアドレスとS-GW41とを特定するためのGTPヘッダを、送信対象となるパケット(例えば、MECアプリケーション335-1からのパケット)に付加し、当該パケットをMECルータ333B-1に送り出す。MECルータ333B-1は、第1のMECサーバ300-1から送り出されたパケットを、S-GW41に転送する。 Next, the first MEC server 300-1 adds a GTP header for identifying the acquired IP address and the S-GW 41 to a packet to be transmitted (for example, a packet from the MEC application 335-1). The packet is sent to the MEC router 333B-1. The MEC router 333B-1 transfers the packet sent from the first MEC server 300-1 to the S-GW 41.
 S-GW41は、MECルータ333B-1から転送されたパケットのGTPヘッダを、P-GW42に接続するためのGTPヘッダに付け替え、当該パケットを、第2のMECサーバ300-2のMEC DPI333A-2に送信する。 The S-GW 41 replaces the GTP header of the packet transferred from the MEC router 333B-1 with the GTP header for connecting to the P-GW 42, and replaces the packet with the MEC DPI 333A-2 of the second MEC server 300-2. Send to.
 MEC DPI333A-2は、受信したパケットからGTPヘッダを取り除き、当該パケットの送り先を示すIPアドレスを取得する。次いで、MECルータ333B-2が、取得されたIPアドレスが示す宛先に応じて、当該パケットの経路を切り替える。例えば、MECルータ333B-2は、取得されたIPアドレスが第2のMECサーバ300-2で動作するMECアプリケーション335-2を示すものである場合には、当該パケットをP-GW42ではなくMECアプリケーション335-2へ直接的に送信する。なお、取得されたIPアドレスが第2のMECサーバ300-2で動作するMECアプリケーション335-2を示すものではない場合には、当該パケットは、P-GW42に送信される。 The MEC DPI 333A-2 removes the GTP header from the received packet and acquires an IP address indicating the destination of the packet. Next, the MEC router 333B-2 switches the route of the packet according to the destination indicated by the acquired IP address. For example, if the acquired IP address indicates the MEC application 335-2 that operates on the second MEC server 300-2, the MEC router 333B-2 sends the packet to the MEC application instead of the P-GW 42. Send directly to 335-2. If the acquired IP address does not indicate the MEC application 335-2 running on the second MEC server 300-2, the packet is transmitted to the P-GW.
 以上により、第1のMECサーバ300-1から第2のMECサーバ300-2へのパケットの伝送が行われる。なお、第2のMECサーバ300-2から第1のMECサーバ300-1へのパケットの伝送についても、同様の手順により実現されることは言うまでもない。また、図18に示す例では、eNBとS-GWそれぞれに設置されたMECサーバ間の接続を確立する場合に着目して説明したが、必ずしも、同態様のみには限定されない。具体的な一例として、RNとeNBとの間、eNBとeNBとの間、及び、RNとS-GWとの間とのそれぞれについても、同様の手順によりMECサーバ間の接続を確立することが可能である。 As described above, the packet is transmitted from the first MEC server 300-1 to the second MEC server 300-2. Needless to say, packet transmission from the second MEC server 300-2 to the first MEC server 300-1 is also realized by the same procedure. In the example illustrated in FIG. 18, the description has been given focusing on the case where the connection between the MEC servers installed in the eNB and the S-GW is established. However, the present embodiment is not necessarily limited to the same mode. As a specific example, the connection between the MEC servers may be established by the same procedure for each of the RN and the eNB, the eNB and the eNB, and the RN and the S-GW. Is possible.
  <3.2.評価>
 本実施形態によれば、UE200とMECアプリケーション335との間で、P-GW42を経由しない、最短の通信経路が設定されることとなる。また、本実施形態によれば、MECサーバ間において通信経路を設定することも可能となる。一方で、図18を参照して説明したように、本実施形態のように、DPIに基づきMECサーバ間の接続を確立する場合には、以下のような欠点があると考えられる。
<3.2. Evaluation>
According to the present embodiment, the shortest communication path that does not pass through the P-GW 42 is set between the UE 200 and the MEC application 335. In addition, according to the present embodiment, a communication path can be set between MEC servers. On the other hand, as described with reference to FIG. 18, when establishing a connection between MEC servers based on DPI as in the present embodiment, it is considered that there are the following disadvantages.
 まず、本実施形態に係るシステム1では、UE200やMECサーバ300から送信された全てのパケットに対して、MEC DPI333AによりDPIが実施される。そのため、DPIのための処理負荷が増大し、処理遅延時間が増加する。また、ヘッダ群(例えば、IPヘッダ、UDPヘッダ及びGTP-Uヘッダ等)の取り除き機能、取り除いたヘッダ群の記憶機能、UE200及びMECサーバ300とヘッダ群のリストとを管理する管理機能、及びヘッダ群の付加機能が要される。これにより、スケーラビリティの問題も発生する。さらに、DPI機能により生じ得る、ユーザデータの安全性及び秘匿性問題を、回避するための仕組みが要される。 First, in the system 1 according to the present embodiment, DPI is performed by the MEC DPI 333A on all packets transmitted from the UE 200 or the MEC server 300. Therefore, the processing load for DPI increases and the processing delay time increases. Also, a header group (for example, IP header, UDP header, GTP-U header, etc.) removal function, a removed header group storage function, a management function for managing the UE 200 and MEC server 300 and a list of header groups, and a header Additional functions of the group are required. This also causes scalability issues. Furthermore, a mechanism for avoiding the security and confidentiality problems of user data that may be caused by the DPI function is required.
 また、無線でユーザパケットをリレーするリレーノード又は無線バックホールに接続するeNB100とMECサーバ300とが一体的に形成される場合、MECサーバ300自身が無線通信インタフェースを有することも要される。 In addition, when the eNB 100 and the MEC server 300 connected to a relay node that relays user packets wirelessly or a wireless backhaul and the MEC server 300 are integrally formed, the MEC server 300 itself needs to have a wireless communication interface.
 そこで、上記欠点を解消すべく、下記に説明する第2の実施形態を開発するに至った。 Therefore, the second embodiment described below has been developed in order to eliminate the above drawbacks.
 <<4.第2の実施形態>>
 本開示の第2の実施形態について以下に詳しく説明する。
<< 4. Second Embodiment >>
The second embodiment of the present disclosure will be described in detail below.
  <4.1.技術的特徴>
  (1)ネットワーク機能エンティティの仮想化
 まず、図19を参照して、MECサーバのアーキテクチャの一例について説明する。図19は、MECサーバのアーキテクチャの一例を説明するための説明図である。図19に示すように、MECサーバは、COTS(commercial off-the-shelf)、コンピュータ、メモリ、及びI/O(Input/Output)インタフェースといったハードウェアを含む。そして、これらのハードウェア上でKVM(Kernel-based Virtual Machine)ハイパーバイザやコンテナエンジンが動作し、その上でMECプラットフォーム並びに複数のVM、VNF、及びアプリケーションが動作する。より具体的な一例として、ホストOS上でKVMハイパーバイザを動作させ、当該KVMハイパーバイザ上において、MECプラットフォーム並びにVM、VNF、及びアプリケーションを動作させてもよい。また、他の一例として、ホストOS上でコンテナエンジンを動作させ、当該コンテナエンジン上において、MECプラットフォーム並びにVM、VNF、及びアプリケーションを動作させてもよい。また、他の一例として、ホストOS上でKVMハイパーバイザ及びコンテナエンジンを動作させ、当該KVMハイパーバイザ及びコンテナエンジン上において、MECプラットフォーム並びにVM、VNF、及びアプリケーションを動作させてもよい。
<4.1. Technical features>
(1) Virtualization of Network Function Entity First, an example of the architecture of the MEC server will be described with reference to FIG. FIG. 19 is an explanatory diagram for explaining an example of the architecture of the MEC server. As shown in FIG. 19, the MEC server includes hardware such as a commercial off-the-shelf (COTS), a computer, a memory, and an input / output (I / O) interface. A KVM (Kernel-based Virtual Machine) hypervisor and a container engine operate on these hardware, and an MEC platform and a plurality of VMs, VNFs, and applications operate on the hardware. As a more specific example, a KVM hypervisor may be operated on the host OS, and the MEC platform, VM, VNF, and application may be operated on the KVM hypervisor. As another example, a container engine may be operated on the host OS, and the MEC platform, VM, VNF, and application may be operated on the container engine. As another example, the KVM hypervisor and the container engine may be operated on the host OS, and the MEC platform, the VM, the VNF, and the application may be operated on the KVM hypervisor and the container engine.
 例えば、VM(Virtual Machine)-1上のVNF-1として、MMEが仮想化されたvMME(Virtual MME)が動作する。また、VM-2上のVNF-2として、S-GWが仮想化されたvS-GWが動作する。また、VM-3上のVNF-3として、P-GWが仮想化されたvP-GWが動作する。また、VM-4上のVNF-4として、HSSが仮想化されたvHSSが動作する。また、VM-5上のVNF-5として、PCRFが仮想化されたvPCRFが動作する。また、VM-6上のVNF-6として、RAN(Radio Access Network)が仮想化されたvRANが動作する。また、VM-7上のVNF-7として、RNIS(Radio Network Information Services)機能を提供する機能エンティティが動作する。また、VM-8上のVNF-8として、ロケーション(Location)機能を提供する機能エンティティが動作する。また、VM-9上のVNF-9として、モビリティ(Mobility)機能を提供する機能エンティティが動作する。また、VM-10上のVNF-10として、インスタンス(Instantiation)の移動管理及びその状態(State)の管理などのマネージメント機能を提供する機能エンティティが動作する。また、VM-11上のVNF-11として、サービスディスカバリ機能を提供する機能エンティティが動作する。ここで、サービスディスカバリ機能とは、MECサーバ上の機能提供基盤(例えば、MECプラットフォーム)により提供され、アプリケーション等が接続先となる他のMECサーバを特定するための情報(例えば、IPアドレス等)や、利用可能なサービスの検索結果等を提供する機能である。 For example, vMME (Virtual MME) in which MME is virtualized operates as VNF-1 on VM (Virtual Machine) -1. Further, the vS-GW in which the S-GW is virtualized operates as the VNF-2 on the VM-2. In addition, vP-GW in which P-GW is virtualized operates as VNF-3 on VM-3. In addition, vHSS in which HSS is virtualized operates as VNF-4 on VM-4. Further, the vPCRF in which the PCRF is virtualized operates as the VNF-5 on the VM-5. Also, a vRAN in which a RAN (Radio Access Network) is virtualized operates as the VNF-6 on the VM-6. In addition, as VNF-7 on VM-7, a functional entity that provides an RNIS (Radio Network Information Services) function operates. Further, a functional entity that provides a location function operates as VNF-8 on the VM-8. Further, a functional entity that provides a mobility function operates as VNF-9 on VM-9. Further, as VNF-10 on the VM-10, a functional entity that provides management functions such as instance movement management and state management operates. In addition, a functional entity that provides a service discovery function operates as VNF-11 on VM-11. Here, the service discovery function is information (for example, an IP address, etc.) that is provided by a function providing platform (for example, MEC platform) on the MEC server and that identifies other MEC servers to which applications and the like are connected. And a function that provides search results of available services.
 また、VM-12上のアプリケーションとして、MECアプリケーションが動作してもよい。また、MECアプリケーションは、KVMハイパーバイザ上で動作してもよい。例えば、図19に示す例では、KVMハイパーバイザ上のアプリケーションとして、第1のMECアプリケーション(Appl-1)と、第2のMECアプリケーション(Appl-2)とが動作している。 Also, an MEC application may operate as an application on the VM-12. Also, the MEC application may run on the KVM hypervisor. For example, in the example shown in FIG. 19, a first MEC application (Appl-1) and a second MEC application (Appl-2) are operating as applications on the KVM hypervisor.
 その他には、伝送帯域(伝送速度)、遅延要求、TCP/IPなどの伝送速度の最適化、及びOSS(Operations System Supports)/BSS(Business system Supports)関連への対応、などの要求に対応するVNFが、考えられる。既存の装置(例えば、基地局、PCRF、HHS、MMEなど)との通信が必要な際は、このVNFが、APIを介して動作して、通信のやり取りを行うことになる。なお、プロトコル及びインタフェースについては、本開示の一実施形態とあわせて別途後述する。また、以降の説明では、MECサーバ上で仮想化された機能エンティティには、vMME、vP-GW、及びvS-GWのように、仮想であること(Virtual)を示す「v」を名称に付与するものとする。 In addition, it responds to requests such as transmission band (transmission speed), delay request, optimization of transmission speed such as TCP / IP, and correspondence to OSS (Operations System Supports) / BSS (Business system Supports). VNF is considered. When communication with an existing device (for example, a base station, PCRF, HHS, MME, etc.) is required, this VNF operates via the API to exchange communication. Note that a protocol and an interface will be separately described later together with an embodiment of the present disclosure. Further, in the following description, a functional entity virtualized on the MEC server is given a name “v” indicating virtual (Virtual), such as vMME, vP-GW, and vS-GW. It shall be.
 次いで、図20を参照して、MECサーバを含むネットワークのアーキテクチャの一例について説明する。図20は、MECサーバを含むネットワークのアーキテクチャの一例について説明するための説明図である。図20に示すように、OSSやBSS等のネットワーク管理機能からMECサーバ上で仮想化された機能エンティティへのアクセスは、MECプラットフォームにより、既存の機能エンティティへのアクセスと同様となるように管理される。 Next, an example of a network architecture including an MEC server will be described with reference to FIG. FIG. 20 is an explanatory diagram for explaining an example of the architecture of a network including an MEC server. As shown in FIG. 20, the access from the network management function such as OSS and BSS to the functional entity virtualized on the MEC server is managed by the MEC platform to be the same as the access to the existing functional entity. The
 また、VNFマネージャやMECマネージャは、MECサーバ上で仮想化された機能エンティティや、MECアプリケーション等のように仮想化層で動作するアプリケーションの動作を監視し、監視結果に応じて当該アプリケーションの動作を制御する。同様に、仮想化基盤マネージャは、COTS(commercial off-the-shelf)、コンピュータ、メモリ、及びI/O(Input/Output)インタフェースといったハードウェアと、当該ハードウェア上で動作するKVMハイパーバイザ及びコンテナエンジンの動作を監視する。そして、仮想化基盤マネージャは、監視結果に応じて、当該ハードウェアや、当該ハードウェア上で動作するKVMハイパーバイザ及びコンテナエンジンの動作を制御する。また、VNFマネージャ及びMECマネージャと、仮想化基盤マネージャとは、互いに連携して動作してもよい。また、ネットワーク管理機能、VNFマネージャ、MECマネージャ、及び仮想化基盤マネージャそれぞれの動作は、オーケストレータによる管理に基づき自律化されていてもよい。 The VNF manager and the MEC manager monitor the operation of the virtual entity such as the functional entity virtualized on the MEC server and the MEC application, and perform the operation of the application according to the monitoring result. Control. Similarly, the virtualization infrastructure manager includes hardware such as COTS (commercial off-the-shelf), computer, memory, and I / O (Input / Output) interface, and a KVM hypervisor and a container operating on the hardware. Monitor engine operation. Then, the virtualization infrastructure manager controls the operation of the hardware, the KVM hypervisor and the container engine that operate on the hardware, according to the monitoring result. In addition, the VNF manager and MEC manager, and the virtualization infrastructure manager may operate in cooperation with each other. The operations of the network management function, the VNF manager, the MEC manager, and the virtualization infrastructure manager may be autonomous based on management by an orchestrator.
  (2)システム構成の一例
 次いで、本実施形態の特徴をよりわかりやすくするために、本実施形態に係るシステム1の概略的な構成の一例について説明する。
(2) Example of System Configuration Next, in order to make the features of the present embodiment easier to understand, an example of a schematic configuration of the system 1 according to the present embodiment will be described.
 図21は、本実施形態に係るシステム1の概略的な構成の一例について説明するための説明図である。図21に示す例では、システム1は、eNB100と、DeNB110-1及び110-2と、RN120-1及び120-2と、UE200と、MECサーバ300-0~300-5と、S-GW41と、P-GW42と、MME43と、HSS44と、OCS45と、OFCS46と、PCRF47と、PDN50と、アプリケーションサーバ60とを含む。なお、eNB100と、DeNB110-1及び110-2と、RN120-1及び120-2との各ノードを示すブロックにおいて、カッコ内に記載された情報は、当該ノードの識別情報を示すものとする。 FIG. 21 is an explanatory diagram for explaining an example of a schematic configuration of the system 1 according to the present embodiment. In the example shown in FIG. 21, the system 1 includes an eNB 100, DeNBs 110-1 and 110-2, RNs 120-1 and 120-2, a UE 200, MEC servers 300-0 to 300-5, and an S-GW 41. , P-GW 42, MME 43, HSS 44, OCS 45, OFCS 46, PCRF 47, PDN 50, and application server 60. In the blocks indicating the nodes of the eNB 100, the DeNBs 110-1 and 110-2, and the RNs 120-1 and 120-2, information described in parentheses indicates identification information of the node.
 図21に示す例では、MECサーバ300-0は、基地局100に関連付けられている(例えば、一体的に形成されている)。同様に、MECサーバ300-1及び300-3は、RN120-1及び120-2にそれぞれ関連付けられている。また、MECサーバ300-2及び300-4は、DeNB110-1及び110-2に関連付けられている。また、MECサーバ300-5は、S-GW41に関連付けられている。 In the example shown in FIG. 21, the MEC server 300-0 is associated with the base station 100 (for example, formed integrally). Similarly, MEC servers 300-1 and 300-3 are associated with RNs 120-1 and 120-2, respectively. The MEC servers 300-2 and 300-4 are associated with the DeNBs 110-1 and 110-2. The MEC server 300-5 is associated with the S-GW 41.
 MECサーバ300-0~300-5のそれぞれでは、MECプラットフォーム上で、当該MECサーバの特性に応じたVNFが動作している。具体的には、RN120-1に関連付けられたMECサーバ300-1では、MECプラットフォーム上で、vDeNB、vS-GW、vP-GW、及びMEC Storage-1が動作している。なお、MEC Storage-1は、MECサーバ300-1上で動作する、アプリケーションサーバ等のようなMECアプリケーションやインスタンスが格納されている場所である。また、MEC Storage-1は、VMやコンテナが格納されている場所であってもよい。なお、以降の説明では、単に「MECアプリケーション」と記載した場合には、特に説明が無い限りは、アプリケーションサーバ等のようなMECサーバ上で動作するMECアプリケーションの動作基盤も含み得るものとする。また、以降の説明では、MECサーバ300-1で動作するvDeNB、vS-GW、及びvP-GWを明示的に示す場合に、vDeNB_1、vS-GW_1、及びvP-GW_1と称する場合がある。また、 In each of the MEC servers 300-0 to 300-5, a VNF corresponding to the characteristics of the MEC server is operating on the MEC platform. Specifically, in the MEC server 300-1 associated with the RN 120-1, vDeNB, vS-GW, vP-GW, and MEC Storage-1 are operating on the MEC platform. Note that MEC Storage-1 is a location where an MEC application such as an application server or the like that operates on the MEC server 300-1 is stored. Further, MEC Storage-1 may be a place where VMs and containers are stored. In the following description, when simply described as “MEC application”, unless otherwise specified, it may include an operation base of an MEC application operating on an MEC server such as an application server. In the following description, when the vDeNB, vS-GW, and vP-GW operating on the MEC server 300-1 are explicitly indicated, they may be referred to as vDeNB_1, vS-GW_1, and vP-GW_1. Also,
 同様に、RN120-2に関連付けられたMECサーバ300-3では、MECプラットフォーム上で、vDeNB_3、vS-GW_3、vP-GW_3、及びMECアプリケーションが動作している。また、eNB100に関連付けられたMECサーバ300-0では、MECプラットフォーム上で、vS-GW_0、vP-GW_0、及びMECアプリケーションが動作している。また、DeNB110-1に関連付けられたMECサーバ300-2では、MECプラットフォーム上で、vS-GW_2、vP-GW_2、及びMECアプリケーションが動作している。同様に、DeNB110-2に関連付けられたMECサーバ300-4では、MECプラットフォーム上で、vS-GW_4、vP-GW_4、及びMECアプリケーションが動作している。また、S-GW41に関連付けられたMECサーバ300-5では、MECプラットフォーム上で、vP-GW_5及びMECアプリケーションが動作している。さらに、MECサーバ300-0~300-5のそれぞれでは、vMME、vHSS、及びvPCRF等のように、移動体通信ネットワークにおける他の機能エンティティを仮想化したVNFが動作していてもよい。なお、図中の実線はユーザプレーンを意味し、破線は制御プレーンを意味する。また、図中の実線のうち、特に太線で示した部分は仮想的に設定される通信経路(後述する、仮想的なベアラ)を意味する。仮想化されたVNF(vDeNB、vS-GW/vP-GW)等は、NFVプラットホーム、または、それ以外の仮想基盤上で動作してもよい。 Similarly, in the MEC server 300-3 associated with the RN 120-2, the vDeNB_3, vS-GW_3, vP-GW_3, and the MEC application are operating on the MEC platform. In the MEC server 300-0 associated with the eNB 100, vS-GW_0, vP-GW_0, and the MEC application are operating on the MEC platform. In the MEC server 300-2 associated with the DeNB 110-1, vS-GW_2, vP-GW_2, and an MEC application are operating on the MEC platform. Similarly, in the MEC server 300-4 associated with the DeNB 110-2, vS-GW_4, vP-GW_4, and the MEC application are operating on the MEC platform. In the MEC server 300-5 associated with the S-GW 41, the vP-GW_5 and the MEC application operate on the MEC platform. Further, in each of the MEC servers 300-0 to 300-5, a VNF that virtualizes other functional entities in the mobile communication network, such as vMME, vHSS, and vPCRF, may operate. In addition, the solid line in a figure means a user plane and a broken line means a control plane. Further, among the solid lines in the figure, the part indicated by a bold line means a communication path (virtual bearer described later) that is virtually set. A virtualized VNF (vDeNB, vS-GW / vP-GW) or the like may operate on the NFV platform or other virtual infrastructure.
  (3)ベアラの設定
 本実施形態に係るシステム1では、MME43が、MECサーバ300間にベアラを設定(即ち、確立)する。
(3) Bearer Setting In the system 1 according to the present embodiment, the MME 43 sets (that is, establishes) a bearer between the MEC servers 300.
  (3-1)MECベアラの設定
 具体的には、まずMME43は、MECサーバ300間の接続経路を特定するための管理情報(以降では、「GWマッピングリスト」とも称する)をあらかじめ生成しておく。GWマッピングリストには、例えば、各MECサーバ300に接続するためのAPN(即ち、当該MECサーバ300のvP-GWを特定するためのAPN)と、当該MECサーバ300に接続するために経由するゲートウェイ(例えば、P-GW、S-GW、vP-GW、及びvS-GW)の一覧とが関連付けられて記録されている。
(3-1) Setting of MEC Bearer Specifically, the MME 43 first generates management information (hereinafter also referred to as “GW mapping list”) for specifying a connection path between the MEC servers 300 in advance. . The GW mapping list includes, for example, an APN for connecting to each MEC server 300 (that is, an APN for specifying the vP-GW of the MEC server 300), and a gateway through which the MEC server 300 is connected. (For example, P-GW, S-GW, vP-GW, and vS-GW) are recorded in association with each other.
 例えば、図22は、GWマッピングリストに記録される情報の一例を示している。図22に示す例では、無線ネットワークのノード(例えば、RN、eNB、DeNB等)の識別情報と、接続先を示すAPNと、当該ノード及び当該APNが指定するサーバ(例えば、MECサーバ)間の接続を確立するために経由するゲートウェイの一覧と、関連付けられて記録されている。なお、カッコ内の数値は、物理的なホップ数を示している。具体的な一例として、図21に示すシステム1において、「RN_1」で示されたRN120-1と、「vAPN#5」が指定するMECサーバ300-5と、の間の接続を確立する場合に着目する。この場合には、GWマッピングリストでは、「RN_1」で示されたノートと、「vAPN#5」が指定するサーバと、の間の接続関係を示すエントリには、接続時に経由される、DeNB110-1と、S-GW41と、MECサーバ300-5におけるvP-GW_5と、のそれぞれを示す情報が記録されている。 For example, FIG. 22 shows an example of information recorded in the GW mapping list. In the example shown in FIG. 22, between the identification information of a wireless network node (for example, RN, eNB, DeNB, etc.), the APN indicating the connection destination, and the server (for example, MEC server) designated by the node and the APN. It is recorded in association with a list of gateways through which a connection is established. The numbers in parentheses indicate the number of physical hops. As a specific example, in the system 1 shown in FIG. 21, when establishing a connection between the RN 120-1 indicated by “RN_1” and the MEC server 300-5 designated by “vAPN # 5”. Pay attention. In this case, in the GW mapping list, an entry indicating a connection relationship between the note indicated by “RN_1” and the server specified by “vAPN # 5” includes a DeNB 110- 1, information indicating each of S-GW 41 and vP-GW_5 in the MEC server 300-5 is recorded.
 また、図23は、GWマッピングリストに記録される情報の他の一例を示している。図23に示す例では、接続元及び接続先のそれぞれ示すAPNと、各APNが指定するサーバ間の接続を確立するために経由するゲートウェイの一覧と、が関連付けられて記録されている。なお、カッコ内の数値は、物理的なホップ数を示している。具体的な一例として、「APN#1」が指定するMECサーバ300-1と、「APN#2」が指定するMECサーバ300-2と、の間の接続を確立する場合に着目する。この場合には、GWマッピングリストでは、「APN#1」及び「vAPN#2」のそれぞれ指定するサーバ間の接続関係を示すエントリには、接続時に経由される、RN120-1と、DeNB110-1と、MECサーバ300-2におけるvS-GW_2及びvP-GW_2
