WO2017103101A1 - Procede de traitement d'eau, module et installation associes - Google Patents

Procede de traitement d'eau, module et installation associes Download PDF

Info

Publication number
WO2017103101A1
WO2017103101A1 PCT/EP2016/081420 EP2016081420W WO2017103101A1 WO 2017103101 A1 WO2017103101 A1 WO 2017103101A1 EP 2016081420 W EP2016081420 W EP 2016081420W WO 2017103101 A1 WO2017103101 A1 WO 2017103101A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
hydrophobic
hydrophobic liquid
liquid membrane
coalescer
Prior art date
Application number
PCT/EP2016/081420
Other languages
English (en)
Inventor
Anne BREHANT
Angélique FABRE
Marc Philibert
Laurent GUEY
Original Assignee
Suez Groupe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suez Groupe filed Critical Suez Groupe
Priority to CN201680073625.8A priority Critical patent/CN108367943B/zh
Priority to AU2016369400A priority patent/AU2016369400B2/en
Priority to EP16820230.7A priority patent/EP3390283A1/fr
Priority to SG11201805089RA priority patent/SG11201805089RA/en
Priority to US16/063,533 priority patent/US10710905B2/en
Priority to KR1020187020787A priority patent/KR20180096732A/ko
Publication of WO2017103101A1 publication Critical patent/WO2017103101A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/04Surfactants, used as part of a formulation or alone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to water treatment processes for extracting cations and anions from an aqueous effluent by contacting said aqueous effluents with a hydrophobic liquid phase.
  • the processes according to the invention comprise seawater desalting processes, in which calcium, sodium, potassium, chloride, sulphate and carbonate ions, and processes for removing metal ions, for example, will be extracted.
  • metal cations derived from transition metals such as iron, gold, silver, copper, chromium, platinum, lead, tin, cadmium, cobalt, zinc, nickel, mercury, ....
  • the invention relates to a process for the desalination of water by contacting an aqueous effluent with a hydrophobic liquid membrane.
  • the invention also relates to a module for implementing the methods according to the invention, more particularly a desalination module and its associated installation.
  • Liquid-liquid extraction (LLE) water treatment processes are innovative processes that extract cations and anions from water through phase transfer of these ions from the aqueous phase to a hydrophobic phase, which is then separated from the treated water and optionally regenerated.
  • Such hydrophobic liquids may be, for example, ionic liquids, comprising one or more anionic and / or cationic surfactant salts which are liquid at ambient temperature. More generally, these hydrophobic liquids may be formulations comprising a or a plurality of hydrophobic liquid bases and one or more active molecules capable of transferring the anions or cations which it is desired to remove from the aqueous phase to the hydrophobic phase.
  • active substances may be dispersed or dissolved in a hydrophobic liquid base or in a mixture of hydrophobic liquid bases.
  • the active molecules capable of transferring the anions or cations which it is desired to remove from the aqueous phase to the hydrophobic phase may be, for example, anionic surfactants (for extracting the cations), or cationic surfactants (for extracting the anions), or molecules capable of solvating or complexing cations or anions, such as, for example, crown ethers, cyclic oligo-mothers (calixarenes), or non-cyclic oligomers of phenol derivatives in the presence of crown ethers, or dithizones.
  • liquid membranes The hydrophobic liquid phases used are commonly referred to as "liquid membranes".
  • water pretreatment units in particular salt water
  • a direct contact heat exchanger whose continuous or dispersed fluorinated phase comprises a fluorine liquid immiscible with water. water and density greater than 1, 25.
  • the direct contact heat exchanger may be a heat exchanger and / or an ion exchanger.
  • the transfer made between the fluorinated phase and the water to be treated may be a thermal transfer or an ion transfer or simultaneously, a thermal transfer and ionic.
  • liquid membranes used in liquid-liquid extraction water treatment processes are very hydrophobic and immiscible with water, they still have a slight water solubility. As a result, the time course in these processes results in a transfer of the liquid membranes into the aqueous phase. These transfers can come from soluble compounds that migrate with time from the liquid membrane to water.
  • Microdroplets may also exit the system due to the following malfunctions: the uncontrolled emulsion of the liquid / water phases causes separation problems, during the treatment or regeneration operations, the liquid membrane is carried off into the treated water stream or into the regeneration brine flow, due to a Inadequate ratio of counterflow flow rates, wear of the liquid membrane leads to underperformance in the extraction of ions.
  • the invention therefore aims to eliminate all or part of the disadvantages mentioned above, recovering the loss of one of the phases in the other. In addition, it solves the problem of the sensitivity of current coalescence devices to the precipitation of salts in brines.
  • the subject of the invention is a method for treating an aqueous effluent comprising the following steps: (a) Liquid-liquid extraction, by bringing the aqueous effluent into contact with a hydrophobic liquid membrane immiscible with the water, allowing the transfer of ions from the aqueous phase to the hydrophobic liquid phase,
  • step (b) Separation of the aqueous effluent and the hydrophobic liquid membrane resulting from step (a); (c) bringing the effluent from step (b) into contact with a hydrophobic solid membrane, in order to removing residual hydrophobic liquid membrane in said effluent by coalescence on said hydrophobic solid membrane.
  • the hydrophobic liquid membrane may comprise at least one compound chosen from the category of anionic surfactants and / or cationic surfactants, and / or calixarenes, preferentially the calix [4] arenes, and / or crown ethers, preferably the 18-6 crown ethers, or 12-4 crown ethers or 15-5 crown ethers, and / or dithizones.
  • the anionic surfactants may be chosen from the salts of carboxylates, alkyl benzoates, carboxiimidates, alkoxides or dialkoxides, alkyl sulphates, alkyl sulphonates, ether sulphonates, sulphonyl imides, phosphine oxides, phosphinates and alkyl borates.
  • the cationic surfactants may be chosen from alkylsulfonium, alkylammonium, alkylphosphonium, alkylimidazolium, alkyloxazaborolidinium and alkyloxazolidinium salts.
  • the separation step (b) may be a decantation step.
  • the hydrophobic solid membrane may comprise a material chosen from polypropylenes, polyethylenes, polyvinylidene fluorides, polytetrafluoroethylenes, polyacrylonitriles, polyolefms, polyvinyl chlorides, polyethylene terephthalates, polyolefin copolymers, polyetherketones and ceramics.
  • the hydrophobic solid membrane may be hollow fibers.
  • the liquid-liquid (a) and separation (b) extraction step are carried out in a first treatment chamber, the treated aqueous effluent and the hydrophobic liquid membrane being extracted separately from the first enclosure of treatment at the end of steps (a) and (b), and the bringing into contact of the aqueous effluent from step (b) (thus treated), with a hydrophobic solid membrane, intervening after evacuation of the aqueous effluent treated outside the first treatment chamber.
  • the liquid-liquid extraction step (a) and the separation step (b) are carried out in a first treatment chamber, the treated aqueous effluent and the hydrophobic liquid membrane being extracted separately from the first chamber at the end of steps (a) and (b), the contacting of the aqueous effluent from step (b) (thus treated) with a hydrophobic solid membrane, intervening before the evacuation of the aqueous effluent treated outside the first treatment chamber.
  • the step of bringing the aqueous effluent resulting from step (b) into contact with the hydrophobic solid membrane may be carried out in a substantially cylindrical contactor provided with a central channel and a hydrophobic solid membrane. composed of porous and hollow longitudinal fibers, so that the residual hydrophobic liquid membrane migrates radially to the inside of the fibers. Circulation of fluids within this contactor can be done co-current, countercurrent or cross flow.
  • the treatment process may further comprise a step (e) of contacting the hydrophobic liquid membrane resulting from step (b) with a hydrophilic solid membrane, in order to eliminate the residual effluent in the hydrophobic liquid membrane, by coalescence on said hydrophilic solid membrane.
  • the hydrophilic solid membrane may comprise a material chosen from polysulfones, polyvinylidene fluorides, polyvinylpyrrolidones, cellulose acetate, polyether sulphones, optionally modified or additivated, and ceramics.
  • the method may further comprise a regeneration step (d) of the hydrophobic liquid membrane from step (b).
  • the hydrophobic liquid membrane extracted from the first treatment chamber is admitted into a second regeneration chamber where it is brought into contact with water, the regenerated hydrophobic liquid membrane and the water then being separated and discharged outside the chamber. the second chamber, and the regenerated hydrophobic liquid membrane is then brought into contact with a hydrophilic solid membrane after evacuation out of the second chamber so as to eliminate traces of water.
  • the hydrophobic liquid membrane resulting from the coalescence step may be reused in step (a) of the treatment process.
  • the treatment can be a water desalination treatment, in particular desalination of seawater.
  • the regeneration of the hydrophobic liquid membrane can take place between 70 and 90 ° C., preferably around 80 ° C.
  • the pressure differential during step (c) of contacting with a hydrophobic solid membrane may be between 1 and 5 bar.
  • the pressure differential during step (e) of contacting with a hydrophilic solid membrane may be between 1 and 5 bar.
  • the subject of the invention is also a treatment module by bringing an aqueous effluent into contact with a hydrophobic liquid membrane for implementing the method according to the invention, the module comprising at least one liquid extraction chamber - liquid, means for admission and discharge of the effluent, respectively in and out of said chamber, means for admission and discharge of the hydrophobic liquid membrane, respectively into and out of said enclosure, characterized in that it further comprises at least a first hydrophobic solid membrane coalescer in fluid communication with said enclosure by means of a first inlet nozzle in the coalescer made on the means for discharging the effluent from said enclosure to remove traces of hydrophobic liquid membrane residual in the aqueous effluent.
  • the liquid-liquid extraction chamber may comprise a liquid / liquid extraction column.
  • the liquid-liquid extraction chamber may comprise a mixer / settler or any other liquid-liquid extraction contactor.
  • the liquid-liquid extraction chamber and the first coalescer can form a single unit consisting of a membrane contactor.
  • the modules according to the invention are suitable for the implementation of water treatment processes for extracting salts present in a large panel of aqueous effluents from the oil and gas industry, water from mining operations, leachates from landfills, wastewater from incineration plants.
  • the invention particularly relates to a desalination module by contacting an aqueous effluent with a hydrophobic liquid membrane for implementing the method according to one embodiment of the invention, the module comprising at least one enclosure desalting means, means for admission and discharge of the effluent, respectively in and out of said enclosure, means for admission and discharge of the hydrophobic liquid membrane, respectively in and out of said enclosure, characterized in it further comprises at least a first hydrophobic solid membrane coalescer in fluid communication with said enclosure by means of a first coalescer inlet tapping on the discharge means of the the effluent out of said enclosure, to remove traces of hydrophobic liquid membrane residual in the aqueous effluent.
  • the first coalescer may be in fluid communication by means of a second and a third outlet tap, with respectively means for admission and discharge of the hydrophobic liquid membrane, in and out of said enclosure.
  • the hydrophobic liquid membrane may comprise at least one compound chosen from the category of anionic surfactants and / or cationic surfactants, and / or calixarenes, preferentially the calix [4] arenes, and / or crown ethers, preferably the 18-6 crown ethers, or 12-4 crown ethers or 15-5 crown ethers, and / or dithizones.
  • the anionic surfactants may be chosen from the salts of carboxylates, alkyl benzoates, carboxiimidates, alkoxides or dialkoxides, alkyl sulphates, alkyl sulphonates, ether sulphonates, sulphonyl imides, phosphine oxides, phosphinates and alkyl borates.
  • the cationic surfactants may be chosen from alkylsulfonium, alkylammonium, alkylphosphonium, alkylimidazolium, alkyloxazaborolidinium and alkyloxazolidinium salts.
  • the first coalescer may be a contactor of substantially cylindrical shape, provided with a central channel and a hydrophobic solid membrane consisting of porous and hollow longitudinal fibers.
  • the materials constituting the hydrophobic solid membrane may be chosen from the list defined by polypropylenes, polyethylenes, polyvinylidene fluorides, polytetrafluoroethylenes, polyacrylonitriles, polyolefins, polyvinyl chlorides, polyethylene terephthalates, polyolefin copolymers, polyetheretherketones and ceramics.
  • the desalination chamber may comprise a liquid / liquid extraction column.
  • the desalination chamber may comprise a mixer / decanter or any other liquid-liquid contactor.
  • the desalination chamber and the first coalescer can form a single unit consisting of a membrane contactor.
  • the desalination module may furthermore comprise a second hydrophilic solid membrane coalescer in fluid communication with the desalination chamber of the first module by means of a first entry into the coalescer made on the means for evacuating the membrane. hydrophobic liquid out of said enclosure, to remove traces of aqueous effluent residual in the hydrophobic liquid membrane.
  • the second coalescer may be in fluid communication by means of a second and third outlet tap, with the means for admitting the aqueous effluent into the chamber of the first module.
  • the second coalescer may be a contactor of substantially cylindrical shape, provided with a central channel and a hydrophilic solid membrane consisting of porous and hollow longitudinal fibers.
  • the materials constituting the hydrophilic solid membrane may be chosen from the list defined by polysulfones, polyvinylidene fluorides, polyvinylpyrrolidones, cellulose acetate, polyether sulfones, optionally modified or additive, ceramics.
  • the desalination module comprises a coalescer dedicated to desalination and provided with a contactor of substantially cylindrical shape, provided with a central channel and a hydrophobic solid membrane consisting of porous and hollow longitudinal fibers, inlet means in the central channel of a mixture composed of the aqueous effluent and hydrophobic liquid membrane, the mixture being produced in a particular mixing unit, means for discharging the desalinated effluent out of the central channel, inlet and outlet means connected to a first hydrophobic liquid membrane recirculation loop within the longitudinal fibers.
  • the invention also relates to a desalination plant of an aqueous effluent, in particular seawater, characterized in that it comprises a first desalination module according to one of the embodiments of the invention.
  • a desalination plant of an aqueous effluent in particular seawater
  • Optional features of the invention, complementary or substitution are set forth below.
  • the installation may furthermore comprise a second hydrophobic liquid membrane regeneration module, the means for admission of the hydrophobic liquid membrane into the first desalination module of the aqueous effluent being in fluid communication with the evacuation means.
  • the hydrophobic liquid membrane outside the second hydrophobic liquid membrane regeneration module, while the hydrophobic liquid membrane admission means in the second regeneration module are in fluid communication with the liquid membrane evacuation means hydrophobic out of the first desalination module.
  • the installation may furthermore comprise a third hydrophobic solid membrane coalescer in fluid communication with the regeneration chamber of the second module by means of a first inlet into the coalescer made on the brine discharge means. out of said enclosure, in order to remove traces of hydrophobic liquid membrane residually present in the brine.
  • the installation may furthermore comprise a second hydrophobic liquid membrane regeneration module, said second module comprising a regeneration coalescer having a substantially cylindrical contactor provided with a central channel and a hydrophobic solid membrane consisting of porous and hollow longitudinal fibers, means for admission into the central channel of a mixture composed of fresh water from a water point and hydrophobic liquid membrane from the first module, means for discharging the brine out of the central channel, admission and evacuation means connected to a second hydrophobic liquid membrane recirculation loop inside the longitudinal fibers of the contactor.
  • a regeneration coalescer having a substantially cylindrical contactor provided with a central channel and a hydrophobic solid membrane consisting of porous and hollow longitudinal fibers, means for admission into the central channel of a mixture composed of fresh water from a water point and hydrophobic liquid membrane from the first module, means for discharging the brine out of the central channel, admission and evacuation means connected to a second hydrophobic liquid membrane recirculation loop inside the longitudinal fibers of the contactor.
  • the installation may furthermore comprise a fourth hydrophilic solid membrane coalescer in fluid communication with the regeneration chamber of the second module by means of a first input into the coalescer made on the membrane discharge means. hydrophobic liquid out of said enclosure, to remove traces of aqueous effiuent residual in the hydrophobic liquid membrane.
  • the fourth coalescer may be in fluid communication by means of a second and third nozzle, with the means for admitting the aqueous effluent into the enclosure of the first module.
  • the fourth coalescer may be a contactor of substantially cylindrical shape, provided with a central channel and a hydrophilic solid membrane consisting of porous and hollow longitudinal fibers.
  • the materials constituting the hydrophilic solid membrane are selected from the list defined by polysulfones, polyvinylidene fluorides, polyvinylpyrrolidones, cellulose acetate, polyether sulfones, optionally modified or additive, ceramics.
  • FIG. 1 is a schematic representation of a detail of a
  • FIG. 2 is a schematic representation of another detail of a coalescer according to the invention
  • FIGURES 3, 4, 5, 6, 7 are diagrammatic representations of embodiments of an installation. desalination according to the invention.
  • the methods according to the invention comprise a liquid-liquid extraction step
  • LLE which consists of extracting cations and anions from the water by phase transfer of these ions from the aqueous phase to a hydrophobic liquid phase, which is then separated from the treated water and optionally regenerated.
  • liquid membranes used in the processes, modules and installations according to the invention are commonly referred to as "liquid membranes”.
  • Such hydrophobic liquid membranes may be, for example, ionic liquids comprising one or more salts of anionic and / or cationic surfactants which are liquid at room temperature. More generally, these hydrophobic liquids may be formulations comprising one or more hydrophobic liquid bases and one or more active molecules capable of transferring the anions or cations that are desired remove from the aqueous phase the hydrophobic phase. These active substances may be dispersed or dissolved in a hydrophobic liquid base or in a mixture of hydrophobic liquid bases.
