WO2017101637A1 - 电机定子、永磁发电机 - Google Patents

电机定子、永磁发电机 Download PDF

Info

Publication number
WO2017101637A1
WO2017101637A1 PCT/CN2016/106432 CN2016106432W WO2017101637A1 WO 2017101637 A1 WO2017101637 A1 WO 2017101637A1 CN 2016106432 W CN2016106432 W CN 2016106432W WO 2017101637 A1 WO2017101637 A1 WO 2017101637A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
permanent magnet
stator module
module
teeth
Prior art date
Application number
PCT/CN2016/106432
Other languages
English (en)
French (fr)
Inventor
高亚州
夏静
赵祥
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Publication of WO2017101637A1 publication Critical patent/WO2017101637A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the invention relates to the field of generators, in particular to a motor stator and a permanent magnet generator.
  • stator core splitting technology can well solve the problems of high manufacturing cost and inconvenient transportation due to the increase in the size of the stator.
  • the stator core splitting technique is mainly applied to a single-layer winding structure or a concentrated winding structure in which the number of slots per phase per pole is 1.
  • the single-layer winding technology can solve the problem of high manufacturing cost and inconvenient transportation of the stator, since the stator of the single-layer winding adopts the full pitch design, it cannot effectively weaken the content of the 5th and 7th harmonic magnetic fields, which will bring about more The large torque ripple problem causes the vibration and noise of the generator to exceed the standard.
  • the shape of the coil ends in different phases of the single-layer winding is different, and coil manufacturing is difficult.
  • the concentrated winding has the advantages of a small length of the coil end and the same shape of the coil at different phases.
  • the stator adopts the semi-closed groove design principle, so that the motor cannot be off-line, and only the single-tooth off-line can be performed, and then the stator yoke is It is assembled with the stator bracket.
  • the semi-closed slot design of the stator makes the motor assembly process complicated.
  • the number of potential hidden points of the motor is increased invisibly, and the motor is reduced. Reliability.
  • Embodiments of the present invention provide a motor stator and a permanent magnet generator to solve the problem of poor performance of a permanent magnet generator.
  • an embodiment of the present invention provides a motor stator.
  • the stator stator has a number q of slots per phase per phase q, and includes two sets of Y-connected stator windings.
  • the two sets of stator windings The electrical phase difference is 30°, and the two sets of stator windings are two-layer concentrated windings.
  • the motor stator includes at least one first stator module and at least one second stator module that are independently processed.
  • a permanent magnet generator comprising a stator and a rotor, the permanent magnet generator is a double 3-phase, and the number q of each phase per pole of the permanent magnet generator is 2/5, and the stator includes Two sets of stator windings, and two sets of stator windings are separated by an electrical angle of 30°, two sets of stator windings are Y-connected, and two sets of stator windings are double-layer concentrated windings.
  • the stator of the motor of the embodiment of the invention adopts a double Y-shift 30° concentrated winding structure, and the number q of slots per phase per pole is 2/5, which can effectively reduce the stator winding and the iron of the generator when applied in the permanent magnet generator.
  • Core assembly difficulty improve stator winding coefficient and rotor permanent magnet utilization, reduce permanent magnet generator load current and torque ripple value under load conditions, reduce generator vibration and noise, and extend generator life and Improve the reliability of the generator; it can also be applied to the modular design of high-power permanent magnet generators. It comprises at least one first stator module and at least one second stator module that are independently processed, and the use of the splitting technique can reduce the processing difficulty and cost.
  • FIG. 1 is a schematic structural view of a stator splitter of a permanent magnet generator according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a first stator module of a stator of a permanent magnet generator according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a winding coil lead-out line of a first stator module of a permanent magnet generator according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a second stator module of a stator of a permanent magnet generator according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a winding coil lead-out line of a second stator module of a permanent magnet generator according to an embodiment of the present invention
  • FIG. 6 is a partial structural schematic view showing a cross section of a rotor of a permanent magnet generator according to an embodiment of the present invention
  • FIG. 7 is a schematic partial structural view showing an axial direction of a rotor of a permanent magnet generator according to an embodiment of the present invention.
  • FIG. 9 is a schematic view showing a connection of one set of stator windings of a stator of a permanent magnet generator according to an embodiment of the present invention.
  • Fig. 10 is a schematic view showing the wiring of another set of stator windings of the stator of the permanent magnet generator according to the embodiment of the present invention.
  • the stator 10 of the motor is processed by a stator splitting technique, and the number q of each phase of each stator of the motor is 2/5, and includes two sets of stator windings connected with Y, the two sets of stators. The windings are separated by an electrical angle of 30°, and each set of stator windings is a two-layer concentrated winding.
  • the motor stator 10 includes at least one first stator module 12 and at least one second stator module 13 that are independently machined.
  • the motor stator can be applied to a generator or to an electric motor, which has the advantages of low processing cost, convenient transportation, electromagnetic and mechanical properties.
  • the stator 10 is machined using a stator splitting technique.
  • the stator 10 includes at least one first stator module 12 and at least one second stator module 13 alternately disposed along its circumferential direction.
  • the stator 10 is evenly divided into a plurality of stator modules along its circumferential direction, and each stator module can be processed separately to improve the processing efficiency and reduce the size of the processing mold and the tooling, thereby reducing the processing cost, and at the same time facilitating transportation and reducing transportation costs.
  • the stator 10 can be formed by simply combining the individual stator modules in a predetermined order and position. Since the three phases of one set of stator windings are at an electrical angle of 120° in this embodiment, the first stator module 12 and the second stator module 13 are alternately arranged along the circumferential direction of the stator 10.
  • the stator slots of the stator 10 are open slots, and the stator teeth of the stator 10 are all parallel teeth, so that the wire can be smoothly processed.
  • the slot width of the stator slot may be substantially equal to the pitch of the stator teeth. Since the two sides of the winding coil 11 are parallel to each other, in order for the winding coil 11 to fit well with the stator teeth, the stator teeth are parallel teeth.
  • the pitch of each winding coil 11 of the two sets of stator windings is 1, and the number of turns of each winding coil 11 of the two sets of stator windings is equal.
  • the pitch of the winding coil 11 is 1 to make the stator teeth wider, making the winding easier and not easily breaking the winding.
  • first stator modules 12 and second stator modules 13 and their number of teeth can be determined as needed, including but not limited to the following exemplary cases:
  • the number of teeth of the first stator module 12 is six, and the number of teeth of the second stator module 13 is six;
  • first stator modules 12 There are six first stator modules 12 and six second stator modules 13.
  • the number of teeth of the first stator module 12 is 12, and the number of teeth of the second stator module 13 is 12.
  • first stator modules 12 There are four first stator modules 12 and four second stator modules 13.
  • the number of teeth of the first stator module 12 is 18, and the number of teeth of the second stator module 13 is 18.
  • first stator modules 12 There are three first stator modules 12 and three second stator modules 13.
