WO2017099470A1 - Paste composition for forming solar cell electrode - Google Patents

Paste composition for forming solar cell electrode Download PDF

Info

Publication number
WO2017099470A1
WO2017099470A1 PCT/KR2016/014303 KR2016014303W WO2017099470A1 WO 2017099470 A1 WO2017099470 A1 WO 2017099470A1 KR 2016014303 W KR2016014303 W KR 2016014303W WO 2017099470 A1 WO2017099470 A1 WO 2017099470A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste composition
strain
solar cell
solvent
loss angle
Prior art date
Application number
PCT/KR2016/014303
Other languages
French (fr)
Korean (ko)
Inventor
신규순
이정훈
김아란
윤현진
김선홍
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to CN201680072187.3A priority Critical patent/CN108431965A/en
Publication of WO2017099470A1 publication Critical patent/WO2017099470A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a paste composition for forming a solar cell electrode, and more particularly, to a conductive paste composition having excellent continuous printability and for forming a solar cell front electrode by screen printing.
  • a solar cell is a device that obtains power by using a photovoltaic effect in which electricity is generated when light is incident on a semiconductor substrate.
  • a solar cell is typically a front surface of a semiconductor substrate made of p-type silicon or the like.
  • a cathode electrode is formed on the surface to which sunlight is irradiated, and an anode electrode is formed on the back surface.
  • the solar cell electrode is formed by screen printing and baking an electrode forming paste composition on a substrate, and the electrode forming paste composition comprises an electrically conductive powder, a glass frit, an organic solvent, and a cellulose resin binder. It consists of a conductive organic medium containing.
  • the electrically conductive paste composition which can form the electrode of a fine line width, and is excellent in continuous printability is calculated
  • a front electrode having a line width of about 100 ⁇ m was used, but recently, using a fine line width mask having a pattern hole of 40 ⁇ m or less, for example, 36 to 40 ⁇ m, A front electrode pattern (wiring pattern) having a line width is formed.
  • printability problems such as disconnection in the electrode (circuit) pattern, clogging of the mask mesh, or the like are formed.
  • the aspect ratio (height / width ratio) of the pattern is low, so that there is a disadvantage in that the performance of the solar cell is lowered or the production yield is lowered.
  • an object of the present invention is to provide a paste composition for forming a solar cell electrode having excellent continuous printability when screen printing a conductive paste on a semiconductor substrate using a mask having a fine line width pattern.
  • Another object of the present invention is to provide a paste composition for forming a solar cell electrode capable of suppressing electrode disconnection and mask mesh clogging and forming a highly accurate printed wiring.
  • the present invention comprises a conductive metal powder, a glass frit, a binder, a thixotropic agent and an organic solvent, the viscosity represented by the following equation (1), the loss angle represented by the following equations (2) and (3) It provides a paste composition for forming a solar cell electrode having an angle).
  • ⁇ 100 represents a viscosity value at a shear rate of 100 s ⁇ 1
  • the loss angle is measured by an Oscillatory Strain Step test (1 Hz) in which a strain rate of 0.01% and 300% is continuously repeated.
  • the paste composition for forming a solar cell electrode of the present invention has a S.M.C (Strain at Modulus Cross-point) value represented by Equation 4 below.
  • Equation 4 25% ⁇ S.M.C ⁇ 75%
  • the SMC value represents the strain value at the point where the storage modulus and the loss modulus intersect when the storage modulus and the loss modulus are plotted against the strain. .
  • this invention is (1) 80-94 weight% of silver (Ag) powder as electroconductive metal powder; (2) 1 to 5 weight percent of glass frit; (3) 0.1 to 2.0 wt% of an ester or ether binder; (4) 0.6-1.0 wt% amide wax thixotropic agent; (5) 0.1 to 3 weight percent of thixotropic aid; And (6) 3 to 8% by weight of a solvent selected from a carbitol solvent (glycol ether), an ester solvent, and a mixture thereof.
  • the present invention also provides a solar cell electrode formed by screen printing and firing a paste composition for forming a solar cell electrode on a semiconductor substrate.
  • the paste composition for forming a solar cell electrode according to the present invention is excellent in continuous printability when screen printing a conductive paste on a semiconductor substrate using a mask having a fine line width pattern, and suppresses electrode disconnection and mask mesh clogging, High precision printed wirings can be formed.
  • FIG. 1 is a view showing a solar cell and an electrode structure that can be prepared using a solar cell electrode paste composition according to the present invention.
  • the rheological index of the paste composition may include viscosity (Viscosity, ⁇ ), modulus of elasticity, loss angle, and the like. Rheological properties should be adjusted.
  • the rheological properties (viscosity, modulus of elasticity, loss angle, etc.) of the paste composition were measured at 25 ° C. using a Rheometer (manufactured by TA instrument, product name: Discovery Hybrid Rheometer-2), and slip occurred during measurement.
  • Plate SST 25 mm sandblast spindle (accessory from TA instrument) was used to reduce the pressure, and 1000-grit sandpaper was used for the stage to raise the paste to be measured.
  • the spindle gap was set to 100 ⁇ m.
  • the spindle gap was set to 200 ⁇ m.
  • the paste composition for forming a solar cell electrode according to the present invention includes a conductive metal powder, a glass frit, a binder, a thixotropic agent, and an organic solvent, and has a viscosity represented by the following Equation 1.
  • ⁇ 100 represents the viscosity value at the shear rate 100 s ⁇ 1 .
  • the paste composition according to the present invention has a viscosity ( ⁇ 100 ) of 15 to 35 Pa ⁇ s, specifically 20 to 35 Pa ⁇ s, at a shear rate of 100 s ⁇ 1 so as to be suitable for pattern formation by screen printing.
  • the viscosity ⁇ 100 is generally measured at a shear rate of 100 s ⁇ 1 by simulating the shear rate when the paste is transferred through a screen mask when printing the paste composition. Under these conditions, if the viscosity is too low, the aspect ratio of the printed pattern may be low, or the pattern may be unevenly collapsed. If the viscosity is too high, defects such as mask mesh clogging and pattern disconnection may occur. Can be.
  • the paste composition for forming a solar cell electrode according to the present invention has a loss angle represented by the following equations (2) and (3).
  • the loss angle is measured by an Oscillatory Strain Step test (1 Hz) which continuously repeats a strain of 0.01% and 300%.
  • the loss angle at 0.01% strain of the paste composition according to the present invention is specifically 7 to 18 °, and the loss angle at strain 300% is specifically 72 to 83 °.
  • Loss tangent can be expressed as the ratio of Loss Modulus (G ′′) / Storage Modulus (G ′) and is zero if it is completely elastic and infinite if it is completely viscous.
  • the paste composition of the present invention has a loss angle represented by Equations (2) and (3).
  • the paste composition is viscous when the strain is high during printing and is easily discharged, and when plate separation occurs immediately after printing.
  • the elastic recovery speed can be excellent to form a uniform pattern shape.
  • the loss angle exceeds 20 °
  • the loss angle exceeds 20 °
  • the elastic recovery speed is low immediately after printing, making it difficult to realize fine patterns, and the loss angle of less than 5 ° is theoretically excellent. Although recovery characteristics can be exhibited, it can be said that the actual paste is difficult to achieve.
  • the loss angle exceeds 85 °, it can theoretically show excellent discharge characteristics during printing, but it is difficult to achieve with actual pastes. If it is less than 70 °, it is a paste with poor discharge characteristics during printing. This can cause various printing defects such as poor illumination and disconnection.
  • the paste composition for forming a solar cell electrode according to the present invention preferably has a S.M.C (Strain at Modulus Cross-point) value represented by Equation 4.
  • Equation 4 25% ⁇ S.M.C ⁇ 75%
  • SMC values are plotted at the Modulus Cross-point where the storage modulus and loss modulus cross (reverse) when plotting the storage modulus and loss modulus to strain. Strain values are shown.
  • the S.M.C value of the paste composition according to the present invention is more specifically 30 to 60%.
  • S.M.C means the point at which the internal structure of the paste is deformed and the storage modulus and loss modulus are reversed when some shear shear deformation occurs during printing.
  • An ideal paste would have the properties of a solid without deformation (before SMC, high storage modulus) and the properties of liquid when deformed (after SMC, high loss modulus). When a certain deformation is received)
  • the value of SMC greatly affects the printability.
  • the S.M.C value is too large (greater than 75%), the fluidity decreases during the printing process, and the frequency of occurrence of electrode disconnection increases, causing problems in continuous printability.
  • the S.M.C value is too small (less than 30%), despite the low strain of the paste, the fluidity of the paste composition is increased, so that the line width of the printing pattern may increase.
  • the paste composition for forming a solar cell electrode according to the present invention includes a conductive metal powder, a glass frit, a binder, a thixotropic agent and an organic solvent, and adjusts the organic solvent, the type and molecular weight of the binder, the type and content of the thixotropic agent, and the like.
  • Viscosity ( ⁇ ), SMC value and the loss angle can be adjusted as in Equations 1 to 4.
  • the paste composition for forming a solar cell electrode according to an embodiment of the present invention, (1) 80 to 94% by weight of silver (Ag, Silver) powder as the conductive metal powder, (2) 1 to 5% by weight of glass frit (3) 0.1 to 2.0 wt% of ester or ether binder, (4) 0.6 to 1.0 wt% of amide wax thixotropic agent, (5) 0.5 to 3 wt% of thixotropic aid, (6) carbitol solvent (glycol ether) And 3 to 8% by weight of a solvent selected from ester solvents and mixtures thereof.
  • each component which can be used for the paste composition of this invention is demonstrated concretely.
  • the silver (Ag) powder used in the paste composition of the present invention is a component that imparts conductivity to the electrode formed by the paste composition, and any silver powder or particles commonly used for forming a solar cell electrode can be used without limitation.
  • the content of the silver powder is 80 to 94% by weight, specifically 85 to 92% by weight relative to the total paste composition. If the content of the silver powder is too small, it is difficult to secure the conductivity as the front electrode, if too large, the uniformity or paste viscosity of the paste composition may be lowered and printability may be lowered.
  • the silver powder may be used irrespective of its appearance, but for example, spherical particles, plate particles, or a mixture thereof may be used, and more specifically, spherical particles may be used.
  • the number average particle diameter of the silver powder particles may be about 0.1 to 5 ⁇ m, specifically about 1 to 2.5 ⁇ m. If the particle size of the silver powder is too small, the size of the voids between the particles may be small, which may prevent the formation of ohmic contacts of the glass frit during sintering, and if the particle size is too large, the dispersibility in the paste may be reduced. As a result, the printability of the paste may be degraded, and thus, fine line width may be difficult to achieve.
  • the glass frit serves to form ohmic contacts between the semiconductor substrate and the electrode at the time of sintering after application of the electrode forming paste.
  • the content of the glass frit is 1 to 5% by weight, specifically 1.5 to 4% by weight, based on the total paste composition. If the content of the glass frit is too small, ohmic contact formation between the electrode and the semiconductor substrate may be insufficient, the contact resistance may increase, and if too large, the line resistance in the electrode may be excessively increased.
  • ester binder or the ether binder used in the paste composition of the present invention imparts viscoelasticity to the paste composition and maintains the shape of the pattern when the pattern is formed.
  • ester-based binder or ether-based binder ester-based or ether-based binders generally used in solar cell electrode compositions may be used without particular limitation, and for example, polyester-based binders, polyester-polyol-based binders, poly Ether binders, polyether polyol binders, mixtures thereof and the like can be used.
  • the weight average molecular weight (Mw) of the binder may be 50,000 to 70,000.
  • the weight average molecular weight of the binder has a great influence on the viscosity of the composition, it is possible to mix and use binders having different molecular weights in order to more accurately match the target viscosity. If the weight average molecular weight of the binder is too small or too large, there is a fear that a viscosity suitable for screen printing (15 to 35 Pa ⁇ s at a shear rate of 100 s ⁇ 1 ) may not be obtained.
  • the content of the binder is 0.1 to 2% by weight, specifically 0.2 to 1% by weight. If the content of the binder is too small, there is a fear that the minimum strength and rheology due to the use of the binder may not be secured. If the content of the binder is too large, the conductivity of the electrode formed of the paste composition may be lowered.
  • Amide wax thixotropic agent is an additive for forming a network of a network structure inside the paste composition to impart thixotropy (the rheological property), and the commercially available amide wax thixotropic agent is particularly limited. Can be used without Since the content of the thixotropic agent greatly affects the rheological properties of the paste, accurate adjustment is required according to the printing method and the characteristics of the printing press.
  • the content of the amide wax thixotropic agent is 0.6 to 1.0% by weight relative to the total paste composition.
  • the content of the thixotropic agent is too small, there is a fear that the aspect ratio of the pattern during paste printing becomes small, and if the content of the thixotropic agent is too large, printing defects such as mask mesh clogging and pattern disconnection may occur.
  • the thixotropic aid serves to improve the rheological properties of the paste composition, thereby increasing the aspect ratio of the electrode pattern formed of the paste composition.
  • Specific examples of the thixotropic aid include siloxane-based compounds such as rosin, rosin ester, polysiloxane, cyclosiloxane, silica powder, aliphatic amine, and carbohydrate. Carboxylic acid amides, combinations thereof, and the like.
  • the content of the thixotropic aid is 0.1 to 3% by weight, specifically 0.5 to 2% by weight, based on the total paste composition.
  • the aspect ratio of the electrode pattern may be reduced, or the durability of the electrode pattern may be reduced. If the content of the thixotropic agent is too large, the role of the binder and the thixotropic agent may be inhibited, and the thixotropic property may be lowered.
  • the solvent used in the composition of the present invention dissolves the binder and thixotropic agent of the paste composition to impart fluidity and improves printability.
  • a solvent having a boiling point of 170 ° C. or higher for application to a printing process (Glycol ether), at least one solvent selected from ester solvents and mixtures thereof.
  • Glycol ether is generally referred to as a carbitol solvent, and examples of the carbitol solvent include carbitol, carbitol acetate, butyl carbitol, butyl carbitol acetate, diethylene glycol dibutyl ether, and dibutyl ether.
  • Ethyl carbitol, dimethyl carbitol, diethyl glycol methyl ethyl ether and the like can be exemplified.
  • ester solvent include EEP (ethyl ethoxy propionate), 2-ethylhexyl acetate, DBE (dibasic ester), Texanol, Texanol isobutylate, terpinol and the like.
  • two or more solvents can be mixed and used.
  • a mixture of solvent having excellent solubility in binder dissolution and solvent having excellent solubility in thixotropic agent dissolution is used for It can compensate for the poor properties of the solvent and can also help to make deformation of the paste's internal structure easy.
  • the content of the solvent is 3 to 8% by weight, specifically 5 to 7% by weight, based on the total paste composition.
  • the content of dibutyl glycol dibutyl ether solvent is preferably 0.1 to 2% by weight based on the total paste composition.
  • the viscosity of the composition may be high, the printability may be reduced due to the speed of drying the solvent, and if the content of the solvent is too high, the viscosity of the paste composition may be excessively low. There exists a possibility that printability may fall.
  • the paste composition for forming a solar cell electrode according to the present invention may further include conventional additives such as a dispersant and a stabilizer.
  • the dispersant makes the dispersion state of the paste composition uniform, maintains thixotropic properties, maintains the viscosity relatively high during storage, and improves the storage stability of the paste composition.
  • a dispersant generally used in a solar cell electrode paste composition may be used without particular limitation, and specifically, an ionic or nonionic surfactant, an amide compound, or the like may be used.
  • an aliphatic ammonium salt Aliphatic ammonium salts, Aliphatic carboxylic acid salts, and mixtures thereof may be used.
  • ions having functional groups can form a network with nano-sized inorganic particles in a solvent, expand and form a gel structure to prevent sedimentation, thereby securing rheological stability.
  • the dispersant include polyhydroxy carboxylic acid esters, polyhydroxy carboxylic acid amides, polyamine amides, and unsaturated polyamine amides.
  • the use amount of the said dispersing agent is 0.01 to 2 weight% normally with respect to the whole paste composition. If the amount of the dispersant is too small, the dispersibility or storage stability of the paste composition may be lowered. If the amount of the dispersant is too small, the dispersant may be deteriorated from the rheological properties (viscosity, modulus of elasticity, loss angle, etc.) suitable for printing.
  • the stabilizer in the additive serves to maintain the viscosity of the paste by adjusting the pH of the paste composition, thereby lowering the reactivity of the composition components.
  • an acid compound having excellent compatibility and miscibility with the composition may be added as a stabilizer in order to lower the pH of the composition.
  • an acid compound stabilizer an aliphatic carboxylic acid, aliphatic amine, a mixture thereof, and the like may be used. Specific examples thereof include oleic acid and linoleic acid.
  • Such base compound stabilizers include aminopropyldiethanolamine, 2-[(1-methylpropyl) amino] ethanol (2-[(1-methyl propyl) amino] ethanol), Sec-butylamine, diethylamine (Diethylamine), Diethylaminopropylamine, Diiso propylamine, Dimethylaminopropyl aminopropylamine, Ethyldiisopropylamine, Ethylmethylamine, 3 3-Isopropoxy propylamine, Monoethylamine, Monoisopropyl amine, 3-Methoxypropylamine, Triethylamine, Tributyl Tributylamine, Trioctylamine, Tetramethylpropylenediamine, 2-Amino-2-ethyl-1,3-propanediol (2-Amino- 2-Ethyl-1,3-Propane-Diol ), 2-amino-2- Butyl and the like can be given 1-propan
  • the amount of the stabilizer used is usually 0 to 2% by weight, for example, 0.001 to 2% by weight based on the total paste composition. Depending on process conditions and other compositions, stabilizers may not be included. However, if the content of the stabilizer is excessively high, there is a fear that it will deviate from the rheological properties (viscosity, modulus of elasticity, loss angle, etc.) suitable for printing.
  • antioxidants examples include phenol compounds, aromatic amine compounds and the like, which are usually classified as primary antioxidants and UV stabilizers. Antioxidants that decompose the produced peroxide groups into stable radicals are classified as secondary antioxidants.
  • Hindered Phenolics are one of the most commonly used primary antioxidants, which are simple phenolics, bisphenolics, polyphenolics, and thiobisphenolic compounds. It can be classified as a compound (thiobisphenolics).
  • the most representative of the hindered phenolic compounds is dibutyl hydroxy toluene (BHT), which is an antioxidant of polyolefins, styrenes, vinyls, and elastomers. BHT has very weak chain terminators and high volatility weaknesses.
  • Well-known polyphenolic antioxidants include 8-Hydroxyquinoline, 8-Hydroxyquinoline sulfate, 8-Hydroxyquinoline sulfate, 8-Hydroxyquinoline-5- sulfonic acid), tetrakis (methylene-3,5-di-t-butyl-4-hydroxyhydrocinnamate) methane (methane-3.5-di-t-butyl-4-hydroxyl hydrocinnamate) methane and the like.
  • Thiobisphenols are not so effective as terminators of peroxy radicals, but they also act as peroxide decomposers when processing temperatures exceed 100 ° C.
  • Secondary amines like phenolic compounds, act as hydrogen donors, and they also act as peroxide decomposers at high temperatures, so amine groups belonging to primary antioxidants Because of the role of chain terminators and peroxide decomposers, they are more effective than phenolic compounds, but because of their discoloring characteristics, their use is limited in areas where color is important or in the appearance of products. It is most used for polyolefins containing these.
  • Secondary antioxidants include a variety of trivalent phosphorous and divalent sulfur-containing compounds, and many are known are organophosphites, thioesters, Thioamide, thioamine, and the like. Secondary antioxidants are related to protective stabilizers, and therefore they prevent the diffusion of alkoxy and hydroxy radicals by the decomposition of hydroperoxides. Phosphites convert hydroperoxides into alcohols and convert them into phosphates. An important drawback of phosphite is its sensitivity to hydrolysis. Some hydrolysis can reduce this sensitivity when combined with various additives. Hydrolysis of Phosphite ultimately results in the formation of Phosphate acid, which leads to corrosion of the processing equipment.
  • Phosphite Stabilizer can be used synergistically with Hindered Phenolics. In some cases, it also increases stability against Ultraviolet Exposure.
  • Aliphatic esters of ⁇ -thiodipropionic acid are very effective peroxide decomposers for long-term heat exposure applications.
  • Thioesters have an excellent synergistic effect when used with primary antioxidants.
  • the usage-amount of the said antioxidant is 0-2 weight% normally with respect to the whole paste composition, for example, 0.001-2 weight%, and can be used selectively.
  • antioxidants may not be included. However, if the amount of the antioxidant is excessively high, there is a fear that it will deviate from the rheological properties (viscosity, modulus of elasticity, loss angle, etc.) suitable for printing.
  • FIG. 1 is a view showing a solar cell and an electrode structure that can be prepared using a solar cell electrode paste composition according to the present invention.
  • a solar cell to which the composition of the present invention may be applied is formed on a p-type silicon substrate 10 including an n-type semiconductor portion 12 on a front surface thereof, and the n-type semiconductor portion 12.
  • a rear electrode 30 formed on the front electrode 20 and the p-type silicon substrate 10.
  • An anti-reflection film 14 may be formed on the top surface of the n-type semiconductor unit 12 except for the front electrode 20.
  • an ester binder is mixed with a carbitol solvent A, B and an ester alcohol solvent to form an organic vehicle, and the amide wax thixotropic agent and thixotropic agent are formed in the formed organic vehicle.
  • Auxiliaries were added and stirred with a high speed mixer. The dispersant and the glass frit were added to the organic vehicle after the stirring was completed, stirred with a mixer, silver powder was added and stirred again, and then dispersed using a 3 roll mill to prepare a paste composition.
  • the ester binder is cellulose acetate butyrate having a weight average molecular weight of 50,000 to 70,000
  • the carbitol solvent A is butyl carbitol acetate
  • the carbitol solvent B is diol.
  • Butyl carbitol (Diethylene glycol dibutyl ether)
  • the ester alcohol solvent is TEXANOL (TEXANOL, 2,2,4-trimethyl-1,3-pentanediol isobutyrate).
  • TEXANOL TEXANOL, 2,2,4-trimethyl-1,3-pentanediol isobutyrate
  • a thiamide wax was used as a thixotropic agent, a rosin ester compound as a thixotropic agent, and an alkyl diamine dioleate as a dispersant.
  • composition of the embodiment can be seen that S.M.C (Strain at Modulus Cross-point,%) is 25 to 75%.
  • compositions of the examples have a loss angle of 10 to 20 ° at a strain rate of 70 to 75 ° at a strain rate of 300% and a viscosity ⁇ at a shear rate of 100 s ⁇ 1 of 20 to 29 Pa. It can be seen that s.
  • the solar cell front electrode was printed using the paste composition of Examples 1-3 and Comparative Examples 1-4.
  • a silicon wafer for printing electrodes As a silicon wafer for printing electrodes, a sheet resistance cell (Cell) having a sheet resistance of 90 ⁇ / ⁇ was used.
  • the backside silver electrode paste was printed and dried on the back side of the silicon substrate to form a backside silver electrode, and the backside aluminum electrode paste was dried after screen printing to overlap a portion of the backside Ag electrode.
  • the drying temperature of each paste was 170 ° C.
  • the mask for printing was a mask having a total thickness of 47 ⁇ m of 360 mesh, and the front electrode was formed by using a finger line having a width of 40 ⁇ m and a bus bar pattern having a width of 1.5 mm. Formed.
  • the line width and thickness of the formed solar cell front electrode were measured using KEYENCE's VK Analyzer, and the clogging defect and scrap characteristic defect (defect of printing) of the mask mesh used for screen printing were measured using Loupe.
  • the evaluation was performed to classify the defects into 0 to 10 levels. 0 was classified as no blockage of the mesh and 10 when the blockage of the mesh occurred more than 10 points.
  • the scrap characteristics when the paste is applied on the mask with a scraper when printing in the same process, it is uniformly applied when there is no abnormality. Cases should be divided into 10 levels as shown in Table 4 below.
  • the printed matter of Experimental Examples 1-3 was dried at 170 ° C., and then calcined at 960 ° C. to evaluate the performance after fabricating the solar cell.
  • the electrical characteristics (I-V curve) of the solar cell were measured using a solar simulator, and are shown in Table 4 together.
  • Isc [A] is a short-circuit current flowing by shorting the solar cell electrode terminal with short-circuit current
  • Voc [V] is an open-circuit voltage measured by opening the solar cell electrode terminal with open-circuit voltage
  • Rs [m ⁇ ] is a resistance acting in series between the solar cell upper and lower electrodes.
  • FF [%] is the fill factor, which is the ratio of the product of the maximum output voltage and the maximum output current to the product of the open-circuit voltage and the short-circuit current.
  • Efficiency [%] is the ratio of the incident light energy and the output of the solar cell per unit area. Is defined.
  • the paste composition is generally low in elasticity and strong in viscosity, and the viscosity is low because the absolute value of viscoelasticity when the deformation is small is small. .
  • Isc was influenced by the line width, Rs and FF were affected by the printing defect, and relatively high efficiency value was obtained when the content of thixotropic agent amide wax was 0.6 ⁇ 1.0%.
  • butyl carbitol acetate (carbitol-based solvent A, Diethylene glycol monobutyl ether acetate), which is a carbitol-based solvent having excellent solubility in binder dissolution, has excellent solubility in thixotropic agents.
  • the strain sweep was varied from 0.01 to 1000%, the storage modulus (G ') and the loss modulus (Loss Modulus) of the composition. , G ′′) is shown in FIG. 1, and typical storage modulus (G ′), loss modulus (G ′′), and SMC values are shown in Table 6 below.
  • composition of the embodiment can be seen that S.M.C (Strain at Modulus Cross-point,%) is 25 to 75%.
  • the loss angle is 10 to 15 ° at 0.01% strain, 70 to 75 ° at 300% strain, viscosity ( ⁇ ) at shear rate 100 s -1 is 23 to 28 Pa. It can be seen that s.
  • the solar cell front electrode was formed in the same manner as Experimental Example 1-3, and the line width and thickness of the solar cell front electrode were used for screen printing. Clogging defects, squeegee characteristics, and scrap characteristics defects of the mask mesh were classified into levels of 0 to 10 using a loupe. 0 was classified as no blockage of the mesh and 10 when the blockage of the mesh occurred more than 10 points. In the case of squeegee property and scrap property, it is 0 when there is no abnormality when printing in the same process, and there is no abnormality. It is classified as shown in Table 8 below.
  • the viscosity decreases as the solvent content increases or the elasticity value decreases when the strain simulating a stationary state decreases, so that the line width of the printed electrode is generally large.
  • the thickness is lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Abstract