  • the hydrophobic liquid bases can be, for example, hydrocarbon-based liquid bases, for example aliphatic hydrocarbons, preferably comprising between 6 and 22, preferentially between 10 and 18 carbon atoms, or aromatic hydrocarbons.
  • hydrophobic liquid bases may also be alkyl phenols, alcohols or fatty acids, or fatty esters, for example fatty esters of benzoic acid. These bases may also comprise substituted hydrocarbon chains, for example halogenated, for example fluorinated, to give the hydrophobic liquid a density greater than that of water.
  • hydrofluorocarbons or perfluorocarbons may be used as the hydrophobic liquid base.
  • the active molecules capable of transferring the anions or cations which it is desired to remove from the aqueous phase to the hydrophobic phase may be, for example, anionic surfactants (for extracting the cations), or cationic surfactants (for extracting the anions), or molecules capable of solvating or complexing cations or anions, such as, for example, crown ethers, calixarenes, or dithizones.
  • anionic surfactant salts of carboxylates, alkyl benzoates, carboxiimidates, alkoxides or dialkoxides, carboxiimidates, alkylsulfates, alkylsulfonates, ether sulfonates, sulfonylimides, phosphine oxides, phosphinates, alkylborates, etc. are preferably mentioned.
  • alkylsulfonium alkylammonium, alkylphosphonium, alkylimidazolium, alkyloxazaborolidinium or alkyloxazolidinium salts, for example their salts formed with the anions tetrafluoroborate, chloride, hexafluorophosphate, mesylate, tosylate, triflate; .
  • hydrophobic chains of these surfactants may be linear or branched, saturated or unsaturated, optionally substituted alkyl chains, for example by aryl or, for example, halogenated, in particular fluorinated or perfluorinated, substituents.
  • the molecules capable of solvating ions may be, for example, crown ethers, in particular crown 18-6 or crown 12-4 or crown 15-5 ethers, having a particular affinity for K +, Li + and Na + respectively. . these are also for example the calixarenes, in particular calix [4] arenes having a particular affinity for the ions Na +, Cu2 +, Zn2 +, or even the dithizones, having a particular affinity for lead and mercury. These molecules can also comprise various hydrocarbon substituents, aryl substituents, or linear, branched or cyclic, saturated or unsaturated, optionally substituted, for example halogenated, for example fluorinated or perfluorinated, alkyl substituents.
  • Hydrophobic liquid membranes suitable for water desalination processes in which calcium, sodium, potassium, chloride, sulphate and carbonate ions, for example, comprise, for example, advantageously comprise one or more compounds chosen from: alkyl ammonium surfactants or alkyl phosphonium, having affinity for chloride ions, and / or crown ethers having affinity for sodium or potassium ions, and / or calixarenes having affinity for sodium and / or potassium ions, carboxylate, phopsphonate, sulphate surfactants phosphates, alkoxides, preferably phenolates, esters, preferentially benzoates, for their affinities with sodium and potassium cations.
  • alkyl ammonium surfactants or alkyl phosphonium having affinity for chloride ions
  • crown ethers having affinity for sodium or potassium ions
  • calixarenes having affinity for sodium and / or potassium ions
  • the liquid membranes have a density greater than that of water, a high hydrophobicity, and are regenerable at relatively low temperature (as an indication about 80 ° C).
  • the hydrophobic liquid membranes used in the desalination of seawater have the following characteristics: hydrophobic,
  • the viscosity of the ion exchange liquids will generally be between 10 and 60 times the dynamic viscosity of the water.
  • the hydrophobic liquid membrane may be formulated from the active ingredients including methyl trioctyl / decylamine chlorides (Aliquat 336), trihexyl (tetradecyl) phosphonium chlorides (Cyphos IL 101), tributil (tetradecyl) phosphonium chlorides (Cyphos IL 167) in solvated or diluted phase in 10% decanol / kerosene.
  • active ingredients including methyl trioctyl / decylamine chlorides (Aliquat 336), trihexyl (tetradecyl) phosphonium chlorides (Cyphos IL 101), tributil (tetradecyl) phosphonium chlorides (Cyphos IL 167) in solvated or diluted phase in 10% decanol / kerosene.
  • Aliquat 336 trihexyl (tetradecyl) phosphonium chlorides
  • Exxsol D100 aliphatic diluent
  • Solvesso 200 aromatic diluent
  • the hydrophobic liquid membrane may be formulated from the active principles comprising trioctyl / decylmethylammonium-bis (2,4,4-trimethilpentyl) (ALiCY IL) phosphinates, trioctyl / decylmethylammonium decanoates (ALiDEC IL), in the solvated or dilute phase in 10% decanol or kerosene.
  • AiCY IL trioctyl / decylmethylammonium-bis (2,4,4-trimethilpentyl)
  • AiDEC IL trioctyl / decylmethylammonium decanoates
  • the hydrophobic liquid membrane may be formulated from the active ingredients including hexafluoro-phosphates 1-alkyl-3-methylimidazolium, bis [(trifluoromethyl) sulfonyl] imides, bis [(perfluoroethyl) sulfonyl] imides, dicyclohexano-18-crown-6.
  • the hydrophobic liquid membrane may be formulated from the active ingredients including acetates, tetrafluoroborates, hexafluorophosphonates, methylsulfates, dimethylphosphates, trihexyl (tetradecyl) phosphonium chlorides (Cyphos IL 101), Cocosalkyl (ECOENG500), alkyl-3-methylimidazolium, 1-allyl-3-methylimidazolium solvated phase or diluted in benzene, hexane, chlorobenzene, phenols, benzoic acids, benzamides.
  • the skilled person will refer to the publication entitled “Methods for recovery of ionic liquids - A review” (Republic of Korea) and published by N
  • the hydrophobic liquid membrane may be formulated from the active ingredients including phenylglyoximes, P-tolylglyoximes, N '- (4'-Benzo [15-crown-5]) phenylaminoglyoximes, N' - (4'-Benzo [ 15-crown-5]) tolylaminoglyoximes, crown ether compounds + oximes.
  • active ingredients including phenylglyoximes, P-tolylglyoximes, N '- (4'-Benzo [15-crown-5]) phenylaminoglyoximes, N' - (4'-Benzo [ 15-crown-5]) tolylaminoglyoximes, crown ether compounds + oximes.
  • active ingredients including phenylglyoximes, P-tolylglyoximes, N '- (4'-Benzo [15-crown-5]) phenylaminoglyoximes, N' - (4'-Benzo [ 15
  • the hydrophobic liquid membrane may be formulated from the active principles comprising the amines tris [(L) -alanyl-2-carboxamidoethyl].
  • active principles comprising the amines tris [(L) -alanyl-2-carboxamidoethyl].
  • the person skilled in the art will refer to the publication entitled “Coordination of CU (II) and Ni (II) with a polydentate nitrogen ligand and synthesis of inoic liquids derived from betaine: Application to liquid extraction. liquid metal "(France) and published by A. Messadi in the journal” Thesis University of Reims Champagne Ardenne "in 2013.
  • the hydrophobic liquid membrane may be formulated from the active ingredients including Imidazolium, Ammonium, Pyridinium, Pyrrolidinium, Sulphonium, Phosphonium, tetrafluoroborates, hexafluorophosphates, trifluoroacetates, trifluoromethanesulfonates, bis (trifluorosulfonyl) imides, crown ethers, calixarenes, oxides trioctyl.
  • the hydrophobic liquid membrane may be formulated from the active ingredients including tributyl (2-ethoxy-2-oxoethyl) ammonium, dicyanamides (Dca), bis (trifluoromethylsulfonyl) imides (NT £ 2).
  • the hydrophobic liquid membrane may be formulated from the active ingredients including ethylaminediacetic acids.
  • active ingredients including ethylaminediacetic acids.
  • the hydrophobic liquid membrane may be formulated from the active ingredients comprising 1-methyl-1- [4,5-bis (methylsulfide)] pentylpyrrolidinium
  • the membrane hydrophobic liquid may be formulated from the active ingredients including dicychlohexano-18-crown-6, dithizone, 18-crown-6, 1- (2-pyridylazo) -2-naphthols, 1- (2-thiazolylazo) - 2-naphthols, tri-n-butylphosphates, 4,4- (5) - di (tert-butylcyclohexano) -18-crown-6, calyx [4] arene-bis (tertoctylbenzo-crown-6).
  • active ingredients including dicychlohexano-18-crown-6, dithizone, 18-crown-6, 1- (2-pyridylazo) -2-naphthols, 1- (2-thiazolylazo) - 2-naphthols, tri-n-butylphosphates, 4,4- (5) - di (tert-butylcyclohexan
  • the hydrophobic liquid membrane may be formulated from the active principles comprising the Calixarenes, calix [4] arenes bearing carboxymethoxygroups.
  • Calixarenes the active principles comprising the Calixarenes, calix [4] arenes bearing carboxymethoxygroups.
  • the skilled person will refer to the publication entitled “Calixarene-Based Molecules for Cation Recognition” (Germany) and published by R. Ludwig in the magazine “Sensors” in 2002.
  • the hydrophobic liquid membrane may be formulated from the active principles comprising the calix [n] arenes coupled to diazo groups p- (4-phenylazo) calix [4] arene (L1), p-phenylazocalix [6] arene (L2) ], phenol derivatives, 2,6-dimethyl-3-phenylazophenols (L3), 2- (5-bromo-2-pyridylazo) -5-diethylamino phenols (L4).
  • the person skilled in the art will refer to the publication entitled “Comparative studies on the solvent extraction of transition metal, cations by calixarene, phenol and ester derivatives" (Turkey) and published by H.
  • the hydrophobic liquid membrane may be formulated from the active ingredients including calixarene or resorcinarenes, calix [4] arenes containing carbonyl or ether oxygen atoms, in the solvated phase. or diluted in chloroform.
  • active ingredients including calixarene or resorcinarenes, calix [4] arenes containing carbonyl or ether oxygen atoms, in the solvated phase. or diluted in chloroform.
  • the skilled person will refer to the publication entitled “Calixarene and Resorcinarenes” (Poland) and published by W. Sliwa in the journal “Wiley-vch edition” in 2009.
  • the hydrophobic liquid membrane may be formulated from the active ingredients comprising the secondary amide derivatives calix [4] arene, the 5.1 l, 17,23-tetra (tert- butyl) -25,26,27,28-tetra (N-hexylcarbamoylmethoxy) calix [4] arene in solvated or diluted phase in benzonitrile, methanol.
  • active ingredients comprising the secondary amide derivatives calix [4] arene
  • the 5.1 l, 17,23-tetra (tert- butyl) -25,26,27,28-tetra (N-hexylcarbamoylmethoxy) calix [4] arene in solvated or diluted phase in benzonitrile, methanol.
  • the person skilled in the art will refer to the publication entitled "The effect of specifies solvent-solute interactions on complexation of alkali-metal cations by a lower-rim calix [4]
  • the hydrophobic liquid membrane may be formulated from the active ingredients comprising phosphoric acids Di-2-ethylhexyl, phosphoric acids Ethylhexyl (C16H3504P) solvated phase or diluted in kerosene.
  • active ingredients comprising phosphoric acids Di-2-ethylhexyl, phosphoric acids Ethylhexyl (C16H3504P) solvated phase or diluted in kerosene.
  • the hydrophobic liquid membrane may be formulated from the active ingredients comprising thiosalicylates tricaprylmethylammonium, [A336] [TS], benzoates tricaprylmethylammonium 2- (methylthio), [A336] [MTBA], benzoates tricaprylmethylammonium, [A336] [BA] , tricaprylmethylammonium benzoates, [A336] [BA], tricaprylmethylammonium.
  • a desalination chamber 10 and a regeneration chamber 20 in which an aqueous effluent is in contact with an ion exchange liquid (also called hydrophobic liquid membrane).
  • the enclosures 10 and 20 respectively comprise intake means 11, 23 and discharge means 13, 22 of the aqueous effluent. They also comprise intake means 14, 21 and discharge 12, 24 of the ion exchange liquid.
  • intake means 11, 23 and discharge means 13, 22 of the aqueous effluent also comprise intake means 14, 21 and discharge 12, 24 of the ion exchange liquid.
  • These admission and evacuation means may be ducts equipped with valves.
  • coalescer 40a, 40a', 40b in order to separating the hydrophobic liquid membrane from the effluent, in this case in a preferred application, seawater.
  • coalescer is defined to mean a hydrophobic membrane contactor permitting a separation process between two phases, by means of a large contact surface of the microporous membrane which allows the coalescence of the droplets of the phase in the trace state in the microporous membrane. another phase.
  • Coalescer also denotes an enclosure comprising a solid membrane, and into which a biphasic liquid mixture is introduced, for example a mixture of a hydrophobic liquid and an aqueous effluent, and in which the membrane has an affinity for one of the phases and not for each other.
  • a coalescer provided with a hydrophobic solid membrane is fed with an aqueous effluent containing traces of hydrophobic liquid. Traces of hydrophobic liquids will coalesce on the surface of the solid membrane. These coalesced droplets may migrate to the inside of the membrane, which may be porous, for example under the effect of a pressure differential.
  • the membrane may be in the form of porous hollow fibers.
  • the two-phase mixture is for example introduced outside the fibers.
  • the liquid to be recovered in the trace state migrates inwardly of the hollow fibers of the membrane due to the porosity of the fibers, and possibly to a differential pressure between the inside and the outside of the fibers.
  • the coalescer may also be fed from the inside of the fibers, counter-current, co-current or cross flow, by a liquid flow identical to that which is recovered in the trace state, and which will cause the coalesced droplets having migrated inside the fibers outside the coalescer.
  • the coalescer may comprise a solid hydrophobic membrane, for example hollow porous fibers, for example materials selected from the list defined by polypropylenes, polyethylenes, polyvinylidene fluorides, polytetrafluoroethylenes, polyacrylonitriles, polyolefins, polyvinyl chlorides polyethylene terephthalates, polyolefin copolymers, polyetherketones and ceramics.
  • a solid hydrophobic membrane for example hollow porous fibers, for example materials selected from the list defined by polypropylenes, polyethylenes, polyvinylidene fluorides, polytetrafluoroethylenes, polyacrylonitriles, polyolefins, polyvinyl chlorides polyethylene terephthalates, polyolefin copolymers, polyetherketones and ceramics.
  • the coalescer may comprise a solid hydrophilic membrane, for example porous hollow fibers, for example materials selected from polysulfones, polyvinylidene fluoride, polyvinylpyrrolidones, cellulose acetate, polyether sulfones, ceramics. These materials may also have undergone surface modifications, or be additive in the mass, so as to enhance their hydrophilic nature.
  • the coalescer 40 has a substantially cylindrical shape and a housing 404 enclosing a grid 401 which holds a plurality of hollow fibers 403 extending longitudinally.
  • the coalescer 40 is traversed by a central channel 402 connected to the outside by means of two openings 42 and 45, which are also in communication with the outside of the hollow fibers.
  • the set of fibers, parallel to the central channel, is also in communication with the interior by means of two collectors 41, 43.
  • the central channel serves to convey the phase to be treated inside the coalescer, this phase then wetting on the outer surface of the fibers.
  • the coalescer 40 may be integrated in a device by means of an inlet manifold 41 activated by a pump 44 ', and an outlet manifold 43.
  • the outlet 43 of the channel can be connected to the input 41 via a recirculation loop comprising the pump 44 'and a valve 49 and / or can also be connected to another circuit by means of another pump 48 and another valve 47.
  • the liquid that it is desired to filter from the other liquid remaining in the trace state is introduced into one of the collectors 42, 45, the collector 45 becoming the inlet collector and the collector 42 becoming the outlet collector. .
  • This liquid to be purified then flows longitudinally along the outer surface of the fibers.
  • the pressure of the liquid to be filtered is higher than the pressure of the other liquid. Because of the differential pressure (about two bars) and because of the hydrophobicity of the other liquid, the trace liquid passes through the porous wall of the fibers and joins the interior of the fibers to flow through of the other circuit comprising the two openings 41, 43.
  • the solid membrane comprises hydrophobic hollow fibers and resistant to organic solvents.
  • the materials will preferably be chosen from the list defined by polypropylenes, polyethylenes, polyvinylidene fluorides, polytetrafluoroethylenes, polyacrylonitriles, polyolefms, polyvinyl chlorides, polyethylene terephthalates, copolymers of polyolefins, polyetheretherketones, and ceramics.
  • the solid membrane comprises hollow fibers that are hydrophilic and resistant to organic solvents.
  • the materials will preferably be chosen from the list defined by polysulfones, polyvinylidene fluorides, polyvinylpyrrolidones, cellulose acetate, polyether sulfones, optionally modified or additive, and ceramics. Mixtures or combinations thereof are possible as well as the use of surface-modified polymers, such as, for example, polymers chemically modified with one or more halogen groups by corona discharge or by ion incorporation techniques.
  • the desalination plant thus comprises a first module provided with a first desalination enclosure 10.
  • the module is traversed by an aqueous effluent stream, for example from the seawater, entering the chamber 10 via the admission means 11, the fresh water evacuating via means 13.
  • a flow of hydrophobic liquid membrane crosses against the enclosure 10, said flow being admitted in the enclosure 10 by the means 14 and being discharged from the enclosure 10 by the means 12.
  • the first module is an extraction module comprising, according to a first embodiment, an enclosure consisting of a liquid / liquid extraction column operating against the current.
  • the extraction column contains a lining to increase the interface between the two phases (seawater and hydrophobic liquid membrane) and operate in a countercurrent mode.
  • the salt water enters the bottom of the column and comes out at the top once desalinated, while the hydrophobic liquid membrane is introduced into the upper part through a distributor and leaves the column from below, loaded with salts.
  • zones of coalescence and decantation make it possible to hydraulically recover the hydrophobic liquid membrane by ion exchange and to separate it from water.
  • the extraction module comprises an enclosure that can be a mixer / settler.
  • Mixer / settler is understood to mean a set of stages mounted in series, each comprising a mixer in which the dispersion necessary for the transfer of material is created, a decanter which carries out the mechanical separation of the previously dispersed phases, a connection network ensuring the transfer countercurrent coalesced phases.
  • the extraction module comprises an enclosure that can be a stirred column or any other liquid-liquid extraction contactor as described in the engineer's art.
  • J 2 756 “Liquid liquid extraction - Device description ".
  • the enclosure 20 is in fluid communication with the coalescer 40a with hydrophobic solid membrane by means of a first quill 41 entering the coalescer made on the evacuation means 24.
  • the coalescer is also in fluid communication by means of a second 45 and third 43 stitching of the coalescer, with respectively the evacuation means 13 of the fresh water out of the enclosure 10 and the admission means 21 of the liquid membrane hydrophobic in the enclosure 20.
  • the fresh water from the first module is sent to the collector 45 and then flows longitudinally along the outer surface of the fibers.
  • the hydrophobic liquid membrane is introduced into the opening 41, so that it circulates countercurrently (in the opposite direction) inside the fibers.
  • the pressure of the fresh water is greater than the pressure of the hydrophobic liquid membrane. Due to the differential pressure (about two bars) and because of the hydrophobic nature of the hydrophobic liquid membrane, the latter, in trace form, passes through the porous wall of the fibers and joins the interior of the fibers to join the main flow. of hydrophobic liquid membrane and flow through the other opening 43. The latter reintegrates the first module via the admission means 14.
  • the coalescer 40a makes it possible to extract from the flow of desalinated fresh water leaving the enclosure 10, the traces of hydrophobic liquid membrane which remained.
  • the desalination plant comprises a second regeneration chamber 20 which makes it possible to desalt the hydrophobic liquid membrane, once the latter has recovered the salt initially contained in the seawater entering the water. first module.
