WO2017101658A1 - 一种双级压缩空调系统及其补气控制方法 - Google Patents

一种双级压缩空调系统及其补气控制方法 Download PDF

Info

Publication number
WO2017101658A1
WO2017101658A1 PCT/CN2016/107254 CN2016107254W WO2017101658A1 WO 2017101658 A1 WO2017101658 A1 WO 2017101658A1 CN 2016107254 W CN2016107254 W CN 2016107254W WO 2017101658 A1 WO2017101658 A1 WO 2017101658A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
air
shut
conditioning system
temperature
Prior art date
Application number
PCT/CN2016/107254
Other languages
English (en)
French (fr)
Inventor
赵桓
谭锋
李鹏飞
梁尤轩
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to CA3007423A priority Critical patent/CA3007423C/en
Publication of WO2017101658A1 publication Critical patent/WO2017101658A1/zh
Priority to US15/996,981 priority patent/US10309705B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Definitions

  • the invention relates to the field of air conditioning, in particular to a two-stage compressed air conditioning system and a supplemental air control method thereof.
  • the single-stage compression heat pump can only start at normal operation at minus 20 degrees, and the heat generation is seriously attenuated. The heating effect cannot be guaranteed, and the reliability of the unit is also severe. The test.
  • the two-stage compression air conditioning system with jet boosting has higher heat generation at higher temperatures and higher energy efficiency.
  • the two-stage compression air conditioning system can reduce the pressure ratio of the single-stage compressor, reduce the exhaust gas temperature, and at the same time improve the suction efficiency and compression efficiency, thereby improving the heating and heating efficiency.
  • the two-stage compressor with jet boosting is divided into a high pressure stage and a low pressure stage, which has two or more cylinders, wherein the first stage compressor is called a low pressure cylinder, and the second stage compression is called High pressure cylinder.
  • the principle of jet boosting is to inject gaseous refrigerant into the suction port of the compressor high pressure cylinder from the jet increase port in the middle of the compressor. The injected gaseous refrigerant will be mixed with the refrigerant discharged after being compressed by the low pressure cylinder, and then enter the high pressure cylinder. compression.
  • the intermediate jet has a very important influence on the performance and reliability of the system.
  • the two-stage compression system may have the possibility of backflow.
  • NG backflow means that when the air supply valve is opened, since the intermediate pressure of the flasher is lower than the first-stage compressed exhaust pressure, part of the first-stage compressed exhaust gas is directly discharged into the intermediate flasher.
  • the qi backflow greatly affects the reliability and performance of the two-stage compression system.
  • the high-temperature and high-pressure exhaust gas is not condensed and throttled into the flash evaporator, and after condensation and
  • the low-temperature and low-pressure refrigerant mixing of the throttling increases the temperature and pressure of the refrigerant before entering the evaporator, which is equivalent to reducing the amount of outdoor heat exchange, which directly leads to a decrease in the amount of heat exchange in the room, and the energy efficiency of the system is deteriorated.
  • the existing two-stage compression air conditioning system does not judge and control the air backflow, so it is difficult to avoid the situation of the air backflow.
  • a supplementary air control method for a two-stage compressed air conditioning system comprising a two-stage compressor and a flash a steamer, wherein the first interface of the flasher is connected to one end of the shut-off valve through the first pipeline, and the other end of the shut-off valve is connected to the first suction port of the two-stage compressor through the second pipeline
  • the air supply control method includes: Obtaining a first temperature value Tm1 in the first pipeline, an intermediate pressure value Pm, and a second temperature value Tm2 in the second pipeline; according to the first temperature value Tm1, the intermediate pressure value Pm, and the second temperature value Tm2 The shutoff valve is controlled.
  • the control of the shutoff valve according to the supplemental superheat degree SH and the temperature difference before and after the air supply valve TH includes: if SH ⁇ a, and TH ⁇ b, Then open the shut-off valve; otherwise, close the air supply valve; where a and b are preset values.
  • the shut-off valve is controlled according to the supplemental superheat degree SH and the temperature difference TH before and after the air supply valve, specifically: according to the supplementary air superheat degree SH and the air supply valve
  • the front and rear temperature difference TH determines the qi working state
  • the shut-off valve is controlled according to the qi working state; the qi working state includes normal qi and forward, qi backflow, and qi and downstream.
  • determining the qi working state according to the supplemental superheat degree SH and the temperature difference before and after the air supply valve specifically includes: if SH ⁇ a, and TH ⁇ b, Then it is judged that the normal qi is downstream; if SH ⁇ a, and TH ⁇ b, or if SH ⁇ a, and TH ⁇ c, it is judged as qi backflow; if SH ⁇ a, and TH ⁇ c, then judge It is qi and downstream and has liquid; a, b, and c are preset values.