Disclosed is a conductive paste composition, which has an excellent continuous printability and is used for forming a front electrode of a solar cell by screen printing. The conductive paste composition comprises a conductive metal powder, a glass frit, a binder, a thixotropic agent, and an organic solvent, and has a viscosity expressed by mathematical formula 1 below and a loss angle expressed by mathematical formulas 2 and 3 below. [Mathematical formula 1] 15 Pa·s ≤ η100 ≤ 35 Pa·s; [Mathematical formula 2] 5° ≤ Loss angle ≤ 20° when strain is 0.01%; and [Mathematical formula 3] 70° ≤ Loss angle ≤ 85° when strain is 300%, wherein η100 represents the viscosity value at a shear rate of 100 s-1, and the loss angle is measured by the oscillatory strain step test (1 Hz) in which the strain is continuously repeated between 0.01% and 300%.

Description

태양전지 전극 형성용 페이스트 조성물Paste composition for solar cell electrode formation
본 발명은 태양전지 전극 형성용 페이스트 조성물에 관한 것으로서, 더욱 상세하게는, 연속 인쇄성이 우수하며, 스크린 인쇄에 의하여 태양전지 전면 전극을 형성하기 위한 도전성 페이스트 조성물에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paste composition for forming a solar cell electrode, and more particularly, to a conductive paste composition having excellent continuous printability and for forming a solar cell front electrode by screen printing.
태양전지(solar cell)는, 반도체 기재에 빛이 입사되면, 전기가 생성되는 광전 효과(photovoltaic effect)를 이용하여 전력을 얻는 장치로서, 통상적으로, p형 실리콘 등으로 이루어진 반도체 기재의 전면(front, 태양광이 조사되는 면)에 음극 전극이 형성되고, 배면에 양극 전극이 형성된 구조를 가진다. 태양전지 전극은, 기재 상에 전극 형성용 페이스트 조성물을 스크린 인쇄(print)하고, 소성하여 형성되며, 상기 전극 형성용 페이스트 조성물은 전기 전도성 분말, 유리 프릿(frit), 유기 용매 및 셀룰로오스 수지 바인더를 포함하는 도전성 유기 매체로 이루어진다.A solar cell is a device that obtains power by using a photovoltaic effect in which electricity is generated when light is incident on a semiconductor substrate. A solar cell is typically a front surface of a semiconductor substrate made of p-type silicon or the like. And a cathode electrode is formed on the surface to which sunlight is irradiated, and an anode electrode is formed on the back surface. The solar cell electrode is formed by screen printing and baking an electrode forming paste composition on a substrate, and the electrode forming paste composition comprises an electrically conductive powder, a glass frit, an organic solvent, and a cellulose resin binder. It consists of a conductive organic medium containing.
태양전지의 효율을 향상시키기 위하여, 미세 선폭의 전극을 형성할 수 있고, 연속인쇄성이 우수한 도전성 페이스트 조성물이 요구되고 있다. 2000년대 초에는 약 100 μm 정도의 선폭을 가지는 전면 전극이 사용되었으나, 최근에는, 40 μm 이하, 예를 들면 36 내지 40 μm 크기의 패턴 홀을 가지는 미세 선폭 마스크를 이용하여, 50 내지 60 μm의 선폭을 가지는 전면 전극 패턴(배선 패턴)이 형성되고 있다. 그러나, 통상의 도전성 페이스트 조성물 및 미세 선폭 마스크를 이용하여, 전극 패턴을 인쇄하면, 전극(회로) 패턴에 단선이 발생하거나, 마스크 메쉬(mesh)가 막히는 등의 인쇄성 문제가 발생하거나, 형성된 전극 패턴의 종횡비(높이/폭의 비)가 낮아, 태양전지의 성능이 저하되거나, 생산 수율이 저하되는 단점이 있었다. In order to improve the efficiency of a solar cell, the electrically conductive paste composition which can form the electrode of a fine line width, and is excellent in continuous printability is calculated | required. In the early 2000s, a front electrode having a line width of about 100 μm was used, but recently, using a fine line width mask having a pattern hole of 40 μm or less, for example, 36 to 40 μm, A front electrode pattern (wiring pattern) having a line width is formed. However, when the electrode pattern is printed using a conventional conductive paste composition and a fine line width mask, printability problems such as disconnection in the electrode (circuit) pattern, clogging of the mask mesh, or the like are formed. The aspect ratio (height / width ratio) of the pattern is low, so that there is a disadvantage in that the performance of the solar cell is lowered or the production yield is lowered.
따라서, 본 발명의 목적은, 미세 선폭 패턴의 마스크를 이용하여, 반도체 기판 위에 도전성 페이스트를 스크린 인쇄할 때, 연속 인쇄성이 우수한 태양전지 전극 형성용 페이스트 조성물을 제공하는 것이다. Accordingly, an object of the present invention is to provide a paste composition for forming a solar cell electrode having excellent continuous printability when screen printing a conductive paste on a semiconductor substrate using a mask having a fine line width pattern.
본 발명의 다른 목적은, 전극 단선 및 마스크 메쉬 막힘을 억제하여, 고정밀도의 인쇄 배선을 형성할 수 있는 태양전지 전극 형성용 페이스트 조성물을 제공하는 것이다.Another object of the present invention is to provide a paste composition for forming a solar cell electrode capable of suppressing electrode disconnection and mask mesh clogging and forming a highly accurate printed wiring.
상기 목적을 달성하기 위하여, 본 발명은 도전성 금속 분말, 유리 프릿, 바인더, 요변제 및 유기 용매를 포함하며, 다음 수학식 1로 표시되는 점도, 다음 수학식 2 및 3으로 표시되는 손실각(Loss angle)을 가지는 태양전지 전극 형성용 페이스트 조성물을 제공한다.In order to achieve the above object, the present invention comprises a conductive metal powder, a glass frit, a binder, a thixotropic agent and an organic solvent, the viscosity represented by the following equation (1), the loss angle represented by the following equations (2) and (3) It provides a paste composition for forming a solar cell electrode having an angle).
[수학식 1] 15 Pa·s ≤ η100 ≤ 35 Pa·s [Equation 1] 15 Pa.s ≤ η 100 ≤ 35 Pa.s
[수학식 2] 변형율(Strain) 0.01 %일 때, 5° ≤ Loss angle ≤ 20°Equation 2 When the strain (Strain) 0.01%, 5 ° ≤ Loss angle ≤ 20 °
[수학식 3] 변형율(Strain) 300 %일 때, 70° ≤ Loss angle ≤ 85°Equation 3 When the strain (Strain) 300%, 70 ° ≤ Loss angle ≤ 85 °
여기서, η100은 전단 속도 100 s-1에서의 점도 값을 나타내고, 손실각은 변형율 0.01 %와 300 %를 연속적으로 반복 진행하는 Oscillatory Strain Step test(1Hz)로 측정한 것이다.Here, η 100 represents a viscosity value at a shear rate of 100 s −1 , and the loss angle is measured by an Oscillatory Strain Step test (1 Hz) in which a strain rate of 0.01% and 300% is continuously repeated.
바람직하게는, 본 발명의 태양전지 전극 형성용 페이스트 조성물은 다음 수학식 4로 표시되는 S.M.C(Strain at Modulus Cross-point)값을 가진다. Preferably, the paste composition for forming a solar cell electrode of the present invention has a S.M.C (Strain at Modulus Cross-point) value represented by Equation 4 below.
[수학식 4] 25 % ≤ S.M.C ≤ 75 %Equation 4 25% ≤ S.M.C ≤ 75%
여기서, S.M.C값은 저장 탄성율(Storage Modulus)과 손실 탄성율(Loss Modulus)을 변형율(Strain)에 대해 도식화할 때, 저장 탄성율과 손실 탄성율이 교차되는 지점(Modulus Cross-point)에서의 변형율 값을 나타낸다. Here, the SMC value represents the strain value at the point where the storage modulus and the loss modulus intersect when the storage modulus and the loss modulus are plotted against the strain. .
또한, 본 발명은, (1) 도전성 금속 분말로서 은(Ag) 분말 80 내지 94 중량%; (2) 유리 프릿 1 내지 5 중량%; (3) 에스테르계 또는 에테르계 바인더 0.1 내지 2.0 중량%; (4) 아마이드 왁스 요변제 0.6 내지 1.0 중량%; (5) 요변 보조제 0.1 내지 3 중량%; 및 (6) 카비톨계 용제(글리콜 에테르), 에스테르계 용제의 및 그 혼합물로부터 선택되는 용매 3 내지 8 중량%를 포함하는 태양전지 전극 형성용 페이스트 조성물을 제공한다. 또한, 본 발명은 태양전지 전극 형성용 페이스트 조성물을 반도체 기재 상에 스크린 인쇄하고, 소성하여 형성된 태양전지 전극을 제공한다.Moreover, this invention is (1) 80-94 weight% of silver (Ag) powder as electroconductive metal powder; (2) 1 to 5 weight percent of glass frit; (3) 0.1 to 2.0 wt% of an ester or ether binder; (4) 0.6-1.0 wt% amide wax thixotropic agent; (5) 0.1 to 3 weight percent of thixotropic aid; And (6) 3 to 8% by weight of a solvent selected from a carbitol solvent (glycol ether), an ester solvent, and a mixture thereof. The present invention also provides a solar cell electrode formed by screen printing and firing a paste composition for forming a solar cell electrode on a semiconductor substrate.
본 발명에 따른 태양전지 전극 형성용 페이스트 조성물은, 미세 선폭 패턴의 마스크를 이용하여, 반도체 기판 위에 도전성 페이스트를 스크린 인쇄할 때, 연속 인쇄성이 우수하며, 전극 단선 및 마스크 메쉬 막힘을 억제하여, 고정밀도의 인쇄 배선을 형성할 수 있다.The paste composition for forming a solar cell electrode according to the present invention is excellent in continuous printability when screen printing a conductive paste on a semiconductor substrate using a mask having a fine line width pattern, and suppresses electrode disconnection and mask mesh clogging, High precision printed wirings can be formed.
도 1은 본 발명에 따른 태양전지 전극 페이스트 조성물을 이용하여 제조될 수 있는 태양전지 및 전극 구조를 보여주는 도면.1 is a view showing a solar cell and an electrode structure that can be prepared using a solar cell electrode paste composition according to the present invention.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위한 것으로, 본 발명을 한정하는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 나타내려는 것이며, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것은 아니다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태로 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise" or "having" are intended to indicate that there are features, numbers, steps, components, or combinations thereof, and that one or more other features, numbers, steps, configurations, etc. It does not exclude the possibility of the presence or the addition of elements, or combinations thereof. As the invention allows for various changes and numerous modifications, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명에 따라, 연속 인쇄성이 우수한 태양전지 전극 형성용 페이스트 조성물을 제조하기 위해서는, 페이스트 조성물의 유변학적 지표로서 점도(Viscosity, η ), 탄성계수(Modulus), 손실각(Loss angle) 등의 레올로지 특성을 조절하여야 한다. 본 발명에 있어서, 페이스트 조성물의 유변학적 물성(점도, 탄성계수, 손실각 등)은 Rheometer(TA instrument사 제품, 제품명: Discovery Hybrid Rheometer-2)를 사용하여 25 ℃에서 측정하였고, 측정시 슬립 발생을 줄이기 위해 Plate SST 25 mm Sandblast spindle(TA instrument사의 accessory)을 사용하였으며, 측정할 페이스트를 올리는 스테이지에도 1000-grit Sandpaper를 사용하였다. 점도 측정시, 스핀들 갭은 100 μm 로 하였으며, 그 외 모듈러스(Modulus), 손실각(Loss angle) 등의 레올로지 측정시, 스핀들 갭은 200 μm 로 하였다.According to the present invention, in order to prepare a paste composition for forming a solar cell electrode having excellent continuous printability, the rheological index of the paste composition may include viscosity (Viscosity, η), modulus of elasticity, loss angle, and the like. Rheological properties should be adjusted. In the present invention, the rheological properties (viscosity, modulus of elasticity, loss angle, etc.) of the paste composition were measured at 25 ° C. using a Rheometer (manufactured by TA instrument, product name: Discovery Hybrid Rheometer-2), and slip occurred during measurement. Plate SST 25 mm sandblast spindle (accessory from TA instrument) was used to reduce the pressure, and 1000-grit sandpaper was used for the stage to raise the paste to be measured. In measuring the viscosity, the spindle gap was set to 100 μm. In addition, when measuring rheology such as modulus and loss angle, the spindle gap was set to 200 μm.
본 발명에 따른 태양전지 전극 형성용 페이스트 조성물은 도전성 금속 분말, 유리 프릿, 바인더, 요변제 및 유기 용매를 포함하며, 다음 수학식 1로 표시되는 점도를 가진다.The paste composition for forming a solar cell electrode according to the present invention includes a conductive metal powder, a glass frit, a binder, a thixotropic agent, and an organic solvent, and has a viscosity represented by the following Equation 1.
[수학식 1] 15 Pa·s ≤ η100 ≤ 35 Pa·s [Equation 1] 15 Pa.s ≤ η 100 ≤ 35 Pa.s
여기서, η100은 전단 속도(Shear rate) 100 s-1에서의 점도 값을 나타낸다.Here, η 100 represents the viscosity value at the shear rate 100 s −1 .
본 발명에 따른 페이스트 조성물은, 스크린 인쇄에 의한 패턴 형성에 적합하도록, 전단 속도 100 s-1에서 15 내지 35 Pa·s, 구체적으로는 20 내지 35 Pa·s의 점도(η100)를 가진다. 점도(η100)은, 일반적으로, 페이스트 조성물의 인쇄시, 페이스트가 스크린 마스크를 통과하여 전사될 때의 전단 속도를 모사하여 전단 속도 100 s-1 에서 측정한 것이다. 이와 같은 조건에서, 점도가 너무 낮으면, 인쇄된 패턴의 종횡비가 낮아지거나, 불균일하게 무너진 형태의 패턴이 나타날 수 있고, 점도가 너무 높으면, 마스크 메쉬(mesh) 막힘, 패턴 단선 등의 불량이 발생할 수 있다.The paste composition according to the present invention has a viscosity (η 100 ) of 15 to 35 Pa · s, specifically 20 to 35 Pa · s, at a shear rate of 100 s −1 so as to be suitable for pattern formation by screen printing. The viscosity η 100 is generally measured at a shear rate of 100 s −1 by simulating the shear rate when the paste is transferred through a screen mask when printing the paste composition. Under these conditions, if the viscosity is too low, the aspect ratio of the printed pattern may be low, or the pattern may be unevenly collapsed. If the viscosity is too high, defects such as mask mesh clogging and pattern disconnection may occur. Can be.
또한, 본 발명에 따른 태양전지 전극 형성용 페이스트 조성물은 다음 수학식 2 및 3으로 표시되는 손실각(Loss angle)을 가진다.In addition, the paste composition for forming a solar cell electrode according to the present invention has a loss angle represented by the following equations (2) and (3).
[수학식 2] 변형율(Strain) 0.01 %일 때, 5° ≤ Loss angle ≤ 20°Equation 2 When the strain (Strain) 0.01%, 5 ° ≤ Loss angle ≤ 20 °
[수학식 3] 변형율(Strain) 300 %일 때, 70° ≤ Loss angle ≤ 85°Equation 3 When the strain (Strain) 300%, 70 ° ≤ Loss angle ≤ 85 °
상기 손실각(Loss angle)은 변형율(Strain) 0.01 %와 300 %를 연속적으로 반복 진행하는 Oscillatory Strain Step test(1Hz)로 측정한 것이다. 본 발명에 따른 페이스트 조성물의 변형율 0.01 %에서의 손실각은 구체적으로는 7 내지 18°이고, 변형율 300 %에서의 손실각은 구체적으로는 72 내지 83°이다. 손실 탄젠트(Loss tangent)는 손실 탄성율(Loss Modulus, G")/저장 탄성율(Storage Modulus, G')의 비로 나타낼 수 있고, 완벽히 탄성적이면 0 이고, 완벽히 점성적이면 무한대이다. 상기 손실 탄젠트(Loss tangent, tanδ)의 각도에 해당하는 δ는 손실각 (Loss angle)을 의미한다(즉, tan δ = G"/ G', 0° ≤ δ ≤ 90°). 따라서, 손실각이 작을수록 탄성적(Solid-like)이며, 손실각이 클수록 점성적(Liquid-like)이다. 본 발명의 페이스트 조성물은, 상기 수학식 2 및 3으로 표시되는 손실각을 가짐으로써, 두 가지 조건을 모두 만족할 때, 인쇄시 변형율이 높을 때는 점성적이어서 쉽게 토출되고, 인쇄 직후 판분리가 일어날 때에는 탄성 회복 속도가 우수하여 균일한 패턴 형태를 형성할 수 있다. Oscillatory Strain Step test(1Hz)에서 변형율(Strain) 0.01 %일 때, 손실각이 20°를 초과한다면 인쇄 직후 탄성 회복 속도가 낮아 미세 패턴이 구현이 어렵고, 5°미만의 손실각은 이론상으로 우수한 탄성 회복 특성을 나타낼 수 있지만 실제의 페이스트로서는 달성이 어려운 수치라고 볼 수 있다. 변형율(Strain) 300 %일 때, 손실각이 85°를 초과하면 이론상으로 인쇄시 우수한 토출 특성을 나타낼 수 있지만 실제의 페이스트로서는 달성하기 어려운 수치이며, 70° 미만이라면 인쇄시 토출 특성이 불량한 페이스트라고 할 수 있으며, 조도불량, 단선 등의 여러 가지 인쇄 불량 문제를 야기할 수 있다.The loss angle is measured by an Oscillatory Strain Step test (1 Hz) which continuously repeats a strain of 0.01% and 300%. The loss angle at 0.01% strain of the paste composition according to the present invention is specifically 7 to 18 °, and the loss angle at strain 300% is specifically 72 to 83 °. Loss tangent can be expressed as the ratio of Loss Modulus (G ″) / Storage Modulus (G ′) and is zero if it is completely elastic and infinite if it is completely viscous. Δ corresponding to the angle of Loss tangent, tanδ) means a loss angle (ie, tan δ = G ″ / G ′, 0 ° ≦ δ ≦ 90 °). Therefore, the smaller the loss angle, the more solid-like. The greater the loss angle, the more liquid-like. The paste composition of the present invention has a loss angle represented by Equations (2) and (3). When both of the conditions are satisfied, the paste composition is viscous when the strain is high during printing and is easily discharged, and when plate separation occurs immediately after printing. The elastic recovery speed can be excellent to form a uniform pattern shape. In the Oscillatory Strain Step test (1Hz), if the loss angle exceeds 20 °, if the loss angle exceeds 20 °, the elastic recovery speed is low immediately after printing, making it difficult to realize fine patterns, and the loss angle of less than 5 ° is theoretically excellent. Although recovery characteristics can be exhibited, it can be said that the actual paste is difficult to achieve. At a strain rate of 300%, if the loss angle exceeds 85 °, it can theoretically show excellent discharge characteristics during printing, but it is difficult to achieve with actual pastes. If it is less than 70 °, it is a paste with poor discharge characteristics during printing. This can cause various printing defects such as poor illumination and disconnection.
