WO2017099574A1 - Oleogel comestible y termorreversible y método para elaborarlo - Google Patents

Oleogel comestible y termorreversible y método para elaborarlo Download PDF

Info

Publication number
WO2017099574A1
WO2017099574A1 PCT/MX2016/000131 MX2016000131W WO2017099574A1 WO 2017099574 A1 WO2017099574 A1 WO 2017099574A1 MX 2016000131 W MX2016000131 W MX 2016000131W WO 2017099574 A1 WO2017099574 A1 WO 2017099574A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
weight
edible
acid
oleogel
Prior art date
Application number
PCT/MX2016/000131
Other languages
English (en)
French (fr)
Inventor
Alfonso PÉREZ GALLARDO
Blanca Alejandra GRANADOS CORZO
Gregorio José DE HAENE ROSIQUE
Original Assignee
Sigma Alimentos, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Alimentos, S.A. De C.V. filed Critical Sigma Alimentos, S.A. De C.V.
Priority to US16/060,811 priority Critical patent/US10874115B2/en
Priority to ES16873426T priority patent/ES2909381T3/es
Priority to CA3007962A priority patent/CA3007962A1/en
Priority to EP16873426.7A priority patent/EP3387909B1/en
Publication of WO2017099574A1 publication Critical patent/WO2017099574A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/005Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/005Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
    • A23D7/0053Compositions other than spreads
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/005Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
    • A23D7/0056Spread compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/01Other fatty acid esters, e.g. phosphatides
    • A23D7/011Compositions other than spreads
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/01Other fatty acid esters, e.g. phosphatides
    • A23D7/013Spread compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/02Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by the production or working-up
    • A23D7/04Working-up
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • A23D9/013Other fatty acid esters, e.g. phosphatides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
    • A23D9/04Working-up
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/035Organic compounds containing oxygen as heteroatom
    • A23L29/04Fatty acids or derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L35/00Food or foodstuffs not provided for in groups A23L5/00 – A23L33/00; Preparation or treatment thereof
    • A23L35/10Emulsified foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/20Ingredients acting on or related to the structure
    • A23V2200/222Emulsifier
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/18Lipids
    • A23V2250/184Emulsifier
    • A23V2250/1842Lecithin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/18Lipids
    • A23V2250/186Fatty acids
    • A23V2250/1874Linolenic acid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/18Lipids
    • A23V2250/186Fatty acids
    • A23V2250/188Oleic acid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/18Lipids
    • A23V2250/186Fatty acids
    • A23V2250/1882Polyunsaturated fatty acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/18Lipids
    • A23V2250/186Fatty acids
    • A23V2250/1886Stearic acid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/18Lipids
    • A23V2250/192Monoglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/24Heat, thermal treatment

