WO2017101560A1 - 图像传感器及具有其的终端、成像方法 - Google Patents

图像传感器及具有其的终端、成像方法 Download PDF

Info

Publication number
WO2017101560A1
WO2017101560A1 PCT/CN2016/100882 CN2016100882W WO2017101560A1 WO 2017101560 A1 WO2017101560 A1 WO 2017101560A1 CN 2016100882 W CN2016100882 W CN 2016100882W WO 2017101560 A1 WO2017101560 A1 WO 2017101560A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
image sensor
analog signal
pixel units
conversion unit
Prior art date
Application number
PCT/CN2016/100882
Other languages
English (en)
French (fr)
Inventor
李龙佳
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Publication of WO2017101560A1 publication Critical patent/WO2017101560A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Definitions

  • the present invention belongs to the field of image processing technologies, and in particular, to an image sensor, and a terminal and an imaging method having the image sensor.
  • the HDR High-Dynamic Range
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • an aspect of the present invention provides an image sensor including: a pixel unit array including a plurality of pixel units; an amplification conversion unit for converting photogenerated charges generated by the pixel units into analog signals; a filter array on the pixel unit array, the filter array includes a plurality of filters, and the filter of the same color corresponds to a plurality of pixel units; wherein the filter of the same color corresponds to a plurality of The photo-generated charges generated by the pixel units of a part of the pixel units are combined and output by an amplification conversion unit to output a first analog signal, and the photo-generated charges generated by the remaining pixel units of the plurality of pixel units corresponding to the filter of the same color After accumulating, an amplification conversion unit is shared to output a second analog signal, and the first analog signal and the second analog signal are different.
  • the filter based on the same color corresponds to a plurality of pixel units, and the plurality of pixel units corresponding to the filter of the same color are converted by the amplification conversion unit to output two different analog signals for implementing the HDR function.
  • the hardware foundation is provided. Compared with the software in the related art to implement the HDR function, the image sensor realizes the HDR function through hardware improvement and improves the HDR effect.
  • the image sensor comprises a CMOS image sensor.
  • the filter array comprises a Bayer array.
  • the image sensor further comprises: an analog to digital conversion unit (ADC, Analog-to-Digital) Converter) for converting the first analog signal and the second analog signal into a first digital signal and a second digital signal, respectively.
  • ADC Analog-to-Digital
  • a plurality of pixel cells corresponding to filters of the same color are located in different rows of the pixel cell array.
  • the filters of the same color correspond to 2 rows and 2 columns totaling 4 pixel units, and the photo-generated charges generated by the 2 pixel units in the first row and one pixel unit located in the second row are generated.
  • the photo-generated charge is converted into the first analog signal by the amplification conversion unit, and the photo-generated charge generated by the other pixel unit in the second row is converted into the second analog signal by the amplification conversion unit, the first
  • the analog signal is converted to the first digital signal by an analog to digital conversion unit
  • the second analog signal is converted to the second digital signal by another analog to digital conversion unit.
  • the image sensor further includes: a micromirror array disposed on the filter array, each micromirror in the micromirror array corresponding to one of the pixel units.
  • the image sensor further includes a control module and an image processing module, wherein the control module is configured to control a plurality of pixel units corresponding to the filter of the same color to be simultaneously exposed in a row, the image processing The module synthesizes the output of the analog to digital conversion unit to obtain a high dynamic range image.
  • another aspect of the present invention provides a terminal including the image sensor of the above aspect.
  • the HDR function can be realized based on the hardware structure of the image sensor, and the HDR image effect is improved.
  • the imaging terminal comprises a cell phone.
  • the imaging terminal further includes a central processing unit and a display device coupled to the image sensor, the central processor for controlling the display device to display a high dynamic range image of the image sensor output.
  • the terminal includes a central processor coupled to the image sensor and an external memory, the central processor for controlling the external memory to store a high dynamic range image of the image sensor output.
  • a further aspect of the present invention provides an imaging method based on the above image sensor, wherein a plurality of pixel units corresponding to the filter of the same color constitute a merged pixel, and the image processing method includes: reading the pixel An output of the cell array; and summing the outputs of the pixel cells of the same merged pixel to obtain pixel values of the merged pixels to generate a merged image.
  • the imaging method can obtain images with higher signal to noise ratio, brightness and sharpness, and less noise under low illumination.
  • the step of reading further comprises converting an analog signal output produced by the photosensitive pixel to a digital signal output.
  • a mobile terminal which includes a housing, a processor, a memory, a circuit board, and a power supply circuit, wherein the circuit board is disposed in the housing Inside the space, the processor and the memory are disposed on the circuit board; the power circuit is configured to supply power to each circuit or device of the mobile terminal; and the memory is used to store executable program code
  • the processor runs a program corresponding to the executable program code by reading executable program code stored in the memory for performing the imaging method of the above-described embodiments of the present invention.
  • the mobile terminal of the embodiment of the present invention by reading the output of the pixel unit array, adding the output of the pixel unit of the same merged pixel to obtain the pixel value of the merged pixel to generate a merged image, due to the noise of the merged pixel It is smaller than the sum of the noises of the pixels before the combination, and can obtain images with high signal-to-noise ratio, high brightness and sharpness, and less noise under low illumination.