또한, 본 발명에 따른 태양전지 전극 형성용 페이스트 조성물은 다음 수학식 4로 표시되는 S.M.C(Strain at Modulus Cross-point) 값을 가지는 것이 바람직하다.In addition, the paste composition for forming a solar cell electrode according to the present invention preferably has a S.M.C (Strain at Modulus Cross-point) value represented by Equation 4.
[수학식 4] 25 % ≤ S.M.C ≤ 75 %Equation 4 25% ≤ S.M.C ≤ 75%
S.M.C값은 저장 탄성율(Storage Modulus)과 손실 탄성율(Loss Modulus)을 변형율(Strain)에 대해 도식화(plot) 할 때, 저장 탄성율과 손실 탄성율이 교차(역전)되는 지점(Modulus Cross-point)에서의 변형율(Strain) 값을 나타낸다. 본 발명에 따른 페이스트 조성물의 S.M.C값은 보다 구체적으로는 30 내지 60 %이다. S.M.C는 인쇄시 페이스트 전단 변형(shearing deformation)이 어느 정도 발생하였을 때, 페이스트의 내부 구조가 변형되어 저장 탄성율과 손실 탄성율이 역전되는 시점을 의미한다. 이상적인 페이스트의 경우, 변형이 없을 때 고체의 특성을 가지고(S.M.C 이전, 저장 탄성율이 높음) 변형을 받았을 때 액체의 특성을(S.M.C 이후, 손실 탄성율이 높음) 지녀야 하기 때문에, 동일 인쇄 공정조건에서(일정 변형을 받았을 때에) S.M.C의 값에 따라 인쇄성에 큰 영향을 끼친다. S.M.C값이 너무 크면(75 % 초과), 인쇄 공정시에 유동성이 감소하여, 전극 단선의 발생 빈도가 증가하여 연속 인쇄성에 문제가 발생한다. 반면, S.M.C값이 너무 작으면 (30 % 미만), 페이스트의 변형율이 낮음에도 불구하고, 페이스트 조성물의 유동성이 증가하므로 인쇄 패턴의 선폭이 증가하는 문제가 발생할 수 있다.SMC values are plotted at the Modulus Cross-point where the storage modulus and loss modulus cross (reverse) when plotting the storage modulus and loss modulus to strain. Strain values are shown. The S.M.C value of the paste composition according to the present invention is more specifically 30 to 60%. S.M.C means the point at which the internal structure of the paste is deformed and the storage modulus and loss modulus are reversed when some shear shear deformation occurs during printing. An ideal paste would have the properties of a solid without deformation (before SMC, high storage modulus) and the properties of liquid when deformed (after SMC, high loss modulus). When a certain deformation is received) The value of SMC greatly affects the printability. If the S.M.C value is too large (greater than 75%), the fluidity decreases during the printing process, and the frequency of occurrence of electrode disconnection increases, causing problems in continuous printability. On the other hand, if the S.M.C value is too small (less than 30%), despite the low strain of the paste, the fluidity of the paste composition is increased, so that the line width of the printing pattern may increase.
본 발명에 따른 태양전지 전극 형성용 페이스트 조성물은, 도전성 금속 분말, 유리 프릿, 바인더, 요변제 및 유기 용매를 포함하며, 유기 용매, 바인더의 종류 및 분자량, 요변제의 종류 및 함량 등을 조절하여, 점도(η), S.M.C값 및 손실각을 수학식 1 내지 4와 같이 조절할 수 있다. 구체적으로, 본 발명의 일 실시예에 따른 태양전지 전극 형성용 페이스트 조성물은, (1) 도전성 금속 분말로서 은(Ag, Silver) 분말 80 내지 94 중량%, (2) 유리 프릿 1 내지 5 중량%, (3) 에스테르계 또는 에테르계 바인더 0.1 내지 2.0 중량%, (4) 아마이드 왁스 요변제 0.6 내지 1.0 중량%, (5) 요변 보조제 0.5 내지 3 중량%, (6) 카비톨계 용제(글리콜 에테르), 에스테르계 용제 및 그 혼합물로부터 선택되는 용매 3 내지 8 중량%를 포함한다. 이하, 본 발명의 페이스트 조성물에 사용될 수 있는 각 성분을 구체적으로 설명한다.The paste composition for forming a solar cell electrode according to the present invention includes a conductive metal powder, a glass frit, a binder, a thixotropic agent and an organic solvent, and adjusts the organic solvent, the type and molecular weight of the binder, the type and content of the thixotropic agent, and the like. , Viscosity (η), SMC value and the loss angle can be adjusted as in Equations 1 to 4. Specifically, the paste composition for forming a solar cell electrode according to an embodiment of the present invention, (1) 80 to 94% by weight of silver (Ag, Silver) powder as the conductive metal powder, (2) 1 to 5% by weight of glass frit (3) 0.1 to 2.0 wt% of ester or ether binder, (4) 0.6 to 1.0 wt% of amide wax thixotropic agent, (5) 0.5 to 3 wt% of thixotropic aid, (6) carbitol solvent (glycol ether) And 3 to 8% by weight of a solvent selected from ester solvents and mixtures thereof. Hereinafter, each component which can be used for the paste composition of this invention is demonstrated concretely.
본 발명의 페이스트 조성물에 사용되는 은(Ag) 분말은 페이스트 조성물에 의해 형성되는 전극에 전도성을 부여하는 성분으로서, 태양전지 전극 형성에 통상적으로 사용되는 은 분말 또는 입자를 제한 없이 사용할 수 있다. 전체 페이스트 조성물에 대하여, 상기 은 분말의 함량은 80 내지 94 중량%, 구체적으로는 85 내지 92 중량%이다. 상기 은 분말의 함량이 너무 작으면, 전면 전극으로서의 전도성을 확보하기 어렵고, 너무 많으면, 페이스트 조성물의 균일도가 저하되거나 점도가 높아져 인쇄성이 저하될 수 있다. 상기 은 분말은 그 외형과 관계없이 사용될 수 있으나, 예를 들면 구형 입자, 판형 입자, 또는 이들의 혼합물을 사용할 수 있으며, 더욱 구체적으로는 구형 입자를 사용할 수 있다. 구형 입자를 사용할 경우, 분산성이 우수하여 인쇄시 미세선폭 구현에 유리하다. 상기 은 분말 입자의 수평균 입경은 약 0.1 내지 5 μm, 구체적으로는 약 1 내지 2.5 μm 일 수 있다. 상기 은 분말의 입자 크기가 너무 작으면, 입자 사이 공극의 크기가 작아져, 소결시 유리 프릿의 오믹 콘택트(ohmic contact) 형성을 방해할 수 있으며, 입자 크기가 너무 크면, 페이스트 내 분산성이 저하되고, 페이스트의 인쇄성이 저하되어, 미세 선폭 구현이 어려울 수 있다. The silver (Ag) powder used in the paste composition of the present invention is a component that imparts conductivity to the electrode formed by the paste composition, and any silver powder or particles commonly used for forming a solar cell electrode can be used without limitation. The content of the silver powder is 80 to 94% by weight, specifically 85 to 92% by weight relative to the total paste composition. If the content of the silver powder is too small, it is difficult to secure the conductivity as the front electrode, if too large, the uniformity or paste viscosity of the paste composition may be lowered and printability may be lowered. The silver powder may be used irrespective of its appearance, but for example, spherical particles, plate particles, or a mixture thereof may be used, and more specifically, spherical particles may be used. In the case of using spherical particles, excellent dispersibility is advantageous for realizing fine line width in printing. The number average particle diameter of the silver powder particles may be about 0.1 to 5 μm, specifically about 1 to 2.5 μm. If the particle size of the silver powder is too small, the size of the voids between the particles may be small, which may prevent the formation of ohmic contacts of the glass frit during sintering, and if the particle size is too large, the dispersibility in the paste may be reduced. As a result, the printability of the paste may be degraded, and thus, fine line width may be difficult to achieve.
상기 유리 프릿은, 전극 형성용 페이스트 도포 후, 소결시에 반도체 기판과 전극의 오믹 콘택트(ohmic contact)를 형성시키는 역할을 한다. 전체 페이스트 조성물에 대하여, 상기 유리 프릿의 함량은 1 내지 5 중량%, 구체적으로는 1.5 내지 4 중량%이다. 상기 유리 프릿의 함량이 너무 작으면, 전극과 반도체 기판 사이의 오믹 콘택트 형성이 불충분하고, 접촉 저항이 증가할 우려가 있고, 너무 많으면, 전극 내 선저항이 과도하게 증가할 우려가 있다. The glass frit serves to form ohmic contacts between the semiconductor substrate and the electrode at the time of sintering after application of the electrode forming paste. The content of the glass frit is 1 to 5% by weight, specifically 1.5 to 4% by weight, based on the total paste composition. If the content of the glass frit is too small, ohmic contact formation between the electrode and the semiconductor substrate may be insufficient, the contact resistance may increase, and if too large, the line resistance in the electrode may be excessively increased.
본 발명의 페이스트 조성물에 사용되는 에스테르계 바인더 또는 에테르계 바인더는 페이스트 조성물에 점탄성을 부여하고, 패턴 형성 시 패턴의 형태를 유지시키는 역할을 한다. 상기 에스테르계 바인더 또는 에테르계 바인더로는, 태양전지 전극 조성물에 일반적으로 사용되는 에스테르계 또는 에테르계 바인더를 특별한 제한 없이 사용할 수 있으며, 예를 들어, 폴리에스테르계 바인더, 폴리에스테르 폴리올계 바인더, 폴리에테르계 바인더, 폴리에테르 폴리올계 바인더, 이들의 혼합물 등을 사용할 수 있다. 상기 바인더의 중량평균 분자량(Mw)은 50,000 내지 70,000일 수 있다. 바인더의 중량평균 분자량은 조성물의 점도에 큰 영향을 미치므로, 보다 정확히 목표 점도에 맞추기 위해 서로 다른 분자량을 가지는 바인더를 혼합하여 사용할 수 있다. 상기 바인더의 중량평균 분자량이 너무 작거나 너무 크면, 스크린 인쇄에 적합한 점도(전단 속도 100 s-1에서 15 내지 35 Pa·s)를 얻지 못할 우려가 있다. 전체 페이스트 조성물에 대하여, 상기 바인더의 함량은 0.1 내지 2 중량%, 구체적으로는 0.2 내지 1 중량%이다. 상기 바인더의 함량이 너무 작으면, 바인더 사용에 의한 최소한의 강도 및 유변성을 확보하기 못할 우려가 있고, 너무 많으면, 페이스트 조성물로 형성된 전극의 전도성이 저하될 우려가 있다. The ester binder or the ether binder used in the paste composition of the present invention imparts viscoelasticity to the paste composition and maintains the shape of the pattern when the pattern is formed. As the ester-based binder or ether-based binder, ester-based or ether-based binders generally used in solar cell electrode compositions may be used without particular limitation, and for example, polyester-based binders, polyester-polyol-based binders, poly Ether binders, polyether polyol binders, mixtures thereof and the like can be used. The weight average molecular weight (Mw) of the binder may be 50,000 to 70,000. Since the weight average molecular weight of the binder has a great influence on the viscosity of the composition, it is possible to mix and use binders having different molecular weights in order to more accurately match the target viscosity. If the weight average molecular weight of the binder is too small or too large, there is a fear that a viscosity suitable for screen printing (15 to 35 Pa · s at a shear rate of 100 s −1 ) may not be obtained. With respect to the total paste composition, the content of the binder is 0.1 to 2% by weight, specifically 0.2 to 1% by weight. If the content of the binder is too small, there is a fear that the minimum strength and rheology due to the use of the binder may not be secured. If the content of the binder is too large, the conductivity of the electrode formed of the paste composition may be lowered.
상기 아마이드 왁스 요변제(Amide wax thixotropic agent)는, 페이스트 조성물 내부에 망상 구조의 네트워크를 형성하여, 요변성(레올로지 물성)을 부여하기 위한 첨가제로서, 통상의 시판되는 아마이드 왁스 요변제를 특별한 제한 없이 사용할 수 있다. 상기 요변제의 함량은 페이스트의 유변학적 특성에 큰 영향을 미치므로, 인쇄 방법 및 인쇄기의 특성에 따라 정확한 조정이 필요하다. 전체 페이스트 조성물에 대하여, 상기 아마이드 왁스 요변제의 함량은 0.6 내지 1.0 중량%이다. 상기 요변제의 함량이 너무 작으면, 페이스트 인쇄시 패턴의 종횡비가 작아질 우려가 있고, 상기 요변제의 함량이 너무 많으면, 마스크 메쉬 막힘, 패턴 단선 등의 인쇄 불량이 발생할 우려가 있다. Amide wax thixotropic agent is an additive for forming a network of a network structure inside the paste composition to impart thixotropy (the rheological property), and the commercially available amide wax thixotropic agent is particularly limited. Can be used without Since the content of the thixotropic agent greatly affects the rheological properties of the paste, accurate adjustment is required according to the printing method and the characteristics of the printing press. The content of the amide wax thixotropic agent is 0.6 to 1.0% by weight relative to the total paste composition. If the content of the thixotropic agent is too small, there is a fear that the aspect ratio of the pattern during paste printing becomes small, and if the content of the thixotropic agent is too large, printing defects such as mask mesh clogging and pattern disconnection may occur.
상기 요변 보조제는, 요변제와 함께, 페이스트 조성물의 레올로지 특성 개선하여, 페이스트 조성물로 형성되는 전극 패턴의 종횡비를 증가시키는 역할을 한다. 상기 요변보조제의 구체적인 예로는 로진(Rosin), 로진에스테르(Rosin ester), 폴리실록산, 사이클로실록산(Cyclosiloxane) 등의 실록산계 화합물(Siloxane compounds), 실리카(Silica) 분말, 지방족 아민(Aliphatic amine), 카르복실산 아마이드(carboxylic acid amide), 이들의 조합 등을 예시할 수 있다. 전체 페이스트 조성물에 대하여, 상기 요변 보조제의 함량은 0.1 내지 3 중량%, 구체적으로는 0.5 내지 2 중량%이다. 상기 요변 보조제의 함량이 너무 작으면, 전극 패턴의 종횡비가 작아지거나, 전극 패턴의 내구성이 저하될 수 있으며, 너무 많으면, 바인더 및 요변제의 역할을 저해하여, 요변 특성이 오히려 저하될 수 있다.The thixotropic aid, together with the thixotropic agent, serves to improve the rheological properties of the paste composition, thereby increasing the aspect ratio of the electrode pattern formed of the paste composition. Specific examples of the thixotropic aid include siloxane-based compounds such as rosin, rosin ester, polysiloxane, cyclosiloxane, silica powder, aliphatic amine, and carbohydrate. Carboxylic acid amides, combinations thereof, and the like. The content of the thixotropic aid is 0.1 to 3% by weight, specifically 0.5 to 2% by weight, based on the total paste composition. If the content of the thixotropic aid is too small, the aspect ratio of the electrode pattern may be reduced, or the durability of the electrode pattern may be reduced. If the content of the thixotropic agent is too large, the role of the binder and the thixotropic agent may be inhibited, and the thixotropic property may be lowered.
본 발명의 조성물에 사용되는 용매는 페이스트 조성물의 바인더와 요변제 등을 용해하여 유동성을 부여 하고, 인쇄성을 개선하는 역할을 수행하는 것으로서, 인쇄 공정에 적용 하기 위해 비점이 170℃ 이상의 카비톨계 용제(글리콜 에테르), 에스테르계 용제 및 그 혼합물로부터 선택되는 적어도 1종의 용매를 포함한다. 글리콜 에테르계의 용제를 일반적으로 카비톨 용제라고 지칭 하며, 상기 카비톨계 용제의 예로는 카비톨, 카비톨 아세테이트, 부틸카비톨, 부틸카비톨 아세테이트, 디부틸 카비톨(Diethylene glycol dibutyl ether), 디에틸 카비톨, 디메틸 카비톨, 디에틸 글리콜 메틸 에틸 에테르 등을 예시할 수 있다. 상기 에스테르계 용제의 예로는 EEP(에틸 에톡시 프로피오네이트), 2-에틸헥실 아세테이트, DBE(디베이직 에스테르), 텍사놀(Texanol), 텍사놀 이소부틸레이트, 터피놀 등이 있다. 페이스트가 필요로 하는 특성에 따라 두 가지 이상의 용제를 혼합하여 사용 할 수 있다. 단일 용매에 대한 다른 용해도를 갖는 바인더와 요변제의 용해성을 보완하기 위하여 바인더 용해에 우수한 용해성을 갖는 용제와 요변제 용해에 우수한 용해성을 갖는 용제를 혼합하여 사용하면 페이스트 조성물 전체의 혼화성에 대한 각 용제의 부족한 특성을 보완 할 수 있으며, 페이스트 내부 구조의 변형을 쉽게 일어날 수 있도록 도와주는 역할도 할 수 있다. 전체 페이스트 조성물에 대하여, 상기 용매의 함량은 3 내지 8 중량%, 구체적으로는 5 내지 7 중량%이다. 또한, 전체 페이스트 조성물에 대하여, 디부틸 카비톨(Diethylene glycol dibutyl ether) 용매의 함량은 0.1 내지 2 중량%인 것이 바람직하다. 상기 용매의 함량이 너무 작으면, 조성물의 점도가 높아지고, 용매의 건조 속도가 빨라지는 등의 이유로 인쇄성이 저하될 우려가 있고, 상기 용매의 함량이 너무 많으면, 페이스트 조성물의 점도가 과도하게 낮아져 인쇄성이 저하될 우려가 있다. The solvent used in the composition of the present invention dissolves the binder and thixotropic agent of the paste composition to impart fluidity and improves printability. A solvent having a boiling point of 170 ° C. or higher for application to a printing process (Glycol ether), at least one solvent selected from ester solvents and mixtures thereof. A glycol ether solvent is generally referred to as a carbitol solvent, and examples of the carbitol solvent include carbitol, carbitol acetate, butyl carbitol, butyl carbitol acetate, diethylene glycol dibutyl ether, and dibutyl ether. Ethyl carbitol, dimethyl carbitol, diethyl glycol methyl ethyl ether and the like can be exemplified. Examples of the ester solvent include EEP (ethyl ethoxy propionate), 2-ethylhexyl acetate, DBE (dibasic ester), Texanol, Texanol isobutylate, terpinol and the like. Depending on the properties required by the paste, two or more solvents can be mixed and used. In order to compensate for the solubility of binder and thixotropic agent having different solubility in a single solvent, a mixture of solvent having excellent solubility in binder dissolution and solvent having excellent solubility in thixotropic agent dissolution is used for It can compensate for the poor properties of the solvent and can also help to make deformation of the paste's internal structure easy. The content of the solvent is 3 to 8% by weight, specifically 5 to 7% by weight, based on the total paste composition. In addition, the content of dibutyl glycol dibutyl ether solvent is preferably 0.1 to 2% by weight based on the total paste composition. If the content of the solvent is too small, the viscosity of the composition may be high, the printability may be reduced due to the speed of drying the solvent, and if the content of the solvent is too high, the viscosity of the paste composition may be excessively low. There exists a possibility that printability may fall.