Definitions

  • This invention relates to the field of oils and fats, and more precisely, to an oil and fat based oleogel composition whose gelation is achieved by incorporating a distilled monoglyceride of saturated fatty acid As structuring agent.
  • oleogels An alternative for the formation of oleogels is the use of hydrophobic polymers, including cellulose derivatives such as ethyl cellulose E.
  • Tg glass transition temperature
  • an edible and heat-reversible oleogei comprising an oil or mixture of oils, a structuring agent or mixture of structuring agents and a grease or mixture of fats, such that the structuring agent is a monoglyceride distilled from saturated fatty acid of 12 to 24 carbon atoms containing more than 90% by weight of monoglycerides and where the saturated fatty acid of 12 to 24 carbon atoms has at least 40% of these monoglycerides are stearic acid and at least another 30% are palmitic acid.
  • the object of the invention to offer a method for preparing an edible and heat-reversible oil gel, the method has the steps of: preparing a oil and grease mixture; add a structuring agent to the oil and fat mixture, wherein the structuring agent is a saturated fatty acid monoglyceride of 12 to 24 carbon atoms containing more than 90% by weight of monoglycerides and where the saturated fatty acid of 12 at 24 carbon atoms it has at least 40% by weight stearic acid and at least 30% palmitic acid; and heat the mixture of oil, grease and structuring agent at a temperature of 65 ° C to 90 ° C.
  • the structuring agent is a saturated fatty acid monoglyceride of 12 to 24 carbon atoms containing more than 90% by weight of monoglycerides and where the saturated fatty acid of 12 at 24 carbon atoms it has at least 40% by weight stearic acid and at least 30% palmitic acid
  • FIG. 1 shows a rheogram G * vs time (t) and G * vs Temperature (T) of Some exemplary embodiments of oylogel compositions for untabSe margarine according to the invention.
  • Figure 2 shows another rheogram G * vs time (t) and G * vs Temperature (T) of some exemplary embodiments of spreadable oil compositions according to the invention.
  • Figure 3 shows a reogram G * vs time (t) and G * vs Temperature (T) of some examples of realization of oleogel compositions for margarine in bar according to the invention.
  • Figure 4 shows another reogram G * vs time (t) and G * vs Temperature (T) of some examples of realization of oleogel compositions for bar margarine according to the invention.
  • Figure 5 shows some crystal-forming images of different oleogel compositions at different temperatures during a crystallization stage according to the invention.
  • Figure 6 shows some Images of the crystal size distribution after the oil shearing at different speeds during a crystallization stage according to the invention DETAILED DESCRIPTION OF THE INVENTION
  • the characteristic details of this invention are described in the following paragraphs, which are intended to define the invention, but without limiting its scope.
  • the invention is directed to an edible and heat-reversible oleogel, and to food products containing said oleogei.
  • the oieogel is suitably prepared by the combination of an oil or mixture of oils, a fat or mixture of fats with a structuring agent and by heating the mixture at a temperature above the melting temperature of its compounds. Once the composition has completely dissolved and the solution is clear, it is cooled.
  • oleogel refers, under the context of the present invention, to a gei having a continuous oil phase containing a structuring or geiification agent and other compounds uniformly distributed in the gei phase,
  • the oieogel exhibits physical properties of a solid or semi-soüda fat.
  • the oieogel is basically anhydrous, that is, it conveniently has a water content of about 1% by weight. However, it can be used to produce water-type emulsions in oil.
  • the oleogel according to the invention is edible. Accordingly, in a further aspect, the present invention provides a food product comprising an oieogel according to the invention.
  • the food product can be made by mixing the food components with an oleogel according to the invention.
  • the mixing can be carried out with the oleogel in the gelled state, or with the oleogel composition in the liquefied state followed by cooling.
  • the term "food product” refers, under the context of the present invention, to edible products also conveniently containing one or more ingredients selected from carbohydrates (eg, sugars and starches), proteins, dietary fiber, water and agents flavorings like salt.
  • the food product contains at least about 1% by weight of oil, for example at least about 5%, 10% or 15% by weight of oil.
  • the food product contains less than about 95% by weight of oil, for example less than about 90% by weight of oil.
  • the food product according to the present invention is a meat product.
  • a product of cold meats such as ham, ground meat such as hamburger meat, or meat emulsion product for the preparation of for example sausages.
  • the meat products of the present invention comprise from about 10% to about 25% protein, from about 5% to about 35% by weight of oleogel of the present invention and from about 40% to about 60% by weight of total water
  • meat emulsion products are prepared by grinding, mixing and emulsification of a mixture of raw meat such as beef or pork, meat products, oleogel of the present invention and other ingredients such as brine, spices, flavorings, vegetable proteins and dyes in order to produce an emulsion that contain thin fatty particles covered with protein.
  • Protein dissolves from either meat ingredients and / or added protein derivatives such as vegetable proteins or whey.
  • the resulting meat emulsion is stuffed.
  • the emulsion is subsequently processed by heat. The heating of the meat emulsion causes the protein contained in it to coagulate to form an elastic, semi-solid texture. This structure traps the fatty particles forming a firm meat emulsion product.
  • the resulting meat emulsion product is a uniform, homogeneous dough, which may also contain pieces of meat or other inclusions.
  • the food product according to the present invention is a dairy product.
  • a cheese product where the incorporation of the oil as a fat replacement or substitute is preferably carried out in the curd preparation stage.
  • the cheese of the present invention comprises from about 10% to about 30% protein, from about 5% to about 35% by weight of oleogel of the present invention and from about 28% to about 62% by weight of total water. .
  • the food product according to the present invention is a bakery product.
  • a bakery product For example, cookies, where the incorporation of the oleogel as a fat replacement or substitute is preferably carried out in the dough preparation stage.
  • thermosibie means, in the context of the present invention, that it can be converted from a gel phase at room temperature to a liquid phase at an elevated temperature above room temperature.
  • heat-reversible also includes the preferred term “heat-exchangeable”, which means that it can be converted from a gel phase at room temperature to a Siquida phase at an elevated temperature above room temperature and that it can be converted back to a gel phase when cooled to room temperature or lower.
  • room temperature is meant a temperature between 20 to 25 ° C.
  • high temperature above room temperature is meant a temperature above 25 ° C.
  • the edible and heat-reversible oleogel composition of the present invention includes: a) Oils or mixture of oils
  • oils can be used, but are not limited to, soybean oil, olive oil, cane oil, corn oil, sunflower oil, safflower oil, coconut oil, cottonseed oil, Flaxseed, almond oil, peanut oil, seaweed oil, palm oil, palm stearin, palm olein, hydrogenated palm oil, hydrogenated palm stearin, oil High-soybean soybean, high oleic cane oil, high oleic sunflower oil, high-oceanic safflower oil, fully hydrogenated soybean oil, fully hydrogenated cane oil, fully hydrogenated cottonseed oil, high stearic sunflower oil, oils enzymatically and chemically interesterified and combination thereof.
  • the amount of oil or mixture of oils in the oleogel composition of the present invention is typically 50% to 95% by weight.
  • Soy oils, olive oil, cane oil and palm oil are preferred oils for the oleogel formation of the present invention due to its profile of saturated, monounsaturated and polyunsaturated fatty acids that allow formulating different mixtures, limiting the acid content saturated fatty acids and establishing the content of monounsaturated fatty acids and polyunsaturated fatty acids within a range in which the oleogel exhibits the desired rheological properties.
  • cane oil has the advantage of containing an aerator of 8% by weight of saturated fatty acids, while soybean and olive oils contain about 16% by weight and 14.56% by weight respectively.
  • the content of monounsaturated fatty acids for canoe oil is about 66% by weight, while for soy and olive oils they are approximately 23 and 78% respectively.
  • the content of polyunsaturated fatty acids is around 25% by weight in cane oil, while for Sos soy and olive oils are 59% and 5% aerator respectively.
  • palm olein although having a saturated fatty acid content of about 46% by weight, a palm olein having about 43% by weight of monounsaturated fatty acids and about 10% by weight is preferred of polyunsaturated fatty acids because when cooled below its crystallization temperature it forms small crystals that allow the textures of the final product to be modulated.
  • soybean oil is preferred for its high content of inoieic acid of about 52% by weight. While that olive oil and cane oil are preferred for their offensive acid content of about 77% by weight and 64% by weight respectively.
  • composition of soybean oil that can be used in the invention is as follows:
  • composition of the soybean oil used in the invention is as follows:
  • composition of cane oil that can be used in the invention is as follows:
  • composition of cane oil used in the invention is as follows:
  • composition of palm oil that can be used in the invention is as follows:
  • composition of palm oil used in the invention is as follows:
  • the composition of the olive oil that can be used in the invention is as follows:
  • composition of the olive oil used in the invention is as follows:
  • the fats that can be used are of vegetable or animal origin.
  • soy fat soy fat, cotton fat, fractionated palm fat, fully hydrogenated palm fat, paimiste fat, palm stearin, coconut fat, fully hydrogenated vegetable fat and combinations thereof can be used.
  • animal fats butyric fat, pork fat, beef tallow and their combinations can be used.
  • the amount of fat in the oleogel composition of the present invention is typically 5% to 50% by weight.
  • a structuring agent selected from fatty acid monoglycerides is used.
  • Fatty acid monoglycerides consist of glycerol esterified with a single fatty acid.
  • the fatty acid is a saturated fatty acid of 12 to 24 carbon atoms that is selected from the group consisting of arachidic acid, behenic acid, butyric acid, stearic acid, lauric acid, lignoceric acid, myristic acid, acid Palmitic and its combinations.
  • the characteristics of the structure generated by the monogiowskiridos not only depends on the concentration of monogiowskiridos used but also on the type of monoglycerides
  • monoglycerides or mixtures of monoglycerides with a high degree of saturation are preferred.
  • monoglycerides are used that are derived from palm oil, fractions of palm oil, kernel palm oil, coconut fat, lard, tallow, partially or totally hydrogenated vegetable oils.
  • Such fatty acid monoglycerides are preferably rich in stearic acid or palmitic acid, which means at least 40% of those monoglycerides are stearic acid and at least another 30% are palmitic acid.
  • distilled monoglycerides of saturated fatty acids of 12 to 24 carbon atoms containing more than 90% by weight of monoglycerides are preferred and where the saturated fatty acid of 12 to 24 carbon atoms has more than 40% by weight. of stearic acid and at least another 30% by weight of palmitic acid.
