WO2017101166A1 - 相干光正交频分复用系统用的宽可调谐单频光纤激光光源 - Google Patents

相干光正交频分复用系统用的宽可调谐单频光纤激光光源 Download PDF

Info

Publication number
WO2017101166A1
WO2017101166A1 PCT/CN2015/100229 CN2015100229W WO2017101166A1 WO 2017101166 A1 WO2017101166 A1 WO 2017101166A1 CN 2015100229 W CN2015100229 W CN 2015100229W WO 2017101166 A1 WO2017101166 A1 WO 2017101166A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
tunable
laser
fiber
cavity
Prior art date
Application number
PCT/CN2015/100229
Other languages
English (en)
French (fr)
Inventor
徐善辉
杨中民
张远飞
冯洲明
杨昌盛
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to EP15910635.0A priority Critical patent/EP3392985B1/en
Priority to US15/567,082 priority patent/US10003167B2/en
Publication of WO2017101166A1 publication Critical patent/WO2017101166A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1062Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a controlled passive interferometer, e.g. a Fabry-Perot etalon
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/002Coherencemultiplexing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • H01S3/10092Coherent seed, e.g. injection locking

Definitions

  • the invention relates to a fiber laser technology which can be used in a coherent optical orthogonal frequency division multiplexing system in the fields of coherent optical communication, optical fiber sensing, coherent spectral combining, etc., and particularly relates to an output wavelength for a coherent optical orthogonal frequency division multiplexing system Wide tunable single-frequency fiber laser source with a wide range of narrow linewidths.
  • Coherent optical orthogonal frequency division multiplexing is a kind of multi-carrier modulation technology, which can effectively solve the inter-symbol interference problem caused by a dispersive channel, and can be widely used in various broadband wireless and wired communication. This anti-dispersion capability is particularly important today, which emphasizes high-speed, broadband capabilities.
  • Key optical components in coherent optical orthogonal frequency division multiplexing systems include precisely tunable narrow linewidth lasers and wavelength selective switches with adjustable center wavelength and bandwidth.
  • Single-frequency fiber laser refers to the output of a single longitudinal mode (single frequency) in the laser cavity. It is characterized by a very narrow linewidth of the laser, up to 10 -8 nm, which is a narrow linewidth DFB semiconductor.
  • Lasers are orders of magnitude higher, which can suppress phase noise well and enable signal phase detection in high-capacity high-speed optical transmission networks.
  • a fiber laser source with a wide laser tunable output wavelength can be used as a carrier signal source.
  • the current research work of tunable single-frequency laser light source focuses on the use of rare earth ion highly doped quartz fiber or doped solid crystal as the gain medium of laser, and adopts short straight cavity, annular cavity or composite cavity structure, and is inserted reliably in its optical path.
  • Low-profile bulk optical components polarization controller, thermo-optical crystal, electro-optic crystal or F-P etalon, etc.
  • the doping ion concentration Used to eliminate space burning holes, maintain single-frequency operation or laser frequency adjustment, but all break the all-fiber structure, the doping ion concentration can not be further improved, the cavity of the cavity is long, there is random mode hopping, and multiple longitudinal modes are prone to occur. Wait for some questions.
  • the biggest difficulty is that the line width is hard to do. Below 10 kHz, the noise is large, the tuning range is discontinuous, and the long-term stability is poor.
  • the object of the present invention is to overcome the above-mentioned deficiencies in the prior art, and to disclose a wide tunable single-frequency fiber laser source that can be used in a coherent optical orthogonal frequency division multiplexing system, which combines a short-line resonator and is tunable through a self-injection locking structure.
  • the filter bank together implements a wide tunable range of single-frequency fiber laser sources with an all-fiber structure.
  • a wide tunable single-frequency fiber laser source for a coherent optical orthogonal frequency division multiplexing system comprising a high reflectivity chirped fiber grating, a high gain fiber, a low reflectivity chirped fiber grating, an optical wavelength division multiplexer, Single mode semiconductor pump lasers, optical couplers, optical isolators, optical circulators, tunable optical filter components.