  • the control of the shut-off valve according to the state of the air supply operation includes: if the air supply working state is normal qi, the shut-off valve is opened; When the gas working state is reversed or the gas is supplied and the liquid is supplied, the shut-off valve is closed.
  • a two-stage compression air conditioning system comprising a two-stage compressor and a flasher, wherein a first interface of the flasher is connected to one end of the shut-off valve through a first line, and the other end of the shut-off valve is connected to a two-stage compressor through a second line a first air inlet; the system further includes a first temperature sensing device, a second temperature sensing device, and a medium pressure sensor; wherein the first temperature sensing device and the medium pressure sensor are disposed on the first pipeline, and the second temperature sensing device is disposed in the On the second line.
  • the first temperature sensing device is disposed and the medium pressure sensor is disposed adjacent to the first interface of the flasher.
  • the second temperature sensing device is close to the first suction of the two-stage compressor Air port setting.
  • a computer readable storage medium having stored thereon a computer program, the program being executed by a processor to implement the steps of the method as described above.
  • a computing control device comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor implementing the program to implement the method as described above A step of.
  • the first temperature value Tm1 in the first pipeline, the intermediate pressure value Pm, and the second temperature value Tm2 in the second pipeline are obtained, and the shut-off valve is controlled according to the above parameters, thereby effectively reducing The occurrence of qi backflow.
  • the supplementary air superheat degree SH is obtained according to the first temperature value Tm1 at the first interface of the flasher, the intermediate pressure value Pm, and the second temperature value Tm2 at the first suction port of the compressor.
  • the temperature difference is TH before and after the air supply valve, and the shut-off valve is controlled according to the supplemental superheat degree SH and the temperature difference TH before and after the air supply valve.
  • the qi working state is judged according to the supplemental superheat degree SH and the temperature difference before and after the air supply valve, and the shut-off valve is controlled according to the qi working state, thereby enabling accurate judgment and control of the qi backflow.
  • Figure 1 is a schematic illustration of one embodiment of an air conditioning system of the present invention.
  • FIG. 2 is a flow chart showing an embodiment of a supplemental gas control method of the two-stage compression air conditioning system of the present invention.
  • Fig. 3 is a view showing the configuration of an embodiment of a calculation control device for performing a supplemental gas control method of a two-stage compression air-conditioning system of the present invention.
  • an air conditioning system comprising a two-stage compressor 1 and a flasher 3, the two-stage compressor 1 having a first intake port 11 and a second Suction port 12 and air outlet 13, flasher pack
  • the first interface 31, the second interface 32 and the third interface 33 are included.
  • the first interface 31 is an interface for supplying air to the compressor, and the first interface 31 of the flasher 3 is connected to the shut-off valve through the first pipeline.
  • One end of the second valve, the other end of the shut-off valve 2 is connected to the first air inlet 11 of the two-stage compressor 1 through a second pipeline, and further includes a first temperature sensing device 4, a second temperature sensing device 5 and an intermediate pressure sensor 6;
  • the first temperature sensing device 4 and the medium pressure sensor 6 are disposed on a first line between the first interface 31 of the flasher 3 and the shutoff valve 2, and the first temperature sensing device 4 is configured to detect the first interface 31 of the flasher 3.
  • the intermediate pressure sensor 6 is used to detect the intermediate pressure Pm at the first interface 31 of the flasher 3; the second temperature sensing device 5 is disposed at the first intake port 11 of the two-stage compressor 1 A second temperature value Tm2 at the first suction port of the compressor is detected on the second line between the shutoff valve 2.
  • the first temperature sensing device 4 is disposed and the medium pressure sensor 6 is disposed adjacent to the first interface 31 of the flasher, and the temperature and pressure measurement of the refrigerant of the first interface 31 can be more accurately, where the proximity refers to The midpoint of the first conduit is closer to the first interface 31.
  • the second temperature sensing device 5 is disposed close to the first air inlet 11 of the two-stage compressor 1, and the temperature of the refrigerant of the first air inlet 11 can be more accurately measured, where the proximity refers to the second The midpoint of the line is closer to the first suction port 11.
  • the air supply can be controlled.
  • the shut-off valve 2 By controlling the opening and closing of the shut-off valve 2, the air supply can be controlled.
  • the shut-off valve 2 is closed, the reliable and efficient operation of the compressor can be ensured for a long period of time.
