WO2017099146A1 - Resin for printing ink, varnish for printing ink, printing ink, and process for producing resin for printing ink - Google Patents

Resin for printing ink, varnish for printing ink, printing ink, and process for producing resin for printing ink Download PDF

Info

Publication number
WO2017099146A1
WO2017099146A1 PCT/JP2016/086438 JP2016086438W WO2017099146A1 WO 2017099146 A1 WO2017099146 A1 WO 2017099146A1 JP 2016086438 W JP2016086438 W JP 2016086438W WO 2017099146 A1 WO2017099146 A1 WO 2017099146A1
Authority
WO
WIPO (PCT)
Prior art keywords
tall oil
rosin
acid
parts
polymerized
Prior art date
Application number
PCT/JP2016/086438
Other languages
French (fr)
Japanese (ja)
Inventor
啓至郎 大川内
博之 久田
笹倉 敬司
Original Assignee
ハリマ化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハリマ化成株式会社 filed Critical ハリマ化成株式会社
Priority to JP2017555114A priority Critical patent/JP6773681B2/en
Priority to CN201680072042.3A priority patent/CN108368243B/en
Publication of WO2017099146A1 publication Critical patent/WO2017099146A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • C08G63/54Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/553Acids or hydroxy compounds containing cycloaliphatic rings, e.g. Diels-Alder adducts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins

Definitions

  • the present invention relates to a resin for printing ink, a varnish for printing ink, a printing ink and a method for producing a resin for printing ink.
  • the printing ink resin obtained by the present invention is particularly useful as an offset printing ink resin. Moreover, it can be used suitably also for newspaper ink, letterpress printing ink, and gravure printing ink.
  • offset printing ink is prepared by heating and mixing the rosin-modified phenolic resin, drying oil or semi-drying oil, solvent or fatty acid ester, and gelling agent as necessary, and uniforming the ink varnish. After the preparation, a pigment is further mixed, and a product is produced through a kneading process and a preparation process.
  • Specific printing inks include, for example, a resole resin having an average number of phenols of 6 to 10, a rosin and / or a condensation product of rosin and unsaturated carboxylic acid, and a reaction product of a polyhydric alcohol.
  • a printing ink containing a varnish containing a rosin-modified phenol resin having a weight average molecular weight of 40,000 to 200,000 has been proposed (Patent Document 1).
  • Patent Document 3 a varnish for printing ink obtained from rosins, fatty acids or fatty acid esters, resol type phenol resins, and polyhydric alcohols has been developed (for example, Patent Document 3).
  • JP 2002-322411 A JP 2000-159867 A JP 2005-154703 A
  • an object of the present invention is to provide a novel printing ink resin that is inexpensive while maintaining the characteristics of a rosin-modified phenolic resin used in conventional offset printing inks.
  • the rosin-modified resin of the present invention comprises: at least
  • the rosin-modified resin of the present invention which is a printing ink resin, will be described.
  • the “rosin-modified resin” in the present invention means at least (A) crude tall oil and / or distilled tall oil, or a mixture containing crude tall oil and / or distilled tall oil and rosin, and (B) a polyhydric alcohol. Is a rosin-modified resin obtained by reacting The “rosin-modified polyester resin” can be obtained by esterifying the component (A) using the component (B).
  • the rosin-modified resin in the present invention may be a rosin-modified resin obtained by adding (C) a resol type phenol resin and reacting in addition to the components (A) and (B).
  • the obtained rosin-modified resin is “rosin-modified phenol resin”.
  • (A) Component crude tall oil and / or distilled tall oil, or mixture of crude tall oil and / or distilled tall oil and rosin is modified with aldehyde and phenols
  • B component resole type phenolic resin To do. The resulting resin is introduced with a cross-linked structure, and printing inks made using this resin have preferred characteristic values.
  • rosin-modified polyester resin means (A) crude tall oil and / or distilled tall oil, or a mixture containing crude tall oil and / or distilled tall oil and rosin, and (B) polyhydric alcohol. It means a resin obtained by esterification.
  • At least one of crude tall oil and distilled tall oil can be used. Moreover, you may use the mixture containing at least 1 type of crude tall oil and distilled tall oil, and a rosin as (A) component. Crude tall oil and distilled tall oil may be used alone or in combination.
  • the crude tall oil is recovered as a by-product in a kraft method in which chemicals such as sodium hydroxide are added to wood chips and decomposed under high temperature and high pressure to take out pulp fibers. It can be obtained by neutralizing a black liquor obtained by concentrating a liquid containing a mixture of lignin and resin components and chemicals that has hardened pulp fibers with an acid such as sulfuric acid. That is, tall rosin is obtained by rectifying crude tall oil. Distilled tall oil is recovered as a by-product when rectifying crude tall oil and separating tall rosin and tall fatty acids.
  • the type of wood that is the raw material for crude tall oil is not particularly limited, but is preferably pine-derived crude tall oil.
  • the type of pine is not particularly limited, and examples include horse ear pine, Tuda pine, and Eliotti pine.
  • the mixture can contain rosin.
  • rosin include tall rosin, gum rosin, and wood rosin.
  • rosin derivatives include polymerized rosin, acrylated rosin, hydrogenated rosin, and disproportionated rosin. These rosins may be used alone or in combination of two or more.
  • the mixture of component (A) can contain rubber and petroleum resin as required. Regardless of the type, any publicly known materials can be used, and the softening point can be easily adjusted by using the resin, and a resin having a desired softening point can be obtained.
  • the rubber examples include natural rubber, isoprene rubber, butadiene rubber, natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, chloroprene rubber, butyl rubber, and ethylene propylene rubber. These rubbers may be used alone or in combination of two or more.
  • Examples of petroleum resins include aliphatic polymers, aromatic polymers, alicyclic polymers, and the like. These petroleum resins may be used alone or in combination of two or more.
  • the total content of crude tall oil and distilled tall oil in the mixture of component (A) is usually 50% by weight or less, and preferably 30% by weight or less. Since crude tall oil and distilled tall oil contain fatty acids (hereinafter, fatty acids contained in tall oil may be simply referred to as “fatty acids”), resins obtained from them as raw materials have low softening points. It tends to be. If the total content of crude tall oil and distilled tall oil increases, the softening point of the resulting resin may be below 120 ° C., so the total content of crude tall oil and distilled tall oil is usually 50% by weight. Or less, preferably 30% by weight or less. In addition, since crude tall oil and distilled tall oil contain impurities, if the total content of crude tall oil and distilled tall oil increases, the reaction becomes complicated and the physical properties of the resulting rosin-modified resin must be adjusted. May be difficult.
  • the crude tall oil and / or distilled tall oil in component (A) those obtained by polymerizing crude tall oil (polymerized crude tall oil) and those obtained by polymerizing distilled tall oil (polymerized distilled tall oil) are used. You may do it. Since the softening point of the resulting resin is improved by using a raw material obtained by polymerizing crude tall oil and / or distilled tall oil, the proportion of crude tall oil and distilled tall oil used as a raw material may be increased. it can. Polymerized crude tall oil and polymerized distilled tall oil are mainly obtained by polymerizing rosin and fatty acids contained in crude tall oil and distilled tall oil.
  • the total amount of polymerized crude tall oil and polymerized distilled tall oil is determined by the following formula: In general, it can be contained in an amount of 90% by weight or less, preferably 80% by weight or less, and more preferably 70% by weight or less, based on the total amount of the mixture. Even when polymerized crude tall oil or polymerized distilled tall oil is used, if these are excessively contained, the softening point may be lowered. Although there is no particular lower limit of the content of the polymerized crude tall oil and / or polymerized distilled tall oil, it is usually good up to 30% by weight based on the mixture to add unpolymerized crude tall oil or distilled tall oil.
  • Resin characteristics can be obtained. Therefore, it is effective to use a polymerized crude tall oil or distilled tall oil when the crude tall oil or distilled tall oil is introduced in an amount exceeding 30% by weight with respect to the mixture. That is, the total amount of the polymerized crude tall oil and the polymerized distilled tall oil is 30% by weight or more and 90% by weight or less based on the total amount of the polymerized crude tall oil and / or the mixture containing the polymerized crude tall oil and rosin. It is preferable that In addition, when using for printing ink, the preferable softening point of resin is 100 degreeC or more normally, Preferably it is 120 degreeC or more and 200 degrees C or less. This is because when the softening point is 120 ° C.
  • the dryness and offset property of the printed matter can be kept good.
  • the softening point of the resin is 200 ° C. or less.
  • the ratio of the polymerized crude tall oil and / or polymerized distilled tall oil to the mixture is 30% by weight or less, the polymerized crude tall oil or polymerized distilled tall oil is used. It is effective to do.
  • Polymerization of crude tall oil and distilled tall oil is usually carried out at 100 to 200 ° C., preferably 130 to 180 ° C. in an atmosphere of an inert gas such as nitrogen or argon.
  • the polymerization time is usually 1 to 24 hours, although it depends on the crude tall oil used.
  • the polymerization in the present specification is a change in which two or more monomer molecules are bonded to form a compound having an integral multiple of molecular weight, and includes a phenomenon of oligomerization such as dimerization and trimerization.
  • Catalysts include formic acid, acetic acid, phosphoric acid, sulfuric acid, phenolsulfonic acid, paratoluenesulfonic acid, methanesulfonic acid, sulfosuccinic acid, 5-sulfosalicylic acid, 4-sulfophthalic acid, 5-sulfoisophthalic acid, and other carboxylated sulfones Pendants such as acids, arylsulfonic acids substituted with alkyl groups, solid acids having sulfonic acid groups, fluorosulfonic acids, trifluoromethanesulfonic acids, polystyrene sulfonic acids, polyvinyl sulfonic acids, or fluorinated polymers having sulfonic acid type functional groups Polymer hydrogen fluoride having sulfonic acid group, clay, zinc chloride, aluminum chloride, titanium te
  • a more preferable catalyst is an acid catalyst, more preferably a sulfonic acid derivative, still more preferably 4-sulfophthalic acid or trifluoromethanesulfonic acid.
  • the catalyst is preferably used in an amount of 0.01 to 5% by weight based on the crude tall oil or distilled tall oil.
  • the amount of the catalyst used is within the range of 0.01 wt% to 5 wt% with respect to the total of the crude tall oil and distilled tall oil. It is preferable to use it.
  • the catalyst may remain in the final product or may optionally be neutralized with an alkali such as potassium hydroxide or amine.
  • the polymerized crude tall oil and / or distilled tall oil and rosin is mixed with rosin at the predetermined ratio described above.
  • prepare a mixture When preparing the mixture, mixing at an appropriate viscosity is easier to mix, so mixing is performed under heated conditions of 100 to 300 ° C, preferably 150 to 250 ° C.
  • the polymerization may be carried out after mixing crude tall oil and / or distilled tall oil and rosin. If the polymerization is carried out after mixing crude tall oil and / or distilled tall oil and rosin, it is preferable in terms of the process.
  • rosins examples include tall rosin, gum rosin, and wood rosin.
  • rosin derivatives may be used, and specific examples include polymerized rosin, acrylated rosin, hydrogenated rosin, disproportionated rosin and the like. These rosins may be used alone or in combination of two or more.
  • the rosin that can be used as the component (A) may be simply referred to as “rosins”.
  • rubber and petroleum resin can be mixed into the mixture as necessary. By mixing rubber and petroleum resin, it is easy to adjust the softening point of the resulting resin, and a resin having a desired softening point is obtained.
  • the types of rubbers and petroleum resins that can be mixed are not particularly limited, and any publicly known and publicly available materials can be used. Specific examples of the rubber include natural rubber, isoprene rubber, butadiene rubber, natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, chloroprene rubber, butyl rubber, and ethylene propylene rubber. These rubbers may be used alone or in combination of two or more.
  • petroleum resins include aliphatic polymers, aromatic polymers, and alicyclic polymers. These petroleum resins may be used alone or in combination of two or more.
  • the mixture as the component (A) Prior to reacting with the component (B), the mixture as the component (A) is described as at least one of ⁇ , ⁇ -unsaturated carboxylic acid and its anhydride (hereinafter simply referred to as “ ⁇ , ⁇ -unsaturated carboxylic acids”). May be modified). That is, component (A) and ⁇ , ⁇ -unsaturated carboxylic acid undergo an addition reaction (Alder ene reaction or Diels-Alder reaction), and ⁇ , ⁇ -unsaturated carboxylic acid, rosin and / or (in tall oil) Of adducts of fatty acids.
  • this adduct has at least two carboxyl groups in the molecule, it forms an ester bond with the polyhydric alcohol as the component (B) to increase the molecular weight.
  • a resin having a desired viscoelasticity can be obtained by increasing the molecular weight of the ⁇ , ⁇ -unsaturated carboxylic acid in advance.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acids include a chain ⁇ , ⁇ -unsaturated monocarboxylic acid having 3 to 5 carbon atoms or an anhydride thereof, and a chain ⁇ having 3 to 5 carbon atoms. , ⁇ -unsaturated dicarboxylic acid or its anhydride, aromatic ⁇ , ⁇ -unsaturated carboxylic acid and the like. Specific examples include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, crotonic acid, and cinnamic acid.
  • a metal compound may be used as a crosslinking agent as necessary.
  • metal compounds such as hydroxides and oxides such as lithium, sodium, potassium, calcium, zinc, magnesium, aluminum, cobalt, copper, lead, and manganese may be used as the crosslinking agent.
  • metal ions derived from the metal compound crosslink carboxyl groups (—COOH) present in the resin raw material, and increase the molecular weight of the resulting resin. More specifically, at least two molecules selected from the group consisting of fatty acids, rosin, ⁇ , ⁇ -unsaturated carboxylic acids, and the above adducts in the mixture are exchanged via metal ions derived from metal compounds.
  • a crosslinked body having a crosslinked structure is formed.
  • unreacted rosins; unreacted fatty acids; ⁇ , ⁇ -unsaturated carboxylic acids; reaction products of rosins and ⁇ , ⁇ -unsaturated carboxylic acids; fatty acids and ⁇ The compound selected from the group consisting of reactants of ⁇ -unsaturated carboxylic acids preferably includes a crosslinked product formed by crosslinking via a metal ion derived from a metal compound.
  • Specific examples of the crosslinked body include crosslinked bodies as shown in the following (I) to (X).
  • (V) A crosslinked product formed by crosslinking an unreacted rosin and a reaction product of rosins and ⁇ , ⁇ -unsaturated carboxylic acids via metal ions.
  • VII A crosslinked product formed by crosslinking an unreacted rosin and an ⁇ , ⁇ -unsaturated carboxylic acid via a metal ion.
  • VIII A crosslinked product formed by crosslinking ⁇ , ⁇ -unsaturated carboxylic acids with a reaction product of rosin and ⁇ , ⁇ -unsaturated carboxylic acids via a metal ion.
  • (X) A crosslinked product formed by crosslinking a reaction product of rosins and ⁇ , ⁇ -unsaturated carboxylic acids with a reaction product of fatty acids and ⁇ , ⁇ -unsaturated carboxylic acids via metal ions.
  • the molecular weight of the resulting resin can be increased by cross-linking carboxyl groups present in the resin raw material via metal ions derived from the metal compound. As a result, the drying property and misting resistance of the ink are improved. Moreover, by containing a specific metal compound, when preparing an ink, affinity with a pigment can be improved and dispersibility can be improved.
  • the rosin-modified resin according to this embodiment can be obtained by esterifying the above-described component (A) with the polyhydric alcohol (polyol) that is the component (B).
  • polyol polyhydric alcohol
  • the carboxyl group present in the resin raw material include a rosin in the mixture, a carboxyl group derived from a fatty acid, a carboxyl group derived from an ⁇ , ⁇ -unsaturated carboxylic acid or an anhydride thereof.
  • the polyhydric alcohol is an alcohol having a plurality of hydroxides in one molecule, and the kind thereof is not particularly limited in the present invention.
  • Specific examples of the polyhydric alcohol include, for example, ethylene glycol, diethylene glycol, triethylene glycol, neopentyl glycol, and 1,6-hexanediol as the dihydric alcohol.
  • Examples of the trihydric alcohol include glycerin, trimethylolpropane, trimethylolethane, triethylolethane, 3-methylpentane-1,3,5-triol, and 1,2,4-butanetriol.
  • Examples of the tetrahydric alcohol include pentaerythritol, diglycerin, sorbitan, and mannitan.
  • a trihydric or higher polyhydric alcohol from the viewpoint that the high molecular weight of the resin is easy and the viscoelasticity necessary for the ink is easily obtained.
  • a polyhydric alcohol may be used independently and may be used in combination of 2 or more types.
  • the (B) component polyhydric alcohol is preferably reacted with the (A) component at a ratio of preferably 0.5 to 2 equivalents with respect to 1 equivalent of the carboxyl group present in the resin raw material.
  • the esterification reaction between the component (A) and the component (B) is not particularly limited as long as the esterification reaction proceeds, but is usually performed in the range of 200 ° C to 350 ° C.
  • esterification catalyst In the esterification reaction, a known and publicly used esterification catalyst may be used as necessary.
  • the esterification catalyst include metal catalysts such as acid catalysts such as Bronsted acid and Lewis acid.
  • esterification may be carried out under a disproportionation catalyst.
  • the disproportionation catalyst include organic sulfur compounds, such as 4,4′-bis (phenol) sulfide, 4,4′-bis (phenol) sulfoxide, and 4,4′-bis (phenol) sulfone.
  • organic sulfur compounds it is preferable to use a compound in which a hydroxyl group bonded to a benzene ring is sterically hindered.
  • 4,4′-bis (6-tert-butylmetacresol) sulfide 4,4'-bis (phenol) sulfide, 2,2'-bis (p-cresol) sulfide, 2,2'-bis (pt-butylphenol) sulfide, 4,4'-bis (resorcinol) sulfide
  • a sulfide compound selected from 4,4'-bis ( ⁇ -naphthol) sulfide, t-amylphenol disulfide oligomers, and nonylphenol disulfide oligomers is preferred.
  • esterification reaction is completed after confirming the acid value, softening point, viscosity, solubility, etc. of the obtained resin and reaching the predetermined value.
  • the rosin-modified polyester resin obtained by the esterification reaction can be suitably used for components such as printing ink.
  • the rosin-modified ester polyester resin according to this embodiment preferably has a softening point of 120 ° C. or higher, more preferably about 130 to 200 ° C.
  • the acid value is preferably about 10 to 40 KOHmg / g.