  • the number of teeth of the first stator module 12 is 24, and the number of teeth of the second stator module 13 is 24.
  • first stator modules 12 There are two first stator modules 12 and two second stator modules 13 , the number of teeth of the first stator module 12 is 36, and the number of teeth of the second stator module 13 is 36;
  • first stator module 12 There are one first stator module 12 and one second stator module 13.
  • the number of teeth of the first stator module 12 is 72, and the number of teeth of the second stator module 13 is 72.
  • a permanent magnet generator comprising a stator and a rotor, the permanent magnet generator is a double 3-phase, and the number of slots q per phase per permanent magnet generator is 2/5, the stator
  • the two sets of stator windings are included, and the two sets of stator windings are separated by an electrical angle of 30°, and the two sets of stator windings are all Y connected, and the two sets of stator windings are double-layer concentrated windings.
  • stator slots of the stator 10 are open slots.
  • the use of double-layer concentrated windings and open slots can improve the reliability of permanent magnet generators.
  • the stator of the machine can employ the stator 10 as shown in FIG.
  • the stator 10 is machined using a stator splitting technique.
  • the stator 10 includes at least one first stator module 12 and at least one second stator module 13 alternately disposed along its circumferential direction.
  • the stator 10 is evenly divided into a plurality of stator modules in the circumferential direction, and each stator module can be processed separately to improve the processing efficiency and reduce the size of the processing mold and the tooling, thereby reducing the processing cost, and at the same time facilitating transportation and reducing transportation costs.
  • the stator 10 can be formed by simply combining the individual stator modules in a predetermined order and position.
  • the permanent magnet generator is an outer rotor and an inner stator structure.
  • the number of phases of the permanent magnet generator is double 3-phase (ie, 6-phase), the number of poles is 120 poles, the number of stator slots is 144 slots, and the difference between two adjacent stator slots of the stator 10 is 150° electrical angle.
  • the number of poles of the permanent magnet generator and the number of slots of the stator are not limited thereto. In other embodiments, the number of poles of the permanent magnet generator and the number of slots of the stator may be selected according to requirements, as long as the number of slots per phase per phase q is 2/5 can be.
  • the permanent magnet generator can also be an outer stator and an inner rotor structure.
  • each of the first stator modules has six stator teeth
  • each of the second stator modules has six stator teeth
  • the stator 10 has twelve first stator modules and twelve second stator modules 13.
  • the number of teeth of the first stator module 12 and the second stator module 13 can be determined as needed. Accordingly, the number of the first stator module 12 and the second stator module 13 included in the stator 10 can also be Determine as needed. For example, if the number of teeth of the first stator module 12 and the second stator module 13 is 18, the number of the stator 10 including the first stator module 12 and the second stator module 13 is four each. If the number of teeth of the first stator module 12 and the second stator module 13 is 12, 24, 36 or 72, respectively, the number of the first stator module 12 and the second stator module 13 included in the corresponding stator 10 is 6 respectively. , 3, 2 or 1.
  • stator slots on the stator core of the first stator module 12 are open slots.
  • the lead wires of the winding coils 11 on the first stator module 12 are AX, xa, YB, by, CZ, zc in order from one end to the other end of the first stator module 12.
  • the winding coil 11 of the A1 phase is one, that is, the winding AX wound around the first tooth 1 of the first stator module 12, wherein the leading end A is from the left side of the first tooth 1 of the first stator module 12 ( This left side is the left side in FIGS. 2 and 3, which is equally applicable to the following description of the winding coils of the other phases of the first stator module 12), the leading end X is from the first stator module 12
  • the right side of a tooth 1 (this right side is the right side in Figures 2 and 3, the same applies to the following The description of the winding coils of the other phases of the first stator module 12 is taken out;
  • the winding coil 11 of the B1 phase is one, that is, the winding YB wound around the third tooth 3 of the first stator module 12, wherein the leading end Y is taken out from the left side of the third tooth 3 of the first stator module 12.
  • the lead end B is taken out from the right side of the third tooth 3 of the first stator module 12;
  • the winding coil 11 of the C1 phase is one, that is, the winding CZ wound around the fifth tooth 5 of the first stator module 12, wherein the terminal C is taken out from the left side of the fifth tooth 5 of the first stator module 12.
  • the lead end Z is taken out from the right side of the fifth tooth 5 of the first stator module 12;
  • the A1 phase, the B1 phase and the C1 phase are components of a set of stator windings.
  • the lead end X, the lead end Y and the lead end Z are connected together, and the lead end A, the lead end B and the lead end C are led out to form the outlet end of the sleeve Y connected to the legal sub-winding (as shown in FIG. 9). ).
  • the winding coil of the A2 phase is one, that is, the winding xa wound around the second tooth 2 of the first stator module 12, wherein the leading end x is taken out from the left side of the second tooth 2 of the first stator module 12, The lead end a is taken out from the right side of the second tooth 2 of the first stator module 12;
  • the winding coil 11 of the B2 phase is one, that is, the winding by which is wound around the fourth tooth 4 of the first stator module 12, wherein the leading end b is taken out from the left side of the fourth tooth 4 of the first stator module 12. The leading end y is taken out from the right side of the fourth tooth 4 of the first stator module 12;
  • the winding coil 11 of the C2 phase is one, that is, the winding zc wound around the sixth tooth 6 of the first stator module 12, wherein the leading end z is taken out from the left side of the sixth tooth 6 of the first stator module 12.
  • the lead end c is taken out from the right side of the sixth tooth 6 of the first stator module 12;
  • the A2 phase, the B2 phase and the C2 phase are part of another set of stator windings.
  • the lead-out end x, the lead-out end y and the lead-out end z are connected together, and the lead-out end a, the lead-out end b and the lead-out end c form the outlet end of the other set of Y-connected legal sub-windings (as shown in the figure) 10)).
  • stator slots on the stator core of the second stator module 13 are open slots.
  • the lead wires of the respective winding coils 11 on the second stator module 13 are XA, ax, BY, yb, ZC, cz in order from one end to the other end of the second stator module 13.
  • the winding coil 11 of the A1 phase is one, that is, the winding XA wound around the first tooth 1' of the second stator module 13, wherein the leading end X is from the left side of the first tooth 1' of the second stator module 13 ( This left side is the left side in FIGS. 4 and 5, and the same applies to the second stator module 13 below.
  • the description of the winding coils of the other phases is taken out, and the terminal A is taken out from the right side of the first tooth 1' of the second stator module 13 (this right side is the right side in FIGS. 4 and 5, the same applies to the lower Description of the winding coils of the other phases of the second stator module 13);
  • the winding coil 11 of the B1 phase is one, that is, the winding BY which is disposed on the third tooth 3' of the second stator module 13, wherein the terminal B is taken out from the left side of the third tooth 3' of the second stator module 13.
  • the lead end Y is taken out from the right side of the third tooth 3' of the second stator module 13;
  • the winding coil 11 of the C1 phase is one, that is, the winding ZC wound around the fifth tooth 5' of the second stator module 13, wherein the leading end Z is taken out from the left side of the fifth tooth 5' of the second stator module 13.
  • the terminal C is taken out from the right side of the fifth tooth 5' of the second stator module 13;
  • the A1 phase, the B1 phase, and the C1 phase in the second stator module 13 are components of the same set of stator windings.