  • the embodiment further provides a supplemental air control method for a two-stage compressed air conditioning system, which is used for controlling the air conditioning system, and the method includes: acquiring a first temperature value Tm1 in the first pipeline. And an intermediate pressure value Pm and a second temperature value Tm2 in the second pipeline; and the shutoff valve 2 is controlled according to the first temperature value Tm1, the intermediate pressure value Pm, and the second temperature value Tm2.
  • the first temperature value Tm1, the intermediate pressure value Pm is a temperature value and an intermediate pressure value of the refrigerant near the first interface 31 of the flasher; and the second temperature value Tm2 is a first suction close to the two-stage compressor.
  • the refrigerant temperature value of the port is acquiring a first temperature value Tm1 in the first pipeline. And an intermediate pressure value Pm and a second temperature value Tm2 in the second pipeline; and the shutoff valve 2 is controlled according to the first temperature value Tm1, the intermediate pressure value Pm, and the second temperature value Tm2.
  • controlling the shutoff valve according to the first temperature value Tm1, the intermediate pressure value Pm, and the second temperature value Tm2 specifically includes:
  • Obtaining a saturated steam temperature Tmc according to the intermediate pressure value Pm, and the specific saturated steam temperature Tmc can be obtained by querying the refrigerant saturation temperature pressure comparison table to find the saturated steam temperature Tmc corresponding to the intermediate pressure value Pm;
  • the shut-off valve is controlled according to the supplemental superheat degree SH and the temperature difference TH before and after the makeup valve.
  • control of the shut-off valve according to the supplemental superheat degree SH and the temperature difference before and after the trim valve TH includes:
  • a and b are pre-set values obtained empirically or based on experiments, and the same or different values may be taken for different air conditioning systems and different compressor parameters.
  • the qi working state is determined according to the supplemental superheat degree SH and the temperature difference before and after the air supply valve, and the shut-off valve is controlled according to the qi working state; the qi working state includes normal qi and downstream, qi backflow, and Qi and downstream flow. among them,
  • a, b, and c are preset values obtained in advance according to experience or according to experiments, and the same or different values may be taken for different air conditioning systems and different compressor parameters, and with a shut-off valve, a temperature sensing device, and The setting position of the medium voltage sensor is related.
  • the first temperature value Tm1, the saturated steam temperature Tmc, the supplemental superheat degree SH, the second temperature value Tm2, the temperature difference before and after the air supply valve TH, and the units of a, b, and c are all degrees Celsius °C.
  • the flasher can supply the compressor to the compressor and supply the compressor.
  • the refrigerants are all gaseous refrigerants.
  • the shut-off valve should be closed to prevent backflow
  • the qi supply working state is qi-enriched with liquid, it means that the refrigerant supplied to the compressor by the flasher contains liquid refrigerant, and the liquid refrigerant may damage the compressor after entering the compressor through the first suction port, so this should also be Close the shut-off valve to ensure safe operation of the compressor.
  • the normal flow of the refrigerant is from the flasher to the compressor cylinder.
  • the superheat is higher, and because the shut-off valve is throttled, there will be a temperature difference before and after; if the air is supplied This temperature difference is more pronounced when liquid refrigerant is present; this temperature difference is opposite to that of downstream flow when the gas is reversed.
  • the qi supply working state can be judged by combining the supplementary air superheat degree SH and the temperature difference TH before and after the air supply valve.
  • the service life of the two-stage compressor can be extended, and the two-stage compressed air-conditioning system can be maintained to maintain high efficiency, stability and long-term reliable operation.
  • Fig. 3 is a view showing the configuration of an embodiment of a calculation control device for performing a supplemental gas control method of a two-stage compression air-conditioning system of the present invention.
  • the control device 300 of this embodiment includes: a memory 110 and a processor 120.
  • Input and output interface 230, network interface 240, storage interface 250, and the like can also be included. These interfaces 230, 240, 750 and the memory 110 and the processor 120 can be connected, for example, via a bus 260.
  • the input/output interface 230 provides a connection interface for input and output devices such as a remote controller, a display, a touch screen, a mouse, and a keyboard.
  • the network interface 240 provides a connection interface for various networked devices, such as a database server or a cloud storage server.
  • the storage interface 250 provides a connection interface for an external storage device such as an SD card or a USB flash drive.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code. .
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