  • the reason for preferring monoglycerides of saturated fatty acids is that they produce organogels that can be treated mechanically without affecting the development of their structure during the mechanical agitation work that commonly occurs in various food production processes such as kneading bread dough, emulsified meat products, cutting and pressing cheese curds, etc.
  • ES distilled monoglyceride of saturated fatty acid has a melting point of
  • the amount of structuring agent in the oieogel composition of the present invention is typically from% to 10% by weight. f) Emulsifying agent
  • the oleogel composition of the present invention may include an emulsifying agent selected from soy lecithin, phospholipids, sorbitan derivatives and combinations thereof. This emulsifying agent is added as an adjuvant in the process of incorporation of oleogel emulsion, especially in dairy products.
  • the amount of emulsifying agent in the oleogel composition of the present invention is typically less than 1% by weight.
  • the oleogel composition of the present invention can be made from the preparation of a mixture of oil and fat; After the structuring agent is added to subsequently heat continuously and with stirring, it is mixed at a temperature of 65 ° C to 90 ° C, then allowing the mixture of oil, grease and structuring agent to cool to form the oleogel. Alternatively, during the heating the emulsifying agent is added.
  • the oleogel can be incorporated into a completely molten or semi-solid food product depending on the application.
  • the edible and heat-reversible oleogel herein has a composition of:
  • the edible and heat-reversible oleogel herein has a composition of:
  • the oieogel composition of the present invention is stable without showing phase separation at a temperature of 4 ° C to 25 ° C,
  • the oieogel composition of the present invention allows to obtain structured fatty systems that during their cooling or heating exhibit a modification in their crystallization phenomenon, which from the rheological point of view, can be evidenced by an increase in the complex module (G *), which for practical terms indicates the rigidity of the material or the resistance it imposes on the flow.
  • the oieogel composition of the present invention has a complex module G * greater than 0.8 MPa when the sample previously melted from 65 ° C to 90 ° C, is cooled and crystallized at a rate of approximately 2 ° C / min until reach 0 ° C and hold 30 minutes at 0 ° C, performing the measurement at 10 Hz and 0.005% amplitude.
  • rheograms of the sample samples were obtained by temperature scans using an AntonPaar rheometer equipped with a P-PTD200 cell and a profiled PP25 geometry to prevent the sample and the geometry from slipping.
  • the space between the geometry and the lower plate was 1 mm.
  • Temperature (T) of examples Fl, F2, F6, F6, F8, FIO and Fl l applicable in the production of spreadable margarines. These rheograms show the same rheological information, but in Figure 2 it is easier to visualize the onset of the Theological events and the loop that is formed during the cooling-sustaining-cooling cycle, in Figure 1 it is shown in a better way The temperature ramp.
  • the area within the loop in Figure 2 reflects the structure gain of the oil during crystallization and isothermal support at 0 ° C.
  • Figure 2 shows that F7, F9 and FIO are comparable in area to Fl but F9 and FIO containing the structuring agent have a faster isothermal structuring.
  • Compositions F9 and FIO differ in the composition of the solid fat component, since composition F9 was prepared with a mixture of palm fat melting point 36 ° C, palm fat melting point 45 ° C and palm fat completely hydrogenated, while the FIO composition was prepared only with palm fat melting point 36 ° C.
  • both fatty acid profiles are practically the same, so the difference in melting points may be due to the position that fatty acids take in glycerol. Therefore, it is a factor that can affect the properties that a structured fat exhibits.
  • composition F2 was prepared with melting point palm grease 36 ° C and used for bar margarines. This is mainly due to the plasticity and resistance to deformation (complex module G * measured in Pa) that develops when crystallizing. In its program, during the cooling period of 80 ° C to 0 ° C at intervals of 2 ° C / min, it can be seen that its crystallization process is rapid but incomplete. In fact, it is observed that during the period of isothermal support at 0 ° C the phenomena of structuring the fatty material (crystallization) continue. The G * of the fat composition F2 is 13.3 MPa.
  • the Fl composition is used for spreadable margarines and is a mixture of palm oil and fat.
  • the evolution of its rheogram during the applied temperature ramp exhibits two rheological events during its crystallization: the first one, around 30 ° C and ends around 12 ° C.
  • the second crystallization stage begins 5 minutes after the 0 ° C isothermal support begins, at the end of this period the G * of the composition Fl becomes 0.86 MPa (more than 10 times less than that of the composition F2) .
  • the fat mixture of the composition Fl is used for spreadable margarines because it is softer because it offers less resistance to deformation.
  • compositions Fl, F6, F7, F9, FIO and Fl l When comparing the rheograms of the compositions Fl, F6, F7, F9, FIO and Fl l it was found that the rheological profile of the composition Fl exceeds Sa composition F6 in crystallization rate (during isothermal period at 0 ° C) and resistance to the deformation, but is overcome in both aspects by the composition F7 (3.7 MPa), composition F9 (4.0 MPa) and composition FIO (1.9 MPa). Finally, the F1l composition showed that its crystallization start temperature, when an increase of G * (Pa) begins was higher in the Fl composition but its G * was lower than i exhibited only 0.26 MPa (3 times lower than the composition Fl).
  • compositions F7 and F9 can be attributed both to the addition of the structuring agent, (since both have a similar profile of C12: 0, C14: 0, C16: 0, C18: 0, C18: 0, C18: ln9c, C18: 2n6c and C18: 3n3, as to the differences in structuring during cooling (see Figure 5.)
  • 4% of structuring agent was added in its formula and the effect of such addition is evidenced with crystallization and fusion in two events (staggered)
  • the composition Fl l containing 5% of structuring agent exhibits a complex module G * of 0.26 MPa against 0.027 of the composition F6, when the proportion of fatty acids saturated in the composition Fl 1 is 5% lower, while the content of polyunsaturated fatty acids is 7% higher, thus establishing that the differences found in the aforementioned compositions have an explanation from the microstructural point of view. This is due to a clear crystal formation within the network formed by the monoglyceride (See
  • the F3, F4, F5 and F8 rheograms show that it is possible to reduce saturated fatty acids and trans fatty acids while increasing the mono-installed fatty acid and fatty acid polyinstalled (see Tables 1 and 3 and Figures 3 and 4).
  • the complex module G * was 19.8, 13.3, 8.68 and 11.3 MPa for F3, F4, F5 and F8 respectively. It can be seen that again there are differences in the rheograms, even when the saturated fatty acid content has been reduced, especially C16: 0 and the proportion of C18: 2n6c in the formula has increased.
  • F3, F4 and F5 are formulations of fat mixtures with an obvious reduction in saturated fatty acids that are good candidates for being added from saturated fatty acid distilled monoglyceride to induce changes in their crystallization kinetics and rheological properties so that they can be used as the fat phase for bar margarines.
  • Double cream cheese production The process of incorporation of the oleogel depends on the food in which it will be applied, in the case of cheeses the material balance is made according to the desired fat content and the oleogel is emulsified with one in skim milk. Subsequently, the emulsion is mixed with another stream of fresh or non-skimmed milk, depending on the desired fat content. The mixture is then pasteurized and tempered at a curd temperature, the rennet is added and the Time needed to ripen the curd. Finally, the curd is cut, it is undone, room, grinds and molds the cheese.
  • the method of preparation uses as raw material (1) soy or cane vegetable oil; (2) high melting fractional butyric fat or soybean vegetable fat; (3) distilled monoglycerides from saturated fatty acids.
  • oleogel a mixture of oil, structuring fat, whose proportions can be from 70% to 95%, 5% to 25%, 1% to 5% by weight and more preferably 85%, 15% and 5, is prepared. % by weight, respectively. After mixing the ingredients are melted at a temperature preferably between 50 ° C to 90 ° C and more preferably at 70 ° C until completely dissolved.
  • 0.500 kg of the molten oleogel is mixed with 15 liters of skim milk at 50 ° C.
  • the preparation method uses as raw material vegetable oil, vegetable fat, distilled monoglycerides from saturated fatty acids. Both the oil (cane, soy, olive, palm olein) and fat adjust the desired proportion that varies from 50: 50% to 95: 5% by weight respectively.
  • the structuring agent whose composition varies from 1% to 10% by weight and more preferably from 2% to 3% by weight of the total mixture is added. After mixing the ingredients melt at a temperature preferably between 50 ° C to 90 ° C and more preferably at 60 ° C until completely dissolved under stirring at 100 rpm at 500 rpm.
  • the liposoluble flavors, emulsificant.es and colorants are added.
  • the fatty phase is then mixed with an aqueous phase in a fat phase-aqueous phase ratio of 60: 40.
  • conservative Sos and sai are dissolved.
  • the mixture is then pasteurized between 60 ° C to 90 ° C and more preferably 80 ° C under stirring at a speed of 100 rprn at 500 rpm to achieve emulsion of both phases
  • the pasteurized mixture is precooled at a temperature between 59 ° C to 63 ° C and subsequently pumped at a rate of 72kg / hr at 96kg / hr towards a first crystallizer whose scraped surface incarrier has a rotation speed of 300 rpm at 400 rpm, the emulsion being cooled in this stage at a temperature of 8 ° C to 12 ° C.
  • the margarine is driven to a rotor of bolts to oven the size of crystals whose speed is 200 rpm to 300 rpm and its temperature ranges from 0 ° C to 25 ° C and more preferably from 9 ° C to 13 ° C.
  • the margarine is directed to a second crystallizer whose scraped surface exchanger has a rotation speed of 150 rpm at 400 rpm and more preferably 200 rpm at 320 rpm and its exit temperature of the margarine is from 0 ° C to 10 ° C and more preferably from 4 ° C to 9 ° C.
  • the cooling medium used is R-22 refrigerant.
  • the margarine goes to two other cooling tubes, where the margarine reaches a temperature of 4 ° C to 6 ° C.
  • the product thus obtained is sent to the second rotor of bolts of 100 liters, where it reaches a temperature of 7 ° C to 9 ° C, from there go to
  • the last two scraped surface heat exchangers (tubes 5 and 6), obtaining a temperature of 2 ° C to 3 ° C.
  • the cooling medium used in the industrial tests was Ammonia, EXAMPLE 4.
  • the production method uses ei ogel as raw material as fat phase, water, mechanically separated chicken protein (MDM), soy protein, starch, common sai, nitrites, flavoring, coloring and preservatives.
  • MDM mechanically separated chicken protein
  • soy protein soy protein
  • starch common sai, nitrites
  • flavoring, coloring and preservatives are prepared with palm olein whose oiein-fat ratio is adjusted to the desired proportion ranging from 50: 50% to 95: 5% by weight respectively and more preferably 95: 5% by weight.
  • the structuring agent is added whose composition ranges from 1% to 10% by weight and more preferably from 1% to 3% by weight of the total mixture.
  • the preparation begins with the hydration of proteins and salts, followed by a subsequent mixing and refining with the oieogel and the rest of the ingredients at a temperature of 6 ° C. Refining is carried out under vacuum using a knife emulsifier until a homogeneous dispersion is obtained. The resulting product is stuffed and cooked at a temperature between 63 ° C to 80 ° C and more preferably at 72 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Edible Oils And Fats (AREA)
  • Fats And Perfumes (AREA)

Abstract

Un oleogel comestible y termorreversible que comprende un aceite o mezcla de aceites, una grasa o mezclas de grasas y un agente estructurante o mezcla de agentes estructurantes a base de monoglicérido destilado de ácido graso saturado de 12 a 24 átomos de carbono que contiene más de 90% en peso de monoglicéridos y donde el ácido graso saturado de 12 a 24 átomos de carbono tiene al menos el 40 % en peso de ácido esteárico y el 30 % en peso de ácido palmítico. El oleogel es preparado por la combinación del aceite, la grasa y el agente estructurante seguido de un calentamiento de la mezcla, la cual posteriormente se enfría hasta obtener el oleogel. El oleogel resultante puede utilizarse como un sustituto de grasa en productos alimenticios.

Description

OLEOGEL COMESTIBLE Y TERMORREVERSIBLE Y MÉTODO PARA ELABORARLO
CAMPO TÉCNICO DE LA INVENCIÓN Esta invención se refiere al campo de ios aceites y grasas, y de una manera más precisa, a una composición de oleogel a base de aceite y grasa cuya gelificación se logra con la incorporación de un monoglicérido destilado de ácido graso saturado como agente estructurante. ANTECEDENTES DE LA INVENCIÓN
El consumo excesivo de grasas saturadas y trans ha sido asociado a un riesgo elevado de enfermedades cardiovasculares y diabetes, entre otras patologías. Por este motivo, uno de los desafíos actuales de la industria alimenticia es encontrar sustitutos que puedan reemplazar a las grasas sin que se pierdan los atributos que estas les confieren a los alimentos. Esto condujo al desarrollo de estrategias para transformar aceites (líquidos) en estructuras semisólidas denominadas "oleogeles". Una alternativa para ia formación de oleogeles es ia utilización de polímeros hidrofóbicos, entre los que se encuentran los derivados de celulosa como la etilceiuiosaE.l principal obstáculo para la preparación de este tipo de geles, es la necesidad de caíentar ei polímero previamente disperso en la fase oleosa por encima de su temperatura de transición vitrea (Tg; aproximadamente 140 °C). Una vez alcanzada esta temperatura, se obtiene una suspensión homogénea que geíifica cuando se la enfría a temperatura ambiente. Ese calentamiento produce principalmente oxidación de los lípidos, generando maíos olores y sabores, con ia posibilidad de formar compuestos tóxicos. Esto se agrava si se considera que el tiempo de calentamiento requerido aumenta con la concentración del polímero, la cual es relativamente alta cuando se quiere lograr geles firmes y resistentes (entre 3 y 10%, según diferentes autores). Con la finalidad de solventar los problemas que surgen en la elaboración de determinados productos alimenticios cuando se sustituyen las grasas sólidas por aceites con mayor contenido en ácidos grasos insaturados se han planteado diferentes estrategias. Una de estas estrategias se presenta en esta invención y la cual se basa en inmovilizar ei aceite liquido con ayuda de estructuras que se originan por adición de monoglicéridos destilado de ácidos grasos saturados en presencia de cristales de grasas provenientes de fracciones de alto punto de fusión. Así, el aceite adquiere propiedades similares a las de ias grasas sólidas y de este modo puede emplearse como sustituto de éstas permitiendo la mejora del perfil de ácidos grasos del producto, y manteniendo las características organolépticas del mismo.
SUMARIO DE LA INVENCIÓN
En vista de lo anteriormente descrito y con el propósito de dar solución a las limitantes encontradas, es objeto de la invención ofrecer un oleogeí comestible y termorreversible que comprende un aceite o mezcla de aceites, un agente estructurante o mezcla de agentes estructurantes y una grasa o mezcla de grasas, tal que el agente estructurante es un monoglicérido destilado de ácido graso saturado de 12 a 24 átomos de carbono que contiene más de 90% en peso de monoglicéridos y donde el ácido graso saturado de 12 a 24 átomos de carbono tiene al menos 40% de esos monoglicéridos son de ácido esteárico y ai menos otro 30% son de ácido palmítico.
Es también objeto de la invención ofrecer el uso de la composición de oleogel comestible y termorreversible arriba indicado como reemplazo de una fracción grasa para elaborar un producto alimenticio seleccionado de un producto lácteo, un producto cárnico, un producto de emulsión de carne y un producto de panadería.
Finalmente, es también objeto de ¡a invención ofrecer un método para elaborar un oleogel comestible y termorreversible, el método tiene las etapas de: preparar una mezcla de aceite y grasa; agregar un agente estructurante a la mezcla de aceite y grasa, en donde el agente estructurante es un monoglicérido destilado de ácido graso saturado de 12 a 24 átomos de carbono que contiene más de 90% en peso de monoglicéridos y donde el ácido graso saturado de 12 a 24 átomos de carbono tiene al menos 40% en peso de ácido esteárico y al menos 30% de ácido palmítico; y calentar la mezcla de aceite, grasa y agente estructurante a una temperatura de 65 °C a 90 °C.
DESCRIPCIÓN BREVE DE LAS FIGURAS Otras características de la presente invención serán evidentes a partir de la siguiente descripción detallada considerada en conexión con los dibujos adjuntos. Debe entenderse, sin embargo, que los dibujos están elaborados solamente como una ilustración y no como una definición limitativa de la invención, en los cuales: Figura 1 muestra un reograma G* vs tiempo (t) y G* vs Temperatura (T) de algunos ejemplos de realización de composiciones de oíeogel para margarina untabSe de acuerdo a la invención.
Figura 2 muestra otro reograma G* vs tiempo (t) y G* vs Temperatura (T) de algunos ejemplos de realización de composiciones de oíeogel para margarina untable de acuerdo a la invención.
Figura 3 muestra un reograma G* vs tiempo (t) y G* vs Temperatura (T) de algunos ejemplos de realización de composiciones de oleogel para margarina en barra de acuerdo a la invención.
Figura 4 muestra otro reograma G* vs tiempo (t) y G* vs Temperatura (T) de algunos ejemplos de realización de composiciones de oleogel para margarina en barra de acuerdo a la invención. Figura 5 muestra algunas imágenes de formación de cristales de diferentes composiciones de oleogel a diferentes temperaturas durante una etapa de cristalización de acuerdo a la invención.
Figura 6 muestra algunas Imágenes de la distribución de tamaño de cristaies después del cizalíamiento del oleogel a diferentes velocidades durante una etapa de cristalización de acuerdo a ia invención DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Los detailes característicos de esta invención se describen en los párrafos siguientes, que tienen el objetivo de definir la invención, pero sin limitar su alcance. La invención se orienta a un oleogel comestible y termorreversible, y a productos alimenticios que contienen dicho oleogei.
El oieogel se prepara adecuadamente mediante ía combinación de un aceite o mezcia de aceites, una grasa o mezcla de grasas con un agente estructurante y mediante el calentamiento de la mezcla a una temperatura arriba de la temperatura de fusión de sus compuestos. Una vez que la composición se ha disueito completamente y la solución está clara, se procede a enfriar.
El término "oleogel" se refiere, bajo eí contexto de la presente invención, a un gei que tiene una fase de aceite continua que contiene un agente estructurante o de geiificacsón y demás compuestos distribuidos uniformemente en la fase de gei, El oieogel exhibe propiedades físicas de una grasa sólida o semi-soüda. El oieogel es anhidro básicamente, es decir, tiene convenientemente un contenido de agua aproximadamente 1% en peso. No obstante puede ser empleado para producir emulsiones tipo agua en aceite. El oleogel de acuerdo a la invención es comestible. Por consiguiente, en un aspecto adicional, la presente invención proporciona un producto alimenticio que comprende un oieogel de acuerdo con la invención. El producto alimenticio puede realizarse mediante la mezcla de los componentes alimenticios con un oleogel de acuerdo con ia invención. La mezcla puede llevarse a cabo con el oleogel en el estado gelificado, o con la composición de oleogel en el estado licuado seguido del enfriamiento. El término "producto alimenticio" se refiere, bajo el contexto de la presente invención, a productos comestibles conteniendo también de manera conveniente uno o más ingredientes seleccionados de los carbohidratos (por ejemplo, azúcares y almidones), proteínas, fibra dietética, agua y agentes saborizantes como sal. De manera adecuada, ei producto alimenticio contiene por lo menos aproximadamente 1% en peso de oleogel, por ejemplo al menos aproximadamente 5%, 10% o 15% en peso de oleogel. De manera adecuada, el producto alimenticio contiene menos de aproximadamente 95% en peso de oleogel, por ejemplo menos de aproximadamente 90% en peso de oleogel. En ciertas modalidades, eí producto alimenticio de acuerdo con la presente invención es un producto de carne. Por ejemplo, un producto de carnes frías como jamón, carne molida como carne de hamburguesa, o producto de emulsión de carne para preparación de por ejemplo de salchichas. Típicamente, los productos de carne de la presente invención comprenden de aproximadamente 10% a aproximadamente 25% de proteína, de aproximadamente 5% a aproximadamente 35% en peso de oleogel de ía presente invención y de aproximadamente 40% a aproximadamente 60% en peso de agua total.
Típicamente, ios productos de emuisión de carne se preparan mediante la molienda, mezcla y emulsificacion de una mezcla de carne cruda como carne de res o cerdo, productos derivados de carne, oleogel de la presente invención y otros ingredientes como salmuera, especias, saborizantes, proteínas vegetales y colorantes con el fin de producir una emulsión que contenga partículas grasas finas cubiertas de proteínas. La proteína se disuelve ya sea de ingredientes de carne y/o derivados de proteína agregadas como proteínas vegetales o suero. En el caso de un producto embutido, la emulsión de carne resultante es embutida, La emulsión se procesa posteriormente mediante calor. El calentamiento de la emulsión de carne causa que la proteína contenida en el mismo coagule para formar una textura elástica, semi-sólida. Esta estructura atrapa las partículas grasas formando un producto de emulsión de carne firme. El producto de emulsión de carne resultante es una masa uniforme, homogénea, que también puede contener trozos de carne u otras inclusiones.
En ciertas modalidades, el producto alimenticio de acuerdo con la presente invención es un producto lácteo. Por ejemplo, un producto de queso, en donde la incorporación del oíeogel como reemplazo o sustituto de grasa se lleva a cabo, preferentemente, en ¡a etapa de preparación de la cuajada. Típicamente, el queso de la presente invención comprenden de aproximadamente 10% a aproximadamente 30% de proteína, de aproximadamente 5% a aproximadamente 35% en peso de oleogel de la presente invención y de aproximadamente 28% a aproximadamente 62% en peso de agua total.
En otra modalidad, el producto alimenticio de acuerdo con la presente invención es un producto de panadería. Por ejemplo, galletas, en donde la incorporación del oleogel como reemplazo o sustituto de grasa se lleva a cabo, preferentemente, en la etapa de preparación de la masa.
El reemplazo de una fracción de ia grasa presente en dichos productos alimenticios mediante aceites, preferentemente aceites vegetales, tiene como resultado productos de carne, lácteos o de panadería que tiene una textura y propiedades organolépticas no aceptables cuando se cocinan o se mastican debido a la salida de grasa del alimento y apariencia grasosa. Sin embargo, el reemplazo de una fracción de la grasa por un oleogel de acuerdo con la presente invención se ha encontrado que resulta en productos de carne, productos lácteos o productos de panadería que no presentan estos probíemas.
El término "termorreversibíe" significa, bajo el contexto de Sa presente invención, que se puede convertir desde una fase de gel a temperatura ambiente a una fase líquida a una temperatura elevada por encima de la temperatura ambiente. El término "termorreversible" incluye también el término preferido "termo-intercambiable", que quiere decir que se puede convertir desde una fase de gel a temperatura ambiente a una fase Síquida a una temperatura elevada por encima de la temperatura ambiente y que se puede reconvertir de nuevo a una fase de gel cuando se enfría a temperatura ambiente o inferior.
Por "temperatura ambiente" se quiere decir una temperatura comprendida entre 20 a 25 °C. Por "temperatura elevada por encima de la temperatura ambiente" se quiere decir una temperatura superiora 25°C.
La composición de oleogel comestible y termorreversible de la presente invención incluye : a ) Aceites o mezcla de aceites
Diversos tipos de aceites comestibles pueden utilizarse, más no se limitan a, aceite de soya, aceite de oliva, aceite de cañóla, aceite de maíz, aceite de girasol, aceite de cártamo, aceite de coco, aceite de semilla de algodón, aceite de linaza, aceite de almendra, aceite de cacahuate, aceite de alga, aceite de palma, estearina de palma, oleína de palma, aceite de palma hidrogenado, estearina de palma hidrogenada, aceite de soya alto oíeico, aceite de cañóla alto oleico, aceite de girasol alto oleico, aceite de cártamo alto oiéico, aceite de soya totalmente hidrogenado, aceite de cañóla totalmente hidrogenado, aceite de semilla de algodón totalmente hidrogenado, aceite de girasol alto esteárico, aceites interesterificados enzimática y químicamente y combinación de ios mismos.
La cantidad de aceite o mezcla de aceites en la composición del oleogel de la presente invención es típicamente de 50% a 95% en peso. Los aceites de soya, aceite de olivo, aceite de cañóla y aceite de palma son aceites preferidos para la formación del oleogel de la presente invención debido su perfil de ácidos grasos saturados, monoinsaturados y poliinsaturados que permiten formular distintas mezclas, limitando el contenido de ácidos grasos saturados y estableciendo el contenido de ácidos grasos monoinsaturados y ácidos grasos poliinsaturados dentro un rango en el que el oleogel exhiba las propiedades reológicas deseadas. Por ejemplo, el aceite de cañóla tiene la ventaja de contener airededor de 8% en peso de ácidos grasos saturados, mientras que los aceites de soya y de olivo contienen alrededor de 16% en peso y 14.56% en peso respectivamente. Por otro lado el contenido de ácidos grasos monoinsaturados para el aceite de canoía es de alrededor de 66% en peso, mientras que para ios aceites de soya y de olivo son aproximadamente de 23 y 78% respectivamente. Finalmente el contenido de ácidos grasos poliinsaturados es de alrededor de 25% en peso en el aceite de cañóla, mientras que para Sos aceites de soya y de olivo son de airededor de 59% y 5% respectivamente. Por otro lado, la oleína de palma, aunque tiene un contenido de ácidos grasos saturados de alrededor de 46% en peso, se prefiere una oleína de palma que tenga alrededor de 43% en peso de ácidos grasos monoinsaturados y alrededor de 10% en peso de ácidos grasos poliinsaturados porque al enfriarse por debajo de su temperatura de cristalización forma cristales pequeños que permiten modular las texturas del producto final. Adicionalmente, el aceite de soya se prefiere por su alto contenido de ácido íinoiéico de alrededor de 52% en peso. Mientras que el aceite de olivo y el aceite de cañóla se prefieren por su contenido de ácido ofeico de alrededor de 77% en peso y 64% en peso respectivamente.
En términos de ácidos grasos, Sa composición dei aceite de soya que puede ser utilizado en ¡a invención es como sigue:
de 16.31% a 16.53% en peso de ácidos grasos saturados;
de 23.42% a 23.54% en peso de ácidos grasos monoinsaturados; y
de 59.94% a 60.05% en peso de ácidos grasos poíiinsaturados.
En términos de componentes de ácido graso, ia composición del aceite de soya utilizado en la invención es como sigue:
de 11.15% a 11,17% en peso de ácido palmítico;
de 23.04% a 23.15%en peso de ácido oleico;
de 52,99% a 53,01% en peso de ácido linoléico;
de 6.71% a 6,68% en peso de ácido alfa-linolénico; y
de 3.99% a 4.03% en peso de ácido esteárico.
En términos de ácidos grasos, la composición del aceite de cañóla que puede ser utilizado en Sa invención es corno sigue:
de 8.16% a 8.51% en peso de ácidos grasos saturados;
de 66.07% a 66.28% en peso de ácidos grasos mono insaturados; y
de 25.23% a 25.35% en peso de ácidos grasos poíiinsaturados.
En términos de componentes de ácido graso, la composición del aceite de cañóla utilizado en la invención es como sigue:
de 4.63% a 4.65% en peso de ácido palmítico;
de 64.31% a 64.55%en peso de ácido oieico;
de 17.93% a 18.03% en peso de ácido linoléico;
de 6.68% a 6.72% en peso de ácido alfa-linofénico; y de 2.13% a 2.15% en peso de ácido esteárico.
En términos de ácidos grasos, ia composición del aceite de palma que puede ser utilizado en ia invención es como sigue:
de 46.15% a 55.96% en peso de ácidos grasos saturados;
de 34.88% a 43.23% en peso de ácidos grasos monoinsaturados; y
de 8.68% a 10.57% en peso de ácidos grasos poliinsaturados.
En términos de perfíi de ácidos grasos, la composición del aceite de palma utilizado en ia invención es como sigue:
de 38.54% a 39.44% en peso de ácido palmítico;
de 34.55% a 42.86%en peso de ácido oleico;
de 8.43% a 10.28% en peso de ácido línoléíco;
de 4.47% a 6.13% en peso de ácido esteárico; y
de 0.96% a 2.93% en peso de ácido mirístlco.
En términos de ácidos grasos, ia composición del aceite de olivo que puede ser utilizado en la invención es como sigue :
de 13.8% a 15.3% en peso de ácidos grasos saturados;
de 74.7% a 82.6% en peso de ácidos grasos monoinsaturados; y
de 6.4% a 7.1% en peso de ácidos grasos poliinsaturados.
En términos de perfil de ácidos grasos, Sa composición del aceite de olivo utilizado en ia invención es como sigue:
de 10.07% a 11.14% en peso de ácido paímítico;
de 73.53% a 81.27%en peso de ácido oleico;
de 5.67% a 6.28% en peso de ácido iinoléico;
de 3.1% a 3.42% en peso de ácido esteárico; y
de 0.7% a 0.77% en peso ácido alfa linoleico. b ) Grasas o mezcla de grasas
Una selección y relación apropiada de grasa es adicionada al aceite o mezcla de aceites. Las grasas que pueden ser utilizados son de origen vegetal o animal.
Entre las grasa vegetales se pueden emplear grasa de soya, grasa de algodón, grasa de palma fraccionada, grasa de palma completamente hidrogenada, grasa de paimiste, estearina de palma, grasa de coco, grasa vegetal completamente hidrogenada y sus combinaciones.
Entre las grasa animales se pueden emplear grasa butírica, grasa de cerdo, sebo de res y sus combinaciones.
La cantidad de grasa en la composición del oleogel de la presente invención es típicamente de5% a 50% en peso. c) Agente estructurante
Con ei propósito de llevar a cabo ía gelificacíón o estructuración de la mezcla de aceites y grasa se hace uso de un agente estructurante seleccionado de monogiicéridos de ácidos grasos.
Los monogiicéridos de ácidos grasos consisten en glícerol esterificado con un ácido graso único. Según la invención, ei ácido graso es un ácido graso saturado de 12 a 24 átomos de carbono que se selecciona de entre el grupo que consiste ácido araquídico, ácido behénico, ácido butírico, ácido esteárico, ácido láurico, ácido lignocérico, ácido mirístico, ácido palmítico y sus combinaciones.
Las características de la estructura generada por los monogiicéridos no sólo depende de la concentración de monogiicéridos utilizados sino también del tipo de monoglicéridos. Para una alta viscosidad y plasticidad se prefieren monoglicéridos o mezclas de monogiícéridos con un alto grado de saturación. Preferentemente, se utilizan monoglicéridos que se derivan de aceite de palma, fracciones de aceite de palma, palma kernel grasa, grasa de coco, manteca de cerdo, sebo, aceites vegetales hidrogenados parcial o totalmente. Tales monoglicéridos de ácidos grasos son preferiblemente ricos en ácido esteárico o ácido palmítico, lo que significa al menos 40% de esos monoglicéridos son de ácido esteárico y al menos otro 30% son de ácido palmítico.
Para la presente invención, se prefieren monoglicéridos destilados de ácidos grasos saturados de 12 a 24 átomos de carbono que contiene más de 90% en peso de monoglicéridos y donde el ácido graso saturado de 12 a 24 átomos de carbono tiene más del 40% en peso de ácido esteárico y al menos otro 30% en peso de ácido palmítico. La razón para preferir los monoglicéridos de ácidos grasos saturados radica en que producen organogeles que pueden ser tratados mecánicamente sin afectar el desarrollo de su estructura durante el trabajo mecánico de agitación que ocurre comúnmente en diversos procesos de producción de alimentos como amasado de masa de panificación, emulsificado de productos cárnicos, corte y prensado de cuajadas de queso, etc. ES monoglicérido destilado de ácido graso saturado tiene un punto de fusión de
65°C a 90°C.
La cantidad de agente estructurante en la composición del oieogel de la presente invención es típicamente del% a 10% en peso. f) Agente emulsificante
Adicionalmente, la composición de oleogel de la presente invención puede incluir un agente emulsificante seleccionado de lecitina de soya, fosfolípidos, derivados del sorbitan y sus combinaciones. Este agente emulsificante se añade como coadyuvante en el proceso de incorporación del oleogel emulsión, especialmente en productos lácteos.
La cantidad de agente emulsifscante en la composición del oleogel de la presente invención es típicamente de menor a 1% en peso.
MODO DE PREPARACIÓN
La composición de oleogel de la presente invención puede ser elaborada a partir de la preparación de una mezcla de aceite y grasa ; iuego se agrega el agente estructurante para posteriormente calentar continuamente y con agitación, la mezcía a una temperatura de 65°C a 90°C, permitiendo luego que la mezcla de aceite, grasa y agente estructurante se enfrié para formar el oleogel . De manera alternativa, durante el calentamiento se agrega el agente emufsificante. El oleogel puede ser incorporado en un producto alimenticio completamente fundido o semisólido según la aplicación.
En términos de ácidos grasos, el oleogel comestible y termorreversible de la presente presenta una composición de :
de 25% a 56% en peso de ácidos grasos saturados;
de 29% a 55% en peso de ácidos grasos monoinsaturados; y
de 8% a 36% en peso de ácidos grasos poliinsaturados.
En términos de perfil de ácidos grasos, el oleogel comestible y termorreversible de la presente presenta una composición de:
de 16% a 45% en peso de ácido palmítíco ;
de 28% a 50% en peso de ácido oleico;
de 1% a 10% de ácido esteárico;
de 9%a 35% en peso de ácido linoléico;
de 0. 1% a 7% de ácido alfa linoiénico
de 1% a 10% en peso de ácido láurico; y de 1% a 3% de ácido mirístico.
La composición de oieogel de ia presente invención es estable sin mostrar separación de fases a una temperatura de 4 °C a 25 °C,
PROPIEDADES REOLÓGICAS
La composición de oieogel de 3a presente invención permite la obtención de sistemas grasos estructurados que durante su enfriamiento o calentamiento exhiben una modificación en su fenómeno de cristalización, que desde el punto de vista reológico, puede ser evidenciado por un aumento en el módulo complejo (G*), el cual para términos prácticos indica la rigidez del material o la resistencia que impone al flujo.
Se encontraron tres efectos de ia adición del agente estructurante sobre ia mezcla de aceites y grasas: primero, el aumento de G* depende de la concentración del monogücéndo destilado de ácido graso saturado; segundo, la adición de monog'icérido destilado de ácido graso saturado favorece el inicio de la cristalización en etapas más tempranas durante eí enfriamiento de la mezcla del oieogel comparado con ia grasa sin monogücérido y, tercero; el tipo de ácido graso del monogiicérido impacta la estabilidad del oieogel ante esfuerzos de cizalla, siendo preferidos los ácidos grasos saturados sobre los ácidos grasos insaturados y ácidos grasos trans.
La composición de oieogel de la presente invención tiene un módulo complejo G* mayor a 0,8 MPa cuando se la muestra previamente fundida de 65°C a 90°C, se enfría y cristaliza a una velocidad de aproximadamente 2°C/min hasta llegar a 0°C y se sostiene 30 minutos a 0 °C, realizando ía medición a 10 Hz y 0,005% de amplitud.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN La invención ahora será descrita con respecto a los ejemplos siguientes, ios cuales son únicamente con el propósito de representar ia manera de llevar a cabo la implementación de los principios dei invento. Los ejemplos siguientes no intentan ser una representación exhaustiva de la invención, ni intentan limitar el alcance de ésta.
EJEMPLOS DE COMPOSOCIONES DE OLEOGEL COMESTIBLE Y TERMORREVERSIBLE
Se prepararon 11 distintos ejemplos de composiciones de oíeogel comestible y termorreverisbie denominados Fl, F2, F3, F4, F5, F6, F7; F8; F9, F10 y F11 de conformidad con ¡os ingredientes y cantidades indicadas en Tabla 1 de acuerdo con la invención. La preparación consistió en ia preparación de ia mezcia en % en peso y su posterior fusión a 80°C durante 15 minutos para fundir todos los materiaíes y mezclarlos.
Figure imgf000017_0001
Tabla 1 Las composiciones Fl, F2, F3, F4, F5, FS, F7, F8, F9, F10 y F 11. fueron analizadas para determinar su correspondiente perfii de ácidos grasos saturados (AGS), ácidos grasos poü-insaturados (AGP), ácidos grasos monoinsaturados (AGM) y ácidos grasos trans (AGT). El perfil de ácidos grasos se determinó mediante ei método 96. G6 de la AOAC (Asociación Oficial de Comunidades Analíticas). Para ello se utilizó un Cromatógrafo Agiient 7890 A (Santa Clara, California, EUA). Para ei análisis de Sos datos se empleó el software ChemStation y asimismo se empleó ei Kit Supelco 37 Component FAME Mix como estándares (Sigma Aldrich, St. Louis, MO, EUA). Los perfiles de ácidos grasos se muestran en Tabla 2, mientras que en Tabla 3 se muestran ios perfiies detallados de ácidos grasos de las fases grases de la Tabla 2,
Figure imgf000018_0001
Tabla 2
Figure imgf000018_0002
Figure imgf000019_0001
Tabla 3
Posteriormente, se obtuvieron reogramas de las muestras de ejemplos mediante barridos de temperatura empleando un reómetro AntonPaar equipado con una celda P- PTD200 y una geometría PP25 perfilada para evitar que la muestra y la geometría resbale. E¡ espacio entre la geometría y el plato inferior fue de 1 mm . Posterior a
17 establecer eí límite de la zona ¡íneal de visco elasticidad, se estableció el programa de temperatura, que fue de un pre-fundido a 80 °C por 15 minutos seguido de un enfriamiento de 80 a 0 °C a 2 °C por minuto. Ésta velocidad fue escogida para minimizar el gradiente de temperatura entre la base fría del Peltier (plato inferior) y la base de la geometría (plato superior) . Posterior ai enfriamiento, se mantuvo isotérmicamente a 0 °C por 30 minutos. Enseguida, la muestra fue nuevamente calentada a 2 °C por minuto hasta 80 °C. La frecuencia se fijó a 10 Hz para tener mejor resolución de torque cuando ia grasa se encuentre en liquida, y ia temperatura mínima se fijó en 0 °C. En las Figuras 1 y 2 se muestran reogramas de G* vs tiempo (t) y G* vs
Temperatura (T) de los ejemplos Fl , F2, F6, F6, F8, FIO y Fl l aplicables en la elaboración de margarinas untables. Estos reogramas muestran la misma información reológica, pero mientas en la Figura 2 es más fácil visualizar el inicio de ios eventos Teológicos y el bucle que se forma durante el ciclo de enfriamiento-sostenimiento- enfriamiento, en la Figura 1 se muestra de una mejor manera la rampa de temperatura. El área dentro dei bucle en ia Figura 2 refleja la ganancia de estructura del oleogei durante la cristalización y sostenimiento isotérmico a 0 °C.
En la Figura 2 se muestra que F7, F9 y FIO son comparables en área a Fl pero F9 y FIO que contienen el agente estructurante poseen una estructuración isotérmica más rápida . Las composiciones F9 y FIO difieren en la composición del componente grasa sólida, pues la composición F9 se preparó con una mezcla de grasa de palma de punto de fusión 36 °C, grasa de palma de punto de fusión de 45 °C y grasa de palma completamente hidrogenada, mientras que la composición FIO fue preparada solamente con grasa de palma de punto de fusión 36 °C. Aquí se muestra que ambos perfiies de ácidos grasos son prácticamente iguales, por lo cual la diferencia en los puntos de fusión pueden deberse a la posición que los ácidos grasos toman en el glicerol . Por io cual es un factor que puede afectar las propiedades que una grasa estructurada exhibe. Por otro lado, la composición F2 fue preparada con grasa de palma de punto de fusión 36 °C y se utiliza para margarinas de barra. Esto principalmente por la plasticidad y resistencia a la deformación (módulo complejo G* medido en Pa) que desarrolla al cristalizar. En su reograma, durante el periodo de enfriamiento de 80°C a 0 °C en intervalos de 2°C/min , se puede apreciar que su proceso de cristalización es rápido pero incompleto. De hecho, se observa que durante el periodo de sostenimiento isotérmico a 0 °C continúan los fenómenos de estructuración del material graso (cristalización). El G* de la composición grasa F2 liega a ser de 13.3 MPa. Su resistencia a la deformación y su evolución reológica post-producción permiten que en la práctica industrial, justo a la salida del equipo de cristalización, la composición F2 exhiba una consistencia que permite su manejo y empacado. Posteriormente, durante el periodo de almacenamiento en cuartos refrigerados es que se logra el completo desarrollo de la red de cristales. Por esta razón se busca que las fases grasas que se utilicen para elaborar margarinas de barra exhiban una cristalización igual o más rápida que F2. Lo que se observa con una pendiente mayor durante el período de cristalización y un G* igual o mayor al de F2.
Por otro lado, la composición Fl se utiliza para margarinas untables y es una mezcla de aceite y grasa de palma. La evolución del su reograma durante la rampa de temperatura aplicada exhibe dos eventos reológicos durante su cristalización : el primero, alrededor de los 30°C y termina alrededor de los 12°C. La segunda etapa de cristalización comienza 5 minutos después de que inicia el sostenimiento isotérmico 0°C, ai final de este periodo el G* de ia composición Fl llega a ser de 0.86 MPa (más de 10 veces menor que el de la composición F2). La mezcla de grasas de la composición Fl se utiliza para margarinas untables debido a que es más suave por ofrecer menor resistencia a la deformación. La aparición de estos eventos reológicos, evidenciados por marcados cambios en la pendiente de Sa curva durante ia cristalización o fusión, obedece a la presencia de distintas fracciones en la mezcla. Por esta razón ia cristalización y fusión de la composición F2 tiene cambios de pendiente suaves mientras que la composición Fl exhibe transiciones escalonadas.
Al contrastar los reogramas de las composiciones Fl, F6, F7, F9, FIO y Fl l se encontró que el perfil reológico de la composición Fl supera a Sa composición F6 en velocidad de cristalización (durante periodo isotérmico a 0°C) y resistencia a la deformación, pero es superado en ambos aspectos por ia composición F7 (3.7 MPa), composición F9 (4.0 MPa) y composición FIO ( 1.9 MPa). Finalmente, la composiciónFl l mostró que su temperatura de inicio de cristalización, cuando comienza un aumento de G* (Pa) fue mayor en la composición Fl pero su G* fue menor ai exhibir solamente 0,26 MPa (3 veces menor que la composición Fl). Las diferencias encontradas entre las composiciones F7 y F9 pueden atribuirse tanto a la adición del agente estructurante, (ya que ambos poseen un perfil similar de ácidos grasos C12 :0, C14 :0, C16 :0, C18 :0, C18 :0, C18: ln9c, C18 : 2n6c y C18 : 3n3, como a las diferencias en la estructuración durante el enfriamiento (ver Figura 5). En Sa composición F9 se añadió 4% de agente estructurante en su fórmula y el efecto de dicha adición se evidencia con una cristalización y fusión en dos eventos(escalonada). Finalmente, es destacabie que la composición Fl l que contiene 5% de agente estructurante exhibe un módulo complejo G* de 0.26 MPa contra 0.027 de la composición F6, cuando ia proporción de ácidos grasos saturados en la composición Fl l es 5% menor, mientras que el contenido de ácidos grasos poli-insaturados es 7% mayor. De esta manera se establece también que las diferencias encontradas en las composiciones anteriormente mencionadas posee una explicación desde el punto de vista microestructurai. Lo anterior debido a que se observó una clara formación de cristales dentro de la red formada por el monoglicérido (Ver Figura 5, composición F7 vs composición F9).
Respecto a la formulación de margarinas de barra, los reogramas de F3, F4, F5 y F8 muestran que es posible la reducción de ácidos graso saturados y ácidos graso trans al mismo tiempo de que se aumenta el ácido graso monoinstaurado y el ácido graso poliinstaurado (ver Tablas 1 y 3 y Figuras 3 y 4). El módulo complejo G* fue de 19.8, 13.3, 8,68 y 11.3 MPa para F3, F4, F5 y F8 respectivamente. Se puede observar que nuevamente existen diferencias en los reogramas, aun cuando se han disminuido el contenido de ácido graso saturado, especialmente el C16: 0 y aumentado la proporción de C18 : 2n6c en ia formula. De esta manera F3, F4 y F5 son formulaciones de mezclas de grasas con una evidente reducción de ácidos grasos saturados que son buenos candidatos para ser añadidas de monoglicérido destilado de ácido graso saturado para inducir cambios en sus cinéticas de cristalización y propiedades reologicas para que puedan ser empleadas como la fase grasa para margarinas de barra .
En la Figura 6 se hace una comparación del tamaño de los cristales obtenidos con la palma de punto de fusión de 36°C y la composición F9. Se puede apreciar que en ambos casos conforme Sa velocidad rotacional aumenta el tamaño de los cristales se torna más pequeño. De esta manera las estructuras obtenidas con monoglicérido destilado de ácido graso saturado pueden ser convertidas, mediante trabajo mecánico, en estructuras similares a las de los cristales de palma actualmente producidos.
EJEMPLOS DEL USO DEL OLEQGEL COMESTIBLE Y TERMORREVERSIBLE DE LA INVENCIÓN EN PREPARACIÓN DE ALIMENTOS
EJEMPLO 1.
Producción de queso Doble Crema. El proceso de incorporación del oleogel depende del alimento en que será aplicado, en el caso de los quesos se realiza el balance de materia de acuerdo al contenido de grasa deseado y se emulsifica el oleogel con una en leche descremada. Posteriormente ia emulsión es mezclada con otra corriente de leche fresca descremada o no, según el contenido deseado de grasas. Enseguida se pasteuriza la mezcla y se atempera a temperatura de cuajado, se agrega el cuajo y se espera el tiempo necesario para madurar la cuajada. Finalmente, se corta ia cuajada, se desuera, sala, muele moldea y empaca el queso.
EJEMPLO 2.
Producción de queso tipo Panela reducido en grasa saturada. El método de preparación utiliza como materia prima ( 1) aceite vegetal de soya o cañóla; (2) grasa butírica fraccionada de alto punto de fusión o grasa vegetal de soya; (3) monoglicérldos destilados provenientes de ácidos grasos saturados. Para la preparación del oleogel se prepara una mezcla de aceite, grasa estructurante, cuyas proporciones pueden ser de 70% a 95%, 5% a 25%, 1% a 5% en peso y más preferiblemente de 85%, 15% y 5% en peso, respectivamente. Después de mezclar los ingredientes se funden a una temperatura preferiblemente entre 50 °C a 90°C y más preferiblemente a 70°C hasta su completa disolución . Para la preparación 0.500 kg del oleogel fundido se mezcla con 15 litros de leche descremada a 50°C. Posteriormente se homogeneizan a una presión entre 500 PSI a 1500 PSI y se mezclan con otros 15 litros de leche entera, Posteriormente la mezcla se pasteuriza a una temperatura entre 63 °C y 80°C y más preferiblemente de 75°C. Enseguida se enfría la mezcla hasta una temperatura entre 30 °C a 45°C y más preferiblemente de 40°C. Se agrega el cuajo (renina) y se deja reposar de 5 a 30 minutos y más preferiblemente 10 minutos. Se procede a cortar, y desuerar para posteriormente compactar los granos, moldearlos y empacar el producto terminado.
EJEMPLO 3.
Producción de margarina a base de oíeogel. El método de preparación utiliza como materia prima aceite vegetal, grasa vegetal, monoglicéridos destilados provenientes de ácidos grasos saturados. Tanto el aceite (cañóla, soya, olivo, oleína de palma) como la grasa se ajustan la proporción deseada que varía de 50 : 50% a 95 : 5% en peso respectivamente. Posteriormente se añade el agente estructurante cuya composición varia de 1% a 10% en peso y más preferiblemente de 2% a 3% en peso del total de la mezcla. Después de mezclar los ingredientes se funden a una temperatura preferiblemente entre 50 °C a 90°C y más preferiblemente a 60°C hasta su completa disolución bajo agitación de 100 rpm a 500 rpm. Enseguida, se agregan los saborizantes liposolubíes, emulsificant.es y colorantes. La fase grasa es entonces mezclada con una fase acuosa en una proporción fase grasa-fase acuosa de 60 :40. En la fase acuosa se encuentran disueltos Sos conservadores y la sai , La mezcla es entonces pasteurizada entre 60 °C a 90 °C y más preferiblemente de 80 °C bajo agitación a una velocidad de 100 rprn a 500 rpm para conseguir ¡a emulsión de ambas fases. La mezcla pasteurizada es pre-enfríada a una temperatura entre 59 °C a 63°C y posteriormente bombeada a una veiocidad de 72kg/hr a 96 kg/hr hacia un primer cristalizador cuyo iníercambiador de superficie raspada tiene una velocidad de rotación de 300 rpm a 400 rpm, siendo la emulsión enfriada en esta etapa a una temperatura de 8 °C a 12°C. Posteriormente, la margarina se conduce a un rotor de pernos para hornogenizar el tamaño de cristales cuya velocidad es de 200 rpm a 300 rpm y su temperatura va de 0 °C a 25°C y más preferiblemente de 9 °C a 13°C. Enseguida, la margarina se dirige a un segundo cristalizador cuya intercambiador de superficie raspada tiene una velocidad de rotación de 150 rpm a400 rpm y más preferiblemente de 200 rpm a 320 rpm y su temperatura de salida de la margarina es de 0 °C a 10°C y más preferiblemente de 4 °C a 9°C. El medio de enfriamiento utilizado es refrigerante R-22, Para ei caso de pruebas industriales, se utilizó un equipo de 6 tubos de superficie raspada y dos rotores de pernos de 50 litros y 100 litros respectivamente. La emulsión se conduce por medio de una bomba de alta presión a un flujo de 1,200 kg/hr a 1,300 kg/hr y una temperatura de entrada de 44 °C a 46°C. Después de la primera serie de dos intercambiadores de superficie raspada el producto registra una temperatura de 18 °C a 20°C. La margarina se circuía por el rotor de pernos de 50 litros para homogenizar el tamaño de cristales, donde su temperatura va de 20 °C a 22°C. Enseguida, la margarina se dirige a otros dos tubos de enfriamiento, donde se la margarina llega a una temperatura de 4°Ca 6°C. El producto así obtenido se envía ai segundo rotor de pernos de 100 litros, donde alcanza una temperatura de 7 °C a 9 °C, para de ahí pasar a ¡os dos últimos intercambiadores de superficie raspada (tubos 5 y 6), obteniéndose una temperatura de 2 °C a 3 °C. El medio refrigerante usado en las pruebas industriales fue Amoniaco, EJEMPLO 4.
Producción de emulsión cárnica (Salchichas). El método de producción utiliza como materia prima ei oieogel como fase grasa, agua, proteína de pollo separada mecánicamente (MDM), proteína de soya, almidón, sai común, nitritos, saborizante, colorante y conservadores. En este caso el oleogeí se prepara con oleína de palma cuya proporción oieína-grasa se ajustan a ía proporción deseada que varía de 50: 50% a 95 :5% en peso respectivamente y más preferiblemente 95 : 5% en peso. Posteriormente se añade el agente estructurante cuya composición varía de 1% a 10% en peso y más preferiblemente de 1% a 3% en peso del total de la mezcla. La preparación comienza con la hidratacion de las proteínas y sales, seguido de un posterior mezclado y refinado con ei oieogel y resto de los ingredientes a una temperatura de 6°C. El refinado se realiza bajo vacío utilizando un emulsificador de cuchillas hasta que se obtenga una dispersión homogénea, El producto resultante se embute y cocina a una temperatura entre 63 °C a 80°C y más preferiblemente a 72°C. En base a ias realizaciones descritas anteriormente, se contempla que las modificaciones a estas realizaciones descritas, así como las realizaciones alternativas serán consideradas evidentes para una persona experta en el arte de la técnica bajo la presente descripción. Es por lo tanto, contemplado que las reivindicaciones abarcan dichas realizaciones alternativas que estén dentro del alcance del presente invento o sus equivalentes.