  • the terminal X, the terminal Y and the terminal Z are connected together, and the terminal A, the terminal B and the terminal C are led out to form an outlet end of the sleeve Y (refer to FIG. 9).
  • the winding coil 11 of the A2 phase is one, that is, the winding ax wound around the second tooth 2' of the second stator module 13, wherein the terminal a is taken out from the left side of the second tooth 2' of the second stator module 13.
  • the terminal x is taken out from the right side of the second tooth 2' of the second stator module 13;
  • the winding coil 11 of the B2 phase is one, that is, the winding yb wound around the fourth tooth 4' of the second stator module 13, wherein the leading end y is taken out from the left side of the fourth tooth 4' of the second stator module 13.
  • the lead end b is taken out from the right side of the fourth tooth 4' of the second stator module 13;
  • the winding coil 11 of the C2 phase is one, that is, the winding cz which is wound around the sixth tooth 6' of the second stator module 13, wherein the terminal c is taken out from the left side of the sixth tooth 6' of the second stator module 13.
  • the lead end z is taken out from the right side of the sixth tooth 6' of the second stator module 13;
  • the A2 phase, the B2 phase, and the C2 phase in the second stator module 13 are components of the other set of stator windings.
  • the terminal x, the terminal y and the terminal z are connected together, and the terminal a, the terminal b and the terminal c form an outlet end of the other set of Y-connected legal sub-windings (as shown in FIG. 10).
  • the stator 10 is alternately arranged in the circumferential direction of the stator 10 by at least one first stator module 12 and at least one second stator module 13.
  • the leading end A, the leading end B, the leading end C, the leading end a, the leading end b and the leading end c of each of the first stator modules 12 and each of the second stator modules 13 are in phase with other stator modules according to design requirements.
  • Lead-out connection in series and parallel Or connect directly to the end ring.
  • two sets of stator windings of the stator 10 are formed.
  • each winding coil 11 is a two-layer concentrated winding, the pitch of the winding coil 11 is 1, and the number of turns of each winding coil 11 is equal, and the stator slots are open slots, which makes the stator split production
  • the coil manufacturing process is simple, reducing the complexity of the assembly process of the generator using the concentrated winding and improving the reliability.
  • the stator teeth of the stator 10 are all parallel teeth, so that the wire can be smoothly processed. Since the two sides of the winding coil 11 are parallel to each other, in order for the winding coil 11 to fit well with the stator teeth, the stator teeth are parallel teeth.
  • the rotor 20 includes a plurality of permanent magnets 21.
  • the permanent magnet 21 adopts a radial surface mount type, thereby reducing the magnetic flux leakage coefficient of the permanent magnet and improving the utilization rate of the permanent magnet.
  • a plurality of permanent magnets 21 are sequentially fixed to the inner wall of the bracket of the rotor holder in the circumferential direction of the rotor holder.
  • the plurality of permanent magnets 21 are arranged alternately toward the magnetic poles of the stator 10, the N pole and the S pole.
  • 120 magnetic poles may be formed on the rotor 20.
  • a partial structure of the rotor is shown in FIGS. 6 and 7. In the figure, there are five magnetic poles, including two permanent magnets 21 with N poles facing the stator 10, three permanent poles 21 facing the stator 10, and the N poles facing the stator.
  • the permanent magnet 21 of the 10 and the permanent magnet 21 of the S pole facing the stator 10 are alternately fixed on the inner wall of the rotor holder in the circumferential direction of the rotor holder.
  • the permanent magnet 21 is of a diagonal design. Specifically, the first end of the first side of the permanent magnet 21 in the circumferential direction of the rotor 20 (the first end is the first end of the permanent magnet 21 along the axial direction of the rotor 20) and the second end (the second end is a permanent magnet) The second end in the axial direction of the rotor 20 has a pitch Kt in the circumferential direction of the rotor 20.
  • the oblique pole dimension (i.e., the pitch Kt) of the permanent magnet 21 is one time the stator pitch.
  • the first end (the uppermost end in FIG. 7) and the second end (the lowermost end in FIG. 7) of the permanent magnet 21 on the same side in the circumferential direction of the rotor 20 are in the circumferential direction.
  • the one side of the permanent magnet 21 facing the stator 10 in the radial direction of the rotor 20 is a curved surface, and an uneven air gap is formed between each permanent magnet 21 and the radially outer surface of the stator 10.
  • the maximum air gap length between each permanent magnet 21 and the radially outer surface of the stator 10 The ratio of D1 to the minimum air gap length D is 3:2 (ie, 1.5:1) to improve the sinusoidality of the air gap magnetic field.
  • a side surface of the permanent magnet 21 in the circumferential direction of the rotor 20 and a bottom surface of the permanent magnet 21 in the radial direction of the rotor 20 toward the rotor holder (ie, facing away from the stator 10) have a first angle a, which The first angle a ranges from 40° to 80°. Preferably, the first angle a ranges from 65° to 75°, for example, 65°, 70° or 75°. Further, in order to reduce the eddy current loss in the permanent magnet 21, the length of each permanent magnet 21 in the axial direction of the permanent magnet generator should not be excessive, and the specific size can be determined according to design requirements.
  • stator 10 and the rotor 20 described above can increase the capacity of the permanent magnet generator while reducing the cost of manufacturing and transporting the permanent magnet generator stator; ensuring the sinusoidality of the air gap magnetic field waveform of the permanent magnet generator, and the no-load counter electromotive force waveform Well, the no-load torque ripple is small; and the 5th and 7th harmonic magnetomotive forces of the stator winding are basically eliminated, the stator winding coefficient is improved, and the load current and load torque ripple value of the permanent magnet generator are reduced.
  • the excitation source of the vibration and noise of the permanent magnet generator is weakened.
  • the winding connection method with double Y shifting 30° electric angle improves the winding profit factor without increasing the main size and manufacturing cost of the coil, and can effectively weaken the 5th and 7th winding harmonic magnetomotive force. Reduce generator load current and load torque ripple, improve generator efficiency and reliability, and achieve the purpose of stator split design.
  • the permanent magnet generator of the present invention has the following effects:
  • the permanent magnet generator stator adopts a split design to reduce the cost of stator manufacturing and transportation.
  • the permanent magnet generator adopts the design principle that the number of slots per phase per phase q is 2/5, the phase number is double 3-phase, the stator slot adopts the open slot design, the stator teeth are parallel teeth, and the concentrated winding structure is adopted, and the stator winding is composed of two The windings with the electrical angle difference of 30° are formed, and the connection modes of the two sets of windings of the stator are all Y connections, so that the large-capacity permanent magnet generator with the splitting technology can effectively weaken the 5th and 7th harmonic magnetic fields and reduce Torque ripple, while reducing the difficulty of coil manufacturing. In addition, it can reduce motor assembly complexity and improve reliability. The generator manufacturing process is simple and the reliability is higher.
  • the magnetic pole of the permanent magnet generator rotor adopts the oblique pole design, and the diagonal pole size is 1 times the stator pitch, which can reduce the cogging torque and load ripple torque of the motor.
  • the permanent magnet of the permanent magnet generator rotor adopts a radial surface mount type.
  • the ratio of the maximum air gap length of the permanent magnet to the outer diameter of the stator is 1.5, which can make the air gap magnetic field distribution close to sinusoidal and improve the rotor permanent magnet. Utilization, greatly reducing the cogging torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种电机定子、永磁发电机。该电机定子(10)的每极每相槽数q为2/5,且包括两套Y接的定子绕组,该两套定子绕组间相差30°电角度,且两套定子绕组均为双层集中绕组,电机定子(10)包括独立加工的至少一个第一定子模块(12)和至少一个第二定子模块(13)。此种结构的电机定子应用至电机中可以提高电机性能。