提供一种双级压缩空调系统及其补气控制方法。双级压缩空调系统包括双级压缩机(1)和闪蒸器(3)。闪蒸器(3)的第一接口(31)通过第一管路连接截止阀(2)的一端,截止阀(2)的另一端通过第二管路连接双级压缩机(1)的第一吸气口(11)。补气控制方法包括:获取第一管路内的第一温度值Tm1、中间压力值Pm以及第二管路内的第二温度值Tm2;根据第一温度值Tm1、中间压力值Pm、第二温度值Tm2对截止阀(2)进行控制。通过检测第一接口(31)和第一吸气口(11)的冷媒参数对补气工作状态进行判断,进而控制截止阀(2)以抑制补气倒流。

Description

一种双级压缩空调系统及其补气控制方法 技术领域
本发明涉及空调领域,具体涉及一种双级压缩空调系统及其补气控制方法。
背景技术
环境温度越低,对空调制热量的需求越大,但目前单级压缩的热泵只能做到零下20度正常启动运行,且制热量严重衰减,制热效果不能保证,机组可靠性也受到严峻的考验。
相比单级压缩热泵,带有喷气增焓的双级压缩空调系统在低温下制热量较大,能效较高。且双级压缩空调系统能减少单级压缩机的压比,降低排气温度,同时可提高吸气效率和压缩效率,从而提升制热量和制热效率。
带有喷气增焓的双级压缩机分为高压级和低压级,它具有两个或以上的气缸,其中用于第一级压缩机的称为低压缸,用于第二级压缩的称为高压缸。喷气增焓的原理是从压缩机中部的喷气增焓口将气态冷媒喷入压缩机高压缸的吸气口,喷入的气态冷媒将与经过低压缸压缩后排出的冷媒混合,然后进入高压缸压缩。
在双级压缩空调系统中,中间喷气对系统性能和可靠性有非常重要的影响,而随着高低压级压缩比的不同及工况的变化,双级压缩系统存在补气倒流的可能。补气倒流是指,补气阀打开的情况下,由于闪蒸器的中间压力低于一级压缩的排气压力,导致一级压缩的部分排气直接排入中间闪蒸器里面。补气倒流大大影响了双级压缩系统的可靠性和性能。一级压缩排气直接排入闪蒸器时,会将润滑油一同排出,容易造成压缩机缺油磨损,性能方面,高温高压的排气未经过冷凝和节流进入闪蒸器后,与经过冷凝和节流的低温低压冷媒混合,提高了进入蒸发器前的冷媒温度和压力,相当于减少了室外换热量,直接导致室内换热量降低,系统能效变差。
现有的采用双级压缩空调系统并未对补气倒流进行判断和控制,因此难以避免发生补气倒流的情况。
发明内容
有鉴于此,本发明的目的在于提供一种能够对双级压缩机的补气倒流情况进行判断和控制的方法,以避免补气倒流情况的发生。
为达此目的,根据本发明的一个方面,采用以下技术方案:
一种双级压缩空调系统的补气控制方法,所述双级压缩空调系统包括双级压缩机和闪 蒸器,其中闪蒸器的第一接口通过第一管路连接截止阀的一端,截止阀的另一端通过第二管路连接双级压缩机的第一吸气口,所述补气控制方法包括:获取第一管路内的第一温度值Tm1、中间压力值Pm以及第二管路内的第二温度值Tm2;根据所述第一温度值Tm1、中间压力值Pm、第二温度值Tm2对截止阀进行控制。
优选的,在前述的双级压缩空调系统的补气控制方法中,根据所述第一温度值Tm1、中间压力值Pm、第二温度值Tm2对截止阀进行控制具体包括:根据中间压力值Pm获得饱和蒸汽温度Tmc;根据第一温度值Tm1和饱和蒸汽温度Tmc得到补气过热度SH,其中,SH=Tm1-Tmc;根据第一温度值Tm1和第二温度值Tm2得到补气阀前后温度差TH,其中,TH=Tm1-Tm2;根据补气过热度SH和补气阀前后温度差TH对截止阀进行控制。
优选的,在前述的双级压缩空调系统的补气控制方法中,根据补气过热度SH和补气阀前后温度差TH对截止阀进行控制具体包括:若SH≥a,且TH≥b,则开启截止阀;否则,关闭补气阀;其中a、b均为预设值。
优选的,在前述的双级压缩空调系统的补气控制方法中,根据补气过热度SH和补气阀前后温度差TH对截止阀进行控制具体为:根据补气过热度SH和补气阀前后温度差TH判断补气工作状态,并根据补气工作状态对截止阀进行控制;所述补气工作状态包括正常补气顺流、补气倒流,以及补气顺流且带液。
优选的,在前述的双级压缩空调系统的补气控制方法中,根据补气过热度SH和补气阀前后温度差TH判断补气工作状态具体包括:若SH≥a,且TH≥b,则判断为正常补气顺流;若SH≥a,且TH<b,或者,若SH<a,且TH<c,则判断为补气倒流;若SH<a,且TH≥c,则判断为补气顺流且带液;其中a、b、c均为预设值。