  • the rosin-modified polyester resin according to this embodiment can be suitably used as a component of a resin for offset printing ink, and in addition to the rosin-modified polyester resin, shellac, gilsonite, Other ink resins such as alkyd resins and rosin-modified phenol resins may be contained.
  • Rosin modified phenolic resin means, as a raw material, (A) crude tall oil and / or distilled tall oil, or a mixture containing crude tall oil and / or distilled tall oil and rosin, and (B) polyhydric alcohol. (C) A resin obtained by reacting these using a resol type phenol resin.
  • component (A) The crude tall oil and / or distilled tall oil of component (A) according to this embodiment, or the mixture of crude tall oil and / or distilled tall oil and rosin is obtained from aldehyde, phenols, etc. It is modified with resole type phenolic resin. Therefore, the obtained resin has a preferable characteristic value with a crosslinked structure introduced therein.
  • the crude tall oil and / or distilled tall oil of component (A) contained in the rosin-modified phenolic resin, or a mixture of crude tall oil and / or distilled tall oil and rosin is the same type as the rosin-modified polyester. it can.
  • the total amount may be crude tall oil and / or distilled tall oil, but is preferably 50% by weight or less. Since crude tall oil and distilled tall oil contain fatty acids (hereinafter, fatty acids contained in tall oil may be simply referred to as “fatty acids”), resins obtained from them as raw materials have low softening points. It tends to be. If the total content of crude tall oil and distilled tall oil increases, the softening point of the resulting resin may be below 120 ° C., so the total content of crude tall oil and distilled tall oil is usually 50% by weight. It is as follows.
  • component (A) a polymerized crude tall oil and / or a polymerized distilled tall oil, or a polymerized crude toll Oils and / or mixtures of polymerized distilled tall oil and rosin may be used.
  • component (A) considering the raw material cost, it is preferable to use the total amount of the polymerized crude tall oil and / or polymerized distilled tall oil as the component (A).
  • a mixture containing the above-mentioned rosins may be used as the component (A).
  • the content of the polymerized crude tall oil and / or polymerized distilled tall oil and the polymerized crude tall oil and / or polymerized distilled tall oil in the rosin mixture is From the viewpoint of raw material costs, it is preferably 70% by weight or more, more preferably 90% by weight or more, and still more preferably no rosin (100% by weight).
  • the content of the polymerized crude tall oil and / or polymerized distilled tall oil is preferably 50% by weight or more and 90% by weight or less, more preferably 70% by weight. Above 90% by weight. Therefore, the content of the polymerized crude tall oil and / or polymerized distilled tall oil is preferably 50% by weight or more and 100% by weight or less from the viewpoint of achieving both the raw material costs and the properties of the obtained resin.
  • the B component polyhydric alcohol that can be used in the rosin-modified phenolic resin according to this embodiment can be the same as the rosin-modified polyester resin described above.
  • the amount of polyols used in the production of the rosin-modified phenol resin is not particularly limited, but it is usually sufficient to add from 0.3 equivalents to an excess amount with respect to 1 equivalent of carboxyl group, more preferably 0.5. To 1.5 equivalents, more preferably 0.7 to 1.2 equivalents.
  • phenols (P) and formaldehyde (F) are subjected to addition condensation in the presence of alkali catalysts such as sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, lithium hydroxide, triethylamine.
  • alkali catalysts such as sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, lithium hydroxide, triethylamine.
  • alkali catalysts such as sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, lithium hydroxide, triethylamine.
  • alkali catalysts such as sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, lithium hydroxide, triethylamine.
  • the phenols are preferably phenols having a C 1 to C 20 alkyl group, more preferably phenols having a C 1 to C 10 alkyl group. Specific examples thereof include carboxylic acid, cresols, amylphenol. Bisphenol-A, p-butylphenol, p-octylphenol, p-nonylphenol, p-dodecylphenol and the like.
  • the amount of the resol type phenol resin used relative to the component (A) is not particularly limited, but is usually 10 to 120% by weight, preferably 30 to 100% by weight.
  • the resol type phenol resin which is (C) component, and resole type
  • Method for producing rosin-modified phenolic resin examples include the following three methods (i) to (iii).
  • the above-mentioned crosslinking reaction for increasing the molecular weight can be carried out at an appropriate stage in the production methods (i) to (iii).
  • the acid value, softening point, viscosity, solubility, etc. of the obtained resin are confirmed, and the reaction is terminated as soon as a predetermined value is reached.
  • the obtained resin can be suitably used for components such as printing ink.
  • the rosin-modified ester polyester resin and rosin-modified phenol resin of the present invention preferably have a softening point of 120 ° C. or higher, more preferably about 130 to 200 ° C.
  • the acid value is preferably about 10 to 40 KOHmg / g.
  • the resin for offset printing ink according to the present embodiment includes, in addition to the rosin-modified polyester resin and / or rosin-modified phenol resin, shellac, gilsonite, alkyd resin, and rosin-modified phenol as long as the effects of the present invention are not impaired. You may contain other resin for inks, such as resin.
  • the rosin-modified polyester resin or rosin-modified phenol resin according to the present invention can be used as a resin for printing ink, particularly as a resin for ink for offset printing.
  • resins for offset printing ink are generally used as drying oil or semi-drying oil (for example, linseed oil, tung oil, soybean oil, soybean white squeezed oil, etc.) and solvents (for example, aliphatic hydrocarbon solvents, etc.) ).
  • various gelling agents may be added in consideration of viscoelasticity as long as the effects of the present invention are not impaired.
  • the gelling agent is not particularly limited, and examples thereof include aluminum compounds such as aluminum alcoholate and aluminum soap; metal soaps such as manganese, cobalt and zirconium; alkanolamine and the like.
  • a gelling agent may be used independently and may be used in combination of 2 or more types.
  • antioxidants may be added as long as the effects of the present invention are not impaired.
  • the antioxidant is not particularly limited, and examples thereof include hydroquinone, tertiary butyl hydroquinone, dibutylhydroxytoluene, eugenol, pyrogallol, catechol, and guaralacol.
  • An antioxidant may be used independently and may be used in combination of 2 or more types.
  • An offset printing ink is prepared by dispersing a pigment of a desired color (black pigment, indigo pigment, red pigment, yellow pigment, etc.) in the varnish obtained from the resin for offset printing ink according to the present embodiment.
  • the obtained printing ink is suitable for offset inks such as sheet-fed ink and off-wheel ink, and can also be used for newspaper ink, letterpress ink and gravure ink.
  • the rosin-modified polyester resin or rosin-modified phenol resin of the present invention is used as a binder for offset printing inks, etc.
  • printing properties such as emulsification characteristics, gloss, drying properties, misting, etc. of printing inks containing these resins
  • it is equal to or higher than that of conventionally known rosin-modified phenolic resins. Accordingly, the present invention can provide printing inks that meet recent market demands.
  • rosin-modified polyester resin 5 650 parts of crude tall oil and 350 parts of tall rosin were charged into a flask equipped with a stirrer, a water separator, a condenser tube and a thermometer, and the temperature was raised to 160 ° C. in a nitrogen atmosphere. Next, 15 parts of 4-sulfophthalic acid (50% aqueous solution) was added, held at the same temperature for 4 hours, and 7.5 parts of oleylamine was added.
  • soybean oil white squeezed oil and AF6 were added so that the ratio of soybean oil white squeezed oil in the varnish was not less than 30%, and a rheometer (manufactured by Thermo Haake, HAAKE Rheo Stress 600), 25 ° C., 1.0 Hz.
  • An ink varnish having a viscosity adjusted to about 100 Pa ⁇ s was obtained.
  • Linseed oil (Nisshin Oillio Group Co., Ltd.) and rosin-modified polyester resin were blended in a ratio of 2: 1 by weight, and normal hexane (Showa Chemical Co., Ltd.) was added to the mixture after heating and dissolving. The ratio of the amount of hexane required to do was measured.
  • the resin constants in Tables 1 to 4 are the evaluation results of the resins of Examples 1 to 18 and Comparative Examples 1 to 4, and the ink evaluation results in Tables 1 to 4 are the results of Examples 1 to 18 and the comparisons.
  • 4 is an evaluation result of inks containing each resin of Examples 1 to 4.
  • the printing ink containing the resin for printing inks of the present invention using crude tall oil and / or distilled tall oil has higher drying and misting resistance than the case of using tall oil fatty acid. It was found that the printed matter can be given a good gloss while keeping the color.
  • the printing ink containing the resin for printing ink of the present invention using the polymerized crude tall oil and / or the polymerized distilled tall oil maintains further drying and misting resistance than the case of using tall oil fatty acid.
  • the printing ink resin of the present invention can improve the performance of a plurality of inks in a trade-off relationship.

Abstract

Provided is a novel resin for printing inks which retains the properties of rosin-modified phenolic resins for use in conventional offset printing inks and which is inexpensive. The resin is a rosin-modified resin obtained by reacting at least: (A) either crude and/or distilled tall oil or a mixture comprising crude and/or distilled tall oil and a rosin; and (B) a polyhydric alcohol.

Description

印刷インキ用樹脂、印刷インキ用ワニス、印刷インキ及び印刷インキ用樹脂の製造方法Printing ink resin, printing ink varnish, printing ink and method for producing printing ink resin
 本発明は、印刷インキ用樹脂、印刷インキ用ワニス、印刷インキ及び印刷インキ用樹脂の製造方法に関する。本発明により得られる印刷インキ用樹脂は、特にオフセット印刷インキ用樹脂として有用である。また、新聞インキ、凸版印刷インキ、グラビア印刷インキにも好適に使用することができる。 The present invention relates to a resin for printing ink, a varnish for printing ink, a printing ink and a method for producing a resin for printing ink. The printing ink resin obtained by the present invention is particularly useful as an offset printing ink resin. Moreover, it can be used suitably also for newspaper ink, letterpress printing ink, and gravure printing ink.
 従来から、オフセット印刷インキ用樹脂としては、インキに優れた印刷適性を付与することができるロジン変性フェノール樹脂が使用されている。通常、オフセット印刷インキは、このロジン変性フェノール樹脂と、乾性油又は半乾性油と、溶剤又は脂肪酸エステル類と、必要に応じてゲル化剤とを加熱混合し、均一化させてインキ用ワニスを調製したのち、さらに顔料を混合し、練肉工程及び調製工程を経て製品化される。 Conventionally, rosin-modified phenolic resins that can impart excellent printability to ink have been used as offset printing ink resins. Normally, offset printing ink is prepared by heating and mixing the rosin-modified phenolic resin, drying oil or semi-drying oil, solvent or fatty acid ester, and gelling agent as necessary, and uniforming the ink varnish. After the preparation, a pigment is further mixed, and a product is produced through a kneading process and a preparation process.
 具体的な印刷インキとしては、例えば、フェノール平均核体数が6~10であるレゾール樹脂と、ロジン及び/又はロジンと不飽和カルボン酸との縮合生成物と、多価アルコールとの反応生成物で、かつ重量平均分子量が40,000~200,000であるロジン変性フェノール樹脂を含有するワニスを含む印刷インキが提案されている(特許文献1)。 Specific printing inks include, for example, a resole resin having an average number of phenols of 6 to 10, a rosin and / or a condensation product of rosin and unsaturated carboxylic acid, and a reaction product of a polyhydric alcohol. A printing ink containing a varnish containing a rosin-modified phenol resin having a weight average molecular weight of 40,000 to 200,000 has been proposed (Patent Document 1).
 しかし、このようなロジン変性フェノール樹脂は、使用されるレゾール樹脂の主原料として、ホルムアルデヒド及びアルキルフェノールを使用するため、環境面、作業衛生面などで問題を有している。そのため、近年、ホルムアルデヒド及びアルキルフェノールを使用しないオフセット印刷インキ用樹脂の開発が進められている(例えば特許文献2)。 However, since such rosin-modified phenolic resins use formaldehyde and alkylphenols as the main raw materials for the resole resins used, they have problems in terms of environment and work hygiene. Therefore, in recent years, development of a resin for offset printing ink that does not use formaldehyde and alkylphenol has been promoted (for example, Patent Document 2).
 一方で、近年は、情報の電子化が一般的となり、印刷物ならびに印刷インキの需要が減少している。そのような状況下、印刷インキを構成する原料に対する要求事項も変化しつつ有り、価格もその一つある。 On the other hand, in recent years, the digitization of information has become common, and the demand for printed matter and printing ink has decreased. Under such circumstances, requirements for raw materials constituting printing inks are changing, and there is one price.
 課題解消の手法として、例えば、ロジン類、脂肪酸又は脂肪酸エステル、レゾール型フェノール樹脂、及び多価アルコールから得られる印刷インキ用ワニスの開発がなされている(例えば特許文献3)。 As a technique for solving the problem, for example, a varnish for printing ink obtained from rosins, fatty acids or fatty acid esters, resol type phenol resins, and polyhydric alcohols has been developed (for example, Patent Document 3).
特開2002-322411号公報JP 2002-322411 A 特開2000-159867号公報JP 2000-159867 A 特開2005-154703号公報JP 2005-154703 A
 しかしながら、特許文献3で開示されている脂肪酸等を用いる印刷インキ用ワニスでは、得られるインキのインキ性能とコスト面との両立を図ることは困難であった。 However, in the varnish for printing ink using the fatty acid etc. disclosed in Patent Document 3, it is difficult to achieve both the ink performance and the cost of the obtained ink.
 そこで、本発明は、従来のオフセット印刷インキに使用されるロジン変性フェノール樹脂の特性を維持しながら、安価である新規な印刷インキ用樹脂を提供することを目的としている。 Accordingly, an object of the present invention is to provide a novel printing ink resin that is inexpensive while maintaining the characteristics of a rosin-modified phenolic resin used in conventional offset printing inks.
 前記目的を達成するために、本発明のロジン変性樹脂は、
少なくとも
In order to achieve the above object, the rosin-modified resin of the present invention comprises:
at least
(A)粗トール油及び/又は蒸留トール油、或いは、粗トール油及び/又は蒸留トール油とロジンとを含む混合物と、 (A) crude tall oil and / or distilled tall oil, or a mixture comprising crude tall oil and / or distilled tall oil and rosin;
(B)多価アルコールと、
を反応させて得られることを特徴としている。
(B) a polyhydric alcohol;
It is obtained by reacting.
 従来のオフセット印刷インキに使用されるロジン変性フェノール樹脂の特性を維持しながら、安価である新規な印刷インキ用樹脂を提供できる。 It is possible to provide a new inexpensive printing ink resin while maintaining the characteristics of the rosin-modified phenolic resin used in conventional offset printing inks.
 印刷インキ用樹脂である、本発明のロジン変性樹脂について説明する。 The rosin-modified resin of the present invention, which is a printing ink resin, will be described.
 本発明における「ロジン変性樹脂」とは、少なくとも(A)粗トール油及び/又は蒸留トール油、或いは、粗トール油及び/又は蒸留トール油とロジンとを含む混合物と、(B)多価アルコールとを反応させて得られるロジン変性樹脂を意味する。上記(A)成分を、(B)成分を用いてエステル化させることで、「ロジン変性ポリエステル樹脂」を得ることができる。 The “rosin-modified resin” in the present invention means at least (A) crude tall oil and / or distilled tall oil, or a mixture containing crude tall oil and / or distilled tall oil and rosin, and (B) a polyhydric alcohol. Is a rosin-modified resin obtained by reacting The “rosin-modified polyester resin” can be obtained by esterifying the component (A) using the component (B).
 本発明におけるロジン変性樹脂は、上記(A)成分及び(B)成分に加え、更に、(C)レゾール型フェノール樹脂を加えて反応させて得られるロジン変性樹脂であっても良い。この場合、得られるロジン変性樹脂は、「ロジン変性フェノール樹脂」である。(A)成分の粗トール油及び/又は蒸留トール油、或いは粗トール油及び/又は蒸留トール油とロジンとの混合物は、アルデヒド及びフェノール類から得られる(B)成分のレゾール型フェノール樹脂により変性する。得られる樹脂は、架橋構造が導入され、この樹脂を用いて作成した印刷インキは、好ましい特性値を有する。 The rosin-modified resin in the present invention may be a rosin-modified resin obtained by adding (C) a resol type phenol resin and reacting in addition to the components (A) and (B). In this case, the obtained rosin-modified resin is “rosin-modified phenol resin”. (A) Component crude tall oil and / or distilled tall oil, or mixture of crude tall oil and / or distilled tall oil and rosin is modified with aldehyde and phenols (B) component resole type phenolic resin To do. The resulting resin is introduced with a cross-linked structure, and printing inks made using this resin have preferred characteristic values.
 以下、本発明における「ロジン変性ポリエステル樹脂」及び「ロジン変性フェノール樹脂」の各々について、下記に詳細に説明する。 Hereinafter, each of “rosin-modified polyester resin” and “rosin-modified phenol resin” in the present invention will be described in detail.
(ロジン変性ポリエステル樹脂)
 用語「ロジン変性ポリエステル樹脂」とは、(A)粗トール油及び/又は蒸留トール油、或いは、粗トール油及び/又は蒸留トール油とロジンとを含む混合物を、(B)多価アルコールを用いてエステル化して得られる樹脂を意味する。
(Rosin-modified polyester resin)
The term “rosin-modified polyester resin” means (A) crude tall oil and / or distilled tall oil, or a mixture containing crude tall oil and / or distilled tall oil and rosin, and (B) polyhydric alcohol. It means a resin obtained by esterification.
((A成分)) ((Component A))
 (A)成分としては、粗トール油及び蒸留トール油の少なくとも一種を使用することができる。また、粗トール油及び留トール油の少なくとも一種と、ロジンとを含む混合物を(A)成分として使用してもよい。粗トール油及び蒸留トール油は単独で用いてもよく、併用してもよい。 As the component (A), at least one of crude tall oil and distilled tall oil can be used. Moreover, you may use the mixture containing at least 1 type of crude tall oil and distilled tall oil, and a rosin as (A) component. Crude tall oil and distilled tall oil may be used alone or in combination.
 ここでの粗トール油とは、木材チップに水酸化ナトリウム等の化学薬品を加え、高温、高圧下で分解してパルプ繊維を取り出すクラフト法において、副生物として回収されるものである。パルプ繊維を固めていたリグニン、樹脂成分と化学薬品が混じった液体を濃縮した黒液を硫酸等の酸で中和することで得ることが出来る。すなわち、粗トール油を精留することにより得られるのが、トールロジンである。また、蒸留トール油とは、粗トール油を精留し、トールロジンならびトール脂肪酸を分離する際に副生物として回収されるものである。 Here, the crude tall oil is recovered as a by-product in a kraft method in which chemicals such as sodium hydroxide are added to wood chips and decomposed under high temperature and high pressure to take out pulp fibers. It can be obtained by neutralizing a black liquor obtained by concentrating a liquid containing a mixture of lignin and resin components and chemicals that has hardened pulp fibers with an acid such as sulfuric acid. That is, tall rosin is obtained by rectifying crude tall oil. Distilled tall oil is recovered as a by-product when rectifying crude tall oil and separating tall rosin and tall fatty acids.