필요에 따라, 본 발명에 따른 태양전지 전극 형성용 페이스트 조성물은 분산제, 안정제 등의 통상의 첨가제를 더욱 포함할 수 있다. 상기 분산제는 페이스트 조성물의 분산 상태를 균일하게 하여, 요변 특성을 유지하고, 저장 중에는 점도를 비교적 높게 유지하여, 페이스트 조성물의 저장안정성을 향상시킨다. 상기 분산제로는, 태양전지 전극 페이스트 조성물에 일반적으로 사용되는 분산제를 특별한 제한 없이 사용할 수 있으며, 구체적으로는 이온성 또는 비이온성 계면활성제, 아마이드 화합물 등을 사용할 수 있고, 예를 들면, 지방족 암모늄염(Aliphatic ammonium salt), 지방족 카르복실산염(Aliphatic carboxylic acid salt) 및 이들의 혼합물로부터 선택되는 분산제를 사용할 수 있다. 염 형태의 응집형 분산제를 사용하는 경우, 관능기를 갖는 이온이 용매 내에서 나노 크기의 무기 입자와 망상 네트워크를 형성할 수 있고, 팽창되면서 겔 구조를 만들어, 침강을 방지하므로, 레올로지 안정성을 확보하고, 저장 안정성을 향상시킨다. 상기 분산제의 구체적인 예로는, 폴리히드록시카르복실산 에스테르 (Polyhydroxy carboxylic acid esters), 폴리히드록시카르복실산 아미드(Polyhydroxy carboxylic acid amides), 폴리아민아마이드(Polyamine amides), 불포화 폴리아민아마이드염(Unsaturated polyamine amides salt), 지방족 카르복실산 히드록시알킬아민염(Aliphatic carboxylic acid hydroxylalkylamine salt), 장쇄 지방산 유도체 아민염(Long chain fatty acid derivative amine salt), 장쇄 지방산 알킬아민염(Long chain fatty acid alkyl amine salt), 수식된 폴리에스테르아민염(Modified polyester amine salt), 고분자량 카르복실산 아마이드 아민염(High molecular weight carboxylic acid amide amine salt), 조정된 포스페이트 에스테르 아민염(Modified phosphate ester amine salt), 카르복실산 알킬올 알킬암모늄염(Carboxylic acid alkylol alkylammonium salt), 폴리카르복실산의 알킬암모늄염(Alkylammonium salt of a polycarboxylic acid), 폴리아민아마이드의 폴리카르복실산염(Polycarboxylic acid salt of polyamine amides), 펜타노익산-5-(디메틸아미노)-2-메틸-5-옥소-메틸 에스테르 및 리튬클로라이드(Pentanoic acid 5-(dimethylamino)-2-methyl-5-oxo-methyl ester and Lithium chloride), N-(탈로우알킬)-1,3-프로판디아민올레에이트(N-(Tallow alkyl)-1,3-propanediamine oleates), 폴리실록산 불포화 카르복실산염 (Polysiloxane unsaturated carboxylic acid salt) 등을 예시할 수 있다. 상기 분산제의 사용량은, 전체 페이스트 조성물에 대하여, 통상 0.01 내지 2 중량%이다. 상기 분산제의 사용량이 너무 적으면, 페이스트 조성물의 분산성 또는 저장 안정성이 저하될 우려가 있고, 너무 많으면 인쇄에 적합한 유변학적 특성(점도, 탄성계수, 손실각 등)에서 벗어나게 될 우려가 있다.If necessary, the paste composition for forming a solar cell electrode according to the present invention may further include conventional additives such as a dispersant and a stabilizer. The dispersant makes the dispersion state of the paste composition uniform, maintains thixotropic properties, maintains the viscosity relatively high during storage, and improves the storage stability of the paste composition. As the dispersant, a dispersant generally used in a solar cell electrode paste composition may be used without particular limitation, and specifically, an ionic or nonionic surfactant, an amide compound, or the like may be used. For example, an aliphatic ammonium salt ( Aliphatic ammonium salts, Aliphatic carboxylic acid salts, and mixtures thereof may be used. In the case of using a salt-type flocculent dispersant, ions having functional groups can form a network with nano-sized inorganic particles in a solvent, expand and form a gel structure to prevent sedimentation, thereby securing rheological stability. To improve storage stability. Specific examples of the dispersant include polyhydroxy carboxylic acid esters, polyhydroxy carboxylic acid amides, polyamine amides, and unsaturated polyamine amides. salts, Aliphatic carboxylic acid hydroxylalkylamine salts, Long chain fatty acid derivative amine salts, Long chain fatty acid alkyl amine salts, Modified polyester amine salt, High molecular weight carboxylic acid amide amine salt, Modified phosphate ester amine salt, Alkyl carboxylic acid Carboxylic acid alkylol alkylammonium salt, Alkylamm of polycarboxylic acid onium salt of a polycarboxylic acid, Polycarboxylic acid salt of polyamine amides, pentanoic acid-5- (dimethylamino) -2-methyl-5-oxo-methyl ester and lithium chloride (Pentanoic acid 5- (dimethylamino) -2-methyl-5-oxo-methyl ester and Lithium chloride), N- (tallowalkyl) -1,3-propanediamineoleate (N- (Tallow alkyl) -1,3- propanediamine oleates), polysiloxane unsaturated carboxylic acid salts, and the like. The use amount of the said dispersing agent is 0.01 to 2 weight% normally with respect to the whole paste composition. If the amount of the dispersant is too small, the dispersibility or storage stability of the paste composition may be lowered. If the amount of the dispersant is too small, the dispersant may be deteriorated from the rheological properties (viscosity, modulus of elasticity, loss angle, etc.) suitable for printing.
상기 첨가제 중 안정제는 페이스트 조성물의 pH를 조절하여, 조성물 성분의 반응성을 저하시킴으로써, 페이스트의 점도를 일정하게 유지시키는 역할을 한다. 예를 들어, 안정제를 제외한 페이스트 조성물이 염기성이라면, 조성물의 pH를 낮추기 위해서, 조성물과의 상용성 및 혼화성이 우수한 산 화합물을 안정제로 첨가할 수 있다. 이러한 산 화합물 안정제로는 지방족 카르복실산(Aliphatic carboxylic acid), 지방족 아민(Aliphatic amine), 이들의 혼합물 등을 사용할 수 있고, 그 구체적인 예로는 올레익산(Oleic acid), 리놀레익산(Linoleic acid), 말로닉산(Malonic acid), 글리콜산(Glycolic acid), 불포화 폴리카르복실산(Unsaturated polycarboxylic acid), 폴리실록산 코폴리머(Polysiloxane copolymer), 엑시딕 폴리에스테르 폴리아미드 (Acidic polyester polyamide), 엑시딕 폴리에테르(Acidic polyether) 등을 예시할 수 있다. 반면, 안정제를 제외한 페이스트 조성물이 산성이라면, 조성물의 pH를 높이기 위해서, 조성물과의 상용성 및 혼화성이 우수한 염기 화합물을 안정제로 첨가할 수 있다. 이러한 염기 화합물 안정제로는 아미노프로필디에탄올아민 (Aminopropyldiethanolamine), 2-[(1-메틸프로필)아미노]에탄올 (2-[(1-methyl propyl)amino]ethanol), Sec-부틸아민, 디에틸아민(Diethylamine), 디에틸아미노프로필아민 (Diethylaminopropylamine), 디이소프로필아민 (Diiso propylamine), 디메틸아미노프로필 아미노프로필아민 (Dimethylaminopropyl aminopropylamine), 에틸디이소프로필아민(Ethyldiisopropylamine), 에틸메틸아민 (Ethylmethylamine), 3-이소프로폭시프로필아민 (3-Isopropoxy propylamine), 모노에틸아민(Monoethylamine), 모노이소프로필아민 (Monoisopropyl amine), 3-메톡시프로필아민(3-Methoxypropylamine), 트리에틸아민(Triethylamine), 트리부틸아민(Tributylamine), 트리옥틸아민(Trioctylamine), 테트라메틸프로필렌 디아민 (Tetramethylpropylenediamine), 2-아미노-2-에틸-1,3-프로판디올 (2-Amino- 2-Ethyl-1,3-Propane-Diol), 2-아미노-2-메틸-1-프로판올 (2-Amino-2-Methyl-1- Propanol) 등을 예시할 수 있다. 상기 안정제의 사용량은, 전체 페이스트 조성물에 대하여, 통상 0 내지 2 중량%, 예를 들면, 0.001 내지 2 중량%이다. 공정 조건과 여타의 조성에 따라 안정제는 포함되지 않을 수 있다. 다만 안정제의 함량이 과도하게 많아지면, 인쇄에 적합한 유변학적 특성(점도, 탄성계수, 손실각 등)에서 벗어나게 될 우려가 있다.The stabilizer in the additive serves to maintain the viscosity of the paste by adjusting the pH of the paste composition, thereby lowering the reactivity of the composition components. For example, if the paste composition excluding the stabilizer is basic, an acid compound having excellent compatibility and miscibility with the composition may be added as a stabilizer in order to lower the pH of the composition. As the acid compound stabilizer, an aliphatic carboxylic acid, aliphatic amine, a mixture thereof, and the like may be used. Specific examples thereof include oleic acid and linoleic acid. , Malonic acid, glycolic acid, unsaturated polycarboxylic acid, unsaturated polycarboxylic acid, polysiloxane copolymer, excidic polyester polyamide, excidic polyether (Acidic polyether) etc. can be illustrated. On the other hand, if the paste composition except the stabilizer is acidic, a base compound having excellent compatibility and miscibility with the composition may be added as a stabilizer in order to increase the pH of the composition. Such base compound stabilizers include aminopropyldiethanolamine, 2-[(1-methylpropyl) amino] ethanol (2-[(1-methyl propyl) amino] ethanol), Sec-butylamine, diethylamine (Diethylamine), Diethylaminopropylamine, Diiso propylamine, Dimethylaminopropyl aminopropylamine, Ethyldiisopropylamine, Ethylmethylamine, 3 3-Isopropoxy propylamine, Monoethylamine, Monoisopropyl amine, 3-Methoxypropylamine, Triethylamine, Tributyl Tributylamine, Trioctylamine, Tetramethylpropylenediamine, 2-Amino-2-ethyl-1,3-propanediol (2-Amino- 2-Ethyl-1,3-Propane-Diol ), 2-amino-2- Butyl and the like can be given 1-propanol (2-Amino-2-Methyl-1- Propanol). The amount of the stabilizer used is usually 0 to 2% by weight, for example, 0.001 to 2% by weight based on the total paste composition. Depending on process conditions and other compositions, stabilizers may not be included. However, if the content of the stabilizer is excessively high, there is a fear that it will deviate from the rheological properties (viscosity, modulus of elasticity, loss angle, etc.) suitable for printing.
상기 산화 방지제의 예로는 페놀(Phenol) 화합물, 방향족 아민(Amine) 화합물 등이 있고 이들은 대개 1차 산화방지제 및 UV 안정제로 분류된다. 그리고 생성된 퍼옥사이드 그룹(Peroxide Group)을 안정된 형태의 래디칼(Radical)로 분해하는 산화 방지제는 2차 산화방지제로 분류된다. 힌더드 페놀 화합물(Hindered Phenolics)은 1차 산화방지제 중에서 가장 많이 사용되는 것의 하나로서, 이는 단순 페놀계 화합물(simple phenolics), 비스페놀계 화합물(bisphenolics), 폴리페놀계 화합물(polyphenolics), 티오비스페놀계 화합물(thiobisphenolics)로 구분할 수 있다. 힌더드 페놀 화합물에서 가장 대표적인 것은 디부틸히드록시톨루엔(dibutyl hydroxy toluene: BHT)로서 폴리올레핀, 스티렌(Styrenics), 비닐(vinyls) 및 일레스토머(elastomer)의 산화 방지제(Antioxidant)이다. BHT는 매우 효과적인 체인 터미네이터(Chain Terminator)이나 높은 휘발성의 약점을 가지고 있다. BHT의 파라(para) 위치에 있는 메틸기를 장쇄 지방족기(long aliphatic group)로 치환하면 휘발도는 감소하나 동일 무게에 대해 OH 그룹의 반응도(Reactive)는 감소하게 된다. 비스페놀계 화합물 및 폴리페놀계 화합물은 전자에 비하면 높은 분자량에 의한 낮은 휘발도와 상대적으로 낮은 당량 무게(Equivalent weight)를 가진다. 페놀계 화합물은 일반적인 경우에 비오염(nonstaining) 및 비변색성(nondiscoloring)을 가지지만, 산화되면 몇 개의 화합물들은 고발색 구조(highly chromophoric structure)로 변환된다. HWM(High Molecular Weight) 페놀 화합물은 최적의 가공성을 얻기 위하여 BHT와 조합하여 사용된다. 잘 알려진 폴리페놀계 산화방지제로서, 8-히드록시퀴놀린(8-Hydroxyquinoline), 8-히드록시퀴놀린 설페이트 (8-Hydroxyquinoline sulfate), 8-히드록시퀴놀린-5-설포닉산 (8-Hydroxyquinoline-5-sulfonic acid), 테트라키스(메틸렌-3,5-디-t-부틸-4- 히드록시히드로신나메이트)메탄 (Tetrakis (methylene-3.5-di-t-butyl-4-hydroxyl hydrocinnamate) methane 등이 있다. 티오비스페놀계 화합물(Thiobisphenols)은 퍼옥시 래디칼(peroxy radical)의 터미네이터(terminator)로서는 그렇게 효과적이 못하나 이것은 가공온도가 100 ℃를 넘어가는 경우 과산화물 분해제(peroxide decomposers)의 역할도 하게 된다. 2차 아민(Secondary amines)은 페놀계 화합물과 비슷하게 수소 공여자(Hydrogen donation)의 역할을 하며, 또한 이들은 높은 온도에서는 과산화물 분해제의 역할도 한다. 따라서 1차 산화방지제에 속하는 아민 그룹은 그들의 체인 터미네이터(Chain Terminator) 및 과산화물 분해제의 역할 때문에 페놀계 화합물 보다는 좀더 효과적이나 그들의 변색(Discoloring) 특징 때문에, 색상이 중요한 의미를 갖는 분야나 제품의 외관분야에는 사용이 제한된다. 이 아민은 카본 블랙을 포함하는 폴리올레핀류에 가장 많이 사용되고 있다.Examples of such antioxidants include phenol compounds, aromatic amine compounds and the like, which are usually classified as primary antioxidants and UV stabilizers. Antioxidants that decompose the produced peroxide groups into stable radicals are classified as secondary antioxidants. Hindered Phenolics are one of the most commonly used primary antioxidants, which are simple phenolics, bisphenolics, polyphenolics, and thiobisphenolic compounds. It can be classified as a compound (thiobisphenolics). The most representative of the hindered phenolic compounds is dibutyl hydroxy toluene (BHT), which is an antioxidant of polyolefins, styrenes, vinyls, and elastomers. BHT has very weak chain terminators and high volatility weaknesses. Substitution of the methyl group in the para position of the BHT with a long aliphatic group reduces the volatility but decreases the reactivity of the OH group for the same weight. Bisphenol-based compounds and polyphenol-based compounds have low volatility and relatively low equivalent weight due to high molecular weight compared to the former. Phenolic compounds have nonstaining and nondiscoloring in general cases, but when oxidized, some compounds are converted to highly chromophoric structures. High Molecular Weight (HWM) phenolic compounds are used in combination with BHT to achieve optimal processability. Well-known polyphenolic antioxidants include 8-Hydroxyquinoline, 8-Hydroxyquinoline sulfate, 8-Hydroxyquinoline sulfate, 8-Hydroxyquinoline-5- sulfonic acid), tetrakis (methylene-3,5-di-t-butyl-4-hydroxyhydrocinnamate) methane (methane-3.5-di-t-butyl-4-hydroxyl hydrocinnamate) methane and the like. Thiobisphenols are not so effective as terminators of peroxy radicals, but they also act as peroxide decomposers when processing temperatures exceed 100 ° C. Secondary amines, like phenolic compounds, act as hydrogen donors, and they also act as peroxide decomposers at high temperatures, so amine groups belonging to primary antioxidants Because of the role of chain terminators and peroxide decomposers, they are more effective than phenolic compounds, but because of their discoloring characteristics, their use is limited in areas where color is important or in the appearance of products. It is most used for polyolefins containing these.