优选的,在前述的双级压缩空调系统的补气控制方法中,根据补气工作状态对截止阀进行控制具体包括:若补气工作状态为正常补气顺流,则开启截止阀;若补气工作状态为补气倒流或者补气顺流且带液,则关闭截止阀。
一种双级压缩空调系统,包括双级压缩机和闪蒸器,其中闪蒸器的第一接口通过第一管路连接截止阀的一端,截止阀另一端通过第二管路连接双级压缩机的第一吸气口;该系统还包括第一感温装置、第二感温装置和中压传感器;其中第一感温装置和中压传感器设置在第一管路上,第二感温装置设置在第二管路上。
优选的,在前述的双级压缩空调系统中,所述第一感温装置设置和中压传感器靠近闪蒸器的第一接口设置。
优选的,在前述的双击压缩空调系统中,第二感温装置靠近所述双级压缩机的第一吸 气口设置。
根据本发明的另一方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上所述方法的步骤。
根据本发明的又一方面,提供一种计算控制设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上所述方法的步骤。
本发明的有益效果包括如下一项或多项:
1.本申请方案中,通过获取第一管路中的第一温度值Tm1、中间压力值Pm以及第二管路中的第二温度值Tm2,并根据以上参数控制截止阀,进而有效的减少补气倒流的发生。
2.本申请方案中,具体的根据闪蒸器的第一接口处的第一温度值Tm1、中间压力值Pm以及压缩机的第一吸气口处的第二温度值Tm2得到补气过热度SH和补气阀前后温度差TH,并根据补气过热度SH和补气阀前后温度差TH对截止阀进行控制。
3.本申请方案中,根据补气过热度SH和补气阀前后温度差TH判断补气工作状态,并根据补气工作状态控制截止阀,进而能够对补气倒流进行精准的判断和控制。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1是本发明的空调系统的一个实施例的示意图。
图2是本发明的双级压缩空调系统的补气控制方法的一个实施例的流程图。
图3是本发明的执行双级压缩空调系统的补气控制方法的计算控制设备的一个实施例的结构示意图。
具体实施方式
以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、元件并没有详细叙述。
如图1所示,根据本发明的第一个实施例,提供一种空调系统,包括双级压缩机1和闪蒸器3,所述双级压缩机1具有第一吸气口11、第二吸气口12和出气口13,闪蒸器包 括第一接口31、第二接口32和第三接口33,第一接口31是用于向压缩机増焓补气的接口,闪蒸器3的第一接口31通过第一管路相连接截止阀2的一端,截止阀2另一端通过第二管路连接双级压缩机1的第一吸气口11,还包括第一感温装置4、第二感温装置5和中压传感器6;其中第一感温装置4和中压传感器6设置在闪蒸器3的第一接口31和截止阀2之间的第一管路上,第一感温装置4用于检测闪蒸器3的第一接口31处的第一补气温度Tm1,中压传感器6用于检测闪蒸器3的第一接口31处的中间压力Pm;第二感温装置5设置在双级压缩机1的第一吸气口11与截止阀2之间的第二管路上,用于检测压缩机的第一吸气口处的第二温度值Tm2。优选的,所述第一感温装置4设置和中压传感器6靠近闪蒸器的第一接口31设置,可以对第一接口31的冷媒的温度和压力测量更加精确,这里的靠近是指相对于第一管路的中点更接近于第一接口31。优选的,第二感温装置5靠近所述双级压缩机1的第一吸气口11设置,可以对第一吸气口11的冷媒温度测量更加精确,这里的靠近是指相对于第二管路的中点更接近于第一吸气口11。
通过控制截止阀2的开闭,可对补气进行控制,当检测到如补气倒流等情况发生时,即使关闭截止阀2,进而可以长期保障压缩机的可靠和高效运行。
结合参见图2,本实施例还提供了一种双级压缩空调系统的补气控制方法,用于对上述的空调系统进行控制,该方法包括:获取第一管路内的第一温度值Tm1、中间压力值Pm以及第二管路内的第二温度值Tm2;根据所述第一温度值Tm1、中间压力值Pm、第二温度值Tm2对截止阀2进行控制。优选的,所述第一温度值Tm1、中间压力值Pm为靠近闪蒸器的第一接口31处的冷媒的温度值和中间压力值;第二温度值Tm2为靠近双级压缩机的第一吸气口的冷媒温度值。
作为一种较优的实施方式,根据所述第一温度值Tm1、中间压力值Pm、第二温度值Tm2对截止阀进行控制具体包括:
根据中间压力值Pm获得饱和蒸汽温度Tmc,具体饱和蒸汽温度Tmc可通过查询冷媒饱和温度压力对照表,查找与中间压力值Pm所对应的饱和蒸汽温度Tmc即可得到;