  • a further aspect of the present invention provides a computer readable storage medium having instructions stored therein, when the processor of the mobile terminal executes the instructions, the mobile terminal performs the implementation as described above The imaging method described in the example.
  • FIG. 1 is a schematic diagram of an image sensor in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an image sensor in accordance with another embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the distribution of a filter according to an embodiment of the present invention.
  • FIG. 4 is a circuit diagram of an image sensor in accordance with an embodiment of the present invention.
  • FIG. 5 is a block diagram of an image sensor in accordance with yet another embodiment of the present invention.
  • Figure 6 is a block diagram of a terminal in accordance with one embodiment of the present invention.
  • FIG. 7 is a block diagram of a terminal in accordance with another embodiment of the present invention.
  • FIG. 8 is a block diagram of a terminal in accordance with still another embodiment of the present invention.
  • FIG. 9 is a flow chart of an imaging method according to an embodiment of the present invention.
  • Figure 10 is a flow chart of an imaging method in accordance with one embodiment of the present invention.
  • FIG. 11 is a flow chart of an imaging method in accordance with another embodiment of the present invention.
  • FIG. 1 is a block diagram of an image sensor in accordance with one embodiment of the present invention.
  • the image sensor 100 includes a pixel unit array 10, an amplification conversion unit 20, and a filter array 30.
  • the pixel unit array 10 includes a plurality of pixel units 11; the amplification conversion unit 20 is configured to convert the photo-generated charges generated by the pixel units 11 into analog signals; the filter array 30 is disposed on the pixel unit array 10, and each of the filter arrays 30 includes The filter 31 and the filter 31 of the same color correspond to the plurality of pixel units 11.
  • the photo-generated charge generated by the pixel unit 11 of the plurality of pixel units corresponding to the filter 31 of the same color is added to share an amplification conversion unit 20 to output a first analog signal, and the filter 31 of the same color corresponds to the filter 31.
  • the photo-generated charge generated by the pixel unit 11 remaining in the plurality of pixel units is accumulated and then shared by an amplification conversion unit 20 to output a second analog signal, the first analog signal and the second analog signal being different.
  • the filter 31 based on the same color corresponds to the plurality of pixel units 11, and the plurality of pixel units 11 corresponding to the filters 31 of the same color are converted by the amplification conversion unit 20 to output two different simulations.
  • the signal provides a hardware foundation for implementing the HDR function. Compared with the software in the related art to implement the HDR function, the image sensor 100 implements the HDR function through hardware improvement to improve the HDR effect.
  • the image sensor 100 further includes an analog-to-digital conversion unit 40 that converts the first analog signal A1 and the second analog signal A2 into a first digital signal D1 and a second digital signal D2, respectively.
  • Image processing provides data.
  • image sensor 100 includes a CMOS image sensor.
  • Filter array 30 includes a Bayer array.
  • a plurality of pixel units 11 corresponding to the filters 31 of the same color are located in different rows of the pixel unit array 10.
  • the filter 31 of the same color corresponds to 2 rows and 2 columns totaling 4 pixel units 11, the photo-generated charges generated by the 2 pixel units 11 in the first row and the photo-generated charges generated by one pixel unit located in the second row
  • the photo-generated charge generated by the other pixel unit 11 located in the second row is converted into the second analog signal A2 by the amplification conversion unit 20, and the first analog signal A1 is passed through
  • the analog to digital conversion unit 40 converts to the first digital signal D1, and the second analog signal A2 is converted to the second digital signal D2 by another analog to digital conversion unit 40.
  • the filter array 30 adopts a Bayer array color mode in which the same characters represent filters of the same color (for example, Gr, Gb, R, B).
  • the number after the character indicates the row number of the pixel unit corresponding to the filter of the same color, and the filters of different colors allow only the light of the corresponding wavelength to pass.
  • FIG. 4 is an equivalent circuit diagram of an image sensor according to an embodiment of the present invention, as shown in FIG. 4, including: a first pixel unit PD1 and a first transfer switch TG1, a second pixel unit PD2, and a second transfer switch TG2.
  • the pixel unit for example, the photodiode, receives the light transmitted by the filter 31 to generate a charge, and when the transfer switch is turned on, the charge generated by the corresponding pixel unit 11 is output, and then coupled and converted into a voltage signal by the amplification conversion unit 20,
  • the analog to digital conversion unit 40 converts to a digital signal output, providing a data basis for image processing.
  • the first pixel unit PD1 is connected to the first end of the first transfer switch TG1
  • the second pixel unit PD2 is connected to the first end of the second transfer switch TG2
  • the third pixel unit PD3 and the third transfer switch TG3 are Connected at one end
  • the fourth pixel unit PD4 is connected to the first end of the fourth transfer switch TG4, the control end of the first transfer switch TG1, the control end of the second transfer switch TG2, the control end of the third transfer switch TG3, and the fourth
  • the control terminals of the transmission switch TG4 are all connected with the control module, and the control module controls the switches of the four transmission switches. When the transmission switch is turned on, the corresponding pixel unit transmits a signal.
  • the first pixel unit PD1, the second pixel unit PD2, the third pixel unit PD3, and the fourth pixel unit PD4 are pixel units respectively adjacent to filters of the same color, for example, as shown in FIG.
  • the pixel unit is a pixel unit corresponding to a filter in which the same character is identified, that is, four adjacent pixel units receive light of the same color, and simply, four pixel units form a large pixel (pixel). .