と、のそれぞれを示す情報が記録されている。
FIG. 23 shows another example of information recorded in the GW mapping list. In the example shown in FIG. 23, an APN indicating each of a connection source and a connection destination and a list of gateways through which a connection between servers designated by each APN is established are recorded in association with each other. The numbers in parentheses indicate the number of physical hops. As a specific example, attention is paid to a case where a connection is established between the MEC server 300-1 designated by “APN # 1” and the MEC server 300-2 designated by “APN # 2”. In this case, in the GW mapping list, an entry indicating the connection relationship between the servers designated by “APN # 1” and “vAPN # 2” includes an RN 120-1 and a DeNB 110-1 that are routed at the time of connection. VS-GW_2 and vP-GW_2 in the MEC server 300-2
And information indicating each of them is recorded.
 なお、各ノードを示す識別情報(P-GWのID等)や、各サーバを指定する識別情報(vAPNやPDNのID等)等のGWマッピングリストに記録される情報は、例えば、HSS44にあらかじめ記録及び管理(Provisioning/Commissioning)されている。即ち、MME43は、例えば、HSS44から取得した情報に基づき、GWマッピングリストを生成すればよい。 Information recorded in the GW mapping list such as identification information (P-GW ID, etc.) indicating each node and identification information (vAPN, PDN ID, etc.) specifying each server is stored in the HSS 44 in advance, for example. Recorded and managed (Provisioning / Commissioning). In other words, the MME 43 may generate a GW mapping list based on information acquired from the HSS 44, for example.
 また、MME43は、接続先を示すAPNが関連付けられた接続要求をMECサーバ300から受けた場合に、GWマッピングリストに基づき、要求元となるMECサーバ300と、接続要求に関連付けられたAPNが指定する他のMECサーバ300との間にベアラを設定する。ここで、図24を参照して、MME43により設定されるベアラの概要について、図21におけるMECサーバ300-1(MEC-Server-1)とMECサーバ300-2(MEC-Server-2)との間にベアラを設定する場合を例に説明する。図24は、MECサーバ間に設定されるベアラの概要について説明するための説明図である。 When the MME 43 receives a connection request associated with an APN indicating a connection destination from the MEC server 300, the MME 43 designates the MEC server 300 serving as a request source and the APN associated with the connection request based on the GW mapping list. A bearer is set up with another MEC server 300 that performs the operation. Here, with reference to FIG. 24, the outline of the bearer set by the MME 43 will be described between the MEC server 300-1 (MEC-Server-1) and the MEC server 300-2 (MEC-Server-2) in FIG. A case where a bearer is set between them will be described as an example. FIG. 24 is an explanatory diagram for explaining an outline of a bearer set between MEC servers.
 例えば、MME43は、MECサーバ300-1から、MECサーバ300-2を指定するAPNが関連付けられた接続要求を受けた場合には、GWマッピングリストに基づき、MECサーバ300-1及び300-2間の接続を確立するために経由するゲートウェイの一覧を特定する。これにより、例えば、MECサーバ300-1のvP-GW_1及びvS-GW_2と、「RN_1」で示されたRN120-1と、「DeNB_1」で示されたDeNB110-1と、MECサーバ300-2のvS-GW_2及びvP-GW_2とが特定される。なお、特定されるゲートウェイのうち、RN、eNB、DeNB、P-GW、及びS-GW等のような物理的な構成が、「第1のゲートウェイ」の一例に相当する。また、MECサーバ300上のvP-GW及びvS-GW等のような仮想的な構成が、「第2のゲートウェイ」の一例に相当する。 For example, when the MME 43 receives a connection request associated with an APN that specifies the MEC server 300-2 from the MEC server 300-1, the MME 43 determines whether the MEC server 300-1 and 300-2 are based on the GW mapping list. Identify a list of gateways through which to establish a connection. Accordingly, for example, the vP-GW_1 and vS-GW_2 of the MEC server 300-1, the RN 120-1 indicated by “RN_1”, the DeNB 110-1 indicated by “DeNB_1”, and the MEC server 300-2. vS-GW_2 and vP-GW_2 are specified. Of the identified gateways, a physical configuration such as RN, eNB, DeNB, P-GW, and S-GW corresponds to an example of “first gateway”. A virtual configuration such as vP-GW and vS-GW on the MEC server 300 corresponds to an example of “second gateway”.
 次いで、MME43は、特定した、vP-GW_1、vS-GW_2、DeNB_1(即ち、RN120-1)、DeNB_1(即ち、DeNB110-1)、vS-GW_2、及びvP-GW_2のそれぞれの間にベアラを設定する。なお、各ベアラの設定に係る一連の処理の流れの詳細については、実施例として別途後述する。 Next, the MME 43 sets a bearer among the identified vP-GW_1, vS-GW_2, DeNB_1 (ie, RN120-1), DeNB_1 (ie, DeNB110-1), vS-GW_2, and vP-GW_2. To do. Note that details of a series of processing flows related to the setting of each bearer will be separately described later as an example.
 そして、MME43は、vP-GW_1、vS-GW_2、DeNB_1(即ち、RN120-1)、DeNB_1(即ち、DeNB110-1)、vS-GW_2、及びvP-GW_2のそれぞれの間に設定した一連のベアラを、仮想的なベアラとして設定してもよい。これにより、例えば、MECサーバ300-1(MEC-Server-1)のvP-GW_1と、MECサーバ300-2(MEC-Server-2)のvP-GW_2との間の一連のベアラを、1つのベアラとして仮想化することが可能となる。なお、以降の説明では、上述した仮想的なベアラを「MECベアラ」とも称する。 The MME 43 then sets a series of bearers set between the vP-GW_1, vS-GW_2, DeNB_1 (ie, RN120-1), DeNB_1 (ie, DeNB110-1), vS-GW_2, and vP-GW_2. Alternatively, it may be set as a virtual bearer. Thus, for example, a series of bearers between the vP-GW_1 of the MEC server 300-1 (MEC-Server-1) and the vP-GW_2 of the MEC server 300-2 (MEC-Server-2) It becomes possible to virtualize as a bearer. In the following description, the above-described virtual bearer is also referred to as “MEC bearer”.
  (3-2)MECベアラの拡張
 また、本実施形態に係るシステム1においては、MECサーバ300内においてvP-GWまでの経路をVNFとして仮想化して提供することで、例えば、複数のMECサーバ300それぞれで動作するサービス間にまでMECベアラを拡張することも可能である。なお、本説明におけるサービスは、例えば、サービスプロバイダのようなOTT(Over-The-Top)ごとに提供されるサービスや、個別に動作するアプリケーション、VM、コンテナ等を含むものとする。
(3-2) Expansion of MEC bearer Further, in the system 1 according to the present embodiment, a path to the vP-GW is virtualized and provided as VNF in the MEC server 300, for example, a plurality of MEC servers 300 It is also possible to extend the MEC bearer between the services operating in each. The service in this description includes, for example, a service provided for each OTT (Over-The-Top) such as a service provider, an application that operates individually, a VM, a container, and the like.
 具体的な一例として、MME43が、MECサーバ300-1及び300-2それぞれで動作するサービス間にベアラを設定する場合に着目する。この場合には、MME43は、MECサーバ300-1から接続先を示すAPNが関連付けられた接続要求に加えて、接続先となるMECサーバ300-2で動作するサービスを特定するための情報(例えば、URIやIPアドレス等)を取得する。なお、MECサーバ300-2で動作するサービスを特定するための情報については、例えば、MECプラットフォームが提供するサービスディスカバリ機能を利用することで取得することが可能である。 As a specific example, attention is paid to a case where the MME 43 sets a bearer between services operating on the MEC servers 300-1 and 300-2. In this case, the MME 43, in addition to the connection request associated with the APN indicating the connection destination from the MEC server 300-1, information for specifying a service that operates on the MEC server 300-2 that is the connection destination (for example, , URI, IP address, etc.). Information for specifying a service operating on the MEC server 300-2 can be acquired by using, for example, a service discovery function provided by the MEC platform.
 次いで、MME43は、GWマッピングリストに基づき、GWマッピングリストに基づき、MECサーバ300-1及び300-2間の接続を確立するために経由するゲートウェイの一覧を特定する。そして、MME43は、特定した各ゲートウェイ間のそれぞれにベアラを設定する。これにより、MECサーバ300-1(MEC-Server-1)のvP-GW_1と、MECサーバ300-2(MEC-Server-2)のvP-GW_2との間に一連のベアラが設定される。 Next, the MME 43 specifies a list of gateways through which the connection between the MEC servers 300-1 and 300-2 is established based on the GW mapping list based on the GW mapping list. And MME43 sets a bearer between each specified gateway. As a result, a series of bearers is set between the vP-GW_1 of the MEC server 300-1 (MEC-Server-1) and the vP-GW_2 of the MEC server 300-2 (MEC-Server-2).
 また、MME43は、取得したるサービスを特定するための情報に基づき、MECサーバ300-2内において、vP-GW_2から当該MECサーバ300-2内で動作するサービスまでの経路をVNFとして仮想化することでベアラを設定する。これは、MECサーバ300-1側についても同様である。 Further, based on the information for specifying the acquired service, the MME 43 virtualizes the path from the vP-GW_2 to the service operating in the MEC server 300-2 as VNF in the MEC server 300-2. To set up a bearer. The same applies to the MEC server 300-1 side.
 そして、MME43は、MECサーバ300-1及び300-1それぞれにおいてvP-GWからサービスまでの経路を仮想化したベアラと、MECサーバ300-1及び300-2それぞれのvP-GW間を接続する一連のベアラとを、仮想的なベアラ(即ち、MECベアラ)として設定する。なお、以降の説明では、当該仮想的なベアラを前述した「MECベアラ」と特に区別する場合には、「拡張されたMECベアラ」と称する場合がある。このような構成により、MECサーバ300-1のvP-GW_1と、MECサーバ300-2のvP-GW_2との間の一連のベアラを仮想化したベアラを、さらに、MECサーバ300-1及び300-2それぞれで動作するサービス間まで延長することが可能となる。 The MME 43 connects a bearer that virtualizes the route from the vP-GW to the service in each of the MEC servers 300-1 and 300-1, and the vP-GW of each of the MEC servers 300-1 and 300-2. Are set as virtual bearers (that is, MEC bearers). In the following description, when the virtual bearer is particularly distinguished from the above-described “MEC bearer”, it may be referred to as an “expanded MEC bearer”. With such a configuration, a bearer obtained by virtualizing a series of bearers between the vP-GW_1 of the MEC server 300-1 and the vP-GW_2 of the MEC server 300-2 is further added to the MEC servers 300-1 and 300-. It is possible to extend the service between the two services.
 例えば、図25及び図26は、MECサーバ間における通信のプロトコルスタックの一例を示した図であり、図21に示すMECサーバ300-1及び300-2間にベアラを設定する場合の一例に相当する。なお、図25は、MECサーバ300のプロトコルスタックにGTP-Uが含まれない場合のアーキテクチャの一例を示している。図25に示す例の場合には、MECサーバ300のvP-GWで、GTP及びGRE(Generic Routing Encapsulation)プロトコルが終端される。また、図26は、MECサーバ300のプロトコルスタックにGTP-Uが含まれる場合のアーキテクチャの一例を示している。図26に示す例の場合には、MECサーバ300自身を特定するポイント(例えば、IPアドレス等)で、GTP及びGREプロトコルが終端されることとなる。 For example, FIGS. 25 and 26 are diagrams illustrating an example of a protocol stack for communication between MEC servers, and correspond to an example of setting a bearer between the MEC servers 300-1 and 300-2 illustrated in FIG. To do. FIG. 25 shows an example of an architecture when GTP-U is not included in the protocol stack of the MEC server 300. In the example shown in FIG. 25, the GTP and GRE (Generic Routing Encapsulation) protocols are terminated by the vP-GW of the MEC server 300. FIG. 26 shows an example of an architecture in the case where GTP-U is included in the protocol stack of the MEC server 300. In the case of the example shown in FIG. 26, the GTP and GRE protocols are terminated at a point (for example, an IP address) that identifies the MEC server 300 itself.
 このように、本実施形態に係るシステム1では、MECサーバ300内においてvP-GWまでの経路をVNFとして仮想化して提供するため、MECサーバ300までベアラを拡張することが可能となる。また、本実施形態に係るシステム1において、3GPPで規定されているベアラの方式を、MECサーバ300まで拡張利用することで、例えば、フローベースのQoSを、MECサーバ300間の双方向通信に適用することも可能となる。 As described above, in the system 1 according to the present embodiment, the path to the vP-GW is virtualized and provided as VNF in the MEC server 300, so that the bearer can be extended to the MEC server 300. Further, in the system 1 according to the present embodiment, the bearer method defined in 3GPP is extended to the MEC server 300, so that, for example, flow-based QoS is applied to bidirectional communication between the MEC servers 300. It is also possible to do.
  (3-3)ベアラの構成例
 例えば、図27及び図28は、MECベアラの構成の一例を示した図である。具体的には、図27は、図26に示すように、MECサーバ300自身を特定するポイント(例えば、IPアドレス等)で、GTP及びGREプロトコルが終端される場合における、MECベアラの構成の一例を示している。また、図28は、図25に示すように、MECサーバ300のvP-GWで、GTP及びGREプロトコルが終端される場合における、MECベアラの構成の一例を示している。
(3-3) Configuration Example of Bearer For example, FIGS. 27 and 28 are diagrams illustrating an example of the configuration of the MEC bearer. Specifically, FIG. 27 shows an example of the configuration of the MEC bearer when the GTP and GRE protocols are terminated at a point (for example, an IP address, etc.) that identifies the MEC server 300 itself, as shown in FIG. Is shown. FIG. 28 shows an example of the configuration of the MEC bearer when the GTP and GRE protocols are terminated in the vP-GW of the MEC server 300 as shown in FIG.
 また、APNが付与される対象は、必ずしもMECサーバ300のみには限定されない。具体的な一例として、例えば、サービスプロバイダ等のようなOTTごとや、アプリケーションごとにAPNが付与されていてもよい。このような場合には、例えば、1つのMECサーバ300上で、複数のOTTのサービス(換言すると、アプリケーション)が動作するような状況下においても、APNに基づき、OTTが提供するサービスそれぞれを個別に特定することが可能となる。また、アプリケーションが実装されるVMごとや、コンテナごとにAPNを付与することも可能である。 Further, the target to which the APN is assigned is not necessarily limited to the MEC server 300 alone. As a specific example, for example, an APN may be assigned for each OTT such as a service provider or for each application. In such a case, for example, even in a situation where a plurality of OTT services (in other words, applications) operate on one MEC server 300, each service provided by the OTT is individually based on the APN. It becomes possible to specify. It is also possible to assign an APN for each VM in which an application is mounted or for each container.
 例えば、図29及び図30Aは、MECベアラの構成の一例を示した図である。図29及び図30Aに示す例では、MECサーバ300上で複数のOTTのサービスが動作する状況下において、OTTごとにMECベアラ(例えば、拡張されたMECベアラ)が設定されている。なお、図29は、図26に示すように、MECサーバ300自身を特定するポイント(例えば、IPアドレス等)で、GTP及びGREプロトコルが終端される場合における、MECベアラの構成の一例を示している。また、図30Aは、図25に示すように、MECサーバ300のvP-GWで、GTP及びGREプロトコルが終端される場合における、MECベアラの構成の一例を示している。このような構成により、例えば、OTTごとや、VMごと、またはコンテナごとに独立したQoSの提供を実現することも可能となる。例えば、図30Bは、MECベアラの構成の一例を示した図であり、コンテナごとにMECベアラを設定した場合の一例を示している。また、図30Cは、MECベアラの構成の一例を示した図であり、VMごとにMECベアラを設定した場合の一例を示している。 For example, FIG. 29 and FIG. 30A are diagrams showing an example of the configuration of the MEC bearer. In the example illustrated in FIG. 29 and FIG. 30A, an MEC bearer (for example, an extended MEC bearer) is set for each OTT in a situation where a plurality of OTT services operate on the MEC server 300. FIG. 29 shows an example of the configuration of the MEC bearer when the GTP and GRE protocols are terminated at a point (for example, an IP address, etc.) that identifies the MEC server 300 itself, as shown in FIG. Yes. FIG. 30A shows an example of the configuration of the MEC bearer when the GTP and GRE protocols are terminated in the vP-GW of the MEC server 300 as shown in FIG. With such a configuration, for example, it is possible to realize provision of independent QoS for each OTT, each VM, or each container. For example, FIG. 30B is a diagram illustrating an example of the configuration of the MEC bearer, and illustrates an example in which an MEC bearer is set for each container. FIG. 30C is a diagram illustrating an example of the configuration of the MEC bearer, and illustrates an example in which an MEC bearer is set for each VM.
 また、図31は、本実施形態に係るシステム1におけるベアラ構成の一例について説明するための説明図であり、MECサーバ300がUEに対してサービスを提供する場合の一例について示している。例えば、図31の上段に示した例は、MECサーバ300-1(MEC-Server-1)が、他のMECサーバ300-2(MEC-Server-2)と連携することで、UEに対してサービスを提供する場合の一例を示している。この場合には、UEとMECサーバ300-1との間にはEPSベアラが設定され、MECサーバ300-1とMECサーバ300-2との間にはMECベアラが設定されることとなる。また、図31の下段に示した例は、MECサーバ300-1(MEC-Server-1)が、アプリケーションサーバ60と連携することで、UEに対してサービスを提供する場合の一例を示している。この場合には、UEとMECサーバ300-1との間にはEPSベアラが設定され、MECサーバ300-1とアプリケーションサーバ60との間にはMECベアラが設定されることとなる。このような構成により、本実施形態に係るシステム1は、サービスが要求するQoSを、より好適な態様で満足するベアラを提供することが可能となる。 FIG. 31 is an explanatory diagram for explaining an example of a bearer configuration in the system 1 according to the present embodiment, and shows an example when the MEC server 300 provides a service to the UE. For example, in the example shown in the upper part of FIG. 31, the MEC server 300-1 (MEC-Server-1) cooperates with another MEC server 300-2 (MEC-Server-2) to An example in the case of providing a service is shown. In this case, an EPS bearer is set between the UE and the MEC server 300-1, and an MEC bearer is set between the MEC server 300-1 and the MEC server 300-2. Further, the example shown in the lower part of FIG. 31 shows an example in which the MEC server 300-1 (MEC-Server-1) provides a service to the UE in cooperation with the application server 60. . In this case, an EPS bearer is set between the UE and the MEC server 300-1, and an MEC bearer is set between the MEC server 300-1 and the application server 60. With such a configuration, the system 1 according to the present embodiment can provide a bearer that satisfies the QoS requested by the service in a more preferable manner.
  <4.2.第1の実施例>
 次いで、本実施形態の第1の実施例として、OSSやBSS等のネットワーク管理機能(以降では、単に「OSS」と称する)からの要求に基づき、MECサーバ300間にMECベアラを設定する場合の例について説明する。なお、本説明では、OSSからの要求に基づき、図21における、MECサーバ300-1とMECサーバ300-2との間にMECベアラを設定することで、MECサーバ300-1からMECサーバ300-2にアプリケーションの情報を移動させる場合に着目して説明する。
<4.2. First Example>
Next, as a first example of the present embodiment, a case where an MEC bearer is set between the MEC servers 300 based on a request from a network management function such as OSS or BSS (hereinafter simply referred to as “OSS”). An example will be described. In this description, based on a request from the OSS, by setting an MEC bearer between the MEC server 300-1 and the MEC server 300-2 in FIG. 21, the MEC server 300-1 to the MEC server 300- Description will be given focusing on the case of moving application information to 2.
 例えば、図32は、本実施形態の第1の実施例に係るシステム1において実行されるベアラ設定処理の流れの一例について示したシーケンス図である。なお、図32に示すように、本シーケンスには、OSS、HSS44、MME43、MECサーバ300-1(MEC-Server-1)、RN120-1(RN_1)、DeNB110-1(DeNB_1)、S-GW41、及びMECサーバ300-2(MEC-Server-2)が関与する。 For example, FIG. 32 is a sequence diagram illustrating an example of the flow of bearer setting processing executed in the system 1 according to the first example of the present embodiment. As shown in FIG. 32, this sequence includes OSS, HSS 44, MME 43, MEC server 300-1 (MEC-Server-1), RN 120-1 (RN_1), DeNB 110-1 (DeNB_1), and S-GW 41. , And the MEC server 300-2 (MEC-Server-2).
 まず、OSSからの指示に基づき、各ノードを示す識別情報(P-GWのID等)や、各サーバを指定する識別情報(APNや、PDNのID等)等の一覧が、HSS44に、登録される(S301)。MME43は、HSS44に登録された当該情報に基づき、GWマッピングリストを生成する(S303)。なお、GWマッピングリストの生成については、事前に実行されていればよく、MECサーバ300間にMECベアラを設定するごとに同処理が実行される必要はない。 First, based on instructions from the OSS, a list of identification information (such as P-GW ID) indicating each node and identification information (APN, PDN ID, etc.) specifying each server is registered in the HSS 44. (S301). The MME 43 generates a GW mapping list based on the information registered in the HSS 44 (S303). The generation of the GW mapping list only needs to be executed in advance, and the same process need not be executed every time the MEC bearer is set between the MEC servers 300.
 次いで、OSSからの指示に基づき、MECサーバ300間にMECベアラを設定する処理に着目して説明する。例えば、MECサーバ300間においてアプリケーションの情報を移動させる場合には、ネットワーク管理者等が、UI(例えば、GUI)を介してOSSに対して、アプリケーションの情報の移動先となるMECサーバ300を指定したうえで、当該情報の移動を指示する。 Next, a description will be given focusing on processing for setting MEC bearers between the MEC servers 300 based on an instruction from the OSS. For example, when moving application information between the MEC servers 300, a network administrator or the like designates the MEC server 300 that is the destination of application information to the OSS via the UI (for example, GUI). Then, instruct the transfer of the information.
 具体的な一例として、ネットワーク管理者等が、UI(例えば、GUI)を介してOSSに対して、MECサーバ300-1からMECサーバ300-2へのアプリケーションの情報の移動を指示したものとする。この場合には、OSSは、MME43に対して、MECサーバ300-1とMECサーバ300-2との間におけるMECベアラの設定要求を行う。これにより、MECベアラの設定要求信号がOSSからMME43に送信される(S305)。なお、このMECベアラの設定要求が、「接続要求」の一例に相当する。 As a specific example, it is assumed that a network administrator or the like instructs the OSS to move application information from the MEC server 300-1 to the MEC server 300-2 via a UI (for example, GUI). . In this case, the OSS requests the MME 43 to set the MEC bearer between the MEC server 300-1 and the MEC server 300-2. As a result, the MEC bearer setting request signal is transmitted from the OSS to the MME 43 (S305). The MEC bearer setting request corresponds to an example of a “connection request”.
 OSSからのMECベアラの設定要求を受けて、MME43は、MECサーバ300-1及び300-2それぞれに接続するためのAPNと、GWマッピングリストとを照合し、MECサーバ300-1からMECサーバ300-2に接続するために経由するゲートウェイの一覧を特定する(S307)。図32に示す例の場合には、MECサーバ300-1におけるvP-GW_1、vS-GW_1、及びvDeNB_1と、RN120-1と、DeNB110-1と、S-GW41と、MECサーバ300-1におけるvS-GW_2及びvP-GW_2とが特定される。 In response to the MEC bearer setting request from the OSS, the MME 43 collates the APN for connecting to the MEC servers 300-1 and 300-2 with the GW mapping list, and the MEC server 300-1 to the MEC server 300 -2 specifies a list of gateways through which connection is made (S307). In the case of the example shown in FIG. 32, vP-GW_1, vS-GW_1, vDeNB_1, RN120-1, DeNB110-1, S-GW41, and vS in MEC server 300-1 in MEC server 300-1. -GW_2 and vP-GW_2 are identified.
 なお、APNに対応するP-GWの特定は、例えば、DNS等の仕組み(FQDN:Fully Qualified Domain Name)等に基づき実行される。また、各MECサーバ300が設置されているGWの特定については、TAI List allocationポリシー等と同様に、サービスプロバイダのようなOTT等からの指示に基づき事前に登録された情報に基づき実行されればよい。また、MECサーバ300が、MECプラットフォームが提供する機能(例えば、API)を利用することで、接続されているノード(例えば、eNodeB、NodeB、Relay Node、DeNodeB等のようなRadio Nodes)の位置情報を取得し、取得した位置情報をMME43に通知してもよい。 Note that the identification of the P-GW corresponding to the APN is executed based on, for example, a mechanism such as DNS (FQDN: Fully Qualified Domain Name). Also, the identification of the GW in which each MEC server 300 is installed can be executed based on information registered in advance based on an instruction from an OTT or the like such as a service provider, as in the TAI List allocation policy. Good. In addition, the MEC server 300 uses the function (for example, API) provided by the MEC platform, so that the location information of the connected nodes (for example, Radio Nodes such as eNodeB, NodeB, Relay Node, DeNodeB, etc.) And the acquired position information may be notified to the MME 43.