 粗トール油の原料である木材の種類は、特に限定されないが、松由来の粗トール油であることが好ましい。松の種類についても、特に限定されるものではなく、馬耳松、テューダ松、エリオッティ松などが挙げられる。 The type of wood that is the raw material for crude tall oil is not particularly limited, but is preferably pine-derived crude tall oil. The type of pine is not particularly limited, and examples include horse ear pine, Tuda pine, and Eliotti pine.
 (A)成分が混合物の場合は、混合物にロジンを含むことができる。ロジンとしては、トールロジン、ガムロジン、ウッドロジンなどが挙げられる。また、ロジンの誘導体としては、例えば、重合ロジン、アクリル化ロジン、水素添加ロジン、不均化ロジンなどが挙げられる。これらのロジン類は、単独で用いてもよく、2種類以上を併用してもよい。 When the component (A) is a mixture, the mixture can contain rosin. Examples of rosin include tall rosin, gum rosin, and wood rosin. Examples of rosin derivatives include polymerized rosin, acrylated rosin, hydrogenated rosin, and disproportionated rosin. These rosins may be used alone or in combination of two or more.
 (A)成分の混合物には、必要に応じてゴム、石油樹脂を含有させることが出来る。種類に関わらず、公知公用のいかなるものをも用いることが出来、用いることで軟化点の調整が容易となり、所望の軟化点を有する樹脂が得られる。 (A) The mixture of component (A) can contain rubber and petroleum resin as required. Regardless of the type, any publicly known materials can be used, and the softening point can be easily adjusted by using the resin, and a resin having a desired softening point can be obtained.
 ゴムとしては、例えば天然ゴム、イソップレンゴム、ブタジエンゴム、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、ブチルゴム、エチレンプロピレンゴム等が挙げられる。これらのゴムは、単独で用いてもよく、2種類以上を併用してもよい。 Examples of the rubber include natural rubber, isoprene rubber, butadiene rubber, natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, chloroprene rubber, butyl rubber, and ethylene propylene rubber. These rubbers may be used alone or in combination of two or more.
 石油樹脂としては、例えば脂肪族系重合体、芳香族系重合体、脂環族系重合体等が挙げられる。これらの石油樹脂は、単独で用いてもよく、2種類以上を併用してもよい。 Examples of petroleum resins include aliphatic polymers, aromatic polymers, alicyclic polymers, and the like. These petroleum resins may be used alone or in combination of two or more.
 (A)成分の混合物中における粗トール油及び蒸留トール油合計の含有量は、通常50重量%以下であり、好ましくは、30重量%以下である。粗トール油、蒸留トール油は、脂肪酸(以下、トール油に含まれる脂肪酸を単に「脂肪酸類」と記載する場合がある)を含むため、それらを原料とし得られる樹脂は、軟化点が低い樹脂となる傾向にある。粗トール油及び蒸留トール油の合計の含有量が多くなると、得られる樹脂の軟化点が120℃を下回る場合があるため、粗トール油及び蒸留トール油の合計の含有量は、通常50重量%以下であり、好ましくは、30重量%以下である。また、粗トール油、蒸留トール油には不純物が含まれるため、粗トール油及び蒸留トール油の合計の含有量が多くなると、反応が複雑になり、得られるロジン変性樹脂の物性を調整することが困難になる場合がある。 The total content of crude tall oil and distilled tall oil in the mixture of component (A) is usually 50% by weight or less, and preferably 30% by weight or less. Since crude tall oil and distilled tall oil contain fatty acids (hereinafter, fatty acids contained in tall oil may be simply referred to as “fatty acids”), resins obtained from them as raw materials have low softening points. It tends to be. If the total content of crude tall oil and distilled tall oil increases, the softening point of the resulting resin may be below 120 ° C., so the total content of crude tall oil and distilled tall oil is usually 50% by weight. Or less, preferably 30% by weight or less. In addition, since crude tall oil and distilled tall oil contain impurities, if the total content of crude tall oil and distilled tall oil increases, the reaction becomes complicated and the physical properties of the resulting rosin-modified resin must be adjusted. May be difficult.
 (A)成分における、粗トール油及び/又は蒸留トール油は、各々、粗トール油を重合したもの(重合化粗トール油)、蒸留トール油を重合したもの(重合化蒸留トール油)を使用しても良い。粗トール油及び/又は蒸留トール油を重合化したものを原料として使用することで、得られる樹脂の軟化点が向上するため、原料として使用する粗トール油、蒸留トール油の割合を増やすことができる。重合化粗トール油、重合化蒸留トール油は、主として粗トール油、蒸留トール油に含まれているロジン、脂肪酸が重合化されることで得られる。 As the crude tall oil and / or distilled tall oil in component (A), those obtained by polymerizing crude tall oil (polymerized crude tall oil) and those obtained by polymerizing distilled tall oil (polymerized distilled tall oil) are used. You may do it. Since the softening point of the resulting resin is improved by using a raw material obtained by polymerizing crude tall oil and / or distilled tall oil, the proportion of crude tall oil and distilled tall oil used as a raw material may be increased. it can. Polymerized crude tall oil and polymerized distilled tall oil are mainly obtained by polymerizing rosin and fatty acids contained in crude tall oil and distilled tall oil.
 重合化粗トール油及び/又は重合化蒸留トール油を使用する場合、重合化粗トール油及び重合化蒸留トール油の合計量は、重合化粗トール油及び/又は重合化粗トール油とロジンとを含む混合物全量に対して、通常90重量%以下で含有することができ、好ましくは、80重量%以下、より好ましくは70重量%以下である。重合化粗トール油、重合化蒸留トール油を使用した場合であっても、これらを過度に含有させた場合、軟化点が低下してしまうことがある。重合化粗トール油及び/又は重合化蒸留トール油の含有量の下限は特にないが、通常、混合物に対して30重量%までは、重合しない粗トール油または蒸留トール油を加えても良好な樹脂特性を得ることができる。そのため、混合物に対して30重量%を超えて粗トール油または蒸留トール油を導入する場合に重合化した粗トール油または蒸留トール油を用いるのが効果的である。即ち、重合化粗トール油及び重合化蒸留トール油の合計量は、重合化粗トール油及び/又は重合化粗トール油とロジンとを含む混合物全量に対して、30重量%以上90重量%以下とすることが好ましい。なお、印刷インキに使用する場合は、樹脂の好ましい軟化点は、通常100℃以上、好ましくは120℃以上200℃以下である。これは軟化点を120℃以上とすることによって印刷物の乾燥性、オフセット性を良好に保つことができるためである。また、インキ用溶剤への溶解性を考慮すると、樹脂の軟化点は200℃以下とすることが適当であるからである。当然のことながら、混合物に対して重合化粗トール油及び/又は重合化蒸留トール油の割合が30重量%以下とした場合であっても、重合化粗トール油または重合化蒸留トール油を使用することは効果的である。 When polymerized crude tall oil and / or polymerized distilled tall oil is used, the total amount of polymerized crude tall oil and polymerized distilled tall oil is determined by the following formula: In general, it can be contained in an amount of 90% by weight or less, preferably 80% by weight or less, and more preferably 70% by weight or less, based on the total amount of the mixture. Even when polymerized crude tall oil or polymerized distilled tall oil is used, if these are excessively contained, the softening point may be lowered. Although there is no particular lower limit of the content of the polymerized crude tall oil and / or polymerized distilled tall oil, it is usually good up to 30% by weight based on the mixture to add unpolymerized crude tall oil or distilled tall oil. Resin characteristics can be obtained. Therefore, it is effective to use a polymerized crude tall oil or distilled tall oil when the crude tall oil or distilled tall oil is introduced in an amount exceeding 30% by weight with respect to the mixture. That is, the total amount of the polymerized crude tall oil and the polymerized distilled tall oil is 30% by weight or more and 90% by weight or less based on the total amount of the polymerized crude tall oil and / or the mixture containing the polymerized crude tall oil and rosin. It is preferable that In addition, when using for printing ink, the preferable softening point of resin is 100 degreeC or more normally, Preferably it is 120 degreeC or more and 200 degrees C or less. This is because when the softening point is 120 ° C. or higher, the dryness and offset property of the printed matter can be kept good. Further, considering the solubility in the ink solvent, it is appropriate that the softening point of the resin is 200 ° C. or less. Of course, even if the ratio of the polymerized crude tall oil and / or polymerized distilled tall oil to the mixture is 30% by weight or less, the polymerized crude tall oil or polymerized distilled tall oil is used. It is effective to do.
 粗トール油、蒸留トール油の重合は、窒素、アルゴン等の不活性ガスの雰囲気下で通常100℃~200℃、好ましくは、130~180℃で行う。重合時間は、使用する粗トール油にもよるが通常1時間~24時間である。なお、本願明細書における重合とは、単量体分子が2個以上結合して整数倍の分子量をもつ化合物になる変化であり、二量化、三量化などのオリゴマー化する現象も含むものとする。 Polymerization of crude tall oil and distilled tall oil is usually carried out at 100 to 200 ° C., preferably 130 to 180 ° C. in an atmosphere of an inert gas such as nitrogen or argon. The polymerization time is usually 1 to 24 hours, although it depends on the crude tall oil used. The polymerization in the present specification is a change in which two or more monomer molecules are bonded to form a compound having an integral multiple of molecular weight, and includes a phenomenon of oligomerization such as dimerization and trimerization.
 粗トール油、蒸留トール油の重合は、触媒の存在下で行うことが好ましい。触媒としては、ギ酸、酢酸、リン酸、硫酸、フェノールスルホン酸、パラトルエンスルホン酸、メタンスルホン酸、スルホコハク酸、5-スルホサリチル酸、4-スルホフタル酸、5-スルホイソフタル酸、その他のカルボキシル化スルホン酸、アルキル基で置換されたアリールスルホン酸、スルホン酸基を有する固体酸、フルオロスルホン酸、トリフルオロメタンスルホン酸、ポリスチレンスルホン酸やポリビニルスルホン酸又はスルホン酸型官能基を有するフッ素系ポリマー等のペンダントスルホン酸基を有する高分子フッ化水素、クレイ、塩化亜鉛、塩化アルミニウム、四塩化チタン、三フッ化ホウ素及び三フッ化ホウ素フェノール錯体、三フッ化ホウ素ジメチルエーテル錯体又は三フッ化ホウ素ジエチルエーテル錯体等の三フッ化ホウ素誘導体等が挙げられる。触媒は単独使用または2種類以上併用することが出来る。 Polymerization of crude tall oil and distilled tall oil is preferably performed in the presence of a catalyst. Catalysts include formic acid, acetic acid, phosphoric acid, sulfuric acid, phenolsulfonic acid, paratoluenesulfonic acid, methanesulfonic acid, sulfosuccinic acid, 5-sulfosalicylic acid, 4-sulfophthalic acid, 5-sulfoisophthalic acid, and other carboxylated sulfones Pendants such as acids, arylsulfonic acids substituted with alkyl groups, solid acids having sulfonic acid groups, fluorosulfonic acids, trifluoromethanesulfonic acids, polystyrene sulfonic acids, polyvinyl sulfonic acids, or fluorinated polymers having sulfonic acid type functional groups Polymer hydrogen fluoride having sulfonic acid group, clay, zinc chloride, aluminum chloride, titanium tetrachloride, boron trifluoride and boron trifluoride phenol complex, boron trifluoride dimethyl ether complex or boron trifluoride diethyl ether complex, etc. No trifluoride Containing derivatives. The catalyst can be used alone or in combination of two or more.
 上記触媒において、より好ましい触媒は酸触媒であり、より好ましくはスルホン酸誘導体であり、更に好ましくは4-スルホフタル酸、トリフルオロメタンスルホン酸である。触媒の使用量は、粗トール油又は蒸留トール油に対して0.01重量%から5重量%の範囲内で使用することが好ましい。また、粗トール油及び蒸留トール油を混合させてから重合する場合は、触媒の使用量は、粗トール油及び蒸留トール油の合計に対して0.01重量%から5重量%の範囲内で使用することが好ましい。触媒は、最終生成物中に残留しても良く、または任意選択により水酸化カリウム又はアミンのようなアルカリで中和しても良い。 Among the above-mentioned catalysts, a more preferable catalyst is an acid catalyst, more preferably a sulfonic acid derivative, still more preferably 4-sulfophthalic acid or trifluoromethanesulfonic acid. The catalyst is preferably used in an amount of 0.01 to 5% by weight based on the crude tall oil or distilled tall oil. In addition, in the case of polymerization after mixing crude tall oil and distilled tall oil, the amount of the catalyst used is within the range of 0.01 wt% to 5 wt% with respect to the total of the crude tall oil and distilled tall oil. It is preferable to use it. The catalyst may remain in the final product or may optionally be neutralized with an alkali such as potassium hydroxide or amine.
 (A)成分として、重合化粗トール油及び/又は蒸留トール油とロジンとの混合物を使用する場合、重合化粗トール油及び/又は蒸留トール油は、ロジンと上記の所定の割合で混合させ、混合物を調製する。混合物を調製する際は、適切な粘度にした方が混合しやすいため、100℃~300℃、好ましくは150~250℃の加熱した条件下で混合する。 When a mixture of polymerized crude tall oil and / or distilled tall oil and rosin is used as the component (A), the polymerized crude tall oil and / or distilled tall oil is mixed with rosin at the predetermined ratio described above. Prepare a mixture. When preparing the mixture, mixing at an appropriate viscosity is easier to mix, so mixing is performed under heated conditions of 100 to 300 ° C, preferably 150 to 250 ° C.
 また、粗トール油、蒸留トール油の重合においては、粗トール油及び/又は蒸留トール油と、ロジンとを混合させてから重合しても良い。粗トール油及び/又は蒸留トール油とロジンとを混合させてから重合すれば、工程上簡便で好ましい。 In the polymerization of crude tall oil or distilled tall oil, the polymerization may be carried out after mixing crude tall oil and / or distilled tall oil and rosin. If the polymerization is carried out after mixing crude tall oil and / or distilled tall oil and rosin, it is preferable in terms of the process.
 (A)成分として使用可能なロジンとしては、トールロジン、ガムロジン、ウッドロジン等が挙げられる。また、ロジンの誘導体を使用しても良く、具体例としては、重合ロジン、アクリル化ロジン、水素添加ロジン、不均化ロジン等が挙げられる。これらのロジンは、単独で用いてもよく、2種類以上を併用して使用してもよい。なお、(A)成分として使用可能なロジンを単に「ロジン類」と記載する場合がある。 Examples of rosins that can be used as the component (A) include tall rosin, gum rosin, and wood rosin. In addition, rosin derivatives may be used, and specific examples include polymerized rosin, acrylated rosin, hydrogenated rosin, disproportionated rosin and the like. These rosins may be used alone or in combination of two or more. In addition, the rosin that can be used as the component (A) may be simply referred to as “rosins”.
 また、混合物には、必要に応じてゴム、石油樹脂を混合させることができる。ゴム、石油樹脂を混合させることで、得られる樹脂の軟化点の調整が容易となり、所望の軟化点を有する樹脂が得られる。混合可能なゴム、石油樹脂の種類としては、特に限定されず公知公用のいかなるものも用いることができる。ゴムの具体例としては、例えば天然ゴム、イソプレンゴム、ブタジエンゴム、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、ブチルゴム、エチレンプロピレンゴム等が挙げられる。これらのゴムは、単独で用いてもよく、2種類以上を併用して使用してもよい。 Also, rubber and petroleum resin can be mixed into the mixture as necessary. By mixing rubber and petroleum resin, it is easy to adjust the softening point of the resulting resin, and a resin having a desired softening point is obtained. The types of rubbers and petroleum resins that can be mixed are not particularly limited, and any publicly known and publicly available materials can be used. Specific examples of the rubber include natural rubber, isoprene rubber, butadiene rubber, natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, chloroprene rubber, butyl rubber, and ethylene propylene rubber. These rubbers may be used alone or in combination of two or more.
 また、石油樹脂の具体例としては、例えば脂肪族系重合体、芳香族系重合体、脂環族系重合体が挙げられる。これらの石油樹脂は、単独で用いてもよく、2種類以上を併用して使用してもよい。 Specific examples of petroleum resins include aliphatic polymers, aromatic polymers, and alicyclic polymers. These petroleum resins may be used alone or in combination of two or more.
(A)成分である混合物は、(B)成分と反応させる前に、α,β-不飽和カルボン酸及びその無水物の少なくとも一方(以下、単に「α,β-不飽和カルボン酸類」と記載する場合がある)で変性させても良い。すなわち、(A)成分とα,β-不飽和カルボン酸類とが付加反応(アルダーのエン反応又はディールス-アルダー反応)し、α,β-不飽和カルボン酸類、ロジン類及び/又は(トール油中の)脂肪酸類の付加体が生成される。この付加体は、分子内に少なくとも2個のカルボキシル基を有するため、(B)成分である多価アルコールとエステル結合を形成して高分子量化する。このように、予めα,β-不飽和カルボン酸類と高分子量化することによって、所望の粘弾性を有する樹脂が得られる。 Prior to reacting with the component (B), the mixture as the component (A) is described as at least one of α, β-unsaturated carboxylic acid and its anhydride (hereinafter simply referred to as “α, β-unsaturated carboxylic acids”). May be modified). That is, component (A) and α, β-unsaturated carboxylic acid undergo an addition reaction (Alder ene reaction or Diels-Alder reaction), and α, β-unsaturated carboxylic acid, rosin and / or (in tall oil) Of adducts of fatty acids. Since this adduct has at least two carboxyl groups in the molecule, it forms an ester bond with the polyhydric alcohol as the component (B) to increase the molecular weight. As described above, a resin having a desired viscoelasticity can be obtained by increasing the molecular weight of the α, β-unsaturated carboxylic acid in advance.