  • the first end of the first amplification conversion unit SF1 is respectively connected to the second end of the first transmission switch TG1, the second end of the second transmission switch TG2, and the second end of the third transmission switch TG2, respectively, of the first amplification conversion unit SF1
  • the second end is connected to the preset power supply Vdd
  • the third end of the first amplification conversion unit SF1 is connected to the input end of the first analog-to-digital conversion unit 41;
  • the first end of the second amplification conversion unit SF2 is connected to the second end of the fourth transmission switch TG4, and the second amplification conversion
  • the second end of the unit SF2 is connected to the preset power supply
  • the third end of the second amplification conversion unit SF2 is connected to the input end of the second analog-to-digital conversion unit 42
  • the output end of the second analog-to-digital conversion unit 42 is connected to the first modulus.
  • the output of the conversion unit 41 is connected.
  • the control module of the image sensor 100 is configured to control a plurality of pixel units 11 corresponding to the filter 31 of the same color to be simultaneously exposed in a row, and the image processing module synthesizes the output of the analog-to-digital conversion unit 40 to obtain a high dynamic range image.
  • Three pixel units (such as pixel units corresponding to the filters Gr1, Gr2, and Gr4), that is, the first pixel unit PD1 and the second pixel unit PD2 and the third pixel unit PD3 share an amplification conversion unit, that is, the first amplification conversion
  • the charge generated by the cell SF1, the first pixel unit PD1, the second pixel unit PD2, and the third pixel unit PD3 is collected, and the collected charge is converted into a voltage signal by the first amplification conversion unit SF1, and further converted by the first analog to digital
  • the unit 41 converts to a digital signal output, and at this time, the output value of the first analog-to-digital conversion unit 41 is ADC1; in addition, one pixel unit of each filter 31 of the 2i+2th row in the pixel unit array 10 (
  • the filter 31 of the same color is exemplified by four pixel units adjacent to two rows and two columns.
  • the output of unit 11 is saturated.
  • the amplification conversion unit 20 can function as a summary coupling of the charge outputted by the pixel unit 11. It can be understood that if the output of the first amplification conversion unit SF1 is S1, the second amplification conversion unit is provided.
  • the HDR function can be implemented by performing a synthesis process.
  • the image sensor 100 further includes a micromirror array 50 disposed on the filter array 30.
  • Each of the micromirrors 51 in the micromirror array 50 corresponds to one pixel unit 11, including formation, size, and position.
  • the micromirror 51 can collect light to the photosensitive portion of the pixel unit 11, and enhance the received light intensity of the pixel unit 11, thereby improving the image quality.
  • FIG. 6 is a block diagram of a terminal including the image sensor 100 of the above aspect, as shown in FIG. 6, in accordance with an embodiment of the present invention.
  • the terminal 1000 may include a mobile phone.
  • the terminal 1000 further includes a central processing unit 200 connected to the image sensor 100 and a display device 300 for controlling the display device 300 to display a high dynamic range output by the image sensor 100. image.
  • the image taken by the terminal 1000 can be displayed on the display device 300 for viewing by the user.
  • the display device 300 includes an LED display or the like.
  • the terminal 1000 includes a central processing unit 200 and an external memory 400 connected to the image sensor 100, and the central processing unit 200 is configured to control the external memory 400 to store the high dynamic range image output by the image sensor 100. .
  • the external memory 400 includes an SM (Smart Media) card, a CF (Compact Flash) card, and the like.
  • SM Smart Media
  • CF Compact Flash
  • the terminal 1000 can implement the HDR function based on the hardware structure of the image sensor 100 by using the image sensor 100 to enhance the HDR image effect.
  • FIG. 9 is a flow chart of an imaging method according to an embodiment of the present invention. As shown in FIG. 9, the imaging method includes the following steps:
  • each filter of the same color of the image sensor corresponds to 2*2 pixel units
  • the image sensor includes a register
  • step S2 further includes:
  • step S2 further includes:
  • the image processing module which is generally a digital signal processing chip, can directly process the output of the image sensor, and secondly, compared with some schemes that directly process the output of the analog signal format of the image sensor through the circuit, The information of the image is well preserved.
  • the imaging method of the embodiment of the present invention can generate a combined image of 4 M pixels (merging 2*2 pixels) or 16 M pixels. The original image (ie not merged).
  • a further embodiment of the present invention further provides a mobile terminal, comprising: a housing, a processor, a memory, a circuit board, and a power supply circuit, wherein the circuit board is disposed inside a space enclosed by the housing, The processor and the memory are disposed on the circuit board; the power supply circuit is configured to supply power to each circuit or device of the mobile terminal; the memory is configured to store executable program code; the processor A program corresponding to the executable program code is executed by reading executable program code stored in the memory for performing the imaging method of the above aspect.
  • the embodiment of the present invention further provides a computer readable storage medium having instructions stored therein, when the processor of the mobile terminal executes the instruction, the mobile terminal performs the embodiment of the present invention as shown in FIG. Imaging method.
  • a "computer-readable medium” can be any system, apparatus, or apparatus that can contain, store, communicate, propagate, or transport a Or device used by the device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明公开了一种图像传感器,该图像传感器包括像素单元阵列、增幅转换单元、滤光阵列,像素单元阵列包括多个像素单元;增幅转换单元,用于将像素单元产生的光生电荷转换为模拟信号;滤光阵列设置于所述像素单元阵列上,滤光阵列包括多个滤光片,同一颜色的滤光片对应于多个像素单元;同一颜色的滤光片所对应的多个像素单元中一部分的像素单元产生的光生电荷累加后共用一个增幅转换单元输出第一模拟信号,同一颜色的滤光片所对应的多个像素单元中剩余部分的像素单元产生的光生电荷累加后共用一个增幅转换单元输出第二模拟信号,第一模拟信号和第二模拟信号不相同。该图像传感器基于对硬件改进实现HDR功能。本发明还公开一种终端以及成像方法。