  • the structural relationship between the components is: high gain fiber as the gain medium of the compact laser cavity, low reflectivity ⁇ fiber grating and high reflectivity ⁇ fiber grating constitute the front and back cavity mirror of the laser cavity, realize the laser Oscillation within the cavity.
  • High reflectivity ⁇ fiber grating, high gain fiber, low reflectivity ⁇ fiber grating constitute the resonant cavity of the laser, and the laser output from the cavity passes through the optical coupler and a part of the light passes through the optical circulator into the tunable optical filter component. , either through a very narrow bandwidth tunable filter component
  • the ITU-T stipulates that the wavelength corresponding to the nominal center frequency is selected and then injected back into the laser cavity via the optical circulator and the optical coupler. Combined with the structure of the compact short-line cavity, the injected cavity is lasing out of the ITU- T A single-frequency fiber laser that specifies a nominal center frequency corresponding to a wavelength.
  • Different ITU-T can be selected by adjusting the tunable filter components
  • the laser wavelength corresponding to the nominal center frequency is specified to achieve a single tunable laser output with a wide tunable range.
  • the single-frequency laser signal enters the optical coupler via the signal end of the optical wavelength division multiplexer and is then output from the output of the optical isolator.
  • the tunable optical filter component is a device that selects to pass or block a particular wavelength in the optical path system through a certain free spectral range and bandwidth, including but not limited to one or several tunable structures.
  • Combinations of optical filters and the like include, but are not limited to, an acousto-optic tunable filter, an electro-optical tunable filter, a mechanical optical tunable filter, a thermo-optic tunable filter, and the like.
  • the tunable optical filter component has a free spectral range of 0.5 to 500 nm and a 3 dB bandwidth of less than 0.1. Nm.
  • the fiber laser is a compact short straight cavity structure
  • the front cavity mirror is a low reflectivity chirped fiber grating
  • the back cavity mirror is a high reflectivity chirped fiber grating
  • the reflectivity chirped fiber grating is Low reflection of the excitation light signal, the reflectivity 10% ⁇ 90%, its 3dB reflection spectrum width is 1 ⁇ 40 nm.
  • the high reflectivity ⁇ fiber grating is high in pump light, the transmittance is greater than 90%, and the excitation light signal is high, and the reflectance is greater than 95. %, its 3dB reflection spectrum width is 1 ⁇ 40 nm.
  • the high gain fiber has a unit length gain greater than 0.2 dB/cm and a fiber length of 0.5 to 100 cm. .
  • the technical effect of the invention is that a high gain fiber of the order of centimeters can be used as a gain medium of the laser, and a resonant cavity structure is composed of a low reflectance chirped fiber grating and a high reflectance chirped fiber grating.
  • the high-gain particles in the core are reversed to generate the laser signal of the stimulated emission, and the broadband laser signal outputted by the cavity passes through the optical coupler.
  • the ITU-T specifies a single longitudinal mode laser signal with a nominal center frequency corresponding to the wavelength, which is injected back into the cavity via the optical circulator and optocoupler.
  • the self-injection-locked short-line cavity can lasing the ITU-T.
  • a single-frequency laser that specifies the wavelength corresponding to the nominal center frequency. By adjusting the tunable filter components, different longitudinal modes of the wavelengths corresponding to the specified ITU-T nominal center frequency can be selected, ultimately achieving wavelength tunability and compliance.
  • the ITU-T specifies a single-frequency laser output with a nominal center frequency.
  • FIG. 1 is a schematic diagram showing the principle of a wide tunable single-frequency fiber laser source for a coherent optical orthogonal frequency division multiplexing system according to the present invention.
  • a wide tunable single-frequency fiber laser source for a coherent optical orthogonal frequency division multiplexing system including a high reflectivity chirped fiber grating 1 , high gain fiber 2 , low reflectivity ⁇ fiber grating 3 , optical wavelength division multiplexer 4 , single mode semiconductor pump laser 5 , optical coupler 6 , optical isolator 7 , optical circulator 8 , tunable optical filter component 9 .