 次いで、MME43は、MECサーバ300-1のvS-GW_1に対して、vP-GW_1との間のS5/S8ベアラの確立を指示する。この指示を受けて、vS-GW_1は、vP-GW_1との間にS5/S8ベアラを確立する。また、MME43は、MECサーバ300-1のvDeNB_1に対して、RN120-1との間のS1-Uベアラの確立を指示する。この指示を受けて、vDeNB_1は、RN120-1との間にS1-Uベアラを設定する(S309)。そして、各ベアラの設定が完了すると、MECサーバ300-1からMME43に対して、MECベアラの設定要求に対する応答が送信される(S311)。 Next, the MME 43 instructs the vS-GW_1 of the MEC server 300-1 to establish an S5 / S8 bearer with the vP-GW_1. Upon receiving this instruction, vS-GW_1 establishes an S5 / S8 bearer with vP-GW_1. Also, the MME 43 instructs the vDeNB_1 of the MEC server 300-1 to establish an S1-U bearer with the RN 120-1. In response to this instruction, vDeNB_1 sets up an S1-U bearer with RN 120-1 (S309). When the setting of each bearer is completed, a response to the MEC bearer setting request is transmitted from the MEC server 300-1 to the MME 43 (S311).
 同様に、MME43は、MECサーバ300-2のvS-GW_2に対して、vP-GW_2との間のS5/S8ベアラの確立を指示する。この指示を受けて、vS-GW_2は、vP-GW_2との間にS5/S8ベアラを確立する。また、MME43は、MECサーバ300-2のvS-GW_2に対して、DeNB110-1との間のS1-Uベアラの確立を指示する。この指示を受けて、vS-GW_2は、DeNB110-1との間にS1-Uベアラを確立する(S313)。そして、ベアラの設定が完了すると、MECサーバ300-2からMME43に対して、MECベアラの設定要求に対する応答が送信される(S315)。 Similarly, the MME 43 instructs the vS-GW_2 of the MEC server 300-2 to establish an S5 / S8 bearer with the vP-GW_2. Upon receiving this instruction, vS-GW_2 establishes an S5 / S8 bearer with vP-GW_2. Also, the MME 43 instructs the vS-GW_2 of the MEC server 300-2 to establish an S1-U bearer with the DeNB 110-1. Upon receiving this instruction, vS-GW_2 establishes an S1-U bearer with DeNB 110-1 (S313). When the bearer setting is completed, a response to the MEC bearer setting request is transmitted from the MEC server 300-2 to the MME 43 (S315).
 また、MME43は、S-GW41を介してDeNB110-1に対して、DeNB110-1とRN120-1との間のS1-U/Unベアラの確立を指示する(S317)。この指示を受けて、DeNB-1は、DeNB110-1とRN120-1との間にS1-U/Unベアラを設定する(S319)。そして、ベアラの設定が完了すると、S-GW41からMME43に対して、MECベアラの設定要求に対する応答が送信される(S321)。 Further, the MME 43 instructs the DeNB 110-1 via the S-GW 41 to establish an S1-U / Un bearer between the DeNB 110-1 and the RN 120-1 (S317). In response to this instruction, DeNB-1 sets up an S1-U / Un bearer between DeNB 110-1 and RN 120-1 (S319). When the bearer setting is completed, a response to the MEC bearer setting request is transmitted from the S-GW 41 to the MME 43 (S321).
 なお、上記に説明した各ベアラのうち、少なくとも一部のベアラが既に設定(確立)されている場合も想定され得る。このように、既に設定されているベアラが存在する場合には、必ずしも新たにベアラが設定される必要はなく、既に設定されているベアラが使用されてもよい。 Note that it can be assumed that at least some of the bearers described above are already set (established). Thus, when there is a bearer that has already been set, it is not always necessary to set a new bearer, and a bearer that has already been set may be used.
 以上により、MECサーバ300-1とMECサーバ300-2と間を接続する一連のベアラが設定され、当該ベアラを介して、MECサーバ300-1とMECサーバ300-2と間におけるデータの転送やアプリケーション間の通信が可能となる。次いで、MECサーバ300-1及び300-2の通信ポイントの識別情報(例えば、IPアドレス等)が特定されると、vP-GW_1とMECサーバ300-1の通信ポイントとの間と、vP-GW_2とMECサーバ300-2の通信ポイントとの間とのそれぞれに新規ベアラ(トンネル)がデフォルトベアラとして設定される。また、MME43は、MECサーバ300-1とMECサーバ300-2との間で設定された一連のベアラを仮想化することでMECベアラを設定する。 As described above, a series of bearers for connecting the MEC server 300-1 and the MEC server 300-2 is set, and data transfer between the MEC server 300-1 and the MEC server 300-2 is performed via the bearer. Communication between applications becomes possible. Next, when identification information (for example, an IP address) of the communication points of the MEC servers 300-1 and 300-2 is specified, between the communication point of the VP-GW_1 and the MEC server 300-1, vP-GW_2. And a new bearer (tunnel) is set as a default bearer between the communication point of the MEC server 300-2. Further, the MME 43 sets the MEC bearer by virtualizing a series of bearers set between the MEC server 300-1 and the MEC server 300-2.
 そして、MME43は、MECサーバ300-1とMECサーバ300-2と間における各ベアラ(即ち、GWマッピングリストに基づき特定した各ゲートウェイ間におけるベアラ)の設定の完了を確認すると、MECベアラの設定要求に対する応答をOSSに送信する(S323)。 When the MME 43 confirms the completion of the setting of each bearer between the MEC server 300-1 and the MEC server 300-2 (that is, the bearer between the gateways specified based on the GW mapping list), the MME bearer requests for setting the MEC bearer Is sent to the OSS (S323).
 以上により、MECサーバ300-1とMECサーバ300-2との間が、MECベアラにより接続されることとなる(S325)。これにより、MECサーバ300-1は、アプリケーションの情報を、設定されたMECベアラを介してMECサーバ300-2に送信することが可能となる(S327)。 Thus, the MEC server 300-1 and the MEC server 300-2 are connected by the MEC bearer (S325). As a result, the MEC server 300-1 can transmit application information to the MEC server 300-2 via the set MEC bearer (S327).
 なお、第1の実施例における、MECサーバ300-1とMECサーバ300-2と間の通信におけるプロトコルスタックは、図25及び図26を参照して前述した通りである。 Note that the protocol stack in the communication between the MEC server 300-1 and the MEC server 300-2 in the first embodiment is as described above with reference to FIGS.
  <4.3.第2の実施例>
 次いで、本実施形態の第2の実施例として、UE200がMECサーバ300上で動作するアプリケーションと通信を行っている状況下において、当該アプリケーションが、他のMECサーバ300で動作するアプリケーションと連携して動作する場合の例について説明する。なお、本説明では、図21に示す構成において、MECサーバ300-1上で動作するアプリケーションAppl-1からの要求に基づき、当該MECサーバ300-1と、アプリケーションAppl-2が動作するMECサーバ300-2との間にMECベアラが設定される場合に着目して説明する。
<4.3. Second Embodiment>
Next, as a second example of the present embodiment, in a situation where the UE 200 communicates with an application that operates on the MEC server 300, the application cooperates with an application that operates on another MEC server 300. An example of operation will be described. In the present description, in the configuration shown in FIG. 21, based on a request from the application Appl-1 operating on the MEC server 300-1, the MEC server 300-1 and the MEC server 300 on which the application Appl-2 operates. In the following description, attention is paid to the case where an MEC bearer is set between -2.
 例えば、図33は、本実施形態の第2の実施例に係るシステム1において実行されるベアラ設定処理の流れの一例について示したシーケンス図である。なお、図33に示すように、本シーケンスには、OSS、HSS44、MME43、UE200、MECサーバ300-1(MEC-Server-1)、RN120-1(RN_1)、DeNB110-1(DeNB_1)、S-GW41、及びMECサーバ300-2(MEC-Server-2)が関与する。 For example, FIG. 33 is a sequence diagram showing an example of the flow of the bearer setting process executed in the system 1 according to the second example of the present embodiment. As shown in FIG. 33, this sequence includes OSS, HSS 44, MME 43, UE 200, MEC server 300-1 (MEC-Server-1), RN 120-1 (RN_1), DeNB 110-1 (DeNB_1), S -GW 41 and MEC server 300-2 (MEC-Server-2) are involved.
 まず、OSSからの指示に基づき、各ノードを示す識別情報や、各サーバを指定する識別情報等の一覧がHSS44に登録され(S401)、当該情報に基づき、MME43によりGWマッピングリストが生成される(S403)。なお、本処理は、図32において参照符号S301及びS303で示された処理と同様である。 First, based on an instruction from the OSS, a list of identification information indicating each node and identification information specifying each server is registered in the HSS 44 (S401), and a GW mapping list is generated by the MME 43 based on the information. (S403). This processing is the same as the processing indicated by reference numerals S301 and S303 in FIG.
 また、UE200からの要求に基づき、MECサーバ300-1上のアプリケーションAppl-1が動作を開始する(S405)。 Also, based on the request from the UE 200, the application Appl-1 on the MEC server 300-1 starts to operate (S405).
 ここで、アプリケーションAppl-1が、UE200に対してサービスを提供するために、MECサーバ300-2上で動作するアプリケーションAppl-2との連携が必要となったものとする。この場合には、アプリケーションAppl-1は、MECプラットフォームから提供されるサービスディスカバリ機能を利用することで、アプリケーションAppl-2が格納されているMECサーバ300-2へ接続するための情報(例えば、APN)を取得する(S407)。 Here, it is assumed that the application Appl-1 needs to cooperate with the application Appl-2 operating on the MEC server 300-2 in order to provide the service to the UE 200. In this case, the application Appl-1 uses the service discovery function provided from the MEC platform, thereby connecting information (for example, APN) to the MEC server 300-2 in which the application Appl-2 is stored. ) Is acquired (S407).
 次いで、アプリケーションAppl-1は、MME43に対して、取得したAPNに基づき、MECサーバ300-1とMECサーバ300-2との間におけるMECベアラの設定要求を行う。これにより、当該APNが関連付けられたMECベアラの設定要求信号がMECサーバ300-1からMME43に送信される(S409)。なお、このときアプリケーションAppl-1が、MECベアラの設定要求を行う相手は、MECサーバ300-1内でVNFとして実現されるvMMEであってもよい。また、アプリケーションAppl-1とMME43との間のインタフェース(換言すると、通信路)は、VNFとして実現されるvS-GWが実装されていることで確立することが可能となる。また、アプリケーションAppl-1からMME43へのインタフェースの他の一例として、SCEF(Service Capability Exposure Function)と呼ばれる機能により提供されるインタフェースが利用されてもよい。なお、SCEFの詳細については、別途後述する。 Next, the application Appl-1 requests the MME 43 to set the MEC bearer between the MEC server 300-1 and the MEC server 300-2 based on the acquired APN. Thereby, a setting request signal for the MEC bearer associated with the APN is transmitted from the MEC server 300-1 to the MME 43 (S409). At this time, the partner to which the application App-1 makes a MEC bearer setting request may be a vMME implemented as VNF in the MEC server 300-1. Further, the interface (in other words, the communication path) between the application Appl-1 and the MME 43 can be established by mounting the vS-GW realized as VNF. As another example of an interface from the application Appl-1 to the MME 43, an interface provided by a function called SCEF (Service Capability Exposure Function) may be used. The details of SCEF will be described later.
 なお、参照符号S411~S425で示された処理は、図32において参照符号S307~S321で示された処理と同様である。即ち、MME43は、アプリケーションAppl-1からの接続要求に関連付けられたAPNと、GWマッピングリストとを照合し、MECサーバ300-1からMECサーバ300-2に接続するために経由するゲートウェイの一覧を特定する(S411)。そして、MME43は、MECサーバ300-1のvS-GW_1及びvDeNB_1と、MECサーバ300-2のvS-GW_2と、S-GW41とのそれぞれに対してベアラの確立を指示する。これにより、MECサーバ300-1とMECサーバ300-2と間を接続する一連のベアラが設定される。次いで、MECサーバ300-1及び300-2の通信ポイントの識別情報(例えば、IPアドレス等)が特定されると、vP-GW_1とMECサーバ300-1の通信ポイントとの間と、vP-GW_2とMECサーバ300-2の通信ポイントとの間とのそれぞれに新規ベアラ(トンネル)がデフォルトベアラとして設定される。また、MME43は、MECサーバ300-1とMECサーバ300-2との間で設定された一連のベアラを仮想化することでMECベアラを設定する(S413~S425)。 Note that the processes indicated by reference numerals S411 to S425 are the same as the processes indicated by reference numerals S307 to S321 in FIG. That is, the MME 43 collates the APN associated with the connection request from the application Appl-1 with the GW mapping list, and obtains a list of gateways through which the MEC server 300-1 connects to the MEC server 300-2. Specify (S411). Then, the MME 43 instructs the vS-GW_1 and vDeNB_1 of the MEC server 300-1 and vS-GW_2 and S-GW 41 of the MEC server 300-2 to establish a bearer. As a result, a series of bearers for connecting the MEC server 300-1 and the MEC server 300-2 is set. Next, when identification information (for example, an IP address) of the communication points of the MEC servers 300-1 and 300-2 is specified, between the communication point of the VP-GW_1 and the MEC server 300-1, vP-GW_2. And a new bearer (tunnel) is set as a default bearer between the communication point of the MEC server 300-2. Further, the MME 43 sets an MEC bearer by virtualizing a series of bearers set between the MEC server 300-1 and the MEC server 300-2 (S413 to S425).
 そして、MME43は、MECサーバ300-1とMECサーバ300-2と間における各ベアラの設定の完了を確認すると、MECベアラの設定要求に対する応答を、MECサーバ300-1上で動作するアプリケーションAppl-1に送信する(S427)。 When the MME 43 confirms the completion of the setting of each bearer between the MEC server 300-1 and the MEC server 300-2, the MME 43 sends a response to the setting request of the MEC bearer to the application Appl− operating on the MEC server 300-1. 1 (S427).
 以上により、MECサーバ300-1とMECサーバ300-2との間が、MECベアラにより接続されることとなる(S429)。これにより、設定されたMECベアラを介して、MECサーバ300-1上で動作するアプリケーションAppl-1と、MECサーバ300-2上で動作するアプリケーションAppl-2との間での通信が有効化される。即ち、アプリケーションAppl-1は、設定されたMECベアラを介して、アプリケーションAppl-2と連携することが可能となる(S431)。 Thus, the MEC server 300-1 and the MEC server 300-2 are connected by the MEC bearer (S429). As a result, communication between the application Appl-1 operating on the MEC server 300-1 and the application Appl-2 operating on the MEC server 300-2 is enabled via the set MEC bearer. The That is, the application Appl-1 can cooperate with the application Appl-2 through the set MEC bearer (S431).
 なお、本実施例で設定されるMECベアラは、例えば、MECサーバ300-1及び300-2間で設定されるMECベアラでもよいし、アプリケーションAppl-1及びAppl-2間(つまり、VM間やコンテナ間)で設定される拡張されたMECベアラであってもよい。 The MEC bearer set in this embodiment may be, for example, an MEC bearer set between the MEC servers 300-1 and 300-2, or between the applications Appl-1 and Appl-2 (that is, between VMs or It may be an extended MEC bearer set between containers).
 また、上記では、MECサーバ300-1及び300-2間における連携について説明したが、必ずしも同構成のみには限定されない。具体的な一例として、3つ以上のMECサーバが連携させることも可能である。この場合には、例えば、3つ以上のMECサーバそれぞれの間にMECベアラを設定することで、当該3つ以上のMECベアラを互いに連携させることが可能となる。 In the above description, the cooperation between the MEC servers 300-1 and 300-2 has been described. However, the present invention is not necessarily limited to the same configuration. As a specific example, three or more MEC servers can be linked. In this case, for example, by setting an MEC bearer between each of three or more MEC servers, the three or more MEC bearers can be linked to each other.
 また、第2の実施例における、MECサーバ300-1とMECサーバ300-2と間の通信におけるプロトコルスタックは、図25及び図26を参照して前述した通りである。 Further, the protocol stack in the communication between the MEC server 300-1 and the MEC server 300-2 in the second embodiment is as described above with reference to FIGS.
  <4.4.第3の実施例>
 次いで、本実施形態の第3の実施例として、UE200が互いに異なるノード(eNB、RN等)が提供するセル間を移動するような状況を想定し、当該UE200にサービスを提供するMECサーバ300が、他のMECサーバ300と連携して動作する場合の一例について説明する。なお、本説明では、図21に示す構成において、UE200が、RN120-1及び120-2それぞれが提供するセル間を移動する状況を想定し、MECサーバ300-1とMECサーバ300-3とが連携するために、双方の間(即ち、MECサーバ300-1及び300-3間)にMECベアラが設定される場合に着目して説明する。
<4.4. Third Example>
Next, as a third example of the present embodiment, assuming that the UE 200 moves between cells provided by different nodes (eNB, RN, etc.), the MEC server 300 that provides a service to the UE 200 An example in the case of operating in cooperation with another MEC server 300 will be described. In this description, assuming that the UE 200 moves between cells provided by each of the RNs 120-1 and 120-2 in the configuration shown in FIG. 21, the MEC server 300-1 and the MEC server 300-3 A description will be given focusing on a case where an MEC bearer is set between both parties (that is, between the MEC servers 300-1 and 300-3) in order to cooperate.
 例えば、図34は、本実施形態の第3の実施例に係るシステム1において実行されるベアラ設定処理の流れの一例について示したシーケンス図である。なお、図34に示すように、本シーケンスには、OSS、HSS44、MME43、UE200、MECサーバ300-1(MEC-Server-1)、RN120-1(RN_1)、DeNB110-1(DeNB_1)、S-GW41、DeNB110-2(DeNB_2)、RN120-2(RN_2)、及びMECサーバ300-3(MEC-Server-3)が関与する。 For example, FIG. 34 is a sequence diagram showing an example of the flow of bearer setting processing executed in the system 1 according to the third example of the present embodiment. As shown in FIG. 34, this sequence includes OSS, HSS 44, MME 43, UE 200, MEC server 300-1 (MEC-Server-1), RN 120-1 (RN_1), DeNB 110-1 (DeNB_1), S -GW41, DeNB110-2 (DeNB_2), RN120-2 (RN_2), and MEC server 300-3 (MEC-Server-3) are involved.
 まず、OSSからの指示に基づき、各ノードを示す識別情報や、各サーバを指定する識別情報等の一覧がHSS44に登録され(S501)、当該情報に基づき、MME43によりGWマッピングリストが生成される(S503)。なお、本処理は、図30において参照符号S301及びS303で示された処理と同様である。 First, based on an instruction from the OSS, a list of identification information indicating each node and identification information specifying each server is registered in the HSS 44 (S501), and a GW mapping list is generated by the MME 43 based on the information. (S503). This processing is the same as the processing indicated by reference numerals S301 and S303 in FIG.
 また、UE200からの要求に基づき、MECサーバ300-1上のアプリケーションAppl-1が動作を開始する(S505)。 Also, based on the request from the UE 200, the application Appl-1 on the MEC server 300-1 starts to operate (S505).
 ここで、UE200が、RN120-1が提供するセルから、RN120-2が提供するセルに移動することで、当該UE200に対してサービスを提供するために、他のMECサーバ300を利用した方が望ましい状態が検出されたものとする。この場合には、アプリケーションAppl-1は、MECプラットフォームから提供されるサービスディスカバリ機能を利用することで、UE200に対してサービスを提供するために、より好適な環境(例えば、最大遅延、最小保障帯域等を満たす環境)を提供可能なMECサーバ300の発見を試みる。なお、このときアプリケーションAppl-1は、より好適な環境を提供可能なMECサーバ300を発見するために、例えば、接続してきているUE200の位置情報や、現在接続しているノード(例えば、RN、eNB、DeNB、NB等)の情報等を利用してもよい。その結果として、アプリケーションAppl-1は、MECサーバ300-3へ接続するための情報(例えば、vAPN)を取得する(S507)。なお、以降の説明では、アプリケーションAppl-1は、MECサーバ300-3へ接続するための情報としてAPNを取得したものとして説明するが、MECサーバ300-3へ接続することが可能であれば取得される情報の種別は特に限定されない。具体的な一例として、アプリケーションAppl-1は、MECサーバ300-3へ接続するための情報として、URIやIPアドレスを取得してもよい。 Here, the UE 200 moves from the cell provided by the RN 120-1 to the cell provided by the RN 120-2, so that the UE 200 uses the other MEC server 300 to provide the service to the UE 200. Assume that a desired state has been detected. In this case, the application Appl-1 uses a service discovery function provided from the MEC platform to provide a service to the UE 200 in a more suitable environment (for example, maximum delay, minimum guaranteed bandwidth). Etc.) to discover the MEC server 300 that can provide the environment. At this time, in order to discover the MEC server 300 that can provide a more suitable environment, the application App1-1, for example, the location information of the UE 200 that is connected and the currently connected node (for example, RN, Information such as eNB, DeNB, NB) may be used. As a result, the application Appl-1 acquires information (for example, vAPN) for connecting to the MEC server 300-3 (S507). In the following description, it is assumed that the application Appl-1 has acquired the APN as information for connecting to the MEC server 300-3. The type of information to be performed is not particularly limited. As a specific example, the application Appl-1 may acquire a URI and an IP address as information for connecting to the MEC server 300-3.
 次いで、アプリケーションAppl-1(もしくは、サービス提供する他のアプリケーション)は、MME43に対して、取得したAPNに基づき、MECサーバ300-1とMECサーバ300-3との間におけるMECベアラの設定要求を行う。これにより、当該APNが関連付けられたMECベアラの設定要求信号がMECサーバ300-1からMME43に送信される(S509)。なお、MECサーバ300-1からMME43へのインタフェースとしては、例えば、eNBやRN等のノードを介したS1-MMEインタフェース、または、S-GWを介したS11インタフェースにより実現される。 Next, the application Appl-1 (or another application providing the service) issues a request for setting the MEC bearer between the MEC server 300-1 and the MEC server 300-3 to the MME 43 based on the acquired APN. Do. As a result, a setting request signal for the MEC bearer associated with the APN is transmitted from the MEC server 300-1 to the MME 43 (S509). The interface from the MEC server 300-1 to the MME 43 is realized by, for example, an S1-MME interface via a node such as eNB or RN, or an S11 interface via an S-GW.
 また、MECサーバ300-1からMME43へのインタフェースの他の一例として、SCEFにより提供されるインタフェースが利用されてもよい。この場合には、MECサーバ300-1(または、MECサーバ300-1上で動作するアプリケーション)は、例えば、SCEFを利用することでMME43に接続し、ベアラの設定要求を行うことが可能である。また、このときMECサーバ300-1は、SCEFを利用することで、ベアラの設定状況(例えば、ベアラの設定が完了したか否か)をモニタリングすることも可能となる。なお、SCEFの詳細については、別途後述する。 As another example of an interface from the MEC server 300-1 to the MME 43, an interface provided by SCEF may be used. In this case, the MEC server 300-1 (or an application operating on the MEC server 300-1) can connect to the MME 43 by using, for example, SCEF and make a bearer setting request. . At this time, the MEC server 300-1 can also monitor the bearer setting status (for example, whether the bearer setting is completed) by using SCEF. The details of SCEF will be described later.
 アプリケーションAppl-1からのMECベアラの設定要求を受けて、MME43は、MECサーバ300-1及び300-3それぞれに接続するためのAPNと、GWマッピングリストとを照合し、MECサーバ300-1からMECサーバ300-3に接続するために経由するゲートウェイの一覧を特定する(S511)。図34に示す例の場合には、MECサーバ300-1におけるvP-GW_1、vS-GW_1、及びvDeNB_1と、RN120-1と、DeNB110-1と、S-GW41と、DeNB110-2と、RN120-2と、MECサーバ300-3におけるvDeNB_3、vS-GW_3、及びvP-GW_3とが特定される。 Upon receiving the MEC bearer setting request from the application Appl-1, the MME 43 collates the APN for connecting to each of the MEC servers 300-1 and 300-3 with the GW mapping list, and the MEC server 300-1 A list of gateways through which to connect to the MEC server 300-3 is specified (S511). In the case of the example shown in FIG. 34, vP-GW_1, vS-GW_1, and vDeNB_1, RN120-1, DeNB110-1, S-GW41, DeNB110-2, RN120-, and RN120- in MEC server 300-1. 2 and vDeNB_3, vS-GW_3, and vP-GW_3 in the MEC server 300-3 are specified.
 次いで、MME43は、MECサーバ300-1のvS-GW_1に対して、vP-GW_1との間のS5/S8ベアラの確立を指示する。この指示を受けて、vS-GW_1は、vP-GW_1との間にS5/S8ベアラを確立する。また、MME43は、MECサーバ300-1のvDeNB_1に対して、RN120-1との間のS1-Uベアラの確立を指示する。この指示を受けて、vDeNB_1は、RN120-1との間にS1-Uベアラを設定する(S513)。そして、各ベアラの設定が完了すると、MECサーバ300-1からMME43に対して、MECベアラの設定要求に対する応答が送信される(S515)。 Next, the MME 43 instructs the vS-GW_1 of the MEC server 300-1 to establish an S5 / S8 bearer with the vP-GW_1. Upon receiving this instruction, vS-GW_1 establishes an S5 / S8 bearer with vP-GW_1. Also, the MME 43 instructs the vDeNB_1 of the MEC server 300-1 to establish an S1-U bearer with the RN 120-1. In response to this instruction, vDeNB_1 sets up an S1-U bearer with RN 120-1 (S513). When the setting of each bearer is completed, a response to the MEC bearer setting request is transmitted from the MEC server 300-1 to the MME 43 (S515).