Description

图像传感器及具有其的终端、成像方法
相关申请的交叉引用
本申请基于申请号为201510960708.6,申请日为2015年12月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明属于图像处理技术领域,尤其涉及一种图像传感器,以及一种具有该图像传感器的终端、成像方法。
背景技术
随着手机的普及,用手机拍照成为越来越多人的喜好。但是随着对拍照要求的提高,手机的图像处理的HDR(High-Dynamic Range,高动态范围)功能成为用户的需求,但是,目前,实现HDR功能,一般通过软件实现,效果不明显。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为了解决上述问题,本发明一方面提出一种图像传感器,该图像传感器包括:像素单元阵列,包括多个像素单元;增幅转换单元,用于将像素单元产生的光生电荷转换为模拟信号;设置于所述像素单元阵列上的滤光阵列,滤光阵列包括多个滤光片,同一颜色的所述滤光片对应于多个像素单元;其中,所述同一颜色的滤光片所对应的多个像素单元中一部分的像素单元产生的光生电荷累加后共用一个增幅转换单元输出第一模拟信号,所述同一颜色的滤光片所对应的多个像素单元中剩余部分的像素单元产生的光生电荷累加后共用一个增幅转换单元输出第二模拟信号,所述第一模拟信号和所述第二模拟信号不相同。
本发明的图像传感器,基于同一颜色的滤光片对应多个像素单元,且同一颜色的滤光片对应的多个像素单元经增幅转换单元转换后输出两个不同的模拟信号,为实现HDR功能提供硬件基础,相较于相关技术中的软件实现HDR功能,该图像传感器通过硬件改进实现HDR功能,提升HDR效果。
在至少一个实施例中,所述图像传感器包括CMOS图像传感器。
在至少一个实施例中,所述滤光阵列包括拜耳阵列。
在至少一个实施例中,该图像传感器还包括:模数转换单元(ADC,Analog-to-Digital  Converter),用于将第一模拟信号和第二模拟信号分别转换为第一数字信号和第二数字信号。
在至少一个实施例中,同一颜色的滤光片所对应的多个像素单元位于像素单元阵列的不同行。
在至少一个实施例中,所述同一颜色的滤光片对应2行2列共计4个像素单元,位于第一行中的2个像素单元产生的光生电荷和位于第二行的一个像素单元产生的光生电荷累加后经过增幅转换单元转换为所述第一模拟信号,位于第二行中的另1个像素单元产生的光生电荷经过增幅转换单元转换为所述第二模拟信号,所述第一模拟信号通过一个模数转换单元转换为所述第一数字信号,所述第二模拟信号通过另一个模数转换单元转换为所述第二数字信号。
在至少一个实施例中,上述图像传感器还包括:设置在所述滤光阵列上的微镜阵列,所述微镜阵列中的每个微镜与一个所述像素单元对应。
在至少一个实施例中,上述图像传感器还包括控制模块和图像处理模块,所述控制模块用于控制所述同一颜色的滤光片所对应的多个像素单元按照行同时曝光,所述图像处理模块对所述模数转换单元的输出进行合成以获得高动态范围图像。
为了解决上述问题,本发明另一方面提出一种终端,该终端包括上述方面所述的图像传感器。
本发明的终端,通过采用所述的图像传感器,基于图像传感器的硬件结构可以实现HDR功能,提升HDR图像效果。
在至少一个实施例中,所述成像终端包括手机。
在至少一个实施例中,所述成像终端还包括与所述图像传感器连接的中央处理器及显示装置,所述中央处理器用于控制所述显示装置显示所述图像传感器输出的高动态范围图像。
在至少一个实施例中,所述终端包括与所述图像传感器连接的中央处理器及外存储器,所述中央处理器用于控制所述外存储器存储所述图像传感器输出的高动态范围图像。
本发明再一方面提出一种基于上述的图像传感器的成像方法,其中,所述同一颜色的滤光片所对应的多个像素单元构成合并像素,所述图像处理方法包括:读取所述像素单元阵列的输出;以及将同一所述合并像素的所述像素单元的输出相加以得到所述合并像素的像素值从而生成合并图像。
由于合并像素的噪声小于合并之前各像素噪声之和,采用此成像方法能在低照度下得到信噪比、亮度和清晰度较高,噪点较少的图像。克服了现有某些成像方法的缺点。
在至少一个实施例中,所述成像装置包括寄存器,每个所述滤光片覆盖2*2个所述感光 像素;所述读出步骤进一步包括:采集第k行及第k+1行的所述像素单元的输出并存入所述寄存器,其中k=2n-1,n为自然数,k+1小于等于所述像素单元的总行数;及从所述寄存器中提取所述第k行及第k+1行的所述像素单元的输出,将同一所述合并像素的所述像素单元的输出相加以得到所述合并像素的像素值。
在至少一个实施例中,所述读出步骤进一步包括:将所述感光像素产生的模拟信号输出转换为数字信号输出。
为了解决上述问题,本发明又一方面实施例提出了一种移动终端,该移动终端包括壳体、处理器、存储器、电路板和电源电路,其中,所述电路板安置在所述壳体围成的空间内部,所述处理器和所述存储器设置在所述电路板上;所述电源电路,用于为所述移动终端的各个电路或器件供电;所述存储器用于存储可执行程序代码;所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行本发明上述实施例所述的成像方法。
本发明实施例的移动终端,通过读取所述像素单元阵列的输出,将同一合并像素的所述像素单元的输出相加以得到所述合并像素的像素值从而生成合并图像,由于合并像素的噪声小于合并之前各像素噪声之和,能在低照度下得到信噪比、亮度和清晰度较高,噪点较少的图像。
为了解决上述问题,本发明又一方面实施例提出了一种计算机可读存储介质,具有存储于其中的指令,当移动终端的处理器执行所述指令时,所述移动终端执行如上述方面实施例所述的成像方法。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是根据本发明的一个实施例的图像传感器的示意图;