  • the structural relationship between the components is: high gain fiber 2 as a gain medium for a compact laser cavity, low reflectivity ⁇ fiber grating 3 and high reflectivity ⁇ fiber grating 1
  • the front and back cavity mirrors that make up the laser cavity realize the oscillation of the laser in the cavity.
  • High reflectivity ⁇ fiber grating 1 , high gain fiber 2 , low reflectivity ⁇ fiber grating 3 The cavity of the laser is formed, and the laser output from the cavity passes through the optical coupler 6 and a part of the light passes through the optical circulator 8 into the tunable optical filter component 9 through the tunable filter component with extremely narrow bandwidth.
  • the bandwidth corresponding to the nominal center frequency specified by the ITU-T with extremely narrow bandwidth is selected, and then via the optical circulator 8 and the optical coupler 6 Injected back into the laser cavity, combined with the structure of the compact short-line cavity, lasing out through the self-injection-locked cavity.
  • ITU-T A single-frequency fiber laser that specifies a wavelength corresponding to the nominal center frequency.
  • Different ITU-T can be selected by adjusting the tunable filter components
  • the wavelength corresponding to the nominal center frequency is specified to achieve a single tunable laser output with a wide tunable range.
  • the single-frequency laser signal enters the optical coupler 6 via the signal end of the optical wavelength division multiplexer 4, and then from the optical isolator 7 Output output.
  • the wavelength corresponding to any of the ITU-T specified nominal center frequencies is selected by the tunable filter component with a 3dB spectral width of less than 0.1nm.
  • the broadband fiber grating 1 has a center reflection wavelength of 1552.52 nm and a 3dB reflection spectrum width of 40. Nm, the central wavelength reflectance of this example is greater than 99.95%.
  • Low reflectivity ⁇ fiber grating 3 The center-reflected wavelength of the coupled output grating is the laser output wavelength of 1552.52 nm and its 3dB bandwidth is At 40 nm, the central wavelength reflectance is 10 to 95%, and the center wavelength of this example is 60%.
  • High reflectivity ⁇ fiber grating 1 and low reflectivity ⁇ fiber grating 3 It is a functional module with a wide spectral range selection and filtering.
  • the high reflectivity ⁇ fiber grating 1 and the high gain fiber 2 are connected by fusion or end face connection; high gain fiber 2 And the low reflectivity ⁇ fiber grating 3 is connected by fiber end face grinding and polishing and the cavity mirror.
  • the split ratio of the optocoupler is from 1:99 to 50:50.
  • 10 is used: 90 split ratio optocoupler 6 .
  • the tunable optical filter component 9 used in this example is an F-P cavity tunable filter with a free spectral range of 70 nm and a 3dB bandwidth of 0.02. Nm, operating wavelength range from 1520-1570 nm.
  • the pumping method uses backward pumping, and the pump light is generated by the single mode semiconductor pump laser 5 via the optical wavelength division multiplexer 3 Pump-side input via low reflectivity ⁇ fiber grating 3 to high gain fiber 2
  • core pumping is performed.
  • the pump light continuously pumps the gain particles in the core to achieve the population inversion, and the stimulated emission produces a laser signal.
  • the continuous optical signal output from the cavity passes through a 10:90 optocoupler 6 After that, 90% of the signal light enters the F-P cavity tunable filter 9 through the optical circulator 8 and is then adjusted to the ITU-T standard by the adjusted tunable filter at a wavelength of 1552.52.
  • a single longitudinal mode is obtained from a single longitudinal mode of nm (nominal center frequency 193.10 THz), which is then passed through an optical circulator 8 and an optocoupler 6 It is injected back into the cavity and generates a single-frequency laser signal with a wavelength of 1552.52 nm through the self-injection-locked cavity.
  • the laser signal enters the optical coupler 6 via the signal end of the optical wavelength division multiplexer 4, 10%
  • the single-frequency laser signal is output from the output of the optical isolator 7, and the tunable wavelength range up to 40 nm and line width ⁇ 10 kHz can be obtained by adjusting the F-P cavity tunable filter.
  • the ITU-T nominal center frequency corresponds to the wavelength of the single-frequency laser output.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