 同様に、MME43は、MECサーバ300-3のvS-GW_3に対して、vP-GW_2との間のS5/S8ベアラの確立を指示する。この指示を受けて、vS-GW_3は、vP-GW_3との間にS5/S8ベアラを確立する。また、MME43は、MECサーバ300-3のvDeNB_3に対して、RN120-2との間のS1-Uベアラの確立を指示する。この指示を受けて、vDeNB_3は、RN120-2との間にS1-Uベアラを設定する(S517)。そして、ベアラの設定が完了すると、MECサーバ300-3からMME43に対して、MECベアラの設定要求に対する応答が送信される(S519)。 Similarly, the MME 43 instructs the vS-GW_3 of the MEC server 300-3 to establish an S5 / S8 bearer with the vP-GW_2. Upon receiving this instruction, vS-GW_3 establishes an S5 / S8 bearer with vP-GW_3. Also, the MME 43 instructs the vDeNB_3 of the MEC server 300-3 to establish an S1-U bearer with the RN 120-2. In response to this instruction, vDeNB_3 sets up an S1-U bearer with RN 120-2 (S517). When the bearer setting is completed, a response to the MEC bearer setting request is transmitted from the MEC server 300-3 to the MME 43 (S519).
 また、MME43は、S-GW41を介してDeNB110-1に対して、DeNB110-1とRN120-1との間のS1-U/Unベアラの確立を指示する。この指示を受けて、DeNB-1は、DeNB110-1とRN120-1との間にS1-U/Unベアラを設定する(S523)。同様に、MME43は、S-GW41を介してDeNB110-2に対して、DeNB110-2とRN120-2との間のS1-U/Unベアラの確立を指示する。この指示を受けて、DeNB-2は、DeNB110-2とRN120-2との間にS1-U/Unベアラを設定する(S529)。次いで、MME43は、S-GW41に対して、DeNB110-1とS-GW41と間と、DeNB110-2とS-GW41と間と、のそれぞれについてS1-U/Unベアラの確立を指示する。この指示を受けて、S-GW41は、DeNB110-1とS-GW41と間と、DeNB110-2とS-GW41と間と、のそれぞれにS1-U/Unベアラを設定する(S525、S527)。そして、一連のベアラの設定が完了すると、S-GW41からMME43に対して、MECベアラの設定要求に対する応答が送信される(S531)。 Further, the MME 43 instructs the DeNB 110-1 via the S-GW 41 to establish an S1-U / Un bearer between the DeNB 110-1 and the RN 120-1. Upon receiving this instruction, DeNB-1 sets up an S1-U / Un bearer between DeNB 110-1 and RN 120-1 (S523). Similarly, the MME 43 instructs the DeNB 110-2 via the S-GW 41 to establish an S1-U / Un bearer between the DeNB 110-2 and the RN 120-2. In response to this instruction, DeNB-2 sets up an S1-U / Un bearer between DeNB 110-2 and RN 120-2 (S529). Next, the MME 43 instructs the S-GW 41 to establish S1-U / Un bearers between the DeNB 110-1 and the S-GW 41 and between the DeNB 110-2 and the S-GW 41, respectively. In response to this instruction, the S-GW 41 sets S1-U / Un bearers between the DeNB 110-1 and the S-GW 41 and between the DeNB 110-2 and the S-GW 41 (S525, S527). . When a series of bearer settings is completed, a response to the MEC bearer setting request is transmitted from the S-GW 41 to the MME 43 (S531).
 次いで、MECサーバ300-1及び300-3の通信ポイントの識別情報(例えば、IPアドレス等)が特定されると、vP-GW_1とMECサーバ300-1の通信ポイントとの間と、vP-GW_3とMECサーバ300-3の通信ポイントとの間とのそれぞれに新規ベアラ(トンネル)がデフォルトベアラとして設定される。また、MME43は、MECサーバ300-1とMECサーバ300-3との間で設定された一連のベアラを仮想化することでMECベアラを設定する。 Next, when identification information (for example, an IP address) of the communication points of the MEC servers 300-1 and 300-3 is specified, between the communication point of the vP-GW_1 and the MEC server 300-1, vP-GW_3 And a new bearer (tunnel) is set as a default bearer between the communication point of the MEC server 300-3. Further, the MME 43 sets the MEC bearer by virtualizing a series of bearers set between the MEC server 300-1 and the MEC server 300-3.
 なお、上記に説明した各ベアラのうち、少なくとも一部のベアラが既に設定(確立)されている場合も想定され得る。このように、既に設定されているベアラが存在する場合には、必ずしも新たにベアラが設定される必要はなく、既に設定されているベアラが使用されてもよい。また、上述した処理により、DeNB110-1とDeNB110-2との間と、RN120-1とDeNB110-1との間と、RN120-2とDeNB110-2との間とのそれぞれに設定されるベアラは、1対1でマッピングされるX2インタフェース用に利用されるベアラと等価である。 Note that it can be assumed that at least some of the bearers described above are already set (established). Thus, when there is a bearer that has already been set, it is not always necessary to set a new bearer, and a bearer that has already been set may be used. Further, the bearers set by the above processing between the DeNB 110-1 and the DeNB 110-2, between the RN 120-1 and the DeNB 110-1, and between the RN 120-2 and the DeNB 110-2 are as follows. It is equivalent to a bearer used for an X2 interface mapped one-to-one.
 そして、MME43は、MECサーバ300-1とMECサーバ300-3と間における各ベアラの設定の完了を確認すると、MECベアラの設定要求に対する応答を、MECサーバ300-1上で動作するアプリケーションAppl-1に送信する(S533)。 When the MME 43 confirms the completion of the setting of each bearer between the MEC server 300-1 and the MEC server 300-3, the MME 43 sends a response to the MEC bearer setting request as an application Appl- 1 is transmitted (S533).
 以上により、MECサーバ300-1とMECサーバ300-3との間が、MECベアラにより接続されることとなる(S535)。これにより、設定されたMECベアラを介して、MECサーバ300-1とMECサーバ300-3との間において、アプリケーションの情報を転送することも可能となる。 Thus, the MEC server 300-1 and the MEC server 300-3 are connected by the MEC bearer (S535). This makes it possible to transfer application information between the MEC server 300-1 and the MEC server 300-3 via the set MEC bearer.
 より具体的な一例として、MECサーバ300-1から、MECサーバ300-3にアプリケーションAppl-1の情報を転送することで、MECサーバ300-3上でアプリケーションAppl-1の情報を引き継いだアプリケーションAppl-3を動作させることも可能となる。また、他の一例として、MECサーバ300-3上でアプリケーションAppl-3を動作させ、当該アプリケーションAppl-3と、MECサーバ300-1上で動作するアプリケーションAppl-1とを互いに連携させてもよい。 As a more specific example, by transferring the information of the application Appl-1 from the MEC server 300-1 to the MEC server 300-3, the application Appl that takes over the information of the application Appl-1 on the MEC server 300-3. -3 can be operated. As another example, the application Appl-3 may be operated on the MEC server 300-3, and the application Appl-3 and the application Appl-1 operating on the MEC server 300-1 may be linked to each other. .
 なお、UE200が、これまで利用していたアプリケーションAppl-1から、新しいMECサーバ300-3上で動作するアプリケーションAppl-3の利用を開始した場合には、UE200からアプリケーションAppl-1へのベアラは、MME43からの指示に基づき解放されてもよい。この場合には、例えば、MME43は、UE200またはアプリケーションからの指示を受けて、当該ベアラの開放を指示してもよい。 Note that when the UE 200 starts using the application Appl-3 operating on the new MEC server 300-3 from the application Appl-1 used so far, the bearer from the UE 200 to the application Appl-1 is , May be released based on an instruction from the MME 43. In this case, for example, the MME 43 may receive an instruction from the UE 200 or an application and instruct to release the bearer.
 なお、本実施例で設定されるMECベアラは、例えば、MECサーバ300-1及び300-3間で設定されるMECベアラでもよいし、プリケーションAppl-1及びAppl-3間(VM間やコンテナ間等)で設定される拡張されたMECベアラであってもよい。 Note that the MEC bearer set in this embodiment may be, for example, an MEC bearer set between the MEC servers 300-1 and 300-3, or between the applications Appl-1 and Appl-3 (between VMs and containers). It may be an extended MEC bearer that is set at the same time.
 以上のような構成により、UE200は、例えば、RN120-2が提供するセルに移動した場合においても、アプリケーションAppl-1から受けていたサービスの提供を、当該アプリケーションAppl-1に替えて、アプリケーションAppl-3から引き続き受けることが可能となる。また、これにより、UE200は、RN120-1及び120-2のそれぞれが提供するセル間を移動するような状況下においても、より好適な環境(例えば、最大遅延、最小保障帯域等を満たす環境)でサービスの提供を受けることが可能となる。 With the above configuration, for example, even when the UE 200 moves to the cell provided by the RN 120-2, the application Appl-1 is replaced with the application Appl-1 by providing the service received from the application Appl-1. -3 can continue to be received. This also allows the UE 200 to have a more suitable environment (for example, an environment that satisfies the maximum delay, the minimum guaranteed bandwidth, etc.) even in a situation where the UE 200 moves between cells provided by each of the RNs 120-1 and 120-2. It becomes possible to receive service provision.
 また、第3の実施例における、MECサーバ300-1とMECサーバ300-3と間の通信におけるプロトコルスタックの一例を、図35~図37と、図38~図40とに示す。図35~図37と、図38~図40とは、MECサーバ間における通信のプロトコルスタックの一例を示した図である。例えば、図35~図37は、MECサーバ300のプロトコルスタックにGTP-Uが含まれない場合のアーキテクチャの一例を示している。図35~図37に示す例の場合には、MECサーバ300のvP-GWで、GTP及びGREプロトコルが終端される。また、図38~図40は、MECサーバ300のプロトコルスタックにGTP-Uが含まれる場合のアーキテクチャの一例を示している。図38~図40に示す例の場合には、MECサーバ300自身を特定するポイントや、VMまたはコンテナを特定するポイント(例えば、IPアドレス等)で、GTP及びGREプロトコルが終端されることとなる。 In addition, FIGS. 35 to 37 and FIGS. 38 to 40 show examples of protocol stacks in communication between the MEC server 300-1 and the MEC server 300-3 in the third embodiment. FIGS. 35 to 37 and FIGS. 38 to 40 are diagrams showing examples of protocol stacks for communication between MEC servers. For example, FIGS. 35 to 37 show an example of the architecture in the case where the protocol stack of the MEC server 300 does not include GTP-U. In the case of the examples shown in FIGS. 35 to 37, the GTP and GRE protocols are terminated by the vP-GW of the MEC server 300. FIG. 38 to FIG. 40 show an example of the architecture when the protocol stack of the MEC server 300 includes GTP-U. In the case of the examples shown in FIGS. 38 to 40, the GTP and GRE protocols are terminated at a point that identifies the MEC server 300 itself, or a point that identifies a VM or a container (for example, an IP address). .
  <4.5.第4の実施例>
 次いで、本実施形態の第4の実施例として、互いに異なるPLMN(Public Land Mobile Network)に位置するMECサーバ間においてMECベアラを設定する際に、所謂アクセスコントロールを行う場合の一例について説明する。例えば、図41は、本実施形態の第4の実施例の概要について説明するための説明図である。
<4.5. Fourth embodiment>
Next, as a fourth example of the present embodiment, an example in which so-called access control is performed when an MEC bearer is set between MEC servers located in different PLMNs (Public Land Mobile Networks) will be described. For example, FIG. 41 is an explanatory diagram for describing an overview of a fourth example of the present embodiment.
 例えば、図41は、Visited PLMN側に位置するMECサーバ300から、Home PLMN側に位置するMECサーバへのアクセスをコントロールする場合の構成の一例を示している。なお、Visited PLMNは、UEの契約先とは異なる他の事業者(例えば、キャリア)が提供するPLMN(即ち、ローミングにより接続するPLMN)を示している。また、Home PLMNは、UEの契約先となる事業者が提供するPLMNを示している。 For example, FIG. 41 shows an example of a configuration for controlling access from the MEC server 300 located on the Visited PLMN side to the MEC server located on the Home PLMN side. The Visited PLMN indicates a PLMN provided by another operator (for example, a carrier) different from the contracted party of the UE (that is, a PLMN connected by roaming). Further, Home PLMN indicates a PLMN provided by an operator that is a contract destination of the UE.
 図41に示すように、Visited PLMN側に位置するMECサーバから、Home PLMN側のMECサーバ上で動作するサービスへのアクセスは、Visited PLMN側のvS-GWから、Home PLMN側のvP-GWを介して行われる。このとき、本実施例に係るシステム1では、例えば、Home PLMN側のHSSに登録されたアクセスポリシーに基づき、Visited PLMN側のMMEが、Visited PLMN側に位置するMECサーバから、Home PLMN側のMECサーバ300へのアクセスを制御する。 As shown in FIG. 41, the access from the MEC server located on the Visited PLMN side to the service operating on the Home PLMN side MEC server can be accessed from the vPL-GW on the Home PLMN side from the vS-GW on the Visited PLMN side. Done through. At this time, in the system 1 according to the present embodiment, for example, based on the access policy registered in the HSS on the Home PLMN side, the MME on the Visited PLMN side changes from the MEC server located on the Visited PLMN side to the MEC on the Home PLMN side. Control access to the server 300.
 具体的な一例として、「HSS Provisioning APN List」として示したローミング時のアクセスポリシーでは、APNとして「vAPN-H1」が割り振られたサービス(即ち、「OTT-1」が提供するサービス)については、Visited PLMN側からのアクセスが許可(Allowed)されている。また、APNとして「vAPN-H2」が割り振られたサービス(即ち、「OTT-2」が提供するサービス)については、Visited PLMN側からのアクセスが禁止(Not-Allowed)されている。また、当該アクセスポリシーでは、APNとして「vAPN-V1」が割り振られたVisited PLMN側のサービスと、「vAPN-H1」が割り振られたHome PLMN側のサービスとの間のアクセスが個別に許可されている。 As a specific example, in the access policy at the time of roaming shown as “HSS Provisioning APN List”, for services to which “vAPN-H1” is assigned as APN (that is, services provided by “OTT-1”), Access from the visited PLMN side is allowed (Allowed). Also, access from the Visited PLMN side is prohibited (Not-Allowed) for a service to which “vAPN-H2” is assigned as an APN (ie, a service provided by “OTT-2”). In addition, in this access policy, access between the Visited PLMN side service assigned with “vAPN-V1” as the APN and the Home PLMN side service assigned with “vAPN-H1” is individually permitted. Yes.
 即ち、Visited PLMN側のMMEは、Home PLMN側のHSSに登録されたローミング時のアクセスポリシーに基づき、例えば、Visited PLMN側のMECサーバから、「vAPN-H2」が割り振られた「OTT-2」が提供するサービスへのアクセスを禁止する。また、Visited PLMN側のMMEは、当該アクセスポリシーに基づき、Visited PLMN側のMECサーバから、「vAPN-H1」が割り振られた「OTT-1」が提供するサービスへのアクセスを許可する。 That is, the MME on the Visited PLMN side is based on the access policy for roaming registered in the HSS on the Home PLMN side, for example, “OTT-2” to which “vAPN-H2” is assigned from the MEC server on the Visited PLMN side. Access to services provided by is prohibited. Also, the MME on the Visited PLMN side permits access to the service provided by “OTT-1” to which “vAPN-H1” is allocated from the MEC server on the Visited PLMN side based on the access policy.
 また、本実施例に係るシステム1では、上述したローミング時のアクセスポリシーに基づき、例えば、Visited PLMN側で動作するMECサーバ(または、サービス)と、Home PLMN側で動作するMECサーバ(または、サービス)との間におけるMECベアラの設定が制御される。 In the system 1 according to the present embodiment, for example, based on the access policy at the time of roaming, for example, an MEC server (or service) operating on the Visited PLMN side and an MEC server (or service) operating on the Home PLMN side are used. ) Is controlled.
 具体的な一例として、Visited PLMN側のMMEは、Home PLMN側のHSSに登録されたローミング時のアクセスポリシーに基づき、Visited PLMN側のMECサーバから、「vAPN-H1」が割り振られた「OTT-1」が提供するサービスへのMECベアラの設定を許可する。また、Visited PLMN側のMMEは、当該アクセスポリシーに基づき、Visited PLMN側のMECサーバから、「vAPN-H2」が割り振られた「OTT-2」が提供するサービスへのMECベアラの設定を禁止する。 As a specific example, the Visited PLMN side MME is based on the roaming access policy registered in the Home PLMN side HSS, and “VAPN-H1” is allocated from the Visited PLMN side MEC server. The setting of the MEC bearer to the service provided by “1” is permitted. Also, the MME on the Visited PLMN side prohibits the setting of the MEC bearer from the Visited PLMN side MEC server to the service provided by “OTT-2” to which “vAPN-H2” is allocated. .
 なお、上述したローミング時におけるアクセスコントロールは、例えば、異なるキャリアのネットワークに設置されたMECサーバ間のアクセスコントロールや、移動性を具備した中継基地局に実装されるMECサーバを考慮したアクセスコントロールにも応用することが可能である。また、上述したアクセスコントロールは、所謂ローカルブレークアウトに適用されてもよい。 Note that the above-described access control at the time of roaming includes, for example, access control between MEC servers installed in networks of different carriers, and access control considering an MEC server installed in a relay base station having mobility. It is possible to apply. Further, the access control described above may be applied to so-called local breakout.
  <4.6.第5の実施例>
 次いで、本実施形態の第5の実施例として、本実施形態に係るシステム1に対してPCC(Policy and Charging Control)の仕組みを導入する場合の一例について説明する。
<4.6. Fifth embodiment>
Next, as a fifth example of the present embodiment, an example in which a mechanism of PCC (Policy and Charging Control) is introduced to the system 1 according to the present embodiment will be described.
 例えば、図42は、本実施形態の第4の実施例の概要について説明するための説明図であり、PCCのアーキテクチャの一例について示している。前述したように、PCRFは、ポリシー及び課金制御を行う機能エンティティである。より具体的な一例として、PCRFは、オンライン課金システム(OCS:Online Charging System)や、オフライン課金システム(OFCS:Offline Charging System)と連携することで、課金状況に応じてQoSの切り替え等を実行する。なお、TDF(Traffic Detection Function)は、ネットワーク上のトラフィックの識別及び測定や、トラフィックを確保するためのポリシーの適用等を行う機能である。 For example, FIG. 42 is an explanatory diagram for explaining the outline of the fourth example of the present embodiment, and shows an example of the architecture of the PCC. As described above, the PCRF is a functional entity that performs policy and charging control. As a more specific example, the PCRF executes QoS switching or the like according to the charging status by linking with an online charging system (OCS: Online Charging System) or an offline charging system (OFCS: Offline Charging System). . The TDF (Traffic Detection Function) is a function for identifying and measuring traffic on the network, applying a policy for securing traffic, and the like.
 また、PCEF(Policy and Charging Enforcement Function)は、PCRFから通知される情報に従い、IPフロー単位にポリシー制御を実施及び課金を行う機能エンティティである。PCEFは、例えば、前述したP-GWに実装され得る。また、BBERF(Bearer Biding and Event Reporting Functions)は、PCEFと同様に、PCRFから通知される情報に従いポリシー制御を実行する。また、BBERFは、P-GWから受信したパケットをeNBに転送する無線アクセスベアラの特定等のような、アクセスシステム固有のQoS制御との連携処理を実行する。BBERFは、例えば、前述したS-GWに実装され得る。また、前述したMECサーバは、図42に示すAF(Application Function)に相当し得る。 PCEF (Policy and Charging Enforcement Function) is a functional entity that performs policy control and charges for each IP flow according to information notified from the PCRF. The PCEF can be mounted on, for example, the P-GW described above. Further, BBERF (Bearer Biding and Event Reporting Functions) executes policy control according to information notified from the PCRF, similarly to PCEF. Further, BBERF executes cooperation processing with QoS control unique to the access system, such as identification of a radio access bearer that transfers a packet received from the P-GW to the eNB. BBERF can be implemented in the above-described S-GW, for example. The MEC server described above may correspond to an AF (Application Function) shown in FIG.
 なお、図42に示すアーキテクチャにおいては、AF(即ち、MECサーバ)から、PCRFに対するインタフェースは、QoS等の情報を共有(通知)するためのRxインタフェースのみが規定されている。そのため、AFからPCRFに対してQoSの要求を行うインタフェースは規定されておらず、あくまで、PCRFが、AFから通知される情報に応じてQoSを切り替えている。 In the architecture shown in FIG. 42, only an Rx interface for sharing (notifying) information such as QoS is defined as an interface from the AF (that is, the MEC server) to the PCRF. Therefore, an interface for making a QoS request from the AF to the PCRF is not defined, and the PCRF switches the QoS according to information notified from the AF.
 これに対して、現在、SCEFと呼ばれる新たな機能の適用が検討されている。SCEFは、SCS(Service Capability Server)やAS(Application Serve)からEPC内のネットワーク機能にアクセスして、情報のやり取りを可能にするインタフェースを提供する。 In contrast, the application of a new function called SCEF is currently being studied. SCEF provides an interface that enables the exchange of information by accessing the network function in EPC from SCS (Service Capability Server) or AS (Application Serve).
 例えば、図43は、SCEFの適用により実現されるインタフェースの一例について説明するための説明図である。図43に示すように、SCEFが適用されることで、例えば、SCSやASから、PCRFに対してQoSの要求を行うためのインタフェースが提供される。これにより、例えば、MECサーバ(または、MECサーバ上で動作するアプリケーション)から、PCRFに対してポリシー(例えば、QoS等)の設定を行うことも可能となる。 For example, FIG. 43 is an explanatory diagram for describing an example of an interface realized by application of SCEF. As shown in FIG. 43, by applying SCEF, for example, an interface for making a QoS request to the PCRF from the SCS or AS is provided. Thereby, for example, a policy (for example, QoS) can be set for the PCRF from the MEC server (or an application running on the MEC server).
 また、図44は、SCEFの適用により実現されるインタフェースの他の一例について説明するための説明図である。図44に示すように、SCEFが適用されることで、例えば、SCS及びASと、HSSとの間のインタフェースが提供される。これにより、例えば、MECサーバ(または、MECサーバ上で動作するアプリケーション)から、MMEに対して、SCEF及びHSSを介して、他のMECサーバへの接続要求(即ち、MECベアラの設定要求)を直接行うことも可能となる。 FIG. 44 is an explanatory diagram for describing another example of an interface realized by application of SCEF. As shown in FIG. 44, application of SCEF provides, for example, an interface between the SCS and AS and the HSS. Thereby, for example, an MEC server (or an application running on the MEC server) sends a connection request to another MEC server (that is, an MEC bearer setting request) to the MME via the SCEF and the HSS. It can also be done directly.
 また、図45~図47は、SCEFの適用により実現されるインタフェースの他の一例について説明するための説明図である。例えば、図45に示すように、SCEFが適用されることで、例えば、MECサーバ(または、MECサーバ上で動作するアプリケーション)からMMEに対してベアラ(例えば、MECベアラ)の設定要求を行うことも可能となる。また、MECサーバからMMEに対してベアラの設定要求を行った場合に、SCEFの適用により提供されるインタフェースを介して、ベアラの設定状況(例えば、ベアラの設定が完了したか否か)をモニタリングすることも可能となる。例えば、図46は、モニタリングの要求に係る一連の処理の流れの一例を示している。また、図47は、モニタリングイベントのレポートに係る一連の処理の流れの一例を示している。 45 to 47 are explanatory diagrams for explaining another example of an interface realized by application of SCEF. For example, as shown in FIG. 45, when SCEF is applied, for example, an MEC server (or an application operating on the MEC server) issues a bearer (for example, MEC bearer) setting request to the MME. Is also possible. Also, when a bearer setting request is made from the MEC server to the MME, the bearer setting status (for example, whether or not the bearer setting is completed) is monitored via the interface provided by the application of SCEF. It is also possible to do. For example, FIG. 46 shows an example of a flow of a series of processes related to the monitoring request. FIG. 47 shows an example of a flow of a series of processes related to the monitoring event report.
 また、MECサーバに対して、ADC(Application Detection and Control Function)と呼ばれる機能を適用してもよい。例えば、図48及び図49は、MECサーバに対してADCを適用するためのアーキテクチャの一例を示している。例えば、ADCは、図48に示すように、TDFに具備され得る。また、他の一例として、ADCは、図49に示すように、vP-GW上で動作するvPCEFに具備されていてもよい。 Also, a function called ADC (Application Detection and Control Function) may be applied to the MEC server. For example, FIGS. 48 and 49 show an example of an architecture for applying an ADC to an MEC server. For example, the ADC can be included in the TDF as shown in FIG. As another example, the ADC may be included in a vPCEF operating on the vP-GW as shown in FIG.
 このように、MECサーバに対してADCを適用することで、例えば、MECサーバからPCRFに対して、定義されたアプリケーションの検出及び制御(例えば、開始や停止)のレポートを、Rxインタフェースを介さずに実現することが可能となる。これにより、例えば、複数のMECサーバが連携してサービスを提供するような状況下(例えば、クラウドゲーミング等)において、MECサーバ間で要求されるQoS(例えば、遅延や保障帯域等)を確保するために、MECサーバからPCRFに対して、ベアラなどのリソースのアサインを行うことが可能となる。 In this way, by applying the ADC to the MEC server, for example, a report of detection and control (for example, start and stop) of a defined application from the MEC server to the PCRF is not transmitted via the Rx interface. Can be realized. As a result, for example, in a situation where a plurality of MEC servers cooperate to provide a service (for example, cloud gaming), QoS (for example, delay, guaranteed bandwidth, etc.) required between the MEC servers is ensured. For this reason, it is possible to assign a resource such as a bearer from the MEC server to the PCRF.