图2是根据本发明的另一个实施例的图像传感器的示意图;
图3是根据本发明的一个具体实施例的滤波片的分布示意图;
图4是根据本发明的一个实施例的图像传感器的电路图;
图5是根据本发明的又一个实施例的图像传感器的框图;
图6是根据本发明的一个实施例的终端的框图;
图7是根据本发明的另一个实施例的终端的框图;
图8是根据本发明的再一个实施例的终端的框图;
图9是根据本发明实施例的成像方法的流程图,
图10是根据本发明一个实施例的成像方法的流程图;以及
图11是根据本发明的另一个实施例的成像方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例的图像传感器及具有该图像传感器的终端。
首先,对本发明实施例的图像传感器进行说明。图1是根据本发明的一个实施例的图像传感器的框图。
如图1所示,该图像传感器100包括像素单元阵列10、增幅转换单元20和滤光阵列30。
像素单元阵列10包括多个像素单元11;增幅转换单元20用于将像素单元11产生的光生电荷转换为模拟信号;滤光阵列30设置于像素单元阵列10上,每个滤光阵列30包括多个滤光片31,同一颜色的滤光片31对应于多个像素单元11。
其中,同一颜色的滤光片31所对应的多个像素单元中一部分的像素单元11产生的光生电荷累加后共用一个增幅转换单元20输出第一模拟信号,同一颜色的滤光片31所对应的多个像素单元中剩余部分的像素单元11产生的光生电荷累加后共用一个增幅转换单元20输出第二模拟信号,第一模拟信号和所述第二模拟信号不相同。
本发明的图像传感器100,基于同一颜色的滤光片31对应多个像素单元11,且同一颜色的滤光片31对应的多个像素单元11经增幅转换单元20转换后输出两个不同的模拟信号,为实现HDR功能提供硬件基础,相较于相关技术中的软件实现HDR功能,该图像传感器100通过硬件改进实现HDR功能,提升HDR效果。
如图2所示,图像传感器100还包括模数转换单元40,模数转换单元40将第一模拟信号A1和第二模拟信号A2分别转换为第一数字信号D1和第二数字信号D2,为图像处理提供数据。
在本发明的一些实施例中,图像传感器100包括CMOS图像传感器。滤光阵列30包括拜耳阵列。
在本发明的一些实施例中,同一颜色的滤光片31所对应的多个像素单元11位于像素单元阵列10的不同行。
例如,同一颜色的滤光片31对应2行2列共计4个像素单元11,位于第一行中的2个像素单元11产生的光生电荷和位于第二行的一个像素单元产生的光生电荷累加后经过增幅转换单元20转换为第一模拟信号A1,位于第二行中的另1个像素单元11产生的光生电荷经过增幅转换单元20转换为第二模拟信号A2,第一模拟信号A1通过一个模数转换单元40转换为第一数字信号D1,第二模拟信号A2通过另一个模数转换单元40转换为第二数字信号D2。
参照图3所示,为根据本发明的一个实施例的滤光片分布示意图,滤波阵列30采用Bayer array颜色模式,其中,相同字符表示相同颜色的滤光片(例如Gr,Gb,R,B),字符后的数字表示相同颜色的滤波片对应的像素单元的排号,不同颜色的滤光片仅允许对应波长的光透过。
图4是根据本发明的一个实施例的图像传感器的等效电路图,如图4所示,包括:第一像素单元PD1和第一传输开关TG1、第二像素单元PD2和第二传输开关TG2、第三像素单元PD3和第三传输开关TG3、第四像素单元PD4和第四传输开关TG4、第一增幅转换单元SF1和第一模数转换单元41、第二增幅转换单元SF2和第二模数转换单元42。其中,像素单元,例如光电二极管,接收滤光片31透过的光而生成电荷,传输开关开启则对应的像素单元11生成的电荷输出,进而在增幅转换单元20耦合并转换为电压信号,通过模数转换单元40转换为数字信号输出,为图像处理提供数据基础。
具体地,第一像素单元PD1与第一传输开关TG1的第一端连接,第二像素单元PD2与第二传输开关TG2的第一端连接,第三像素单元PD3与第三传输开关TG3的第一端连接,第四像素单元PD4与第四传输开关TG4的第一端连接,第一传输开关TG1的控制端、第二传输开关TG2的控制端、第三传输开关TG3的控制端和第四传输开关TG4的控制端均与控制模块连接,控制模块控制四个传输开关的开关,在传输开关开启时,对应的像素单元传出信号。其中,第一像素单元PD1、第二像素单元PD2、第三像素单元PD3和第四像素单元PD4为分别相邻的对应相同颜色的滤光片的像素单元,例如图4中所示,四个像素单元为对应其中标识字符相同的滤光片对应的像素单元,也就是四个分别相邻的像素单元接收相同颜色的光,简单地说,即四个像素单元构成一个大的像素(pixel)。
第一增幅转换单元SF1的第一端分别与第一传输开关TG1的第二端、第二传输开关TG2的第二端和第三传输开关TG2的第二端连接,第一增幅转换单元SF1的第二端与预设电源Vdd连接,第一增幅转换单元SF1的第三端与第一模数转换单元41的输入端连接;
第二增幅转换单元SF2的第一端与第四传输开关TG4的第二端连接,第二增幅转换 单元SF2的第二端与预设电源连接,第二增幅转换单元SF2的第三端与第二模数转换单元42的输入端连接,第二模数转换单元42的输出端与第一模数转换单元41的输出端连接。
图像传感器100的控制模块用于控制同一颜色的滤光片31所对应的多个像素单元11按照行同时曝光,图像处理模块对模数转换单元40的输出进行合成以获得高动态范围图像。