  • the chamber 20 is traversed by a flow of the hydrophobic liquid membrane to be desalinated, which enters the chamber 20 via the admission means 21 themselves connected to the means of evacuation 12 of the chamber 10, the desalinated hydrophobic liquid membrane evacuating via the means 24 to reintegrate the first module via the admission means 14, and the inlet 41 of the coalescer 40a.
  • a flow of fresh water crosses in the opposite direction the chamber 20, said flow being admitted into said module by the means 23 and being discharged (the water then became salted, or brine) out of the said module by the means 22.
  • the second module is a regeneration module consisting of a first embodiment in a liquid / liquid gravity extraction column.
  • the extraction column contains a lining to increase the interface between the two phases (fresh water and hydrophobic liquid membrane) and operate in a countercurrent mode.
  • the charged hydrophobic liquid membrane enters the upper part of the column and is subjected to salt extraction during its passage along the lining. It will then leave the column at the bottom and is routed as a liquid regenerated by the ion exchange to the first module.
  • the fresh water enters the bottom of the column and is loaded with the salts released from the hydrophobic liquid membrane during its passage along the lining. This brine comes out of the column from above, loaded with salt.
  • the regeneration module may be a mixer / settler.
  • Mixer / settler is understood to mean a set of stages mounted in series, each comprising a mixer in which the dispersion necessary for the transfer of material is created, a decanter which carries out the mechanical separation of the previously dispersed phases, a connection network ensuring the transfer countercurrent coalesced phases.
  • the extraction module comprises an enclosure that can be a stirred column or any other liquid-liquid extraction contactor as described in the engineer's art.
  • J 2 756 Liquid liquid extraction - Device description ".
  • This regeneration module may also advantageously comprise a direct contact heat exchanger which heats the regeneration column in order to minimize the overall heat loss occurring during desalination of the hydrophobic liquid membrane.
  • the temperature is brought between 70 and 90 ° C, and preferably around 80 ° C.
  • the desalination plant comprises a first chamber 10 and a second chamber 20 for regeneration which are in fluid communication in the same manner as the configuration of FIG. 3.
  • the chamber 20 is now in fluid communication with a hydrophobic solid membrane coalescer 40a 'by means of a first coalescer inlet tap 45 on the brine discharge means 22 out of the second chamber 20.
  • the coalescer is also in fluid communication by means of a second 42 and third 43 outlet connections of the coalescer, with respectively means for discharging the brine out of the second chamber 20 and with the inlet means 14 of the hydrophobic liquid membrane in the first chamber 10.
  • the brine from the second module is sent to the collector 45 and then flows longitudinally along the outer surface of the fibers.
  • the hydrophobic liquid membrane is introduced into the opening 41 so that it circulates in the opposite direction inside the fibers.
  • the brine pressure is greater than the pressure of the hydrophobic liquid membrane. Due to the differential pressure (about two bars) and because of the hydrophobic nature of the hydrophobic liquid membrane, the latter, in trace form, passes through the porous wall of the fibers and joins the interior of the fibers to join the main flow. of hydrophobic liquid membrane and flow through the other opening 43.
  • the filtered brine traces hydrophobic liquid is then conveyed to be treated while the recovered hydrophobic liquid flow is reintegrated into the first module via the means of admissions 14.
  • coalescer 40a makes it possible to extract from the stream of brine leaving the second regeneration module, the traces of hydrophobic liquid membrane which remained.
  • the desalination plant comprises a first desalination chamber 10 and a second regeneration chamber 20 which are in fluid communication in a manner identical to the configuration of FIGS. 3 and 4.
  • the enclosure 10 is now in fluid communication with a coalescer 40b by means of a first and second tappings 41 (inlet), 43 (outlet) in the coalescer practiced on the intake means 11 of the seawater in the enclosure 10.
  • the coalescer is also in fluid communication by means of a third and fourth tappings 45 (inlet), 42 (outlet) in the coalescer, with the discharge means 12 of the hydrophobic liquid membrane out of the chamber 10 of the first module.
  • the hydrophobic liquid from the enclosure 10 is sent to the collector 45 and then flows longitudinally along the outer surface of the fibers. Water is introduced into the opening 41 so that it circulates in the opposite direction inside the fibers. The pressure of the water is lower than the pressure of the hydrophobic liquid membrane. Due to the pressure difference (about two bars) and because of the hydrophobic nature of the hydrophobic liquid membrane, trace water passes through the porous wall of the hydrophilic membrane fibers and joins the interior of the fibers. to join the main flow of water and flow through the other outlet opening 43, to join the intake circuit 11 in the enclosure 10. The hydrophobic liquid from the coalescer is thus filtered traces of water and is returned via the output 42 to the second module to be desalinated.
  • the coalescer 40b makes it possible to extract from the flow of hydrophobic liquid membrane coming out of the first module, the traces of water that remained.
  • the desalination plant comprises a first desalination chamber 10 and a second regeneration chamber 20 which are in fluid communication in a manner identical to the configuration of FIGS. 3, 4 and 5.
  • the enclosure 10 is now in fluid communication with a hydrophilic coalescer 40b 'by means of a first and second branching 41 (inlet), 43 (outlet) in the coalescer made on the inlet means 11 of the seawater in the enclosure 10.
  • the coalescer is also in fluid communication by means of a third and fourth port 45 (inlet), 42 (outlet) in the coalescer, with the discharge means 24 of the liquid membrane hydrophobic out of the chamber 20 of the second module.
  • the hydrophobic liquid coming from the enclosure 20 is sent to the collector 45 and then flows longitudinally along the outer surface of the fibers. Water is introduced into the opening 41 so that it circulates in the opposite direction inside the fibers.
  • the pressure of the water is lower than the pressure of the liquid membrane hydrophobic. Due to the pressure difference (about two bars) and because of the hydrophobic nature of the hydrophobic liquid membrane, trace water passes through the porous wall of the hydrophilic membrane fibers and joins the interior of the fibers. to join the main flow of water and flow through the other outlet opening 43, to join the intake circuit 11 in the enclosure 10.
  • the hydrophobic liquid from the coalescer is thus filtered traces of water and is returned via the output 42 to the first module.
  • the coalescer 40b makes it possible to extract from the flow of hydrophobic liquid membrane leaving the second module, the traces of water caused by the regeneration, which remained.
  • the desalination process comprises at least the following steps:
  • step (c) contacting the desalinated water from step (b) with a hydrophobic solid membrane, to remove residual hydrophobic liquid membrane in water desalted by coalescing on said hydrophobic solid membrane.
  • the hydrophobic liquid membrane use is made of at least one compound chosen from the category of anionic surfactants and / or cationic surfactants, and / or calixarenes, preferentially the calix [4] arenes, and / or crown ethers, preferentially the 18-6 crown ethers, or 12-4 crown ethers or 15-5 crown ethers, and / or dithizones.
  • the anionic surfactants may be chosen from the salts of carboxylates, alkyl benzoates, carboxiimidates, alkoxides or dialkoxides, alkyl sulphates, alkyl sulphonates, ether sulphonates, sulphonyl imides, phosphine oxides, phosphinates and alkyl borates.
  • the cationic surfactants may be chosen from alkylsulfonium, alkylammonium, alkylphosphonium, alkylimidazolium, alkyloxazaborolidinium and alkyloxazolidinium salts.
  • the separation step (b) may be a decantation step.
  • the hydrophobic solid membrane is manufactured from a material chosen from polypropylenes, polyethylenes, polyvinylidene fluorides, polytetrafluoroethylenes, polyacrylonitriles, polyolefms, polyvinyl chlorides, polyethylene terephthalates, polyolefin copolymers, polyether ketones, as well as ceramics.
  • a hydrophobic solid membrane consisting of hollow fibers is preferably used.
  • the liquid-liquid (a) and separation (b) extraction step are carried out in a first treatment chamber, while the aqueous effluent and the hydrophobic liquid membrane are extracted separately from the first chamber at the end of steps (a) and (b), and while the contacting of the aqueous effluent from step (b) with a hydrophobic solid membrane, occurs after evacuation of the aqueous effluent treated out of the first treatment chamber.
  • the liquid-liquid extraction step (a) and the separation step (b) are carried out in a first treatment chamber, whereas the treated aqueous effluent and the hydrophobic liquid membrane are extracted separately out of the first treatment chamber at the end of steps (a) and (b), and while the contacting of the aqueous effluent from step (b) with a hydrophobic solid membrane, occurs before the evacuation of the aqueous effluent treated outside the first treatment chamber.
  • the step of bringing the aqueous effluent from step (b) into contact with the hydrophobic solid membrane preferably takes place in a contactor of substantially cylindrical shape, provided with a central channel and a hydrophobic solid membrane constituted by of porous and hollow longitudinal fibers, so that the residual hydrophobic liquid membrane migrates radially to the inside of the fibers. Circulation of fluids within this contactor can be done co-current, countercurrent or cross flow.
  • the treatment process may further comprise a step (e) of contacting the hydrophobic liquid membrane resulting from step (b) with a hydrophilic solid membrane, in order to eliminate the residual effluent in the hydrophobic liquid membrane, by coalescence on said hydrophilic solid membrane.
  • the hydrophilic solid membrane is at least composed of a material chosen from polysulfones, polyvinylidene fluorides, polyvinylpyrrolidones, cellulose acetate, polyether sulphones, optionally modified or additivated, and ceramics.
  • the method may further comprise a regeneration step (d) of the hydrophobic liquid membrane from step (b).
  • the hydrophobic liquid membrane extracted from the first treatment chamber is admitted into a second regeneration chamber where it is brought into contact with water, the regenerated hydrophobic liquid membrane and the water then being separated and discharged outside the chamber. the second chamber, and the regenerated hydrophobic liquid membrane is then brought into contact with a hydrophilic solid membrane after evacuation out of the second chamber so as to eliminate traces of water.
  • the hydrophobic liquid membrane resulting from the coalescence step may be reused in step (a) of the treatment process.
  • the regeneration of the hydrophobic liquid membrane can take place between 70 and
  • the pressure differential during step (c) of contacting with a hydrophobic solid membrane may be between 1 and 5 bar.
  • the pressure differential during step (e) of contacting with a hydrophilic solid membrane may be between 1 and 5 bar.
  • the coalescer may be used when it is connected to the outlet of the aqueous effluent treated in the first module, to recover traces of hydrophobic liquid membrane which would have fortuitously dispersed in the form of droplets in the extraction column of the first module. This thus prevents the contamination of the aqueous effluent treated by the hydrophobic liquid membrane.
  • the coalescer can also be used when it is connected to the second module, to recover traces of hydrophobic liquid membrane that would have incidentally dispersed in the form of droplets in the regeneration column of the second module. This thus avoids the contamination of the brine resulting from the desalination of the hydrophobic liquid membrane by the hydrophobic liquid membrane.
  • the coalescer may also be used when it is connected to the second module, to recover traces of water that would be incidentally dispersed in the form of droplets in the regeneration column of the second module. This thus avoids the contamination of the hydrophobic liquid membrane by the water used in the regeneration column.
  • the coalescer can be used when it is connected to the output of the hydrophobic liquid membrane of the first module, to recover traces of water that would escape the system due to an uncontrolled emulsion of the solvent / water phases or a bad one. coalescence / settling in the lower part of the extraction column extraction. This thus avoids weakening the thermal balance of the heat exchanger associated with the first module. This also makes it possible to conserve the capacity of the hydrophobic liquid membrane to carry out the ion uptake.
  • the invention also includes the case where the desalination chamber 10 and the coalescer form a single unit consisting mainly of a membrane contactor. This configuration is shown in Figure 7.
  • the step of coalescing the desalted Peffluent and / or the hydrophobic liquid membrane takes place in said enclosure 40, which is a hydrophobic solid membrane contactor, before the desulfated effluent and the hydrophobic liquid membrane are discharged out of the water.
  • said enclosure 40 which is a hydrophobic solid membrane contactor
  • the effluent is desalinated by the hydrophobic liquid membrane during their contacting in the contactor, and, concomitantly, there is coalescence of the hydrophobic liquid membrane so as to eliminate its traces present in the effluent .
  • the liquid-liquid extraction is carried out (a) by contacting the aqueous effluent with a hydrophobic liquid membrane which is immiscible with water, allowing the transfer of ions from the aqueous phase. to the hydrophobic liquid phase, then, the aqueous effluent resulting from step (a) is brought into contact with with a hydrophobic solid membrane, in order to proceed concomitantly with steps (b) and (c).
  • the plant comprises a desalting coalescer 40 having a substantially cylindrical shaped contactor provided with a central channel and a hydrophobic solid membrane consisting of porous and hollow longitudinal fibers.
  • the coalescer is provided with inlet means 45 in the central channel, exhaust means 42 out of the central channel, admission means 41 and evacuation 43 connected to a first recirculation loop communicating with the interior of the longitudinal fibers.
  • This recirculation loop comprises a valve 49 and a pump 44 '.
  • the installation also comprises a regeneration coalescer 50 having a contactor of substantially cylindrical shape, provided with a central channel and a hydrophobic solid membrane consisting of porous and hollow longitudinal fibers, admission means 55 in the channel central unit connected to the first recirculation loop and a water point 60.
  • the regeneration coalescer 50 is also provided with evacuation means 52 out of the central channel, admission means 51 and evacuation means 52 connected to a central station.
  • second recirculation loop communicating with the interior of the longitudinal fibers.
  • This recirculation loop comprises a valve 59 and a pump 54. A tapping on this second recirculation puts it in communication with the inlet 45 of the desalination coalescer, by means of a line 44 also comprising a valve 57, a pump 58 and a water point 61.
  • the hydrophobic liquid mixed with the water to be desalted are sent into the coalescer 40 through the collector 45 and then flow longitudinally along the outer surface of the fibers.
  • the mixture between the water to be desalinated and the hydrophobic liquid membrane takes place in a mixing unit 45 'which may be a pump, a static mixer, or any other mixing device.
  • the mixing unit is therefore connected as input to an inlet 44 dedicated to the hydrophobic liquid membrane and to an inlet dedicated to the water to be desalinated.
  • the opening 41 of the hydrophobic liquid membrane is introduced so that it circulates in the opposite direction inside the fibers.
  • the pressure of the hydrophobic liquid membrane is less than the pressure of the water + hydrophobic liquid membrane mixture.
  • the hydrophobic liquid membrane contained on the outside of the fibers passes through the porous wall of the membranes. fibers (by taking with it the salt extracted from the water to be desalinated) and joined the interior of the fibers to join the main flow of hydrophobic liquid membrane and flow through the other outlet opening 43. Part of this flow is then returned to the coalescer 40 through the opening 41 and the other part is returned via the inlet 55 to the coalescer 50 to be desalinated.
  • the salt-free desalinated water and the hydrophobic liquid membrane leave the coalescer 40 via the outlet 42.
  • a booster of water is made at 60 before admission into the coalescer 50 via a line 46 endowed with a pump 48 and a valve 47.
  • the mixture water + hydrophobic liquid membrane is then sent into the coalescer via the inlet 55 and then flow longitudinally along the outer surface of the fibers.
  • the hydrophobic liquid membrane is introduced into the opening 51 so that it circulates in the opposite direction inside the fibers.
  • the pressure of the hydrophobic liquid membrane is less than the pressure of the water + hydrophobic liquid membrane mixture.
  • the hydrophobic liquid membrane contained on the outside of the fibers passes through the porous wall of the membranes. fibers and joins the interior of the fibers to join the main flow of hydrophobic liquid membrane and flow through the other outlet opening 53. Part of this flow is then returned to the coalescer 50 through the opening 51 and the other part is returned via line 44 to the inlet 45 of the coalescer 40 as a regenerated hydrophobic liquid membrane.
  • the brine water concentrated in salts
  • the hydrophobic liquid membrane is desalinated by fresh water (becoming brine) when they come into contact in the contactor, and, concomitantly, the brine coalesces so as to eliminate its traces of the hydrophobic liquid membrane.
  • fresh water becoming brine
  • the brine coalesces so as to eliminate its traces of the hydrophobic liquid membrane.
  • the desalinated effluent also offers an excellent quality of treatment insofar as its passage through the contactor synergistically makes it possible to extract both the hydrophobic liquid membrane and the salt trapped therein.
  • variants of the invention comprising only a selection of features described, isolated from the other characteristics described (even if this selection is isolated within a sentence including these other characteristics), if this selection of features is sufficient to confer a technical advantage or to differentiate the invention from the state of the prior art.
  • This selection comprises at least one characteristic, preferably functional without structural details, or with only a part of the structural details if this part alone is sufficient to confer a technical advantage or to differentiate the invention from the state of the prior art .
  • the process for treating an aqueous effluent according to the invention makes it possible in particular to desalt an aqueous effluent by successively performing the three steps (a), (b) and (c) or by first carrying out the step (a) then steps (b) and (c) concomitantly.
  • the method for treating an aqueous effluent according to the invention therefore comprises the following steps:
  • step (c) contacting the effluent from step (b) with a hydrophobic solid membrane, in order to remove the residual hydrophobic liquid membrane in said effluent by coalescence on said hydrophobic solid membrane, or (a) Liquid-liquid extraction, by bringing the aqueous effluent into contact with a water-immiscible hydrophobic liquid membrane, allowing the transfer of ions from the aqueous phase to the hydrophobic liquid phase, then,
  • step (b and c) bringing the aqueous effluent from step (a) into contact with a hydrophobic solid membrane in order to proceed concomitantly with steps (b) and (c).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