Description

电机定子、永磁发电机 技术领域
本发明涉及发电机领域,尤其涉及一种电机定子、永磁发电机。
背景技术
随着大型永磁发电机容量的提高,发电机的体积和尺寸也相应增大,从而造成发电机定子在制造和运输方面的成本增加。定子铁芯分瓣技术能够很好地解决由于定子尺寸增大带来的制造成本高和运输不便的问题。目前,定子铁芯分瓣技术主要应用于每极每相槽数为1的单层绕组结构或集中绕组结构。
单层绕组技术虽然能解决定子制造成本高和运输不便的问题,但是由于单层绕组的定子采用整距节距设计,其无法有效地削弱5、7次谐波磁场的含量,会带来较大的转矩脉动问题,使得发电机的振动和噪声超标。
此外,单层绕组的不同相位下的线圈端部形状不同,线圈制造比较困难。集中绕组具有线圈端部长度小,不同相位下的线圈形状相同等优点。但现有技术中,采用集中绕组的永磁电机为了提高磁钢利用率,定子均采用半闭口槽设计原则,导致电机不能整体下线,只能进行单齿下线,然后再与定子轭部和定子支架装配在一起。对于大型永磁电机而言,由于其定子槽数较多,定子采用半闭口槽设计使得电机装配工艺复杂,此外由于电机装配部件较多,无形中增加了电机潜在隐患点的数量,降低了电机的可靠性。
发明内容
本发明的实施例提供一种电机定子、永磁发电机,以解决永磁发电机性能差的问题。
为达到上述目的,本发明的实施例提供一种电机定子,电机定子的每极每相槽数q为2/5,且包括两套Y接的定子绕组,该两套定子绕组 间相差30°电角度,且两套定子绕组均为双层集中绕组,电机定子包括独立加工的至少一个第一定子模块和至少一个第二定子模块。
根据本发明的另一方面,提供一种永磁发电机,包括定子和转子,永磁发电机为双3相,且永磁发电机的每极每相槽数q为2/5,定子包括两套定子绕组,且两套定子绕组间相差30°电角度,两套定子绕组均为Y接,且两套定子绕组均为双层集中绕组。
本发明的实施例的电机定子采用双Y移30°集中绕组结构,其每极每相槽数q为2/5,应用在永磁发电机中时能够在有效地降低发电机定子绕组和铁芯装配难度,提高定子绕组系数和转子永磁体的利用率,减小永磁发电机负载电流和在负载工况下的转矩脉动值,降低发电机的振动和噪声,延长发电机的寿命及提高发电机的可靠性;还可以应用于大功率永磁发电机的模块化设计。其包括独立加工的至少一个第一定子模块和至少一个第二定子模块,采用分瓣技术可以降低加工难度和成本。
附图说明
图1为本发明的实施例的永磁发电机的定子分瓣的结构示意图;
图2为本发明的实施例的永磁发电机的定子的第一定子模块的结构示意图;
图3为本发明的实施例的永磁发电机的第一定子模块的绕组线圈引出线的结构示意图;
图4为本发明的实施例的永磁发电机的定子的第二定子模块的结构示意图;
图5为本发明的实施例的永磁发电机的第二定子模块的绕组线圈引出线的结构示意图;
图6为本发明的实施例的永磁发电机的转子的横截面的局部结构示意图;
图7为本发明的实施例的永磁发电机的转子的轴向的局部结构示意图;
图8为本发明的实施例的永磁发电机的转子与定子的气隙的局部放 大图;
图9为本发明的实施例的永磁发电机的定子的其中一套定子绕组的连线示意图;
图10为本发明的实施例的永磁发电机的定子的另一套定子绕组的连线示意图。
附图标记说明:
1、第一定子模块的第一齿;1’、第二定子模块的第一齿;2、第一定子模块的第二齿;2’、第二定子模块的第二齿;3、第一定子模块的第三齿;3’、第二定子模块的第三齿;4、第一定子模块的第四齿;4’、第二定子模块的第四齿;5、第一定子模块的第五齿;5’、第二定子模块的第五齿;6、第一定子模块的第六齿;6’、第二定子模块的第六齿;10、定子;11、绕组线圈;12、第一定子模块;13、第二定子模块;20、转子;21、永磁体。
具体实施方式
下面结合附图对本发明实施例的电机定子、永磁发电机进行详细描述。
参阅图1,在本实施例中,电机定子10采用定子分瓣技术加工,该电机定子的每极每相槽数q为2/5,且包括两套Y接的定子绕组,该两套定子绕组间相差30°电角度,并且每套定子绕组均为双层集中绕组。电机定子10包括独立加工的至少一个第一定子模块12和至少一个第二定子模块13。该电机定子可以应用至发电机中,也可以应用至电动机中,其具有加工成本低、运输方便、电磁和机械性能好的优点。
为了降低定子的运输和生产成本,定子10采用定子分瓣技术加工。定子10包括沿其圆周方向交替设置的至少一个第一定子模块12和至少一个第二定子模块13。将定子10沿其圆周方向均匀分割成多个定子模块,每个定子模块单独加工可以提高加工效率且减小加工模具和工装的尺寸,进而降低加工成本,同时更加便于运输,降低运输成本。使用时只需将各个定子模块依照预定的顺序和位置组合在一起即可形成定子10。由于本实施例中,一套定子绕组的三相呈120°电角度,因此第一定子模块12和第二定子模块13沿定子10的圆周方向交替设置。
参阅图2,较佳地,为了方便下线生产,定子10的定子槽为开口槽,定子10的定子齿均为平行齿,这样可以顺利下线加工。其中,定子槽的槽口宽度可以与定子齿的齿距大致相等。由于绕组线圈11的两个边相互平行,为使绕组线圈11可以很好地与定子齿配合,因而定子齿为平行齿。
较佳地,为了提高可靠性,两套定子绕组的各个绕组线圈11节距为1,且两套定子绕组的各个绕组线圈11的匝数均相等。绕组线圈11的节距为1可以使定子齿较宽,使绕线更容易,且不易将绕组折断。
第一定子模块12和第二定子模块13的数量及其齿数可以根据需要确定,包括但不限于以下几种示例性情况:
第一定子模块12为12个,第二定子模块13为12个,则第一定子模块12的齿数为6个,第二定子模块13的齿数为6个;或者
第一定子模块12为6个,第二定子模块13为6个,则第一定子模块12的齿数为12个,第二定子模块13的齿数为12个;或者
第一定子模块12为4个,第二定子模块13为4个,则第一定子模块12的齿数为18个,第二定子模块13的齿数为18个;或者
第一定子模块12为3个,第二定子模块13为3个,则第一定子模块12的齿数为24个,第二定子模块13的齿数为24个;或者