作为一个示例,像素单元阵列10内第2i+1(i=0,1,2,3,4…)行和邻近第2i+1行的第2i+2行的每个滤光片31对应的三个像素单元(比如滤光片Gr1,Gr2、Gr4所对应的像素单元),即第一像素单元PD1和第二像素单元PD2和第三像素单元PD3,共用一个增幅转换单元即第一增幅转换单元SF1,第一像素单元PD1、第二像素单元PD2和第三像素单元PD3产生的电荷汇集,由第一增幅转换单元SF1将汇集后的电荷转换为电压信号,并进一步通过第一模数转换单元41转换为数字信号输出,设此时第一模数转换单元41输出值为ADC1;另外,像素单元阵列10内第2i+2行的每个滤光片31的一个像素单元(比如滤光片Gr3所对应的像素单元),即第四像素单元PD4通过第二增幅转换单元SF2进行电荷转换,最后通过第二模数转换单元42转换为数字信号输出,设此时第二模数转换单元42输出值为ADC2。
具体地,以同一颜色的滤光片31对应2行2列相邻的4个像素单元为例,基于上述的结构,在进行HDR控制时,控制模块可以控制相邻两行的相同颜色像素同时曝光,例如,第2i+1与2i+2行同时曝光,其中,i=0,1,2,3.....,并控制曝光时间,避免共用第一增幅转换单元SF1的三个像素单元11的输出饱和。在本发明的实施例中,增幅转换单元20可以对像素单元11输出的电荷起到汇总耦合的作用,可以理解的是,如果设第一增幅转换单元SF1输出为S1,设第二增幅转换单元SF2输出为S2,则满足S1=3S2,所以每四个相同颜色的像素单元同时输出一个高ADC值和一个低ADC值,进而在图像传感器100的ISP(Image Signal Processor,即图像处理器)端进行合成处理,可以实现HDR功能。
如图5所示,图像传感器100还包括设置在滤光阵列30上的微镜阵列50,微镜阵列50中的每个微镜51与一个像素单元11对应,包括形成、大小、位置对应。微镜51能将光聚集到像素单元11的感光部分,提升像素单元11的受光强度,从而改善成像画质。
基于上述方面实施例的图像传感器,下面参照附图描述根据本发明另一方面实施例提出的终端。
图6是根据本发明的一个实施例的终端的框图,如图6所示,该终端1000包括上述方面的图像传感器100。具体地,终端1000可以包括手机。
在一些实施例中,如图7所示,终端1000还包括与图像传感器100连接的中央处理器200及显示装置300,中央处理器200用于控制显示装置300显示图像传感器100输出的高动态范围图像。这样,终端1000拍摄的图像可以显示于显示装置300以供用户查看。显示装置300包括LED显示器等。
在一些实施例中,如图8所示,终端1000包括与图像传感器100连接的中央处理器200及外存储器400,中央处理器200用于控制外存储器400存储图像传感器100输出的高动态范围图像。
这样,生成的图像可以被存储,方便以后查看、使用或转移。外存储器400包括SM(Smart Media)卡及CF(Compact Flash)卡等。
该终端1000,通过采用所述的图像传感器100,基于图像传感器100的硬件结构可以实现HDR功能,提升HDR图像效果。
基于上述方面实施例的图像传感器,下面参照附图描述根据本发明实施例提出的成像方法,其中,同一颜色的滤光片所对应的多个像素单元构成合并像素。
图9是根据本发明实施例的成像方法的流程图,如图9所示,该成像方法包括以下步骤:
S1,读取像素单元阵列的输出。
S2,将同一合并像素的像素单元的输出相加以得到合并像素的像素值从而生成合并图像。
本发明实施方式的成像方法,假定原有每个像素单元的输出为S,噪声为N,合并像素包括M个像素单元,则合并像素的像素值为n*m*S,而合并像素的噪声为
Figure PCTCN2016100882-appb-000001
在n=2,m=2的情况下,合成像素的噪声即为n*m*N/2左右。因此合并图像的亮度在低亮度环境下得到提升,而且性噪比提高。
请参阅图10,在某些实施方式中,图像传感器的每个同一颜色的滤光片对应2*2个像素单元,图像传感器包括寄存器,步骤S2进一步包括:
S201,采集第k行及第k+1行的像素单元的输出并存入寄存器,其中k=2n-1,n为自然数,k+1小于等于像素单元的总行数;
S202,从寄存器中提取第k行及第k+1行的像素单元的输出,将同一合并像素的像素单元的输出相加以得到合并像素的像素值。
如此,可以充分利用寄存器来实现像素单元的输出读出、缓存及合并的过程。
请参图11,在某些实施方式中,步骤S2进一步包括:
S301,将像素单元产生的模拟信号输出转换为数字信号输出;及
S302,将同一合并像素的像素单元的数字信号输出相加以得到合并像素的像素值。
如此,一来,一般为数字信号处理芯片的图像处理模块可以直接处理图像传感器的输出,二来,相对于某些通过电路直接对图像传感器的模拟信号格式的输出进行处理的方案来说,较好地保留了图像的信息,例如,对于16M像素的图像传感器来说,本发明实施方式的成像方法既可以成生4M像素(将2*2的像素合并)的合并图像,也可以生成16M像素(即不合并)的原图像。
本发明再一方面实施例还提出一种移动终端,该移动终端包括壳体、处理器、存储器、电路板和电源电路,其中,所述电路板安置在所述壳体围成的空间内部,所述处理器和所述存储器设置在所述电路板上;所述电源电路,用于为所述移动终端的各个电路或器件供电;所述存储器用于存储可执行程序代码;所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行上述方面的成像方法。
本发明实施例还提供了一种计算机可读存储介质,具有存储于其中的指令,当移动终端的处理器执行所述指令时,所述移动终端执行如参考图9所示的本发明实施例的成像方法。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置 或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
需要说明的是,在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (18)