相干光正交频分复用系统用的宽可调谐单频光纤激光光源,包括高反射率啁啾光纤光栅(1),高增益光纤(2),低反射率啁啾光纤光栅(3),单模半导体泵浦激光器(5),光波分复用器(4),光耦合器(6),光环形器(8),可调谐光滤波器组件(9)。低反射率啁啾光纤光栅(3)与高反射率啁啾光纤光栅(1)一起作为谐振腔前后腔镜实现激光振荡;从光波分复用器(4)输出的宽光谱激光经过光耦合器(6)分光后一部分通过光环形器(8)进入可调谐光滤波器组件(9),通过可调谐光滤波器组件(9)选出任一ITU-T规定标称中心频率对应的波长,其3dB谱宽小于0.1nm,再通过光环形器(8)和光耦合器(6)返回注入谐振腔里面,对谐振腔进行自注入锁定,结合短线性谐振腔结构及其可调谐光滤波器组件(9)实现窄线宽、单一纵模模式的激光激射。

Description

相干光正交频分复用系统用的宽可调谐单频光纤激光光源
技术领域
本发明涉及到相干光通信、光纤传感、相干光谱合束等领域中可用于相干光正交频分复用系统的光纤激光技术,具体涉及相干光正交频分复用系统用的输出波长可调谐范围大、窄线宽的宽可调谐单频光纤激光光源。
背景技术
相干光正交频分复用 (CO-OFDM) 是多载波调制技术的一种,可以有效地解决由色散信道引起的符号间干扰问题,能够广泛地用于各种宽带无线和有线通信中。这种抗色散能力在强调高速、宽带能力的今天显得尤为重要。相干光正交频分复用 系统中的关键光器件包括精确可调的窄线宽激光器以及中心波长和带宽都可调的波长选择开关 。单频光纤激光器是指激光谐振腔内以振动单一纵模 ( 单频 ) 的形式输出,其特征为激光光谱线宽非常窄,最高可达到 10-8 nm ,比一般常用的窄线宽 DFB 半导体激光器高出了几个数量级,可以很好地抑制相位噪声而实现大容量高速光传输网络中对信号相位的探测。另一方面,对于具有波长动态分配的光网络系统,可以采用输出激光波长宽可调谐的光纤激光光源作为载波信号源。
当前可调谐单频激光光源的研究工作集中在使用稀土离子高掺杂石英光纤或者掺杂固态晶体作为激光的增益介质,采用短直腔、环形腔或复合腔等结构,在其光路中插入可靠性低的体光学元器件 ( 偏振控制器、热光晶体、电光晶体或 F-P 标准具等 ) 用作消除空间烧孔、维持单频运转或激光频率调节,但都存在打破全光纤化结构、掺杂离子浓度无法进一步提高、谐振腔腔体较长、存在随机跳模、容易出现多纵模等一些问题。最大难点是线宽较难做到 10 kHz 以下、噪声较大、调谐范围不连续、长期稳定性较差。
发明内容
本发明的目的在于克服现有技术上述中的不足,公开了可用于相干光正交频分复用系统的宽可调谐单频光纤激光光源,通过自注入锁定结构结合短线型谐振腔和可调谐滤波器组一起实现了全光纤结构的宽可调谐范围单频光纤激光光源。
本发明的目的通过如下技术方案实现。
一种相干光正交频分复用系统用的宽可调谐单频光纤激光光源,包括一个高反射率啁啾光纤光栅、高增益光纤、低反射率啁啾光纤光栅、光波分复用器、单模半导体泵浦激光器、光耦合器、光隔离器、光环形器、可调谐光滤波器组件。各部件之间的结构关系是:高增益光纤作为结构紧凑的激光谐振腔的增益介质,低反射率啁啾光纤光栅和高反射率啁啾光纤光栅组成激光谐振腔的前后腔镜,实现激光在腔内的振荡。高反射率啁啾光纤光栅、高增益光纤、低反射率啁啾光纤光栅组成了激光器的谐振腔,谐振腔输出的激光经过光耦合器后一部分光通过光环形器进入可调谐光滤波器组件中,通过带宽极窄的可调谐滤波器组件进行任一 ITU-T 规定标称中心频率对应的波长选择后,再经由光环形器和光耦合器注入回到激光谐振腔中,结合紧凑的短线型腔的结构,经过注入锁定后的谐振腔激射出 ITU-T 规定标称中心频率对应波长的单频光纤激光。通过调节可调谐滤波器组件可以选择不同的 ITU-T 规定标称中心频率对应的激光波长,从而实现宽可调谐范围的单频激光输出。单频激光信号经由光波分复用器的信号端进入光耦合器,然后从光隔离器的输出端输出。
进一步优化的,所述可调谐光滤波器组件是一种通过一定自由光谱范围和带宽去实现选择通过或者阻止光路系统中特定的波长的器件,在结构上包括但不限于一个或者几个可调谐光滤波器的组合等,在实现方法上包括但不限于声光可调谐滤波器、电光可调谐滤波器、机械式光可调谐滤波器、热光可调谐滤波器等。
进一步优化的,所述可调谐光滤波器组件的自由光谱范围为 0.5~500 nm , 3 dB 带宽小于 0.1 nm.
进一步优化的,所述光纤激光器是紧凑的短直腔结构,其前腔镜是低反射率啁啾光纤光栅,后腔镜采用高反射率啁啾光纤光栅;所述反射率啁啾光纤光栅是对激励光信号低反,反射率为 10%~90% ,其 3dB 反射谱宽为 1~40 nm 。所述高反射率啁啾光纤光栅是对泵浦光高透,透射率大于 90 %,而对激励光信号高反,反射率大于 95 %,其 3dB 反射谱宽为 1~40 nm 。
进一步优化的,所述高增益光纤的单位长度增益大于 0.2 dB/cm ,光纤长度为 0.5 ~ 100 cm 。