 なお、上記MMEがネットワーク内に複数ある場合には、必要に応じて、適切な認証手続きを経て互いに連携することで、GWマッピングリスト等を共有参照することも可能である。なお、その際には、現在3GPPで規定されているS10インタフェースを利用することも可能である。例えば、図50Aは、MME間の通信におけるプロトコルスタックの一例を示している。 In addition, when there are a plurality of the MMEs in the network, it is possible to share and refer to the GW mapping list or the like by cooperating with each other through an appropriate authentication procedure as necessary. In this case, it is also possible to use the S10 interface currently defined by 3GPP. For example, FIG. 50A shows an example of a protocol stack in communication between MMEs.
  <4.7.評価>
 以上、本実施形態に係る各実施例を詳細に説明した。
<4.7. Evaluation>
Heretofore, each example according to the present embodiment has been described in detail.
 本実施形態に依れば、MECサーバに対して、既存のネットワークプロトコルを最大限流用し、既存のネットワーク機器への変更を行うことなく、これまで規定されていなかった無線通信ネットワーク内に設置されるサーバ(MECサーバ)間の通信経路を実現することが可能となる。 According to the present embodiment, the MEC server is installed in a wireless communication network that has not been defined so far without maximizing the use of the existing network protocol and changing the existing network device. It is possible to realize a communication path between servers (MEC servers).
 また、本実施形態に依れば、無線通信ネットワーク内外に関わらず、複数のMECサーバを連携させることが可能となる。そのため、例えば、サービスの提供に制約があるアプリケーションについても、MECサーバ間の連携により、ユーザに対してより好適な態様でサービスを提供することが可能となる。さらに、計算資源の異なる複数のMECサーバを連携させることも可能になるため、所謂分散処理型のサービスの提供を、無線通信ネットワークを介して行うことも可能となる。 In addition, according to the present embodiment, a plurality of MEC servers can be linked regardless of inside or outside the wireless communication network. For this reason, for example, even for an application in which service provision is restricted, it is possible to provide a service in a more favorable manner to the user by cooperation between the MEC servers. Furthermore, since a plurality of MEC servers having different computing resources can be linked, so-called distributed processing type services can be provided via a wireless communication network.
 また、本実施形態に依れば、既存のOSS及びBSSの仕組みを利用して、MECサーバ間におけるアプリケーションの情報の移動を行うことが可能となる。 In addition, according to the present embodiment, it is possible to move application information between MEC servers using the existing OSS and BSS mechanisms.
 また、本実施形態に依れば、MECサーバ間の接続に対して、LTEで規定されているEBSベアラをMECサーバ内まで提供することが可能となる。これにより、例えば、LTEにおけるQoSの仕組みをMECサーバ間の通信(例えば、双方向通信)に適用することも可能となる。 Further, according to the present embodiment, it is possible to provide the EBS bearer specified by LTE to the MEC server for connection between the MEC servers. Thereby, for example, the QoS mechanism in LTE can be applied to communication (for example, bidirectional communication) between MEC servers.
 また、本実施形態に依れば、SDN(Software-Defined Networking)/NFVの仕組みと、既存の3GPPの仕組みと、の双方を利用することが可能となる。そのため、例えば、今後発展が期待されるIoTネットワークや、将来実現される5Gネットワークへの適用も可能となる。 Further, according to the present embodiment, it is possible to use both the SDN (Software-Defined Networking) / NFV mechanism and the existing 3GPP mechanism. Therefore, for example, application to an IoT network expected to be developed in the future and a 5G network realized in the future is possible.
 また、本実施形態に依れば、SDN/NFVのVNFにより、ネットワーク機能を仮想化することで、すべてのパケットに対してDPIを行わずに、サーバ間(MECサーバ間)の通信を実現することが可能となる。そのため、例えば、DPIの実行に伴うシステムへの負荷を軽減することが可能となる。また、DPIを行う必要がなくなるため、MECサーバを必ずしもネットワーク機器間に設置する必要がなくなり、既存のネットワークへのMECサーバの設置がより容易になる。 In addition, according to the present embodiment, the network function is virtualized by VDN of SDN / NFV, thereby realizing communication between servers (between MEC servers) without performing DPI for all packets. It becomes possible. Therefore, for example, it is possible to reduce the load on the system accompanying the execution of DPI. Further, since it is not necessary to perform DPI, it is not always necessary to install an MEC server between network devices, and it becomes easier to install the MEC server in an existing network.
 また、本実施形態に依れば、MECサーバに対してAPNをアサインし、HSS、MME、及びPCRF等の仕組みを利用することで、例えば、当該MECサーバでサービスを提供するOTT(例えば、サービスプロバイダー)ごとに、接続可能なMECサーバの認証及び特定を行うことが可能となる。 Further, according to the present embodiment, by assigning an APN to an MEC server and using a mechanism such as HSS, MME, and PCRF, for example, an OTT (for example, a service provided by the MEC server) For each provider), it is possible to authenticate and specify a connectable MEC server.
 また、本実施形態に依れば、各APNに対して、3GPPの既存の枠組みであるEPSベアラを利用することが可能である。そのため、例えば、各サービスに対して適切なQoSを提供することも可能となる。 Also, according to this embodiment, it is possible to use an EPS bearer, which is an existing framework of 3GPP, for each APN. Therefore, for example, it is possible to provide appropriate QoS for each service.
 また、本実施形態に依れば、MECプラットフォームが提供するサービスディスカバリ機能を利用することで、MECサーバを特定するための情報(例えば、APN等)を取得することが可能となる。そのため、例えば、OSS、UE、または、アプリケーション(例えば、MECサーバ上で動作するアプリケーション)からの指示に基づき、MECサーバ間の通信経路を確立し、当該MECサーバ間においてアプリケーションの情報を移動させることも可能となる。また、このような仕組みにより、例えば、UEがセル間を移動するような状況下においても、より好適な環境(例えば、最大遅延、最小保障帯域等を満たす環境)を提供可能なMECサーバから、当該UEに対してサービスを提供することが可能となる。 Further, according to the present embodiment, it is possible to acquire information (for example, APN) for specifying the MEC server by using the service discovery function provided by the MEC platform. Therefore, for example, based on an instruction from the OSS, UE, or an application (for example, an application operating on the MEC server), a communication path between the MEC servers is established, and application information is moved between the MEC servers. Is also possible. In addition, with such a mechanism, for example, from a MEC server that can provide a more suitable environment (for example, an environment that satisfies the maximum delay, the minimum guaranteed bandwidth, etc.) even in a situation where the UE moves between cells, A service can be provided to the UE.
 また、本実施形態に依れば、3GPPの枠組みを利用することで、課金やポリシー制御を、MECサーバ上のアプリケーションごとや、VMごと、またはコンテナごとに行うことが可能となる。 Further, according to the present embodiment, by using the 3GPP framework, it becomes possible to perform charging and policy control for each application on the MEC server, for each VM, or for each container.
 また、本実施形態に依れば、サーバ(例えば、MECサーバ)ごとや、VMごと、またはコンテナごと(換言すると、APNごと)のアクセスポリシーをHSSに登録することで、ローミング時やローカルブレークアウト時におけるサーバへのアクセス制御を実現することが可能となる。 Further, according to the present embodiment, by registering an access policy for each server (for example, MEC server), for each VM, or for each container (in other words, for each APN) in the HSS, it is possible to perform roaming or local breakout. It becomes possible to realize access control to the server at the time.
 なお、上述した例では、LTEの無線通信アクセス収容網を対象として、MMEが、eNB、DeNB、及びRN等で動作するMECサーバ間にMECベアラを設定する例について説明した。なお、本実施形態の適用対象は、必ずしもLTEの無線通信アクセス収容網には限定されない。例えば、APNは、P-GWの指定のみに限らず、例えば、GGSN(GPRS Support Node)に適用され得る。そのため、本実施形態は、例えば、GGSNが利用されるシステムにも適用することが可能である。 In the above-described example, the example in which the MME sets the MEC bearer between the MEC servers operating in the eNB, the DeNB, the RN, and the like has been described for the LTE wireless communication access accommodating network. The application target of the present embodiment is not necessarily limited to the LTE wireless communication access accommodating network. For example, the APN is not limited to the designation of the P-GW but can be applied to, for example, a GGSN (GPRS Support Node). Therefore, this embodiment can be applied to a system in which GGSN is used, for example.
 より具体的な一例として、本実施形態を、所謂3Gの無線通信アクセス収容網に適用してもよい。例えば、図50Bは、EPCネットワークアーキテクチャの一例を示した図である。図50Bに示すように、3Gの無線アクセス収容網においては、SGSNが、LTEの無線通信アクセス収容網におけるMMEと同様の役割を果たす。そのため、例えば、SGSNが、HSSにあらかじめ記録及び管理された情報に基づきGWマッピングリストを生成し、当該GWマッピングリストに基づき、RNCやNodeB上で動作するMECサーバ間にMECベアラを設定すればよい。 As a more specific example, the present embodiment may be applied to a so-called 3G wireless communication access accommodating network. For example, FIG. 50B is a diagram illustrating an example of an EPC network architecture. As shown in FIG. 50B, in the 3G radio access accommodating network, the SGSN plays the same role as the MME in the LTE radio communication access accommodating network. Therefore, for example, the SGSN may generate a GW mapping list based on information recorded and managed in advance in the HSS, and set an MEC bearer between MEC servers operating on the RNC or NodeB based on the GW mapping list. .
 <<5.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、MECサーバ300又はアプリケーションサーバ60は、タワーサーバ、ラックサーバ、又はブレードサーバなどのいずれかの種類のサーバとして実現されてもよい。また、MECサーバ300又はアプリケーションサーバ60の少なくとも一部の構成要素は、サーバに搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール、又はブレードサーバのスロットに挿入されるカード若しくはブレード)において実現されてもよい。
<< 5. Application example >>
The technology according to the present disclosure can be applied to various products. For example, the MEC server 300 or the application server 60 may be realized as any type of server such as a tower server, a rack server, or a blade server. In addition, at least a part of the components of the MEC server 300 or the application server 60 is a module mounted on the server (for example, an integrated circuit module configured by one die, or a card or blade inserted into a slot of the blade server ).
 また、例えば、MECサーバ300は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、MECサーバ300は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。MECサーバ300は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、MECサーバ300として動作してもよい。さらに、MECサーバ300の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。 Also, for example, the MEC server 300 may be realized as any kind of eNB (evolved Node B) such as a macro eNB or a small eNB. The small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB. Instead, the MEC server 300 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station). The MEC server 300 may include a main body (also referred to as a base station device) that controls wireless communication, and one or more RRHs (Remote Radio Heads) that are arranged at a location different from the main body. In addition, various types of terminals described later may operate as the MEC server 300 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the MEC server 300 may be realized in a base station device or a module for the base station device.
 また、例えば、MECサーバ300は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、MECサーバ300は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として、監視カメラ、各種センサーデバイスのゲートウェイ端末、車、バス、電車、航空機などの移動手段を実現する乗り物等において実現されてもよい。さらに、MECサーバ300の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。 Further, for example, the MEC server 300 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as. In addition, the MEC server 300 is a terminal that performs M2M (Machine To Machine) communication (also referred to as MTC (Machine Type Communication) terminal), such as surveillance cameras, gateway terminals of various sensor devices, cars, buses, trains, airplanes, etc. You may implement | achieve in the vehicle etc. which implement | achieve a means. Furthermore, at least a part of the components of the MEC server 300 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  <5.1.サーバに関する応用例>
 図51は、本開示に係る技術が適用され得るサーバ700の概略的な構成の一例を示すブロック図である。サーバ700は、プロセッサ701、メモリ702、ストレージ703、ネットワークインタフェース704及びバス706を備える。
<5.1. Application examples for servers>
FIG. 51 is a block diagram illustrating an example of a schematic configuration of a server 700 to which the technology according to the present disclosure can be applied. The server 700 includes a processor 701, a memory 702, a storage 703, a network interface 704, and a bus 706.
 プロセッサ701は、例えばCPU(Central Processing Unit)又はDSP(Digital Signal Processor)であってよく、サーバ700の各種機能を制御する。メモリ702は、RAM(Random Access Memory)及びROM(Read Only Memory)を含み、プロセッサ701により実行されるプログラム及びデータを記憶する。ストレージ703は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。 The processor 701 may be a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), for example, and controls various functions of the server 700. The memory 702 includes a RAM (Random Access Memory) and a ROM (Read Only Memory), and stores programs and data executed by the processor 701. The storage 703 may include a storage medium such as a semiconductor memory or a hard disk.
 ネットワークインタフェース704は、サーバ700を有線通信ネットワーク705に接続するための有線通信インタフェースである。有線通信ネットワーク705は、EPC(Evolved Packet Core)などのコアネットワークであってもよく、又はインターネットなどのPDN(Packet Data Network)であってもよい。 The network interface 704 is a wired communication interface for connecting the server 700 to the wired communication network 705. The wired communication network 705 may be a core network such as EPC (Evolved Packet Core) or a PDN (Packet Data Network) such as the Internet.
 バス706は、プロセッサ701、メモリ702、ストレージ703及びネットワークインタフェース704を互いに接続する。バス706は、速度の異なる2つ以上のバス(例えば、高速バス及び低速バス)を含んでもよい。 The bus 706 connects the processor 701, the memory 702, the storage 703, and the network interface 704 to each other. The bus 706 may include two or more buses with different speeds (eg, a high speed bus and a low speed bus).
 図51に示したサーバ700において、図11を参照して説明したMECサーバ300に含まれる1つ以上の構成要素(MECプラットフォーム331、VNF333及び/又はサービス提供部335)は、プロセッサ701において実装されてもよい。一例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)がサーバ700にインストールされ、プロセッサ701が当該プログラムを実行してもよい。別の例として、サーバ700は、プロセッサ701及びメモリ702を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムをメモリ702に記憶し、当該プログラムをプロセッサ701により実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてサーバ700又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるための上記プログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the server 700 shown in FIG. 51, one or more components (MEC platform 331, VNF 333 and / or service providing unit 335) included in the MEC server 300 described with reference to FIG. May be. As an example, a program for causing a processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components) is installed in the server 700, and the processor 701 is The program may be executed. As another example, the server 700 may include a module including the processor 701 and the memory 702, and the one or more components may be mounted in the module. In this case, the module may store a program for causing the processor to function as the one or more components in the memory 702 and execute the program by the processor 701. As described above, the server 700 or the module may be provided as an apparatus including the one or more components, and the program for causing a processor to function as the one or more components may be provided. . In addition, a readable recording medium in which the program is recorded may be provided.
 図51に示したサーバ700において、図12を参照して説明したアプリケーションサーバ60に含まれる1つ以上の構成要素(サービス提供部64)は、プロセッサ701において実装されてもよい。一例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)がサーバ700にインストールされ、プロセッサ701が当該プログラムを実行してもよい。別の例として、サーバ700は、プロセッサ701及びメモリ702を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムをメモリ702に記憶し、当該プログラムをプロセッサ701により実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてサーバ700又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるための上記プログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 51, one or more components (service providing unit 64) included in the application server 60 described with reference to FIG. 12 may be implemented in the processor 701. In the server 700 illustrated in FIG. As an example, a program for causing a processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components) is installed in the server 700, and the processor 701 is The program may be executed. As another example, the server 700 may include a module including the processor 701 and the memory 702, and the one or more components may be mounted in the module. In this case, the module may store a program for causing the processor to function as the one or more components in the memory 702 and execute the program by the processor 701. As described above, the server 700 or the module may be provided as an apparatus including the one or more components, and the program for causing a processor to function as the one or more components may be provided. . In addition, a readable recording medium in which the program is recorded may be provided.
  <5.2.基地局に関する応用例>
 (第1の応用例)
 図52は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
<5.2. Application examples for base stations>
(First application example)
FIG. 52 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied. The eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図52に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図52にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。 Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820. The eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 52, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. 52 illustrates an example in which the eNB 800 includes a plurality of antennas 810, but the eNB 800 may include a single antenna 810.
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。 The base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。 The controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node. The memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。 The network interface 823 is a communication interface for connecting the base station device 820 to the core network 824. The controller 821 may communicate with the core network node or other eNB via the network interface 823. In that case, the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface). The network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul. When the network interface 823 is a wireless communication interface, the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。 The wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810. The wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like. The BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP). Various signal processing of (Packet Data Convergence Protocol) is executed. The BB processor 826 may have some or all of the logical functions described above instead of the controller 821. The BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good. Further, the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade. On the other hand, the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
 無線通信インタフェース825は、図52に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図52に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図52には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。 The wireless communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 52, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 52, and the plurality of RF circuits 827 may respectively correspond to a plurality of antenna elements, for example. 52 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
 図52に示したeNB800において、図11を参照して説明したMECサーバ300に含まれる1つ以上の構成要素(MECプラットフォーム331、VNF333及び/又はサービス提供部335)は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 52, one or more components (MEC platform 331, VNF 333 and / or service providing unit 335) included in the MEC server 300 described with reference to FIG. 11 are implemented in the wireless communication interface 825. May be. Alternatively, at least some of these components may be implemented in the controller 821. As an example, the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program. Good. As described above, the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be. In addition, a readable recording medium in which the program is recorded may be provided.
 (第2の応用例)
 図53は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
(Second application example)
FIG. 53 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied. The eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図53に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図53にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。 Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860. As illustrated in FIG. 53, the eNB 830 includes a plurality of antennas 840, and the plurality of antennas 840 may correspond to a plurality of frequency bands used by the eNB 830, for example. FIG. 53 illustrates an example in which the eNB 830 includes a plurality of antennas 840, but the eNB 830 may include a single antenna 840.
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図52を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。 The base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857. The controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図52を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図53に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図53には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。 The wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840. The wireless communication interface 855 may typically include a BB processor 856 and the like. The BB processor 856 is the same as the BB processor 826 described with reference to FIG. 52 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857. The wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG. 53, and the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 53 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。 The connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860. The connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。 In addition, the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。 The connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850. The connection interface 861 may be a communication module for communication on the high-speed line.