2차 산화방지제는 여러 종류의 3가 인계 화합물(trivalent phosphorous) 및 2가 황 포함 화합물(divalent sulfur-containing compound)을 포함하며, 많이 알려진 것은 올가노포스파이트(Organophosphites), 티오에스테르 (Thioester), 티오아미드(Thioamide), 티오아민(Thioamine) 등이다. 2차 산화방지제는 보호성 안정제(preventive stabilizer)에 관계되는 것이며, 따라서 그들은 히드로퍼옥사이드(hydroperoxide)의 분해에 의한 알콕시 및 히드록시 래디칼(Alkoxy & Hydroxy radical)의 확산을 방지한다. 포스파이트(Phosphites)는 히드로퍼옥사이드를 알코올로 변화시키고 자신은 포스페이트(Phosphates)로 변환된다. 포스파이트(Phosphite)의 중요한 결함으로는 가수분해(Hydrolysis)에 대한 민감성이다. 몇 몇 가수분해는 여러 첨가제와 함께 있을 경우 이 민감도를 감소시킬 수 있다. 포스파이트(Phosphite)의 가수분해(Hydrolysis)는 궁극적으로는 포스포러스 산(Phos-phorous acid)을 형성하게 되고 이것은 가공 장치의 부식을 초래한다. 포스파이트 안정제(Phosphite Stabilizer)는 힌더드 페놀계 화합물(Hindered Phenolics)와 함께 사용하면 상승효과를 기대할 수 있다. 어떠한 경우에는 자외선 노출(Ultraviolet Exposure)에 대한 안정성을 증가시키기도 한다. β-티오디프로피오닉산(Thiodipropionic acid)의 지방족 에스테르(aliphatic esters)는 장기간 열에 노출되는 응용분야에서 매우 효과적인 퍼옥사이드 분해제(Peroxide Decomposer)이다. 티오에스테르(Thioesters)는 1차 산화방지제와 함께 사용할 경우 뛰어난 상승효과를 나타낸다. 상기 산화 방지제의 사용량은, 전체 페이스트 조성물에 대하여, 통상 0 내지 2 중량%, 예를 들면, 0.001 내지 2 중량% 이며 선택적으로 사용할 수 있다. 공정 조건과 여타의 조성에 따라 산화방지제는 포함되지 않을 수 있다. 다만 산화방지제의 함량이 과도하게 많아지면, 인쇄에 적합한 유변학적 특성(점도, 탄성계수, 손실각 등)에서 벗어나게 될 우려가 있다.Secondary antioxidants include a variety of trivalent phosphorous and divalent sulfur-containing compounds, and many are known are organophosphites, thioesters, Thioamide, thioamine, and the like. Secondary antioxidants are related to protective stabilizers, and therefore they prevent the diffusion of alkoxy and hydroxy radicals by the decomposition of hydroperoxides. Phosphites convert hydroperoxides into alcohols and convert them into phosphates. An important drawback of phosphite is its sensitivity to hydrolysis. Some hydrolysis can reduce this sensitivity when combined with various additives. Hydrolysis of Phosphite ultimately results in the formation of Phosphate acid, which leads to corrosion of the processing equipment. Phosphite Stabilizer can be used synergistically with Hindered Phenolics. In some cases, it also increases stability against Ultraviolet Exposure. Aliphatic esters of β-thiodipropionic acid are very effective peroxide decomposers for long-term heat exposure applications. Thioesters have an excellent synergistic effect when used with primary antioxidants. The usage-amount of the said antioxidant is 0-2 weight% normally with respect to the whole paste composition, for example, 0.001-2 weight%, and can be used selectively. Depending on the process conditions and other compositions, antioxidants may not be included. However, if the amount of the antioxidant is excessively high, there is a fear that it will deviate from the rheological properties (viscosity, modulus of elasticity, loss angle, etc.) suitable for printing.
본 발명에 따른 태양전지 전극 페이스트 조성물을 이용하고, 본 발명의 속하는 기술 분야에서 사용되는 통상의 방법으로 태양전지 및 태양전지 전면(front) 전극을 제조할 수 있다. 도 1은 본 발명에 따른 태양전지 전극 페이스트 조성물을 이용하여 제조될 수 있는 태양전지 및 전극 구조를 보여주는 도면이다. 도 1에 도시된 바와 같이, 본 발명의 조성물이 적용될 수 있는 태양전지는, 전면에 n형 반도체부(12)를 포함하는 p형 실리콘 기판(10), 상기 n형 반도체부(12)에 형성되는 전면 전극(20) 및 p형 실리콘 기판(10)에 형성되는 후면 전극(30)을 포함한다. 상기 전면 전극(20)을 제외한 n형 반도체부(12)의 상면에는 반사 방지막(14)이 형성될 수 있다. 본 발명에 따른 태양전지 전극 페이스트 조성물을, n형 반도체부(12) 상에 스크린 인쇄하고, 소성하면, 태양전지의 전극, 구체적으로는 태양전지 전면(front) 전극(20)을 형성할 수 있다. Using the solar cell electrode paste composition according to the present invention, it is possible to produce a solar cell and a solar cell front electrode by conventional methods used in the art. 1 is a view showing a solar cell and an electrode structure that can be prepared using a solar cell electrode paste composition according to the present invention. As shown in FIG. 1, a solar cell to which the composition of the present invention may be applied is formed on a p-type silicon substrate 10 including an n-type semiconductor portion 12 on a front surface thereof, and the n-type semiconductor portion 12. And a rear electrode 30 formed on the front electrode 20 and the p-type silicon substrate 10. An anti-reflection film 14 may be formed on the top surface of the n-type semiconductor unit 12 except for the front electrode 20. When the solar cell electrode paste composition according to the present invention is screen printed on the n-type semiconductor portion 12 and fired, an electrode of the solar cell, specifically, a solar cell front electrode 20 can be formed. .
이하, 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The following examples are intended to illustrate the invention, but the scope of the invention is not limited by these examples.
[실시예 1~3, 비교예 1~4] 태양전지 전극 형성용 페이스트 조성물 제조EXAMPLES 1-3, COMPARATIVE EXAMPLES 1-4 Preparation of the paste composition for solar cell electrode formation
하기 표 1에 나타낸 바와 같은 성분과 함량(중량%)으로, 에스테르계 바인더를 카비톨계 용매 A, B 및 에스테르계 알코올 용매와 혼합하여 유기 비히클을 형성하고, 형성된 유기 비히클에 아마이드 왁스 요변제 및 요변 보조제를 투입하고 고속 믹서로 교반하였다. 교반이 완료된 유기 비히클에 분산제 및 유리 프릿을 넣고 믹서로 교반한 다음, 은 분말을 투입하고 다시 교반한 후, 3롤 밀을 이용하여 분산시켜 페이스트 조성물을 제조하였다. To the components and contents (% by weight) as shown in Table 1, an ester binder is mixed with a carbitol solvent A, B and an ester alcohol solvent to form an organic vehicle, and the amide wax thixotropic agent and thixotropic agent are formed in the formed organic vehicle. Auxiliaries were added and stirred with a high speed mixer. The dispersant and the glass frit were added to the organic vehicle after the stirring was completed, stirred with a mixer, silver powder was added and stirred again, and then dispersed using a 3 roll mill to prepare a paste composition.
하기 표 1에서, 에스테르계 바인더는 중량평균 분자량 50,000 내지 70,000인 셀룰로오즈 아세테이트 부티레이트(Cellulose Acetate Butyrate)이고, 카비톨계 용매 A는 부틸 카비톨 아세테이트 (Diethylene glycol monobutyl ether acetate) 이고, 카비톨계 용매 B는 디부틸 카비톨(Diethylene glycol dibutyl ether) 이고, 에스테르계 알코올 용매는 텍사놀(TEXANOL, 2,2,4-trimethyl-1,3-pentanediol isobutyrate) 이다. 또한, 요변제로는 디아마이드 왁스, 요변 보조제로는 로진 에스테르 화합물, 분산제로는 알킬 디아민 디올레이트를 사용하였다.In Table 1 below, the ester binder is cellulose acetate butyrate having a weight average molecular weight of 50,000 to 70,000, the carbitol solvent A is butyl carbitol acetate, and the carbitol solvent B is diol. Butyl carbitol (Diethylene glycol dibutyl ether), the ester alcohol solvent is TEXANOL (TEXANOL, 2,2,4-trimethyl-1,3-pentanediol isobutyrate). In addition, a thiamide wax was used as a thixotropic agent, a rosin ester compound as a thixotropic agent, and an alkyl diamine dioleate as a dispersant.
비교예1Comparative Example 1 비교예2Comparative Example 2 실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예3Comparative Example 3 비교예4Comparative Example 4
은 분말Silver powder 8888 87.987.9 87.887.8 87.687.6 87.587.5 87.387.3 87.287.2
유리 프릿Glass frit 33 33 33 33 33 33 33
디아마이드 왁스Diamide Wax 0.40.4 0.50.5 0.60.6 0.80.8 0.90.9 1.11.1 1.21.2
요변보조제Thixotropic supplements 1.21.2 1.21.2 1.21.2 1.21.2 1.21.2 1.21.2 1.21.2
에스테르계 바인더Ester binder 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7
분산제Dispersant 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5
카비톨계 용제 ACarbitol Solvent A 4.84.8 4.84.8 4.84.8 4.84.8 4.84.8 4.84.8 4.84.8
카비톨계 용제 BCarbitol Solvent B 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5
에스테르계 알코올Ester alcohol 0.90.9 0.90.9 0.90.9 0.90.9 0.90.9 0.90.9 0.90.9
[실험예 1-1] 레올로지 물성(S.M.C값) 측정Experimental Example 1-1 Rheological Properties (S.M.C Value) Measurement
실시예 1~3 및 비교예 1~4의 조성물에 대하여, 변형율(Strain)을 0.01 내지 1000 %로 변화시키면서(Strain sweep), 조성물의 저장 탄성율(Storage Modulus, G') 및 손실 탄성율(Loss Modulus, G")을 측정하였으며, 대표적인 저장 탄성율(G'), 손실 탄성율(G") 및 S.M.C(Strain at Modulus Cross-point) 값을 하기 표 2에 나타내었다.For the compositions of Examples 1 to 3 and Comparative Examples 1 to 4, while changing the strain (Strain) to 0.01 to 1000% (Strain sweep), the storage modulus (G ') and the loss modulus (Loss Modulus) of the composition , G "), and typical storage modulus (G '), loss modulus (G") and SMC (Strain at Modulus Cross-point) values are shown in Table 2 below.
Strain(%)Strain (%) 비교예1Comparative Example 1 비교예2Comparative Example 2 실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예3Comparative Example 3 비교예4Comparative Example 4
저장탄성율(G')Storage modulus (G ') 0.010.01 3420034200 101000101000 142000142000 203000203000 295000295000 428000428000 531000531000
0.10.1 2190021900 5500055000 8220082200 130000130000 183000183000 251000251000 351000351000
1One 71007100 1480014800 2310023100 3820038200 5200052000 8150081500 131000131000
1010 910910 22002200 36503650 52505250 82508250 1260012600 1930019300
100100 151151 290290 310310 570570 730730 990990 14701470
10001000 1515 2727 5050 100100 150150 200200 280280
손실탄성율(G")Loss modulus (G ") 0.010.01 60906090 2510025100 4800048000 7500075000 123000123000 130000130000 158000158000
0.10.1 55105510 1800018000 3300033000 5490054900 7300073000 9440094400 110000110000
1One 32203220 85008500 1270012700 2300023000 2510025100 3520035200 5420054200
1010 801801 20002000 30203020 41204120 55105510 61006100 75007500
100100 380380 410410 750750 870870 11101110 14811481 16001600
10001000 120120 220220 250250 320320 405405 520520 741741
S.M.C(%)S.M.C (%) 1717 2222 3535 4747 5959 7777 9292
상기 표 2로부터, 실시예의 조성물은 S.M.C(Strain at Modulus Cross- point, %)가 25 ~ 75 %임을 알 수 있다.From Table 2, the composition of the embodiment can be seen that S.M.C (Strain at Modulus Cross-point,%) is 25 to 75%.
[실험예 1-2] 레올로지 물성(손실각 및 점도) 측정Experimental Example 1-2 Rheological Properties (Loss Angle and Viscosity) Measurement
실시예 1~3 및 비교예 1~4의 조성물에 대하여, 변형율(Strain) 0.01 % 및 300 %에서의 손실각(Loss Angle) 및 점도(η, 전단 속도 100 s-1에서의 점도)를 측정하여, 하기 표 3에 나타내었다.For the compositions of Examples 1-3 and Comparative Examples 1-4, Loss Angle and viscosity (η, viscosity at shear rate 100 s −1 ) at 0.01% and 300% strain were measured. It is shown in Table 3 below.
  변형율(%)% Strain 비교예1Comparative Example 1 비교예2Comparative Example 2 실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예3Comparative Example 3 비교예4Comparative Example 4
손실각(°)Loss angle (°) 0.010.01 1010 1111 1212 1313 1414 1818 2323
300300 7575 7474 7373 7272 7070 6868 6464
점도(η, Pa.s)Viscosity (η, Pa.s) 12.72412.724 15.89115.891 20.60220.602 27.0527.05 28.87128.871 32.47332.473 36.74236.742
상기 표 3으로부터, 실시예의 조성물은, 손실각이 변형율 0.01 %에서 10 내지 20°, 변형율 300 %에서 70 내지 75°이고, 전단 속도 100 s-1에서의 점도(η)가 20 내지 29 Pa.s임을 알 수 있다.From the above Table 3, the compositions of the examples have a loss angle of 10 to 20 ° at a strain rate of 70 to 75 ° at a strain rate of 300% and a viscosity η at a shear rate of 100 s −1 of 20 to 29 Pa. It can be seen that s.
[실험예 1-3] 페이스트 조성물의 인쇄 특성 평가Experimental Example 1-3 Evaluation of Printing Properties of Paste Composition
실시예 1~3 및 비교예 1~4의 페이스트 조성물을 이용하여, 태양전지 전면 전극을 인쇄하였다. 전극을 인쇄하기 위한 실리콘 웨이퍼로는 면저항 90 Ω/□의 고면저항 셀(Cell)을 사용하였다. 상기 실리콘 기판 후면에 후면 실버 전극용 페이스트를 인쇄하고 건조하여 후면 실버 전극을 형성하고, 후면 알루미늄 전극용 페이스트를 상기 후면 Ag 전극의 일부분과 중첩되도록 스크린 인쇄 후 건조하였다. 각각의 페이스트의 건조 온도는 170 ℃ 였다. 이때 인쇄용 마스크는 360 mesh의 전체 두께 47 ㎛인 마스크를 사용하였고, 패턴은 40 ㎛의 폭을 갖는 핑거 라인(finger line)과 1.5 mm 폭을 갖는 버스바(bus bar) 패턴을 사용하여 전면 전극을 형성하였다. 형성된 태양전지 전면 전극의 선폭 및 두께를 KEYENCE社의 VK Analyzer를 이용하여 측정하고, 스크린 인쇄에 사용된 마스크 메쉬의 막힘 불량 및 스크랩(scrap) 특성 불량(인쇄 불량 정도)을 루페(Lupe)를 이용하여 평가하여, 불량 정도를 0~10 수준으로 분류하였다. 메쉬의 막힘이 전혀 없을 때를 0, 메쉬의 막힘이 10 point 이상 발생하였을 때를 10 수준으로 분류하였다. 스크랩 특성의 경우, 동일 공정으로 인쇄시 스크래퍼로 페이스트를 마스크 위에 도포할 시 균일하게 도포되어 이상이 없을 경우를 0으로, 도포가 불균일하게 되어 동일 공정으로 스크랩이 불가능하여 스크래퍼의 속도나 압력을 변경해야 할 정도의 경우를 10 수준으로 분류하여 하기 표 4에 나타내었다.The solar cell front electrode was printed using the paste composition of Examples 1-3 and Comparative Examples 1-4. As a silicon wafer for printing electrodes, a sheet resistance cell (Cell) having a sheet resistance of 90 Ω / □ was used. The backside silver electrode paste was printed and dried on the back side of the silicon substrate to form a backside silver electrode, and the backside aluminum electrode paste was dried after screen printing to overlap a portion of the backside Ag electrode. The drying temperature of each paste was 170 ° C. At this time, the mask for printing was a mask having a total thickness of 47 μm of 360 mesh, and the front electrode was formed by using a finger line having a width of 40 μm and a bus bar pattern having a width of 1.5 mm. Formed. The line width and thickness of the formed solar cell front electrode were measured using KEYENCE's VK Analyzer, and the clogging defect and scrap characteristic defect (defect of printing) of the mask mesh used for screen printing were measured using Loupe. The evaluation was performed to classify the defects into 0 to 10 levels. 0 was classified as no blockage of the mesh and 10 when the blockage of the mesh occurred more than 10 points. In the case of the scrap characteristics, when the paste is applied on the mask with a scraper when printing in the same process, it is uniformly applied when there is no abnormality. Cases should be divided into 10 levels as shown in Table 4 below.
[실험예 1-4] 태양전지의 제작 및 성능 평가Experimental Example 1-4 Fabrication and Performance Evaluation of Solar Cells
상기 실험예 1-3의 인쇄물을 170 ℃에서 건조 후, 960 ℃에서 소성하여 태양전지를 제작 후 성능을 평가하였다. 태양전지의 전기 특성(I-V curve)을 solar simulator를 이용하여 측정하여, 하기 표 4에 함께 나타내었다. 하기 표 4에서, Isc[A]는 short-circuit current로 태양전지 전극단자를 단락하여 흐르는 단락전류이고, Voc[V]는 open-circuit voltage로 태양전지 전극단자를 개방하여 측정된 개방전압이며, Rs[mΩ]는 태양전지 상부와 하부 전극 사이에 직렬로 작용하는 저항이다. FF [%]는 fill factor로 개방전압과 단락전류의 곱에 대한 최대 출력 전압과 최대출력전류의 곱한 값의 비율이며, Efficiency[%]는 단위면적당 입사하는 빛 에너지와 태양전지의 출력의 비율로 정의된다.The printed matter of Experimental Examples 1-3 was dried at 170 ° C., and then calcined at 960 ° C. to evaluate the performance after fabricating the solar cell. The electrical characteristics (I-V curve) of the solar cell were measured using a solar simulator, and are shown in Table 4 together. In Table 4, Isc [A] is a short-circuit current flowing by shorting the solar cell electrode terminal with short-circuit current, and Voc [V] is an open-circuit voltage measured by opening the solar cell electrode terminal with open-circuit voltage. Rs [mΩ] is a resistance acting in series between the solar cell upper and lower electrodes. FF [%] is the fill factor, which is the ratio of the product of the maximum output voltage and the maximum output current to the product of the open-circuit voltage and the short-circuit current. Efficiency [%] is the ratio of the incident light energy and the output of the solar cell per unit area. Is defined.
  비교예1Comparative Example 1 비교예2Comparative Example 2 실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예3Comparative Example 3 비교예4Comparative Example 4
소성 후 선폭Line width after firing 68.71 68.71 66.62 66.62 59.31 59.31 58.46 58.46 57.95 57.95 57.20 57.20 55.88 55.88
소성 후 두께 Thickness after firing 15.28 15.28 15.37 15.37 15.88 15.88 15.93 15.93 16.12 16.12 16.38 16.38 17.34 17.34
Mesh 막힘Mesh clogging 1One 1One 00 00 1One 22 3 3
Scrap 특성Scrap attribute 00 00 00 00 00 55 10 10
연속 인쇄 특성Continuous printing characteristics 1One 1One 1One 22 22 77 99
이미지image
Figure PCTKR2016014303-appb-I000001
Figure PCTKR2016014303-appb-I000001
Figure PCTKR2016014303-appb-I000002
Figure PCTKR2016014303-appb-I000002
Figure PCTKR2016014303-appb-I000003
Figure PCTKR2016014303-appb-I000003
Figure PCTKR2016014303-appb-I000004
Figure PCTKR2016014303-appb-I000004
Figure PCTKR2016014303-appb-I000005
Figure PCTKR2016014303-appb-I000005
Figure PCTKR2016014303-appb-I000006
Figure PCTKR2016014303-appb-I000006
Figure PCTKR2016014303-appb-I000007
Figure PCTKR2016014303-appb-I000007
Isc [A]Isc [A] 8.4268.426 8.4588.458 8.5178.517 8.526 8.526 8.551 8.551 8.577 8.577 8.584 8.584
Voc [V]Voc [V] 0.6350.635 0.6350.635 0.6360.636 0.636 0.636 0.635 0.635 0.635 0.635 0.635 0.635
Rs [mΩ]Rs [mΩ] 4.4264.426 4.3974.397 4.4984.498 4.563 4.563 4.650 4.650 4.800 4.800 4.913 4.913