与现有技术相比,本发明的技术效果是:可以将厘米量级的高增益光纤作为激光的增益介质,由低反射率啁啾光纤光栅和高反射率啁啾光纤光栅组成谐振腔结构的前后腔镜,在单模半导体激光泵浦源的连续激励下,纤芯中的高增益粒子发生反转,产生受激发射的激光信号,谐振腔输出的宽带激光信号经过光耦合器后一部分光通过光环形器进入可调谐光滤波器组件,经过可调谐滤波器组件的纵模选择后得到 ITU-T 规定标称中心频率对应波长的单一纵模激光信号,再经由光环形器和光耦合器注入回谐振腔中,经过自注入锁定后的短线型腔就可以激射出 ITU-T 规定标称中心频率对应的波长的单频激光。通过调节可调谐滤波器组件可以选择不同的 ITU-T 规定标称中心频率对应的波长的纵模模式,最终实现波长可调谐、符合 ITU-T 规定标称中心频率的单频激光输出。
附图说明
图 1 为本发明一种相干光正交频分复用系统用的宽可调谐单频光纤激光光源的原理示意图。
具体实施方式
下面结合附图和具体例子对本发明的具体实施方式作进一步描述,需要说明的是本发明要求保护的范围并不局限于实施例表述的范围,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现的。
如图 1 ,一种相干光正交频分复用系统用的宽可调谐单频光纤激光光源,包括一个高反射率啁啾光纤光栅 1 、高增益光纤 2 、低反射率啁啾光纤光栅 3 、光波分复用器 4 、单模半导体泵浦激光器 5 、光耦合器 6 、光隔离器 7 、光环形器 8 、可调谐光滤波器组件 9 。各部件之间的结构关系是:高增益光纤 2 作为结构紧凑的激光谐振腔的增益介质,低反射率啁啾光纤光栅 3 和高反射率啁啾光纤光栅 1 组成激光谐振腔的前后腔镜,实现激光在腔内的振荡。高反射率啁啾光纤光栅 1 、高增益光纤 2 、低反射率啁啾光纤光栅 3 组成了激光器的谐振腔,谐振腔输出的激光经过光耦合器 6 后一部分光通过光环形器 8 进入可调谐光滤波器组件 9 中,通过带宽极窄的可调谐滤波器组件 9 进行带宽极窄的 ITU-T 规定标称中心频率对应的波长进行选择后,再经由光环形器 8 和光耦合器 6 注入回到激光谐振腔中,结合紧凑的短线型腔的结构,经过自注入锁定后的谐振腔激射出 ITU-T 规定标称中心频率对应的波长的单频光纤激光。通过调节可调谐滤波器组件可以选择不同的 ITU-T 规定标称中心频率对应的波长,从而实现宽可调谐范围的单频激光输出。单频激光信号经由光波分复用器 4 的信号端进入光耦合器 6 ,然后从光隔离器 7 的输出端输出。 通过可调谐滤波器组件选出任一 ITU-T 规定标称中心频率对应的波长,其 3dB 谱宽小于 0.1nm 。
实施例 1
本例的宽带光纤光栅 1 中心反射波长为激光输出波长 1552.52 nm , 3dB 反射谱宽为 40 nm ,本例中心波长反射率大于 99.95 %。低反射率啁啾光纤光栅 3 耦合输出光栅的中心反射波长为激光输出波长 1552.52 nm ,其 3dB 带宽为 40 nm ,中心波长反射率为 10 ~ 95% ,本例中心波长射率为 60 %。高反射率啁啾光纤光栅 1 和低反射率啁啾光纤光栅 3 成一个具有较宽的光谱范围选择及滤波作用的功能模块。其中,高反射率啁啾光纤光栅 1 和高增益光纤 2 用熔接或端面对接方式连接;高增益光纤 2 和低反射率啁啾光纤光栅 3 间采用光纤端面研磨抛光与腔镜紧密对接方式连接。光耦合器的分光比例为从 1 : 99 到 50 : 50 ,本例使用的是 10 : 90 分光比例的光耦合器 6 。本例使用的可调谐光滤波器组件 9 为 F-P 腔可调谐滤波器,其自由光谱范围达到 70 nm , 3dB 带宽为 0.02 nm ,工作波长范围从 1520-1570 nm 。
泵浦方式采用后向泵浦,由单模半导体泵浦激光器 5 产生泵浦光经由光波分复用器 3 的泵浦端输入,经由低反射率啁啾光纤光栅 3 到高增益光纤 2 的纤芯中,进行纤芯泵浦。泵浦光不断抽运纤芯中的增益粒子,使其达到粒子数反转,受激发射产生激光信号。谐振腔输出的连续光信号经过 10 : 90 的光耦合器 6 后, 90% 的信号光通过光环形器 8 进入 F-P 腔可调谐滤波器 9 中,然后经过调节可调谐滤波器选出符合 ITU-T 标准规定,波长为 1552.52 nm (标称中心频率 193.10 THz )的单一纵模后得到单频激光信号,再经由光环形器 8 和光耦合器 6 注入回谐振腔中,经过自注入锁定后的谐振腔产生波长为 1552.52 nm 的单频激光信号。激光信号经由光波分复用器 4 的信号端进入光耦合器 6 , 10% 的单频激光信号从光隔离器 7 的输出端输出,通过调节 F-P 腔可调谐滤波器可以获得可调谐波长范围达到 40 nm ,线宽 < 10 kHz 的符合 ITU-T 标称中心频率对应波长的单频激光输出。