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図53に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図53には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。 The wireless communication interface 863 transmits and receives wireless signals via the antenna 840. The wireless communication interface 863 may typically include an RF circuit 864 and the like. The RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840. The wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 53, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. FIG. 53 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, but the wireless communication interface 863 may include a single RF circuit 864.
 図53に示したeNB830において、図11を参照して説明したMECサーバ300に含まれる1つ以上の構成要素(MECプラットフォーム331、VNF333及び/又はサービス提供部335)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 53, one or more components (MEC platform 331, VNF 333, and / or service providing unit 335) included in the MEC server 300 described with reference to FIG. 11 include the wireless communication interface 855 and / or Alternatively, the wireless communication interface 863 may be implemented. Alternatively, at least some of these components may be implemented in the controller 851. As an example, the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program. Good. As described above, the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be. In addition, a readable recording medium in which the program is recorded may be provided.
  <5.3.端末装置に関する応用例>
 (第1の応用例)
 図54は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
<5.3. Application examples related to terminal devices>
(First application example)
FIG. 54 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied. The smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915. One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。 The processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900. The memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data. The storage 903 can include a storage medium such as a semiconductor memory or a hard disk. The external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。 The camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image. The sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor. The microphone 908 converts sound input to the smartphone 900 into an audio signal. The input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user. The display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900. The speaker 911 converts an audio signal output from the smartphone 900 into audio.
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図54に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図54には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。 The wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication. The wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like. The BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication. On the other hand, the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916. The wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated. The wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as shown in FIG. 54 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。 Furthermore, the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method. In that case, a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。 Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図54に示したように複数のアンテナ916を有してもよい。なお、図54にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。 Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912. The smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that FIG. 54 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, but the smartphone 900 may include a single antenna 916.
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。 Furthermore, the smartphone 900 may include an antenna 916 for each wireless communication method. In that case, the antenna switch 915 may be omitted from the configuration of the smartphone 900.
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図54に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。 The bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. . The battery 918 supplies power to each block of the smartphone 900 shown in FIG. 54 via a power supply line partially shown by a broken line in the drawing. For example, the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
 図54に示したスマートフォン900において、図11を参照して説明したMECサーバ300に含まれる1つ以上の構成要素(MECプラットフォーム331、VNF333及び/又はサービス提供部335)は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 54, one or more components (MEC platform 331, VNF 333, and / or service providing unit 335) included in the MEC server 300 described with reference to FIG. 11 are included in the wireless communication interface 912. May be implemented. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919. As an example, the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed. As described above, the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided. In addition, a readable recording medium in which the program is recorded may be provided.
 (第2の応用例)
 図55は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
(Second application example)
FIG. 55 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied. The car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication. The interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。 The processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920. The memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。 The GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites. The sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor. The data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。 The content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928. The input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user. The display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced. The speaker 931 outputs the navigation function or the audio of the content to be played back.
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図55に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図55には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。 The wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication. The wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like. The BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication. On the other hand, the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937. The wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated. The wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 55 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。 Further, the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method. A BB processor 934 and an RF circuit 935 may be included for each communication method.
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。 Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図55に示したように複数のアンテナ937を有してもよい。なお、図55にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。 Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933. The car navigation device 920 may include a plurality of antennas 937 as shown in FIG. FIG. 55 shows an example in which the car navigation apparatus 920 includes a plurality of antennas 937, but the car navigation apparatus 920 may include a single antenna 937.
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。 Furthermore, the car navigation device 920 may include an antenna 937 for each wireless communication method. In that case, the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図55に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。 The battery 938 supplies power to each block of the car navigation apparatus 920 shown in FIG. 55 via a power supply line partially shown by a broken line in the figure. Further, the battery 938 stores electric power supplied from the vehicle side.
 図55に示したカーナビゲーション装置920において、図11を参照して説明したMECサーバ300に含まれる1つ以上の構成要素(MECプラットフォーム331、VNF333及び/又はサービス提供部335)は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the car navigation device 920 shown in FIG. 55, one or more components (MEC platform 331, VNF 333 and / or service providing unit 335) included in the MEC server 300 described with reference to FIG. It may be implemented at 933. Alternatively, at least some of these components may be implemented in the processor 921. As an example, the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program. May be. As described above, the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good. In addition, a readable recording medium in which the program is recorded may be provided.
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、MECプラットフォーム331、VNF333及び/又はサービス提供部335を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。 Also, the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as a device including the MEC platform 331, the VNF 333, and / or the service providing unit 335. The vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
 <<6.むすび>>
 以上、図1~図55を参照して、本開示の一実施形態について詳細に説明した。上記説明したように、本実施形態に係るMME43は、接続先を示すAPN(Access Point Name)が関連付けられた接続要求を取得する。そして、MME43は、APNと、当該APNが指定するサーバに接続するために経由するゲートウェイと、が関連付けられた管理情報に基づき、接続要求の要求元と、当該接続要求に関連付けられたAPNが指定するサーバと、の間にベアラを設定する。このような構成より、本実施形態に係るシステム1に依れば、MECにおけるサーバ間(即ち、MECサーバ間)の通信経路をより好適な態様で設定することが可能となる。
<< 6. Conclusion >>
The embodiment of the present disclosure has been described above in detail with reference to FIGS. As described above, the MME 43 according to the present embodiment acquires a connection request associated with an APN (Access Point Name) indicating a connection destination. Then, the MME 43 specifies the request source of the connection request and the APN associated with the connection request based on the management information in which the APN and the gateway through which to connect to the server designated by the APN are associated. A bearer is set between the server and the server to be executed. With such a configuration, according to the system 1 according to the present embodiment, a communication path between servers in the MEC (that is, between MEC servers) can be set in a more preferable manner.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 接続先を示すAPN(Access Point Name)が関連付けられた接続要求を取得する取得部と、
 前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイと、が関連付けられた管理情報に基づき、前記接続要求の要求元と、前記接続要求に関連付けられた前記APNが指定する前記サーバと、の間にベアラを設定する制御部と、
 を備える、装置。
(2)
 前記制御部は、
 前記管理情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバに接続するために経由する少なくとも1つの前記ゲートウェイを特定し、
 前記要求元と、当該サーバと、特定した少なくとも1つの前記ゲートウェイとのそれぞれの間にベアラを設定する、
 前記(1)に記載の装置。
(3)
 前記制御部は、前記要求元と、前記APNが指定する前記サーバと、当該サーバに接続するために経由する前記ゲートウェイと、のそれぞれの間に設定した一連のベアラを、当該要求元と当該サーバとを接続する仮想的なベアラとして設定する、前記(2)に記載の装置。
(4)
 前記APNが指定する前記サーバは、移動体通信ネットワークの物理サーバ上で動作する仮想サーバであり、
 前記制御部は、
 前記管理情報に基づき、少なくとも1つの前記ゲートウェイとして、前記APNが指定する前記仮想サーバが動作する前記物理サーバに接続するために経由する移動体通信ネットワーク上の第1のゲートウェイと、当該物理サーバと当該仮想サーバとを接続するための仮想的な第2のゲートウェイと、を特定し、
 少なくとも、特定した前記第1のゲートウェイと、当該物理サーバと、特定した前記第2のゲートウェイと、当該仮想サーバとそれぞれの間にベアラを設定する、
 前記(2)または(3)に記載の装置。
(5)
 前記APNは、前記サーバに関連付けられており、
 前記制御部は、前記管理情報に基づき、前記接続要求の要求元と、前記接続要求に関連付けられた前記APNが示す前記サーバと、の間にベアラを設定する
 前記(1)~(4)のいずれか一項に記載の装置。
(6)
 前記APNは、当該APNが指定する前記サーバ上で動作するアプリケーションに関連付けられており、
 前記取得部は、前記APNと、前記サーバ上で動作する前記アプリケーションを特定するための識別情報と、が関連付けられた前記接続要求を取得し、
 前記制御部は、前記識別情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバと、当該APNが示す前記アプリケーションと、の間にベアラを設定する、
 前記(1)~(4)のいずれか一項に記載の装置。
(7)
 前記APNは、サービスの提供者に関連付けられており、
 前記制御部は、前記管理情報に基づき、前記要求元と、前記接続要求に関連付けられた前記APNが示す前記提供者が前記サービスを提供するための前記サーバと、の間に前記ベアラを設定する、前記(1)~(4)のいずれか一項に記載の装置。
(9)
 前記APNは、当該APNが指定する前記サーバ上で動作する仮想マシンに関連付けられており、
 前記取得部は、前記APNと、前記サーバ上で動作する前記仮想マシンを特定するための識別情報と、が関連付けられた前記接続要求を取得し、
 前記制御部は、前記識別情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバと、当該APNが示す前記仮想マシンと、の間にベアラを設定する、
 前記(1)~(4)のいずれか一項に記載の装置。
(9)
 前記APNは、当該APNが指定する前記サーバ上で動作するコンテナに関連付けられており、
 前記取得部は、前記APNと、前記サーバ上で動作する前記コンテナを特定するための識別情報と、が関連付けられた前記接続要求を取得し、
 前記制御部は、前記識別情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバと、当該APNが示す前記コンテナと、の間にベアラを設定する、
 前記(1)~(4)のいずれか一項に記載の装置。
(10)
 前記制御部は、前記APNごとに設定するベアラの種別を制御する、前記(1)~(9)のいずれか一項に記載の装置。
(11)
 前記制御部は、前記APNごとに、当該APNが指定する前記サーバへの接続を選択的に制限する、前記(1)~(10)のいずれか一項に記載の装置。
(12)
 接続先を示すAPN(Access Point Name)が関連付けられた接続要求を外部装置に送信する送信部と、
 前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイとが関連付けられた管理情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバに接続するために設定されたベアラを介して、当該サーバとの間で通信を実行する処理部と、
 を備える、装置。
(13)
 接続先を示すAPN(Access Point Name)が関連付けられた接続要求を取得することと、
 プロセッサが、前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイと、が関連付けられた管理情報に基づき、前記接続要求の要求元と、前記接続要求に関連付けられた前記APNが指定する前記サーバと、の間にベアラを設定することと、
 を含む、方法。
(14)
 接続先を示すAPN(Access Point Name)が関連付けられた接続要求を外部装置に送信することと、
 プロセッサが、前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイとが関連付けられた管理情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバに接続するために設定されたベアラを介して、当該サーバとの間で通信を実行することと、
 を含む、方法。
(15)
 コンピュータに、
 接続先を示すAPN(Access Point Name)が関連付けられた接続要求を取得することと、
 前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイと、が関連付けられた管理情報に基づき、前記接続要求の要求元と、前記接続要求に関連付けられた前記APNが指定する前記サーバと、の間にベアラを設定することと、
 を実行させる、プログラム。
(16)
 コンピュータに、
 接続先を示すAPN(Access Point Name)が関連付けられた接続要求を外部装置に送信することと、
 前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイとが関連付けられた管理情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバに接続するために設定されたベアラを介して、当該サーバとの間で通信を実行することと、
 を実行させる、プログラム。
The following configurations also belong to the technical scope of the present disclosure.
(1)
An acquisition unit for acquiring a connection request associated with an APN (Access Point Name) indicating a connection destination;
Based on the management information associated with the APN and the gateway through which the APN designates a server to be connected, the connection request request source and the APN associated with the connection request are designated by the APN. A control unit for setting a bearer between the server and
An apparatus comprising:
(2)
The controller is
Identifying at least one gateway through which to connect to the server specified by the APN associated with the connection request based on the management information;
A bearer is set between each of the request source, the server, and the identified at least one gateway;
The apparatus according to (1) above.
(3)
The control unit includes a series of bearers set between the request source, the server specified by the APN, and the gateway that is connected to connect to the server. Is set as a virtual bearer that connects the two.
(4)
The server specified by the APN is a virtual server operating on a physical server of a mobile communication network;
The controller is
Based on the management information, as at least one of the gateways, a first gateway on a mobile communication network that is connected to the physical server on which the virtual server specified by the APN operates, the physical server, A virtual second gateway for connecting to the virtual server,
At least a bearer is set between the identified first gateway, the physical server, the identified second gateway, and the virtual server.
The apparatus according to (2) or (3).
(5)
The APN is associated with the server;
The control unit sets a bearer between the connection request source and the server indicated by the APN associated with the connection request based on the management information. The device according to any one of the above.
(6)
The APN is associated with an application that operates on the server specified by the APN,
The acquisition unit acquires the connection request in which the APN and identification information for specifying the application operating on the server are associated with each other,
The control unit sets a bearer between the server specified by the APN associated with the connection request and the application indicated by the APN based on the identification information.
The apparatus according to any one of (1) to (4).
(7)
The APN is associated with a service provider;
The control unit sets the bearer between the request source and the server for providing the service by the provider indicated by the APN associated with the connection request based on the management information. The apparatus according to any one of (1) to (4).
(9)
The APN is associated with a virtual machine operating on the server specified by the APN,
The acquisition unit acquires the connection request in which the APN is associated with identification information for specifying the virtual machine operating on the server,
The control unit sets a bearer between the server specified by the APN associated with the connection request and the virtual machine indicated by the APN based on the identification information.
The apparatus according to any one of (1) to (4).
(9)
The APN is associated with a container operating on the server designated by the APN,
The acquisition unit acquires the connection request in which the APN and identification information for specifying the container operating on the server are associated with each other,
The control unit sets a bearer between the server specified by the APN associated with the connection request and the container indicated by the APN based on the identification information.
The apparatus according to any one of (1) to (4).
(10)
The apparatus according to any one of (1) to (9), wherein the control unit controls a type of bearer set for each APN.
(11)
The apparatus according to any one of (1) to (10), wherein the control unit selectively restricts connection to the server designated by the APN for each APN.
(12)
A transmission unit that transmits a connection request associated with an APN (Access Point Name) indicating a connection destination to an external device;
Based on the management information in which the APN and the gateway through which to connect to the server designated by the APN are associated, set to connect to the server designated by the APN associated with the connection request A processing unit that performs communication with the server via the bearer;
An apparatus comprising:
(13)
Obtaining a connection request associated with an APN (Access Point Name) indicating a connection destination;
Based on the management information in which the processor associates the APN and the gateway through which to connect to the server designated by the APN, the request source of the connection request and the APN associated with the connection request are Setting up a bearer with the server to be designated;
Including the method.
(14)
Transmitting a connection request associated with an APN (Access Point Name) indicating a connection destination to an external device;
In order for the processor to connect to the server designated by the APN associated with the connection request based on management information associated with the APN and a gateway through which the APN is designated to connect to the server designated by the APN Performing communication with the server via the configured bearer;
Including the method.
(15)
On the computer,
Obtaining a connection request associated with an APN (Access Point Name) indicating a connection destination;
Based on the management information associated with the APN and the gateway through which the APN designates a server to be connected, the connection request request source and the APN associated with the connection request are designated by the APN. Setting up a bearer with the server,
A program that executes
(16)
On the computer,
Transmitting a connection request associated with an APN (Access Point Name) indicating a connection destination to an external device;
Based on the management information in which the APN and the gateway through which to connect to the server designated by the APN are associated, set to connect to the server designated by the APN associated with the connection request Performing communication with the server via the bearer;
A program that executes
 1   システム
 10  セル
 40  コアネットワーク
 41  S-GW
 42  P-GW
 43  MME
 44  HSS
 50  パケットデータネットワーク
 60  アプリケーションサーバ
 61  通信部
 62  記憶部
 63  処理部
 64  サービス提供部
 100 無線通信装置
 200 端末装置
 300 MECサーバ
 310 通信部
 320 記憶部
 330 処理部
 