第一定子模块12为2个,第二定子模块13为2个,则第一定子模块12的齿数为36个,第二定子模块13的齿数为36个;或者
第一定子模块12为1个,第二定子模块13为1个,则第一定子模块12的齿数为72个,第二定子模块13的齿数为72个。
在另一实施例中,还提供一种永磁发电机,其包括定子和转子,永磁发电机为双3相,且永磁发电机的每极每相槽数q为2/5,定子包括两套定子绕组,且两套定子绕组之间相差30°电角度,两套定子绕组均为Y接,且两套定子绕组均为双层集中绕组。采用分数槽且使两套定子绕组之间的电角度相差30°,可以减少定子绕组的第5次和第7次谐波磁场含量、降低脉动转矩。
较佳地,定子10的定子槽为开口槽。采用双层集中绕组和开口槽可以提高永磁发电机的可靠性。
为了降低永磁发电机的运输和生产成本,根据本实施例的永磁发电 机的定子可采用如图1所示的定子10。如图1所示,定子10采用定子分瓣技术加工。定子10包括沿其圆周方向交替设置的至少一个第一定子模块12和至少一个第二定子模块13。将定子10沿圆周方向均匀分割成多个定子模块,每个定子模块单独加工可以提高加工效率且减小加工模具和工装的尺寸,进而降低加工成本,同时更加便于运输,降低运输成本。使用时只需将各个定子模块依照预定的顺序和位置组合在一起即可形成定子10。
在本实施例中,永磁发电机为外转子,内定子结构。永磁发电机的相数为双3相(即6相),极数为120极,定子槽数为144槽,定子10的相邻两个定子槽的相差为150°电角度。当然,永磁发电机的极数和定子槽数并不限于此,在其他实施例中,永磁发电机的极数和定子槽数可以根据需要选择,只要保证每极每相槽数q为2/5即可。
当然,永磁发电机也可为外定子,内转子结构。
在本实施例中,每个第一定子模块具有6个定子齿,每个第二定子模块具有6个定子齿,定子10具有12个第一定子模块和12个第二定子模块13。当然,在其他实施例中,第一定子模块12和第二定子模块13的齿数可以根据需要确定,相应的,定子10包括的第一定子模块12和第二定子模块13的数量也可根据需要确定。例如:若第一定子模块12和第二定子模块13的齿数是18,则定子10包括第一定子模块12和第二定子模块13的数量为各4个。若第一定子模块12和第二定子模块13的齿数分别是12、24、36或72,则对应的定子10所包括的第一定子模块12和第二定子模块13的数量分别为6、3、2或1。
再如图2和图3所示,第一定子模块12的定子铁芯上的定子槽为开口槽。第一定子模块12上的绕组线圈11的引出线从第一定子模块12的一端到另一端依次是AX、xa、YB、by、CZ、zc。
也即单个第一定子模块12中:
A1相的绕组线圈11为1个,即绕设在第一定子模块12的第一齿1上的绕组AX,其中引出端A从第一定子模块12的第一齿1的左侧(此左侧为图2和图3中的左侧,这同样适用于下文中对第一定子模块12的其他相的绕组线圈的描述)引出,引出端X从第一定子模块12的第一齿1的右侧(此右侧为图2和图3中的右侧,这同样适用于下文中对 第一定子模块12的其他相的绕组线圈的描述)引出;
B1相的绕组线圈11为1个,即绕设在第一定子模块12的第三齿3上的绕组YB,其中引出端Y从第一定子模块12的第三齿3的左侧引出,引出端B从第一定子模块12的第三齿3的右侧引出;
C1相的绕组线圈11为1个,即绕设在第一定子模块12的第五齿5上的绕组CZ,其中引出端C从第一定子模块12的第五齿5的左侧引出,引出端Z从第一定子模块12的第五齿5的右侧引出;
其中A1相、B1相和C1相为一套定子绕组的组成部分。此套定子绕组中,引出端X、引出端Y和引出端Z连接在一起,引出端A、引出端B和引出端C引出形成此套Y接法定子绕组的出线端(如图9所示)。
此外,在单个第一定子模块12中:
A2相的绕组线圈为1个,即绕设在第一定子模块12的第二齿2上的绕组xa,其中引出端x从第一定子模块12的第二齿2的左侧引出,引出端a从第一定子模块12的第二齿2的右侧引出;
B2相的绕组线圈11为1个,即绕设在第一定子模块12的第四齿4上的绕组by,其中引出端b从第一定子模块12的第四齿4的左侧引出,引出端y从第一定子模块12的第四齿4的右侧引出;
C2相的绕组线圈11为1个,即绕设在第一定子模块12的第六齿6上的绕组zc,其中引出端z从第一定子模块12的第六齿6的左侧引出,引出端c从第一定子模块12的第六齿6右侧引出;
其中A2相、B2相和C2相为另一套定子绕组的组成部分。该另一套定子绕组中,引出端x、引出端y和引出端z连接在一起,引出端a、引出端b和引出端c形成该另一套Y接法定子绕组的出线端(如图10所示)。
参见图4和图5所示,第二定子模块13的定子铁芯上的定子槽为开口槽。第二定子模块13上的各绕组线圈11的引出线从第二定子模块13的一端到另一端依次是XA、ax、BY、yb、ZC、cz。
也即单个第二定子模块13中:
A1相的绕组线圈11为1个,即绕设在第二定子模块13的第一齿1’上的绕组XA,其中引出端X从第二定子模块13的第一齿1’的左侧(此左侧为图4和图5中的左侧,这同样适用于下文中对第二定子模块13 的其他相的绕组线圈的描述)引出,引出端A从第二定子模块13的第一齿1’的右侧引出(此右侧为图4和图5中的右侧,这同样适用于下文中对第二定子模块13的其他相的绕组线圈的描述);
B1相的绕组线圈11为1个,即绕设在第二定子模块13的第三齿3’上的绕组BY,其中引出端B从第二定子模块13的第三齿3’的左侧引出,引出端Y从第二定子模块13的第三齿3’的右侧引出;
C1相的绕组线圈11为1个,即绕设在第二定子模块13的第五齿5’上的绕组ZC,其中引出端Z从第二定子模块13的第五齿5’的左侧引出,引出端C从第二定子模块13的第五齿5’的右侧引出;
同样地,与第一定子模块12中的A1相、B1相和C1相类似,第二定子模块13中的A1相、B1相和C1相为同一套定子绕组的组成部分。引出端X、引出端Y和引出端Z连接在一起,引出端A、引出端B和引出端C引出形成此套Y接法定子绕组的出线端(如图9所示)。