Claims (6)

  1. 相干光正交频分复用系统用的宽可调谐单频光纤激光光源,其特征在于包括一个高反射率啁啾光纤光栅(1)、高增益光纤(2)、低反射率啁啾光纤光栅(3)、光波分复用器(4)、单模半导体泵浦激光器(5)、光耦合器(6)、光隔离器(7)、光环形器(8)、可调谐光滤波器组件(9);各部件之间的结构关系是:高增益光纤(2)作为结构紧凑的激光谐振腔的增益介质,低反射率啁啾光纤光栅(3)和高反射率啁啾光纤光栅(1)组成激光谐振腔的前后腔镜,实现激光在腔内的振荡;高反射率啁啾光纤光栅(1)、高增益光纤(2)、低反射率啁啾光纤光栅(3)组成了激光器的线型谐振腔,谐振腔输出的激光经过光耦合器(6)后一部分光通过光环形器(8)进入可调谐光滤波器组件(9)中,通过可调谐滤波器组件(9)选择 任一ITU-T 规定标称中心频率对应的波长,再经由光环形器(8)和光耦合器(6)注入回到激光谐振腔中,经过自注入锁定后的谐振腔激射出ITU-T 规定标称中心频率对应的波长的单频光纤激光;通过调节可调谐滤波器组件能选择不同的ITU-T 规定标称中心频率对应的波长,从而实现宽可调谐范围的单频激光输出;单频激光信号经由光波分复用器(4)的信号端进入光耦合器(6),然后从光隔离器(7)的输出端输出。
  2. 根据权利要求1所述的相干光正交频分复用系统用的宽可调谐单频光纤激光光源,其特征在于:所述可调谐光滤波器组件(9)是通过设定自由光谱范围和带宽去实现选择通过或者阻止光路系统中相应的波长的器件,在结构上包括一个可调谐光滤波器或者多个可调谐光滤波器的组合。
  3. 根据权利要求2所述的相干光正交频分复用系统用的宽可调谐单频光纤激光光源,其特征在于:所述可调谐光滤波器包括声光可调谐滤波器、电光可调谐滤波器、机械式光可调谐滤波器或热光可调谐滤波器。
  4. 根据权利要求1所述的相干光正交频分复用系统用的宽可调谐单频光纤激光光源,其特征在于:所述可调谐光滤波器组件(9)的自由光谱范围为0.5~500 nm,3 dB带宽小于0.1 nm。
  5. 根据权利要求1所述的相干光正交频分复用系统用的宽可调谐单频光纤激光光源,其特征在于:所述光纤激光光源是直腔结构,其前腔镜是低反射率啁啾光纤光栅(3),后腔镜采用高反射率啁啾光纤光栅(1);所述反射率啁啾光纤光栅(3)是对激励光信号低反,反射率为10%~90%,其3dB反射谱宽为1~40 nm;所述高反射率啁啾光纤光栅(1)是对泵浦光高透,透射率大于90%,而对激励光信号高反,反射率大于95%,其3dB反射谱宽为1~40 nm。
  6. 据权利要求1所述的相干光正交频分复用系统用的宽可调单频光纤激光光源,其特征在于:所述高增益光纤(6)的单位长度增益大于0.2 dB/cm,光纤长度为0.5~100 cm。
PCT/CN2015/100229 2015-12-18 2015-12-31 相干光正交频分复用系统用的宽可调谐单频光纤激光光源 WO2017101166A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15910635.0A EP3392985B1 (en) 2015-12-18 2015-12-31 Wavelength-tunable single-frequency fibre laser light source for coherent optical orthogonal frequency division multiplexing system
US15/567,082 US10003167B2 (en) 2015-12-18 2015-12-31 Width-tunable single-frequency fiber laser light source for coherent optical orthogonal frequency division multiplexing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510948776.0 2015-12-18
CN201510948776.0A CN105428973B (zh) 2015-12-18 2015-12-18 相干光正交频分复用系统用的宽可调谐单频光纤激光光源