1 system 10 cell 40 core network 41 S-GW
42 P-GW
43 MME
44 HSS
50 packet data network 60 application server 61 communication unit 62 storage unit 63 processing unit 64 service providing unit 100 wireless communication device 200 terminal device 300 MEC server 310 communication unit 320 storage unit 330 processing unit

Claims (16)

  1.  接続先を示すAPN(Access Point Name)が関連付けられた接続要求を取得する取得部と、
     前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイと、が関連付けられた管理情報に基づき、前記接続要求の要求元と、前記接続要求に関連付けられた前記APNが指定する前記サーバと、の間にベアラを設定する制御部と、
     を備える、装置。
    An acquisition unit for acquiring a connection request associated with an APN (Access Point Name) indicating a connection destination;
    Based on the management information associated with the APN and the gateway through which the APN designates a server to be connected, the connection request request source and the APN associated with the connection request are designated by the APN. A control unit for setting a bearer between the server and
    An apparatus comprising:
  2.  前記制御部は、
     前記管理情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバに接続するために経由する少なくとも1つの前記ゲートウェイを特定し、
     前記要求元と、当該サーバと、特定した少なくとも1つの前記ゲートウェイとのそれぞれの間にベアラを設定する、
     請求項1に記載の装置。
    The controller is
    Identifying at least one gateway through which to connect to the server specified by the APN associated with the connection request based on the management information;
    A bearer is set between each of the request source, the server, and the identified at least one gateway;
    The apparatus of claim 1.
  3.  前記制御部は、前記要求元と、前記APNが指定する前記サーバと、当該サーバに接続するために経由する前記ゲートウェイと、のそれぞれの間に設定した一連のベアラを、当該要求元と当該サーバとを接続する仮想的なベアラとして設定する、請求項2に記載の装置。 The control unit includes a series of bearers set between the request source, the server specified by the APN, and the gateway that is connected to connect to the server. The apparatus according to claim 2, wherein the device is set as a virtual bearer that connects the two.
  4.  前記APNが指定する前記サーバは、移動体通信ネットワークの物理サーバ上で動作する仮想サーバであり、
     前記制御部は、
     前記管理情報に基づき、少なくとも1つの前記ゲートウェイとして、前記APNが指定する前記仮想サーバが動作する前記物理サーバに接続するために経由する移動体通信ネットワーク上の第1のゲートウェイと、当該物理サーバと当該仮想サーバとを接続するための仮想的な第2のゲートウェイと、を特定し、
     少なくとも、特定した前記第1のゲートウェイと、当該物理サーバと、特定した前記第2のゲートウェイと、当該仮想サーバとそれぞれの間にベアラを設定する、
     請求項2に記載の装置。
    The server specified by the APN is a virtual server operating on a physical server of a mobile communication network;
    The controller is
    Based on the management information, as at least one of the gateways, a first gateway on a mobile communication network that is connected to the physical server on which the virtual server specified by the APN operates, the physical server, A virtual second gateway for connecting to the virtual server,
    At least a bearer is set between the identified first gateway, the physical server, the identified second gateway, and the virtual server.
    The apparatus of claim 2.
  5.  前記APNは、前記サーバに関連付けられており、
     前記制御部は、前記管理情報に基づき、前記接続要求の要求元と、前記接続要求に関連付けられた前記APNが示す前記サーバと、の間にベアラを設定する
     請求項1に記載の装置。
    The APN is associated with the server;
    The apparatus according to claim 1, wherein the control unit sets a bearer between a request source of the connection request and the server indicated by the APN associated with the connection request based on the management information.
  6.  前記APNは、当該APNが指定する前記サーバ上で動作するアプリケーションに関連付けられており、
     前記取得部は、前記APNと、前記サーバ上で動作する前記アプリケーションを特定するための識別情報と、が関連付けられた前記接続要求を取得し、
     前記制御部は、前記識別情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバと、当該APNが示す前記アプリケーションと、の間にベアラを設定する、
     請求項1に記載の装置。
    The APN is associated with an application that operates on the server specified by the APN,
    The acquisition unit acquires the connection request in which the APN and identification information for specifying the application operating on the server are associated with each other,
    The control unit sets a bearer between the server specified by the APN associated with the connection request and the application indicated by the APN based on the identification information.
    The apparatus of claim 1.
  7.  前記APNは、サービスの提供者に関連付けられており、
     前記制御部は、前記管理情報に基づき、前記要求元と、前記接続要求に関連付けられた前記APNが示す前記提供者が前記サービスを提供するための前記サーバと、の間に前記ベアラを設定する、請求項1に記載の装置。
    The APN is associated with a service provider;
    The control unit sets the bearer between the request source and the server for providing the service by the provider indicated by the APN associated with the connection request based on the management information. The apparatus of claim 1.
  8.  前記APNは、当該APNが指定する前記サーバ上で動作する仮想マシンに関連付けられており、
     前記取得部は、前記APNと、前記サーバ上で動作する前記仮想マシンを特定するための識別情報と、が関連付けられた前記接続要求を取得し、
     前記制御部は、前記識別情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバと、当該APNが示す前記仮想マシンと、の間にベアラを設定する、
     請求項1に記載の装置。
    The APN is associated with a virtual machine operating on the server specified by the APN,
    The acquisition unit acquires the connection request in which the APN is associated with identification information for specifying the virtual machine operating on the server,
    The control unit sets a bearer between the server specified by the APN associated with the connection request and the virtual machine indicated by the APN based on the identification information.
    The apparatus of claim 1.
  9.  前記APNは、当該APNが指定する前記サーバ上で動作するコンテナに関連付けられており、
     前記取得部は、前記APNと、前記サーバ上で動作する前記コンテナを特定するための識別情報と、が関連付けられた前記接続要求を取得し、
     前記制御部は、前記識別情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバと、当該APNが示す前記コンテナと、の間にベアラを設定する、
     請求項1に記載の装置。
    The APN is associated with a container operating on the server designated by the APN,
    The acquisition unit acquires the connection request in which the APN and identification information for specifying the container operating on the server are associated with each other,
    The control unit sets a bearer between the server specified by the APN associated with the connection request and the container indicated by the APN based on the identification information.
    The apparatus of claim 1.
  10.  前記制御部は、前記APNごとに設定するベアラの種別を制御する、請求項1に記載の装置。 The apparatus according to claim 1, wherein the control unit controls the type of bearer set for each APN.
  11.  前記制御部は、前記APNごとに、当該APNが指定する前記サーバへの接続を選択的に制限する、請求項1に記載の装置。 The apparatus according to claim 1, wherein the control unit selectively restricts connection to the server designated by the APN for each APN.
  12.  接続先を示すAPN(Access Point Name)が関連付けられた接続要求を外部装置に送信する送信部と、
     前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイとが関連付けられた管理情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバに接続するために設定されたベアラを介して、当該サーバとの間で通信を実行する処理部と、
     を備える、装置。
    A transmission unit that transmits a connection request associated with an APN (Access Point Name) indicating a connection destination to an external device;
    Based on the management information in which the APN and the gateway through which to connect to the server designated by the APN are associated, set to connect to the server designated by the APN associated with the connection request A processing unit that performs communication with the server via the bearer;
    An apparatus comprising:
  13.  接続先を示すAPN(Access Point Name)が関連付けられた接続要求を取得することと、
     プロセッサが、前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイと、が関連付けられた管理情報に基づき、前記接続要求の要求元と、前記接続要求に関連付けられた前記APNが指定する前記サーバと、の間にベアラを設定することと、
     を含む、方法。
    Obtaining a connection request associated with an APN (Access Point Name) indicating a connection destination;
    Based on the management information in which the processor associates the APN and the gateway through which to connect to the server designated by the APN, the request source of the connection request and the APN associated with the connection request are Setting up a bearer with the server to be designated;
    Including the method.
  14.  接続先を示すAPN(Access Point Name)が関連付けられた接続要求を外部装置に送信することと、
     プロセッサが、前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイとが関連付けられた管理情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバに接続するために設定されたベアラを介して、当該サーバとの間で通信を実行することと、
     を含む、方法。
    Transmitting a connection request associated with an APN (Access Point Name) indicating a connection destination to an external device;
    In order for the processor to connect to the server designated by the APN associated with the connection request based on management information associated with the APN and a gateway through which the APN is designated to connect to the server designated by the APN Performing communication with the server via the configured bearer;
    Including the method.
  15.  コンピュータに、
     接続先を示すAPN(Access Point Name)が関連付けられた接続要求を取得することと、
     前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイと、が関連付けられた管理情報に基づき、前記接続要求の要求元と、前記接続要求に関連付けられた前記APNが指定する前記サーバと、の間にベアラを設定することと、
     を実行させる、プログラム。
    On the computer,
    Obtaining a connection request associated with an APN (Access Point Name) indicating a connection destination;
    Based on the management information associated with the APN and the gateway through which the APN designates a server to be connected, the connection request request source and the APN associated with the connection request are designated by the APN. Setting up a bearer with the server,
    A program that executes
  16.  コンピュータに、
     接続先を示すAPN(Access Point Name)が関連付けられた接続要求を外部装置に送信することと、
     前記APNと、当該APNが指定するサーバに接続するために経由するゲートウェイとが関連付けられた管理情報に基づき、前記接続要求に関連付けられた前記APNが指定する前記サーバに接続するために設定されたベアラを介して、当該サーバとの間で通信を実行することと、
     を実行させる、プログラム。
    On the computer,
    Transmitting a connection request associated with an APN (Access Point Name) indicating a connection destination to an external device;
    Based on the management information in which the APN and the gateway through which to connect to the server designated by the APN are associated, set to connect to the server designated by the APN associated with the connection request Performing communication with the server via the bearer;
    A program that executes
PCT/JP2016/080849 2015-12-07 2016-10-18 Device, method, and program WO2017098810A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112016005590.0T DE112016005590T5 (en) 2015-12-07 2016-10-18 Device, method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-238870 2015-12-07
JP2015238870 2015-12-07