FF [%]FF [%] 78.574 78.574 78.459 78.459 78.720 78.720 78.866 78.866 78.807 78.807 78.521 78.521 77.874 77.874
Efficiency [%]Efficiency [%] 17.276 17.276 17.316 17.316 17.522 17.522 17.585 17.585 17.597 17.597 17.572 17.572 17.446 17.446
상기 표 4로부터 알 수 있듯이, 연속 인쇄 특성은 S.M.C값(%)이 크거나, 변형율 300 %에서의 손실각이 작을 때 나쁘게 나타났다(비교예 3, 4). 이 경우는 페이스트 조성물의 탄성이 점성에 비해 크므로, 인쇄시 일정 변형을 받았을 때 고체성(Solid like) 성질이 강하여 점성이 탄성을 역전하기가 어렵기 때문에, 페이스트 토출이 어려워져 선폭은 얇고 두께는 높지만, 단선 등에 의한 인쇄 불량이 많이 증가하고 연속 인쇄성이 매우 나빠진다. 반대로 S.M.C값(%)이 0 내지 30 %로 작을 경우(비교예 1, 2), 대체적으로 페이스트 조성물의 탄성이 낮고 점성이 강하여, 변형이 적을 때의 점탄성의 절대값이 작으므로, 점도가 낮아진다. 이는 작은 변형에도 페이스트 내부 구조가 쉽게 변형되어 점성이 쉽게 탄성을 역전함을 보여주며, 연속인쇄에는 유리하나 선폭이 크고 두께가 낮아 적합하지 않다. 또한, 선폭의 크기에 따라 Isc에 영향을 주었고, 인쇄 불량에 따라 Rs와 FF에 영향을 주는 결과를 보였으며, 요변제인 아마이드 왁스의 함량이 0.6~1.0%의 경우에 비교적 높은 효율 값을 얻을 수 있었다.As can be seen from Table 4, the continuous printing characteristics were poor when the S.M.C value (%) was large or the loss angle at the strain rate of 300% was small (Comparative Examples 3 and 4). In this case, since the elasticity of the paste composition is larger than that of the viscosity, it is difficult to reverse the elasticity of the viscous material due to its strong solid like property when subjected to a certain deformation during printing, so that the discharge of the paste becomes difficult and the line width is thin and thick. Is high, but poor printing due to disconnection and the like increases, and continuous printability is very poor. On the contrary, when the SMC value (%) is small from 0 to 30% (Comparative Examples 1 and 2), the paste composition is generally low in elasticity and strong in viscosity, and the viscosity is low because the absolute value of viscoelasticity when the deformation is small is small. . This shows that the internal structure of the paste is easily deformed in spite of small deformation, and thus the viscosity is easily reversed. It is advantageous for continuous printing, but it is not suitable because of its large line width and low thickness. Also, Isc was influenced by the line width, Rs and FF were affected by the printing defect, and relatively high efficiency value was obtained when the content of thixotropic agent amide wax was 0.6 ~ 1.0%. Could.
[실시예 4~6, 비교예 5~7] 태양전지 전극 형성용 페이스트 조성물 제조[Examples 4 to 6 and Comparative Examples 5 to 7] Preparation of a Paste Composition for Forming a Solar Cell Electrode
페이스트가 필요로 하는 특성에 따라, 두 가지 이상의 용제를 혼합하여 사용 할 수 있다. 바인더 용해에 우수한 용해성을 갖는 용제와 요변제 용해에 우수한 용해성을 갖는 용제를 혼합하여 조성물 전체의 혼화성을 개선시킬 수 있으며, 페이스트 내부 구조의 변형을 쉽게 일어날 수 있도록 도와주는 역할도 할 수 있다. 하기 표 5에 나타낸 바와 같은 성분과 함량(중량%)으로, 바인더 용해에 우수한 용해성을 가지는 카르비톨계 용제인 부틸 카비톨 아세테이트(카비톨계 용제 A, Diethylene glycol monobutyl ether acetate), 요변제에 우수한 용해성을 가지는 TEXANOL (에스테르계 알코올, 2,2,4-trimethyl-1,3-pentanediol isobutyrate), 및 디부틸 카비톨 (카비톨계 용제 B, Diethylene glycol dibutyl ether)의 조성을 변화시키면서, 실시예 1과 동일한 방법으로, 페이스트 조성물을 제조하였다. 비교예 4~5, 실시예 4~6, 비교예 7의 순서로 부틸 카비톨 아세테이트(카비톨계 용제 A) 와 디부틸 카비톨 (카비톨계 용제 B)의 조성을 변화시켜 평가를 진행하였다.Depending on the properties required by the paste, two or more solvents can be mixed and used. It is possible to improve the miscibility of the whole composition by mixing a solvent having excellent solubility in binder dissolution and a thixotropic agent dissolution, and may also serve to facilitate deformation of the internal structure of the paste. As shown in Table 5 below, butyl carbitol acetate (carbitol-based solvent A, Diethylene glycol monobutyl ether acetate), which is a carbitol-based solvent having excellent solubility in binder dissolution, has excellent solubility in thixotropic agents. While changing the composition of TEXANOL (ester-based alcohol, 2,2,4-trimethyl-1,3-pentanediol isobutyrate) and dibutyl carbitol (carbitol-based solvent B, Diethylene glycol dibutyl ether) having the same composition as in Example 1 By the method, a paste composition was prepared. Evaluation was performed by changing the compositions of butyl carbitol acetate (carbitol solvent A) and dibutyl carbitol (carbitol solvent B) in the order of Comparative Examples 4 to 5, Examples 4 to 6, and Comparative Example 7.
비교예 5Comparative Example 5 비교예 6Comparative Example 6 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 비교예 7Comparative Example 7
은 분말Silver powder 87.687.6 87.687.6 87.687.6 87.687.6 87.687.6 87.687.6
유리프릿Glass frit 33 33 33 33 33 33
디아마이드왁스Diamide Wax 0.80.8 0.80.8 0.80.8 0.80.8 0.80.8 0.80.8
요변보조제Thixotropic supplements 1.21.2 1.21.2 1.21.2 1.21.2 1.21.2 1.21.2
에스테르계 바인더Ester binder 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7
분산제Dispersant 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5
카비톨계 용제 ACarbitol Solvent A 5.35.3 55 4.84.8 4.34.3 3.33.3 3.13.1
카비톨계 용제 BCarbitol Solvent B 00 0.30.3 0.50.5 1One 22 2.22.2
에스테르계 알코올Ester alcohol 0.90.9 0.90.9 0.90.9 0.90.9 0.90.9 0.90.9
[실험예 2-1] 레올로지 물성(S.M.C값) 측정Experimental Example 2-1 Rheological Properties (S.M.C Value) Measurement
실시예 4~6 및 비교예 5~7의 조성물에 대하여, 변형율(Strain)을 0.01 내지 1000 %로 변화시키면서(Strain sweep), 조성물의 저장 탄성율(Storage Modulus, G') 및 손실 탄성율(Loss Modulus, G")을 측정하여 도 1에 나타내었으며, 대표적인 저장 탄성율(G'), 손실 탄성율(G") 및 S.M.C 값을 하기 표 6에 나타내었다.For the compositions of Examples 4-6 and Comparative Examples 5-7, the strain sweep was varied from 0.01 to 1000%, the storage modulus (G ') and the loss modulus (Loss Modulus) of the composition. , G ″) is shown in FIG. 1, and typical storage modulus (G ′), loss modulus (G ″), and SMC values are shown in Table 6 below.
  Strain(%)Strain (%) 비교예 5Comparative Example 5 비교예 6Comparative Example 6 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 비교예 7Comparative Example 7
저장탄성율(G')Storage modulus (G ') 0.010.01 431000431000 428000428000 172000172000 141000141000 122000122000 115600115600
0.10.1 288225288225 275625275625 131000131000 112000112000 100000100000 9360093600
1One 8190081900 7843578435 3620036200 3740037400 3670036700 3540035400
1010 86108610 81308130 54805480 51705170 54805480 56705670
100100 820820 800800 510510 389389 421421 560560
10001000 210210 198198 9191 6969 7272 9595
손실탄성율(G")Loss modulus (G ") 0.010.01 153725153725 145850145850 7500075000 3360033600 3216032160 3116031160
0.10.1 114975114975 111195111195 5150051500 3300033000 3132031320 3122031220
1One 39532.539532.5 38902.538902.5 2100021000 2250022500 2050020500 2080020800
1010 52605260 48204820 43204320 41504150 38703870 35403540
100100 857857 860860 835835 821821 740740 652652
10001000 445445 420420 280280 219219 255255 210210
S.M.C(%)S.M.C (%) 9393 9090 4646 3838 5353 7878
상기 표 6으로부터, 실시예의 조성물은 S.M.C(Strain at Modulus Cross- point, %)가 25 ~ 75 %임을 알 수 있다.From Table 6, the composition of the embodiment can be seen that S.M.C (Strain at Modulus Cross-point,%) is 25 to 75%.
[실험예 2-2] 레올로지 물성(손실각 및 점도) 측정Experimental Example 2-2 Rheological Properties (Loss Angle and Viscosity) Measurement
실시예 4~6 및 비교예 5~7의 조성물에 대하여, 변형율(Strain) 0.01 % 및 300 %에서의 손실각(Loss Angle) 및 점도(η, 전단 속도 100 s-1에서의 점도)를 측정하여, 하기 표 7에 나타내었다.For the compositions of Examples 4-6 and Comparative Examples 5-7, Loss Angle and Viscosity (η, Viscosity at Shear Rate 100 s −1 ) at 0.01% and 300% Strain It is shown in Table 7 below.
  변형율(%)% Strain 비교예5Comparative Example 5 비교예6Comparative Example 6 실시예4Example 4 실시예5Example 5 실시예6Example 6 비교예7Comparative Example 7
손실각(°)Loss angle (°) 0.010.01 2121 1818 1313 1212 1414 2323
300300 6767 6868 7272 7373 7575 6464
점도(η, Pa.s)Viscosity (η, Pa.s) 42.1542.15 38.8138.81 27.0527.05 24.5324.53 23.7423.74 27.5927.59
상기 표 7로부터, 실시예의 조성물은, 손실각이 변형율 0.01 %에서 10 내지 15°, 변형율 300 %에서 70 내지 75°이고, 전단 속도 100 s-1에서의 점도(η)가 23 내지 28 Pa.s임을 알 수 있다.From the above Table 7, the composition of the examples, the loss angle is 10 to 15 ° at 0.01% strain, 70 to 75 ° at 300% strain, viscosity (η) at shear rate 100 s -1 is 23 to 28 Pa. It can be seen that s.
[실험예 2-3] 페이스트 조성물의 인쇄 특성 평가Experimental Example 2-3 Evaluation of Printing Properties of Paste Composition
실시예 4~6 및 비교예 5~7의 페이스트 조성물을 이용하여, 실험예 1-3과 동일한 방식으로, 태양전지 전면 전극을 형성하고, 태양전지 전면 전극의 선폭 및 두께, 스크린 인쇄에 사용된 마스크 메쉬의 막힘 불량, 스퀴지 특성 및 스크랩(scrap) 특성 불량을 루페(Lupe)를 이용하여 불량 정도를 0~10 수준으로 분류하였다. 메쉬의 막힘이 전혀 없을 때를 0, 메쉬의 막힘이 10 point 이상 발생하였을 때를 10 수준으로 분류하였다. 스퀴지 특성과 스크랩 특성의 경우, 동일 공정으로 인쇄시 균일하게 인쇄되어 이상이 없을 경우를 0으로, 도포 및 스퀴징이 불균일하게 되어 스크래퍼 또는 스퀴지의 속도나 압력을 변경해야 할 정도의 경우를 10 수준으로 분류하여 하기 표 8에 나타내었다. Using the paste compositions of Examples 4-6 and Comparative Examples 5-7, the solar cell front electrode was formed in the same manner as Experimental Example 1-3, and the line width and thickness of the solar cell front electrode were used for screen printing. Clogging defects, squeegee characteristics, and scrap characteristics defects of the mask mesh were classified into levels of 0 to 10 using a loupe. 0 was classified as no blockage of the mesh and 10 when the blockage of the mesh occurred more than 10 points. In the case of squeegee property and scrap property, it is 0 when there is no abnormality when printing in the same process, and there is no abnormality. It is classified as shown in Table 8 below.
[실험예 2-4] 태양전지의 제작 및 성능 평가Experimental Example 2-4 Fabrication and Performance Evaluation of Solar Cells
실시예 4~6 및 비교예 5~7의 페이스트 조성물을 이용하여, 실험예 1-4와 동일한 방식으로, 태양전지를 제작하고, 태양전지의 전기 특성(I-V curve)을 solar simulator를 이용하여 측정하여, 하기 표 8에 함께 나타내었다.Using the paste compositions of Examples 4-6 and Comparative Examples 5-7, a solar cell was fabricated in the same manner as Experimental Example 1-4, and the electrical characteristics (IV curve) of the solar cell were measured using a solar simulator. As shown in Table 8 below.
  비교예 5Comparative Example 5 비교예 6Comparative Example 6 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 비교예 7Comparative Example 7
소성 후 선폭Line width after firing 54.80 54.80 55.48 55.48 57.21 57.21 58.12 58.12 58.40 58.40 56.34 56.34
소성 후 두께 Thickness after firing 16.83 16.83 16.65 16.65 15.91 15.91 16.24 16.24 16.41 16.41 16.10 16.10
Mesh 막힘Mesh clogging 22 22 00 00 00 1One
Scrap 특성Scrap attribute 33 22 00 00 00 00
Squeegee특성Squeegee Characteristics 33 22 00 00 00 00
연속 인쇄 특성Continuous printing characteristics 55 44 22 1One 22 55
이미지image
Figure PCTKR2016014303-appb-I000008
Figure PCTKR2016014303-appb-I000008
Figure PCTKR2016014303-appb-I000009
Figure PCTKR2016014303-appb-I000009
Figure PCTKR2016014303-appb-I000010
Figure PCTKR2016014303-appb-I000010
Figure PCTKR2016014303-appb-I000011
Figure PCTKR2016014303-appb-I000011
Figure PCTKR2016014303-appb-I000012
Figure PCTKR2016014303-appb-I000012
Figure PCTKR2016014303-appb-I000013
Figure PCTKR2016014303-appb-I000013
Isc [A]Isc [A] 8.5818.581 8.5788.578 8.526 8.526 8.521 8.521 8.517 8.517 8.534 8.534
Voc [V]Voc [V] 0.628 0.628 0.629 0.629 0.628 0.628 0.628 0.628 0.629 0.629 0.628 0.628
Rs [mΩ]Rs [mΩ] 4.5814.581 4.5124.512 4.329 4.329 4.351 4.351 4.317 4.317 4.364 4.364
FF [%]FF [%] 78.368 78.368 78.275 78.275 78.866 78.866 78.812 78.812 78.756 78.756 78.768 78.768
Efficiency [%]Efficiency [%] 17.354 17.354 17.355 17.355 17.352 17.352 17.330 17.330 17.337 17.337 17.347 17.347
상기 표 8에 나타낸 바와 같이, 카비톨계 용제 B 함량이 0.5 내지 2 중량%일 때(실시예 4~6), S.M.C가 급격히 낮아지며 손실각이 증가하는 결과로 보았을 때, 연속 인쇄성 개선에 큰 영향을 줄 수 있다고 판단되며, 낮은 변형이 인가되었을 때 탄성 값이 저하되지 않고 유지되어 연속 인쇄시에 지속적인 우수한 인쇄품질을 유지할 수 있다. 비교적 비극성인 카비톨계 용제 B가 페이스트 내의 망상구조 네트워크를 부드럽게 해주는 인쇄 특성 개선 보조제의 역할을 하였다고 판단된다. 또한 이 경우에 요변보조제를 투입하여 탄성 및 탄성 회복율을 더 높일 수 있다. As shown in Table 8, when the carbitol-based solvent B content is 0.5 to 2% by weight (Examples 4 to 6), the SMC is rapidly lowered and the loss angle is increased. It is considered that the elastic value is maintained without deterioration when low deformation is applied, so that continuous excellent print quality can be maintained during continuous printing. It is believed that the relatively nonpolar carbitol-based solvent B acted as a printing property improvement aid to soften the network of networks in the paste. In this case, the thixotropic aid may be added to further increase elasticity and elastic recovery rate.
카비톨계 용제 B 함량이 2 중량% 이상에서는(비교예 7) 그 특성이 급감 하였다. 이는 극성특성을 가지는 에스테르계 셀룰로즈 바인더와의 반발력으로, 페이스트 내부 구조에 응집현상이 발생된다고 판단 된다. 카비톨계 용제 B가 2 중량% 이상인 조성물에서 높은 변형을 인가하였을 때 손실탄성률(Loss Modulus, 점성)이 감소하고 저장 탄성률(Storage modulus)이 증가하여 인쇄특성이 급격히 나빠지는 특성을 보였다. 일반적으로 S.M.C(Strain Modulus Crosspoint)가 낮아지는 경우는 용제의 함량이 증가되거나, 정지 상태를 모사한 Strain이 낮을 때의 탄성수치가 낮아짐에 따라 점도가 낮아지므로 인쇄되는 전극의 선폭이 대체적으로 크고, 두께가 낮아진다. 그러나 본 발명에서는 용제 함량을 증가시키지 않고, 두 가지 이상의 용제를 혼합하여 조성을 변화시켜 초기 탄성값을 유지하고, S.M.C를 감소시켜 손실각을 증가시킬 수 있어 연속 인쇄성을 개선하였다. When the content of the carbitol-based solvent B was 2% by weight or more (Comparative Example 7), the characteristics dropped drastically. This is due to the repulsive force with the ester-based cellulose binder having a polar characteristic, it is determined that the aggregation phenomenon occurs in the paste internal structure. When high deformation was applied in a composition having a carbitol-based solvent B of 2% by weight or more, the loss modulus (Loss Modulus) was decreased and the storage modulus was increased, thereby showing a deterioration in printing characteristics. In general, when the strain modulus crosspoint (SMC) decreases, the viscosity decreases as the solvent content increases or the elasticity value decreases when the strain simulating a stationary state decreases, so that the line width of the printed electrode is generally large. The thickness is lowered. However, in the present invention, without increasing the solvent content, by mixing two or more solvents to change the composition to maintain the initial elastic value, and to reduce the S.M.C to increase the loss angle improved continuous printability.
비교예 4 및 5에서는 S.M.C값이 높고 손실각 값이 낮아 인쇄 불량 정도가 높은 결과가 나타났고, 비교예 7에서는 점도가 비교예 4에 비해 낮음에도 불구하고 SMC가 높고 Loss angle이 낮아 연속 인쇄성이 급격히 떨어지는 결과를 보였다. 반면, 실시예 4~6에서는 손실각 값이 커서, 비교적 유동성이 높아져 연속인쇄 및 기타 인쇄성이 향상되었다.In Comparative Examples 4 and 5, a high SMC value and a low loss angle result in high print defects.In Comparative Example 7, despite the low viscosity, compared to Comparative Example 4, SMC is high and the loss angle is low, so it is continuous printability. This showed a sharp drop. On the other hand, in Examples 4 to 6, the loss angle value was large, so that the fluidity was relatively high, thereby improving continuous printing and other printability.