此外,在单个第二定子模块13中:
A2相的绕组线圈11为1个,即绕设在第二定子模块13的第二齿2’上的绕组ax,其中引出端a从第二定子模块13的第二齿2’的左侧引出,引出端x从第二定子模块13的第二齿2’的右侧引出;
B2相的绕组线圈11为1个,即绕设在第二定子模块13的第四齿4’上的绕组yb,其中引出端y从第二定子模块13的第四齿4’的左侧引出,引出端b从第二定子模块13的第四齿4’的右侧引出;
C2相的绕组线圈11为1个,即绕设在第二定子模块13的第六齿6’上的绕组cz,其中引出端c从第二定子模块13的第六齿6’的左侧引出,引出端z从第二定子模块13的第六齿6’的右侧引出;
同样地,与第一定子模块12中的A2相、B2相和C2相类似,第二定子模块13中的A2相、B2相和C2相为该另一套定子绕组的组成部分。引出端x、引出端y和引出端z连接在一起,引出端a、引出端b和引出端c形成该另一套Y接法定子绕组的出线端(如图10所示)。
定子10由至少一个第一定子模块12和至少一个第二定子模块13沿定子10的圆周方向交替设置构成。每个第一定子模块12和每个第二定子模块13的引出端A、引出端B、引出端C、引出端a、引出端b和引出端c根据设计需要和其他定子模块中的同相引出端进行串并联连接 或直接与端环连接。最终形成定子10的两套定子绕组。
这两套定子绕组之间相差30°电角度。同一套定子绕组中的三相绕组互差120°电角度,由此可以确保降低第5次和第7次谐波含量,减小转矩脉动。同时每个绕组线圈11均为双层集中式绕组,绕组线圈11的节距为1,且每个绕组线圈11的匝数都相等,且定子槽为开口槽,这使得在定子分瓣生产时,线圈制造工艺简单,降低采用集中式绕组的发电机装配工艺的复杂度并提高可靠性。
在本实施例中,定子10的定子齿均为平行齿,这样可以顺利下线加工。由于绕组线圈11的两个边相互平行,为使绕组线圈11可以很好地与定子齿配合,因而定子齿为平行齿。参见图6和图7,在本实施例中,转子20包括多个永磁体21。该永磁体21采用径向表贴式,由此可以降低永磁体的漏磁系数,提高永磁体的利用率。具体地,沿转子支架的圆周方向,多个永磁体21依次间隔地固定在转子支架的支架内壁上。且多个永磁体21朝向定子10的磁极为N极与S极交替布置。根据本发明的一个实施例,可以在转子20上形成120个磁极。图6和图7中示出了转子的局部结构,图中共5个磁极,包括两个N极朝向定子10的永磁体21,三个S极朝向定子10的永磁体21,其中N极朝向定子10的永磁体21与S极朝向定子10的永磁体21沿转子支架的圆周方向交替地固定在转子支架的内壁上。
较佳地,永磁体21采用斜极设计。具体地,永磁体21在转子20的圆周方向上的第一侧的第一端(第一端为永磁体21沿转子20轴向的第一端)与第二端(第二端为永磁体21沿转子20轴向的第二端)在转子20的圆周方向上具有间距Kt。永磁体21的斜极尺寸(也即间距Kt)为一倍定子齿距。
也即,如图7所示,永磁体21的沿转子20的圆周方向的同一侧的第一端(图7中的最上端)和第二端(图7中的最下端)在圆周方向上的间距Kt的弧长在磁极圆周上所对应的机械角度为2.5°,正好等于1个定子齿距对应的机械角度360°÷144=2.5°。
如图8所示,较佳地,永磁体21的沿转子20的径向方向朝向定子10的一面为弧面,每个永磁体21与定子10的径向外表面之间形成不均匀气隙,且每个永磁体21与定子10的径向外表面之间的最大气隙长度 D1与最小气隙长度D的比值为3:2(即1.5:1),以提高气隙磁场的正弦性。
永磁体21的在转子20的圆周方向上的侧表面与永磁体21的沿转子20的径向方向朝向转子支架(即,背向定子10)的底表面之间具有第一夹角a,该第一夹角a的取值范围为40°至80°。较佳地,该第一夹角a的取值范围为65°至75°,例如,65°、70°或75°。此外,为了减小永磁体21中的涡流损耗,每块永磁体21在永磁发电机的轴向上的长度不宜过大,具体尺寸可以根据设计需求来确定。
采用上述的定子10和转子20可以使永磁发电机容量增大的同时,降低永磁发电机定子制造和运输的成本;保证永磁发电机气隙磁场波形正弦性好,空载反电动势波形好,空载转矩脉动小;且基本上消除了定子绕组的第5次和第7次谐波磁动势,提高了定子绕组系数,降低了永磁发电机负载电流和负载转矩脉动值,削弱了永磁发电机振动和噪声的激励源。
此外,由于采用了集中绕组结构,大大简化了绕组线圈制造成本;定子的开口槽的设计实现永磁发电机的绕组线圈的整体下线工艺,降低了下线难度,提高了电机铁芯和绕组的整体可靠性。采用双Y移30°电角度的绕组连接方法,在不增加线圈主要尺寸和制造成本的基础上,提高了绕组利系数,且能够有效地削弱第5次和第7次绕组谐波磁动势,降低发电机负载电流和负载转矩脉动,提高发电机效率和可靠性,而且能够实现定子分瓣设计的目的。本发明的永磁发电机具有如下效果:
永磁发电机定子采用分瓣设计,以降低定子制造和运输的成本。
永磁发电机采用每极每相槽数q为2/5的设计原则,相数为双3相,定子槽采用开口槽设计,定子齿为平行齿;并采用集中绕组结构,定子绕组由两套电角度相差30°的绕组构成,定子两套绕组的连接方式均为Y连接,使得采用分瓣技术的大容量永磁发电机能够有效地削弱第5次和第7次谐波磁场,降低转矩脉动,同时降低线圈制造难度。此外还能够降低电机装配复杂度,提高可靠性。使得发电机制造工艺简单、可靠性更高。
永磁发电机转子磁极采用斜极设计,斜极尺寸为1倍定子齿距,能够降低电机的齿槽转矩和负载脉动转矩。
永磁发电机转子永磁体采用径向表贴式,永磁体与定子外径的最大气隙长度与最小气隙长度之比为1.5,能够使气隙磁场分布接近正弦性,并提高转子永磁体利用率,大大削弱齿槽转矩。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种电机定子,其特征在于,所述电机定子的每极每相槽数q为2/5,且所述电机定子包括两套Y接的定子绕组,该两套所述定子绕组之间相差30°电角度,且两套定子绕组均为双层集中绕组,其中所述电机定子包括独立加工的至少一个第一定子模块(12)和至少一个第二定子模块(13)。