Publications (1)

Publication Number Publication Date
WO2017101166A1 true WO2017101166A1 (zh) 2017-06-22

Family

ID=55506993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/100229 WO2017101166A1 (zh) 2015-12-18 2015-12-31 相干光正交频分复用系统用的宽可调谐单频光纤激光光源

Country Status (4)

Country Link
US (1) US10003167B2 (zh)
EP (1) EP3392985B1 (zh)
CN (1) CN105428973B (zh)
WO (1) WO2017101166A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509534A (zh) * 2019-01-31 2020-08-07 深圳大学 窄线宽单频激光光源
TWI705668B (zh) * 2019-03-21 2020-09-21 國立虎尾科技大學 光纖式共振光束之無線光訊息與功率傳輸系統

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329297A (zh) * 2016-10-21 2017-01-11 华南理工大学 一种激光雷达系统用的多波长窄线宽单频光纤激光光源
CN106451045A (zh) * 2016-10-26 2017-02-22 华南理工大学 一种短直腔结构的多波长单频光纤激光器
CN106410599B (zh) * 2016-10-31 2023-05-23 华南理工大学 布里渊单纵模移频光纤激光器
CN110212398A (zh) * 2019-06-05 2019-09-06 华南理工大学 一种基于多模干涉效应的宽可调谐的单频光纤激光器
CN113410736A (zh) * 2021-05-24 2021-09-17 华南理工大学 一种可调谐单频脉冲光纤激光器
CN115694643B (zh) * 2022-10-27 2024-05-03 中国联合网络通信集团有限公司 信号的传输方法、装置、设备及存储介质
CN117954951A (zh) * 2024-03-25 2024-04-30 中国人民解放军国防科技大学 一种自注入锁定分布式反馈单频光纤激光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7539221B1 (en) * 2006-10-19 2009-05-26 Np Photonics, Inc Fiber-laser-based gigahertz sources through difference frequency generation (DFG) by nonlinear optical (NLO) materials
CN103022890A (zh) * 2012-12-28 2013-04-03 重庆师范大学 一种可调谐双色激光系统
CN203871644U (zh) * 2014-02-12 2014-10-08 华南理工大学 一种高精度宽可调谐单频光纤激光器
CN203871645U (zh) * 2014-02-12 2014-10-08 华南理工大学 一种低噪声保偏单频光纤激光器
CN104466636A (zh) * 2014-11-30 2015-03-25 华南理工大学 一种单频调q脉冲光纤激光器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPN694795A0 (en) * 1995-12-01 1996-01-04 University Of Sydney, The Distributed feedback ring laser
CN1254890C (zh) * 2003-11-06 2006-05-03 中国科学院长春光学精密机械与物理研究所 一种波长可调谐的双包层光纤激光器
KR100628472B1 (ko) * 2004-05-24 2006-09-26 한국과학기술연구원 few mode 광섬유 격자를 이용한 라만 또는 어븀 광섬유 레이저와 이를 이용한 온도와 스트레인 동시 측정을 위한 장거리 센서
KR101024023B1 (ko) * 2004-12-29 2011-03-22 삼성전자주식회사 고속 파장선택 광원 및 그 방법
CN1834708A (zh) * 2006-04-18 2006-09-20 浙江大学 一种基于光纤光栅的可调谐微波光子滤波器
CN101295853B (zh) * 2007-04-29 2012-01-04 中国科学院西安光学精密机械研究所 一种波长可调谐外注入式增益开关激光器
CN102136675A (zh) * 2011-02-24 2011-07-27 上海大学 自注入式多模倾斜光纤光栅外腔皮秒脉冲激光器
EP2727197B1 (en) * 2011-06-30 2020-03-04 Oewaves, Inc. Compact optical atomic clocks and applications based on parametric nonlinear optical mixing in whispering gallery mode optical resonators
CN102870294B (zh) * 2012-06-30 2014-06-25 华为技术有限公司 自注入激光器和无源光网络
CN205622038U (zh) * 2015-12-18 2016-10-05 华南理工大学 相干光正交频分复用系统用的宽可调谐单频光纤激光光源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7539221B1 (en) * 2006-10-19 2009-05-26 Np Photonics, Inc Fiber-laser-based gigahertz sources through difference frequency generation (DFG) by nonlinear optical (NLO) materials
CN103022890A (zh) * 2012-12-28 2013-04-03 重庆师范大学 一种可调谐双色激光系统
CN203871644U (zh) * 2014-02-12 2014-10-08 华南理工大学 一种高精度宽可调谐单频光纤激光器
CN203871645U (zh) * 2014-02-12 2014-10-08 华南理工大学 一种低噪声保偏单频光纤激光器
CN104466636A (zh) * 2014-11-30 2015-03-25 华南理工大学 一种单频调q脉冲光纤激光器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, CAN ET AL.: "All-optical Frequency and Intensity Noise Suppression of Single-Frequency Fiber Laser", OPTICS LETTERS, vol. 40, no. 9, 1 May 2015 (2015-05-01), pages 1964 - 1967, XP055508397 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509534A (zh) * 2019-01-31 2020-08-07 深圳大学 窄线宽单频激光光源
TWI705668B (zh) * 2019-03-21 2020-09-21 國立虎尾科技大學 光纖式共振光束之無線光訊息與功率傳輸系統