Claims

REIVINDICACIONES Habiéndose descrito la invención como antecede, se reclama como propiedad lo contenido en las siguientes reivindicaciones.
1. Un oleogel comestible y termorreversibie que comprende un aceite o mezcla de aceites, un agente estructurante o mezcla de agentes estructurantes y una grasa o mezcla de grasas, caracterizado en que el agente estructurante es un monoglicérido destilado de ácido graso saturado de 12 a 24 átomos de carbono que contiene más de 90% en peso de monoglicéridos y donde el ácido graso saturado de 12 a 24 átomos de carbono tiene al menos 40% de esos monoglicéridos son de ácido esteárico y al menos otro 30% son de ácido palmítico.
2. El oleogel comestible y termorreversibie de conformidad con la reivindicación 1, caracterizado en que comprende de 50% a 95% en peso de aceite, de 1% a 10% en peso de agente estructurante y de 5% a 50% en peso de grasa ,
3. El oleogel comestible y termorreversibie de conformidad con la reivindicación 1, caracterizad© esi que el aceite es seleccionado de un grupo que consiste de aceite de soya, aceite de oliva, aceite de cañóla, aceite de maíz, aceite de girasol, aceite de cártamo, aceite de coco, aceite de semilla de algodón, aceite de linaza, aceite de almendra, aceite de cacahuate, aceite de alga, aceite de palma, estearina de palma, oleína de palma, aceite de palma hidrogenado, estearina de palma hidrogenada, aceite de soya alto oleico, aceite de cañóla alto oíeico, aceite de girasol alto oleico, aceite de cártamo alto oleico, aceite de soya totalmente hidrogenado, aceite de cañóla totalmente hidrogenado, aceite de semilla de algodón totalmente hidrogenado, aceite de girasol alto esteárico, aceites interesterificados enzimática y químicamente y combinación de los mismos.
4. El oleogel comestible y termorreversibie de conformidad con ia reivindicación 3, caracterizado en que ei aceite es aceite de soya, aceite de olivo, aceite de canoia, aceite de palma .
5.El oieogel comestible y termorreversibie de conformidad con la reivindicación 1, caracterizado en que la grasa es de origen animal o vegetal seleccionada de un grupo que consiste de estearina, grasa butírica, grasa de cerdo, sebo de res, grasa vegetal completamente hidrogenada y sus combinaciones.
6. El oieogel comestible y termorreversibie de conformidad con la reivindicación 1, caracterizado en que además incluye un agente emuisificante seleccionado de un grupo que consiste de iecitina de soya, fosfolípidos, y sus combinaciones,
7. ES oieogel comestible y termorreversibie de conformidad con ia reivindicación 1, caracterizado en que el monoglicérido destilado de ácido graso saturado tiene un punto de fusión de 65 °C a 90°C,
8. El oieogel comestibie y termorreversibie de conformidad con ia reivindicación 1, caracterizado en que tiene un módulo compiejo mayor a 0.3 MPa cuando la muestra previamente fundida a 80°C se enfría y cristaliza a una velocidad de 2 °C/min hasta 0°C y se sostiene 30 minutos a 0 °C, realizando la medición a 10 Hz y 0.005% de amplitud .
9. ES oieogel comestible y termorreversibie de conformidad con ia reivindicación 1, caracterizado ers que tiene un perfil de ácidos grasos de 25% a 56% en peso de ácidos grasos saturados, de 29% a 55% en peso de ácidos grasos monoinsaturados y de 8% a 36% en peso de ácidos grasos poliinsaturados.
10. El oleogel comestibie y termorreversibie de conformidad con ia reivindicación 1, caracterizado en que tiene un perfil de ácidos grasos de 16% a 45% en peso de ácido palmítico, de 28% a 50% en peso de ácido oleico, de 1% a 10% de ácido esteárico, de 9%a 35% en peso de ácido iinoléico, de 0, 1% a 7% de ácido alfa íinoiénico, de í% a 10% en peso de ácido láurico, y de 1% a 3% de ácido mirística.
11. El oieogel comestible y termorreversibie de conformidad con ia reivindicación 1, caracterizado en que es estable sin mostrar separación de fases a una temperatura de 4 «C a 25°C.
12. Uso de un oleogel comestibie y termorreversibie de conformidad con cuaiquiera de las reivindicaciones anteriores como reemplazo de una fracción grasa para elaborar un producto alimenticio seleccionado de un producto lácteo, un producto cárnico, un producto de emulsión de carne y un producto de panadería.
13. Un método para elaborar un oleogel comestible y termorreversibie, el método está caracterizado en que comprende las etapas de :
preparar una mezcla de aceite y grasa;
agregar un agente estructurante a la mezcla de aceite y grasa, en donde ei agente estructurante es un monogiicérido destilado de ácido graso saturado de
12 a 24 átomos de carbono que contiene más de 90% en peso de monoglicéridos y donde el ácido graso saturado de 12 a 24 átomos de carbono tiene al menos 40% en peso de ácido esteárico y ai menos 30% de ácido palmítico; y
calentar la mezcla de aceite, grasa y agente estructurante a una temperatura de 65°C a 90°C.
14. El método para elaborar un oleogel comestible y termorreversibie de conformidad con ia reivindicación 13, caracterizad© en que además incluye ia etapa de permitir que la mezcla de aceite, grasa y agente estructurante se enfrié.
15. El método para elaborar un oleogeí comestible y termorreversible de conformidad con la reivindicación 13, caracterizado ers que además las etapa de calentar ia mezcla de aceite, grasa y agente estructurante a una temperatura de 56 °C a 90°C incluye la etapa de agregar un agente emulsificante seíeccionado de un grupo que consiste de lecitina de soya, fosfoSípidos, y sus combinaciones,
PCT/MX2016/000131 2015-12-09 2016-12-08 Oleogel comestible y termorreversible y método para elaborarlo WO2017099574A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/060,811 US10874115B2 (en) 2015-12-09 2016-12-08 Edible and thermoreversible oleogel and method for preparation thereof
ES16873426T ES2909381T3 (es) 2015-12-09 2016-12-08 Oleogel comestible y termorreversible y procedimiento para elaborarlo
CA3007962A CA3007962A1 (en) 2015-12-09 2016-12-08 Edible and thermoreversible oleogel and method for preparation thereof
EP16873426.7A EP3387909B1 (en) 2015-12-09 2016-12-08 Thermoreversible edible oleogel and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2015/016900 2015-12-09
MX2015016900A MX2015016900A (es) 2015-12-09 2015-12-09 Oleogel comestible y termorreversible y metodo para elaborarlo.

Publications (1)

Publication Number Publication Date
WO2017099574A1 true WO2017099574A1 (es) 2017-06-15

Family

ID=59013773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2016/000131 WO2017099574A1 (es) 2015-12-09 2016-12-08 Oleogel comestible y termorreversible y método para elaborarlo

Country Status (7)

Country Link
US (1) US10874115B2 (es)
EP (1) EP3387909B1 (es)
CA (1) CA3007962A1 (es)
ES (1) ES2909381T3 (es)
MX (1) MX2015016900A (es)
PT (1) PT3387909T (es)
WO (1) WO2017099574A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113261578A (zh) * 2021-05-26 2021-08-17 沈阳大学 一种抑制油脂迁移富含高膳食纤维曲奇饼干制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109527120B (zh) * 2018-12-07 2022-04-08 南京农业大学 一种基于植物油的富含多不饱和脂肪酸的食品级抑菌油凝胶及其制备方法
JP2022535758A (ja) 2019-05-29 2022-08-10 ヴァーヘニンゲン・ウニヴェルシテイト タンパク質オレオゲルを生産する一工程法
WO2021046642A1 (en) * 2019-09-11 2021-03-18 Smart Base Ltd. Wax oleogels as fat substitutes
US11439159B2 (en) 2021-03-22 2022-09-13 Shiru, Inc. System for identifying and developing individual naturally-occurring proteins as food ingredients by machine learning and database mining combined with empirical testing for a target food function
CN113142311A (zh) * 2021-04-14 2021-07-23 上海东之汇生物科技有限公司 一种添加可得然胶的低饱和脂肪酸组合物及其制备方法和应用
CN113951332A (zh) * 2021-10-25 2022-01-21 安徽省华银茶油有限公司 一种基于油茶籽油的食用油凝胶的制备方法
CN114403240B (zh) * 2022-01-07 2023-07-21 华南农业大学 一种新型米糠蛋白基起酥油替代物及其在烘焙食品中的应用
WO2023210637A1 (ja) * 2022-04-26 2023-11-02 三菱ケミカル株式会社 肉様食品用改質剤及び肉様食品
US11896687B1 (en) 2023-05-22 2024-02-13 Shiru, Inc. Oleogel having a protein microstructure with optimized oil release properties for replacing structured fats and saturated oils in food and cosmetic products

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111058A1 (en) * 2012-01-23 2013-08-01 Universita Della Calabria Rheologically-controlled vegetable spread oils

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111058A1 (en) * 2012-01-23 2013-08-01 Universita Della Calabria Rheologically-controlled vegetable spread oils

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
13 March 2015 (2015-03-13), Retrieved from the Internet <URL:http://web.archives.org/web/2015038082151/http://www.sheffieldbioscience.com/myvero1804K> [retrieved on 20170419] *
LUPI, F.R. ET AL.: "Effect of organogelator and fat source on rheological properties of olive oil-based organogels", FOOD RESEARCH INTERNATIONAL, vol. 46, 2012, pages 177 - 184, XP028464050 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113261578A (zh) * 2021-05-26 2021-08-17 沈阳大学 一种抑制油脂迁移富含高膳食纤维曲奇饼干制备方法

Also Published As

Publication number Publication date
EP3387909B1 (en) 2021-12-22
ES2909381T3 (es) 2022-05-06
CA3007962A1 (en) 2017-06-15
PT3387909T (pt) 2022-03-21
US20180352826A1 (en) 2018-12-13
EP3387909A4 (en) 2019-07-24
US10874115B2 (en) 2020-12-29
EP3387909A1 (en) 2018-10-17
MX2015016900A (es) 2017-06-08

Similar Documents

Publication Publication Date Title
ES2909381T3 (es) Oleogel comestible y termorreversible y procedimiento para elaborarlo
ES2317816B1 (es) Producto emulsionado untable a base de aceite de oliva y/u otros aceites vegetales y su procedimiento de preparacion.
JP6474876B2 (ja) 豆乳含有水中油滴型乳化物及びその製造方法
JP2017176100A (ja) フィリング用油中水型乳化油脂組成物
WO2017090589A1 (ja) 充填豆腐用凝固剤
CA2925300C (en) Process for preparing non-lecithin emulsifier-free edible fat-continuous emulsions
JP2010051231A (ja) 低油分起泡性水中油型乳化物
WO2021182315A1 (ja) 練り込み用油中水型乳化組成物
CA2884515C (en) Edible water-in-oil emulsion and a process for preparing such emulsion.
AU2015263494B2 (en) Process for the manufacture of edible water-in-oil emulsion
TW201340878A (zh) 裹油用乳化油脂組成物
AU2011237856B2 (en) Butter-derived spread and a method of producing it
RU2580143C1 (ru) Маргарин для выпечки
JP2015002705A (ja) シューケース用油脂組成物
Melchior et al. Mono‐and Diglycerides
JP7370175B2 (ja) 油中水中油型乳化油脂組成物
TW201622574A (zh) 可凍結和解凍且已起泡的水中油型乳化物混合物及其製造方法
CN108244263A (zh) 乳液组合物、油脂组合物及它们的用途
OA20203A (en) Process for the manufacture of edible water-in-oil emulsion.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3007962

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016873426

Country of ref document: EP