Claims (10)

  1. 도전성 금속 분말, 유리 프릿, 바인더, 요변제 및 유기 용매를 포함하며, 다음 수학식 1로 표시되는 점도, 및 다음 수학식 2 및 3으로 표시되는 손실각(Loss angle)을 가지는 도전성 페이스트 조성물.A conductive paste composition comprising a conductive metal powder, a glass frit, a binder, a thixotropic agent, and an organic solvent, and having a viscosity represented by the following formula (1), and a loss angle represented by the following formulas (2) and (3).
    [수학식 1] 15 Pa·s ≤ η100 ≤ 35 Pa·s [Equation 1] 15 Pa.s ≤ η 100 ≤ 35 Pa.s
    [수학식 2] 변형율(Strain) 0.01 %일 때, 5° ≤ Loss angle ≤ 20°Equation 2 When the strain (Strain) 0.01%, 5 ° ≤ Loss angle ≤ 20 °
    [수학식 3] 변형율(Strain) 300 %일 때, 70° ≤ Loss angle ≤ 85°Equation 3 When the strain (Strain) 300%, 70 ° ≤ Loss angle ≤ 85 °
    여기서, η100은 전단 속도 100 s-1에서의 점도 값을 나타내고, 손실각은 변형율 0.01 %와 300 %를 연속적으로 반복 진행하는 Oscillatory Strain Step test(1Hz)로 측정한 것이다.Here, η 100 represents a viscosity value at a shear rate of 100 s −1 , and the loss angle is measured by an Oscillatory Strain Step test (1 Hz) in which a strain rate of 0.01% and 300% is continuously repeated.
  2. 제1항에 있어서, 상기 도전성 페이스트 조성물은 다음 수학식 4로 표시되는 S.M.C(Strain at Modulus Cross-point)값을 가지는 것인, 도전성 페이스트 조성물.The conductive paste composition of claim 1, wherein the conductive paste composition has a S.M.C (Strain at Modulus Cross-point) value represented by Equation 4 below.
    [수학식 4] 25 % ≤ S.M.C ≤ 75 %Equation 4 25% ≤ S.M.C ≤ 75%
    S.M.C값은 저장 탄성율(Storage Modulus)과 손실 탄성율(Loss Modulus)을 변형율(Strain)에 대해 도식화할 때, 저장 탄성율과 손실 탄성율이 교차되는 지점(Modulus Cross-point)에서의 변형율 값을 나타낸다.The S.M.C value represents the strain value at the intersection of the storage modulus and the loss modulus when the storage modulus and the loss modulus are plotted against the strain.
  3. 제2항에 있어서, 전단 속도 100 s-1에서의 점도(η100)가 20 내지 35 Pa·s이고, S.M.C값은 30 내지 60 %이고, 변형율 0.01 %에서의 손실각은 7 내지 18 %이고, 변형율 300 %에서의 손실각은 72 내지 83 %인 것인 도전성 페이스트 조성물.The viscosity (η 100 ) at a shear rate of 100 s −1 is 20 to 35 Pa · s, the SMC value is 30 to 60%, and the loss angle at a strain of 0.01% is 7 to 18%. And a loss angle at a strain of 300% is 72 to 83%.
  4. 제1항에 있어서, 상기 바인더는 중량평균 분자량(Mw)이 50,000 내지 70,000 인 에스테르계 바인더 또는 에테르계 바인더인 것인, 태양전지 전극 형성용 페이스트 조성물.The paste composition of claim 1, wherein the binder is an ester binder or an ether binder having a weight average molecular weight (Mw) of 50,000 to 70,000.
  5. 제1항에 있어서, 상기 유기 용매는 카비톨계 용제, 에스테르계 용제 및 그 혼합물로부터 선택되는 적어도 1종의 용매를 포함하는 것인, 태양전지 전극 형성용 페이스트 조성물.The paste composition of claim 1, wherein the organic solvent comprises at least one solvent selected from a carbitol solvent, an ester solvent, and a mixture thereof.
  6. 제5항에 있어서, 상기 유기 용매는. 전체 페이스트 조성물에 대하여, 0.1 내지 2 중량%의 디부틸 카비톨 용매를 포함하는 것인, 태양전지 전극 형성용 페이스트 조성물.The method of claim 5, wherein the organic solvent. A paste composition for forming a solar cell electrode, comprising 0.1 to 2% by weight of a dibutyl carbitol solvent, based on the total paste composition.
  7. (1) 도전성 금속 분말로서 은(Ag) 분말 80 내지 94 중량%; (1) 80 to 94% by weight of silver (Ag) powder as the conductive metal powder;
    (2) 유리 프릿 1 내지 5 중량%;(2) 1 to 5 weight percent of glass frit;
    (3) 에스테르계 또는 에테르계 바인더 0.1 내지 2.0 중량%;(3) 0.1 to 2.0 wt% of an ester or ether binder;
    (4) 아마이드 왁스 요변제 0.6 내지 1.0 중량%;(4) 0.6-1.0 wt% amide wax thixotropic agent;
    (5) 요변 보조제 0.1 내지 3 중량%; 및(5) 0.1 to 3 weight percent of thixotropic aid; And
    (6) 카비톨계 용제, 에스테르계 용제 및 그 혼합물로부터 선택되는 용매 3 내지 8 중량%를 포함하는 태양전지 전극 형성용 페이스트 조성물.(6) A paste composition for forming a solar cell electrode comprising 3 to 8% by weight of a solvent selected from a carbitol solvent, an ester solvent, and a mixture thereof.
  8. 제7항에 있어서, 상기 요변보조제는 로진(Rosin), 로진에스테르, 폴리실록산, 사이클로실록산, 실리카 분말, 지방족 아민, 카르복실산 아마이드 및 이들의 조합으로 이루어진 군으로부터 선택되는 적어도 1종의 성분을 포함하는 것인, 태양전지 전극 형성용 페이스트 조성물.The method of claim 7, wherein the thixotropic aid comprises at least one component selected from the group consisting of rosin, rosin ester, polysiloxane, cyclosiloxane, silica powder, aliphatic amine, carboxylic acid amide, and combinations thereof. The paste composition for forming a solar cell electrode.
  9. 제7항에 있어서, 지방족 암모늄염, 지방족 카르복실산염 및 이들의 혼합물로부터 선택되는 분산제 0.01 내지 2 중량% 및 지방족 카르복실산, 지방족 아민 및 이들의 혼합물로부터 선택되는 안정제 0.001 내지 2 중량%를 더욱 포함하는, 태양전지 전극 형성용 페이스트 조성물.The method of claim 7, further comprising 0.01 to 2% by weight dispersant selected from aliphatic ammonium salts, aliphatic carboxylates and mixtures thereof and 0.001 to 2% by weight stabilizer selected from aliphatic carboxylic acids, aliphatic amines and mixtures thereof. A paste composition for forming a solar cell electrode.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 태양전지 전극 형성용 페이스트 조성물을 반도체 기재 상에 스크린 인쇄하고, 소성하여 형성된 태양전지 전극.The solar cell electrode formed by screen-printing and baking the paste composition for solar cell electrode formation of any one of Claims 1-9 on a semiconductor base material.
PCT/KR2016/014303 2015-12-10 2016-12-07 Paste composition for forming solar cell electrode WO2017099470A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680072187.3A CN108431965A (en) 2015-12-10 2016-12-07 It is used to form the paste composition of electrode of solar battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0175668 2015-12-10
KR1020150175668A KR20170068777A (en) 2015-12-10 2015-12-10 Paste composition for forming solar cell electrode