Publications (1)

Publication Number Publication Date
WO2017098810A1 true WO2017098810A1 (en) 2017-06-15

Family

ID=59012996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080849 WO2017098810A1 (en) 2015-12-07 2016-10-18 Device, method, and program

Country Status (2)

Country Link
DE (1) DE112016005590T5 (en)
WO (1) WO2017098810A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600178A (en) * 2018-12-07 2019-04-09 中国人民解放军军事科学院国防科技创新研究院 The optimization method of energy consumption and time delay and minimum in a kind of edge calculations
US10728744B2 (en) 2018-04-27 2020-07-28 Hewlett Packard Enterprise Development Lp Transmission outside of a home network of a state of a MEC application
CN112990547A (en) * 2021-02-08 2021-06-18 北京中电飞华通信有限公司 Energy optimization method and device for smart power grid
US20210368324A1 (en) * 2019-07-12 2021-11-25 Sk Telecom Co., Ltd. Edge computing management device and operating method of edge computing management device
US20220224600A1 (en) * 2018-06-20 2022-07-14 NEC Laboratories Europe GmbH Multi-access edge computing, mec, system and method for operating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708713B (en) * 2019-10-29 2022-07-29 安徽大学 Mobile edge calculation mobile terminal energy efficiency optimization method adopting multidimensional game

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000276425A (en) * 1999-03-24 2000-10-06 Toshiba Corp Information distribution system, mobile computer, cache server device, manageing device, and cache control method
JP2003209566A (en) * 2002-01-11 2003-07-25 Kddi Corp Routing method and system thereof
JP2004187045A (en) * 2002-12-04 2004-07-02 Ntt Docomo Inc Content distribution system, repeater and method for controlling content distribution
WO2014131000A2 (en) * 2013-02-25 2014-08-28 Interdigital Patent Holdings, Inc. Centralized content enablement service for managed caching in wireless networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000276425A (en) * 1999-03-24 2000-10-06 Toshiba Corp Information distribution system, mobile computer, cache server device, manageing device, and cache control method
JP2003209566A (en) * 2002-01-11 2003-07-25 Kddi Corp Routing method and system thereof
JP2004187045A (en) * 2002-12-04 2004-07-02 Ntt Docomo Inc Content distribution system, repeater and method for controlling content distribution
WO2014131000A2 (en) * 2013-02-25 2014-08-28 Interdigital Patent Holdings, Inc. Centralized content enablement service for managed caching in wireless networks

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10728744B2 (en) 2018-04-27 2020-07-28 Hewlett Packard Enterprise Development Lp Transmission outside of a home network of a state of a MEC application
US20220224600A1 (en) * 2018-06-20 2022-07-14 NEC Laboratories Europe GmbH Multi-access edge computing, mec, system and method for operating the same
CN109600178A (en) * 2018-12-07 2019-04-09 中国人民解放军军事科学院国防科技创新研究院 The optimization method of energy consumption and time delay and minimum in a kind of edge calculations
CN109600178B (en) * 2018-12-07 2021-03-30 中国人民解放军军事科学院国防科技创新研究院 Optimization method for energy consumption, time delay and minimization in edge calculation
US20210368324A1 (en) * 2019-07-12 2021-11-25 Sk Telecom Co., Ltd. Edge computing management device and operating method of edge computing management device
US11882622B2 (en) * 2019-07-12 2024-01-23 Sk Telecom Co., Ltd. Edge computing management device and operating method of edge computing management device
CN112990547A (en) * 2021-02-08 2021-06-18 北京中电飞华通信有限公司 Energy optimization method and device for smart power grid
CN112990547B (en) * 2021-02-08 2023-11-03 北京中电飞华通信有限公司 Smart grid energy optimization method and smart grid energy optimization device

Also Published As

Publication number Publication date
DE112016005590T5 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
WO2017098810A1 (en) Device, method, and program
CN111684824B (en) Enhanced NEF function, MEC, and 5G integration
CN104641718B (en) For enabling the system enhancing of non-3 gpp unloading in 3 gpp
CN115175130A (en) Method and apparatus for multiple access edge computing service for mobile user equipment
EP2810461B1 (en) System and method for partner network sharing architecture
CN107079287B (en) Inter-system mobility in integrated wireless networks
WO2017043204A1 (en) Device, method and program
JP7127670B2 (en) Communication method and first base station
CN106576395A (en) Inter-system handover and multi-connectivity via an integrated small cell and wifi gateway
CN106664620A (en) Network-initiated handover in integrated small cell and WIFI networks
CN103460754A (en) Performing a selective IP traffic offload procedure
CN104581990A (en) Node selection in virtual evolved packet core
US9629044B2 (en) Apparatus and method for communication
JP7081648B2 (en) Methods for core network communication equipment and core network communication equipment
WO2017168999A1 (en) Wireless communication device, server, and method
TWI769134B (en) Communication device, communication method and communication program
US20220330354A1 (en) Mesh Connectivity Establishment
WO2017104281A1 (en) Device, method and program
JP2015534790A (en) Un subframe arrangement method and apparatus
WO2023179262A1 (en) Cell information configuration method and apparatus, and readable storage medium and chip system
WO2023179231A1 (en) Cell information configuration method and apparatus, and readable storage medium and chip system
US20230229428A1 (en) Telecom Microservice Rolling Upgrades
WO2023202220A1 (en) Communication method and apparatus
US20230208704A1 (en) Singleton Micro-Service High Availability
US20220116383A1 (en) Enterprise Multi-Technology Core and Subscriber Management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872710

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016005590

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP