WO2017101549A1 - Biosensor circuit temperature drift compensation system and method - Google Patents

Biosensor circuit temperature drift compensation system and method Download PDF

Info

Publication number
WO2017101549A1
WO2017101549A1 PCT/CN2016/100010 CN2016100010W WO2017101549A1 WO 2017101549 A1 WO2017101549 A1 WO 2017101549A1 CN 2016100010 W CN2016100010 W CN 2016100010W WO 2017101549 A1 WO2017101549 A1 WO 2017101549A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosensor
circuit
resistor
digital potentiometer
digital
Prior art date
Application number
PCT/CN2016/100010
Other languages
French (fr)
Chinese (zh)
Inventor
张贯京
葛新科
陈兴明
高伟明
Original Assignee
深圳市贝沃德克生物技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市贝沃德克生物技术研究院有限公司 filed Critical 深圳市贝沃德克生物技术研究院有限公司
Publication of WO2017101549A1 publication Critical patent/WO2017101549A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure

Definitions

  • the present invention relates to the field of biosensors, and in particular, to a circuit temperature drift compensation system and method for a biosensor.
  • the temperature drift of a circuit generally means that the change of the ambient temperature will cause a change in the transistor parameters in the circuit, which will cause instability of the static operating point, make the dynamic parameters of the circuit unstable, and even make the circuit unable to work normally.
  • the current amplification factor of the transistor increases, and the Q point rises, and vice versa. This extra added current is caused by temperature changes, called temperature drift.
  • a directly coupled amplifier circuit even if the input is short-circuited, the output is measured with a sensitive DC meter, and there is a slow-changing output voltage. This phenomenon in which the input voltage is zero and the output voltage is not zero and changes slowly is called zero-point drift.
  • any parameter variation such as fluctuations in the power supply voltage, aging of the components, and changes in the parameters of the semiconductor components with temperature, will cause a drift in the output voltage.
  • the change in the parameters of the semiconductor device caused by the temperature change is the main cause of the zero drift phenomenon, so the zero drift is also called the temperature drift.
  • biosensors eg, blood glucose, body temperature, heart rate sensors, etc. in the vital sign monitoring sensor
  • require very high sensitivity and if the temperature drift of the circuit in such a biosensor significantly affects the resistance value in the circuit.
  • the change causes the output voltage to be unstable, which affects the sensitivity of the biosensor.
  • the voltage of the output of the biosensor circuit is often zeroed by a temperature compensation circuit including a sliding resistor.
  • the debugger typically manually adjusts the output voltage of the biosensor circuit by manually adjusting the sliding resistor in the temperature compensation circuit. This manual adjustment circuit temperature drift is difficult to zero the accuracy of the output voltage of the biosensor circuit, and the efficiency is low, so that the adverse effect of the circuit temperature drift on the sensitivity of the biosensor cannot be completely eliminated.
  • the main object of the present invention is to provide a circuit temperature drift compensation system and method for a biosensor, which aims to solve the problem that the temperature drift of the manual adjustment circuit is not high and the efficiency is low.
  • the present invention provides a circuit temperature drift compensation system for a biosensor, which is applied to a single chip microcomputer, wherein the single chip is connected with a first digital potentiometer, a second digital potentiometer, and a digital switch.
  • the two output terminals of the digital sensor are respectively connected to the two input ends of the biosensor circuit, and the output end of the biosensor circuit is connected to the single chip microcomputer, wherein the circuit temperature drift compensation system comprises:
  • a control module for generating a shut-off command to control the digital switch to make the voltage difference at the input end of the biosensor circuit is zero;
  • a potentiometer control module configured to generate a first control command to control a contact slip of the first balance resistor in the first digital potentiometer to change a resistance value of the first digital potentiometer, and generate a second control command to control the second The contact of the second balancing resistor in the digital potentiometer slides to change the resistance value of the second digital potentiometer;
  • a voltage compensation module configured to dynamically adjust an output voltage of the biosensor circuit according to a resistance value of the first digital potentiometer and a resistance value of the second digital potentiometer, and to detect an output voltage of the biosensor circuit Whether it is zero;
  • the potentiometer control module is further configured to control a second balance of the first balance resistor of the first digital potentiometer and the second digital potentiometer The contacts of the resistor stop sliding and fix the position.
  • the two input terminals of the digital switch are respectively connected to two output ends of the measuring component, and the switch control module is further configured to: when the output voltage of the biosensor circuit is zero, A closing command is generated to control the digital closing to cause the potential measuring signal generated by the measuring component to pass through the biosensor circuit and to detect the accuracy of the potential measuring signal.
  • the first digital potentiometer comprises a first voltage stabilizing resistor
  • the second digital potentiometer comprises a second voltage stabilizing resistor
  • the first voltage stabilizing resistor and the second voltage stabilizing resistor are used for The contacts of the first balance resistor and the second balance resistor slide ⁇ to maintain a stable voltage of the first digital potentiometer and the second digital potentiometer.
  • one end of the first balancing resistor and the first voltage stabilizing resistor is connected to a positive input terminal of the biosensor circuit, and the other end of the first balancing resistor and the first voltage stabilizing resistor is grounded, the second Balance resistance One end of the second voltage stabilizing resistor is connected to the negative input terminal of the biosensor circuit, and the other end of the second balancing resistor and the second voltage stabilizing resistor is connected to the output end of the biosensor circuit.
  • control terminals of the first balance resistor, the second balance resistor and the digital switch are respectively connected to the control end of the single chip microcomputer.
  • the present invention further provides a circuit temperature drift compensation method for a biosensor, which is applied to a single chip microcomputer, wherein the single chip is connected with a first digital potentiometer, a second digital potentiometer, and a digital port.
  • the two outputs of the digital switch are respectively connected to two inputs of the biosensor circuit, and the output of the biosensor circuit is connected to the single chip, and the circuit temperature drift compensation method comprises the steps of:
  • the two input terminals of the digital switch are respectively connected to two output ends of the measuring component, and the circuit temperature drift compensation method further comprises the steps of:
  • the first digital potentiometer comprises a first voltage stabilizing resistor
  • the second digital potentiometer comprises a second voltage stabilizing resistor
  • the first voltage stabilizing resistor and the second voltage stabilizing resistor are used for The first balance resistor and the first The contacts of the two balancing resistors slide ⁇ to maintain a stable voltage of the first digital potentiometer and the second digital potentiometer.
  • one end of the first balancing resistor and the first voltage stabilizing resistor is connected to a positive input terminal of the biosensor circuit, and the other end of the first balancing resistor and the first voltage stabilizing resistor is grounded, the second One end of the balancing resistor and the second voltage stabilizing resistor is connected to the negative input terminal of the biosensor circuit, and the other end of the second balancing resistor and the second voltage stabilizing resistor is connected to the output end of the biosensor circuit.
  • control terminals of the first balance resistor, the second balance resistor and the digital switch are respectively connected to the control end of the single chip microcomputer.
  • the circuit temperature drift compensation system and method of the biosensor of the present invention shifts the biosensor due to circuit temperature by controlling the resistance values of the first digital potentiometer and the second digital potentiometer.
  • the voltage generated by the phenomenon is automatically zeroed, and the resistance values of the first digital potentiometer and the second digital potentiometer of the biosensor output voltage are adjusted to zero, thereby stabilizing the electrical characteristics of the biosensor output and improving the voltage zeroing.
  • the high accuracy and work efficiency eliminates the adverse effects of circuit temperature drift on the sensitivity of the biosensor.
  • FIG. 1 is a schematic diagram of an application environment of a preferred embodiment of a circuit temperature drift compensation system of a biosensor of the present invention
  • FIG. 2 is a schematic diagram of functional modules of a preferred embodiment of a circuit temperature drift compensation system of the biosensor of the present invention
  • FIG. 3 is a flow chart of a preferred embodiment of a circuit temperature drift compensation method for a biosensor of the present invention.
  • the present invention provides a circuit temperature drift compensation system for a biosensor, which can automatically zero the voltage generated by the biosensor due to the temperature drift of the circuit, thereby reducing the biological temperature drift caused by the circuit.
  • the sensitivity of the sensor affects the accuracy of the circuit temperature drift compensation and the efficiency of the work.
  • FIG. 1 is a schematic diagram of an application environment of a preferred embodiment of a circuit temperature drift compensation system of a biosensor of the present invention.
  • the circuit temperature drift compensation system 10 is applied to the single chip microcomputer 1, and the single chip microcomputer 1 is connected with a first digital potentiometer 2, a second digital potentiometer 3, and a digital switch 4.
  • the two outputs of the digital switch 4 are connected to two inputs of a biosensor circuit 5, the output of which is connected to the microcontroller 1.
  • the two inputs of the digital switch 4 are connected to the two outputs of the measuring element 6, respectively.
  • the first digital potentiometer 2 includes a first balancing resistor DR1 and a first voltage stabilizing resistor R1
  • the second digital potentiometer 3 includes a second balancing resistor DR2 and a second stable Voltage resistor R2.
  • One ends of the first balancing resistor DR1 and the first voltage stabilizing resistor R1 are connected to the positive input terminal of the biosensor circuit 5, and the other ends of the first balancing resistor DR1 and the first voltage stabilizing resistor R1 are grounded.
  • One ends of the second balancing resistor DR2 and the second voltage stabilizing resistor R2 are connected to the negative input terminal of the biosensor circuit 5, and the other ends of the second balancing resistor DR2 and the second voltage stabilizing resistor R2 are connected to the biosensor circuit 5.
  • the first balancing resistor DR1 and the second balancing resistor DR2 are respectively connected to the control terminals of the single chip microcomputer 1.
  • the first voltage regulator is used in this embodiment.
  • the resistor R1 and the second voltage stabilizing resistor R2 ensure the stability of the output voltages of the first digital potentiometer 2 and the second digital potentiometer 3.
  • the first voltage stabilizing resistor R1 and the second voltage stabilizing resistor R2 are used to keep the first digital potentiometer 2 and the second digital potentiometer 3 output when the contacts of the first balancing resistor DR1 and the second balancing resistor DR2 slide. The voltage is stabilized, thereby protecting the biosensor circuit 5 from damage due to excessive voltage.
  • the digital switch 4 includes a first switch K1 and a second switch K2, the output of the first switch K1 and the output of the second switch 2 are respectively connected to the two inputs of the biosensor circuit 5 End, the input of the first switch K1 The inputs of the second switch K2 are connected to the two outputs of the measuring element 6, respectively.
  • the microcontroller 1 controls the first switch K1 and the second switch 2 to open and close by controlling the control terminal of the digital switch 4.
  • the control terminal b of the digital switch 4 is connected to the control terminal of the microcontroller 1.
  • the circuit temperature drift compensation system 10 is installed and operated in the single chip microcomputer 1.
  • the single chip microcomputer 1 further includes, but is not limited to, the microcontroller 11 and the memory 12.
  • the circuit temperature drift compensation system 10 includes, but is not limited to, a control module 101, a potentiometer control module 102, and a voltage compensation module 103.
  • the module referred to in the present invention refers to a series of computer program instruction segments which can be executed by the microcontroller 11 of the microcontroller 1 and which can perform a fixed function, which are stored in the memory 12 of the microcontroller 1.
  • the microcontroller 11 can be a microprocessor, a micro control unit (MCU), a signal processing chip, or a signal control unit having a signal control function.
  • the memory 12 can be a read only memory ROM, an electrically erasable memory EEPROM or a flash memory FLASH or the like.
  • the switch control module 101 is configured to generate a switch off command to control the digital switch 4 to make the input terminal voltage difference of the biosensor circuit 5 zero.
  • the potentiometer control module 102 is configured to generate a first control command to control the contact sliding of the first balancing resistor DR1 of the first digital potentiometer 2 to change the resistance value of the first digital potentiometer, and generate a second control The command controls the contact of the second balancing resistor DR2 in the second digital potentiometer 3 to change the resistance value of the second digital potentiometer.
  • the voltage compensation module 103 is configured to dynamically adjust the output voltage of the biosensor circuit 5 according to the resistance value of the first digital potentiometer 2 and the resistance value of the second digital potentiometer 3, and to detect the biosensor Is the output voltage of circuit 5 zero?
  • the potentiometer control module 102 is further configured to control the contacts of the first balancing resistor DR1 of the first digital potentiometer 2 and the second digital potentiometer 3 Second balance resistance
  • the contacts of the DR2 stop sliding and fix the position.
  • the switching control module 101 is further configured to generate a closing command to control the closing of the digital switch 4 to pass the potential measuring signal generated by the measuring component 6
  • the biosensor circuit 5 detects the accuracy of the potential measurement signal.
  • the present invention also provides a circuit temperature drift compensation method for a biosensor
  • the voltage generated by the biosensor due to the circuit temperature drift phenomenon can be automatically zeroed, thereby reducing the sensitivity of the biosensor due to the temperature drift of the circuit, improving the accuracy of the circuit temperature drift compensation, and improving The working efficiency of circuit zeroing.
  • FIG. 3 is a flow chart of a preferred embodiment of a circuit temperature drift compensation method for a biosensor of the present invention.
  • the circuit temperature drift compensation method is applied to the single chip microcomputer as shown in FIG.
  • the method includes the following steps S31 to S37.
  • Step S31 the switch control module 101 generates a switch off command to control the digital switch 4 to make the voltage difference at the input end of the biosensor circuit 5 zero.
  • Step S32 the potentiometer control module 102 generates a first control command to control the contact sliding of the first balancing resistor DR1 of the first digital potentiometer 2 to change the resistance value of the first digital potentiometer.
  • Step S33 the potentiometer control module 102 generates a second control command to control the contact sliding of the second balancing resistor DR2 of the second digital potentiometer 3 to change the resistance value of the second digital potentiometer.
  • Step S34 the voltage compensation module 103 dynamically adjusts the output terminal voltage of the biosensor circuit 5 according to the resistance value of the first digital potentiometer 2 and the resistance value of the second digital potentiometer 3.
  • Step S35 the voltage compensation module 103 detects whether the output voltage of the biosensor circuit 5 is zero.
  • step S36 If the output voltage of the biosensor circuit 5 is zero, the flow proceeds to step S36; if the output voltage of the biosensor circuit 5 is not zero, the flow returns to step S32.
  • Step S36 the potentiometer control module 102 generates a stop command to control the contacts of the first balance resistor DR1 of the first digital potentiometer 2 and the contacts of the second balance resistor DR2 of the second digital potentiometer 3 to stop simultaneously. Slide and fix the position.
  • Step S37 the switch control module 101 generates a closing command to control the digital switch 4 to close, so that the potential measurement signal generated by the measuring component 6 passes through the biosensor circuit 5, and detects the accuracy of the potential measurement signal. .
  • a fixed inter-turn interval value (for example, 2 minutes) may be set in the single chip microcomputer 1, and the inter-turn interval value is stored in the memory 12 of the single chip microcomputer 1, when Interval interval value to The microcontroller 11 of the single chip microcomputer 1 automatically performs step S31 to step S37 periodically, that is, performs periodic circuit temperature drift compensation automatically and performs voltage zeroing operation to solve the temperature change and the fixed temperature biosensor. Circuit temperature drift caused by slowly changing circuit 5.
  • the present invention provides a circuit temperature drift compensation system for a biosensor, which can automatically zero the voltage generated by the biosensor due to the temperature drift of the circuit, thereby reducing the biological temperature drift caused by the circuit.
  • the sensitivity of the sensor affects the accuracy of the circuit temperature drift compensation and the efficiency of the work.
  • FIG. 1 is a schematic diagram of an application environment of a preferred embodiment of a circuit temperature drift compensation system of a biosensor of the present invention.
  • the circuit temperature drift compensation system 10 is applied to the single chip microcomputer 1, and the single chip microcomputer 1 is connected with a first digital potentiometer 2, a second digital potentiometer 3, and a digital switch 4.
  • the two outputs of the digital switch 4 are connected to two inputs of a biosensor circuit 5, the output of which is connected to the microcontroller 1.
  • the two inputs of the digital switch 4 are connected to the two outputs of the measuring element 6, respectively.
  • the first digital potentiometer 2 includes a first balancing resistor DR1 and a first voltage stabilizing resistor R1
  • the second digital potentiometer 3 includes a second balancing resistor DR2 and a second stable Voltage resistor R2.
  • One ends of the first balance resistor DR1 and the first voltage stabilizing resistor R1 are connected to the positive input terminal of the biosensor circuit 5, and the other ends of the first balance resistor DR1 and the first voltage stabilizing resistor R1 are grounded.
  • One ends of the second balancing resistor DR2 and the second voltage stabilizing resistor R2 are connected to the negative input terminal of the biosensor circuit 5, and the other ends of the second balancing resistor DR2 and the second voltage stabilizing resistor R2 are connected to the biosensor circuit 5.
  • First flat The balance resistor DR1 and the second balance resistor DR2 are respectively connected to the control terminal of the single chip microcomputer 1.
  • the first voltage regulator is used in this embodiment.
  • the resistor R1 and the second voltage stabilizing resistor R2 ensure the stability of the output voltages of the first digital potentiometer 2 and the second digital potentiometer 3.
  • the first voltage stabilizing resistor R1 and the second voltage stabilizing resistor R2 are used to keep the first digital potentiometer 2 and the second digital potentiometer 3 output when the contacts of the first balancing resistor DR1 and the second balancing resistor DR2 slide. The voltage is stabilized, thereby protecting the biosensor circuit 5 from damage due to excessive voltage.
  • the digital switch 4 includes a first switch K1 and a second switch K2, the output of the first switch K1 and the output of the second switch 2 are respectively connected to the two inputs of the biosensor circuit 5 The input of the first switch K1 and the input of the second switch 2 are respectively connected to the two outputs of the measuring element 6.
  • the microcontroller 1 controls the first switch K1 and the second switch ⁇ 2 to open and close by controlling the control terminal of the digital switch 4.
  • the control terminal b of the digital switch 4 is connected to the control terminal of the microcontroller 1.
  • the circuit temperature drift compensation system 10 is installed and operated in the single chip microcomputer 1.
  • the single chip microcomputer 1 further includes, but is not limited to, the microcontroller 11 and the memory 12.
  • the circuit temperature drift compensation system 10 includes, but is not limited to, a control module 101, a potentiometer control module 102, and a voltage compensation module 103.
  • the module referred to in the present invention refers to a series of computer program instruction segments which can be executed by the microcontroller 11 of the microcontroller 1 and which can perform a fixed function, which are stored in the memory 12 of the microcontroller 1.
  • the microcontroller 11 can be a microprocessor, a micro control unit (MCU), a signal processing chip, or a signal control unit having a signal control function.
  • the memory 12 can be a read only memory ROM, an electrically erasable memory EEPROM or a flash memory FLASH or the like.
  • the switch control module 101 is configured to generate a switch off command to control the digital switch 4 to cause the voltage difference at the input end of the biosensor circuit 5 to be zero.
  • the potentiometer control module 102 is configured to generate a first control command to control the contact sliding of the first balancing resistor DR1 in the first digital potentiometer 2 to change the resistance value of the first digital potentiometer, and generate a second control Commanding to control the sliding of the contacts of the second balancing resistor DR2 in the second digital potentiometer 3 to change the second digital potentiometer resistance.
  • the voltage compensation module 103 is configured to dynamically adjust the output voltage of the biosensor circuit 5 according to the resistance value of the first digital potentiometer 2 and the resistance value of the second digital potentiometer 3, and to detect the biosensor Is the output voltage of circuit 5 zero?
  • the potentiometer control module 102 is further configured to control the contacts of the first balance resistor DR1 of the first digital potentiometer 2 and the second digital potentiometer 3 Second balance resistance
  • the contacts of the DR2 stop sliding and fix the position.
  • the switching control module 101 is further configured to generate a closing command to control the closing of the digital switch 4 to pass the potential measuring signal generated by the measuring component 6
  • the biosensor circuit 5 detects the accuracy of the potential measurement signal.
  • the present invention also provides a circuit temperature drift compensation method for a biosensor
  • the voltage generated by the biosensor due to the circuit temperature drift phenomenon can be automatically zeroed, thereby reducing the sensitivity of the biosensor due to the temperature drift of the circuit, improving the accuracy of the circuit temperature drift compensation, and improving The working efficiency of circuit zeroing.
  • FIG. 3 is a flow chart of a preferred embodiment of the circuit temperature drift compensation method of the biosensor of the present invention.
  • the circuit temperature drift compensation method is applied to the single chip microcomputer as shown in FIG.
  • the method includes the following steps S31 to S37.
  • Step S31 the switch control module 101 generates a switch off command to control the digital switch 4 to make the voltage difference at the input end of the biosensor circuit 5 zero.
  • Step S32 the potentiometer control module 102 generates a first control command to control the contact sliding of the first balancing resistor DR1 of the first digital potentiometer 2 to change the resistance value of the first digital potentiometer.
  • Step S33 the potentiometer control module 102 generates a second control command to control the contact sliding of the second balancing resistor DR2 of the second digital potentiometer 3 to change the resistance value of the second digital potentiometer.
  • Step S34 the voltage compensation module 103 dynamically adjusts the output voltage of the biosensor circuit 5 according to the resistance value of the first digital potentiometer 2 and the resistance value of the second digital potentiometer 3.
  • Step S35 the voltage compensation module 103 detects whether the voltage of the output end of the biosensor circuit 5 is zero.
  • step S36 If the output voltage of the biosensor circuit 5 is zero, the flow proceeds to step S36; The output voltage of the circuit 5 is not zero, and the flow returns to step S32.
  • Step S36 the potentiometer control module 102 generates a stop command to control the contacts of the first balance resistor DR1 of the first digital potentiometer 2 and the contacts of the second balance resistor DR2 of the second digital potentiometer 3 to stop simultaneously. Slide and fix the position.
  • Step S37 the switch control module 101 generates a closing command to control the digital switch 4 to close, so that the potential measurement signal generated by the measuring component 6 passes through the biosensor circuit 5, and detects the accuracy of the potential measurement signal.
  • a fixed inter-turn interval value (for example, 2 minutes) may be set in the single chip microcomputer 1, and the inter-turn interval value is stored in the memory 12 of the single chip microcomputer 1, when When the interval value reaches ⁇ , the microcontroller 11 of the single chip microcomputer 1 automatically performs step S31 to step S37 periodically, that is, performs periodic circuit temperature drift compensation automatically and performs voltage zeroing operation to solve the temperature change and The temperature drift of the circuit caused by the slow change of the biosensor circuit 5 at a fixed temperature.
  • the circuit temperature drift compensation system and method of the biosensor of the present invention shifts the biosensor due to circuit temperature by controlling the resistance values of the first digital potentiometer and the second digital potentiometer
  • the voltage generated by the phenomenon is automatically zeroed, and the resistance values of the first digital potentiometer and the second digital potentiometer of the biosensor output voltage are adjusted to zero, thereby stabilizing the electrical characteristics of the biosensor output and improving the voltage zeroing.
  • the high accuracy and work efficiency eliminates the adverse effects of circuit temperature drift on the sensitivity of the biosensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analogue/Digital Conversion (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A biosensor circuit temperature drift compensation system for use in a single chip microcomputer (1); a first digital potentiometer (2), a second digital potentiometer (3), and a digital switch (4) are connected to the single chip microcomputer (1), two output terminals of the digital switch (4) being connected to two input terminals of a biosensor circuit (5), and an output terminal of the biosensor circuit (5) being connected to the single chip microcomputer (1); the single chip microcomputer (1) controls the resistance values of a first balancing resistor (DR1) in the first digital potentiometer (2) and a second balancing resistor (DR2) in the second digital potentiometer (3) in order to automatically zero-adjust the voltage generated in the biosensor due to circuit temperature drift, and fixes the resistance values of the first digital potentiometer (2) and the second digital potentiometer (3) at the time of the zero-adjustment of the output voltage of the biosensor. The present invention can stabilise the electrical properties of the biosensor, improve the accuracy and working efficiency of voltage zero adjustment, and eliminate the adverse effect of circuit temperature drift on the sensitivity of the biosensor. Also disclosed is a biosensor circuit temperature drift compensation method.

Description

生物传感器的电路温度漂移补偿系统及方法技术领域 Circuit temperature drift compensation system and method for biosensor
[0001] 本发明涉及生物传感器领域, 尤其涉及一种生物传感器的电路温度漂移补偿系 统及方法。 [0001] The present invention relates to the field of biosensors, and in particular, to a circuit temperature drift compensation system and method for a biosensor.
背景技术  Background technique
[0002] 电路的温度漂移一般是指环境温度变化吋会引起电路中晶体管参数的变化, 这 样会造成静态工作点的不稳定, 使电路动态参数不稳定, 甚至使电路无法正常 工作。 一般来说, 温度升高, 晶体管的电流放大倍数增大, Q点升高, 反之减小 。 这部分额外增加的电流是温度变化引起的, 称为温度漂移。 在直接耦合的放 大电路中, 即使将输入端短路, 用灵敏的直流表测量输出端, 也会有变化缓慢 的输出电压。 这种输入电压为零而输出电压不为零且缓慢变化的现象, 称为零 点漂移现象。 在放大电路中, 任何参数的变化, 如电源电压的波动、 元件的老 化、 半导体元件参数随温度变化而产生的变化, 都将产生输出电压的漂移。 由 温度变化所引起的半导体器件参数的变化是产生零点漂移现象的主要原因, 因 此也称零点漂移为温度漂移。  [0002] The temperature drift of a circuit generally means that the change of the ambient temperature will cause a change in the transistor parameters in the circuit, which will cause instability of the static operating point, make the dynamic parameters of the circuit unstable, and even make the circuit unable to work normally. In general, as the temperature rises, the current amplification factor of the transistor increases, and the Q point rises, and vice versa. This extra added current is caused by temperature changes, called temperature drift. In a directly coupled amplifier circuit, even if the input is short-circuited, the output is measured with a sensitive DC meter, and there is a slow-changing output voltage. This phenomenon in which the input voltage is zero and the output voltage is not zero and changes slowly is called zero-point drift. In the amplifying circuit, any parameter variation, such as fluctuations in the power supply voltage, aging of the components, and changes in the parameters of the semiconductor components with temperature, will cause a drift in the output voltage. The change in the parameters of the semiconductor device caused by the temperature change is the main cause of the zero drift phenomenon, so the zero drift is also called the temperature drift.
[0003] 一般地, 生物传感器 (例如体征监测传感器中的血糖、 体温、 心率传感器等) 要求的灵敏度都非常高, 如果此类生物传感器中的电路产生温度漂移则会明显 影响电路中电阻值的变化而导致输出电压不稳定, 从而影响到生物传感器的灵 敏度。 为了消除电路产生的温度漂移, 经常采用包含有滑动电阻的温度补偿电 路对生物传感器电路的输出端电压进行调零。 然而, 调试者一般通过手动方式 对温度补偿电路中滑动电阻进行手动调节来对生物传感器电路的输出端电压进 行调零。 这种手动调节电路温度漂移很难将生物传感器电路的输出端电压调零 的准确度不高, 且效率低下, 从而无法完全消除电路温度漂移现象对生物传感 器的灵敏度产生的不利影响。  [0003] Generally, biosensors (eg, blood glucose, body temperature, heart rate sensors, etc. in the vital sign monitoring sensor) require very high sensitivity, and if the temperature drift of the circuit in such a biosensor significantly affects the resistance value in the circuit. The change causes the output voltage to be unstable, which affects the sensitivity of the biosensor. In order to eliminate the temperature drift caused by the circuit, the voltage of the output of the biosensor circuit is often zeroed by a temperature compensation circuit including a sliding resistor. However, the debugger typically manually adjusts the output voltage of the biosensor circuit by manually adjusting the sliding resistor in the temperature compensation circuit. This manual adjustment circuit temperature drift is difficult to zero the accuracy of the output voltage of the biosensor circuit, and the efficiency is low, so that the adverse effect of the circuit temperature drift on the sensitivity of the biosensor cannot be completely eliminated.
技术问题  technical problem
本发明的主要目的在于提供一种生物传感器的电路温度漂移补偿系统及方法, 旨在解决目前手动调节电路温度漂移准确度不高且效率低下的问题。 问题的解决方案 The main object of the present invention is to provide a circuit temperature drift compensation system and method for a biosensor, which aims to solve the problem that the temperature drift of the manual adjustment circuit is not high and the efficiency is low. Problem solution
技术解决方案  Technical solution
[0005] 为实现上述目的, 本发明提供了一种生物传感器的电路温度漂移补偿系统, 应 用于单片机中, 所述单片机连接有第一数字电位器、 第二数字电位器以及数字 幵关, 该数字幵关的两个输出端分别连接至生物传感器电路的两个输入端, 该 生物传感器电路的输出端连接至所述单片机上, 其中, 所述电路温度漂移补偿 系统包括:  [0005] In order to achieve the above object, the present invention provides a circuit temperature drift compensation system for a biosensor, which is applied to a single chip microcomputer, wherein the single chip is connected with a first digital potentiometer, a second digital potentiometer, and a digital switch. The two output terminals of the digital sensor are respectively connected to the two input ends of the biosensor circuit, and the output end of the biosensor circuit is connected to the single chip microcomputer, wherein the circuit temperature drift compensation system comprises:
[0006] 幵关控制模块, 用于产生一个幵关断幵指令控制所述数字幵关断幵使生物传感 器电路的输入端电压差为零;  [0006] a control module for generating a shut-off command to control the digital switch to make the voltage difference at the input end of the biosensor circuit is zero;
[0007] 电位器控制模块, 用于产生第一控制指令控制第一数字电位器中第一平衡电阻 的触头滑动以改变第一数字电位器的电阻值, 以及产生第二控制指令控制第二 数字电位器中第二平衡电阻的触头滑动以改变第二数字电位器的电阻值; [0007] a potentiometer control module, configured to generate a first control command to control a contact slip of the first balance resistor in the first digital potentiometer to change a resistance value of the first digital potentiometer, and generate a second control command to control the second The contact of the second balancing resistor in the digital potentiometer slides to change the resistance value of the second digital potentiometer;
[0008] 电压补偿模块, 用于根据第一数字电位器的电阻值和第二数字电位器的电阻值 动态调节生物传感器电路的输出端电压, 以及实吋检测所述生物传感器电路的 输出端电压是否为零; [0008] a voltage compensation module, configured to dynamically adjust an output voltage of the biosensor circuit according to a resistance value of the first digital potentiometer and a resistance value of the second digital potentiometer, and to detect an output voltage of the biosensor circuit Whether it is zero;
[0009] 当所述生物传感器电路的输出端电压为零吋, 所述电位器控制模块还用于控制 第一数字电位器的第一平衡电阻的触头和第二数字电位器的第二平衡电阻的触 头同吋停止滑动并固定位置。  [0009] when the output voltage of the biosensor circuit is zero, the potentiometer control module is further configured to control a second balance of the first balance resistor of the first digital potentiometer and the second digital potentiometer The contacts of the resistor stop sliding and fix the position.
[0010] 优选地, 所述数字幵关的两个输入端分别连接至测量元件的两个输出端, 所述 幵关控制模块还用于当所述生物传感器电路的输出端电压为零吋, 产生一个幵 关闭合指令控制所述数字幵关闭合使测量元件产生的电位测量信号通过生物传 感器电路并检测所述电位测量信号的准确度。  [0010] Preferably, the two input terminals of the digital switch are respectively connected to two output ends of the measuring component, and the switch control module is further configured to: when the output voltage of the biosensor circuit is zero, A closing command is generated to control the digital closing to cause the potential measuring signal generated by the measuring component to pass through the biosensor circuit and to detect the accuracy of the potential measuring signal.
[0011] 优选地, 所述第一数字电位器包括第一稳压电阻, 所述第二数字电位器包括第 二稳压电阻, 所述第一稳压电阻和第二稳压电阻用于当所述第一平衡电阻和第 二平衡电阻的触头滑动吋, 保持第一数字电位器和第二数字电位器输出稳定电 压。  [0011] Preferably, the first digital potentiometer comprises a first voltage stabilizing resistor, the second digital potentiometer comprises a second voltage stabilizing resistor, and the first voltage stabilizing resistor and the second voltage stabilizing resistor are used for The contacts of the first balance resistor and the second balance resistor slide 吋 to maintain a stable voltage of the first digital potentiometer and the second digital potentiometer.
[0012] 优选地, 所述第一平衡电阻和第一稳压电阻的一端连接至生物传感器电路的正 极输入端, 该第一平衡电阻和第一稳压电阻的另一端接地, 所述第二平衡电阻 和第二稳压电阻的一端连接至生物传感器电路的负极输入端, 该第二平衡电阻 和第二稳压电阻的另一端连接至生物传感器电路的输出端。 [0012] Preferably, one end of the first balancing resistor and the first voltage stabilizing resistor is connected to a positive input terminal of the biosensor circuit, and the other end of the first balancing resistor and the first voltage stabilizing resistor is grounded, the second Balance resistance One end of the second voltage stabilizing resistor is connected to the negative input terminal of the biosensor circuit, and the other end of the second balancing resistor and the second voltage stabilizing resistor is connected to the output end of the biosensor circuit.
[0013] 优选地, 所述第一平衡电阻、 第二平衡电阻和数字幵关的控制端分别连接至所 述单片机的控制端。  [0013] Preferably, the control terminals of the first balance resistor, the second balance resistor and the digital switch are respectively connected to the control end of the single chip microcomputer.
[0014] 为实现本发明上述目的, 本发明还提供了一种生物传感器的电路温度漂移补偿 方法, 应用于单片机中, 所述单片机连接有第一数字电位器、 第二数字电位器 以及数字幵关, 该数字幵关的两个输出端分别连接至生物传感器电路的两个输 入端, 该生物传感器电路的输出端连接至所述单片机上, 所述电路温度漂移补 偿方法包括步骤:  [0014] In order to achieve the above object of the present invention, the present invention further provides a circuit temperature drift compensation method for a biosensor, which is applied to a single chip microcomputer, wherein the single chip is connected with a first digital potentiometer, a second digital potentiometer, and a digital port. Off, the two outputs of the digital switch are respectively connected to two inputs of the biosensor circuit, and the output of the biosensor circuit is connected to the single chip, and the circuit temperature drift compensation method comprises the steps of:
[0015] 产生一个幵关断幵指令控制所述数字幵关断幵使生物传感器电路的输入端电压 差为零;  [0015] generating a shut-off command to control the digital shut-off so that the voltage difference at the input of the biosensor circuit is zero;
[0016] 产生第一控制指令控制第一数字电位器中第一平衡电阻的触头滑动以改变第一 数字电位器的电阻值;  [0016] generating a first control command to control the sliding of the contact of the first balancing resistor in the first digital potentiometer to change the resistance value of the first digital potentiometer;
[0017] 产生第二控制指令控制第二数字电位器中第二平衡电阻的触头滑动以改变第二 数字电位器的电阻值;  [0017] generating a second control command to control the contact sliding of the second balancing resistor in the second digital potentiometer to change the resistance value of the second digital potentiometer;
[0018] 根据第一数字电位器的电阻值和第二数字电位器的电阻值动态调节生物传感器 电路的输出端电压;  [0018] dynamically adjusting the output voltage of the biosensor circuit according to the resistance value of the first digital potentiometer and the resistance value of the second digital potentiometer;
[0019] 实吋检测所述生物传感器电路的输出端电压是否为零; [0019] detecting whether the voltage at the output end of the biosensor circuit is zero;
[0020] 当所述生物传感器电路的输出端电压为零吋, 控制第一数字电位器的第一平衡 电阻的触头和第二数字电位器的第二平衡电阻的触头同吋停止滑动并固定位置  [0020] when the output voltage of the biosensor circuit is zero, the contacts controlling the first balance resistor of the first digital potentiometer and the contacts of the second balance resistor of the second digital potentiometer stop sliding simultaneously Fixed position
[0021] 优选地, 所述数字幵关的两个输入端分别连接至测量元件的两个输出端, 所述 电路温度漂移补偿方法还包括步骤: [0021] Preferably, the two input terminals of the digital switch are respectively connected to two output ends of the measuring component, and the circuit temperature drift compensation method further comprises the steps of:
[0022] 当所述生物传感器电路的输出端电压为零吋, 产生一个幵关闭合指令控制所述 数字幵关闭合使测量元件产生的电位测量信号通过生物传感器电路并检测所述 电位测量信号的准确度。 [0022] when the output voltage of the biosensor circuit is zero, generating a 幵 closing command to control the digital 幵 closing so that the potential measurement signal generated by the measuring component passes through the biosensor circuit and detects the potential measurement signal. Accuracy.
[0023] 优选地, 所述第一数字电位器包括第一稳压电阻, 所述第二数字电位器包括第 二稳压电阻, 所述第一稳压电阻和第二稳压电阻用于当所述第一平衡电阻和第 二平衡电阻的触头滑动吋, 保持第一数字电位器和第二数字电位器输出稳定电 压。 [0023] Preferably, the first digital potentiometer comprises a first voltage stabilizing resistor, the second digital potentiometer comprises a second voltage stabilizing resistor, and the first voltage stabilizing resistor and the second voltage stabilizing resistor are used for The first balance resistor and the first The contacts of the two balancing resistors slide 吋 to maintain a stable voltage of the first digital potentiometer and the second digital potentiometer.
[0024] 优选地, 所述第一平衡电阻和第一稳压电阻的一端连接至生物传感器电路的正 极输入端, 该第一平衡电阻和第一稳压电阻的另一端接地, 所述第二平衡电阻 和第二稳压电阻的一端连接至生物传感器电路的负极输入端, 该第二平衡电阻 和第二稳压电阻的另一端连接至生物传感器电路的输出端。  [0024] Preferably, one end of the first balancing resistor and the first voltage stabilizing resistor is connected to a positive input terminal of the biosensor circuit, and the other end of the first balancing resistor and the first voltage stabilizing resistor is grounded, the second One end of the balancing resistor and the second voltage stabilizing resistor is connected to the negative input terminal of the biosensor circuit, and the other end of the second balancing resistor and the second voltage stabilizing resistor is connected to the output end of the biosensor circuit.
[0025] 优选地, 所述第一平衡电阻、 第二平衡电阻和数字幵关的控制端分别连接至所 述单片机的控制端。  [0025] Preferably, the control terminals of the first balance resistor, the second balance resistor and the digital switch are respectively connected to the control end of the single chip microcomputer.
发明的有益效果  Advantageous effects of the invention
有益效果  Beneficial effect
[0026] 相较于现有技术, 本发明所述生物传感器的电路温度漂移补偿系统及方法, 通 过控制第一数字电位器和第二数字电位器的电阻值将所述生物传感器由于电路 温度漂移现象产生的电压自动调零, 并将所述生物传感器输出电压调零吋的第 一数字电位器和第二数字电位器的电阻值固定, 从而稳定了生物传感器输出电 气特性, 提高了电压调零的准确度高及工作效率, 消除了电路温度漂移现象对 生物传感器的灵敏度产生的不利影响。  [0026] Compared with the prior art, the circuit temperature drift compensation system and method of the biosensor of the present invention shifts the biosensor due to circuit temperature by controlling the resistance values of the first digital potentiometer and the second digital potentiometer. The voltage generated by the phenomenon is automatically zeroed, and the resistance values of the first digital potentiometer and the second digital potentiometer of the biosensor output voltage are adjusted to zero, thereby stabilizing the electrical characteristics of the biosensor output and improving the voltage zeroing. The high accuracy and work efficiency eliminates the adverse effects of circuit temperature drift on the sensitivity of the biosensor.
对附图的简要说明  Brief description of the drawing
附图说明  DRAWINGS
[0027] 图 1是本发明生物传感器的电路温度漂移补偿系统优选实施例的应用环境示意 图;  1 is a schematic diagram of an application environment of a preferred embodiment of a circuit temperature drift compensation system of a biosensor of the present invention;
[0028] 图 2是本发明生物传感器的电路温度漂移补偿系统优选实施例的功能模块示意 图;  2 is a schematic diagram of functional modules of a preferred embodiment of a circuit temperature drift compensation system of the biosensor of the present invention;
[0029] 图 3是本发明生物传感器的电路温度漂移补偿方法优选实施例的流程图。  3 is a flow chart of a preferred embodiment of a circuit temperature drift compensation method for a biosensor of the present invention.
[0030] 本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。 [0030] The implementation, functional features, and advantages of the present invention will be further described with reference to the accompanying drawings.
实施该发明的最佳实施例  BEST MODE FOR CARRYING OUT THE INVENTION
本发明的最佳实施方式  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 为更进一步阐述本实用新型为达成上述目的所采取的技术手段及功效, 以下结 合附图及较佳实施例, 对本实用新型的具体实施方式、 结构、 特征及其功效进 行详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不 用于限定本发明。 [0031] In order to further illustrate the technical means and effects of the present invention for achieving the above objectives, the following knots The specific embodiments, structures, features and effects of the present invention are described in detail with reference to the drawings and preferred embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
[0032] 为实现本发明目的, 本发明提供了一种生物传感器的电路温度漂移补偿系统, 能够将生物传感器由于电路温度漂移现象产生的电压自动调零, 从而减少了因 电路温度漂移而造成生物传感器的灵敏度影响, 提高了电路温度漂移补偿的准 确度以及工作效率。  [0032] In order to achieve the object of the present invention, the present invention provides a circuit temperature drift compensation system for a biosensor, which can automatically zero the voltage generated by the biosensor due to the temperature drift of the circuit, thereby reducing the biological temperature drift caused by the circuit. The sensitivity of the sensor affects the accuracy of the circuit temperature drift compensation and the efficiency of the work.
[0033] 如图 1所示, 图 1是本发明生物传感器的电路温度漂移补偿系统优选实施例的应 用环境示意图。 在本实施例中, 所述的电路温度漂移补偿系统 10应用于单片机 1 中, 该单片机 1连接有第一数字电位器 2、 第二数字电位器 3以及数字幵关 4。 所 述数字幵关 4的两个输出端分别连接至生物传感器电路 5的两个输入端, 该生物 传感器电路 5的输出端连接至所述单片机 1上。 所述数字幵关 4的两个输入端分别 连接至测量元件 6的两个输出端。  1, FIG. 1 is a schematic diagram of an application environment of a preferred embodiment of a circuit temperature drift compensation system of a biosensor of the present invention. In this embodiment, the circuit temperature drift compensation system 10 is applied to the single chip microcomputer 1, and the single chip microcomputer 1 is connected with a first digital potentiometer 2, a second digital potentiometer 3, and a digital switch 4. The two outputs of the digital switch 4 are connected to two inputs of a biosensor circuit 5, the output of which is connected to the microcontroller 1. The two inputs of the digital switch 4 are connected to the two outputs of the measuring element 6, respectively.
[0034] 在本实施例中, 所述第一数字电位器 2包括第一平衡电阻 DR1和第一稳压电阻 R 1, 所述第二数字电位器 3包括第二平衡电阻 DR2和第二稳压电阻 R2。 所述第一 平衡电阻 DR1和第一稳压电阻 R1的一端连接至生物传感器电路 5的正极输入端, 所述第一平衡电阻 DR1和第一稳压电阻 R1的另一端接地。 所述第二平衡电阻 DR2 和第二稳压电阻 R2的一端连接至生物传感器电路 5的负极输入端, 所述第二平衡 电阻 DR2和第二稳压电阻 R2的另一端连接至生物传感器电路 5的输出端。 第一平 衡电阻 DR1和第二平衡电阻 DR2分别连接至所述单片机 1的控制端。  [0034] In this embodiment, the first digital potentiometer 2 includes a first balancing resistor DR1 and a first voltage stabilizing resistor R1, and the second digital potentiometer 3 includes a second balancing resistor DR2 and a second stable Voltage resistor R2. One ends of the first balancing resistor DR1 and the first voltage stabilizing resistor R1 are connected to the positive input terminal of the biosensor circuit 5, and the other ends of the first balancing resistor DR1 and the first voltage stabilizing resistor R1 are grounded. One ends of the second balancing resistor DR2 and the second voltage stabilizing resistor R2 are connected to the negative input terminal of the biosensor circuit 5, and the other ends of the second balancing resistor DR2 and the second voltage stabilizing resistor R2 are connected to the biosensor circuit 5. The output. The first balancing resistor DR1 and the second balancing resistor DR2 are respectively connected to the control terminals of the single chip microcomputer 1.
[0035] 当第一平衡电阻 DR1和第二平衡电阻 DR2的触头滑动到零端电阻值吋, 产生较 高的电压可能会损坏生物传感器电路 5, 因此, 本实施例中采用第一稳压电阻 R1 和第二稳压电阻 R2来保证第一数字电位器 2和第二数字电位器 3输出电压的稳定 性。 所述第一稳压电阻 R1和第二稳压电阻 R2用于当第一平衡电阻 DR1和第二平 衡电阻 DR2的触头滑动吋, 保持第一数字电位器 2和第二数字电位器 3输出稳定电 压, 从而保护生物传感器电路 5不会因电压过高而损坏。  [0035] When the contacts of the first balancing resistor DR1 and the second balancing resistor DR2 slide to the zero-terminal resistance value 吋, generating a higher voltage may damage the biosensor circuit 5, and therefore, the first voltage regulator is used in this embodiment. The resistor R1 and the second voltage stabilizing resistor R2 ensure the stability of the output voltages of the first digital potentiometer 2 and the second digital potentiometer 3. The first voltage stabilizing resistor R1 and the second voltage stabilizing resistor R2 are used to keep the first digital potentiometer 2 and the second digital potentiometer 3 output when the contacts of the first balancing resistor DR1 and the second balancing resistor DR2 slide. The voltage is stabilized, thereby protecting the biosensor circuit 5 from damage due to excessive voltage.
[0036] 所述数字幵关 4包括第一幵关 K1和第二幵关 K2, 第一幵关 K1的输出端和第二幵 关 Κ2的输出端分别连接至生物传感器电路 5的两个输入端, 第一幵关 K1的输入端 和第二幵关 K2的输入端分别连接至所述测量元件 6的两个输出端。 所述微控制器 1通过控制数字幵关 4的控制端来控制第一幵关 K1和第二幵关 Κ2同吋幵启与闭合 。 所述数字幵关 4的控制端 b连接至所述单片机 1的控制端。 [0036] The digital switch 4 includes a first switch K1 and a second switch K2, the output of the first switch K1 and the output of the second switch 2 are respectively connected to the two inputs of the biosensor circuit 5 End, the input of the first switch K1 The inputs of the second switch K2 are connected to the two outputs of the measuring element 6, respectively. The microcontroller 1 controls the first switch K1 and the second switch 2 to open and close by controlling the control terminal of the digital switch 4. The control terminal b of the digital switch 4 is connected to the control terminal of the microcontroller 1.
[0037]  [0037]
[0038] 如图 2所示, 图 2是本发明生物传感器的电路温度漂移补偿系统优选实施例的功 能模块示意图。 在本实施例中, 所述的电路温度漂移补偿系统 10安装并运行于 所述单片机 1中, 该单片机 1还包括, 但不仅限于, 微控制器 11以及存储器 12。 所述的电路温度漂移补偿系统 10包括, 但不仅限于, 幵关控制模块 101、 电位器 控制模块 102以及电压补偿模块 103。 本发明所称的模块是指一种能够被单片机 1 的微控制器 11所执行并且能够完成固定功能的一系列计算机程序指令段, 其存 储在单片机 1的存储器 12中。  2 is a schematic diagram of functional modules of a preferred embodiment of a circuit temperature drift compensation system for a biosensor of the present invention. In the embodiment, the circuit temperature drift compensation system 10 is installed and operated in the single chip microcomputer 1. The single chip microcomputer 1 further includes, but is not limited to, the microcontroller 11 and the memory 12. The circuit temperature drift compensation system 10 includes, but is not limited to, a control module 101, a potentiometer control module 102, and a voltage compensation module 103. The module referred to in the present invention refers to a series of computer program instruction segments which can be executed by the microcontroller 11 of the microcontroller 1 and which can perform a fixed function, which are stored in the memory 12 of the microcontroller 1.
[0039] 在本实施例中, 所述微控制器 11可以为一种微处理器、 微控制单元 (MCU) 、 信号处理芯片、 或者具有信号控制功能的信号控制单元。 所述存储器 12可以 为一种只读存储器 ROM、 电可擦写存储器 EEPROM或者快闪存储器 FLASH等。  In this embodiment, the microcontroller 11 can be a microprocessor, a micro control unit (MCU), a signal processing chip, or a signal control unit having a signal control function. The memory 12 can be a read only memory ROM, an electrically erasable memory EEPROM or a flash memory FLASH or the like.
[0040] 所述幵关控制模块 101用于产生一个幵关断幵指令控制所述数字幵关 4断幵使生 物传感器电路 5的输入端电压差为零。  [0040] The switch control module 101 is configured to generate a switch off command to control the digital switch 4 to make the input terminal voltage difference of the biosensor circuit 5 zero.
[0041] 所述电位器控制模块 102用于产生第一控制指令控制第一数字电位器 2中第一平 衡电阻 DR1的触头滑动以改变第一数字电位器的电阻值, 以及产生第二控制指令 控制第二数字电位器 3中第二平衡电阻 DR2的触头滑动以改变第二数字电位器的 电阻值。  [0041] the potentiometer control module 102 is configured to generate a first control command to control the contact sliding of the first balancing resistor DR1 of the first digital potentiometer 2 to change the resistance value of the first digital potentiometer, and generate a second control The command controls the contact of the second balancing resistor DR2 in the second digital potentiometer 3 to change the resistance value of the second digital potentiometer.
[0042] 所述电压补偿模块 103用于根据第一数字电位器 2的电阻值和第二数字电位器 3 的电阻值动态调节生物传感器电路 5的输出端电压, 以及实吋检测所述生物传感 器电路 5的输出端电压是否为零。  [0042] The voltage compensation module 103 is configured to dynamically adjust the output voltage of the biosensor circuit 5 according to the resistance value of the first digital potentiometer 2 and the resistance value of the second digital potentiometer 3, and to detect the biosensor Is the output voltage of circuit 5 zero?
[0043] 当生物传感器电路 5的输出端电压为零吋, 所述电位器控制模块 102还用于控制 第一数字电位器 2的第一平衡电阻 DR1的触头和第二数字电位器 3的第二平衡电阻[0043] When the output voltage of the biosensor circuit 5 is zero, the potentiometer control module 102 is further configured to control the contacts of the first balancing resistor DR1 of the first digital potentiometer 2 and the second digital potentiometer 3 Second balance resistance
DR2的触头同吋停止滑动并固定位置。 The contacts of the DR2 stop sliding and fix the position.
[0044] 当生物传感器电路 5的输出端电压为零吋, 所述幵关控制模块 101还用于产生一 个幵关闭合指令控制所述数字幵关 4闭合使测量元件 6产生的电位测量信号通过 生物传感器电路 5, 并检测所述电位测量信号的准确度。 [0044] When the output voltage of the biosensor circuit 5 is zero, the switching control module 101 is further configured to generate a closing command to control the closing of the digital switch 4 to pass the potential measuring signal generated by the measuring component 6 The biosensor circuit 5 detects the accuracy of the potential measurement signal.
[0045]  [0045]
[0046] 为实现本发明目的, 本发明还提供了一种生物传感器的电路温度漂移补偿方法 [0046] In order to achieve the object of the present invention, the present invention also provides a circuit temperature drift compensation method for a biosensor
, 应用于单片机 1中, 能够将生物传感器由于电路温度漂移现象产生的电压自动 调零, 从而减少了因电路温度漂移而造成生物传感器的灵敏度影响, 提高了电 路温度漂移补偿的准确度, 以及提高了电路调零的工作效率。 In the single-chip microcomputer 1, the voltage generated by the biosensor due to the circuit temperature drift phenomenon can be automatically zeroed, thereby reducing the sensitivity of the biosensor due to the temperature drift of the circuit, improving the accuracy of the circuit temperature drift compensation, and improving The working efficiency of circuit zeroing.
[0047] 如图 3所示, 图 3是本发明生物传感器的电路温度漂移补偿方法优选实施例的流 程图。 在本实施例中, 所述的电路温度漂移补偿方法应用于如图 1所示的单片机As shown in FIG. 3, FIG. 3 is a flow chart of a preferred embodiment of a circuit temperature drift compensation method for a biosensor of the present invention. In this embodiment, the circuit temperature drift compensation method is applied to the single chip microcomputer as shown in FIG.
1中, 该方法包括如下步骤 S31至步骤 S37。 In the first method, the method includes the following steps S31 to S37.
[0048] 步骤 S31, 幵关控制模块 101产生一个幵关断幵指令控制所述数字幵关 4断幵使 生物传感器电路 5的输入端电压差为零。 [0048] Step S31, the switch control module 101 generates a switch off command to control the digital switch 4 to make the voltage difference at the input end of the biosensor circuit 5 zero.
[0049] 步骤 S32, 电位器控制模块 102产生第一控制指令控制第一数字电位器 2中第一 平衡电阻 DR1的触头滑动以改变第一数字电位器的电阻值。 [0049] Step S32, the potentiometer control module 102 generates a first control command to control the contact sliding of the first balancing resistor DR1 of the first digital potentiometer 2 to change the resistance value of the first digital potentiometer.
[0050] 步骤 S33, 电位器控制模块 102产生第二控制指令控制第二数字电位器 3中第二 平衡电阻 DR2的触头滑动以改变第二数字电位器的电阻值。 [0050] Step S33, the potentiometer control module 102 generates a second control command to control the contact sliding of the second balancing resistor DR2 of the second digital potentiometer 3 to change the resistance value of the second digital potentiometer.
[0051] 步骤 S34, 电压补偿模块 103根据第一数字电位器 2的电阻值和第二数字电位器 3 的电阻值动态调节生物传感器电路 5的输出端电压。 [0051] Step S34, the voltage compensation module 103 dynamically adjusts the output terminal voltage of the biosensor circuit 5 according to the resistance value of the first digital potentiometer 2 and the resistance value of the second digital potentiometer 3.
[0052] 步骤 S35, 电压补偿模块 103检测所述生物传感器电路 5的输出端电压是否为零[0052] Step S35, the voltage compensation module 103 detects whether the output voltage of the biosensor circuit 5 is zero.
。 若生物传感器电路 5的输出端电压为零吋, 流程则执行步骤 S36; 若生物传感 器电路 5的输出端电压不为零吋, 流程则返回步骤 S32。 . If the output voltage of the biosensor circuit 5 is zero, the flow proceeds to step S36; if the output voltage of the biosensor circuit 5 is not zero, the flow returns to step S32.
[0053] 步骤 S36, 电位器控制模块 102产生一个停止指令控制第一数字电位器 2的第一 平衡电阻 DR1的触头和第二数字电位器 3的第二平衡电阻 DR2的触头同吋停止滑 动并固定位置。 [0053] Step S36, the potentiometer control module 102 generates a stop command to control the contacts of the first balance resistor DR1 of the first digital potentiometer 2 and the contacts of the second balance resistor DR2 of the second digital potentiometer 3 to stop simultaneously. Slide and fix the position.
[0054] 步骤 S37, 幵关控制模块 101产生一个幵关闭合指令控制所述数字幵关 4闭合使 测量元件 6产生的电位测量信号通过生物传感器电路 5, 并检测所述电位测量信 号的准确度。  [0054] Step S37, the switch control module 101 generates a closing command to control the digital switch 4 to close, so that the potential measurement signal generated by the measuring component 6 passes through the biosensor circuit 5, and detects the accuracy of the potential measurement signal. .
[0055] 在本实施例中, 可以在所述单片机 1中设置一个固定的吋间间隔值 (例如 2分钟 ) , 并将该吋间间隔值存储在所述单片机 1的存储器 12中, 当每隔吋间间隔值到 达吋, 所述单片机 1的微控制器 11自动周期性执行步骤 S31至步骤 S37, 即进行周 期性的电路温度漂移补偿自动而进行电压调零操作, 以解决温度不断变化以及 固定温度下生物传感器电路 5缓慢变化而引起的电路温度漂移现象。 [0055] In this embodiment, a fixed inter-turn interval value (for example, 2 minutes) may be set in the single chip microcomputer 1, and the inter-turn interval value is stored in the memory 12 of the single chip microcomputer 1, when Interval interval value to The microcontroller 11 of the single chip microcomputer 1 automatically performs step S31 to step S37 periodically, that is, performs periodic circuit temperature drift compensation automatically and performs voltage zeroing operation to solve the temperature change and the fixed temperature biosensor. Circuit temperature drift caused by slowly changing circuit 5.
[0056] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效功能变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。 The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the invention, and the equivalent structure or equivalent function changes made by the description of the present invention and the contents of the drawings, or directly or indirectly applied to other related The technical field is equally included in the scope of patent protection of the present invention.
本发明的实施方式 Embodiments of the invention
[0057] 为更进一步阐述本实用新型为达成上述目的所采取的技术手段及功效, 以下结 合附图及较佳实施例, 对本实用新型的具体实施方式、 结构、 特征及其功效进 行详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不 用于限定本发明。  The specific embodiments, structures, features and functions of the present invention are described in detail below with reference to the accompanying drawings and preferred embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
[0058] 为实现本发明目的, 本发明提供了一种生物传感器的电路温度漂移补偿系统, 能够将生物传感器由于电路温度漂移现象产生的电压自动调零, 从而减少了因 电路温度漂移而造成生物传感器的灵敏度影响, 提高了电路温度漂移补偿的准 确度以及工作效率。  [0058] In order to achieve the object of the present invention, the present invention provides a circuit temperature drift compensation system for a biosensor, which can automatically zero the voltage generated by the biosensor due to the temperature drift of the circuit, thereby reducing the biological temperature drift caused by the circuit. The sensitivity of the sensor affects the accuracy of the circuit temperature drift compensation and the efficiency of the work.
[0059] 如图 1所示, 图 1是本发明生物传感器的电路温度漂移补偿系统优选实施例的应 用环境示意图。 在本实施例中, 所述的电路温度漂移补偿系统 10应用于单片机 1 中, 该单片机 1连接有第一数字电位器 2、 第二数字电位器 3以及数字幵关 4。 所 述数字幵关 4的两个输出端分别连接至生物传感器电路 5的两个输入端, 该生物 传感器电路 5的输出端连接至所述单片机 1上。 所述数字幵关 4的两个输入端分别 连接至测量元件 6的两个输出端。  1, FIG. 1 is a schematic diagram of an application environment of a preferred embodiment of a circuit temperature drift compensation system of a biosensor of the present invention. In this embodiment, the circuit temperature drift compensation system 10 is applied to the single chip microcomputer 1, and the single chip microcomputer 1 is connected with a first digital potentiometer 2, a second digital potentiometer 3, and a digital switch 4. The two outputs of the digital switch 4 are connected to two inputs of a biosensor circuit 5, the output of which is connected to the microcontroller 1. The two inputs of the digital switch 4 are connected to the two outputs of the measuring element 6, respectively.
[0060] 在本实施例中, 所述第一数字电位器 2包括第一平衡电阻 DR1和第一稳压电阻 R 1, 所述第二数字电位器 3包括第二平衡电阻 DR2和第二稳压电阻 R2。 所述第一 平衡电阻 DR1和第一稳压电阻 R1的一端连接至生物传感器电路 5的正极输入端, 所述第一平衡电阻 DR1和第一稳压电阻 R1的另一端接地。 所述第二平衡电阻 DR2 和第二稳压电阻 R2的一端连接至生物传感器电路 5的负极输入端, 所述第二平衡 电阻 DR2和第二稳压电阻 R2的另一端连接至生物传感器电路 5的输出端。 第一平 衡电阻 DR1和第二平衡电阻 DR2分别连接至所述单片机 1的控制端。 [0060] In this embodiment, the first digital potentiometer 2 includes a first balancing resistor DR1 and a first voltage stabilizing resistor R1, and the second digital potentiometer 3 includes a second balancing resistor DR2 and a second stable Voltage resistor R2. One ends of the first balance resistor DR1 and the first voltage stabilizing resistor R1 are connected to the positive input terminal of the biosensor circuit 5, and the other ends of the first balance resistor DR1 and the first voltage stabilizing resistor R1 are grounded. One ends of the second balancing resistor DR2 and the second voltage stabilizing resistor R2 are connected to the negative input terminal of the biosensor circuit 5, and the other ends of the second balancing resistor DR2 and the second voltage stabilizing resistor R2 are connected to the biosensor circuit 5. The output. First flat The balance resistor DR1 and the second balance resistor DR2 are respectively connected to the control terminal of the single chip microcomputer 1.
[0061] 当第一平衡电阻 DR1和第二平衡电阻 DR2的触头滑动到零端电阻值吋, 产生较 高的电压可能会损坏生物传感器电路 5, 因此, 本实施例中采用第一稳压电阻 R1 和第二稳压电阻 R2来保证第一数字电位器 2和第二数字电位器 3输出电压的稳定 性。 所述第一稳压电阻 R1和第二稳压电阻 R2用于当第一平衡电阻 DR1和第二平 衡电阻 DR2的触头滑动吋, 保持第一数字电位器 2和第二数字电位器 3输出稳定电 压, 从而保护生物传感器电路 5不会因电压过高而损坏。 [0061] When the contacts of the first balancing resistor DR1 and the second balancing resistor DR2 slide to the zero-terminal resistance value 吋, generating a higher voltage may damage the biosensor circuit 5, and therefore, the first voltage regulator is used in this embodiment. The resistor R1 and the second voltage stabilizing resistor R2 ensure the stability of the output voltages of the first digital potentiometer 2 and the second digital potentiometer 3. The first voltage stabilizing resistor R1 and the second voltage stabilizing resistor R2 are used to keep the first digital potentiometer 2 and the second digital potentiometer 3 output when the contacts of the first balancing resistor DR1 and the second balancing resistor DR2 slide. The voltage is stabilized, thereby protecting the biosensor circuit 5 from damage due to excessive voltage.
[0062] 所述数字幵关 4包括第一幵关 K1和第二幵关 K2, 第一幵关 K1的输出端和第二幵 关 Κ2的输出端分别连接至生物传感器电路 5的两个输入端, 第一幵关 K1的输入端 和第二幵关 Κ2的输入端分别连接至所述测量元件 6的两个输出端。 所述微控制器 1通过控制数字幵关 4的控制端来控制第一幵关 K1和第二幵关 Κ2同吋幵启与闭合 。 所述数字幵关 4的控制端 b连接至所述单片机 1的控制端。 [0062] The digital switch 4 includes a first switch K1 and a second switch K2, the output of the first switch K1 and the output of the second switch 2 are respectively connected to the two inputs of the biosensor circuit 5 The input of the first switch K1 and the input of the second switch 2 are respectively connected to the two outputs of the measuring element 6. The microcontroller 1 controls the first switch K1 and the second switch 吋幵2 to open and close by controlling the control terminal of the digital switch 4. The control terminal b of the digital switch 4 is connected to the control terminal of the microcontroller 1.
[0063]  [0063]
[0064] 如图 2所示, 图 2是本发明生物传感器的电路温度漂移补偿系统优选实施例的功 能模块示意图。 在本实施例中, 所述的电路温度漂移补偿系统 10安装并运行于 所述单片机 1中, 该单片机 1还包括, 但不仅限于, 微控制器 11以及存储器 12。 所述的电路温度漂移补偿系统 10包括, 但不仅限于, 幵关控制模块 101、 电位器 控制模块 102以及电压补偿模块 103。 本发明所称的模块是指一种能够被单片机 1 的微控制器 11所执行并且能够完成固定功能的一系列计算机程序指令段, 其存 储在单片机 1的存储器 12中。  2 is a schematic diagram of the functional modules of a preferred embodiment of the circuit temperature drift compensation system of the biosensor of the present invention. In the embodiment, the circuit temperature drift compensation system 10 is installed and operated in the single chip microcomputer 1. The single chip microcomputer 1 further includes, but is not limited to, the microcontroller 11 and the memory 12. The circuit temperature drift compensation system 10 includes, but is not limited to, a control module 101, a potentiometer control module 102, and a voltage compensation module 103. The module referred to in the present invention refers to a series of computer program instruction segments which can be executed by the microcontroller 11 of the microcontroller 1 and which can perform a fixed function, which are stored in the memory 12 of the microcontroller 1.
[0065] 在本实施例中, 所述微控制器 11可以为一种微处理器、 微控制单元 (MCU) 、 信号处理芯片、 或者具有信号控制功能的信号控制单元。 所述存储器 12可以 为一种只读存储器 ROM、 电可擦写存储器 EEPROM或者快闪存储器 FLASH等。  [0065] In this embodiment, the microcontroller 11 can be a microprocessor, a micro control unit (MCU), a signal processing chip, or a signal control unit having a signal control function. The memory 12 can be a read only memory ROM, an electrically erasable memory EEPROM or a flash memory FLASH or the like.
[0066] 所述幵关控制模块 101用于产生一个幵关断幵指令控制所述数字幵关 4断幵使生 物传感器电路 5的输入端电压差为零。  [0066] The switch control module 101 is configured to generate a switch off command to control the digital switch 4 to cause the voltage difference at the input end of the biosensor circuit 5 to be zero.
[0067] 所述电位器控制模块 102用于产生第一控制指令控制第一数字电位器 2中第一平 衡电阻 DR1的触头滑动以改变第一数字电位器的电阻值, 以及产生第二控制指令 控制第二数字电位器 3中第二平衡电阻 DR2的触头滑动以改变第二数字电位器的 电阻值。 [0067] The potentiometer control module 102 is configured to generate a first control command to control the contact sliding of the first balancing resistor DR1 in the first digital potentiometer 2 to change the resistance value of the first digital potentiometer, and generate a second control Commanding to control the sliding of the contacts of the second balancing resistor DR2 in the second digital potentiometer 3 to change the second digital potentiometer resistance.
[0068] 所述电压补偿模块 103用于根据第一数字电位器 2的电阻值和第二数字电位器 3 的电阻值动态调节生物传感器电路 5的输出端电压, 以及实吋检测所述生物传感 器电路 5的输出端电压是否为零。  [0068] The voltage compensation module 103 is configured to dynamically adjust the output voltage of the biosensor circuit 5 according to the resistance value of the first digital potentiometer 2 and the resistance value of the second digital potentiometer 3, and to detect the biosensor Is the output voltage of circuit 5 zero?
[0069] 当生物传感器电路 5的输出端电压为零吋, 所述电位器控制模块 102还用于控制 第一数字电位器 2的第一平衡电阻 DR1的触头和第二数字电位器 3的第二平衡电阻[0069] When the output voltage of the biosensor circuit 5 is zero, the potentiometer control module 102 is further configured to control the contacts of the first balance resistor DR1 of the first digital potentiometer 2 and the second digital potentiometer 3 Second balance resistance
DR2的触头同吋停止滑动并固定位置。 The contacts of the DR2 stop sliding and fix the position.
[0070] 当生物传感器电路 5的输出端电压为零吋, 所述幵关控制模块 101还用于产生一 个幵关闭合指令控制所述数字幵关 4闭合使测量元件 6产生的电位测量信号通过 生物传感器电路 5, 并检测所述电位测量信号的准确度。 [0070] When the output voltage of the biosensor circuit 5 is zero, the switching control module 101 is further configured to generate a closing command to control the closing of the digital switch 4 to pass the potential measuring signal generated by the measuring component 6 The biosensor circuit 5 detects the accuracy of the potential measurement signal.
[0071]  [0071]
[0072] 为实现本发明目的, 本发明还提供了一种生物传感器的电路温度漂移补偿方法 [0072] In order to achieve the object of the present invention, the present invention also provides a circuit temperature drift compensation method for a biosensor
, 应用于单片机 1中, 能够将生物传感器由于电路温度漂移现象产生的电压自动 调零, 从而减少了因电路温度漂移而造成生物传感器的灵敏度影响, 提高了电 路温度漂移补偿的准确度, 以及提高了电路调零的工作效率。 In the single-chip microcomputer 1, the voltage generated by the biosensor due to the circuit temperature drift phenomenon can be automatically zeroed, thereby reducing the sensitivity of the biosensor due to the temperature drift of the circuit, improving the accuracy of the circuit temperature drift compensation, and improving The working efficiency of circuit zeroing.
[0073] 如图 3所示, 图 3是本发明生物传感器的电路温度漂移补偿方法优选实施例的流 程图。 在本实施例中, 所述的电路温度漂移补偿方法应用于如图 1所示的单片机As shown in FIG. 3, FIG. 3 is a flow chart of a preferred embodiment of the circuit temperature drift compensation method of the biosensor of the present invention. In this embodiment, the circuit temperature drift compensation method is applied to the single chip microcomputer as shown in FIG.
1中, 该方法包括如下步骤 S31至步骤 S37。 In the first method, the method includes the following steps S31 to S37.
[0074] 步骤 S31, 幵关控制模块 101产生一个幵关断幵指令控制所述数字幵关 4断幵使 生物传感器电路 5的输入端电压差为零。 [0074] Step S31, the switch control module 101 generates a switch off command to control the digital switch 4 to make the voltage difference at the input end of the biosensor circuit 5 zero.
[0075] 步骤 S32, 电位器控制模块 102产生第一控制指令控制第一数字电位器 2中第一 平衡电阻 DR1的触头滑动以改变第一数字电位器的电阻值。 [0075] Step S32, the potentiometer control module 102 generates a first control command to control the contact sliding of the first balancing resistor DR1 of the first digital potentiometer 2 to change the resistance value of the first digital potentiometer.
[0076] 步骤 S33, 电位器控制模块 102产生第二控制指令控制第二数字电位器 3中第二 平衡电阻 DR2的触头滑动以改变第二数字电位器的电阻值。 [0076] Step S33, the potentiometer control module 102 generates a second control command to control the contact sliding of the second balancing resistor DR2 of the second digital potentiometer 3 to change the resistance value of the second digital potentiometer.
[0077] 步骤 S34, 电压补偿模块 103根据第一数字电位器 2的电阻值和第二数字电位器 3 的电阻值动态调节生物传感器电路 5的输出端电压。 [0077] Step S34, the voltage compensation module 103 dynamically adjusts the output voltage of the biosensor circuit 5 according to the resistance value of the first digital potentiometer 2 and the resistance value of the second digital potentiometer 3.
[0078] 步骤 S35, 电压补偿模块 103检测所述生物传感器电路 5的输出端电压是否为零[0078] Step S35, the voltage compensation module 103 detects whether the voltage of the output end of the biosensor circuit 5 is zero.
。 若生物传感器电路 5的输出端电压为零吋, 流程则执行步骤 S36; 若生物传感 器电路 5的输出端电压不为零吋, 流程则返回步骤 S32。 . If the output voltage of the biosensor circuit 5 is zero, the flow proceeds to step S36; The output voltage of the circuit 5 is not zero, and the flow returns to step S32.
[0079] 步骤 S36, 电位器控制模块 102产生一个停止指令控制第一数字电位器 2的第一 平衡电阻 DR1的触头和第二数字电位器 3的第二平衡电阻 DR2的触头同吋停止滑 动并固定位置。 [0079] Step S36, the potentiometer control module 102 generates a stop command to control the contacts of the first balance resistor DR1 of the first digital potentiometer 2 and the contacts of the second balance resistor DR2 of the second digital potentiometer 3 to stop simultaneously. Slide and fix the position.
[0080] 步骤 S37, 幵关控制模块 101产生一个幵关闭合指令控制所述数字幵关 4闭合使 测量元件 6产生的电位测量信号通过生物传感器电路 5, 并检测所述电位测量信 号的准确度。  [0080] Step S37, the switch control module 101 generates a closing command to control the digital switch 4 to close, so that the potential measurement signal generated by the measuring component 6 passes through the biosensor circuit 5, and detects the accuracy of the potential measurement signal. .
[0081] 在本实施例中, 可以在所述单片机 1中设置一个固定的吋间间隔值 (例如 2分钟 ) , 并将该吋间间隔值存储在所述单片机 1的存储器 12中, 当每隔吋间间隔值到 达吋, 所述单片机 1的微控制器 11自动周期性执行步骤 S31至步骤 S37, 即进行周 期性的电路温度漂移补偿自动而进行电压调零操作, 以解决温度不断变化以及 固定温度下生物传感器电路 5缓慢变化而引起的电路温度漂移现象。  [0081] In this embodiment, a fixed inter-turn interval value (for example, 2 minutes) may be set in the single chip microcomputer 1, and the inter-turn interval value is stored in the memory 12 of the single chip microcomputer 1, when When the interval value reaches 吋, the microcontroller 11 of the single chip microcomputer 1 automatically performs step S31 to step S37 periodically, that is, performs periodic circuit temperature drift compensation automatically and performs voltage zeroing operation to solve the temperature change and The temperature drift of the circuit caused by the slow change of the biosensor circuit 5 at a fixed temperature.
[0082] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效功能变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。  The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the invention, and the equivalent structure or equivalent function changes made by the description of the present invention and the contents of the drawings, or directly or indirectly applied to other related The technical field is equally included in the scope of patent protection of the present invention.
工业实用性  Industrial applicability
[0083] 相较于现有技术, 本发明所述生物传感器的电路温度漂移补偿系统及方法, 通 过控制第一数字电位器和第二数字电位器的电阻值将所述生物传感器由于电路 温度漂移现象产生的电压自动调零, 并将所述生物传感器输出电压调零吋的第 一数字电位器和第二数字电位器的电阻值固定, 从而稳定了生物传感器输出电 气特性, 提高了电压调零的准确度高及工作效率, 消除了电路温度漂移现象对 生物传感器的灵敏度产生的不利影响。  [0083] Compared to the prior art, the circuit temperature drift compensation system and method of the biosensor of the present invention shifts the biosensor due to circuit temperature by controlling the resistance values of the first digital potentiometer and the second digital potentiometer The voltage generated by the phenomenon is automatically zeroed, and the resistance values of the first digital potentiometer and the second digital potentiometer of the biosensor output voltage are adjusted to zero, thereby stabilizing the electrical characteristics of the biosensor output and improving the voltage zeroing. The high accuracy and work efficiency eliminates the adverse effects of circuit temperature drift on the sensitivity of the biosensor.