La présente invention se rapporte aux procédés de traitements d'eau permettant d'extraire des cations et anions d'un effluent aqueux par mise en contact desdits effluents aqueux avec une phase liquide hydrophobe, comprenant également au moins une étape de mise en contact de l'effluent avec une membrane solide hydrophobe, afin d'éliminer la membrane liquide hydrophobe résiduelle dans l'effluent traité par coalescence sur ladite membrane solide hydrophobe. Les procédés selon l'invention comprennent les procédés de dessalements d'eau de mer. L'invention a également pour objet un module de dessalement ainsi que son installation associée, caractérisés en ce qu'ils comprennent au moins un coalesceur.

Description

PROCEDE DE TRAITEMENT D'EAU, MODULE ET INSTALLATION
ASSOCIES.
La présente invention se rapporte aux procédés de traitements d'eau permettant d'extraire des cations et anions d'un effluent aqueux par mise en contact desdits effluents aqueux avec une phase liquide hydrophobe. Les procédés selon l'invention comprennent les procédés de dessalements d'eau de mer, où l'on extraira notamment des ions calcium, sodium, potassium, chlorure, sulfates, carbonates, et les procédés d'élimination d'ions métalliques, par exemple les cations métalliques issus de métaux de transition tels que fer, or, argent, cuivre, chrome, platine, plomb, étain, cadmium, cobalt, zinc, nickel, mercure, ....ou de métaux alcalins tels que le sodium, césium, strontium, baryum, rubidium, ou de métalloïdes tels que l'arsenic ... L'invention a pour objet en particulier un procédé de dessalement d'eau par mise en contact d'un effluent aqueux avec une membrane liquide hydrophobe. L'invention a également pour objet un module permettant la mise en œuvre des procédés selon l'invention, plus particulièrement un module de dessalement ainsi que son installation associée.
Concernant notamment les procédés de dessalement pour la production d'eau potable à partir d'eau de mer, ces procédés sont généralement basés sur des traitements thermiques ou bien membranaires. Toutefois, ils induisent de fortes consommations d'énergie. C'est pourquoi, de nombreux développements ont été réalisés au cours de la dernière décennie pour réduire la consommation d'énergie des installations mettant en œuvre des membranes à osmose inverse (optimisation des membranes, développement de pompes plus efficaces et introduction de boucles de récupération d'énergie). Cependant, le coût global de ce type d'installations reste beaucoup plus élevé que les procédés classiques pour le traitement de l'eau douce.
Les procédés de traitement d'eau par extraction liquide- liquide (LLE) sont des procédés innovants qui consistent à extraire des cations et anions de l'eau grâce à un transfert de phase de ces ions depuis la phase aqueuse vers une phase hydrophobe, qui est ensuite séparée de l'eau traitée et optionnellement régénérée. De tels liquides hydrophobes peuvent être par exemple des liquides ioniques, comprenant un ou plusieurs sels de tensioactifs anioniques et/ou cationiques liquides à température ambiante. Plus généralement, ces liquides hydrophobes peuvent être des formulations comprenant une ou plusieurs bases liquides hydrophobes et une ou plusieurs molécules actives aptes à transférer les anions ou les cations que l'on souhaite éliminer de la phase aqueuse à la phase hydrophobe. Ces substances actives peuvent être dispersées ou en solution dans une base liquide hydrophobe ou dans un mélange de bases liquides hydrophobes. Les molécules actives aptes à transférer les anions ou les cations que l'on souhaite éliminer de la phase aqueuse à la phase hydrophobe peuvent être par exemple des tensioactifs anioniques (pour extraire les cations), ou des tensioactifs cationiques (pour extraire les anions), ou des molécules aptes à solvater ou complexer des cations ou des anions, comme par exemple les éthers couronnes, des oligo mères cycliques (les calixarènes), ou des oligomères non cycliques de dérivés phénoliques en présence d' éthers couronnes, ou les dithizones.
Les phases liquides hydrophobes utilisées sont communément désignés sous le terme « membranes liquides ».
Ces procédés n'utilisent pas de membrane solide, et ne nécessitent pas de contre- pression pour extraire les ions de l'eau.
Ainsi, il est connu de l'art antérieur des documents qui décrivent des unités de prétraitement d'eau, en particulier d'eau saline, comprenant un échangeur à contact direct dont la phase fluorée continue ou dispersée comprend un liquide fluoré non miscible à l'eau et de densité supérieure à 1 ,25. Selon les variantes, l'échangeur à contact direct peut être un échangeur de chaleur et/ou un échangeur ionique. En effet, selon la phase fluorée utilisée, le transfert opéré entre la phase fluorée et l'eau à traiter pourra être un transfert thermique ou un transfert ionique ou simultanément, un transfert thermique et ionique.
Cependant, même si les membranes liquides utilisées dans les procédés de traitement de l'eau par extraction liquide- liquide sont très hydrophobes et non miscibles à l'eau, elles présentent malgré tout une légère hydro-solubilité. De ce fait, on observe au cours du temps dans ces procédés un transfert des membranes liquides dans la phase aqueuse. Ces transferts peuvent provenir de composés solubles qui migrent avec le temps depuis la membrane liquide vers l'eau.
Des microgouttelettes peuvent aussi sortir du système en raison des dysfonctionnements suivants : l'émulsion incontrôlée des phases liquide / eau entraîne des difficultés de séparation, lors des opérations de traitement ou de régénération, la membrane liquide est emportée dans le flux d'eau traitée ou dans le flux de saumure de régénération, en raison d'un rapport inapproprié des débits d'écoulement à contre-courant, l'usure de la membrane liquide entraîne des sous-performances au niveau de l'extraction des 'ions.
Il s'ensuit alors les inconvénients suivants : un surcoût lié à la déperdition de la membrane liquide, qu'il faut dès lors remplacer, la contamination de l'eau traitée par des traces de membrane liquide, la contamination de la saumure par des traces de membrane liquide, la saumure provenant de la régénération de la membrane liquide.
L'invention a donc pour but d'éliminer tout ou partie des inconvénients mentionnés ci-avant, en récupérant la déperdition d'une des phases dans l'autre. En outre elle permet de résoudre le problème de la sensibilité des dispositifs de coalescence actuels à la précipitation des sels contenus dans les saumures.
Plus particulièrement, l'invention a pour objet un procédé de traitement d'un effluent aqueux comprenant les étapes suivantes : - (a) Extraction liquide - liquide, par mise en contact de Γ effluent aqueux avec une membrane liquide hydrophobe non miscible à l'eau, permettant le transfert d'ions de la phase aqueuse vers la phase liquide hydrophobe,
(b) Séparation de l'effluent aqueux et de la membrane liquide hydrophobe issus de l'étape (a), - (c) Mise en contact de l'effluent issu de l'étape (b) avec une membrane solide hydrophobe, afin d'éliminer la membrane liquide hydrophobe résiduelle dans ledit effluent par coalescence sur ladite membrane solide hydrophobe.
Des caractéristiques optionnelles de l'invention, complémentaires ou de substitution sont énoncées ci-après. La membrane liquide hydrophobe peut comprendre au moins un composé choisi parmi la catégorie des tensioactifs anioniques et/ou des tensioactifs cationiques, et/ou des calixarènes, préférentiellement les calix[4]arènes, et/ou des éthers couronnes, préférentiellement les 18-6 éthers couronnes, ou 12-4 éthers couronne ou 15-5 éthers couronne, et/ou des dithizones.
Les tensioactifs anioniques peuvent être choisis parmi les sels de carboxylates, alkyl benzoates, carboxiimidates, alkoxydes ou dialkoxydes, alkylsulfates, alkylsulfonates, éther sulfonates, sulfonylimides, phosphine oxides, phosphinates, alkyl borates. Les tensioactifs cationiques peuvent être choisis parmi les sels d'alkylsulfonium, alkylammonium, alkylphosphonium, alkylimidazolium, alkyloxazaborolidinium, alkyloxazolidinium.
L'étape (b) de séparation peut être une étape de décantation.
La membrane solide hydrophobe peut comprendre un matériau choisi parmi les polypropylènes, les polyéthylènes, les fluorures de polyvinylidène, les polytétrafluoroéthylènes, les polyacrylonitriles, les polyoléfmes, les chlorures de polyvinyle, les polyéthylène-téréphtalates, les copolymères de polyoléfmes, les polyéthercétones ainsi que les céramiques.
La membrane solide hydrophobe peut être constituée de fibres creuses. Selon une variante, l'étape d'extraction liquide- liquide (a) et de séparation (b) sont réalisées dans une première enceinte de traitement, l'effluent aqueux traité et la membrane liquide hydrophobe étant extraits séparément hors de la première enceinte de traitement à l'issue des étapes (a) et (b), et la mise en contact de l'effluent aqueux issu de l'étape (b) (donc traité), avec une membrane solide hydrophobe, intervenant après d'évacuation de l'effluent aqueux traité hors de la première enceinte de traitement.
Selon une autre variante, l'étape d'extraction liquide- liquide (a) et de séparation (b) sont réalisées dans une première enceinte de traitement, l'effluent aqueux traité et la membrane liquide hydrophobe étant extraits séparément hors de la première enceinte de traitement à l'issue des étapes (a) et (b), la mise en contact de l'effluent aqueux issu de l'étape (b) (donc traité) avec une membrane solide hydrophobe, intervenant avant l'évacuation de l'effluent aqueux traité hors de la première enceinte de traitement. L'étape de mise en contact de l'effluent aqueux issu de l'étape (b) avec la membrane solide hydrophobe peut s'effectuer dans un contacteur de forme sensiblement cylindrique, pourvu d'un canal central et d'une membrane solide hydrophobe constituée de fibres poreuses et creuses longitudinales, de sorte que la membrane liquide hydrophobe résiduelle migre radialement jusqu'à l'intérieur des fibres. La circulation des fluides à l'intérieur de ce contacteur pourra se faire à co-courant, à contre-courant ou à courant croisé.
Le procédé de traitement peut comprendre en outre une étape (e) de mise en contact de la membrane liquide hydrophobe issue de l'étape (b) avec une membrane solide hydrophile, afin d'éliminer l'effluent résiduel dans la membrane liquide hydrophobe, par coalescence sur ladite membrane solide hydrophile.
La membrane solide hydrophile peut comprendre un matériau choisi parmi les polysulfones, les polyfluorure de vinylidène, les polyvinylpyrolidones, l'acétate de cellulose, les polyéther sulfones, optionnellement modifiés ou additivés, les céramiques. Le procédé peut comprendre en outre une étape de régénération (d) de la membrane liquide hydrophobe issue de l'étape (b).
Selon une variante, la membrane liquide hydrophobe extraite de la première enceinte de traitement est admise dans une seconde enceinte de régénération où elle est mise en contact avec de l'eau, la membrane liquide hydrophobe régénérée et l'eau étant ensuite séparées et évacuées hors de la seconde enceinte, et la membrane liquide hydrophobe régénérée étant ensuite mise en contact avec une membrane solide hydrophile après évacuation hors de la seconde enceinte de manière à éliminer les traces d'eau.
La membrane liquide hydrophobe issue de l'étape de coalescence peut être réutilisée dans l'étape (a) du procédé de traitement.
Le traitement peut être un traitement de dessalement de l'eau, en particulier dessalement d'eau de mer.
La régénération de la membrane liquide hydrophobe peut s'effectuer entre 70 et 90°C, préférentiellement aux alentours de 80°C. Le différentiel de pression au cours de l'étape (c) de mise en contact avec une membrane solide hydrophobe, peut être compris entre 1 et 5 bars. Le différentiel de pression au cours de l'étape (e) de mise en contact avec une membrane solide hydrophile, peut être compris entre 1 et 5 bars.
L'invention a également pour objet un module de traitement par mise en contact d'un effluent aqueux avec une membrane liquide hydrophobe pour la mise en œuvre du procédé selon l'invention, le module comportant au moins une enceinte de d'extraction liquide -liquide, des moyens d'admission et d'évacuation de l'effluent, respectivement dans et hors de ladite enceinte, des moyens d'admission et d'évacuation de la membrane liquide hydrophobe, respectivement dans et hors de ladite enceinte, caractérisé en ce qu'il comprend en outre au moins un premier coalesceur à membrane solide hydrophobe en communication de fluide avec ladite enceinte au moyen d'un premier piquage d'entrée dans le coalesceur pratiqué sur le moyen d'évacuation de l'effluent hors de ladite enceinte, afin d'éliminer les traces de membrane liquide hydrophobe présente de manière résiduelle dans l'effluent aqueux.
L'enceinte d'extraction liquide- liquide peut comprendre une colonne d'extraction liquide / liquide.
L'enceinte d'extraction liquide- liquide peut comprendre un mélangeur/décanteur ou tout autre contacteur d'extraction liquide- liquide.
L'enceinte d'extraction liquide- liquide et le premier coalesceur peuvent former une seule et même unité constituée d'un contacteur à membranes. Les modules selon l'invention sont adaptés à la mise en œuvre de procédés de traitement d'eau pour extraire des sels présents dans un large panel d'effiuents aqueux issus de l'industrie pétrolière et gazière, des eaux issues d'exploitations minières, des lixiviats de décharges, des eaux usées issues des usines d'incinération.
L'invention a en particulier pour objet un module de dessalement par mise en contact d'un effluent aqueux avec une membrane liquide hydrophobe pour la mise en œuvre du procédé selon un mode de réalisation de l'invention, le module comportant au moins une enceinte de dessalement, des moyens d'admission et d'évacuation de l'effluent, respectivement dans et hors de ladite enceinte, des moyens d'admission et d'évacuation de la membrane liquide hydrophobe, respectivement dans et hors de ladite enceinte, caractérisé en ce qu'il comprend en outre au moins un premier coalesceur à membrane solide hydrophobe en communication de fluide avec ladite enceinte au moyen d'un premier piquage d'entrée dans le coalesceur pratiqué sur le moyen d'évacuation de l'effluent hors de ladite enceinte, afin d'éliminer les traces de membrane liquide hydrophobe présente de manière résiduelle dans l'effluent aqueux.
Des caractéristiques optionnelles de l'invention, complémentaires ou de substitution sont énoncées ci-après. Le premier coalesceur peut être en communication de fluide au moyen d'un second et d'un troisième piquages de sortie, avec respectivement des moyens d'admission et d'évacuation de la membrane liquide hydrophobe, dans et hors de ladite enceinte.
La membrane liquide hydrophobe peut comprendre au moins un composé choisi parmi la catégorie des tensioactifs anioniques et/ou des tensioactifs cationiques, et/ou des calixarènes, préférentiellement les calix[4]arènes, et/ou des éthers couronnes, préférentiellement les 18-6 éthers couronnes, ou 12-4 éthers couronne ou 15-5 éthers couronne, et/ou des dithizones.
Les tensioactifs anioniques peuvent être choisis parmi les sels de carboxylates, alkyl benzoates, carboxiimidates, alkoxydes ou dialkoxydes, alkylsulfates, alkylsulfonates, éther sulfonates, sulfonylimides, phosphine oxides, phosphinates, alkyl borates.
Les tensioactifs cationiques peuvent être choisis parmi les sels d'alkylsulfonium, alkylammonium, alkylphosphonium, alkylimidazolium, alkyloxazaborolidinium, alkyloxazolidinium. Le premier coalesceur peut être un contacteur de forme sensiblement cylindrique, pourvu d'un canal central et d'une membrane solide hydrophobe constituée de fibres poreuses et creuses longitudinales.
Les matériaux constituant la membrane solide hydrophobe peuvent être choisis dans la liste définie par les polypropylènes, les polyéthylènes, les fluorures de polyvinylidène, les polytétrafluoroéthylènes, les polyacrylonitriles, les polyoléfines, les chlorures de polyvinyle, les polyéthylène-téréphtalates, les copolymères de polyoléfines, les polyétheréthercétones ainsi que les céramiques.
L'enceinte de dessalement peut comprendre une colonne d'extraction liquide / liquide. L'enceinte de dessalement peut comprendre un mélangeur/décanteur ou tout autre contacteur liquide- liquide. L'enceinte de dessalement et le premier coalesceur peuvent former une seule et même unité constituée d'un contacteur à membranes.
Le module de dessalement peut comprendre en outre un second coalesceur membrane solide hydrophile en communication de fluide avec l'enceinte de dessalement du premier module au moyen d'un premier piquage d'entrée dans le coalesceur pratiqué sur le moyen d'évacuation de la membrane liquide hydrophobe hors de ladite enceinte, afin d'éliminer les traces d'effluent aqueux présentes de manière résiduelle dans la membrane liquide hydrophobe.
Le second coalesceur peut être en communication de fluide au moyen d'un second et troisième piquages de sortie, avec les moyens d'admission de l'effluent aqueux dans l'enceinte du premier module .
Le second coalesceur peut être un contacteur de forme sensiblement cylindrique, pourvu d'un canal central et d'une membrane solide hydrophile constituée de fibres poreuses et creuses longitudinales. Les matériaux constituant la membrane solide hydrophile peuvent être choisis dans la liste définie par les polysulfones, les polyfluorures de vinylidène, les polyvinylpyrolidones, l'acétate de cellulose, les polyéthers sulfones, optionnellement modifiés ou additivés, les céramiques.
Selon un mode de réalisation particulier, le module de dessalement comprend un coalesceur dédié au dessalement et doté d'un contacteur de forme sensiblement cylindrique, pourvu d'un canal central et d'une membrane solide hydrophobe constituée de fibres poreuses et creuses longitudinales, de moyens d'admission dans le canal central d'un mélange composé de l'effluent aqueux et de membrane liquide hydrophobe, le mélange étant réalisé dans une unité de mélange particulière, de moyens d'évacuation de l'effluent dessalé hors du canal central, de moyens d'admission et d'évacuation connectés à première boucle de recirculation de membrane liquide hydrophobe à l'intérieur des fibres longitudinales.