根据第一温度值Tm1和饱和蒸汽温度Tmc得到补气过热度SH,其中,SH=Tm1-Tmc;
根据第一温度值Tm1和第二温度值Tm2得到补气阀前后温度差TH,其中,TH=Tm1-Tm2;
根据补气过热度SH和补气阀前后温度差TH对截止阀进行控制。
作为一种较优的实施方式,根据补气过热度SH和补气阀前后温度差TH对截止阀进行控制具体包括:
若SH≥a,且TH≥b,则开启截止阀;
否则,关闭补气阀;
其中a、b均为预先根据经验得到或者根据实验得出的预设值,针对不同的空调系统以及不同的压缩机参数可以取相同或者不同的数值。
上述根据补气过热度SH和补气阀前后温度差TH对截止阀进行控制的具体原理如下:
根据补气过热度SH和补气阀前后温度差TH判断补气工作状态,并根据补气工作状态对截止阀进行控制;所述补气工作状态包括正常补气顺流、补气倒流,以及补气顺流带液。其中,
若SH≥a,且TH≥b,则判断为正常补气顺流;
若SH≥a,且TH<b,或者,若SH<a,且TH<c,则判断为补气倒流;
若SH<a,且TH≥c,则判断为补气顺流带液;
其中a、b、c均为预先根据经验得到或者根据实验得出的预设值,针对不同的空调系统以及不同的压缩机参数可以取相同或者不同的数值,并与截止阀、感温装置和中压传感器的设置位置相关。
其中,第一温度值Tm1、饱和蒸汽温度Tmc、补气过热度SH、第二温度值Tm2、补气阀前后温度差TH以及a、b、c的单位均为摄氏度℃。
若补气工作状态为正常补气顺流,说明补气増焓工作正常,则开启截止阀;其中正常补气顺利是指闪蒸器能对压缩机进行补气増焓,且向压缩机供给的冷媒均为气态冷媒。
若补气工作状态为补气倒流,由于补气倒流将减少压缩机润滑油排油量,压缩机的长期可靠性会产生有害影响,因此应关闭截止阀以阻止补气倒流;
若补气工作状态为补气顺流带液,说明闪蒸器向压缩机供给的冷媒中含有液态冷媒,液态冷媒通过第一吸气口进入压缩机后有可能损坏压缩机,所以此时也应关闭截止阀以保障压缩机的安全运行。
在补气时,冷媒流向的正常情况是从闪蒸器进入压缩机中压缸,不带液时补气过热度较高,且由于截止阀有节流,因此前后会有温度差;如果补气中有液态冷媒存在时这种温度差会更加明显;而补气倒流的时候这种温度差与顺流时是相反的。根据上述原理结合补气过热度SH和补气阀前后温度差TH即可判断出补气工作状态。
通过对截止阀进行及时与合理的控制,可延长双级压缩机的使用寿命,同时保障双级压缩空调系统维持高效、稳定及长期可靠运行。
图3是本发明的执行双级压缩空调系统的补气控制方法的计算控制设备的一个实施例的结构示意图。如图3所示,该实施例的控制设备300包括:存储器110以及处理器120, 还可以包括输入输出接口230、网络接口240、存储接口250等。这些接口230,240,750以及存储器110和处理器120之间例如可以通过总线260连接。其中,输入输出接口230为遥控器、显示器、触摸屏、鼠标、键盘等输入输出设备提供连接接口。网络接口240为各种联网设备提供连接接口,例如可以连接到数据库服务器或者云端存储服务器等。存储接口250为SD卡、U盘等外置存储设备提供连接接口。
本领域内的技术人员应当明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解为可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
同时,应当理解,示例实施例被提供,以使本公开是全面的,并将其范围充分传达给本领域技术人员。很多特定细节(例如特定部件、设备和方法的示例)被给出以提供对本公开的全面理解。本领域技术人员将明白,不需要采用特定细节,示例实施例可以以很多 不同的形式被实施,并且示例实施例不应被理解为限制本公开的范围。在一些示例实施例中,众所周知的设备结构以及众所周知的技术没有详细描述。
当一元件或层被提及为在另一元件或层“上”、“被接合到”、“被连接到”或“被联接到”另一元件或层时,其可直接在另一元件或层上、被直接接合、连接或联接到另一元件或层,或者可存在中间元件或层。相比之下,当一元件被提及为“直接”在另一元件或层“上”、“直接被接合到”、“直接被连接到”或“直接被联接到”另一元件或层时,可不存在中间元件或层。用于描述元件之间关系的其它词语应该以相似方式被解释(例如,“之间”与“直接在之间”,“邻近”与“直接邻近”等)。如在此使用的,术语“和/或”包括一个或更多关联的所列项目中的任一或全部组合。