 α,β-不飽和カルボン酸類としては、例えば、3~5個の炭素原子を有する鎖状α,β-不飽和モノカルボン酸又はその無水物、3~5個の炭素原子を有する鎖状α,β-不飽和ジカルボン酸又はその無水物、芳香族α,β-不飽和カルボン酸などが挙げられる。具体的には、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、クロトン酸、ケイ皮酸などが挙げられる。 Examples of the α, β-unsaturated carboxylic acids include a chain α, β-unsaturated monocarboxylic acid having 3 to 5 carbon atoms or an anhydride thereof, and a chain α having 3 to 5 carbon atoms. , Β-unsaturated dicarboxylic acid or its anhydride, aromatic α, β-unsaturated carboxylic acid and the like. Specific examples include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, crotonic acid, and cinnamic acid.
 また、必要に応じて金属化合物を架橋剤として使用しても良い。具体的にはリチウム、ナトリウム、カリウム、カルシウム、亜鉛、マグネシウム、アルミニウム、コバルト、銅、鉛、マンガンなどの水酸化物、酸化物などの金属化合物を架橋剤として使用しても良い。この場合、金属化合物に由来する金属イオンが、樹脂原料に存在するカルボキシル基(-COOH)を架橋させて、得られる樹脂の分子量を高くする。より具体的には、混合物中の脂肪酸、ロジン、α,β-不飽和カルボン酸類、及び、上記付加体からなる群より選択される少なくとも2つの分子が、金属化合物に由来する金属イオンを介して架橋した構造を有する架橋体が形成される。 Moreover, a metal compound may be used as a crosslinking agent as necessary. Specifically, metal compounds such as hydroxides and oxides such as lithium, sodium, potassium, calcium, zinc, magnesium, aluminum, cobalt, copper, lead, and manganese may be used as the crosslinking agent. In this case, metal ions derived from the metal compound crosslink carboxyl groups (—COOH) present in the resin raw material, and increase the molecular weight of the resulting resin. More specifically, at least two molecules selected from the group consisting of fatty acids, rosin, α, β-unsaturated carboxylic acids, and the above adducts in the mixture are exchanged via metal ions derived from metal compounds. A crosslinked body having a crosslinked structure is formed.
 本実施形態に係るロジン変性樹脂中は、未反応ロジン類;未反応脂肪酸類;α,β-不飽和カルボン酸類;ロジン類及びα,β-不飽和カルボン酸類の反応物;脂肪酸類及びα,β-不飽和カルボン酸類の反応物からなる群より選択される化合物が、金属化合物に由来する金属イオンを介して架橋することによって形成される架橋体を含むことが好ましい。架橋体の具体例としては、下記の(I)~(X)に示すような架橋体などが挙げられる。 In the rosin-modified resin according to this embodiment, unreacted rosins; unreacted fatty acids; α, β-unsaturated carboxylic acids; reaction products of rosins and α, β-unsaturated carboxylic acids; fatty acids and α, The compound selected from the group consisting of reactants of β-unsaturated carboxylic acids preferably includes a crosslinked product formed by crosslinking via a metal ion derived from a metal compound. Specific examples of the crosslinked body include crosslinked bodies as shown in the following (I) to (X).
 (I)未反応脂肪酸と、ロジン類及びα,β-不飽和カルボン酸類の反応物とが金属イオンを介して架橋することによって形成される架橋体。 (I) A crosslinked product formed by crosslinking an unreacted fatty acid and a reaction product of a rosin and an α, β-unsaturated carboxylic acid via a metal ion.
 (II)未反応脂肪酸と、脂肪酸類及びα,β-不飽和カルボン酸類の反応物とが金属イオンを介して架橋することによって形成される架橋体。 (II) A crosslinked product formed by crosslinking an unreacted fatty acid with a reaction product of a fatty acid and an α, β-unsaturated carboxylic acid via a metal ion.
 (III)未反応脂肪酸と、未反応ロジン類とが金属イオンを介して架橋することによって形成される架橋体。 (III) A crosslinked product formed by crosslinking an unreacted fatty acid and an unreacted rosin via a metal ion.
 (IV)未反応脂肪酸と、α,β-不飽和カルボン酸類とが金属イオンを介して架橋することによって形成される架橋体。 (IV) A crosslinked product formed by crosslinking an unreacted fatty acid and an α, β-unsaturated carboxylic acid via a metal ion.
 (V)未反応ロジンと、ロジン類及びα,β-不飽和カルボン酸類の反応物とが金属イオンを介して架橋することによって形成される架橋体。 (V) A crosslinked product formed by crosslinking an unreacted rosin and a reaction product of rosins and α, β-unsaturated carboxylic acids via metal ions.
 (VI)未反応ロジンと、脂肪酸類及びα,β-不飽和カルボン酸類の反応物とが金属イオンを介して架橋することによって形成される架橋体。 (VI) A crosslinked product formed by crosslinking an unreacted rosin and a reaction product of a fatty acid and an α, β-unsaturated carboxylic acid via a metal ion.
 (VII)未反応ロジンと、α,β-不飽和カルボン酸類とが金属イオンを介して架橋することによって形成される架橋体。 (VII) A crosslinked product formed by crosslinking an unreacted rosin and an α, β-unsaturated carboxylic acid via a metal ion.
 (VIII)α,β-不飽和カルボン酸類と、ロジン類及びα,β-不飽和カルボン酸類の反応物とが金属イオンを介して架橋することによって形成される架橋体。 (VIII) A crosslinked product formed by crosslinking α, β-unsaturated carboxylic acids with a reaction product of rosin and α, β-unsaturated carboxylic acids via a metal ion.
 (IX)α,β-不飽和カルボン酸類と、脂肪酸類及びα,β-不飽和カルボン酸類の反応物とが金属イオンを介して架橋することによって形成される架橋体。 (IX) A crosslinked product formed by crosslinking α, β-unsaturated carboxylic acids with a reaction product of fatty acids and α, β-unsaturated carboxylic acids via metal ions.
 (X)ロジン類及びα,β-不飽和カルボン酸類の反応物と、脂肪酸類及びα,β-不飽和カルボン酸類の反応物とが金属イオンを介して架橋することによって形成される架橋体。 (X) A crosslinked product formed by crosslinking a reaction product of rosins and α, β-unsaturated carboxylic acids with a reaction product of fatty acids and α, β-unsaturated carboxylic acids via metal ions.
 上記のように、樹脂原料に存在するカルボキシル基同士を、金属化合物に由来する金属イオンを介して架橋させることによって、得られる樹脂の分子量を高めることができる。その結果、インキの乾燥性や耐ミスチング性が向上する。また、特定の金属化合物を含有することによって、インキを調製する際に顔料との親和性を高め分散性を向上させることができる。 As described above, the molecular weight of the resulting resin can be increased by cross-linking carboxyl groups present in the resin raw material via metal ions derived from the metal compound. As a result, the drying property and misting resistance of the ink are improved. Moreover, by containing a specific metal compound, when preparing an ink, affinity with a pigment can be improved and dispersibility can be improved.
((B成分))
上述した(A)成分は、(B)成分である多価アルコール(ポリオール類)を用いて、エステル化させることで、本実施形態に係るロジン変性樹脂を得ることができる。この際、例えば、樹脂中に多くのカルボキシル基が残存していると、水有りの印刷ではインキが乳化しやすくなる傾向にある。なお、樹脂原料に存在するカルボキシル基としては、混合物中のロジン類、脂肪酸類に由来するカルボキシル基、α,β-不飽和カルボン酸又はその無水物に由来するカルボキシル基が挙げられる。
((B component))
The rosin-modified resin according to this embodiment can be obtained by esterifying the above-described component (A) with the polyhydric alcohol (polyol) that is the component (B). In this case, for example, if many carboxyl groups remain in the resin, the ink tends to be emulsified in printing with water. Examples of the carboxyl group present in the resin raw material include a rosin in the mixture, a carboxyl group derived from a fatty acid, a carboxyl group derived from an α, β-unsaturated carboxylic acid or an anhydride thereof.
 多価アルコールとは、一分子中に複数の水酸化物を有するアルコールであり、本発明においてはその種類は特に限定されない。多価アルコールの具体例としては、例えば2価アルコールとして、エチレングリコール、 ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、1,6-ヘキサンジオールが挙げられる。3価アルコールとしては、グリセリン、トリメチロールプロパン、トリメチロールエタン、トリエチロールエタン、3-メチルペンタン-1,3,5-トリオール、1,2,4-ブタントリオールが挙げられる。4価アルコールとしては、ペンタエリスリトール、ジグリセリン、ソルビタン、マンニタン等が挙げられる。これらの中でも、樹脂の高分子量化が容易であり、インキに必要な粘弾性が得られやすい点で、3価以上の多価アルコールを使用することが好ましい。なお、多価アルコールは、単独で用いてもよく、2種類以上を併用して使用してもよい。 The polyhydric alcohol is an alcohol having a plurality of hydroxides in one molecule, and the kind thereof is not particularly limited in the present invention. Specific examples of the polyhydric alcohol include, for example, ethylene glycol, diethylene glycol, triethylene glycol, neopentyl glycol, and 1,6-hexanediol as the dihydric alcohol. Examples of the trihydric alcohol include glycerin, trimethylolpropane, trimethylolethane, triethylolethane, 3-methylpentane-1,3,5-triol, and 1,2,4-butanetriol. Examples of the tetrahydric alcohol include pentaerythritol, diglycerin, sorbitan, and mannitan. Among these, it is preferable to use a trihydric or higher polyhydric alcohol from the viewpoint that the high molecular weight of the resin is easy and the viscoelasticity necessary for the ink is easily obtained. In addition, a polyhydric alcohol may be used independently and may be used in combination of 2 or more types.
 (B)成分の多価アルコールは、樹脂原料に存在するカルボキシル基1当量に対して、好ましくは0.5~2当量となる割合で(A)成分と反応させることが好ましい。(A)成分に対して、(B)成分の多価アルコールを上記割合で反応させることにより、インキに必要な所望の粘弾性を付与する樹脂がより得られやすくなる。さらに、得られる樹脂は、インキの製造の際に使用される溶剤などへの溶解性がより良好となり、水有りの印刷でもインキが乳化しにくくなる。 The (B) component polyhydric alcohol is preferably reacted with the (A) component at a ratio of preferably 0.5 to 2 equivalents with respect to 1 equivalent of the carboxyl group present in the resin raw material. By reacting the (A) component with the polyhydric alcohol of the (B) component at the above ratio, a resin that imparts the desired viscoelasticity necessary for the ink is more easily obtained. Furthermore, the obtained resin has better solubility in a solvent used in the production of ink, and the ink is less likely to be emulsified even in printing with water.
(ロジン変性ポリエステル樹脂の製造方法) (Method for producing rosin-modified polyester resin)
 (A)成分と(B)成分とのエステル化反応は、エステル化反応が進行すれば特に限定されないが、通常、200℃~350℃の範囲で行う。 The esterification reaction between the component (A) and the component (B) is not particularly limited as long as the esterification reaction proceeds, but is usually performed in the range of 200 ° C to 350 ° C.
 エステル化反応の際には、必要に応じて公知公用のエステル化触媒を使用してもよい。エステル化触媒としては、例えば金属酸化物、例えばブレンステッド酸、ルイス酸などの酸触媒が挙げられる。 In the esterification reaction, a known and publicly used esterification catalyst may be used as necessary. Examples of the esterification catalyst include metal catalysts such as acid catalysts such as Bronsted acid and Lewis acid.
 また、必要に応じて不均化触媒下においてエステル化を行ってもよい。不均化触媒としては、有機イオウ化合物が挙げられ、具体的には4,4′-ビス(フェノール)スルフィド、4,4′-ビス(フェノール)スルフォキド、4,4′-ビス(フェノール)スルホン、4,4′-ビス(フェノール)チオールスルフィナート、4,4′-ビス(フェノール)チオールスルフォナート、2,2′-ビス(p-クレゾール)スルフィド、2,2′-ビス(p-クレゾール)スルフォキシド、2,2′-ビス(p-クレゾール)スルホン、2,2′-ビス(p-t-ブチルフェノール)スルフィド、2,2-ビス(p-t-ブチルフェノール)スルフォキシド、2,2′-ビス(p-t-ブチルフェノール)スルホン、4,4′-ビス(6-t-ブチルメタクレゾール)スルフィド、4,4′-ビス(6-t-ブチルメタクレゾール)スルフォキシド、4,4′-ビス(6-t-ブチルメタクレゾール)スルフィド、4,4′-ビス(6-t-ブチルオルトクレゾール)スルフォキシド、4,4′-ビス(6-t-ブチルオルトクレゾール)スルホン、4,4′-ビス(6-t-ブチルオルトクレゾール)スルホン、4,4′-ビス(レゾルシノール)スルフィド、4,4′-ビス(レゾルシノール)スルフォキド、4,4′-ビス(レゾルシノール)スルホン、1,1′-ビス(β-ナフトール)スルフィド、1,1′-ビス(β-ナフトール)スルフォキシド、1,1′-ビス(β-ナフトール)スルホン、4,4′-ビス(α-ナフトール)スルフィド、4,4′-ビス(α-ナフトール)スルフォキド、4,4′-ビス(α-ナフトール)スルホン、t-アミルフェノールジスルフィドオリゴマー、ノニルフェノールジスルフィドオリゴマー、p-クレゾールと塩化チオニルとを反応させて得られるポリスルフォキシドなどが挙げられる。 Further, if necessary, esterification may be carried out under a disproportionation catalyst. Examples of the disproportionation catalyst include organic sulfur compounds, such as 4,4′-bis (phenol) sulfide, 4,4′-bis (phenol) sulfoxide, and 4,4′-bis (phenol) sulfone. 4,4'-bis (phenol) thiolsulfinate, 4,4'-bis (phenol) thiolsulfonate, 2,2'-bis (p-cresol) sulfide, 2,2'-bis (p -Cresol) sulfoxide, 2,2'-bis (p-cresol) sulfone, 2,2'-bis (pt-butylphenol) sulfide, 2,2-bis (pt-butylphenol) sulfoxide, 2,2 '-Bis (pt-butylphenol) sulfone, 4,4'-bis (6-tert-butylmetacresol) sulfide, 4,4'-bis (6-tert-butyl) Tacresol) sulfoxide, 4,4'-bis (6-t-butylmetacresol) sulfide, 4,4'-bis (6-t-butylorthocresol) sulfoxide, 4,4'-bis (6-t- Butyl orthocresol) sulfone, 4,4'-bis (6-t-butyl orthocresol) sulfone, 4,4'-bis (resorcinol) sulfide, 4,4'-bis (resorcinol) sulfoxide, 4,4'- Bis (resorcinol) sulfone, 1,1'-bis (β-naphthol) sulfide, 1,1'-bis (β-naphthol) sulfoxide, 1,1'-bis (β-naphthol) sulfone, 4,4'- Bis (α-naphthol) sulfide, 4,4′-bis (α-naphthol) sulfoxide, 4,4′-bis (α-naphthol) sulfone, t Amyl phenol disulfide oligomers, nonylphenol disulfide oligomer, such as police Gandolfo sulfoxide obtained by reacting with thionyl chloride and p- cresol.
 これらの有機イオウ化合物の中では、ベンゼン環に結合した水酸基が立体障害を受けた化合物を使用することが好ましく、具体的には、4,4′-ビス(6-t-ブチルメタクレゾール)スルフィド、4,4′-ビス(フェノール)スルフィド、2,2′-ビス(p-クレゾール)スルフィド、2,2′-ビス(p-t-ブチルフェノール)スルフィド、4,4′-ビス(レゾルシノール)スルフィド、4,4′-ビス(α-ナフトール)スルフィド、t-アミルフェノールジスルフィドオリゴマー類、ノニルフェノールジスルフィドオリゴマー類より選ばれたスルフィド化合物が好適である。 Among these organic sulfur compounds, it is preferable to use a compound in which a hydroxyl group bonded to a benzene ring is sterically hindered. Specifically, 4,4′-bis (6-tert-butylmetacresol) sulfide 4,4'-bis (phenol) sulfide, 2,2'-bis (p-cresol) sulfide, 2,2'-bis (pt-butylphenol) sulfide, 4,4'-bis (resorcinol) sulfide A sulfide compound selected from 4,4'-bis (α-naphthol) sulfide, t-amylphenol disulfide oligomers, and nonylphenol disulfide oligomers is preferred.
 上記の有機イオウ化合物の存在下でエステル化反応を行うことで、混合物中のロジン類のアビエチン酸等の共役二重結合の不均化が起こり、構造上安定なデヒドロアビエチン酸やジヒドロアビエチン酸が蓄積される。その結果、経時での酸化安定性に優れたロジン変性ポリエステル樹脂が得られ、当該樹脂を含有するワニスの貯蔵安定性が向上する。 By performing the esterification reaction in the presence of the above organic sulfur compound, disproportionation of conjugated double bonds such as abietic acid of rosin in the mixture occurs, and structurally stable dehydroabietic acid and dihydroabietic acid are produced. Accumulated. As a result, a rosin-modified polyester resin excellent in oxidation stability with time is obtained, and the storage stability of the varnish containing the resin is improved.
 なお、エステル化反応の終了は、得られる樹脂の酸価、軟化点、粘度、溶解性などを確認して、所定の値になり次第終了させる。 Note that the esterification reaction is completed after confirming the acid value, softening point, viscosity, solubility, etc. of the obtained resin and reaching the predetermined value.
 エステル化反応で得られたロジン変性ポリエステル樹脂は、好適に印刷インキなどの成分に使用することができる。本実施形態に係るロジン変性エステルポリエステル樹脂は、軟化点120℃以上が好ましく、130~200℃程度がより好ましい。酸価は、10~40KOHmg/g程度が好ましい。 The rosin-modified polyester resin obtained by the esterification reaction can be suitably used for components such as printing ink. The rosin-modified ester polyester resin according to this embodiment preferably has a softening point of 120 ° C. or higher, more preferably about 130 to 200 ° C. The acid value is preferably about 10 to 40 KOHmg / g.
 特に本実施形態に係るロジン変性ポリエステル樹脂は、好適にオフセット印刷インキ用樹脂の成分として使用することができ、ロジン変性ポリエステル樹脂の他に、本発明の効果を阻害しない範囲で、セラック、ギルソナイト、アルキド樹脂、ロジン変性フェノール樹脂などの他のインキ用樹脂を含有してもよい。 In particular, the rosin-modified polyester resin according to this embodiment can be suitably used as a component of a resin for offset printing ink, and in addition to the rosin-modified polyester resin, shellac, gilsonite, Other ink resins such as alkyd resins and rosin-modified phenol resins may be contained.