Publications (1)

Publication Number Publication Date
WO2017099470A1 true WO2017099470A1 (en) 2017-06-15

Family

ID=59013486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014303 WO2017099470A1 (en) 2015-12-10 2016-12-07 Paste composition for forming solar cell electrode

Country Status (4)

Country Link
KR (1) KR20170068777A (en)
CN (1) CN108431965A (en)
TW (1) TW201731982A (en)
WO (1) WO2017099470A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102007862B1 (en) * 2017-10-31 2019-08-06 엘에스니꼬동제련 주식회사 Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
KR20190067667A (en) * 2017-12-07 2019-06-17 삼성에스디아이 주식회사 Composition for forming solar cell electrode and electrode prepared using the same
KR102326611B1 (en) * 2018-07-06 2021-11-16 창저우 퓨전 뉴 머티리얼 씨오. 엘티디. Composition for forming solar cell electrode and electrode prepared using the same
KR102152842B1 (en) * 2018-11-30 2020-09-07 엘에스니꼬동제련 주식회사 Method for manufacturing conductive paste for solar cell electrode with improved thixotropic and slip
KR102340931B1 (en) * 2019-12-31 2021-12-17 엘에스니꼬동제련 주식회사 Parameters for improving the printing characteristics of the conductive paste satisfying the parameters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100042766A (en) * 2008-10-17 2010-04-27 대주전자재료 주식회사 Conductive paste composition, preparation of electrode using same and solar cell comprising same
KR20120059126A (en) * 2010-11-30 2012-06-08 삼성전기주식회사 Inner electrode paste composition for gravure printing, multilayer ceramic capacitor using the same and a manufacturing method thereof
KR101323103B1 (en) * 2012-03-08 2013-10-30 한국세라믹기술원 Composite of paste body for electrode, manufacturing method of electrode for solar cell using the composite, and elctrode for solar cell manufactured by the method
KR20150017782A (en) * 2013-05-27 2015-02-23 주식회사 엘 앤 에프 A paste for electrode of solar cell, a method of preparing the same and a solar cell for using the same
KR20150045831A (en) * 2013-10-21 2015-04-29 삼성에스디아이 주식회사 Composition for forming solar cell electrode, electrode prepared using the same, and solar cell having the electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352786B1 (en) * 2007-05-09 2014-01-15 주식회사 동진쎄미켐 Paste for producing electrode of solar cell
CN102568704B (en) * 2012-03-16 2015-01-21 广东羚光新材料股份有限公司 Environment-friendly lead-free semiconductor ceramic capacitive electrode silver paste and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100042766A (en) * 2008-10-17 2010-04-27 대주전자재료 주식회사 Conductive paste composition, preparation of electrode using same and solar cell comprising same
KR20120059126A (en) * 2010-11-30 2012-06-08 삼성전기주식회사 Inner electrode paste composition for gravure printing, multilayer ceramic capacitor using the same and a manufacturing method thereof
KR101323103B1 (en) * 2012-03-08 2013-10-30 한국세라믹기술원 Composite of paste body for electrode, manufacturing method of electrode for solar cell using the composite, and elctrode for solar cell manufactured by the method
KR20150017782A (en) * 2013-05-27 2015-02-23 주식회사 엘 앤 에프 A paste for electrode of solar cell, a method of preparing the same and a solar cell for using the same
KR20150045831A (en) * 2013-10-21 2015-04-29 삼성에스디아이 주식회사 Composition for forming solar cell electrode, electrode prepared using the same, and solar cell having the electrode

Also Published As

Publication number Publication date
TW201731982A (en) 2017-09-16
CN108431965A (en) 2018-08-21
KR20170068777A (en) 2017-06-20

Similar Documents

Publication Publication Date Title
WO2017099470A1 (en) Paste composition for forming solar cell electrode
CN106098138B (en) Conductive paste and method for manufacturing solar cell using the same
US20140124713A1 (en) High-aspect ratio screen printable thick film paste compositions containing wax thixotropes
TWI673726B (en) Conductive composition, semiconductor element and solar cell element
WO2011046365A2 (en) Silver paste composition and solar cell using same
WO2015037798A1 (en) Composition for forming solar cell electrode, and electrode produced from composition
EP2696352B1 (en) Silver paste composition for forming an electrode, and method for preparing same
US20090159180A1 (en) Method of manufacturing display device, method of preparing electrode, and electrode composition for offset printing
US20160369111A1 (en) Silver paste and its use in semiconductor devices
DE102012111648A1 (en) A paste composition for a solar cell electrode using the same prepared electrode and the solar cell containing the same
KR20170068776A (en) Paste composition for forming solar cell electrode
WO2011046360A2 (en) Aluminum paste for back electrode of solar cell
DE112016000610T5 (en) Conductive paste composition and semiconductor devices made therefrom
WO2019088509A1 (en) Surface-treated silver powder and preparation method therefor
CN113488223B (en) Solar cell conductive silver paste without silicone oil and application thereof
WO2011013928A2 (en) Paste for forming of an electrode of a solar cell
WO2011028035A2 (en) Solar cell and paste composition for the same
WO2011028058A2 (en) Aluminum paste for a back electrode of solar cell
WO2012148021A1 (en) Aluminum paste composition for achieving low bowing and high performance for a silicon solar battery
KR20160060262A (en) Composition for forming solar cell electrode and electrode prepared using the same
DE102017009811A1 (en) Conductive paste composition and semiconductor devices made therewith
WO2015190727A1 (en) Conductive polymeric ink composition
KR101064846B1 (en) Paste composition for offset printing and flat panel display device using the smae
WO2018080096A1 (en) Conductive paste for solar cell electrode and solar cell manufactured using same
KR102650451B1 (en) Copper based particle, conductive ink composition comprising the particle and electrode formed by the composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873335

Country of ref document: EP

Kind code of ref document: A1