Claims (11)

  1. 一种双级压缩空调系统的补气控制方法,所述双级压缩空调系统包括双级压缩机和闪蒸器,其中闪蒸器的第一接口通过第一管路连接截止阀的一端,截止阀的另一端通过第二管路连接双级压缩机的第一吸气口,其特征在于,所述补气控制方法包括:
    获取第一管路内的第一温度值Tm1、中间压力值Pm以及第二管路内的第二温度值Tm2;
    根据所述第一温度值Tm1、中间压力值Pm、第二温度值Tm2对截止阀进行控制。
  2. 如权利要求1所述的双级压缩空调系统的补气控制方法,其特征在于:根据所述第一温度值Tm1、中间压力值Pm、第二温度值Tm2对截止阀进行控制具体包括:
    根据中间压力值Pm获得饱和蒸汽温度Tmc;
    根据第一温度值Tm1和饱和蒸汽温度Tmc得到补气过热度SH,其中,SH=Tm1-Tmc;
    根据第一温度值Tm1和第二温度值Tm2得到补气阀前后温度差TH,其中,TH=Tm1-Tm2;
    根据补气过热度SH和补气阀前后温度差TH对截止阀进行控制。
  3. 如权利要求2所述的双级压缩空调系统的补气控制方法,其特征在于:根据补气过热度SH和补气阀前后温度差TH对截止阀进行控制具体包括:
    若SH≥a,且TH≥b,则开启截止阀;
    否则,关闭补气阀;
    其中a、b均为预设值。
  4. 如权利要求2所述的双级压缩空调系统的补气控制方法,其特征在于:根据补气过热度SH和补气阀前后温度差TH对截止阀进行控制具体为:根据补气过热度SH和补气阀前后温度差TH判断补气工作状态,并根据补气工作状态对截止阀进行控制;所述补气工作状态包括正常补气顺流、补气倒流,以及补气顺流且带液。
  5. 如权利要求4所述的双级压缩空调系统的补气控制方法,其特征在于:根据补气过热度SH和补气阀前后温度差TH判断补气工作状态具体包括:
    若SH≥a,且TH≥b,则判断为正常补气顺流;
    若SH≥a,且TH<b,或者,若SH<a,且TH<c,则判断为补气倒流;
    若SH<a,且TH≥c,则判断为补气顺流且带液;
    其中a、b、c均为预设值。
  6. 如权利要求4或5所述的双级压缩空调系统的补气控制方法,其特征在于:根据补气工作状态对截止阀进行控制具体包括:
    若补气工作状态为正常补气顺流,则开启截止阀;
    若补气工作状态为补气倒流或者补气顺流且带液,则关闭截止阀。
  7. 一种双级压缩空调系统,包括双级压缩机和闪蒸器,其中闪蒸器的第一接口通过第一管路连接截止阀的一端,截止阀另一端通过第二管路连接双级压缩机的第一吸气口,其特征在于:还包括第一感温装置、第二感温装置和中压传感器;其中第一感温装置和中压传感器设置在第一管路上,第二感温装置设置在第二管路上。
  8. 如权利要求7所述的双级压缩空调系统,其特征在于:所述第一感温装置设置和中压传感器靠近闪蒸器的第一接口设置。
  9. 如权利要求7所述的双级压缩空调系统,其特征在于:第二感温装置靠近所述双级压缩机的第一吸气口设置。
  10. 一种计算控制设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1-6中任意一项所述方法的步骤。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-6中任意一项所述方法的步骤。
PCT/CN2016/107254 2015-12-14 2016-11-25 一种双级压缩空调系统及其补气控制方法 WO2017101658A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3007423A CA3007423C (en) 2015-12-14 2016-11-25 Two-stage compression air conditioning system and air replenishment control method therefor
US15/996,981 US10309705B2 (en) 2015-12-14 2018-06-04 Two-stage compression air conditioning system and method of controlling gas replenishment thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510929233.4A CN105485989B (zh) 2015-12-14 2015-12-14 一种双级压缩空调系统的补气控制方法
CN201510929233.4 2015-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/996,981 Continuation US10309705B2 (en) 2015-12-14 2018-06-04 Two-stage compression air conditioning system and method of controlling gas replenishment thereof

Publications (1)

Publication Number Publication Date
WO2017101658A1 true WO2017101658A1 (zh) 2017-06-22

Family

ID=55673135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107254 WO2017101658A1 (zh) 2015-12-14 2016-11-25 一种双级压缩空调系统及其补气控制方法

Country Status (4)

Country Link
US (1) US10309705B2 (zh)
CN (1) CN105485989B (zh)
CA (1) CA3007423C (zh)
WO (1) WO2017101658A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112728821A (zh) * 2019-10-14 2021-04-30 广东芬尼克兹节能设备有限公司 压缩机超低温安全运行控制方法、装置、设备及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371548B (zh) * 2015-12-11 2017-11-21 珠海格力电器股份有限公司 双级压缩机的补气增焓控制方法、设备和装置
CN105485989B (zh) * 2015-12-14 2018-03-13 珠海格力电器股份有限公司 一种双级压缩空调系统的补气控制方法
CN106969519B (zh) * 2017-03-07 2019-08-02 广东美芝制冷设备有限公司 制冷装置
CN108072190A (zh) * 2017-12-26 2018-05-25 珠海格力电器股份有限公司 空调系统及具有其的空调器
CN108286512B (zh) * 2018-04-18 2024-02-09 格力电器(芜湖)有限公司 温度调节系统及其双级压缩机补气装置和控制方法
CN108759211B (zh) * 2018-06-12 2020-11-17 重庆美的通用制冷设备有限公司 双级离心机组及双级离心机组的中间补气控制方法
US11187437B2 (en) * 2019-01-09 2021-11-30 Heatcraft Refrigeration Products Llc Cooling system
CN113623826B (zh) * 2020-05-06 2022-07-08 青岛海信日立空调系统有限公司 一种空调系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919410A2 (en) * 1997-11-27 1999-06-02 Denso Corporation Vehicle air conditioning system with expansion valve control during high pressure cycle conditions
JP2005214442A (ja) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd 冷凍装置
CN200996753Y (zh) * 2006-12-26 2007-12-26 海信集团有限公司 带经济器的中间补气压缩机制冷系统
CN202692341U (zh) * 2012-08-02 2013-01-23 珠海格力电器股份有限公司 空调循环系统
CN103574852A (zh) * 2012-08-02 2014-02-12 珠海格力电器股份有限公司 空调循环系统以及双级压缩机补气量控制方法
CN103822418A (zh) * 2012-11-19 2014-05-28 珠海格力电器股份有限公司 准二级压缩热泵系统及其控制方法
CN105371514A (zh) * 2015-12-10 2016-03-02 珠海格力电器股份有限公司 带有中间补气的压缩系统、空调系统及其判断控制方法
CN105485989A (zh) * 2015-12-14 2016-04-13 珠海格力电器股份有限公司 一种双级压缩空调系统及其补气控制方法
CN205191969U (zh) * 2015-12-10 2016-04-27 珠海格力电器股份有限公司 带有中间补气的压缩系统及空调系统
CN205227959U (zh) * 2015-12-14 2016-05-11 珠海格力电器股份有限公司 一种双级压缩空调系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2737265T3 (en) * 2011-07-26 2018-03-19 Carrier Corp COOLING TEMPERATURE CONTROL LOGIC