(ロジン変性フェノール樹脂)
 次に、本実施形態に係る「ロジン変性フェノール樹脂」を説明する。「ロジン変性フェノール樹脂」とは、原料として、(A)粗トール油及び/又は蒸留トール油、或いは粗トール油及び/又は蒸留トール油とロジンとを含む混合物、(B)多価アルコールに加え、(C)レゾール型フェノール樹脂を用いて、これらを反応させて得られる樹脂を意味する。
(Rosin modified phenolic resin)
Next, the “rosin-modified phenolic resin” according to this embodiment will be described. “Rosin-modified phenolic resin” means, as a raw material, (A) crude tall oil and / or distilled tall oil, or a mixture containing crude tall oil and / or distilled tall oil and rosin, and (B) polyhydric alcohol. (C) A resin obtained by reacting these using a resol type phenol resin.
((A成分))
 本実施形態に係る(A)成分の粗トール油及び/又は蒸留トール油、或いは粗トール油及び/又は蒸留トール油とロジンとの混合物は、アルデヒド及びフェノール類等から得られる(B)成分のレゾール型フェノール樹脂により変性する。そのため、得られる樹脂は、架橋構造が導入され、好ましい特性値を有する。
((Component A))
The crude tall oil and / or distilled tall oil of component (A) according to this embodiment, or the mixture of crude tall oil and / or distilled tall oil and rosin is obtained from aldehyde, phenols, etc. It is modified with resole type phenolic resin. Therefore, the obtained resin has a preferable characteristic value with a crosslinked structure introduced therein.
 ロジン変性フェノール樹脂に含まれる(A)成分の粗トール油及び/又は蒸留トール油、或いは粗トール油及び/又は蒸留トール油とロジンとの混合物は、ロジン変性ポリエステルと同様の種類のものを使用できる。 The crude tall oil and / or distilled tall oil of component (A) contained in the rosin-modified phenolic resin, or a mixture of crude tall oil and / or distilled tall oil and rosin is the same type as the rosin-modified polyester. it can.
 (A)成分においては、全量を粗トール油及び/又は蒸留トール油としても良いが、50重量%以下とすることが好ましい。粗トール油、蒸留トール油は、脂肪酸(以下、トール油に含まれる脂肪酸を単に「脂肪酸類」と記載する場合がある)を含むため、それらを原料とし得られる樹脂は、軟化点が低い樹脂となる傾向にある。粗トール油及び蒸留トール油の合計の含有量が多くなると、得られる樹脂の軟化点が120℃を下回る場合があるため、粗トール油及び蒸留トール油の合計の含有量は、通常50重量%以下である。 In the component (A), the total amount may be crude tall oil and / or distilled tall oil, but is preferably 50% by weight or less. Since crude tall oil and distilled tall oil contain fatty acids (hereinafter, fatty acids contained in tall oil may be simply referred to as “fatty acids”), resins obtained from them as raw materials have low softening points. It tends to be. If the total content of crude tall oil and distilled tall oil increases, the softening point of the resulting resin may be below 120 ° C., so the total content of crude tall oil and distilled tall oil is usually 50% by weight. It is as follows.
 また、本実施形態に係るロジン変性フェノール樹脂においても、前述したロジン変性ポリエステル樹脂と同様に、(A)成分として、重合化粗トール油及び/又は重合化蒸留トール油、或いは、重合化粗トール油及び/又は重合化蒸留トール油とロジンとを含む混合物を使用しても良い。この場合、原料コスト面を考慮すると、(A)成分として全量、重合化粗トール油及び/又は重合化蒸留トール油を使用することが好ましいが、得られる。しかしながら、得られる樹脂の性質の微調整するために、前述したロジン類も加えた混合物を(A)成分として使用しても良い。 In the rosin-modified phenolic resin according to this embodiment, as in the rosin-modified polyester resin described above, as component (A), a polymerized crude tall oil and / or a polymerized distilled tall oil, or a polymerized crude toll Oils and / or mixtures of polymerized distilled tall oil and rosin may be used. In this case, considering the raw material cost, it is preferable to use the total amount of the polymerized crude tall oil and / or polymerized distilled tall oil as the component (A). However, in order to finely adjust the properties of the resin obtained, a mixture containing the above-mentioned rosins may be used as the component (A).
(A)成分として、上記混合物を使用する場合は、重合化粗トール油及び/又は重合化蒸留トール油並びにロジンの混合物中における重合化粗トール油及び/又は重合化蒸留トール油の含有量は、原材料費の観点からは、70重量%以上とすることが好ましく、より好ましくは90重量%以上であり、更に好ましくはロジンなし(100重量%)である。一方、得られる樹脂の特性等を考慮すると、重合化粗トール油及び/又は重合化蒸留トール油の含有量は、好ましくは、50重量%以上90重量%以下であり、より好ましくは70重量%以上90重量%以下である。そのため、原材料費と得られる樹脂の特性とを両立する観点から、重合化粗トール油及び/又は重合化蒸留トール油の含有量は、50重量%以上100重量%以下とすることが好ましい。 When the above mixture is used as the component (A), the content of the polymerized crude tall oil and / or polymerized distilled tall oil and the polymerized crude tall oil and / or polymerized distilled tall oil in the rosin mixture is From the viewpoint of raw material costs, it is preferably 70% by weight or more, more preferably 90% by weight or more, and still more preferably no rosin (100% by weight). On the other hand, in consideration of the properties of the obtained resin, the content of the polymerized crude tall oil and / or polymerized distilled tall oil is preferably 50% by weight or more and 90% by weight or less, more preferably 70% by weight. Above 90% by weight. Therefore, the content of the polymerized crude tall oil and / or polymerized distilled tall oil is preferably 50% by weight or more and 100% by weight or less from the viewpoint of achieving both the raw material costs and the properties of the obtained resin.
((B成分))
 本実施形態に係るロジン変性フェノール樹脂で使用可能なB成分の多価アルコールは、前述したロジン変性ポリエステル樹脂と同様のものを使用可能である。
ロジン変性フェノール樹脂を製造する場合における、ポリオール類の使用量は、特に限定されないが、通常、カルボキシル基1当量に対して0.3当量から過剰量まで添加すれば良く、より好ましくは0.5~1.5当量、さらに好ましくは0.7~1.2当量である。
((B component))
The B component polyhydric alcohol that can be used in the rosin-modified phenolic resin according to this embodiment can be the same as the rosin-modified polyester resin described above.
The amount of polyols used in the production of the rosin-modified phenol resin is not particularly limited, but it is usually sufficient to add from 0.3 equivalents to an excess amount with respect to 1 equivalent of carboxyl group, more preferably 0.5. To 1.5 equivalents, more preferably 0.7 to 1.2 equivalents.
((C成分))
 レゾール型フェノール樹脂としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、水酸化リチウム、トリエチルアミンなどのアルカリ触媒の存在下に、フェノール類(P)とホルムアルデヒド(F)を付加縮合して得られる各種公知の縮合物が挙げられる。この場合、必要により、当該縮合物を中和・水洗して得られたものを使用できるのは勿論である。上記フェノール類(P)とホルムアルデヒド(F)を反応させる際は、通常、モル比でF/P(モル比)=1~3となるようにする。上記フェノール類としては、好ましくはC~C20アルキル基を有するフェノール類、より好ましくは、C~C10アルキル基を有するフェノール類であり、具体例としては、石炭酸、クレゾール類、アミルフェノール、ビスフェノール-A、p-ブチルフェノール、p-オクチルフェノール、p-ノニルフェノール、p-ドデシルフェノールなどが挙げられる。
((C component))
As resol type phenol resin, phenols (P) and formaldehyde (F) are subjected to addition condensation in the presence of alkali catalysts such as sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, lithium hydroxide, triethylamine. Various known condensates obtained by the above are mentioned. In this case, of course, the condensate obtained by neutralizing and washing with water can be used if necessary. When the phenols (P) and formaldehyde (F) are reacted, the molar ratio of F / P (molar ratio) is usually 1 to 3. The phenols are preferably phenols having a C 1 to C 20 alkyl group, more preferably phenols having a C 1 to C 10 alkyl group. Specific examples thereof include carboxylic acid, cresols, amylphenol. Bisphenol-A, p-butylphenol, p-octylphenol, p-nonylphenol, p-dodecylphenol and the like.
 (A)成分に対するこのレゾール型フェノール樹脂の使用量は特に限定されないが、通常、10~120重量%であり、好ましくは30~100重量%である。なお、本実施形態において、(A)成分、(B)成分及び(C)成分を反応させてロジン変性フェノール樹脂を製造する場合、(C)成分であるレゾール型フェノール樹脂に替えて、レゾール型フェノール樹脂を製造する段階のフェノール類(P)とホルムアルデヒド(F)を使用しても良い。即ち、(A)成分であるロジンを含有する混合物、(B)成分である多価アルコール類、及び、フェノール類、ホルムアルデヒドの4成分を反応させてロジン変性フェノール樹脂を製造しても良い。 The amount of the resol type phenol resin used relative to the component (A) is not particularly limited, but is usually 10 to 120% by weight, preferably 30 to 100% by weight. In addition, in this embodiment, when manufacturing a rosin modified phenol resin by making (A) component, (B) component, and (C) component react, it replaces with the resol type phenol resin which is (C) component, and resole type | mold. You may use phenols (P) and formaldehyde (F) of the stage which manufactures a phenol resin. That is, a rosin-modified phenol resin may be produced by reacting a mixture containing the rosin (A), the polyhydric alcohols (B), phenols and formaldehyde.
(ロジン変性フェノール樹脂の製造方法)
 本実施形態に係るロジン変性フェノール樹脂の製造方法としては、例えば、下記の(i)~(iii)の3つの方式等が挙げられる。
(Method for producing rosin-modified phenolic resin)
Examples of the method for producing the rosin-modified phenolic resin according to this embodiment include the following three methods (i) to (iii).
 (i)粗トール油及び/又は蒸留トール油、或いは、粗トール油及び/又は蒸留トール油とロジンとを含む混合物と、レゾール型フェノール樹脂と、多価アルコールと、を同時に仕込み、反応させる方法。 (I) A method in which crude tall oil and / or distilled tall oil, or a mixture containing crude tall oil and / or distilled tall oil and rosin, a resol type phenol resin, and a polyhydric alcohol are simultaneously charged and reacted. .
 (ii)粗トール油及び/又は蒸留トール油、或いは粗トール油及び/又は蒸留トール油とロジンとを含む混合物と、レゾール型フェノール樹脂と、を付加反応した後、ポリオール成分を仕込み、エステル化反応させる方法。 (Ii) Crude tall oil and / or distilled tall oil, or a mixture containing crude tall oil and / or distilled tall oil and rosin, and a resol type phenol resin are added and reacted with a polyol component and esterified. How to react.
 (iii)粗トール油及び/又は蒸留トール油、或いは粗トール油及び/又は蒸留トール油とロジンとを含む混合物と、ポリオール成分と、をエステル化反応した後、レゾール型フェノール樹脂を仕込み、付加反応させる方法。 (Iii) Esterification of crude tall oil and / or distilled tall oil, or a mixture containing crude tall oil and / or distilled tall oil and rosin and a polyol component, and then charged with a resol type phenol resin How to react.
 なお、上述した高分子量化するための架橋反応等は、上記(i)~(iii)の製造方法において、適当な段階で実施することができる。 The above-mentioned crosslinking reaction for increasing the molecular weight can be carried out at an appropriate stage in the production methods (i) to (iii).
 反応の終了は、得られる樹脂の酸価、軟化点、粘度、溶解性などを確認して、所定の値になり次第終了させる。 After completion of the reaction, the acid value, softening point, viscosity, solubility, etc. of the obtained resin are confirmed, and the reaction is terminated as soon as a predetermined value is reached.
 得られた樹脂は、好適に印刷インキなどの成分に使用することができる。本発明のロジン変性エステルポリエステル樹脂、ロジン変性フェノール樹脂は、軟化点120℃以上が好ましく、130~200℃程度がより好ましい。酸価は、10~40KOHmg/g程度が好ましい。 The obtained resin can be suitably used for components such as printing ink. The rosin-modified ester polyester resin and rosin-modified phenol resin of the present invention preferably have a softening point of 120 ° C. or higher, more preferably about 130 to 200 ° C. The acid value is preferably about 10 to 40 KOHmg / g.
(オフセット印刷用インキ用樹脂)
 本実施形態に係るオフセット印刷インキ用樹脂には、上記のロジン変性ポリエステル樹脂及び/又はロジン変性フェノール樹脂の他に、本発明の効果を阻害しない範囲で、セラック、ギルソナイト、アルキド樹脂、ロジン変性フェノール樹脂などの他のインキ用樹脂を含有してもよい。
(Resin for ink for offset printing)
The resin for offset printing ink according to the present embodiment includes, in addition to the rosin-modified polyester resin and / or rosin-modified phenol resin, shellac, gilsonite, alkyd resin, and rosin-modified phenol as long as the effects of the present invention are not impaired. You may contain other resin for inks, such as resin.
(オフセット印刷用インキ)
 次に、本発明に係るロジン変性ポリエステル樹脂又はロジン変性フェノール樹脂を含有するオフセット印刷インキについて説明する。本発明に係るロジン変性ポリエステル樹脂又はロジン変性フェノール樹脂は、印刷用インキ用樹脂、特にオフセット印刷用インキ用樹脂として使用できる。オフセット印刷インキ用樹脂は、ワニスを調製するために、一般に、乾性油又は半乾性油(例えば、アマニ油、桐油、大豆油、大豆白絞油など)及び溶剤(例えば、脂肪族炭化水素溶剤など)とともに混合される。
(Ink for offset printing)
Next, the offset printing ink containing the rosin-modified polyester resin or rosin-modified phenol resin according to the present invention will be described. The rosin-modified polyester resin or rosin-modified phenol resin according to the present invention can be used as a resin for printing ink, particularly as a resin for ink for offset printing. In order to prepare varnishes, resins for offset printing ink are generally used as drying oil or semi-drying oil (for example, linseed oil, tung oil, soybean oil, soybean white squeezed oil, etc.) and solvents (for example, aliphatic hydrocarbon solvents, etc.) ).
 本発明に係るオフセット印刷インキ用樹脂を用いてワニスを調製する際には、本発明の効果を阻害しない範囲で、粘弾性を考慮して各種ゲル化剤を添加してもよい。ゲル化剤としては、特に限定されず、例えば、アルミニウムアルコラート、アルミニウム石鹸などのアルミニウム化合物;マンガン、コバルト、ジルコニウムなどの金属石鹸;アルカノールアミンなどが挙げられる。ゲル化剤は、単独で用いてもよく、2種類以上を併用して使用してもよい。 In preparing the varnish using the resin for offset printing ink according to the present invention, various gelling agents may be added in consideration of viscoelasticity as long as the effects of the present invention are not impaired. The gelling agent is not particularly limited, and examples thereof include aluminum compounds such as aluminum alcoholate and aluminum soap; metal soaps such as manganese, cobalt and zirconium; alkanolamine and the like. A gelling agent may be used independently and may be used in combination of 2 or more types.
 また、ワニス及びインキの貯蔵安定性を考慮して、本発明の効果を阻害しない範囲で、各種酸化防止剤を添加してもよい。酸化防止剤としては、特に限定されず、例えば、ヒドロキノン、ターシャーリーブチルヒドロキノン、ジブチルヒドロキシトルエン、オイゲノール、ピロガロール、カテコール、グヤラコールなどが挙げられる。酸化防止剤は、単独で用いてもよく、2種類以上を併用して使用してもよい。 In consideration of the storage stability of varnish and ink, various antioxidants may be added as long as the effects of the present invention are not impaired. The antioxidant is not particularly limited, and examples thereof include hydroquinone, tertiary butyl hydroquinone, dibutylhydroxytoluene, eugenol, pyrogallol, catechol, and guaralacol. An antioxidant may be used independently and may be used in combination of 2 or more types.
 本実施形態に係るオフセット印刷インキ用樹脂より得られたワニスに、所望の色の顔料(墨顔料、藍顔料、紅顔料、黄顔料など)を分散させて、オフセット印刷インキが調製される。得られた印刷インキは、枚葉インキ、オフ輪インキ等のオフセットインキに適しているほかに、新聞インキ、凸版インキやグラビアインキ用としても使用できる。
 また、本発明のロジン変性ポリエステル樹脂又はロジン変性フェノール樹脂を、オフセット印刷インキ用バインダーなどとして使用した場合には、これらの樹脂を含む印刷インキの乳化特性、光沢、乾燥性、ミスチングなどの印刷適性が、従来公知のロジン変性フェノール樹脂と同等以上である。したがって、本発明は、近年の市場の要求に合致する印刷インキを提供しうる。
An offset printing ink is prepared by dispersing a pigment of a desired color (black pigment, indigo pigment, red pigment, yellow pigment, etc.) in the varnish obtained from the resin for offset printing ink according to the present embodiment. The obtained printing ink is suitable for offset inks such as sheet-fed ink and off-wheel ink, and can also be used for newspaper ink, letterpress ink and gravure ink.
In addition, when the rosin-modified polyester resin or rosin-modified phenol resin of the present invention is used as a binder for offset printing inks, etc., printing properties such as emulsification characteristics, gloss, drying properties, misting, etc. of printing inks containing these resins However, it is equal to or higher than that of conventionally known rosin-modified phenolic resins. Accordingly, the present invention can provide printing inks that meet recent market demands.
 次に、本発明を、実施例及び比較例に基づいて説明するが、本発明は、下記の実施例によって限定されるものではない。なお、「部」及び「%」は、特に言及がない限り、質量基準である。また、以下に示す実施例の数値は、実施形態において記載される数値(すなわち、上限値又は下限値)に代替することができる。なお、本発明は下記の実施例、合成例、調製例に拘束されるものではなく、本発明の技術的思想の範囲内で任意の変形をなし得ることは勿論である。 Next, the present invention will be described based on examples and comparative examples, but the present invention is not limited to the following examples. “Parts” and “%” are based on mass unless otherwise specified. Moreover, the numerical value of the Example shown below can be substituted for the numerical value (namely, upper limit value or lower limit value) described in embodiment. In addition, this invention is not restrained by the following Example, a synthesis example, and a preparation example, Of course, arbitrary deformation | transformation can be made within the range of the technical idea of this invention.