L'invention a également pour objet une installation de dessalement d'un effluent aqueux, en particulier de l'eau de mer, caractérisée en ce qu'elle comprend un premier module de dessalement conforme à l'un des modes de réalisation de l'invention. Des caractéristiques optionnelles de l'invention, complémentaires ou de substitution sont énoncées ci-après.
L'installation peut comprendre en outre un second module de régénération de la membrane liquide hydrophobe, les moyens d'admission de la membrane liquide hydrophobe dans le premier module de dessalement de l'effluent aqueux étant en communication de fluide avec les moyens d'évacuation de la membrane liquide hydrophobe hors du second module de régénération de la membrane liquide hydrophobe, tandis que les moyens d'admission de la membrane liquide hydrophobe dans le second module de régénération sont en communication de fluide avec les moyens d'évacuation de la membrane liquide hydrophobe hors du premier module de dessalement.
L'installation peut comprendre en outre un troisième coalesceur à membrane solide hydrophobe en communication de fluide avec l'enceinte de régénération du second module au moyen d'un premier piquage d'entrée dans le coalesceur pratiqué sur le moyen d'évacuation de la saumure hors de ladite enceinte, afin d'éliminer les traces de membrane liquide hydrophobe présentes de manière résiduelle dans la saumure.
Selon un mode de réalisation particulier, l'installation peut comprendre en outre un second module de régénération de la membrane liquide hydrophobe, ledit second module comprenant un coalesceur de régénération doté d'un contacteur de forme sensiblement cylindrique, pourvu d'un canal central et d'une membrane solide hydrophobe constituée de fibres poreuses et creuses longitudinales, de moyens d'admission dans le canal central d'un mélange composé d'eau douce issue d'un point d'eau et de membrane liquide hydrophobe issue du premier module, de moyens d'évacuation de la saumure hors du canal central, de moyens d'admission et d'évacuation connectés à une seconde boucle de recirculation de membrane liquide hydrophobe à l'intérieur des fibres longitudinales du contacteur.
L'installation peut comprendre en outre un quatrième coalesceur à membrane solide hydrophile en communication de fluide avec l'enceinte de régénération du second module au moyen d'un premier piquage d'entrée dans le coalesceur pratiqué sur le moyen d'évacuation de la membrane liquide hydrophobe hors de ladite enceinte, afin d'éliminer les traces d'effiuent aqueux présentes de manière résiduelle dans la membrane liquide hydrophobe. Le quatrième coalesceur peut être en communication de fluide au moyen d'un second et troisième piquages, avec les moyens d'admission de l'effluent aqueux dans l'enceinte du premier module.
Le quatrième coalesceur peut être un contacteur de forme sensiblement cylindrique, pourvu d'un canal central et d'une membrane solide hydrophile constituée de fibres poreuses et creuses longitudinales.
Les matériaux constituant la membrane solide hydrophile sont choisis dans la liste définie par les polysulfones, les polyfluorure de vinylidène, les polyvinylpyrolidones, l'acétate de cellulose, les polyéther sulfones, optionnellement modifiés ou additivés, les céramiques.
D'autres avantages et particularités de l'invention apparaîtront à la lecture de la description détaillée de mises en œuvre et de modes de réalisation nullement limitatifs, et des dessins annexés suivants : la FIGURE 1 est une représentation schématique d'un détail d'un coalesceur selon l'invention, la FIGURE 2 est une représentation schématique d'un autre détail d'un coalesceur selon l'invention, les FIGURES 3, 4, 5, 6, 7 sont des représentations schématiques de modes de réalisation d'une installation de dessalement selon l'invention. Les procédés selon l'invention comprennent une étape d'extraction liquide- liquide
(LLE) qui consiste à extraire des cations et anions de l'eau grâce à un transfert de phase de ces ions depuis la phase aqueuse vers une phase liquide hydrophobe, qui est ensuite séparée de l'eau traitée et optionnellement régénérée.
Les phases liquides hydrophobes utilisées dans les procédés, modules et installations selon l'invention sont communément désignés sous le terme « membranes liquides ».
De telles membranes liquides hydrophobes peuvent être par exemple des liquides ioniques, comprenant un ou plusieurs sels de tensioactifs anioniques et/ou cationiques liquides à température ambiante. Plus généralement, ces liquides hydrophobes peuvent être des formulations comprenant une ou plusieurs bases liquides hydrophobes et une ou plusieurs molécules actives aptes à transférer les anions ou les cations que l'on souhaite éliminer de la phase aqueuse à la phase hydrophobe. Ces substances actives peuvent être dispersées ou en solution dans une base liquide hydrophobe ou dans un mélange de bases liquides hydrophobes. Les bases liquides hydrophobes peuvent être par exemple des bases liquides hydrocarbonées par exemple des hydrocarbures aliphatiques, comprenant préférentiellement entre 6 et 22, préférentiellement entre 10 et 18 atomes de carbone ou des hydrocarbures aromatiques. Ces bases liquides hydrophobes peuvent également être des alkyl phénols, des alcools ou des acides gras, ou des esters gras, par exemple des esters gras de l'acide benzoïque. Ces bases peuvent également comporter des chaînes hydrocarbonées substituées, par exemple halogénées, par exemples fluorées, pour conférer au liquide hydrophobe une densité supérieure à celle de l'eau. On peut par exemple utiliser comme base liquide hydrophobe des hydrofluorocarbures ou les perfluorocarbures.
Les molécules actives aptes à transférer les anions ou les cations que l'on souhaite éliminer de la phase aqueuse à la phase hydrophobe peuvent être par exemple des tensioactifs anioniques (pour extraire les cations), ou des tensioactifs cationiques (pour extraire les anions), ou des molécules aptes à solvater ou complexer des cations ou des anions, comme par exemple les éthers couronnes, les calixarènes, ou les les dithizones.
Comme tensio actif anionique, on citera préférentiellement les sels de carboxylates, alkyl benzoates, carboxiimidates, alkoxydes ou dialkoxydes, carboxiimidates, alkylsulfates, alkylsulfonates, éther sulfonates, sulfonylimides, phosphine oxides, les phosphinates, alkyl borates, ....
Comme tensioactif cationique, on citera préférentiellement les sels d'alkylsulfonium, alkylammonium, alkylphosphonium, alkylimidazolium, alkyloxazaborolidinium, alkyloxazolidinium, ...par exemple leurs sels formés avec les anions tetrafluoroborate, chlorure, hexafluorophosphate, mesylate, tosylate, triflate ; .
Les chaînes hydrophobes de ces tensioactifs peuvent être des chaînes alkyl linéaires ou ramifiées, saturées ou insaturées, éventuellement substituées, par exemple par des substituants aryle, ou par exemple halogénées, en particulier fluorées ou perfluorées.
Les molécules aptes à solvater des ions peuvent être par exemple des éthers couronnes, en particulier les 18-6 éthers couronnes ou 12-4 éthers couronne ou 15-5 éthers couronne, ayant une affinité particulière respectivement pour les ions K+, Li+, et Na+ . ce sont également par exemple les calixarènes, en particulier calix[4] arènes ayant une affinité particulière pour les ions Na+, Cu2+, Zn2+, ou encore les dithizones, ayant une affinité particulière pour le plomb et le mercure. Ces molécules peuvent également comporter divers substituants hydrocarbonés, des substituants aryle, ou des substituants alkyl linéaires ou ramifiés ou cycliques, saturés ou insaturés, éventuellement substitués, par exemple halogénés, par exemple fluorées ou perfluorées.
Les membranes liquides hydrophobes adaptées aux procédés de dessalement d'eau, dans lesquels on extraira notamment des ions calcium, sodium, potassium, chlorure, sulfates, carbonates, comprennent par exemple avantageusement un ou plusieurs composés choisis parmi: - Les tensio actifs alkyl ammonium ou alkyl phosphonium, ayant une affinité pour les ions chlorures, et/ou les éthers couronnes ayant une affinité pour les ions sodium ou potassium, et/ou les calixarènes ayant une affinité pour les ions sodium et/ou potassium les tensioactifs carboxylates, phopsphonates, sulfates, phosphates, alkoxydes, préférentiellement phénolates, esters, préférentiellement benzoates, pour leur affinités avec les cations sodium et potassium.
Préférentiellement, les membranes liquides ont une densité supérieure à celle de l'eau, une forte hydrophobie, et sont régénérables à relativement faible température (à titre indicatif environ 80° C). Préférentiellement, les membranes liquides hydrophobes utilisées dans le dessalement de l'eau de mer présentent les caractéristiques suivantes : hydrophobes,
densité supérieure à l'eau,
tension interfaciale suffisante pour améliorer le contact avec l'eau,
- affinité suffisante avec les ions compris dans la liste définie par Na+, Cl", K+, Mgz+ et S042",C032\
capacité à extraire les sels complexes de la membrane liquide hydrophobe (régénération) à une température d'environ 80°C,
capacité à extraire les sels complexes de l'eau à faible température (température ambiante). Afin de rassembler toutes les caractéristiques ci-dessus, la viscosité des liquides échangeurs d'ions sera généralement comprise entre 10 et 60 fois la viscosité dynamique de l'eau.
L'homme du métier saura adapter la formulation des membranes liquides de manière à obtenir tout ou partie des caractéristiques susmentionnées et de manière à extraire les cations ou anions cibles à éliminer dans le procédé.
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les chlorures de méthyl trioctyl/décylamine (Aliquat 336), les chlorures de trihexyl(tetradecyl)phosphonium (Cyphos IL 101), les chlorures de tributil(tetradecyl)phosphonium (Cyphos IL 167) en phase solvatée ou diluée dans 10% de décanol/kérosène. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Ionic liquids as a carrier for chloride réduction from brackish water using hollow fïber renewal liquid membrane » (Spain) et publiée par A. Fortuny et al dans la revue « Desalination » en 2013. La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant des mélanges d'oxides phosphine : R3PO+ R2R'PO+RR'2PO + R3PO avec R=CH3(CH2)7 and R = CH3(CH2)5 (Cyanex 923) en phase solvatée ou diluée dans un diluant aliphatique (Exxsol D100), ou aromatique (Solvesso 200). Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Extraction and permeation studies of Cd(II) in acidic and neutral chloride media using Cyanex 923 on supported liquid membrane »
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les phosphinates de trioctyl/decylmethylammonium-bis(2,4,4- trimethilpentyl) (ALiCY IL), de trioctyl/decylmethylammonium decanoates (ALiDEC IL), en phase solvatée ou diluée dans 10%> de décanol ou de kérosène. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Boron réduction by supported liquid membranes using ALiCY and ALiDEC ionic liquids as carriers » (Spain) et publiée par M.T. Coll dans la revue « Chemical Engineering Research and Design » en 2014. La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les hexafluoro-phosphatess l-alkyl-3-methylimidazolium, les bis [(trifluoromethyl)sulfonyl] imides, les bis [(perfluoroethyl)sulfonyl] imides, les dicyclohexano-18-couronnes-6. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Ionic liquid anion effects in the extraction of métal ios by macrocyclic polyethers » (USA) et publiée par S.L. Garvey dans la revue « Séparation and Purification Technology » en 2014. La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les acétates, les tétrafluoroborates, les hexafluorophosphonates, méthylsulfates, les diméthylphosphates, les chlorures de trihexyl(tetradecyl)phosphonium (Cyphos IL 101), Cocosalkyl (ECOENG500), les l-alkyl-3-methylimidazolium, les 1- allyl-3-methylimidazolium, en phase solvatée ou diluée dans du benzène, de l'hexane, du chlorobenzène, des phénols, des acides benzoïques, des benzamides. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Methods for recovery of ionic liquids - A review » (Republic of Korea) et publiée par NX. Mai dans la revue « Process biochemistry » en 2014.
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les Phenylglyoximes, les P-tolylglyoximes, les N'-(4'-Benzo[15-crown- 5])phenylaminoglyoximes, les N'-(4'-Benzo[15-crown-5])tolylaminoglyoximes, les composés éther couronnes + oximes. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Liquid-liquid extraction of transition métal cations by glyoximes and their macrocyclic glyoxime ether derivatives » (Turkey) et publiée par N. Karapinar dans la revue « Journal of Chemistry » en 2013.
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les aminés tris[(L)-alanyl-2-carboxamidoéthyl]. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Coordination du CU(II) et Ni(II) avec un ligand polydenté azoté et synthèse de liquides inoiques dérivés de la betaîne: Application à l'extraction liquide- liquide de métaux » (France) et publiée par A. Messadi dans la revue « Thèse Université de Reims Champagne Ardenne » en 2013.
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les Imidazolium, Ammonium, Pyridinium, Pyrrolidinium, Sulphonium, Phosphonium, les tétrafluoroborates, hexafluorophosphates, trifluoroacétates, trifluorométhanesulfonates, les bis(trifluorosulfonyl)imides, les éthers couronnes, calixarènes, les oxides de trioctyle. La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les tributyl(2-éthoxy-2-oxoéthyl)ammonium, les dicyanamides (Dca), les bis(trifluorométhylsulfonyl)imides (NT£2). Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Task-specifîc ionic liquid with coordinating anion for heavy métal ion extraction: Cation exchange versus ion-pair extraction » (France) et publiée par A. Messadi dans la revue « Séparation and Purification Technology » en 2013.
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les acides éthylaminediacétiques. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Removal of métal ions from aqueous solutions using chelating task- spécifie ionic liquids » publiée par Harjani dans la revue « Journal of Materials Chemistry » en 2008.
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les l-alkyl-3-, methylimidazolium hexafluorophosphates ([C n mim][PF6], n= 4, 6, 8), avec comme ligands les éthers couronnes du type 18-crown-6 (18C6), les dicyclohexano-18-crown-6 (DCH18C6), les 4, 4'-(5')-di-(tert-butylcyclohexano)-18- crown-6 (Dtbl8C6). Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Traditional extractants in nontraditional solvents: Groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids » et publiée par Visser dans la revue « Industrial & Engineering Chemistry Research » en 2000.
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant Rl= CH2CH3, R2= H, R3=CH3 l-ethyl-3-methylmidazolium (emim+), Rl = NH2(CH2)3CH3 R2= H, R3=CH3 N-aminopropyl-3-methylmidazolium (NH2pmim+), Rl= (CH2)3CH3 R2= H, R3=CH3 l-butyl-3-methylmidazolium (bmim+), Rl = (CH2)5CH3, R2= H, R3=CH3 l-Hexyl-3-methylmidazolium. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Récent advances in supported ionic liquid membrane technology » (Spain) et publiée par L.J. Lozano dans la revue « Journal of Membrane Science » en 2011.
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les l-methyl-l-[4,5-bis(methylsulfîde)]pentylpyrrolidinium
([MPS2PYRRO]+), les l-methyl-l-[4,5-bis(methylsulfide)] pentylpiperidinium ([MPS2PIP]+), l-methyl-2-pentenepyrrolidinium ([MPTPYRRO]+), 1-methyl -2- pentenepiperidinium ([MPTPIPJ+), 1-butyronitril. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Extraction of noble métal ions from aqueous solution by ionic liquids » (Singapore) et publiée par J.M. Lee dans la revue « Fluid Phase Equilibria » en 2012. La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les dicychlohexano-18-crown-6, dithizone, 18-crown-6, les l-(2-pyridylazo)- 2-naphthols, les l-(2-thiazolylazo)-2-naphthols, les tri-n-butylphosphates, les 4,4-(5)-di- (tert-butylcyclohexano)-18-crown-6, les calyx[4]arene-bis(tertoctylbenzo-crown-6). Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « The use of ionic liquids as "green" solvents for extractions » () et publiée par H. Zhao dans la revue « Journal of chemical technology & biotechnology » en 2005.
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les Calixarenes, calix[4]arenes bearing carboxymethoxygroups. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Calixarene-Based Molécules for Cation Récognition » (Germany) et publiée par R. Ludwig dans la revue « Sensors » en 2002.
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les calix[n] arènes couplés à des groupements diazo p-(4- phenylazo)calix[4]arene (Ll), p-phenylazocalix[6]arene (L2)], les dérivés de phénol, les 2,6-dimethyl-3-phenylazophénols (L3), les 2-(5-bromo-2-pyridylazo)-5-diethylamino phénols (L4). Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Comparative studies on the solvent extraction of transition métal, cations by calixarene, phénol and ester derivatives » (Turkey) et publiée par H. Deligoz dans la revue « Journal of Hazardous materials » en 2007. La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les calixarène ou résorcinarenes, les récepteurs à base de calix[4]arènes comportant des atomes d'oxygènes de groupes carbonyle ou ether, en phase solvatée ou diluée dans du chloroforme. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Calixarene and Résorcinarenes » (Poland) et publiée par W. Sliwa dans la revue « Wiley-vch édition » en 2009.
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les dérivés d'amides secondaires calix[4]arene, les 5,1 l,17,23-tetra(tert- butyl)-25,26,27,28-tetra(N-hexylcarbamoylmethoxy)calix[4]arene en phase solvatée ou diluée dans du benzonitrile, du méthanol. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « The effect of spécifie solvent-solute interactions on complexation of alkali-metal cations by a lower-rim calix[4]arene amide derivative » et publiée par G. Horvat dans la revue « Inorganic Chemistry » en 2013.