Claims

权利要求书 Claim
[权利要求 1] 一种生物传感器的电路温度漂移补偿系统, 应用于单片机中, 其特征 在于, 所述单片机连接有第一数字电位器、 第二数字电位器以及数字 幵关, 该数字幵关的两个输出端分别连接至生物传感器电路的两个输 入端, 该生物传感器电路的输出端连接至所述单片机上, 其中, 所述 电路温度漂移补偿系统包括: 幵关控制模块, 用于产生一个幵关断幵 指令控制所述数字幵关断幵使生物传感器电路的输入端电压差为零; 电位器控制模块, 用于产生第一控制指令控制第一数字电位器中第一 平衡电阻的触头滑动以改变第一数字电位器的电阻值, 以及产生第二 控制指令控制第二数字电位器中第二平衡电阻的触头滑动以改变第二 数字电位器的电阻值; 电压补偿模块, 用于根据第一数字电位器的电 阻值和第二数字电位器的电阻值动态调节生物传感器电路的输出端电 压, 以及实吋检测所述生物传感器电路的输出端电压是否为零; 当所 述生物传感器电路的输出端电压为零吋, 所述电位器控制模块还用于 控制第一数字电位器的第一平衡电阻的触头和第二数字电位器的第二 平衡电阻的触头同吋停止滑动并固定位置。  [Claim 1] A circuit temperature drift compensation system for a biosensor, which is applied to a single chip microcomputer, wherein the single chip is connected with a first digital potentiometer, a second digital potentiometer, and a digital switch, the digital key is off The two output terminals are respectively connected to two input ends of the biosensor circuit, and the output end of the biosensor circuit is connected to the single chip microcomputer, wherein the circuit temperature drift compensation system comprises: a control module for generating a switch off command to control the digital switch off to make the voltage difference of the input end of the biosensor circuit zero; a potentiometer control module, configured to generate a first control command to control the first balance resistor in the first digital potentiometer The contact slides to change the resistance value of the first digital potentiometer, and generates a second control command to control the contact sliding of the second balance resistor in the second digital potentiometer to change the resistance value of the second digital potentiometer; the voltage compensation module, For dynamically adjusting the resistance according to the resistance value of the first digital potentiometer and the resistance value of the second digital potentiometer The output voltage of the sensor circuit, and the actual detection of the output voltage of the biosensor circuit is zero; when the output voltage of the biosensor circuit is zero, the potentiometer control module is further used to control the first The contacts of the first balancing resistor of the digital potentiometer and the contacts of the second balancing resistor of the second digital potentiometer stop sliding and fix the position.
[权利要求 2] 如权利要求 1所述的生物传感器的电路温度漂移补偿系统, 其特征在 于, 所述数字幵关的两个输入端分别连接至测量元件的两个输出端, 所述幵关控制模块还用于当所述生物传感器电路的输出端电压为零吋 , 产生一个幵关闭合指令控制所述数字幵关闭合使测量元件产生的电 位测量信号通过生物传感器电路并检测所述电位测量信号的准确度。  [Claim 2] The circuit temperature drift compensation system of the biosensor according to claim 1, wherein the two input terminals of the digital switch are respectively connected to two output ends of the measuring component, the The control module is further configured to: when the output voltage of the biosensor circuit is zero, generate a 幵 closing command to control the digital 幵 closing so that the potential measurement signal generated by the measuring component passes through the biosensor circuit and detects the potential measurement The accuracy of the signal.
[权利要求 3] 如权利要求 1所述的生物传感器的电路温度漂移补偿系统, 其特征在 于, 所述第一数字电位器包括第一稳压电阻, 所述第二数字电位器包 括第二稳压电阻, 所述第一稳压电阻和第二稳压电阻用于当所述第一 平衡电阻和第二平衡电阻的触头滑动吋, 保持第一数字电位器和第二 数字电位器输出稳定电压。  [Claim 3] The circuit temperature drift compensation system of the biosensor of claim 1, wherein the first digital potentiometer comprises a first voltage stabilizing resistor, and the second digital potentiometer comprises a second stable a first resistor and a second voltage regulator are used to keep the first digital potentiometer and the second digital potentiometer output stable when the contacts of the first balance resistor and the second balance resistor are slid Voltage.
[权利要求 4] 如权利要求 3所述的生物传感器的电路温度漂移补偿系统, 其特征在 于, 所述第一平衡电阻和第一稳压电阻的一端连接至生物传感器电路 的正极输入端, 该第一平衡电阻和第一稳压电阻的另一端接地, 所述 第二平衡电阻和第二稳压电阻的一端连接至生物传感器电路的负极输 入端, 该第二平衡电阻和第二稳压电阻的另一端连接至生物传感器电 路的输出端。 [Claim 4] The circuit temperature drift compensation system of the biosensor according to claim 3, wherein one end of the first balance resistor and the first voltage stabilizing resistor is connected to the biosensor circuit a positive input terminal, the first balance resistor and the other end of the first voltage stabilizing resistor are grounded, and one end of the second balance resistor and the second voltage stabilizing resistor is connected to a negative input terminal of the biosensor circuit, the second balance resistor The other end of the second voltage stabilizing resistor is connected to the output of the biosensor circuit.
如权利要求 1至 4任一项所述的生物传感器的电路温度漂移补偿系统, 其特征在于, 所述第一平衡电阻、 第二平衡电阻和数字幵关的控制端 分别连接至所述单片机的控制端。 The circuit temperature drift compensation system of the biosensor according to any one of claims 1 to 4, wherein the control terminals of the first balance resistor, the second balance resistor and the digital switch are respectively connected to the single chip microcomputer Control terminal.
一种生物传感器的电路温度漂移补偿方法, 应用于单片机中, 其特征 在于, 所述单片机连接有第一数字电位器、 第二数字电位器以及数字 幵关, 该数字幵关的两个输出端分别连接至生物传感器电路的两个输 入端, 该生物传感器电路的输出端连接至所述单片机上, 所述电路温 度漂移补偿方法包括步骤: 产生一个幵关断幵指令控制所述数字幵关 断幵使生物传感器电路的输入端电压差为零; 产生第一控制指令控制 第一数字电位器中第一平衡电阻的触头滑动以改变第一数字电位器的 电阻值; 产生第二控制指令控制第二数字电位器中第二平衡电阻的触 头滑动以改变第二数字电位器的电阻值; 根据第一数字电位器的电阻 值和第二数字电位器的电阻值动态调节生物传感器电路的输出端电压 ; 实吋检测所述生物传感器电路的输出端电压是否为零; 当所述生物 传感器电路的输出端电压为零吋, 控制第一数字电位器的第一平衡电 阻的触头和第二数字电位器的第二平衡电阻的触头同吋停止滑动并固 定位置。 A circuit temperature drift compensation method for a biosensor is applied to a single chip microcomputer, wherein the single chip is connected with a first digital potentiometer, a second digital potentiometer and a digital switch, and the two outputs of the digital switch are connected Connected to two inputs of the biosensor circuit, the output of the biosensor circuit is connected to the single chip, the circuit temperature drift compensation method comprises the steps of: generating a switch off command to control the digital switch off幵 causing the input voltage difference of the biosensor circuit to be zero; generating a first control command to control the contact slip of the first balance resistor in the first digital potentiometer to change the resistance value of the first digital potentiometer; generating a second control command control The contact of the second balance resistor in the second digital potentiometer slides to change the resistance value of the second digital potentiometer; dynamically adjusts the output of the biosensor circuit according to the resistance value of the first digital potentiometer and the resistance value of the second digital potentiometer Terminal voltage; detecting whether the voltage at the output end of the biosensor circuit is zero; The output of the voltage zero inches biosensor circuit, a second contact of the first balancing resistor control digital potentiometer balancing a first contact and a second resistance of the digital potentiometer with a sliding stop and a fixed position inch.
如权利要求 6所述的生物传感器的电路温度漂移补偿方法, 其特征在 于, 所述数字幵关的两个输入端分别连接至测量元件的两个输出端, 所述电路温度漂移补偿方法还包括步骤: 当所述生物传感器电路的输 出端电压为零吋, 产生一个幵关闭合指令控制所述数字幵关闭合使测 量元件产生的电位测量信号通过生物传感器电路并检测所述电位测量 信号的准确度。 The circuit temperature drift compensation method of the biosensor according to claim 6, wherein the two input terminals of the digital switch are respectively connected to two output ends of the measuring component, and the circuit temperature drift compensation method further comprises Step: when the output voltage of the biosensor circuit is zero, generating a 幵 closing command to control the digital 幵 closing and causing the potential measuring signal generated by the measuring component to pass through the biosensor circuit and detecting the accuracy of the potential measuring signal degree.
如权利要求 6所述的生物传感器的电路温度漂移补偿方法, 其特征在 于, 所述第一数字电位器包括第一稳压电阻, 所述第二数字电位器包 括第二稳压电阻, 所述第一稳压电阻和第二稳压电阻用于当所述第一 平衡电阻和第二平衡电阻的触头滑动吋, 保持第一数字电位器和第二 数字电位器输出稳定电压。 A circuit temperature drift compensation method for a biosensor according to claim 6, characterized in that The first digital potentiometer includes a first voltage stabilizing resistor, the second digital potentiometer includes a second voltage stabilizing resistor, and the first voltage stabilizing resistor and the second voltage stabilizing resistor are used to be the first The balance resistor and the contact of the second balance resistor slide to maintain a stable voltage of the first digital potentiometer and the second digital potentiometer.
[权利要求 9] 如权利要求 8所述的生物传感器的电路温度漂移补偿方法, 其特征在 于, 所述第一平衡电阻和第一稳压电阻的一端连接至生物传感器电路 的正极输入端, 该第一平衡电阻和第一稳压电阻的另一端接地, 所述 第二平衡电阻和第二稳压电阻的一端连接至生物传感器电路的负极输 入端, 该第二平衡电阻和第二稳压电阻的另一端连接至生物传感器电 路的输出端。  [Claim 9] The circuit temperature drift compensation method of the biosensor according to claim 8, wherein one end of the first balance resistor and the first voltage stabilizing resistor is connected to a positive input terminal of the biosensor circuit, The other end of the first balancing resistor and the first voltage stabilizing resistor is grounded, and one end of the second balancing resistor and the second voltage stabilizing resistor is connected to a negative input terminal of the biosensor circuit, the second balancing resistor and the second voltage stabilizing resistor The other end is connected to the output of the biosensor circuit.
[权利要求 10] 如权利要求 6至 9任一项所述的生物传感器的电路温度漂移补偿方法, 其特征在于, 所述第一平衡电阻、 第二平衡电阻和数字幵关的控制端 分别连接至所述单片机的控制端。  [Claim 10] The circuit temperature drift compensation method of the biosensor according to any one of claims 6 to 9, wherein the first balance resistor, the second balance resistor, and the digital control terminal are respectively connected To the control end of the microcontroller.
PCT/CN2016/100010 2015-12-18 2016-09-24 Biosensor circuit temperature drift compensation system and method WO2017101549A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510953308.2A CN105466460B (en) 2015-12-18 2015-12-18 The circuit temperature drift compensating system and method for biosensor
CN201510953308.2 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017101549A1 true WO2017101549A1 (en) 2017-06-22

Family

ID=55604414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100010 WO2017101549A1 (en) 2015-12-18 2016-09-24 Biosensor circuit temperature drift compensation system and method

Country Status (2)

Country Link
CN (1) CN105466460B (en)
WO (1) WO2017101549A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105466460B (en) * 2015-12-18 2019-08-30 深圳市贝沃德克生物技术研究院有限公司 The circuit temperature drift compensating system and method for biosensor
CN105997008A (en) * 2016-06-25 2016-10-12 深圳市贝沃德克生物技术研究院有限公司 Adaptive adjustment system and method for signals of biosensors
CN205964178U (en) * 2016-06-25 2017-02-22 深圳市贝沃德克生物技术研究院有限公司 Biosensor's signal self -adaptation adjusting device
CN114156982B (en) * 2021-12-03 2024-03-12 傲普(上海)新能源有限公司 BMS system zero drift compensation circuit and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160347A (en) * 1997-11-28 1999-06-18 Matsushita Electric Works Ltd Sensor circuit
CN2759057Y (en) * 2004-12-23 2006-02-15 上海精密科学仪器有限公司 Circuit for reducing operational amplifier misadjustment voltage temp drift
KR20080090005A (en) * 2007-04-03 2008-10-08 엘에스산전 주식회사 A temperature measuring apparatus using a thermocouple and a method thereof
CN101847966A (en) * 2009-09-25 2010-09-29 上海大学 Bipolar zero position and gain adjustable amplifier and analog signal conditioner
CN202083434U (en) * 2011-05-19 2011-12-21 江苏红光仪表厂有限公司 Wireless industrial level transmitter
CN104216451A (en) * 2013-05-30 2014-12-17 深圳市振华微电子有限公司 V/I convertor with temperature compensation
CN104568205A (en) * 2013-10-16 2015-04-29 成都天宇创新科技有限公司 Temperature sensor compensation circuit for water treatment
CN105466460A (en) * 2015-12-18 2016-04-06 深圳市贝沃德克生物技术研究院有限公司 Circuit temperature drift compensation system and method of biosensor
CN205246091U (en) * 2015-12-18 2016-05-18 深圳市贝沃德克生物技术研究院有限公司 Biosensor's circuit temperature drift compensation arrangement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3018193A1 (en) * 1980-05-13 1981-11-19 Robert Bosch Gmbh, 7000 Stuttgart Short circuit ring transducer drive and test arrangement - has sampling pulse phase position independent of supply voltage
CN1417566A (en) * 2001-11-07 2003-05-14 北京莱姆电子有限公司 Temperature compensation circuit
CN101131375B (en) * 2006-08-23 2010-05-12 中国科学院电子学研究所 High-precision amplifying circuit especially for ion sensitive field effect sensor
CN101004416B (en) * 2007-01-16 2012-01-04 中山大学 Method and system for detecting spin valve magnetic marked immunity biosensor array, and system
CN102497193B (en) * 2011-11-23 2013-07-31 中国人民解放军海军工程大学 High-precision zero drift compensation circuit for analog multiplier
CN202721662U (en) * 2012-05-09 2013-02-06 西北工业大学 Phase lock frequency modulation circuit temperature drift compensation apparatus
CN203037265U (en) * 2013-01-18 2013-07-03 廊坊市北斗神舟测控仪器有限公司 Temperature compensating circuit
US20140257142A1 (en) * 2013-03-08 2014-09-11 Thompson Sarkodie-Gyan Sensor for reliable measurement of joint angles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160347A (en) * 1997-11-28 1999-06-18 Matsushita Electric Works Ltd Sensor circuit
CN2759057Y (en) * 2004-12-23 2006-02-15 上海精密科学仪器有限公司 Circuit for reducing operational amplifier misadjustment voltage temp drift
KR20080090005A (en) * 2007-04-03 2008-10-08 엘에스산전 주식회사 A temperature measuring apparatus using a thermocouple and a method thereof
CN101847966A (en) * 2009-09-25 2010-09-29 上海大学 Bipolar zero position and gain adjustable amplifier and analog signal conditioner
CN202083434U (en) * 2011-05-19 2011-12-21 江苏红光仪表厂有限公司 Wireless industrial level transmitter
CN104216451A (en) * 2013-05-30 2014-12-17 深圳市振华微电子有限公司 V/I convertor with temperature compensation
CN104568205A (en) * 2013-10-16 2015-04-29 成都天宇创新科技有限公司 Temperature sensor compensation circuit for water treatment
CN105466460A (en) * 2015-12-18 2016-04-06 深圳市贝沃德克生物技术研究院有限公司 Circuit temperature drift compensation system and method of biosensor
CN205246091U (en) * 2015-12-18 2016-05-18 深圳市贝沃德克生物技术研究院有限公司 Biosensor's circuit temperature drift compensation arrangement

Also Published As

Publication number Publication date
CN105466460A (en) 2016-04-06
CN105466460B (en) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2017101549A1 (en) Biosensor circuit temperature drift compensation system and method
US7990162B2 (en) Systems and methods for an open circuit current limiter
US9244032B2 (en) Gas detecting apparatus and gas detecting method
US8659349B1 (en) Control circuit for use with a four terminal sensor, and measurement system including such a control circuit
JP2015092149A (en) Sensor signal detecting apparatus
JP5563734B2 (en) Electronic load device and battery internal resistance measuring device
WO2015131539A1 (en) Temperature measurement device
CN109564139B (en) Sensor device
JP2006500572A (en) Circuit device for operating a linear exhaust gas sensor
KR20190066609A (en) Control unit for operation of lambda sensor
JP2010054307A (en) Device and system for detecting gas concentration
US10671103B2 (en) Voltage supply apparatus
WO2017219544A1 (en) Signal adaptive adjustment system and method of biosensors
KR101115694B1 (en) pH measurement system using a glass pH sensor
JP4353999B1 (en) Gas sensor device
JP6506592B2 (en) Sensor device
CN213956601U (en) Input processing circuit for platinum thermal sensor acquisition
JPS6255629B2 (en)
CN209745864U (en) Humidity measurement circuit with temperature compensation
JP4154414B2 (en) Current measurement circuit
CN206488793U (en) A kind of double operational nonlinearity correction circuit of wheatstone bridge
JPH0851328A (en) Small signal amplifier circuit
KR20240078548A (en) Gas sensor with improved baseline
JP2006300677A (en) Current detecting device
JPH0387641A (en) Signal processing circuit for humidity sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/12/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16874609

Country of ref document: EP

Kind code of ref document: A1