(レゾール型フェノール樹脂の調製)
先ず、本実施形態に係るロジン変性フェノール樹脂を合成する際に使用した、(C)レゾール型フェノール樹脂の合成方法について、説明する。
撹拌機、分水受機、冷却管及び温度計を備えたフラスコに、キシレン275部とp-ブチルフェノール1633部とp-オクチルフェノール86.5部を仕込み、70℃で溶解させ、次いで92%パラホルムアルデヒド626.5部を加えた後、60℃まで冷却し、水酸化リチウム一水和物1.8部を添加した。その後、95℃まで昇温して6hrの付加反応を行い、固形分87.5%のレゾール型フェノール樹脂を得た。
実施例1
(Preparation of resol type phenol resin)
First, a method for synthesizing (C) a resole type phenol resin used when synthesizing a rosin-modified phenol resin according to the present embodiment will be described.
In a flask equipped with a stirrer, water separator, condenser and thermometer, 275 parts of xylene, 1633 parts of p-butylphenol and 86.5 parts of p-octylphenol were charged and dissolved at 70 ° C., and then 92% paraformaldehyde After adding 626.5 parts, it cooled to 60 degreeC and added 1.8 parts of lithium hydroxide monohydrate. Thereafter, the temperature was raised to 95 ° C. and an addition reaction was performed for 6 hours to obtain a resol type phenol resin having a solid content of 87.5%.
Example 1
(ロジン変性ポリエステル樹脂1の調製)
撹拌機、分水受機、冷却管及び温度計を備えたフラスコに、粗トール油300部、トールロジン700部を仕込み、窒素雰囲気下で160℃まで昇温させた。ここに無水マレイン酸を87.5部添加した後200℃まで昇温し、水酸化カルシウムを5.2部、水酸化ナトリウムを3.1部、及び酸化マグネシウムを2.7部添加して、約1時間反応させた。次に、ペンタエリスリトールを195部添加し、約270℃まで昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性ポリエステル樹脂1を得た。当該樹脂の酸価は9.5KOHmg/gであり、軟化点は133℃であり、n-ヘキサントレランスは1.9g/gであった。
実施例2
(Preparation of rosin-modified polyester resin 1)
A flask equipped with a stirrer, a water separator, a condenser tube, and a thermometer was charged with 300 parts of crude tall oil and 700 parts of tall rosin and heated to 160 ° C. in a nitrogen atmosphere. 87.5 parts of maleic anhydride was added thereto, the temperature was raised to 200 ° C., 5.2 parts of calcium hydroxide, 3.1 parts of sodium hydroxide, and 2.7 parts of magnesium oxide were added, The reaction was performed for about 1 hour. Next, 195 parts of pentaerythritol was added, the temperature was raised to about 270 ° C., the reaction was carried out until the prescribed acid value, viscosity, and solubility were reached, and then the pressure was reduced at 0.08 MPa for 30 minutes and cooled to solid rosin. Modified polyester resin 1 was obtained. The acid value of the resin was 9.5 KOH mg / g, the softening point was 133 ° C., and the n-hexane tolerance was 1.9 g / g.
Example 2
(ロジン変性ポリエステル樹脂2の調製)
撹拌機、分水受機、冷却管及び温度計を備えたフラスコに、蒸留トール油300部、トールロジン700部を仕込み、窒素雰囲気下で160℃まで昇温させた。ここに無水マレイン酸を87.5部添加した後200℃まで昇温し、水酸化カルシウムを5.2部、水酸化ナトリウムを3.1部、及び酸化マグネシウムを2.7部添加して、約1時間反応させた。次に、ペンタエリスリトールを195部添加し、約270℃まで昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性ポリエステル樹脂2を得た。当該樹脂の酸価は10.5KOHmg/gであり、軟化点は144℃であり、n-ヘキサントレランスは1.2g/gであった。
実施例3
(Preparation of rosin-modified polyester resin 2)
A flask equipped with a stirrer, a water separator, a condenser tube and a thermometer was charged with 300 parts of distilled tall oil and 700 parts of tall rosin and heated to 160 ° C. in a nitrogen atmosphere. 87.5 parts of maleic anhydride was added thereto, the temperature was raised to 200 ° C., 5.2 parts of calcium hydroxide, 3.1 parts of sodium hydroxide, and 2.7 parts of magnesium oxide were added, The reaction was performed for about 1 hour. Next, 195 parts of pentaerythritol was added, the temperature was raised to about 270 ° C., the reaction was carried out until the prescribed acid value, viscosity, and solubility were reached, and then the pressure was reduced at 0.08 MPa for 30 minutes and cooled to solid rosin. Modified polyester resin 2 was obtained. The acid value of the resin was 10.5 KOH mg / g, the softening point was 144 ° C., and the n-hexane tolerance was 1.2 g / g.
Example 3
(ロジン変性ポリエステル樹脂3の調製)
撹拌機、分水受機、冷却管および温度計を備えたフラスコに、粗トール油252部、トールロジン588部を仕込み、窒素雰囲気下で160℃まで昇温させた。ここに無水マレイン酸を98部添加した後200℃まで昇温し、水酸化カルシウムを4.4部、水酸化ナトリウムを2.7部、および酸化マグネシウムを2.3部添加して、約1時間反応させた。次に、ペンタエリスリトールを113部添加し、約270℃まで昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性ポリエステル樹脂7を得た。当該樹脂の酸価は9.5KOHmg/g、軟化点133℃、n-ヘキサントレランスは1.9g/gであった。
実施例4
(Preparation of rosin-modified polyester resin 3)
A flask equipped with a stirrer, a water separator, a condenser tube and a thermometer was charged with 252 parts of crude tall oil and 588 parts of tall rosin, and the temperature was raised to 160 ° C. in a nitrogen atmosphere. After 98 parts of maleic anhydride was added thereto, the temperature was raised to 200 ° C., 4.4 parts of calcium hydroxide, 2.7 parts of sodium hydroxide, and 2.3 parts of magnesium oxide were added. Reacted for hours. Next, 113 parts of pentaerythritol was added, the temperature was raised to about 270 ° C., the reaction was performed until the prescribed acid value, viscosity, and solubility were reached, and then the pressure was reduced at 0.08 MPa for 30 minutes and cooled to solid rosin. A modified polyester resin 7 was obtained. The acid value of the resin was 9.5 KOH mg / g, the softening point was 133 ° C., and the n-hexane tolerance was 1.9 g / g.
Example 4
(ロジン変性フェノール樹脂1の調製)
撹拌機、分水受機、冷却管及び温度計を備えたフラスコに、蒸留トール油543部、ペトコール140(東ソー株式会社製)500部を仕込み、窒素雰囲気下で180℃まで昇温させた。次いで、30分間撹拌を行い、150℃まで冷却させた。ここに前記レゾール型フェノール樹脂617部(固形部540部)を仕込み、昇温を開始し200℃において、グリセンリン49.6部を仕込み、255℃まで昇温した。昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性フェノール樹脂1を得た。当該樹脂の酸価は11.7KOHmg/gであり、軟化点は154℃であり、n-ヘキサントレランスは1.9g/gであった。
実施例5
(Preparation of rosin-modified phenolic resin 1)
A flask equipped with a stirrer, a water separator, a cooling pipe and a thermometer was charged with 543 parts of distilled tall oil and 500 parts of Petol 140 (manufactured by Tosoh Corporation), and the temperature was raised to 180 ° C. in a nitrogen atmosphere. Subsequently, it stirred for 30 minutes and was made to cool to 150 degreeC. The resol type phenol resin (617 parts) (solid part 540 parts) was charged therein, and the temperature was raised. At 200 ° C., 49.6 parts of glycenline was charged, and the temperature was raised to 255 ° C. After reacting until the temperature reached a predetermined acid value, viscosity, and solubility, the solution was reduced in pressure at 0.08 MPa for 30 minutes and cooled to obtain a solid rosin-modified phenolic resin 1. The acid value of the resin was 11.7 KOH mg / g, the softening point was 154 ° C., and the n-hexane tolerance was 1.9 g / g.
Example 5
(ロジン変性フェノール樹脂2の調製)
撹拌機、分水受機、冷却管及び温度計を備えたフラスコに、粗トール油543部、ペトコール140(東ソー株式会社製)500部を仕込み、窒素雰囲気下で180℃まで昇温させた。次いで、30分間撹拌を行い、150℃まで冷却させた。ここに前記レゾール型フェノール樹脂617部(固形部540部)を仕込み、昇温を開始し200℃において、ペンタエリスリトール2.6部、グリセンリン47部を仕込み、255℃まで昇温した。昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性フェノール樹脂1を得た。当該樹脂の酸価は10.0KOHmg/gであり、軟化点は153℃であり、n-ヘキサントレランスは2.3g/gであった。
実施例6
(Preparation of rosin-modified phenolic resin 2)
A flask equipped with a stirrer, a water separator, a cooling pipe and a thermometer was charged with 543 parts of crude tall oil and 500 parts of Petcoal 140 (manufactured by Tosoh Corporation), and the temperature was raised to 180 ° C. in a nitrogen atmosphere. Subsequently, it stirred for 30 minutes and was made to cool to 150 degreeC. The resol type phenolic resin 617 parts (solid part 540 parts) was charged therein, and the temperature was raised. At 200 ° C., 2.6 parts of pentaerythritol and 47 parts of glycerin were added, and the temperature was raised to 255 ° C. After reacting until the temperature reached a predetermined acid value, viscosity, and solubility, the solution was reduced in pressure at 0.08 MPa for 30 minutes and cooled to obtain a solid rosin-modified phenolic resin 1. The acid value of the resin was 10.0 KOH mg / g, the softening point was 153 ° C., and the n-hexane tolerance was 2.3 g / g.
Example 6
(ロジン変性フェノール樹脂3の調製)
撹拌機、分水受機、冷却管及び温度計を備えたフラスコに、粗トール油500部、トールロジン500部を仕込み、窒素雰囲気下で180℃まで昇温させた。次いで、酸化マグネシウム3.8部、水酸化カルシウム2.5部を添加した。添加後、30分間撹拌を行い、150℃まで冷却させた。ここに前記レゾール型フェノール樹脂512部(固形部448部)を仕込み、昇温を開始し180℃において無水マレイン酸25部を仕込み、更に200℃において、ペンタエリスリトール112.5部、グリセンリン12.5部を仕込み、255℃まで昇温した。昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性フェノール樹脂1を得た。当該樹脂の酸価は23.8KOHmg/gであり、軟化点は138℃であり、n-ヘキサントレランスは3.4g/gであった。
実施例7
(Preparation of rosin-modified phenolic resin 3)
A flask equipped with a stirrer, a water separator, a condenser tube and a thermometer was charged with 500 parts of crude tall oil and 500 parts of tall rosin and heated to 180 ° C. under a nitrogen atmosphere. Next, 3.8 parts of magnesium oxide and 2.5 parts of calcium hydroxide were added. After the addition, the mixture was stirred for 30 minutes and cooled to 150 ° C. The resol type phenolic resin 512 parts (solid part 448 parts) was charged here, the temperature increase was started, maleic anhydride 25 parts was added at 180 ° C., and at 200 ° C., pentaerythritol 112.5 parts, glycerin 12.5 The temperature was raised to 255 ° C. After reacting until the temperature reached a predetermined acid value, viscosity, and solubility, the solution was reduced in pressure at 0.08 MPa for 30 minutes and cooled to obtain a solid rosin-modified phenolic resin 1. The acid value of the resin was 23.8 KOH mg / g, the softening point was 138 ° C., and the n-hexane tolerance was 3.4 g / g.
Example 7
(ロジン変性フェノール樹脂4の調製)
撹拌機、分水受機、冷却管及び温度計を備えたフラスコに、蒸留トール油500部、トールロジン500部を仕込み、窒素雰囲気下で180℃まで昇温させた。次いで、酸化マグネシウム3.8部、水酸化カルシウム2.5部を添加した。添加後、30分間撹拌を行い、150℃まで冷却させた。ここに前記レゾール型フェノール樹脂457部(固形部400部)を仕込み、昇温を開始し180℃において無水マレイン酸22.5部を仕込み、更に200℃において、ペンタエリスリトール121部、グリセンリン5.7部を仕込み、255℃まで昇温した。昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性フェノール樹脂2を得た。当該樹脂の酸価は24.1KOHmg/gであり、軟化点は141℃であり、n-ヘキサントレランスは2.3g/gであった。
実施例8
(Preparation of rosin-modified phenolic resin 4)
A flask equipped with a stirrer, a water separator, a condenser tube and a thermometer was charged with 500 parts of distilled tall oil and 500 parts of tall rosin and heated to 180 ° C. in a nitrogen atmosphere. Next, 3.8 parts of magnesium oxide and 2.5 parts of calcium hydroxide were added. After the addition, the mixture was stirred for 30 minutes and cooled to 150 ° C. 457 parts (400 parts of the solid part) of the resol type phenol resin were charged therein, the temperature was raised, 22.5 parts of maleic anhydride was added at 180 ° C., and further at 121 ° C., 121 parts of pentaerythritol and 5.7 glycenline. The temperature was raised to 255 ° C. After reacting until the temperature reached a predetermined acid value, viscosity, and solubility, the pressure was reduced at 0.08 MPa for 30 minutes, and the solid rosin-modified phenolic resin 2 was obtained. The acid value of the resin was 24.1 KOH mg / g, the softening point was 141 ° C., and the n-hexane tolerance was 2.3 g / g.
Example 8
(ロジン変性フェノール樹脂5の調製) 
 撹拌機、分水受機、冷却管および温度計を備えたフラスコに、粗トール油700部、トールロジン300部を仕込み、窒素雰囲気下で180℃まで昇温させた。ここに架橋剤として酸化マグネシウムを3.7部、水酸化カルシウム2.5部添加し30分間撹拌した後、150℃まで冷却し、前記レゾール型フェノール樹脂544部(固形部476部)を仕込み、昇温を開始し180℃においてα,β-不飽和ジカルボン酸の無水物として、無水マレイン酸30部を仕込み、更に200℃において、ペンタエリスリトール112.5部、グリセンリン12.5部を仕込み、255℃まで昇温した。昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性フェノール樹脂7を得た。当該樹脂の酸価は20.0KOHmg/g、軟化点132℃、n-ヘキサントレランスは3.7g/gであった。
実施例9
(Preparation of rosin-modified phenolic resin 5)
A flask equipped with a stirrer, a water separator, a condenser tube and a thermometer was charged with 700 parts of crude tall oil and 300 parts of tall rosin and heated to 180 ° C. in a nitrogen atmosphere. Here, 3.7 parts of magnesium oxide as a crosslinking agent and 2.5 parts of calcium hydroxide were added and stirred for 30 minutes, and then cooled to 150 ° C., and 544 parts of the resol type phenol resin (solid part 476 parts) were charged. At 180 ° C., 30 parts of maleic anhydride was added as an anhydride of α, β-unsaturated dicarboxylic acid. At 200 ° C., 112.5 parts of pentaerythritol and 12.5 parts of glycerin were added. The temperature was raised to ° C. After reacting until the temperature reached a predetermined acid value, viscosity, and solubility, the solution was reduced in pressure at 0.08 MPa for 30 minutes and cooled to obtain a solid rosin-modified phenolic resin 7. The acid value of the resin was 20.0 KOH mg / g, the softening point was 132 ° C., and the n-hexane tolerance was 3.7 g / g.
Example 9
(ロジン変性フェノール樹脂6の調製)
 撹拌機、分水受機、冷却管および温度計を備えたフラスコに、粗トール油500部、トールロジン500部を仕込み、窒素雰囲気下で180℃まで昇温させた。ここに架橋剤として酸化マグネシウムを3.7部、水酸化カルシウム2.5部添加し30分間撹拌した後、150℃まで冷却し、前記レゾール型フェノール樹脂493部(固形部432部)を仕込み、昇温を開始し180℃においてα,β-不飽和ジカルボン酸の無水物として、無水マレイン酸25部を仕込み、更に200℃において、ペンタエリスリトール111部、グリセンリン12.5部を仕込み、255℃まで昇温した。昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性フェノール樹脂8を得た。当該樹脂の酸価は19.3KOHmg/g、軟化点130℃、n-ヘキサントレランスは3.4g/gであった。
実施例10
(Preparation of rosin-modified phenolic resin 6)
A flask equipped with a stirrer, a water separator, a condenser tube and a thermometer was charged with 500 parts of crude tall oil and 500 parts of tall rosin and heated to 180 ° C. in a nitrogen atmosphere. Here, 3.7 parts of magnesium oxide as a crosslinking agent and 2.5 parts of calcium hydroxide were added and stirred for 30 minutes, and then cooled to 150 ° C., and 493 parts of the resol type phenol resin (solid part 432 parts) were charged, At 180 ° C., 25 parts by weight of maleic anhydride was charged as an anhydride of α, β-unsaturated dicarboxylic acid, and at 200 ° C., 111 parts of pentaerythritol and 12.5 parts of glycerin were charged to 255 ° C. The temperature rose. After reacting until the temperature reached a predetermined acid value, viscosity, and solubility, the mixture was reduced in pressure at 0.08 MPa for 30 minutes and cooled to obtain solid rosin-modified phenolic resin 8. The acid value of the resin was 19.3 KOH mg / g, the softening point was 130 ° C., and the n-hexane tolerance was 3.4 g / g.
Example 10
(ロジン変性ポリエステル樹脂4の調製)
 撹拌機、分水受機、冷却管および温度計を備えたフラスコに、粗トール油546部を仕込み、窒素雰囲気下で160℃まで昇温させた。次いで、4-スルホフタル酸(50%水溶液)7.5部を添加し、4時間、同温度で保持し、オレイルアミン3.3部と、トールロジン294部とを添加した。添加後、30分間撹拌を行い、無水マレイン酸を98部添加した後200℃まで昇温し、水酸化カルシウムを4.4部、水酸化ナトリウムを2.7部、および酸化マグネシウムを2.3部添加して、約1時間反応させた。次に、ペンタエリスリトールを113部添加し、約270℃まで昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性ポリエステル樹脂1を得た。当該樹脂の酸価は36.4KOHmg/g、軟化点134℃、n-ヘキサントレランスは2.8g/gであった。 
実施例11
(Preparation of rosin-modified polyester resin 4)
A flask equipped with a stirrer, a water separator, a condenser tube and a thermometer was charged with 546 parts of crude tall oil and heated to 160 ° C. in a nitrogen atmosphere. Next, 7.5 parts of 4-sulfophthalic acid (50% aqueous solution) was added and held at the same temperature for 4 hours, and 3.3 parts of oleylamine and 294 parts of tall rosin were added. After the addition, the mixture was stirred for 30 minutes, 98 parts of maleic anhydride was added, and the temperature was raised to 200 ° C., 4.4 parts of calcium hydroxide, 2.7 parts of sodium hydroxide, and 2.3 parts of magnesium oxide. Partly added and allowed to react for about 1 hour. Next, 113 parts of pentaerythritol was added, the temperature was raised to about 270 ° C., the reaction was performed until the prescribed acid value, viscosity, and solubility were reached, and then the pressure was reduced at 0.08 MPa for 30 minutes and cooled to solid rosin. Modified polyester resin 1 was obtained. The acid value of the resin was 36.4 KOH mg / g, the softening point was 134 ° C., and the n-hexane tolerance was 2.8 g / g.