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les acides phosphoriques Di-2-Ethylhexyl, les acides phosphoriques Ethylhexyl (C16H3504P) en phase solvatée ou diluée dans du kérosène. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Simultaneous removal of copper, nickel and zinc métal ions using bulk liquid membrane System » (India) et publiée par R. Singh dans la revue « Desalination » en 2011.
La membrane liquide hydrophobe pourra être formulée à partir des principes actifs comprenant les thiosalicylates tricaprylmethylammonium, [A336][TS], les benzoates tricaprylmethylammonium 2-(methylthio), [A336][MTBA], les benzoates tricaprylmethylammonium, [A336] [B A], les benzoates tricaprylmethylammonium, [A336][BA], les tricaprylmethylammonium. Pour plus de détail, l'Homme du Métier se reportera à la publication intitulée « Ionic liquids for extraction of metals and métal containing compounds from communal and industrial waste wates » (Austria) et publiée par L. Fischer dans la revue « Wates Research » en 2011. Sur les figures 3, 4 et 5, on a représenté différentes réalisations d'installations de dessalement. Sur chacune des figures, on retrouve une enceinte de dessalement 10 et une enceinte de régénération 20 dans lesquelles un effluent aqueux, est en contact avec un liquide échangeur d'ions (appelé aussi membrane liquide hydrophobe). Les enceintes 10 et 20 comportent respectivement des moyens d'admission 11, 23 et d'évacuation 13, 22 de l'effluent aqueux. Ils comportent également des moyens d'admission 14, 21 et d'évacuation 12, 24 du liquide échangeur d'ions. Ces moyens d'admission et d'évacuation peuvent être des conduits équipés de vannes.
Tel que référencé 40a, 40a', 40b sur les figures respectivement 3, 4 et 5 et tel que représenté plus en détail sur les figures 1 et 2, au moins l'un des modules intègre un coalesceur 40a, 40a', 40b afin de séparer la membrane liquide hydrophobe de l'effluent, en l'occurrence dans une application privilégiée, de l'eau de mer. On définit par « coalesceur » un contacteur à membrane hydrophobe permettant un processus de séparation entre deux phases, au moyen d'une large surface de contact de la membrane microporeuse qui permet la coalescence des gouttelettes de la phase à l'état de trace dans l'autre phase. On désigne aussi par coalesceur une enceinte comprenant une membrane solide, et dans laquelle on introduit un mélange liquide biphasique, par exemple un mélange d'un liquide hydrophobe et d'un effluent aqueux, et où la membrane a une affinité pour l'une des phases et pas pour l'autre. On alimente par exemple un coalesceur pourvu d'une membrane solide hydrophobe avec un effluent aqueux contenant des traces de liquide hydrophobe. Les traces de liquides hydrophobe vont coalescer à la surface de la membrane solide. Ces gouttelettes coalescées pourront migrer vers l'intérieur de la membrane, qui peut être poreuse, par exemple sous l'effet d'un différentiel de pression.
Pour récupérer des traces d'eau dans un liquide hydrophobe, on procède de la même manière mais en utilisant un coalesceur pourvu d'une membrane solide hydrophile, qui va être alimenté par un liquide hydrophobe contenant de l'eau à l'état de traces.
La membrane peut être sous forme de fibres creuses poreuses. Le mélange diphasique est par exemple introduit à l'extérieur des fibres. Le liquide à récupérer à l'état de trace migre vers l'intérieur des fibres creuses de la membrane grâce à la porosité des fibres, et éventuellement à un différentiel de pression entre intérieur et extérieur des fibres. Le coalesceur peut également être alimenté par l'intérieur des fibres, à contre- courant, co-courant ou courant croisé, par un flux de liquide identique à celui que l'on récupère à l'état de trace, et qui va entraîner les gouttelettes coalescées ayant migré à l'intérieur des fibres à l'extérieur du coalesceur. Le coalesceur peut comprendre une membrane hydrophobe solide, par exemple en fibres creuses poreuses, par exemple de matériaux choisis dans la liste définie par les polypropylènes, les polyéthylènes, les fluorures de polyvinylidène, les polytétrafluoroéthylènes, les polyacrylonitriles, les polyoléfines, les chlorures de polyvinyle, les polyéthylène-téréphtalates, les copolymères de polyoléfines, les polyéthercétones, ainsi que les céramiques.
Le coalesceur peut être comprendre une membrane hydrophile solide, par exemple en fibres creuses poreuses, par exemple de matériaux choisi parmi les polysulfones, les polyfluorure de vinylidène, les polyvinylpyrrolidones, l'acétate de cellulose, les polyéther sulfones, les céramiques. Ces matériaux peuvent en outre avoir subi des modifications de surface, où être additivés dans la masse, de façon à renforcer leur caractère hydrophile. . Tel que représenté en détail sur la figure 1, le coalesceur 40 a une forme sensiblement cylindrique et un carter 404 renfermant une grille 401 qui maintient un ensemble de fibres creuse 403 s 'étendant longitudinalement. Le coalesceur 40 est traversé par un canal central 402 relié à l'extérieur au moyen de deux ouvertures 42 et 45, qui sont également en communication avec l'extérieur des fibres creuses. L'ensemble des fibres, parallèles au canal central, est également en communication avec l'intérieur au moyen de deux collecteurs 41, 43. Le canal central sert à acheminer la phase à traiter à l'intérieur du coalesceur, cette phase mouillant ensuite sur la surface externe des fibres.
Tel que représenté en détail sur la figure 2, le coalesceur 40 peut être intégré dans un dispositif au moyen d'un collecteur d'entrée 41 activé par une pompe 44', et d'un collecteur de sortie 43. La sortie 43 du canal peut être connectée à l'entrée 41 via une boucle de recirculation comportant la pompe 44' et une vanne 49 et/ou peut aussi être connectée sur un autre circuit au moyen d'une autre pompe 48 et d'une autre vanne 47.
Le principe général de fonctionnement du coalesceur dans l'invention va maintenant être exposé. On introduit le liquide que l'on souhaite filtrer de l'autre liquide subsistant à l'état de trace dans l'un des collecteurs 42, 45, le collecteur 45 devenant le collecteur d'entrée et le collecteur 42 devenant le collecteur de sortie. Ce liquide à purifier s'écoule alors longitudinalement le long de la surface externe des fibres. On introduit dans l'une des deux ouvertures 41, 43 l'autre liquide, de sorte qu'il circule en sens inverse (c'est-à-dire à contre-courant) à l'intérieur des fibres. La pression du liquide à filtrer est supérieure à la pression de l'autre liquide. Du fait du différentiel de pression (environ deux bars) et du fait du caractère hydrophobe de l'autre liquide, le liquide à l'état de trace traverse la paroi poreuse des fibres et rejoint l'intérieur des fibres pour s'écouler au travers de l'autre circuit comprenant les deux ouvertures 41, 43.
Dans le cas où l'on veut extraire d'un effluent aqueux des traces de membrane liquide hydrophobe, la membrane solide comporte des fibres creuses hydrophobes et résistantes aux solvants organiques. Les matériaux seront préférentiellement choisis dans la liste définie par les polypropylènes, les polyéthylènes, les fluorures de polyvinylidène, les polytétrafluoroéthylènes, les polyacrylonitriles, les polyoléfmes, les chlorures de polyvinyle, les polyéthylène-téréphtalates, les copolymères de polyoléfmes, les polyétheréthercétones, ainsi que les céramiques.
Dans le cas où l'on veut extraire d'une membrane liquide hydrophobe des traces d'effluent aqueux, la membrane solide comporte des fibres creuses hydrophiles et résistantes aux solvants organiques. Les matériaux seront préférentiellement choisis dans la liste définie par les polysulfones, les polyfluorures de vinylidène, les polyvinylpyrolidones, l'acétate de cellulose, les polyéthers sulfones, optionnellement modifiés ou additivés, les céramiques. Des mélanges ou leurs combinaisons sont envisageables tout comme le recours à des polymères modifiés en surface, comme par exemple les polymères modifiés chimiquement à un ou plusieurs groupes d'halogène par décharge corona ou par des techniques d'incorporation d'ions.
Tel que représenté sur les figures 3, 4, 5 et 6, l'installation de dessalement comprend donc un premier module doté d'une première enceinte de dessalement 10. Le module est traversé par un flux d'effluents aqueux, par exemple de l'eau de mer, entrant dans l'enceinte 10 via les moyens d'admission 11, l'eau douce s'évacuant via les moyens 13. Un flux de membrane liquide hydrophobe traverse en contre sens l'enceinte 10, ledit flux étant admis dans l'enceinte 10 par les moyens 14 et étant évacué hors de l'enceinte 10 par les moyens 12.
Avantageusement, le premier module est un module d'extraction comportant, suivant un premier mode de réalisation, une enceinte consistant en une colonne d'extraction liquide/liquide fonctionnant à contre-courant. La colonne d'extraction contient un garnissage pour augmenter l'interface entre les deux phases (l'eau de mer et la membrane liquide hydrophobe) et fonctionner dans un mode à contre-courant. Ainsi, l'eau salée pénètre en bas de la colonne et sort au sommet une fois dessalée, tandis que la membrane liquide hydrophobe est introduite dans la partie supérieure à travers un distributeur et quitte la colonne par le bas, chargé avec les sels. Dans la partie inférieure de la colonne, des zones de coalescence et de décantation permettent de récupérer hydrauliquement la membrane liquide hydrophobe par échange d'ions et de le séparer de l'eau. Selon un autre mode de réalisation, le module d'extraction comprend une enceinte pouvant être un mélangeur/décanteur. On entend par mélangeur/décanteur un ensemble d'étages montés en série comprenant, chacun, un mélangeur où est créée la dispersion nécessaire au transfert de matière, un décanteur qui réalise la séparation mécanique des phases précédemment dispersées, un réseau de liaison assurant le transfert à contre- courant des phases coalescées.
Selon un autre mode de réalisation, le module d'extraction comprend une enceinte pouvant être une colonne agitée ou tout autre contacteur d'extraction liquide- liquide comme décrit dans les technique de l'ingénieur J 2 756 « Extraction liquide liquide - Description des appareils ».
Tel que représenté sur la figure 3, l'enceinte 20 est en communication de fluide avec le coalesceur 40a à membrane solide hydrophobe au moyen d'un premier piquage 41 d'entrée dans le coalesceur pratiqué sur le moyen d'évacuation 24. Le coalesceur est également en communication de fluide au moyen d'un second 45 et troisième 43 piquage du coalesceur, avec respectivement les moyens d'évacuation 13 de l'eau douce hors de l'enceinte 10 et les moyens d'admission 21 de la membrane liquide hydrophobe dans l'enceinte 20.
L'eau douce issue du premier module est envoyée vers le collecteur 45 et s'écoule alors longitudinalement le long de la surface externe des fibres. On introduit dans l'ouverture 41 la membrane liquide hydrophobe, de sorte qu'il circule à contre-courant (en sens inverse) à l'intérieur des fibres. La pression de l'eau douce est supérieure à la pression de la membrane liquide hydrophobe. Du fait du différentiel de pression (environ deux bars) et du fait du caractère hydrophobe de la membrane liquide hydrophobe, ce dernier, à l'état de trace traverse la paroi poreuse des fibres et rejoint l'intérieur des fibres pour rejoindre le flux principal de membrane liquide hydrophobe et s'écouler au travers de l'autre ouverture 43. Ce dernier réintègre le premier module via les moyens d'admission 14.
Ainsi, le coalesceur 40a permet d'extraire du flux d'eau douce dessalée sortant de l'enceinte 10, les traces de membrane liquide hydrophobe qui subsistaient. Avantageusement, l'installation de dessalement comprend une seconde enceinte de régénération 20 qui permet de dessaler la membrane liquide hydrophobe, une fois que cette dernière a récupéré le sel initialement contenu dans l'eau de mer entrant dans le premier module. Selon le même principe que celui du module de dessalement, l'enceinte 20 est traversée par un flux de la membrane liquide hydrophobe à dessaler, qui entre dans l'enceinte 20 via les moyens d'admission 21 eux-mêmes connectés aux moyens d'évacuation 12 de l'enceinte 10, la membrane liquide hydrophobe dessalée s'évacuant via les moyens 24 pour réintégrer le premier module via les moyens d'admission 14, ainsi que l'entrée 41 du coalesceur 40a. Un flux d'eau douce traverse en contre sens l'enceinte 20, ledit flux étant admis dans ledit module par les moyens 23 et étant évacué (l'eau est alors devenue salée, soit de la saumure) hors du dit module par les moyens 22.
Avantageusement, le second module est un module de régénération consistant suivant un premier mode de réalisation en une colonne d'extraction liquide/liquide de gravité. La colonne d'extraction contient un garnissage pour augmenter l'interface entre les deux phases (l'eau douce et la membrane liquide hydrophobe) et fonctionner dans un mode à contre-courant. Ainsi, la membrane liquide hydrophobe chargé pénètre en la partie supérieure de la colonne et est soumis à une extraction de sels au cours de son passage le long du garnissage. Il va ensuite sortir de la colonne par le bas et est acheminé comme liquide régénéré par les échanges d'ions vers le premier module. L'eau douce pénètre en bas de la colonne et est chargée avec les sels libérés de la membrane liquide hydrophobe au cours de son passage le long du garnissage. Cette saumure sort de la colonne par le haut, chargée en sel. Selon un autre mode de réalisation, le module de régénération peut être un mélangeur/décanteur. On entend par mélangeur/décanteur un ensemble d'étages montés en série comprenant, chacun, un mélangeur où est créée la dispersion nécessaire au transfert de matière, un décanteur qui réalise la séparation mécanique des phases précédemment dispersées, un réseau de liaison assurant le transfert à contre-courant des phases coalescées.
Selon un autre mode de réalisation, le module d'extraction comprend une enceinte pouvant être une colonne agitée ou tout autre contacteur d'extraction liquide- liquide comme décrit dans les technique de l'ingénieur J 2 756 « Extraction liquide liquide - Description des appareils ». Ce module de régénération peut comprendre en outre avantageusement un échangeur de chaleur à contact direct qui chauffe la colonne de régénération afin de minimiser la perte de chaleur globale intervenant lors du dessalement de la membrane liquide hydrophobe.
Avantageusement, la température est portée entre 70 et 90°C, et préférentiellement aux alentours de 80°C. Selon une variante représentée sur la figure 4, l'installation de dessalement comprend une première enceinte 10 et une seconde enceinte 20 de régénération qui sont en communication de fluide de manière identique à la configuration de la figure 3. En revanche, l'enceinte 20 est maintenant en communication de fluide avec un coalesceur 40a' à membrane solide hydrophobe au moyen d'un premier piquage 45 d'entrée dans le coalesceur pratiqué sur le moyen d'évacuation 22 de la saumure hors de la seconde enceinte 20. Le coalesceur est également en communication de fluide au moyen d'un second 42 et troisième 43 piquages de sortie du coalesceur, avec respectivement les moyens d'évacuation de la saumure hors de la seconde enceinte 20 et avec les moyens d'admission 14 de la membrane liquide hydrophobe dans la première enceinte 10. La saumure issue du second module est envoyée vers le collecteur 45 et s'écoule alors longitudinalement le long de la surface externe des fibres. On introduit dans l'ouverture 41 la membrane liquide hydrophobe, de sorte qu'il circule en sens inverse à l'intérieur des fibres. La pression de la saumure est supérieure à la pression de la membrane liquide hydrophobe. Du fait du différentiel de pression (environ deux bars) et du fait du caractère hydrophobe de la membrane liquide hydrophobe, ce dernier, à l'état de trace traverse la paroi poreuse des fibres et rejoint l'intérieur des fibres pour rejoindre le flux principal de membrane liquide hydrophobe et s'écouler au travers de l'autre ouverture 43. La saumure filtrée des traces de liquide hydrophobe est ensuite acheminée pour être traitée tandis que le flux de liquide hydrophobe récupéré est réintégré dans le premier module via les moyens d'admissions 14.
Ainsi, le coalesceur 40a' permet d'extraire du flux de saumure sortant du second module de régénération, les traces de membrane liquide hydrophobe qui subsistaient.
Selon une autre variante représentée sur la figure 5, l'installation de dessalement comprend une première enceinte de dessalement 10 et une seconde enceinte de régénération 20 qui sont en communication de fluide de manière identique à la configuration des figures 3 et 4. En revanche, l'enceinte 10 est maintenant en communication de fluide avec un coalesceur 40b au moyen d'un premier et second piquages 41 (entrée), 43 (sortie) dans le coalesceur pratiqué sur les moyens d'admission 11 de l'eau de mer dans l'enceinte 10. Le coalesceur est également en communication de fluide au moyen d'un troisième et quatrième piquages 45 (entrée), 42 (sortie) dans le coalesceur, avec les moyens d'évacuation 12 de la membrane liquide hydrophobe hors de l'enceinte 10 du premier module.
Le liquide hydrophobe issu de l'enceinte 10 est envoyé vers le collecteur 45 et s'écoule alors longitudinalement le long de la surface externe des fibres. On introduit dans l'ouverture 41 de l'eau, de sorte qu'elle circule en sens inverse à l'intérieur des fibres. La pression de l'eau est inférieure à la pression de la membrane liquide hydrophobe. Du fait du différentiel de pression (environ deux bars) et du fait du caractère hydrophobe de la membrane liquide hydrophobe, l'eau, à l'état de trace traverse la paroi poreuse des fibres de la membrane hydrophile et rejoint l'intérieur des fibres pour rejoindre le flux principal d'eau et s'écouler au travers de l'autre ouverture de sortie 43, pour rejoindre le circuit d'admission 11 dans l'enceinte 10. Le liquide hydrophobe issu du coalesceur est ainsi filtré des traces d'eau et est renvoyé via la sortie 42 vers le second module pour être dessalé.
Ainsi, le coalesceur 40b permet d'extraire du flux de membrane liquide hydrophobe sortant du premier module, les traces d'eau qui subsistaient.