  1. 一种图像传感器,其特征在于,包括:
    像素单元阵列,包括多个像素单元;
    增幅转换单元,用于将像素单元产生的光生电荷转换为模拟信号;及
    设置于所述像素单元阵列上的滤光阵列,滤光阵列包括多个滤光片,同一颜色的所述滤光片对应于多个像素单元;
    其中,所述同一颜色的滤光片所对应的多个像素单元中一部分的像素单元产生的光生电荷累加后共用一个增幅转换单元输出第一模拟信号,所述同一颜色的滤光片所对应的多个像素单元中剩余部分的像素单元产生的光生电荷累加后共用一个增幅转换单元输出第二模拟信号,所述第一模拟信号和所述第二模拟信号不相同。
  2. 如权利要求1所述的图像传感器,其特征在于,所述图像传感器包括CMOS图像传感器。
  3. 如权利要求1或2所述的图像传感器,其特征在于,所述滤光阵列包括拜耳阵列。
  4. 如权利要求1至3任一项所述的图像传感器,其特征在于,还包括:
    模数转换单元,用于将所述第一模拟信号和所述第二模拟信号分别转换为第一数字信号和第二数字信号。
  5. 如权利要求1至4任一项所述的图像传感器,其特征在于,所述同一颜色的滤光片所对应的多个像素单元位于像素单元阵列的不同行。
  6. 如权利要求1至5中任一项所述的图像传感器,其特征在于,所述同一颜色的滤光片对应2行2列共计4个像素单元,位于第一行中的2个像素单元产生的光生电荷和位于第二行的一个像素单元产生的光生电荷累加后经过增幅转换单元转换为所述第一模拟信号,位于第二行中的另1个像素单元产生的光生电荷经过增幅转换单元转换为所述第二模拟信号,所述第一模拟信号通过一个模数转换单元转换为所述第一数字信号,所述第二模拟信号通过另一个模数转换单元转换为所述第二数字信号。
  7. 如权利要求1至6任一项所述的图像传感器,其特征在于,还包括:
    设置在所述滤光阵列上的微镜阵列,所述微镜阵列中的每个微镜与一个所述像素单元对应。
  8. 如权利要求1至7中任一项所述的图像传感器,其特征在于,还包括:
    控制模块和图像处理模块,所述控制模块用于控制所述同一颜色的滤光片所对应的多个像素单元按照行同时曝光,所述图像处理模块对所述模数转换单元的输出进行合成以获得高 动态范围图像。
  9. 一种终端,其特征在于,包括如权利要求1-6任一项所述的图像传感器。
  10. 如权利要求9所述的终端,其特征在于,所述终端包括手机。
  11. 如权利要求9或10所述的终端,其特征在于,所述终端还包括与所述图像传感器连接的中央处理器及显示装置,所述中央处理器用于控制所述显示装置显示所述图像传感器输出的高动态范围图像。
  12. 如权利要求9所述的终端,其特征在于,所述终端包括与所述图像传感器连接的中央处理器及外存储器,所述中央处理器用于控制所述外存储器存储所述图像传感器输出的高动态范围图像。
  13. 一种基于如权利要求1所述的图像传感器的成像方法,其特征在于,所述同一颜色的滤光片所对应的多个像素单元构成合并像素,所述图像处理方法包括:
    读取所述像素单元阵列的输出;以及
    将同一所述合并像素的所述像素单元的输出相加以得到所述合并像素的像素值从而生成合并图像。
  14. 如权利要求13所述的成像方法,其特征在于,每个所述同一颜色的滤光片对应2*2个所述像素单元。
  15. 如权利要求13或14所述的成像方法,其特征在于,所述图像传感器包括寄存器,所述读出步骤进一步包括:
    采集第k行及第k+1行的所述像素单元的输出并存入所述寄存器,其中k=2n-1,n为自然数,k+1小于等于所述像素单元的总行数;及
    从所述寄存器中提取所述第k行及第k+1行的所述像素单元的输出,将同一所述合并像素的所述像素单元的输出相加以得到所述合并像素的像素值。
  16. 如权利要求13至15中任一项所述的成像方法,其特征在于,所述读出步骤进一步包括:
    将所述像素单元产生的模拟信号输出转换为数字信号输出。
  17. 一种移动终端,包括壳体、处理器、存储器、电路板和电源电路,其中,所述电路板安置在所述壳体围成的空间内部,所述处理器和所述存储器设置在所述电路板上;所述电源电路,用于为所述移动终端的各个电路或器件供电;所述存储器用于存储可执行程序代码;所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行如权利要求13至16中任一项所述的成像方法。
  18. 一种计算机可读存储介质,具有存储于其中的指令,当移动终端的处理器执行所述 指令时,所述移动终端执行如权利要求13至16中任一项所述的成像方法。
PCT/CN2016/100882 2015-12-18 2016-09-29 图像传感器及具有其的终端、成像方法 WO2017101560A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510960708.6 2015-12-18
CN201510960708.6A CN105611198B (zh) 2015-12-18 2015-12-18 图像传感器及具有其的终端