Example 11
(ロジン変性ポリエステル樹脂5の調製)
 撹拌機、分水受機、冷却管および温度計を備えたフラスコに、粗トール油650部、トールロジン350部を仕込み、窒素雰囲気下で160℃まで昇温させた。次いで、4-スルホフタル酸(50%水溶液)15部を添加し、4時間、同温度で保持を行い、オレイルアミン7.5部を添加した。添加後、30分間撹拌を行い、無水マレイン酸を109部添加した後200℃まで昇温し、酸化カルシウムを3.9部、水酸化ナトリウムを2.5部、および酸化マグネシウムを2.7部添加して、約1時間反応させた。次に、ペンタエリスリトールを114部添加し、約270℃まで昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性ポリエステル樹脂2を得た。当該樹脂の酸価は37.8KOHmg/g、軟化点135℃、n-ヘキサントレランスは3.2g/gであった。
実施例12
(Preparation of rosin-modified polyester resin 5)
650 parts of crude tall oil and 350 parts of tall rosin were charged into a flask equipped with a stirrer, a water separator, a condenser tube and a thermometer, and the temperature was raised to 160 ° C. in a nitrogen atmosphere. Next, 15 parts of 4-sulfophthalic acid (50% aqueous solution) was added, held at the same temperature for 4 hours, and 7.5 parts of oleylamine was added. After the addition, the mixture is stirred for 30 minutes, 109 parts of maleic anhydride is added, and the temperature is raised to 200 ° C., 3.9 parts of calcium oxide, 2.5 parts of sodium hydroxide, and 2.7 parts of magnesium oxide It was added and allowed to react for about 1 hour. Next, 114 parts of pentaerythritol was added, the temperature was raised to about 270 ° C., the reaction was continued until the prescribed acid value, viscosity, and solubility were reached, and then the pressure was reduced at 0.08 MPa for 30 minutes and cooled to solid rosin. Modified polyester resin 2 was obtained. The acid value of the resin was 37.8 KOH mg / g, the softening point was 135 ° C., and the n-hexane tolerance was 3.2 g / g.
Example 12
(ロジン変性ポリエステル樹脂6の調製)
 撹拌機、分水受機、冷却管および温度計を備えたフラスコに、蒸留トール油546部を仕込み、窒素雰囲気下で160℃まで昇温させた。次いで、4-スルホフタル酸(50%水溶液)7.5部を添加し、4時間、同温度で保持し、オレイルアミン3.3部と、トールロジン294部とを添加した。添加後、30分間撹拌を行い、無水マレイン酸を97部添加した後200℃まで昇温し、水酸化カルシウムを4.4部、水酸化ナトリウムを2.7部、および酸化マグネシウムを2.3部添加して、約1時間反応させた。次に、ペンタエリスリトールを100部、グリセリンを12部添加し、約270℃まで昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性ポリエステル樹脂3を得た。当該樹脂の酸価は35.3KOHmg/g、軟化点136℃、n-ヘキサントレランスは2.3g/gであった。
実施例13
(Preparation of rosin-modified polyester resin 6)
A flask equipped with a stirrer, a water separator, a condenser tube and a thermometer was charged with 546 parts of distilled tall oil and heated to 160 ° C. in a nitrogen atmosphere. Next, 7.5 parts of 4-sulfophthalic acid (50% aqueous solution) was added and held at the same temperature for 4 hours, and 3.3 parts of oleylamine and 294 parts of tall rosin were added. After the addition, the mixture was stirred for 30 minutes, 97 parts of maleic anhydride was added, and the temperature was raised to 200 ° C., 4.4 parts of calcium hydroxide, 2.7 parts of sodium hydroxide, and 2.3 parts of magnesium oxide. Partly added and allowed to react for about 1 hour. Next, 100 parts of pentaerythritol and 12 parts of glycerin are added, the temperature is raised to about 270 ° C., and the reaction is carried out until a predetermined acid value, viscosity, and solubility are reached, and then the pressure is reduced and cooled at 0.08 MPa for 30 minutes. Thus, a solid rosin-modified polyester resin 3 was obtained. The acid value of the resin was 35.3 KOH mg / g, the softening point was 136 ° C., and the n-hexane tolerance was 2.3 g / g.
Example 13
(ロジン変性ポリエステル樹脂7の調製)
 撹拌機、分水受機、冷却管および温度計を備えたフラスコに、粗トール油273部、蒸留トール油273部を仕込み、窒素雰囲気下で160℃まで昇温させた。次いで、4-スルホフタル酸(50%水溶液)7.5部を添加し、4時間、同温度で保持し、オレイルアミン3.3部と、トールロジン294部とを添加した。添加後、30分間撹拌を行い、無水マレイン酸を97部添加した後200℃まで昇温し、水酸化カルシウムを4.4部、水酸化ナトリウムを2.7部、および酸化マグネシウムを2.3部添加して、約1時間反応させた。次に、ペンタエリスリトールを100部、グリセリンを12部添加し、約270℃まで昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性ポリエステル樹脂4を得た。当該樹脂の酸価は37.0KOHmg/g、軟化点134℃、n-ヘキサントレランスは2.4g/gであった。
実施例14
(Preparation of rosin-modified polyester resin 7)
273 parts of crude tall oil and 273 parts of distilled tall oil were charged into a flask equipped with a stirrer, a water separator, a condenser and a thermometer, and the temperature was raised to 160 ° C. in a nitrogen atmosphere. Next, 7.5 parts of 4-sulfophthalic acid (50% aqueous solution) was added and held at the same temperature for 4 hours, and 3.3 parts of oleylamine and 294 parts of tall rosin were added. After the addition, the mixture was stirred for 30 minutes, 97 parts of maleic anhydride was added, and the temperature was raised to 200 ° C., 4.4 parts of calcium hydroxide, 2.7 parts of sodium hydroxide, and 2.3 parts of magnesium oxide. Partly added and allowed to react for about 1 hour. Next, 100 parts of pentaerythritol and 12 parts of glycerin are added, the temperature is raised to about 270 ° C., and the reaction is carried out until a predetermined acid value, viscosity, and solubility are reached, and then the pressure is reduced and cooled at 0.08 MPa for 30 minutes. Thus, a solid rosin-modified polyester resin 4 was obtained. The acid value of the resin was 37.0 KOH mg / g, the softening point was 134 ° C., and the n-hexane tolerance was 2.4 g / g.
Example 14
(ロジン変性フェノール樹脂7の調製)
撹拌機、分水受機、冷却管および温度計を備えたフラスコに、粗トール油978部を仕込み、窒素雰囲気下で160℃まで昇温させた。次いで、4-スルホフタル酸(50%水溶液)14.6部を添加し、4時間、同温度で保持を行い、オレイルアミン7.4部を添加した。添加後、30分間撹拌を行い、180℃まで昇温させた。ここに架橋剤として酸化亜鉛を9.9部添加し30分間撹拌した後、150℃まで冷却した。次いで、前記レゾール型フェノール樹脂457部(固形部400部)を仕込み、昇温を開始し180℃において、α,β-不飽和ジカルボン酸の無水物として、無水マレイン酸22.5部を仕込み、更に200℃において、ペンタエリスリトール119部、グリセンリン7.7部を仕込み、255℃まで昇温した。昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性フェノール樹脂1を得た。当該樹脂の酸価は17.5KOHmg/g、軟化点134℃、n-ヘキサントレランスは5.7g/gであった。
実施例15
(Preparation of rosin-modified phenolic resin 7)
Into a flask equipped with a stirrer, a water separator, a cooling tube and a thermometer, 978 parts of crude tall oil was charged and heated to 160 ° C. in a nitrogen atmosphere. Next, 14.6 parts of 4-sulfophthalic acid (50% aqueous solution) was added, held at the same temperature for 4 hours, and 7.4 parts of oleylamine was added. After the addition, the mixture was stirred for 30 minutes and heated up to 180 ° C. Here, 9.9 parts of zinc oxide as a crosslinking agent was added and stirred for 30 minutes, and then cooled to 150 ° C. Next, 457 parts (400 parts of a solid part) of the resol type phenol resin were charged, and the temperature was raised. At 180 ° C., 22.5 parts of maleic anhydride was added as an anhydride of α, β-unsaturated dicarboxylic acid, Further, at 200 ° C., 119 parts of pentaerythritol and 7.7 parts of glycerin were charged, and the temperature was raised to 255 ° C. After reacting until the temperature reached a predetermined acid value, viscosity, and solubility, the solution was reduced in pressure at 0.08 MPa for 30 minutes and cooled to obtain a solid rosin-modified phenolic resin 1. The acid value of the resin was 17.5 KOH mg / g, the softening point was 134 ° C., and the n-hexane tolerance was 5.7 g / g.
Example 15
(ロジン変性フェノール樹脂8の調製)
 撹拌機、分水受機、冷却管および温度計を備えたフラスコに、粗トール油685部を仕込み、窒素雰囲気下で160℃まで昇温させた。次いで、4-スルホフタル酸(50%水溶液)10.3部を添加し、4時間、同温度で保持を行い、オレイルアミン5.2部とトールロジン300部を仕込み、窒素雰囲気下で180℃まで昇温させた。ここに架橋剤として酸化マグネシウムを3.8部添加し30分間撹拌した後、150℃まで冷却した。次いで、前記レゾール型フェノール樹脂544部(固形部476部)を仕込み、昇温を開始し180℃において、α,β-不飽和ジカルボン酸の無水物として、無水マレイン酸24部を仕込み、更に200℃において、ペンタエリスリトール111部、グリセンリン12.5部を仕込み、255℃まで昇温した。昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性フェノール樹脂2を得た。当該樹脂の酸価は18.5KOHmg/g、軟化点135℃、n-ヘキサントレランスは3.0g/gであった。
実施例16
(Preparation of rosin-modified phenolic resin 8)
Into a flask equipped with a stirrer, a water separator, a condenser tube and a thermometer, 685 parts of crude tall oil was charged and heated to 160 ° C. in a nitrogen atmosphere. Next, 10.3 parts of 4-sulfophthalic acid (50% aqueous solution) was added, held at the same temperature for 4 hours, charged with 5.2 parts of oleylamine and 300 parts of tall rosin, and heated to 180 ° C. in a nitrogen atmosphere. I let you. Here, 3.8 parts of magnesium oxide as a crosslinking agent was added and stirred for 30 minutes, and then cooled to 150 ° C. Next, 544 parts of the resol-type phenol resin (476 parts of a solid part) were added, and the temperature was raised. At 180 ° C., 24 parts of maleic anhydride was added as an anhydride of α, β-unsaturated dicarboxylic acid, and further 200 At 0 ° C., 111 parts of pentaerythritol and 12.5 parts of glycerin were charged, and the temperature was raised to 255 ° C. After reacting until the temperature reached a predetermined acid value, viscosity, and solubility, the pressure was reduced at 0.08 MPa for 30 minutes, and the solid rosin-modified phenolic resin 2 was obtained. The acid value of the resin was 18.5 KOH mg / g, the softening point was 135 ° C., and the n-hexane tolerance was 3.0 g / g.
Example 16
(ロジン変性フェノール樹脂9の調製)
撹拌機、分水受機、冷却管および温度計を備えたフラスコに、粗トール油489部を仕込み、窒素雰囲気下で160℃まで昇温させた。次いで、4-スルホフタル酸(50%水溶液)7.3部を添加し、4時間、同温度で保持を行い、オレイルアミン3.7部とトールロジン500部を添加した。添加後、30分間撹拌を行い、180℃まで昇温させた。ここに架橋剤として酸化マグネシウムを3.7部、水酸化カルシウムを2.5部添加し30分間撹拌した後、150℃まで冷却した。次いで、前記レゾール型フェノール樹脂493部(固形部432部)を仕込み、昇温を開始し180℃において、α,β-不飽和ジカルボン酸の無水物として、無水マレイン酸25部を仕込み、更に200℃において、ペンタエリスリトール111部、グリセンリン12.5部を仕込み、255℃まで昇温した。昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性フェノール樹脂3を得た。当該樹脂の酸価は18.0KOHmg/g、軟化点137℃、n-ヘキサントレランスは3.2g/gであった。
実施例17
(Preparation of rosin-modified phenolic resin 9)
In a flask equipped with a stirrer, a water separator, a condenser tube and a thermometer, 489 parts of crude tall oil was charged and heated to 160 ° C. in a nitrogen atmosphere. Next, 7.3 parts of 4-sulfophthalic acid (50% aqueous solution) was added, held at the same temperature for 4 hours, and 3.7 parts of oleylamine and 500 parts of tall rosin were added. After the addition, the mixture was stirred for 30 minutes and heated up to 180 ° C. Here, 3.7 parts of magnesium oxide and 2.5 parts of calcium hydroxide as a crosslinking agent were added and stirred for 30 minutes, and then cooled to 150 ° C. Next, 493 parts of the resol type phenolic resin (432 parts of solid part) were charged, and the temperature was raised. At 180 ° C., 25 parts of maleic anhydride was added as an anhydride of α, β-unsaturated dicarboxylic acid, and further 200 At 0 ° C., 111 parts of pentaerythritol and 12.5 parts of glycerin were charged, and the temperature was raised to 255 ° C. After reacting until the temperature reached a predetermined acid value, viscosity, and solubility, the pressure was reduced at 0.08 MPa for 30 minutes and cooled to obtain a solid rosin-modified phenolic resin 3. The acid value of the resin was 18.0 KOH mg / g, the softening point was 137 ° C., and the n-hexane tolerance was 3.2 g / g.
Example 17
(ロジン変性フェノール樹脂10の調製)
 撹拌機、分水受機、冷却管および温度計を備えたフラスコに、蒸留トール油489部を仕込み、窒素雰囲気下で160℃まで昇温させた。次いで、4-スルホフタル酸(50%水溶液)7.3部を添加し、4時間、同温度で保持を行い、オレイルアミン3.7部とトールロジン500部を添加した。添加後、30分間撹拌を行い、180℃まで昇温させた。ここに架橋剤として酸化マグネシウムを3.7部、水酸化カルシウム2.5部添加し30分間撹拌した後、150℃まで冷却し、前記レゾール型フェノール樹脂493部(固形部432部)を仕込み、昇温を開始し180℃においてα,β-不飽和ジカルボン酸の無水物として、無水マレイン酸23部を仕込み、更に200℃において、ペンタエリスリトール111部、グリセンリン12.5部を仕込み、255℃まで昇温した。昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性フェノール樹脂4を得た。当該樹脂の酸価は19.0KOHmg/g、軟化点141℃、n-ヘキサントレランスは3.3g/gであった。
実施例18
(Preparation of rosin-modified phenolic resin 10)
A flask equipped with a stirrer, a water separator, a condenser tube and a thermometer was charged with 489 parts of distilled tall oil and heated to 160 ° C. in a nitrogen atmosphere. Next, 7.3 parts of 4-sulfophthalic acid (50% aqueous solution) was added, held at the same temperature for 4 hours, and 3.7 parts of oleylamine and 500 parts of tall rosin were added. After the addition, the mixture was stirred for 30 minutes and heated up to 180 ° C. Here, 3.7 parts of magnesium oxide as a crosslinking agent and 2.5 parts of calcium hydroxide were added and stirred for 30 minutes, and then cooled to 150 ° C., and 493 parts of the resol type phenol resin (solid part 432 parts) were charged, At 180 ° C., 23 parts of maleic anhydride was added as an anhydride of α, β-unsaturated dicarboxylic acid, and at 200 ° C., 111 parts of pentaerythritol and 12.5 parts of glycerin were added up to 255 ° C. The temperature rose. After reacting until the temperature reached a predetermined acid value, viscosity, and solubility, the solution was reduced in pressure at 0.08 MPa for 30 minutes and cooled to obtain a solid rosin-modified phenolic resin 4. The acid value of the resin was 19.0 KOH mg / g, the softening point was 141 ° C., and the n-hexane tolerance was 3.3 g / g.
Example 18
(ロジン変性フェノール樹脂11の調製)
 撹拌機、分水受機、冷却管および温度計を備えたフラスコに、粗トール油500部、トールロジン500部を仕込み、窒素雰囲気下で160℃まで昇温させた。次いで、4-スルホフタル酸(50%水溶液)15部を添加し、4時間、同温度で保持を行いオレイルアミン7.5部を添加した。添加後、30分間撹拌を行い、180℃まで昇温させた。ここに架橋剤として酸化マグネシウムを3.7部、水酸化カルシウム2.5部添加し30分間撹拌した後、150℃まで冷却し、前記レゾール型フェノール樹脂493部(固形部432部)を仕込み、昇温を開始し180℃において、α,β-不飽和ジカルボン酸の無水物として、無水マレイン酸23部を仕込み、更に200℃において、ペンタエリスリトール111部、グリセンリン12.5部を仕込み、255℃まで昇温した。昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性フェノール樹脂5を得た。当該樹脂の酸価は18.4KOHmg/g、軟化点142℃、n-ヘキサントレランスは3.2g/gであった。
比較例1
(Preparation of rosin-modified phenolic resin 11)
A flask equipped with a stirrer, a water separator, a condenser tube, and a thermometer was charged with 500 parts of crude tall oil and 500 parts of tall rosin and heated to 160 ° C. in a nitrogen atmosphere. Next, 15 parts of 4-sulfophthalic acid (50% aqueous solution) was added, held at the same temperature for 4 hours, and 7.5 parts of oleylamine was added. After the addition, the mixture was stirred for 30 minutes and heated up to 180 ° C. Here, 3.7 parts of magnesium oxide as a crosslinking agent and 2.5 parts of calcium hydroxide were added and stirred for 30 minutes, and then cooled to 150 ° C., and 493 parts of the resol type phenol resin (solid part 432 parts) were charged, At 180 ° C., 23 parts of maleic anhydride was added as an anhydride of α, β-unsaturated dicarboxylic acid, and at 200 ° C., 111 parts of pentaerythritol and 12.5 parts of glycerin were added at 255 ° C. The temperature was raised to. After reacting until the temperature reached a predetermined acid value, viscosity, and solubility, the pressure was reduced at 0.08 MPa for 30 minutes and cooled to obtain a solid rosin-modified phenolic resin 5. The acid value of the resin was 18.4 KOH mg / g, the softening point was 142 ° C., and the n-hexane tolerance was 3.2 g / g.