Also Published As

Publication number Publication date
EP3392985B1 (en) 2020-12-16
EP3392985A4 (en) 2019-09-04
CN105428973B (zh) 2020-11-24
CN105428973A (zh) 2016-03-23
EP3392985A1 (en) 2018-10-24
US10003167B2 (en) 2018-06-19
US20180097332A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
WO2017101166A1 (zh) 相干光正交频分复用系统用的宽可调谐单频光纤激光光源
Luo et al. Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter
Ahmad et al. Bismuth-based erbium-doped fiber as a gain medium for L-band amplification and Brillouin fiber laser
US9819141B2 (en) Compact fiber short pulse laser sources
US20070216993A1 (en) Optical Fiber Laser Using Rare Earth-Added Fiber And Wide Band Light Source
Cowle et al. Spectral broadening due to fibre amplifier phase noise
Shahabuddin et al. Spacing-switchable multiwavelength fiber laser based on nonlinear polarization rotation and Brillouin scattering in photonic crystal fiber
JPH06224505A (ja) 光ファイバー増幅装置
US6282016B1 (en) Polarization maintaining fiber lasers and amplifiers
CN111373614A (zh) 用于提供光学辐射的装置
Sulaiman et al. Investigation of multiwavelength performance utilizing an advanced mechanism of bidirectional Lyot filter
CN106961066B (zh) 一种基于重叠光纤光栅的半开腔多波长随机光纤激光器
Al-Mashhadani et al. Tunable multiwavelength L-band Brillouin-Erbium fiber laser utilizing passive EDF absorber section
CN205622038U (zh) 相干光正交频分复用系统用的宽可调谐单频光纤激光光源
JP2772600B2 (ja) モード同期レーザ装置
US5469455A (en) Fiber optic ring laser
Lin et al. Full L-band coverage of multiwavelength erbium-doped fiber laser
CN110165541B (zh) 波长间隔可切换的布里渊—掺铒光纤随机激光器
Sulaiman et al. Multiwavelength SOA fiber ring laser based on bidirectional Lyot filter
Kharitonov et al. Unidirectional all-fiber thulium-doped laser based on theta cavity and fiber Bragg grating as filtering element
JPH08334800A (ja) 光信号増幅器
Chen Dynamics of widely tunable single-frequency semiconductor fiber ring laser
Yang et al. Tunable single-longitudinal-mode fiber optical parametric oscillator with saturable-absorber-based auto-tracking filter
Liu et al. Low beat-noise polarized tunable fiber ring laser
Ismail et al. Multi-wavelength Brillouin Raman Erbium Fiber Laser utilizing Captured Residual Raman Pump Power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910635

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15567082

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015910635

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015910635

Country of ref document: EP

Effective date: 20180718