  2. 根据权利要求1所述的电机定子,其特征在于,所述定子的定子槽为开口槽。
  3. 根据权利要求1所述的电机定子,其特征在于,两套所述定子绕组的各个绕组线圈(11)的节距为1,且两套所述定子绕组的各个所述绕组线圈(11)的匝数相等。
  4. 根据权利要求1所述的电机定子,其特征在于,所述定子包括沿所述定子的圆周方向交替设置的至少一个第一定子模块(12)和至少一个第二定子模块(13)。
  5. 根据权利要求4所述的电机定子,其特征在于,
    所述第一定子模块(12)为12个,所述第二定子模块(13)为12个,则所述第一定子模块(12)的齿数为6个,所述第二定子模块(13)的齿数为6个;或
    所述第一定子模块(12)为6个,所述第二定子模块(13)为6个,则所述第一定子模块(12)的齿数为12个,所述第二定子模块(13)的齿数为12个;或
    所述第一定子模块(12)为4个,所述第二定子模块(13)为4个,则所述第一定子模块(12)的齿数为18个,所述第二定子模块(13)的齿数为18个;或
    所述第一定子模块(12)为3个,所述第二定子模块(13)为3个,则所述第一定子模块(12)的齿数为24个,所述第二定子模块(13)的齿数为24个;或
    所述第一定子模块(12)为2个,所述第二定子模块(13)为2个,则所述第一定子模块(12)的齿数为36个,所述第二定子模块(13)的齿数为36个;或
    所述第一定子模块(12)为1个,所述第二定子模块(13)为1个,则所述第一定子模块(12)的齿数为72个,所述第二定子模块(13)的齿数为72个。
  6. 一种永磁发电机,包括定子(10)和转子(20),其特征在于,所述永磁发电机为双3相,且所述永磁发电机的每极每相槽数q为2/5,所述定子(10)包括两套定子绕组,且两套所述定子绕组之间相差30°电角度,两套所述定子绕组均为Y接,且两套所述定子绕组均为双层集中绕组。
  7. 根据权利要求6所述的永磁发电机,其特征在于,所述定子(10)的定子槽为开口槽。
  8. 根据权利要求6所述的永磁发电机,其特征在于,两套所述定子绕组的各个绕组线圈(11)节距为1,且两套所述定子绕组的各个所述绕组线圈(11)的匝数相等。
  9. 根据权利要求6所述的永磁发电机,其特征在于,所述定子(10)包括沿所述定子的圆周方向交替设置的至少一个第一定子模块(12)和至少一个第二定子模块(13)。
  10. 根据权利要求9所述的永磁发电机,其特征在于,
    所述第一定子模块(12)为12个,所述第二定子模块(13)为12个,则所述第一定子模块(12)的齿数为6个,所述第二定子模块(13)的齿数为6个;或
    所述第一定子模块(12)为6个,所述第二定子模块(13)为6个,则所述第一定子模块(12)的齿数为12个,所述第二定子模块(13)的齿数为12个;或
    所述第一定子模块(12)为4个,所述第二定子模块(13)为4个,则所述第一定子模块(12)的齿数为18个,所述第二定子模块(13)的齿数为18个;或
    所述第一定子模块(12)为3个,所述第二定子模块(13)为3个,则所述第一定子模块(12)的齿数为24个,所述第二定子模块(13)的齿数为24个;或
    所述第一定子模块(12)为2个,所述第二定子模块(13)为2个,则所述第一定子模块(12)的齿数为36个,所述第二定子模块(13) 的齿数为36个;或
    所述第一定子模块(12)为1个,所述第二定子模块(13)为1个,则所述第一定子模块(12)的齿数为72个,所述第二定子模块(13)的齿数为72个。
  11. 根据权利要求9所述的永磁发电机,其特征在于,所述第一定子模块(12)上的六个绕组线圈(11)的引出线从所述第一定子模块(12)的一端到另一端依次是AX、xa、YB、by、CZ、zc。
  12. 根据权利要求9或11所述的永磁发电机,其特征在于,所述第二定子模块(13)上的六个绕组线圈(11)的引出线从所述第二定子模块(13)的一端到另一端依次是XA、ax、BY、yb、ZC、cz。
  13. 根据权利要求6所述的永磁发电机,其特征在于,所述转子(20)包括永磁体(21),所述永磁体(21)以径向表贴式设置。
  14. 根据权利要求13所述的永磁发电机,其特征在于,所述永磁体(21)与所述定子(10)的径向外表面之间的最大气隙长度(D1)与最小气隙长度(D)之比为3:2。
  15. 根据权利要求13所述的永磁发电机,其特征在于,所述转子(20)磁极为斜极,所述永磁体(21)的在所述转子(20)的圆周方向上的第一侧的第一端与第二端在所述转子(20)的圆周方向上具有间距Kt,所述第一端为所述永磁体(21)的沿所述转子(20)轴向的第一端,所述第二端为所述永磁体(21)的沿所述转子(20)轴向的第二端。
  16. 根据权利要求15所述的永磁发电机,其特征在于,所述间距Kt为1倍定子齿距。
  17. 根据权利要求13至16中任一项所述的永磁发电机,其特征在于,所述永磁体(21)的在所述转子(20)的圆周方向上的侧表面与所述永磁体(21)的底表面之间具有第一夹角a,其中所述底表面沿所述转子(20)的径向方向背向所述定子,所述第一夹角a的取值范围为40°至80°。
  18. 根据权利要求17所述的永磁发电机,其特征在于,所述第一夹角a的取值范围为65°至75°。
PCT/CN2016/106432 2015-12-14 2016-11-18 电机定子、永磁发电机 WO2017101637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510927661.3A CN105406629A (zh) 2015-12-14 2015-12-14 电机定子、永磁发电机
CN201510927661.3 2015-12-14