Publications (1)

Publication Number Publication Date
WO2017101560A1 true WO2017101560A1 (zh) 2017-06-22

Family

ID=55990707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100882 WO2017101560A1 (zh) 2015-12-18 2016-09-29 图像传感器及具有其的终端、成像方法

Country Status (3)

Country Link
CN (1) CN105611198B (zh)
TW (1) TWI615028B (zh)
WO (1) WO2017101560A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143514A (zh) * 2021-11-30 2022-03-04 维沃移动通信有限公司 图像传感器、摄像模组和电子设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10313612B2 (en) 2015-12-18 2019-06-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Image sensor, control method, and electronic device
CN105611198B (zh) * 2015-12-18 2017-06-27 广东欧珀移动通信有限公司 图像传感器及具有其的终端
CN105516695B (zh) * 2015-12-18 2018-06-15 广东欧珀移动通信有限公司 图像传感器和具有其的终端
CN107734231B (zh) * 2017-11-07 2019-12-27 西北核技术研究所 一种基于滤光的成像系统动态范围扩展方法
CN107786818B (zh) * 2017-11-07 2020-06-26 西北核技术研究所 一种基于多色滤光的瞬态成像动态范围扩展方法
CN113132692B (zh) * 2019-12-30 2022-12-06 Oppo广东移动通信有限公司 图像传感器、成像装置、电子设备、图像处理系统及信号处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298800A (ja) * 1998-04-10 1999-10-29 Nikon Corp 撮像素子およびこれを用いた撮像装置
CN103531603A (zh) * 2013-10-30 2014-01-22 上海集成电路研发中心有限公司 一种cmos图像传感器
CN103780850A (zh) * 2014-01-30 2014-05-07 上海集成电路研发中心有限公司 像素分裂与合并图像传感器及其信号传输方法
CN104780321A (zh) * 2014-01-10 2015-07-15 全视科技有限公司 获取图像数据的方法、供使用的hdr成像系统及像素
CN105611198A (zh) * 2015-12-18 2016-05-25 广东欧珀移动通信有限公司 图像传感器及具有其的终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057493B (zh) * 2004-11-02 2011-05-25 松下电器产业株式会社 图像传感器
JP2012105225A (ja) * 2010-11-12 2012-05-31 Sony Corp 画像処理装置、撮像装置、および画像処理方法、並びにプログラム
JP2013021660A (ja) * 2011-07-14 2013-01-31 Sony Corp 画像処理装置、撮像装置、および画像処理方法、並びにプログラム
JP2013066140A (ja) * 2011-08-31 2013-04-11 Sony Corp 撮像装置、および信号処理方法、並びにプログラム
TWI504251B (zh) * 2012-07-04 2015-10-11 Vivotek Inc 攝像裝置在對焦時的提示聲音之處理方法
CN105144699B (zh) * 2013-03-15 2019-03-15 拉姆伯斯公司 阈值监测的有条件重置的图像传感器及其操作方法
CN103686007B (zh) * 2013-12-31 2018-11-09 上海集成电路研发中心有限公司 单次拍摄生成高动态范围图像的图像传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298800A (ja) * 1998-04-10 1999-10-29 Nikon Corp 撮像素子およびこれを用いた撮像装置
CN103531603A (zh) * 2013-10-30 2014-01-22 上海集成电路研发中心有限公司 一种cmos图像传感器
CN104780321A (zh) * 2014-01-10 2015-07-15 全视科技有限公司 获取图像数据的方法、供使用的hdr成像系统及像素
CN103780850A (zh) * 2014-01-30 2014-05-07 上海集成电路研发中心有限公司 像素分裂与合并图像传感器及其信号传输方法
CN105611198A (zh) * 2015-12-18 2016-05-25 广东欧珀移动通信有限公司 图像传感器及具有其的终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143514A (zh) * 2021-11-30 2022-03-04 维沃移动通信有限公司 图像传感器、摄像模组和电子设备

Also Published As

Publication number Publication date
TW201724843A (zh) 2017-07-01
TWI615028B (zh) 2018-02-11
CN105611198A (zh) 2016-05-25
CN105611198B (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2017101560A1 (zh) 图像传感器及具有其的终端、成像方法
TWI615029B (zh) 圖像感測器及終端與成像方法
JP6676704B2 (ja) 画像センサの結像方法、結像装置及び電子装置
WO2017101451A1 (zh) 成像方法、成像装置及电子装置
AU2016369789B2 (en) Image sensor, imaging device, mobile terminal and imaging method
CN206993236U (zh) 一种图像传感器及系统
WO2017101561A1 (zh) 高动态范围图像的生成方法、拍照装置和终端、成像方法
WO2017101864A1 (zh) 图像传感器、控制方法和电子装置
US8780238B2 (en) Systems and methods for binning pixels
TW200529658A (en) Method of controlling semiconductor device, signal processing method, semiconductor device, and electronic apparatus
CN105144699A (zh) 阈值监测的有条件重置的图像传感器
TWI615034B (zh) 圖像感測器及成像終端與成像方法
CN106454141A (zh) 实施堆叠芯片高动态范围图像传感器的方法及系统
US9843746B2 (en) Image sensor combining high dynamic range techniques
WO2017101562A1 (zh) 图像传感器及具有其的终端、成像方法
US10051216B2 (en) Imaging apparatus and imaging method thereof using correlated double sampling
CN109951656A (zh) 一种图像传感器和电子设备
CN104967796B (zh) 超分辨率智能图像传感器芯片
KR20220166013A (ko) 이미지 센싱 장치 및 그 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874620

Country of ref document: EP

Kind code of ref document: A1