Selon encore une autre variante représenté en figure 6, l'installation de dessalement comprend une première enceinte de dessalement 10 et une seconde enceinte de régénération 20 qui sont en communication de fluide de manière identique à la configuration des figures 3, 4 et 5. En revanche, l'enceinte 10 est maintenant en communication de fluide avec un coalesceur hydrophile 40b' au moyen d'un premier et second piquages 41 (entrée), 43 (sortie) dans le coalesceur pratiqué sur les moyens d'admission 11 de l'eau de mer dans l'enceinte 10. Le coalesceur est également en communication de fluide au moyen d'un troisième et quatrième piquages 45 (entrée), 42 (sortie) dans le coalesceur, avec les moyens d'évacuation 24 de la membrane liquide hydrophobe hors de l'enceinte 20 du second module.
Le liquide hydrophobe issu de l'enceinte 20 est envoyé vers le collecteur 45 et s'écoule alors longitudinalement le long de la surface externe des fibres. On introduit dans l'ouverture 41 de l'eau, de sorte qu'elle circule en sens inverse à l'intérieur des fibres. La pression de l'eau est inférieure à la pression de la membrane liquide hydrophobe. Du fait du différentiel de pression (environ deux bars) et du fait du caractère hydrophobe de la membrane liquide hydrophobe, l'eau, à l'état de trace traverse la paroi poreuse des fibres de la membrane hydrophile et rejoint l'intérieur des fibres pour rejoindre le flux principal d'eau et s'écouler au travers de l'autre ouverture de sortie 43, pour rejoindre le circuit d'admission 11 dans l'enceinte 10. Le liquide hydrophobe issu du coalesceur est ainsi filtré des traces d'eau et est renvoyé via la sortie 42 vers le premier module.
Ainsi, le coalesceur 40b' permet d'extraire du flux de membrane liquide hydrophobe sortant du second module, les traces d'eau causées par la régénération, qui subsistaient.
Concernant maintenant le procédé de dessalement, que ce soit dans le cas du dessalement de l'eau de mer ou bien de la membrane liquide hydrophobe, ce dernier comprend au moins les étapes suivantes :
(a) Extraction liquide - liquide, par mise en contact de l'eau de mer avec une membrane liquide hydrophobe non miscible à l'eau, permettant le transfert d'ions de la phase aqueuse vers la phase liquide hydrophobe,
(b) Séparation de l'eau de mer et de la membrane liquide hydrophobe issus de l'étape (a),
(c) Mise en contact de l'eau dessalée issue de l'étape (b) avec une membrane solide hydrophobe, afin d'éliminer la membrane liquide hydrophobe résiduelle dans l'eau dessalée par coalescence sur ladite membrane solide hydrophobe.
Pour formuler la membrane liquide hydrophobe, on utilise au moins un composé choisi parmi la catégorie des tensioactifs anioniques et/ou des tensioactifs cationiques, et/ou des calixarènes, préférentiellement les calix[4]arènes, et/ou des éthers couronnes, préférentiellement les 18-6 éthers couronnes, ou 12-4 éthers couronne ou 15-5 éthers couronne, et/ou des dithizones.
Les tensioactifs anioniques peuvent être choisis parmi les sels de carboxylates, alkyl benzoates, carboxiimidates, alkoxydes ou dialkoxydes, alkylsulfates, alkylsulfonates, éther sulfonates, sulfonylimides, phosphine oxides, phosphinates, alkyl borates. Les tensioactifs cationiques peuvent être choisis parmi les sels d'alkylsulfonium, alkylammonium, alkylphosphonium, alkylimidazolium, alkyloxazaborolidinium, alkyloxazolidinium.
L'étape (b) de séparation peut être une étape de décantation. La membrane solide hydrophobe est fabriquée à partir d'un matériau choisi parmi les polypropylènes, les polyéthylènes, les fluorures de polyvinylidène, les polytétrafluoroéthylènes, les polyacrylonitriles, les polyoléfmes, les chlorures de polyvinyle, les polyéthylène-téréphtalates, les copolymères de polyoléfmes, les polyéthercétones, ainsi que les céramiques. On emploie préférentiellement une membrane solide hydrophobe constituée de fibres creuses.
Selon une variante, l'étape d'extraction liquide- liquide (a) et de séparation (b) sont réalisées dans une première enceinte de traitement, tandis que l'effluent aqueux et la membrane liquide hydrophobe sont extraits séparément hors de la première enceinte de traitement à l'issue des étapes (a) et (b), et tandis que la mise en contact de l'effluent aqueux issu de l'étape (b) avec une membrane solide hydrophobe, intervient après d'évacuation de l'effluent aqueux traité hors de la première enceinte de traitement.
Selon une autre variante, l'étape d'extraction liquide- liquide (a) et de séparation (b) sont réalisées dans une première enceinte de traitement, tandis que l'effluent aqueux traité et la membrane liquide hydrophobe sont extraits séparément hors de la première enceinte de traitement à l'issue des étapes (a) et (b), et tandis que la mise en contact de l'effluent aqueux issu de l'étape (b) avec une membrane solide hydrophobe, intervient avant l'évacuation de l'effluent aqueux traité hors de la première enceinte de traitement.
L'étape de mise en contact de l'effluent aqueux issu de l'étape (b) avec la membrane solide hydrophobe a préférentiellement lieu dans un contacteur de forme sensiblement cylindrique, pourvu d'un canal central et d'une membrane solide hydrophobe constituée de fibres poreuses et creuses longitudinales, de sorte que la membrane liquide hydrophobe résiduelle migre radialement jusqu'à l'intérieur des fibres. La circulation des fluides à l'intérieur de ce contacteur pourra se faire à co-courant, à contre-courant ou à courant croisé. Le procédé de traitement peut comprendre en outre une étape (e) de mise en contact de la membrane liquide hydrophobe issue de l'étape (b) avec une membrane solide hydrophile, afin d'éliminer l'effluent résiduel dans la membrane liquide hydrophobe, par coalescence sur ladite membrane solide hydrophile. La membrane solide hydrophile est au moins constituée d'un matériau choisi parmi les polysulfones, les polyfluorure de vinylidène, les polyvinylpyrolidones, l'acétate de cellulose, les polyéther sulfones, optionnellement modifiés ou additivés, ainsi que les céramiques.
Le procédé peut comprendre en outre une étape de régénération (d) de la membrane liquide hydrophobe issue de l'étape (b).
Selon une variante, la membrane liquide hydrophobe extraite de la première enceinte de traitement est admise dans une seconde enceinte de régénération où elle est mise en contact avec de l'eau, la membrane liquide hydrophobe régénérée et l'eau étant ensuite séparées et évacuées hors de la seconde enceinte, et la membrane liquide hydrophobe régénérée étant ensuite mise en contact avec une membrane solide hydrophile après évacuation hors de la seconde enceinte de manière à éliminer les traces d'eau.
La membrane liquide hydrophobe issue de l'étape de coalescence peut être réutilisée dans l'étape (a) du procédé de traitement. La régénération de la membrane liquide hydrophobe peut s'effectuer entre 70 et
90°C, préférentiellement aux alentours de 80°C.
Le différentiel de pression au cours de l'étape (c) de mise en contact avec une membrane solide hydrophobe, peut être compris entre 1 et 5 bars.
Le différentiel de pression au cours de l'étape (e) de mise en contact avec une membrane solide hydrophile, peut être compris entre 1 et 5 bars.
Pour résumer, le coalesceur peut être utilisé lorsqu'il est branché sur la sortie de l'effluent aqueux traité dans le premier module, pour récupérer les traces de membrane liquide hydrophobe qui se seraient fortuitement dispersées sous forme de gouttelettes dans la colonne d'extraction du premier module. Ceci évite ainsi la contamination de l'effluent aqueux traité par la membrane liquide hydrophobe. Le coalesceur peut aussi être utilisé lorsqu'il est branché sur le second module, pour récupérer les traces de membrane liquide hydrophobe qui se seraient fortuitement dispersées sous forme de gouttelettes dans la colonne de régénération du second module. Ceci évite ainsi la contamination de la saumure issue du dessalement de la membrane liquide hydrophobe, par la membrane liquide hydrophobe.
En variante, le coalesceur peut aussi être utilisé lorsqu'il est branché sur le second module, pour récupérer les traces d'eau qui se seraient fortuitement dispersées sous forme de gouttelettes dans la colonne de régénération du second module. Ceci évite ainsi la contamination de la membrane liquide hydrophobe par l'eau utilisée dans la colonne de régénération.
Le coalesceur peut être utilisé lorsqu'il est branché sur la sortie de la membrane liquide hydrophobe du premier module, pour récupérer les traces d'eau qui échapperaient au système en raison d'une émulsion incontrôlée des phases solvant / eau ou d'une mauvaise coalescence / décantation dans la partie inférieure de l'extraction colonne d'extraction. Ceci évite ainsi d'affaiblir le bilan thermique de l'échangeur thermique associé au premier module. Ceci permet aussi de conserver la capacité de la membrane liquide hydrophobe à procéder à la captation des ions.
En variante, l'invention comprend également le cas où l'enceinte de dessalement 10 et le coalesceur forment une seule et même unité constituée principalement d'un contacteur à membranes. Cette configuration est présentée figure 7.
Dans cette configuration, l'étape de coalescence de Peffluent dessalé et/ou de la membrane liquide hydrophobe intervient dans ladite enceinte 40, qui est un contacteur à membrane solide hydrophobe, avant l'évacuation de Peffluent dessalé et de la membrane liquide hydrophobe hors de cette enceinte. Dans cette configuration, l'effluent est dessalé par la membrane liquide hydrophobe lors de leur mise en contact dans le contacteur, et, de manière concomitante, il y a coalescence de la membrane liquide hydrophobe de manière à éliminer ses traces présentes dans l'effluent.
En d'autres termes, on procède (a) à l'extraction liquide- liquide, par mise en contact de l'effluent aqueux avec une membrane liquide hydrophobe non miscible à l'eau, permettant le transfert d'ions de la phase aqueuse vers la phase liquide hydrophobe, puis, on procède à la mise en contact de l'effluent aqueux issu de l'étape (a) avec une membrane solide hydrophobe, afin de procéder de manière concomitante aux étapes (b) et (c).
Plus particulièrement et tel que représenté en figure 7, on a représenté une installation de dessalement intégrant ces modules particuliers. L'installation comprend un coalesceur de dessalement 40 doté d'un contacteur de forme sensiblement cylindrique, pourvu d'un canal central et d'une membrane solide hydrophobe constituée de fibres poreuses et creuses longitudinales. Le coalesceur est doté de moyens d'admission 45 dans le canal central, de moyens d'évacuation 42 hors du canal central, de moyens d'admission 41 et d'évacuation 43 connectés à une première boucle de recirculation communiquant avec l'intérieur des fibres longitudinales. Cette boucle de recirculation comprend une vanne 49 et une pompe 44'.
L'installation comprend aussi un coalesceur de régénération 50 doté d'un contacteur de forme sensiblement cylindrique, pourvu d'un canal central et d'une membrane solide hydrophobe constituée de fibres poreuses et creuses longitudinales, de moyens d'admission 55 dans le canal central connecté à la première boucle de recirculation et à un point d'eau 60. Le coalesceur de régénération 50 est aussi doté de moyens d'évacuation 52 hors du canal central, de moyens d'admission 51 et d'évacuation 52 connectés à une seconde boucle de recirculation communiquant avec l'intérieur des fibres longitudinales. Cette boucle de recirculation comprend une vanne 59 et une pompe 54. Un piquage sur cette seconde de recirculation met cette dernière en communication avec l'entrée 45 du coalesceur de dessalement, au moyen d'une ligne 44 comprenant elle aussi une vanne 57, une pompe 58 ainsi qu'un point d'eau 61.
De façon plus détaillée, le liquide hydrophobe mélangé à l'eau à dessaler sont envoyés dans le coalesceur 40 par le collecteur 45 et s'écoulent alors longitudinalement le long de la surface externe des fibres. Le mélange entre l'eau à dessaler et la membrane liquide hydrophobe a lieu dans une unité de mélange 45' qui peut être une pompe, un mélangeur statique, ou tout autre dispositif de mélange. L'unité de mélange est par conséquent connectée en entrée à une arrivée 44 dédiée à la membrane liquide hydrophobe et à une arrivée dédiée à l'eau à dessaler. On introduit dans l'ouverture 41 de la membrane liquide hydrophobe, de sorte qu'elle circule en sens inverse à l'intérieur des fibres. La pression de la membrane liquide hydrophobe est inférieure à la pression du mélange eau + membrane liquide hydrophobe. Du fait du différentiel de pression (environ deux bars) et du fait du caractère hydrophobe de la membrane liquide hydrophobe, qui a donc une affinité avec la membrane solide hydrophobe, la membrane liquide hydrophobe contenue à l'extérieur des fibres traverse la paroi poreuse des fibres (en embarquant avec elle le sel extrait de l'eau à dessaler) et rejoint l'intérieur des fibres pour rejoindre le flux principal de membrane liquide hydrophobe et s'écouler au travers de l'autre ouverture de sortie 43. Une partie de ce flux est alors renvoyé dans le coalesceur 40 par l'ouverture 41 et l'autre partie est renvoyée via l'entrée 55 vers le coalesceur 50 pour être dessalée. L'eau dessalée exempte de sel et de membrane liquide hydrophobe sort du coalesceur 40 par la sortie 42. Afin de régénérer la membrane liquide hydrophobe un appoint d'eau est fait en 60 avant l'admission dans le coalesceur 50 via une ligne 46 dotée d'une pompe 48 et d'une vanne 47. Le mélange eau + membrane liquide hydrophobe est ensuite envoyé dans le coalesceur via l'admission 55 et s'écoulent alors longitudinalement le long de la surface externe des fibres. On introduit dans l'ouverture 51 la membrane liquide hydrophobe, de sorte qu'elle circule en sens inverse à l'intérieur des fibres. La pression de la membrane liquide hydrophobe est inférieure à la pression du mélange eau + membrane liquide hydrophobe. Du fait du différentiel de pression (environ deux bars) et du fait du caractère hydrophobe de la membrane liquide hydrophobe, qui a donc une affinité avec la membrane solide hydrophobe, la membrane liquide hydrophobe contenu à l'extérieur des fibres traverse la paroi poreuse des fibres et rejoint l'intérieur des fibres pour rejoindre le flux principal de membrane liquide hydrophobe et s'écouler au travers de l'autre ouverture de sortie 53. Une partie de ce flux est alors renvoyé dans le coalesceur 50 par l'ouverture 51 et l'autre partie est renvoyée via la ligne 44 à l'entrée 45 du coalesceur 40 comme membrane liquide hydrophobe régénérée. La saumure (eau concentrée en sels) sort du coalesceur 50 par la sortie 52.
Dans cette configuration, la membrane liquide hydrophobe est dessalée par de l'eau douce (devenant saumure) lors de leur mise en contact dans le contacteur, et, de manière concomitante, il y a coalescence de la saumure de manière à éliminer ses traces de la membrane liquide hydrophobe. Ce dernier peut être réutilisé sans qu'il y ait eu altération ou bien déperdition.
La configuration selon laquelle on a une seule et même unité du type « contacteur à membranes », pour assurer le dessalement par mise en contact d'un effluent avec une membrane liquide hydrophobe, et la coalescence, est particulièrement avantageuse de par sa compacité.
L'effluent dessalé offre par ailleurs une excellente qualité de traitement dans la mesure où son passage dans le contacteur permet de manière synergique d'extraire à la fois la membrane liquide hydrophobe et le sel piégé dans celle-ci.
Les modes de réalisation décrits ci-avant étant nullement limitatifs, on pourra notamment considérer des variantes de l'invention ne comprenant qu'une sélection de caractéristiques décrites, isolées des autres caractéristiques décrites (même si cette sélection est isolée au sein d'une phrase comprenant ces autres caractéristiques), si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique antérieure. Cette sélection comprend au moins une caractéristique, de préférence fonctionnelle sans détails structurels, ou avec seulement une partie des détails structurels si cette partie uniquement est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique antérieure.
Pour résumer, le procédé de traitement d'un effluent aqueux selon l'invention permet notamment de dessaler un effluent aqueux en effectuant successivement les trois étapes (a), (b) et (c) ou bien en effectuant d'abord l'étape (a) puis les étapes (b) et (c) de manière concomitante. Le procédé de traitement d'un effluent aqueux selon l'invention comprend donc les étapes suivantes :
(a) Extraction liquide - liquide, par mise en contact de l'effluent aqueux avec une membrane liquide hydrophobe non miscible à l'eau, permettant le transfert d'ions de la phase aqueuse vers la phase liquide hydrophobe, puis, - (b) Séparation de l'effluent aqueux et de la membrane liquide hydrophobe issus de l'étape (a), puis,
(c) Mise en contact de l'effluent issu de l'étape (b) avec une membrane solide hydrophobe, afin d'éliminer la membrane liquide hydrophobe résiduelle dans ledit effluent par coalescence sur ladite membrane solide hydrophobe, ou bien (a) Extraction liquide- liquide, par mise en contact de l'effluent aqueux avec une membrane liquide hydrophobe non miscible à l'eau, permettant le transfert d'ions de la phase aqueuse vers la phase liquide hydrophobe, puis,
(b et c) Mise en contact de l'effluent aqueux issu de l'étape (a) avec une membrane solide hydrophobe, afin de procéder de manière concomitante aux étapes (b) et (c).
Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention. De plus, les différentes caractéristiques, formes, variantes et modes de réalisation de l'invention peuvent être associés les uns avec les autres selon diverses combinaisons dans la mesure où ils ne sont pas incompatibles ou exclusifs les uns des autres.
Ainsi, il est possible d'étendre l'invention à d'autres membranes liquides, pour d'autres applications spécifiques en changeant les combinaisons de molécules actives, sels de tensio actifs cationiques ou anioniques, ou molécules « cages » type éthers couronnes, calixarènes.... Leur formulation pourra être adaptée pour extraire des sels présents dans un large panel d'effluents issus de l'industrie pétrolière et gazière, des eaux issues d'exploitations minières, des lixiviats de décharges, des eaux usées issues des usines d'incinération.