Publications (1)

Publication Number Publication Date
WO2017101637A1 true WO2017101637A1 (zh) 2017-06-22

Family

ID=55471945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106432 WO2017101637A1 (zh) 2015-12-14 2016-11-18 电机定子、永磁发电机

Country Status (2)

Country Link
CN (1) CN105406629A (zh)
WO (1) WO2017101637A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512333A (zh) * 2018-04-24 2018-09-07 新疆金风科技股份有限公司 模块化定子及风力发电机组
CN109962538A (zh) * 2017-12-25 2019-07-02 安徽明腾永磁机电设备有限公司 一种发电机
CN111342575A (zh) * 2020-04-14 2020-06-26 大连智鼎科技有限公司 一种永磁电机
CN111478540A (zh) * 2020-05-18 2020-07-31 沈阳工业大学 一种永磁电机集中绕组调制方法和可调制式绕组
CN112913115A (zh) * 2018-10-30 2021-06-04 西门子歌美飒可再生能源公司 具有分段定子或转子的电机
US11196314B2 (en) 2017-02-02 2021-12-07 Siemens Gamesa Renewable Energy A/S Segmented stator electrical machine
US11362550B2 (en) 2018-10-30 2022-06-14 Siemens Gamesa Renewable Energy A/S Electrical machine with hybrid tooth design

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406629A (zh) * 2015-12-14 2016-03-16 新疆金风科技股份有限公司 电机定子、永磁发电机
CN106451860B (zh) * 2016-10-31 2018-01-26 北京金风科创风电设备有限公司 永磁电机永磁磁极的监测装置及永磁磁极的压条
CN106849408B (zh) * 2017-04-20 2017-09-12 郑州轻工业学院 一种削弱电机转矩脉动的定子结构
CN109546764B (zh) * 2018-11-05 2021-03-09 东南大学 一种单元组合式可模块化电机
CN113629913A (zh) * 2020-05-08 2021-11-09 奥的斯电梯公司 磁体隔离件和电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096580A1 (en) * 2005-10-27 2007-05-03 Karl-Hermann Ketteler Stator of an electric machine
CN202111540U (zh) * 2011-06-14 2012-01-11 天津市津郊电机配件有限公司 分段式定子铁芯
CN103269137A (zh) * 2013-05-28 2013-08-28 天津市松正电动汽车技术股份有限公司 一种双绕组电机结构
CN104617689A (zh) * 2015-01-30 2015-05-13 新疆金风科技股份有限公司 风力发电机及其定子铁心以及定子的铁心模块
CN105406629A (zh) * 2015-12-14 2016-03-16 新疆金风科技股份有限公司 电机定子、永磁发电机
CN205178690U (zh) * 2015-12-14 2016-04-20 新疆金风科技股份有限公司 电机定子、永磁发电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333711A (ja) * 2004-05-19 2005-12-02 Nsk Ltd 電動パワーステアリング装置及び電動パワーステアリング用電動モータの製造方法
CN201440621U (zh) * 2009-05-08 2010-04-21 珠海格力电器股份有限公司 电机定子铁心及电机
CN202374056U (zh) * 2011-11-15 2012-08-08 信质电机股份有限公司 一种新型的定子铁芯结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096580A1 (en) * 2005-10-27 2007-05-03 Karl-Hermann Ketteler Stator of an electric machine
CN202111540U (zh) * 2011-06-14 2012-01-11 天津市津郊电机配件有限公司 分段式定子铁芯
CN103269137A (zh) * 2013-05-28 2013-08-28 天津市松正电动汽车技术股份有限公司 一种双绕组电机结构
CN104617689A (zh) * 2015-01-30 2015-05-13 新疆金风科技股份有限公司 风力发电机及其定子铁心以及定子的铁心模块
CN105406629A (zh) * 2015-12-14 2016-03-16 新疆金风科技股份有限公司 电机定子、永磁发电机
CN205178690U (zh) * 2015-12-14 2016-04-20 新疆金风科技股份有限公司 电机定子、永磁发电机

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11196314B2 (en) 2017-02-02 2021-12-07 Siemens Gamesa Renewable Energy A/S Segmented stator electrical machine
CN109962538A (zh) * 2017-12-25 2019-07-02 安徽明腾永磁机电设备有限公司 一种发电机
CN108512333A (zh) * 2018-04-24 2018-09-07 新疆金风科技股份有限公司 模块化定子及风力发电机组
CN112913115A (zh) * 2018-10-30 2021-06-04 西门子歌美飒可再生能源公司 具有分段定子或转子的电机
US11362550B2 (en) 2018-10-30 2022-06-14 Siemens Gamesa Renewable Energy A/S Electrical machine with hybrid tooth design
US11888348B2 (en) 2018-10-30 2024-01-30 Siemens Gamesa Renewable Energy A/S Electrical machine having a segmented stator or rotor
CN111342575A (zh) * 2020-04-14 2020-06-26 大连智鼎科技有限公司 一种永磁电机
CN111478540A (zh) * 2020-05-18 2020-07-31 沈阳工业大学 一种永磁电机集中绕组调制方法和可调制式绕组

Also Published As

Publication number Publication date
CN105406629A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2017101637A1 (zh) 电机定子、永磁发电机
JP4158024B2 (ja) 誘導電動機
US8154167B2 (en) Induction motor lamination design
WO2015104893A1 (ja) アキシャルギャップ型モータ
US9641036B2 (en) Rotary electric machine
US20070296299A1 (en) Electrical machine with improved windings
US20170033620A1 (en) Stator for a rotary electric machine
JP5769883B2 (ja) 回転電機の固定子および回転電機の固定子の製造方法
CN111404290B (zh) 一种集中绕组横向磁通永磁同步电机
JP5619046B2 (ja) 回転電機およびそれに用いられるステータの製造方法
CN101951099A (zh) 高性能直流输出永磁发电机系统
CN110337772B (zh) 分段定子电机
JPWO2020178953A1 (ja) 発電電動機およびその製造方法
US20120194040A1 (en) High Torque Density and Low Torque Ripple Actuator System
TWI601363B (zh) 具有八極定子的電機及該定子之繞線結構
CN105305669B (zh) 一种转子电励磁游标磁阻电机
CN101951105A (zh) 模块化永磁同步发电机
CN208299655U (zh) 双气隙电动机
CN108155739B (zh) 电机定子及电机
CN205178690U (zh) 电机定子、永磁发电机
CN101060258A (zh) 一种横磁通永磁风力发电机
JP2009065750A (ja) 回転機
JP4482918B2 (ja) リング状の固定子コイルを有する永久磁石型電動機
CN106803709A (zh) 永磁同步电机及其装配方法
US9843247B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874694

Country of ref document: EP

Kind code of ref document: A1