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919410A2 (en) * 1997-11-27 1999-06-02 Denso Corporation Vehicle air conditioning system with expansion valve control during high pressure cycle conditions
JP2005214442A (ja) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd 冷凍装置
CN200996753Y (zh) * 2006-12-26 2007-12-26 海信集团有限公司 带经济器的中间补气压缩机制冷系统
CN202692341U (zh) * 2012-08-02 2013-01-23 珠海格力电器股份有限公司 空调循环系统
CN103574852A (zh) * 2012-08-02 2014-02-12 珠海格力电器股份有限公司 空调循环系统以及双级压缩机补气量控制方法
CN103822418A (zh) * 2012-11-19 2014-05-28 珠海格力电器股份有限公司 准二级压缩热泵系统及其控制方法
CN105371514A (zh) * 2015-12-10 2016-03-02 珠海格力电器股份有限公司 带有中间补气的压缩系统、空调系统及其判断控制方法
CN205191969U (zh) * 2015-12-10 2016-04-27 珠海格力电器股份有限公司 带有中间补气的压缩系统及空调系统
CN105485989A (zh) * 2015-12-14 2016-04-13 珠海格力电器股份有限公司 一种双级压缩空调系统及其补气控制方法
CN205227959U (zh) * 2015-12-14 2016-05-11 珠海格力电器股份有限公司 一种双级压缩空调系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112728821A (zh) * 2019-10-14 2021-04-30 广东芬尼克兹节能设备有限公司 压缩机超低温安全运行控制方法、装置、设备及存储介质
CN112728821B (zh) * 2019-10-14 2022-07-08 广东芬尼克兹节能设备有限公司 压缩机超低温安全运行控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
US20180283755A1 (en) 2018-10-04
CA3007423C (en) 2024-01-16
CA3007423A1 (en) 2017-06-22
CN105485989A (zh) 2016-04-13
CN105485989B (zh) 2018-03-13
US10309705B2 (en) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2017101658A1 (zh) 一种双级压缩空调系统及其补气控制方法
US10480835B2 (en) Gas-replenishing and enthalpy-increasing control method, device and apparatus for two-stage compressor
CN105758065B (zh) 一种空调系统回油控制方法
CA3007722C (en) Air conditioning system, compression system with gas secondary injection and judgment and control method thereof
CN109140826B (zh) 增焓热泵、其补气量控制方法、系统、计算机设备及存储介质
CN110595020B (zh) 空调系统的补气控制方法、装置及计算机可读存储介质
CN101821507B (zh) 用于监测压缩机过热的系统和方法
CN203396155U (zh) 一种超低温空气源热泵
CN105466094A (zh) 液位检测系统、具有该系统的空调系统及液位控制方法
CN205191969U (zh) 带有中间补气的压缩系统及空调系统
CN110486917A (zh) 运行控制装置及方法、空调器和计算机可读存储介质
US20230259111A1 (en) Abnormality detection system and refrigerator, abnormality detection method, and abnormality detection program
GB2577445A (en) Air conditioning device
JP2009030840A (ja) 冷凍装置
JP6434910B2 (ja) 冷却剤系システムの効率を向上するためのシステムおよび方法
JP5931774B2 (ja) ターボ冷凍機の最大負荷率算出装置及びその方法並びに熱源システム及びその台数制御方法
CN205227959U (zh) 一种双级压缩空调系统
CN204900222U (zh) 压缩机性能检测装置、具有该装置的空调系统
JP2012172956A (ja) エンジン駆動式空調機
JP6621275B2 (ja) 冷凍装置
CN208139613U (zh) 精确控温制冷系统
CN206207811U (zh) 制冷或热泵系统及压缩冷凝机组
CN107328038A (zh) 空调器及其能效计算方法
CN203421871U (zh) 一种冷水机
WO2021208520A1 (zh) 空调器的压缩机回油控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3007423

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874715

Country of ref document: EP

Kind code of ref document: A1