Claims

REVENDICATIONS
Procédé de traitement d'un effluent aqueux comprenant les étapes de :
(a) Extraction liquide- liquide, par mise en contact de F effluent aqueux avec une membrane liquide hydrophobe non miscible à l'eau, permettant le transfert d'ions de la phase aqueuse vers la phase liquide hydrophobe,
(b) Séparation de l'effluent aqueux et de la membrane liquide hydrophobe issus de l'étape (a),
(c) Mise en contact de l'effluent aqueux issu de l'étape (b) avec une membrane solide hydrophobe, afin d'éliminer la membrane liquide hydrophobe résiduelle dans ledit effluent par coalescence sur ladite membrane solide hydrophobe,
Procédé selon la revendication 1 où la membrane liquide hydrophobe comprend au moins un composé choisi parmi la catégorie des tensioactifs anioniques et/ou des tensioactifs cationiques, et/ou des calixarènes, préférentiellement les calix[4]arènes, et/ou des éthers couronnes, préférentiellement les 18-6 éthers couronnes, ou 12-4 éthers couronne ou 15-5 éthers couronne, et/ou des dithizones.
Procédé selon l'une des revendications 1 à 2 où les tensioactifs anioniques sont choisis parmi les sels de carboxylates, alkyl benzoates, carboxiimidates, alkoxydes ou dialkoxydes, alkylsulfates, alkylsulfonates, éther sulfonates, sulfonylimides, phosphine oxides, phosphinates, alkyl borates.
Procédé selon l'une des revendications 1 à 3 où les tensioactifs cationiques sont choisis parmi les sels d'alkylsulfonium, alkylammonium, alkylphosphonium, alkylimidazolium, alkyloxazaborolidinium, alkyloxazolidinium.
5. Procédé selon l'une des revendications 1 à 4 où l'étape (b) de séparation est une étape de décantation. Procédé selon l'une des revendications 1 à 5 où la membrane solide hydrophobe comprend un matériau choisi parmi les polypropylènes, les polyéthylènes, les fluorures de polyvinylidène, les polytétrafluoroéthylènes, les polyacrylonitriles, les polyoléfmes, les chlorures de polyvinyle, les polyéthylène-téréphtalates, les copolymères de polyoléfmes, les polyéthercétones.
7. Procédé selon l'une quelconques des revendications 1 à 6, où la membrane solide hydrophobe est constituée de fibres creuses poreuses.
Procédé de traitement selon l'une quelconques des revendications 1 à 7, caractérisé en ce que :
l'étape d'extraction liquide- liquide (a) et de séparation (b) sont réalisées dans une première enceinte de traitement,
l'effluent aqueux et la membrane liquide hydrophobe sont extraits séparément hors de la première enceinte de traitement à l'issue des étapes (a) et (b),
la mise en contact de l'effluent aqueux issu de l'étape (b) avec une membrane solide hydrophobe, intervient après d'évacuation de dudit effluent aqueux hors de la première enceinte de traitement.
Procédé de traitement selon l'une quelconques des revendications 1 à 7, caractérisé en ce que :
l'étape d'extraction liquide- liquide (a) et de séparation (b) sont réalisées dans une première enceinte de traitement,
l'effluent aqueux traité et la membrane liquide hydrophobe sont extraits séparément hors de la première enceinte de traitement à l'issue des étapes (a) et (b),
la mise en contact de l'effluent aqueux issu de l'étape (b) avec une membrane solide hydrophobe, intervient avant l'évacuation de dudit effluent aqueux hors de la première enceinte de traitement.
10. Procédé de traitement selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'étape de mise en contact de l'effluent aqueux issu de l'étape (b) avec la membrane solide hydrophobe s'effectue dans un contacteur de forme sensiblement cylindrique, pourvu d'un canal central et d'une membrane solide hydrophobe constituée de fibres poreuses et creuses longitudinales, et en ce que la membrane liquide hydrophobe résiduelle migre radialement jusqu'à l'intérieur des fibres.
11. Procédé de traitement selon l'une quelconque des revendications 1 à 10 comprenant en outre une étape (e) de mise en contact de la membrane liquide hydrophobe issue de l'étape (b) avec une membrane solide hydrophile, afin d'éliminer l'effluent résiduel dans la membrane liquide, par coalescence sur ladite membrane solide hydrophile.
12. Procédé selon la revendication 11 où la membrane solide hydrophile comprend un matériau choisi parmi les polysulfones, les polyfluorure de vinylidène, les polyvinylpyrolidones, l'acétate de cellulose, les polyéther sulfones, optionnellement modifiés ou additivés, les céramiques.
13. Procédé selon la revendication 1 comprenant en outre une étape de régénération (d) de la membrane liquide hydrophobe issue de l'étape (b).
14. Procédé de traitement selon la revendication 13, caractérisé en ce que :
la membrane liquide hydrophobe extraite de la première enceinte de traitement est admise dans une seconde enceinte de régénération où elle est mise en contact avec de l'eau,
- la membrane liquide hydrophobe régénérée et l'eau sont séparées et évacuées hors de la seconde enceinte,
la membrane liquide hydrophobe régénérée est mise en contact avec une membrane solide hydrophile après évacuation hors de la seconde enceinte.
15. Procédé de traitement selon l'une quelconques des revendications 1 à 14, dans lequel la membrane liquide hydrophobe issue de l'étape de coalescence est réutilisée dans l'étape (a) du procédé de traitement.
16. Procédé selon l'une des revendications 1 à 15 dans lequel le traitement est un traitement de dessalement de l'eau, en particulier dessalement d'eau de mer.
17. Procédé de dessalement selon la revendication 16, dans lequel la régénération de la membrane liquide hydrophobe s'effectue entre 70 et 90°C, préférentiellement aux alentours de 80°C.
18. Procédé de dessalement selon l'une quelconques des revendications 16 à 17, dans lequel le différentiel de pression au cours de l'étape (c) de mise en contact avec une membrane solide hydrophobe, est compris entre 1 et 5 bars.
19. Module de dessalement par mise en contact d'un effluent aqueux avec une membrane liquide hydrophobe pour la mise en œuvre du procédé selon l'une des revendications 16 à 18, le module comportant au moins une enceinte de dessalement (10), des moyens d'admission (11) et d'évacuation (13) de effluent, respectivement, dans et hors de ladite enceinte, des moyens d'admission (14) et d'évacuation (12) de la membrane liquide hydrophobe, respectivement, dans et hors de ladite enceinte, caractérisé en ce qu'il comprend en outre au moins un premier coalesceur (40a) en communication de fluide avec ladite enceinte au moyen d'un premier piquage d'entrée (45) dans le coalesceur pratiqué sur le moyen d'évacuation de l'effluent hors de ladite enceinte, afin d'éliminer les traces de membrane liquide hydrophobe présente de manière résiduelle dans l'effluent aqueux. 20. Module de dessalement selon la revendication 19, caractérisé en ce que le coalesceur (40a) est en communication de fluide au moyen d'un second (41) et troisième (43) piquages de sortie, avec respectivement les moyens d'admission et d'évacuation de la membrane liquide hydrophobe, dans et hors de ladite enceinte. 21. Module de dessalement selon les revendications 19 ou 20, caractérisé en ce que la membrane liquide hydrophobe comprend au moins un composé choisi parmi la catégorie des tensioactifs anioniques et/ou des tensioactifs cationiques, et/ou des calixarènes, préférentiellement les calix[4]arènes, et/ou des éthers couronnes, préférentiellement les 18-6 éthers couronnes, ou 12-4 éthers couronne ou 15-5 éthers couronne, et/ou des dithizones.
22. Module de dessalement selon les revendications 19 à 21, caractérisé en ce que les tensioactifs anioniques sont choisis parmi les sels de carboxylates, alkyl benzoates, carboxiimidates, alkoxydes ou dialkoxydes, alkylsulfates, alkylsulfonates, éther sulfonates, sulfonylimides, phosphine oxides, phosphinates, alkyl borates.
23. Module de dessalement selon les revendications 19 à 22, caractérisé en ce que les tensioactifs cationiques sont choisis parmi les sels d'alkylsulfonium, alkylammonium, alkylphosphonium, alkylimidazolium, alkyloxazaborolidinium, alkyloxazolidinium.
24. Module de dessalement selon l'une quelconque des revendications 19 à 23, caractérisé en ce que le premier coalesceur est un contacteur (40a) de forme sensiblement cylindrique, pourvu d'un canal central (402) et d'une membrane solide hydrophobe constituée de fibres poreuses et creuses (403) longitudinales. 25. Module de dessalement selon la revendication 24, caractérisé en ce que les matériaux constituant la membrane solide hydrophobe sont choisis dans la liste définie par les polypropylènes, les polyéthylènes, les fluorures de polyvinylidène, les polytétrafluoroéthylènes, les polyacrylonitriles, les polyoléfmes, les chlorures de polyvinyle, les polyéthylène-téréphtalates, les copolymères de polyoléfmes, les polyétheréthercétones, ainsi que les céramiques.
26. Module de dessalement selon l'une quelconque des revendications 19 à 25, caractérisé en ce que l'enceinte de dessalement comprend une colonne d'extraction liquide / liquide.
27. Module de dessalement selon l'une quelconque des revendications 19 à 25 caractérisé en ce que l'enceinte de dessalement comprend un mélangeur/ décanteur .
28. Module de dessalement selon l'une quelconque des revendications 19 à 25 caractérisé en ce que l'enceinte de dessalement (10, 20) et le coalesceur forment une seule et même unité constituée d'un contacteur à membranes.
29. Module de dessalement selon l'une quelconque des revendications 19 à 28 caractérisé en ce qu'il comprend en outre un second coalesceur (40b) en communication de fluide avec l'enceinte de dessalement du premier module (10) au moyen d'un premier piquage d'entrée dans le coalesceur pratiqué sur le moyen d'évacuation de la membrane liquide hydrophobe hors de ladite enceinte, afin d'éliminer les traces d'effluent aqueux présentes de manière résiduelle dans la membrane liquide hydrophobe.
30. Module de dessalement selon la revendication 29, caractérisé en ce que le second coalesceur (40b) est en communication de fluide au moyen d'un second et troisième piquages de sortie, avec respectivement les moyens d'admission de l'effluent aqueux dans l'enceinte du premier module (10).
31. Module de dessalement selon l'une quelconque des revendications 29 ou 30, caractérisé en ce que le second coalesceur est un contacteur (40b) de forme sensiblement cylindrique, pourvu d'un canal central (402) et d'une membrane solide hydrophile constituée de fibres poreuses et creuses (403) longitudinales.
32. Module de dessalement selon la revendication 24, caractérisé en ce que les matériaux constituant la membrane solide hydrophile sont choisis dans la liste définie par les polysulfones, les polyfluorure de vinylidène, les polyvinylpyrolidones, l'acétate de cellulose, les polyéther sulfones, optionnellement modifiés ou additivés, les céramiques. 33. Installation de dessalement d'un effluent aqueux, en particulier de l'eau de mer, caractérisée en ce qu'elle comprend un premier module de dessalement conforme à l'une quelconque des revendications 19 à 32.
34. Installation de dessalement selon la revendication 33, caractérisée en ce qu'elle comprend en outre un second module de régénération (20) de la membrane liquide hydrophobe, les moyens d'admission (14) de la membrane liquide hydrophobe dans le premier module de dessalement de l'effluent aqueux (10) étant en communication de fluide avec les moyens d'évacuation (24) de la membrane liquide hydrophobe hors du second module de régénération de la membrane liquide hydrophobe, tandis que les moyens d'admission (21) de la membrane liquide hydrophobe dans le second module de régénération sont en communication de fluide avec les moyens d'évacuation (12) de la membrane liquide hydrophobe hors du premier module de dessalement.
35. Installation de dessalement selon la revendication 34, caractérisée en ce qu'elle comprend en outre un troisième coalesceur (40a') en communication de fluide avec l'enceinte de régénération du second module (20) au moyen d'un premier piquage d'entrée dans le coalesceur pratiqué sur le moyen d'évacuation de la saumure hors de ladite enceinte, afin d'éliminer les traces de membrane liquide hydrophobe présentes de manière résiduelle dans la saumure.
36. Module de dessalement par mise en contact d'un effluent aqueux avec une membrane liquide hydrophobe pour la mise en œuvre du procédé selon l'une des revendications 16 à 18 et selon lequel on procède à l'extraction liquide- liquide, par mise en contact de l'effluent aqueux avec une membrane liquide hydrophobe non miscible à l'eau, permettant le transfert d'ions de la phase aqueuse vers la phase liquide hydrophobe, puis à la mise en contact de l'effluent aqueux issu de l'étape (a) avec une membrane solide hydrophobe afin de procéder de manière concomitante aux étapes (b) et (c), caractérisé en ce qu'il comprend un coalesceur de dessalement (40) doté d'un contacteur de forme sensiblement cylindrique, pourvu d'un canal central et d'une membrane solide hydrophobe constituée de fibres poreuses et creuses longitudinales, de moyens d'admission (45) dans le canal central d'un mélange composé de l'effluent aqueux et d'une membrane liquide hydrophobe et réalisé dans une unité (45'), de moyens d'évacuation (42) de l'effluent dessalé hors du canal central, de moyens d'admission (41) et d'évacuation (43) connectés à une première boucle (44', 49) de recirculation de membrane liquide hydrophobe à l'intérieur des fibres longitudinales.
37. Installation de dessalement d'un effluent aqueux, en particulier de l'eau de mer, caractérisée en ce qu'elle comprend un premier module de dessalement conforme la revendication 36.
38. Installation de dessalement selon la revendication 37, caractérisée en ce qu'elle comprend en outre un second module de régénération de la membrane liquide hydrophobe, ledit second module comprenant un coalesceur de régénération (50) doté d'un contacteur de forme sensiblement cylindrique, pourvu d'un canal central et d'une membrane solide hydrophobe constituée de fibres poreuses et creuses longitudinales, de moyens d'admission (55) dans le canal central d'un mélange composé d'eau douce issue d'un point d'eau (60) et de membrane liquide hydrophobe issue de la première boucle de recirculation (44', 49), de moyens d'évacuation (52) de la saumure hors du canal central, de moyens d'admission (51) et d'évacuation (52) connectés à une seconde boucle (54, 59) de recirculation de membrane liquide hydrophobe à l'intérieur des fibres longitudinales du contacteur.
PCT/EP2016/081420 2015-12-18 2016-12-16 Procede de traitement d'eau, module et installation associes WO2017103101A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680073625.8A CN108367943B (zh) 2015-12-18 2016-12-16 水处理方法、相关模块和设备
AU2016369400A AU2016369400B2 (en) 2015-12-18 2016-12-16 Water treatment method, and associated module and facility
EP16820230.7A EP3390283A1 (fr) 2015-12-18 2016-12-16 Procede de traitement d'eau, module et installation associes
SG11201805089RA SG11201805089RA (en) 2015-12-18 2016-12-16 Water treatment process, module and facility therefor
US16/063,533 US10710905B2 (en) 2015-12-18 2016-12-16 Water treatment method, and associated module and facility
KR1020187020787A KR20180096732A (ko) 2015-12-18 2016-12-16 물 처리 방법, 및 이와 관련된 모듈 및 설비

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1562749A FR3045591B1 (fr) 2015-12-18 2015-12-18 Procede de traitement d'eau, module et installation associes
FR1562749 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017103101A1 true WO2017103101A1 (fr) 2017-06-22

Family

ID=55236800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/081420 WO2017103101A1 (fr) 2015-12-18 2016-12-16 Procede de traitement d'eau, module et installation associes

Country Status (10)

Country Link
US (1) US10710905B2 (fr)
EP (1) EP3390283A1 (fr)
KR (1) KR20180096732A (fr)
CN (1) CN108367943B (fr)
AU (1) AU2016369400B2 (fr)
CL (1) CL2018001613A1 (fr)
FR (1) FR3045591B1 (fr)
HK (1) HK1252335A1 (fr)
SG (1) SG11201805089RA (fr)
WO (1) WO2017103101A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10938329B2 (en) 2018-03-22 2021-03-02 University Of Notre Dame Du Lac Electricity generation from low grade waste heat
CN115140872A (zh) * 2022-09-07 2022-10-04 中山市中环环保废液回收有限公司 高盐高cod废水的低能耗处理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0017283A1 (fr) * 1979-04-03 1980-10-15 Shell Internationale Researchmaatschappij B.V. Procédé et installation pour la rupture d'émulsions eau-huile

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3454489A (en) * 1966-05-23 1969-07-08 Exxon Research Engineering Co Desalination process
USRE30179E (en) * 1970-04-13 1979-12-25 Exxon Research & Engineering Co. Common ion effect to assist LM separation
US3779907A (en) * 1970-04-13 1973-12-18 Exxon Research Engineering Co Liquid membrane process for the separation of aqueous mixtures
US3740315A (en) * 1971-05-07 1973-06-19 Exxon Research Engineering Co Process for the reaction and separation of components utilizing a liquid surfactant membrane and an enzyme catalyst
US3956112A (en) * 1973-01-02 1976-05-11 Allied Chemical Corporation Membrane solvent extraction
US4283290A (en) * 1977-07-06 1981-08-11 Davy International (Oil & Chemicals) Ltd. Purification utilizing liquid membrane with electrostatic coalescence
US4274956A (en) * 1979-01-10 1981-06-23 Occidental Research Corporation Extraction process using solid stabilized emulsions
US4292181A (en) * 1978-10-30 1981-09-29 Exxon Research & Engineering Co. Use of liquid membrane systems for selective ion transfer
US4287071A (en) * 1979-10-10 1981-09-01 Occidental Research Corporation Simultaneous extraction of more than one ion by liquid membrane process
US4337225A (en) * 1980-01-21 1982-06-29 Occidental Research Corporation Regeneration of liquid membrane without breaking emulsion
FR2518890A1 (fr) * 1981-12-28 1983-07-01 Elf Aquitaine Extraction liquide-liquide a l'aide de microemulsions de substances dissoutes dans l'eau
ZA865173B (en) * 1985-07-31 1987-03-25 Celanese Corp Immobilized liquid membrane
US4921612A (en) * 1985-10-22 1990-05-01 The Trustees Of Stevens Institute Of Technology Asymmetrically-wettable porous membrane process
DE3635450A1 (de) * 1986-10-18 1988-04-21 Metallgesellschaft Ag Verfahren zur selektiven gewinnung von germanium und/oder arsen aus waessrigen loesungen
US5190656A (en) * 1989-04-03 1993-03-02 Mobil Oil Corporation Method for removing scale via a liquid membrane in combination with an amino carboxylic acid and a catalyst
US5637224A (en) * 1994-09-14 1997-06-10 New Jersey Institute Of Technology Hollow fiber contained liquid membrane pervaporation for removal of volatile organic compounds from aqueous solutions
AU2204399A (en) * 1997-12-29 1999-07-19 Monsanto Company A membrane process for making enhanced flavor fluids
DE19919490B4 (de) * 1999-04-29 2005-04-14 Forschungszentrum Jülich GmbH Verfahren zur Abtrennung organischer Substanzen aus einem wässrigen Gemisch
US7030237B2 (en) * 2000-03-03 2006-04-18 National Institute Of Advanced Industrial Science And Technology Method and equipment for continuous and selective inclusion separation
US6471995B1 (en) * 2000-09-27 2002-10-29 Alkermes Controlled Therapeutics, Inc. Ii Apparatus and method for preparing microparticles using liquid-liquid extraction
US8383003B2 (en) * 2008-06-20 2013-02-26 Nexplanar Corporation Polishing systems
CN101417208A (zh) * 2008-11-14 2009-04-29 清华大学 一种利用膜分离技术回收水相中萃取剂的方法
US9149772B2 (en) * 2010-01-15 2015-10-06 Board Of Regents, The University Of Texas Systems Enhancing flux of a microporous hollow fiber membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0017283A1 (fr) * 1979-04-03 1980-10-15 Shell Internationale Researchmaatschappij B.V. Procédé et installation pour la rupture d'émulsions eau-huile

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUANG R-S ET AL: "Application of batch ultrafiltration to the separation of W/O emulsions in liquid surfactant membrane processes", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 96, no. 3, 12 December 1994 (1994-12-12), pages 193 - 203, XP004041519, ISSN: 0376-7388, DOI: 10.1016/0376-7388(94)00121-9 *
KAKOI T ET AL: "Selective recovery of palladium from a simulated industrial waste water by liquid surfactant membrane process", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 118, no. 1, 4 September 1996 (1996-09-04), pages 63 - 71, XP004041786, ISSN: 0376-7388, DOI: 10.1016/0376-7388(96)00102-0 *
SASTREA A M ET AL: "Improved Techniques in Liquid Membrane Separations: An Overview", SEPARATION AND PURIFICATION METHODS, MARCEL DEKKER, NEW YORK, NY, US, vol. 27, no. 2, 1 January 1998 (1998-01-01), pages 213 - 298, XP009159979, ISSN: 0360-2540 *

Also Published As

Publication number Publication date
CL2018001613A1 (es) 2018-11-16
FR3045591A1 (fr) 2017-06-23
US10710905B2 (en) 2020-07-14
EP3390283A1 (fr) 2018-10-24
AU2016369400B2 (en) 2022-02-17
FR3045591B1 (fr) 2021-05-07
AU2016369400A1 (en) 2018-07-05
HK1252335A1 (zh) 2019-05-24
KR20180096732A (ko) 2018-08-29
CN108367943B (zh) 2023-01-24
SG11201805089RA (en) 2018-07-30
CN108367943A (zh) 2018-08-03
US20180370818A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
Bey et al. Removal of As (V) by PVDF hollow fibers membrane contactors using Aliquat-336 as extractant
Sang et al. Filtration by a novel nanofiber membrane and alumina adsorption to remove copper (II) from groundwater
Song et al. Selective separation of copper and nickel by membrane extraction using hydrophilic nanoporous ion-exchange barrier membranes
Kamiński et al. Applicability of liquid membranes in environmental protection
CN102711965A (zh) 分离膜组件的清洗方法和制水方法
US20210246529A1 (en) Integrated lithium extraction
US5868935A (en) Method and apparatus for extraction and recovery of ions from solutions
CN103348024A (zh) 金属的萃取
Pabby et al. Recent advances in smart integrated membrane assisted liquid extraction technology
JPH02298319A (ja) 過蒸発により混合物の諸成分を分離・回収する方法
WO2017103101A1 (fr) Procede de traitement d'eau, module et installation associes
Ali et al. Selective transportation of molybdenum from model and ore through poly inclusion membrane
US10525415B2 (en) Processing systems for produced water and methods for recovering organic compounds from the produced water
EP1183400B1 (fr) Procede pour separer en milieu aqueux des lanthanides et/ou des actinides par complexation-nanofiltration, et nouveaux complexants mis en oeuvre dans ce procede
Poonguzhali et al. Effective separation of toxic phenol from aquatic system using membrane assisted solvent extraction system
EP2961519A1 (fr) Amélioration de la qualité d'huile au moyen d'une membrane en fibres creuses microporeuse
Lin et al. Removal of free and chelated Cu (II) ions from water by a nondispersive solvent extraction process
US20130233807A1 (en) Microreactors for separation of heterogeneous liquids
Kumar et al. Integrated membrane process for gold recovery from hydrometallurgical solutions
Molinari et al. Studies of various solid membrane supports to prepare stable sandwich liquid membranes and testing copper (II) removal from aqueous media
Chilyumova et al. Nanofiltration of bivalent nickel cations—model parameter determination and process simulation
Muthuraman et al. Recovery of Levafix brilliant red E-4BA and Levafix brilliant red E-6BA from aqueous solution by supported liquid membrane
EP3452824B1 (fr) Procede de capture et/ou de detection d'un composant chimique et installation pour la mise en oeuvre du procede
Lobacheva Application of solvent sublation for the removal of trace elements in wastewater
FR2900145A1 (fr) Procede d'extraction sans solvant des polluants organiques et metalliques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16820230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201805089R

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016369400

Country of ref document: AU

Date of ref document: 20161216

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187020787

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020787

Country of ref document: KR

Ref document number: 2016820230

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016820230

Country of ref document: EP

Effective date: 20180718