Comparative Example 1
(ロジン変性ポリエステル樹脂8の調製)
撹拌機、分水受機、冷却管及び温度計を備えたフラスコに、トール油脂肪酸(ハリマ化成(株)製 ハートールFA-1)300部、トールロジン700部を仕込み、窒素雰囲気下で160℃まで昇温させた。ここに無水マレイン酸を98部添加した後200℃まで昇温し、酸化カルシウムを5.2部、水酸化ナトリウムを3.1部、及び酸化マグネシウムを2.7部添加して、約1時間反応させた。次に、ペンタエリスリトールを205部添加し、約270℃まで昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性ポリエステル樹脂3を得た。当該樹脂の酸価は11.1KOHmg/gであり、軟化点は137℃であり、n-ヘキサントレランスは2.9/g以上であった。
比較例2
(Preparation of rosin-modified polyester resin 8)
A flask equipped with a stirrer, a water separator, a condenser tube, and a thermometer was charged with 300 parts of tall oil fatty acid (Hartol FA-1 manufactured by Harima Chemicals Co., Ltd.) and 700 parts of tall rosin up to 160 ° C. under a nitrogen atmosphere. The temperature was raised. After 98 parts of maleic anhydride was added, the temperature was raised to 200 ° C., 5.2 parts of calcium oxide, 3.1 parts of sodium hydroxide, and 2.7 parts of magnesium oxide were added, and about 1 hour. Reacted. Next, 205 parts of pentaerythritol was added, the temperature was raised to about 270 ° C., the reaction was carried out until the prescribed acid value, viscosity, and solubility were reached, and the solid rosin was then cooled under reduced pressure at 0.08 MPa for 30 minutes. Modified polyester resin 3 was obtained. The acid value of the resin was 11.1 KOH mg / g, the softening point was 137 ° C., and the n-hexane tolerance was 2.9 / g or more.
Comparative Example 2
(ロジン変性ポリエステル樹脂9の調製)
撹拌機、分水受機、冷却管及び温度計を備えたフラスコに、トール油脂肪酸(ハリマ化成(株)製 ハートールFA-1)150部、トールロジン850部を仕込み、窒素雰囲気下で160℃まで昇温させた。ここに無水マレイン酸を87.5部添加した後200℃まで昇温し、酸化カルシウムを5.2部、水酸化ナトリウムを3.1部、及び酸化マグネシウムを2.7部添加して、約1時間反応させた。次に、ペンタエリスリトールを195部添加し、約270℃まで昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性ポリエステル樹脂4を得た。当該樹脂の酸価は10.4KOHmg/gであり、軟化点は135℃であり、n-ヘキサントレランスは2.0g/g以上であった。
比較例3
(Preparation of rosin-modified polyester resin 9)
A flask equipped with a stirrer, a water separator, a condenser tube, and a thermometer was charged with 150 parts of tall oil fatty acid (Hartol FA-1 manufactured by Harima Chemicals Co., Ltd.) and 850 parts of tall rosin up to 160 ° C. under a nitrogen atmosphere. The temperature was raised. 87.5 parts of maleic anhydride was added thereto, the temperature was raised to 200 ° C., 5.2 parts of calcium oxide, 3.1 parts of sodium hydroxide, and 2.7 parts of magnesium oxide were added. The reaction was carried out for 1 hour. Next, 195 parts of pentaerythritol was added, the temperature was raised to about 270 ° C., the reaction was carried out until the prescribed acid value, viscosity, and solubility were reached, and then the pressure was reduced at 0.08 MPa for 30 minutes and cooled to solid rosin. Modified polyester resin 4 was obtained. The acid value of the resin was 10.4 KOH mg / g, the softening point was 135 ° C., and the n-hexane tolerance was 2.0 g / g or more.
Comparative Example 3
(ロジン変性フェノール樹脂12の調製)
撹拌機、分水受機、冷却管及び温度計を備えたフラスコに、トール油脂肪酸(ハリマ化成(株)製 ハートールFA-1)500部、トールロジン500部を仕込み、窒素雰囲気下で180℃まで昇温させた。次いで、酸化マグネシウム3.8部、水酸化カルシウム2.5部を添加した。添加後、30分間撹拌を行い、150℃まで冷却させた。ここに前記レゾール型フェノール樹脂537部(固形部470部)を仕込み、昇温を開始し180℃において無水マレイン酸43.8部を仕込み、更に200℃において、ペンタエリスリトール112.5部、グリセンリン12.5部を仕込み、255℃まで昇温した。昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性フェノール樹脂3を得た。当該樹脂の酸価は24.2KOHmg/gであり、軟化点は128℃であり、n-ヘキサントレランスは7.3g/gであった。
比較例4
(Preparation of rosin-modified phenolic resin 12)
A flask equipped with a stirrer, a water separator, a condenser tube, and a thermometer was charged with 500 parts of tall oil fatty acid (Hartol FA-1 manufactured by Harima Chemicals Co., Ltd.) and 500 parts of tall rosin and heated to 180 ° C. under a nitrogen atmosphere. The temperature was raised. Next, 3.8 parts of magnesium oxide and 2.5 parts of calcium hydroxide were added. After the addition, the mixture was stirred for 30 minutes and cooled to 150 ° C. This was charged with 537 parts of the resol type phenolic resin (solid part 470 parts), temperature increase was started, and 43.8 parts of maleic anhydride was added at 180 ° C., and further at 200 ° C., 112.5 parts of pentaerythritol and glycenline 12 .5 parts was charged and the temperature was raised to 255 ° C. After reacting until the temperature reached a predetermined acid value, viscosity, and solubility, the pressure was reduced at 0.08 MPa for 30 minutes and cooled to obtain a solid rosin-modified phenolic resin 3. The acid value of the resin was 24.2 KOH mg / g, the softening point was 128 ° C., and the n-hexane tolerance was 7.3 g / g.
Comparative Example 4
(ロジン変性フェノール樹脂13の調製)
撹拌機、分水受機、冷却管及び温度計を備えたフラスコに、トール油脂肪酸(ハリマ化成(株)製 ハートールFA-1)250部、トールロジン750部を仕込み、窒素雰囲気下で180℃まで昇温させた。次いで、酸化マグネシウム3.8部、水酸化カルシウム2.5部を添加した。添加後、30分間撹拌を行い、150℃まで冷却させた。ここに前記レゾール型フェノール樹脂493部(固形部432部)を仕込み、昇温を開始し180℃において無水マレイン酸30.8部を仕込み、更に200℃において、ペンタエリスリトール111部、グリセンリン12.3部を仕込み、255℃まで昇温した。昇温して所定の酸価、粘度、溶解性に到達するまで反応した後、0.08MPaで30分間減圧、冷却して固形のロジン変性フェノール樹脂4を得た。当該樹脂の酸価は22.0KOHmg/gであり、軟化点は133℃であり、n-ヘキサントレランスは3.8g/gであった。
(Preparation of rosin-modified phenolic resin 13)
A flask equipped with a stirrer, a water separator, a condenser tube, and a thermometer was charged with 250 parts of tall oil fatty acid (Hartol FA-1 manufactured by Harima Kasei Co., Ltd.) and 750 parts of tall rosin and heated to 180 ° C. under a nitrogen atmosphere. The temperature was raised. Next, 3.8 parts of magnesium oxide and 2.5 parts of calcium hydroxide were added. After the addition, the mixture was stirred for 30 minutes and cooled to 150 ° C. Here, 493 parts of the resol type phenolic resin (432 parts of solid part) was charged, the temperature was raised, 30.8 parts of maleic anhydride was added at 180 ° C., and at 200 ° C., 111 parts of pentaerythritol and 12.3 of glycerin were added. The temperature was raised to 255 ° C. After reacting until the temperature reached a predetermined acid value, viscosity, and solubility, the solution was reduced in pressure at 0.08 MPa for 30 minutes and cooled to obtain a solid rosin-modified phenolic resin 4. The acid value of the resin was 22.0 KOH mg / g, the softening point was 133 ° C., and the n-hexane tolerance was 3.8 g / g.
 調製したオフセットインキ用樹脂を用いて、各種特性評価を行った。各項目の実験条件を下記する。 Various characteristics were evaluated using the prepared resin for offset ink. The experimental conditions for each item are as follows.
[樹脂化結果判断]
各特性値を鑑みて、ロジン変性ポリエステル樹脂が総合的な判断した。
○(良):樹脂がインキに使用可能である。
×(不可):樹脂がインキに使用不可能である。
<印刷インキ用ワニスの調製>
 実施例1~18及び比較例1~4で得られた各樹脂、大豆油白絞油及びAF6(JX日鉱日石エネルギー(株)製、アロマフリー溶剤)を、樹脂:大豆油白絞油:AF6=55:30:15でフラスコに入れ、190℃で1時間撹拌した。次いで、ワニス中大豆油白絞油の割合が30%を下回らないように大豆油白絞油とAF6を追加し、レオメーター(Thermo Haake社製、HAAKE RheoStress 600)による、25℃、1.0Hzでの粘度が100Pa・s程度となるように粘度を調整したインキ用ワニスを得た。
<印刷インキの調製>
 得られた各ワニス60部及び中性カーボンブラック (三菱化学(株)製、RCF♯52)19部を、混合した。次いで、三本ロールミル((株)井上製作所製、S-4 3/4×11)を用いて、中性カーボンブラックをワニスに分散させた。次いで、AF6及びドライヤー(東栄化工(株)製、ナフテン酸コバルト 6%)を添加し、30℃におけるタックが5.0~6.0程度となるように調整して、評価用インキを得た。得られた実施例1~4及び比較例1~4の樹脂、及び各評価用インキ(実施例1~4及び比較例1~4の樹脂をそれぞれ使用)は、下記の方法により評価した。実施例1~18及び比較例1~4の樹脂の樹脂結果判断と併せて、評価結果を表1~表4に示す。
[Judgment result of resinification]
In view of each characteristic value, the rosin-modified polyester resin was comprehensively judged.
○ (good): Resin can be used for ink.
X (impossible): Resin cannot be used for ink.
<Preparation of varnish for printing ink>
Each resin, soybean oil white squeezed oil and AF6 (manufactured by JX Nippon Oil & Energy Corporation, aroma-free solvent) obtained in Examples 1 to 18 and Comparative Examples 1 to 4 were used as resin: soybean oil white squeezed oil: It put into the flask by AF6 = 55: 30: 15, and stirred at 190 degreeC for 1 hour. Next, soybean oil white squeezed oil and AF6 were added so that the ratio of soybean oil white squeezed oil in the varnish was not less than 30%, and a rheometer (manufactured by Thermo Haake, HAAKE Rheo Stress 600), 25 ° C., 1.0 Hz. An ink varnish having a viscosity adjusted to about 100 Pa · s was obtained.
<Preparation of printing ink>
60 parts of each varnish obtained and 19 parts of neutral carbon black (Mitsubishi Chemical Co., Ltd., RCF # 52) were mixed. Subsequently, neutral carbon black was disperse | distributed to the varnish using the three roll mill (Inoue Seisakusho make, S-4 3/4 * 11). Next, AF6 and a dryer (manufactured by Toei Chemical Co., Ltd., cobalt naphthenate 6%) were added and adjusted so that the tack at 30 ° C. was about 5.0 to 6.0 to obtain an ink for evaluation. . The obtained resins of Examples 1 to 4 and Comparative Examples 1 to 4 and the inks for evaluation (using the resins of Examples 1 to 4 and Comparative Examples 1 to 4 respectively) were evaluated by the following methods. The evaluation results are shown in Tables 1 to 4 together with the determination of the resin results of the resins of Examples 1 to 18 and Comparative Examples 1 to 4.
[酸価]
 JIS K5902に準拠して測定した。
[Acid value]
The measurement was performed according to JIS K5902.
[軟化点]
 JIS K5902(環球法)に準拠し、自動軟化点測定装置((株)離合社製 RSP-102)を用いて測定した。
[Softening point]
In accordance with JIS K5902 (ring and ball method), the measurement was performed using an automatic softening point measuring device (RSP-102, manufactured by Rouai Co., Ltd.).
[33%アマニ油粘度]
 アマニ油(日清オイリオグループ(株)製)とロジン変性ポリエステル樹脂とを重量比2:1の割合で配合し、加熱溶解させたものを、ガードナー気泡粘度計を用いて25℃で測定した粘度をいう。
[33% linseed oil viscosity]
Viscosity of linseed oil (manufactured by Nissin Oilio Group Co., Ltd.) and rosin-modified polyester resin in a ratio of 2: 1 by weight and dissolved by heating at 25 ° C. using a Gardner bubble viscometer Say.
[ヘキサントレランス]
 アマニ油(日清オイリオグループ(株)製)とロジン変性ポリエステル樹脂とを重量比2:1の割合で配合し、加熱溶解させたものにノルマルヘキサン(昭和化学(株)製)を加え、白濁するのに要したヘキサン量の比率を測定した。
[Hexane tolerance]
Linseed oil (Nisshin Oillio Group Co., Ltd.) and rosin-modified polyester resin were blended in a ratio of 2: 1 by weight, and normal hexane (Showa Chemical Co., Ltd.) was added to the mixture after heating and dissolving. The ratio of the amount of hexane required to do was measured.
[タック値]
 インキ1カップをインコメーター(東洋精機(株)製)に載せて、400rpmで1分間回転させたときのタック値を測定した。
[Tack value]
One cup of ink was placed on an incometer (manufactured by Toyo Seiki Co., Ltd.), and the tack value when rotated at 400 rpm for 1 minute was measured.
[耐ミスチング]
 インキ2カップをインコメ-タ-(東洋精機(株)製)に載せて、2000rpmで2分間回転させたときの、ロ-ル前面と下面に置いた白色紙上へのインキの飛散状態を10段階に分けて観察した。数値が大きいほど耐ミスチングが良好であることを示す。
[Anti-misting]
10 levels of ink scattering on white paper placed on the front and bottom of the roll when 2 cups of ink are placed on the incomuter (Toyo Seiki Co., Ltd.) and rotated at 2000 rpm for 2 minutes. The observation was divided into two. The larger the value, the better the misting resistance.
[セット乾燥]
 0.2mLのインキをRIテスター4分割ロールでアート紙に展色した後、経時で加圧し、セットが完了するまでの時間を測定した。
[Set drying]
After 0.2 mL of ink was developed on art paper with a RI tester 4-split roll, the ink was pressurized over time, and the time until setting was completed was measured.
[光沢値]
 0.8mLのインキをRIテスター(石川島産業機械(株)製、RI-2)全面ロールでアート紙に展色した。当該アート紙を23℃、50%R.H.にて24時間調湿し、インキ皮膜面の60゜-60゜の反射率を光沢計(太佑機材(株)製、マイクロトリグロス)を用いて測定した。数値が大きいほど光沢が良好であることを示す。
[Gloss value]
0.8 mL of ink was developed on art paper with an entire roll of RI tester (RI-2, manufactured by Ishikawajima Industrial Machinery Co., Ltd.). The art paper was placed at 23 ° C. and 50% R.D. H. And the reflectance of the ink film surface at 60 ° -60 ° was measured using a gloss meter (manufactured by Dazai Equipment Co., Ltd., Micro Trigloss). The larger the value, the better the gloss.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~表4中の樹脂恒数は、実施例1~18及び比較例1~4の樹脂の評価結果であり、表1~表4中のインキ評価結果は、実施例1~18及び比較例1~4の各樹脂を含むインキの評価結果である。表1~表4に示すように、粗トール油及び/又は蒸留トール油を使用した本発明の印刷インキ用樹脂を含む印刷インキは、トール油脂肪酸を用いる場合よりも、乾燥性及び耐ミスチング性を保ちつつ、印刷物に良好な光沢を与えることができることがわかった。また、重合化粗トール油及び/又は重合化蒸留トール油を使用した本発明の印刷インキ用樹脂を含む印刷インキは、トール油脂肪酸を用いる場合よりも、更に乾燥性及び耐ミスチング性を保ちつつ、印刷物に更に良好な光沢を与えることができることがわかった。また、本発明の印刷インキ用樹脂を使用することによって、トレードオフの関係にある複数のインキ性能を良化させることが出来ることがわかった。
Figure JPOXMLDOC01-appb-T000004
The resin constants in Tables 1 to 4 are the evaluation results of the resins of Examples 1 to 18 and Comparative Examples 1 to 4, and the ink evaluation results in Tables 1 to 4 are the results of Examples 1 to 18 and the comparisons. 4 is an evaluation result of inks containing each resin of Examples 1 to 4. As shown in Tables 1 to 4, the printing ink containing the resin for printing inks of the present invention using crude tall oil and / or distilled tall oil has higher drying and misting resistance than the case of using tall oil fatty acid. It was found that the printed matter can be given a good gloss while keeping the color. In addition, the printing ink containing the resin for printing ink of the present invention using the polymerized crude tall oil and / or the polymerized distilled tall oil maintains further drying and misting resistance than the case of using tall oil fatty acid. As a result, it was found that the printed matter can be given further excellent gloss. It has also been found that the use of the printing ink resin of the present invention can improve the performance of a plurality of inks in a trade-off relationship.

Claims (19)

  1.  少なくとも
    (A)粗トール油及び/又は蒸留トール油、或いは、粗トール油及び/又は蒸留トール油とロジンとを含む混合物と、
    (B)多価アルコールと、
    を反応させて得られる、ロジン変性樹脂。
    At least (A) crude tall oil and / or distilled tall oil, or a mixture comprising crude tall oil and / or distilled tall oil and rosin;
    (B) a polyhydric alcohol;
    A rosin-modified resin obtained by reacting
  2. (A)が、粗トール油及び/又は蒸留トール油とロジンとを含む混合物であって、前記混合物における粗トール油及び蒸留トール油の合計の含有量は、0重量%超50重量%以下である、請求項1に記載のロジン変性樹脂。 (A) is a mixture containing crude tall oil and / or distilled tall oil and rosin, and the total content of crude tall oil and distilled tall oil in the mixture is more than 0% by weight and 50% by weight or less. The rosin-modified resin according to claim 1.
  3. (A)が、重合化粗トール油及び/又は重合化蒸留トール油と、ロジンとを含む混合物である、請求項1に記載のロジン変性樹脂。 The rosin-modified resin according to claim 1, wherein (A) is a mixture containing a polymerized crude tall oil and / or a polymerized distilled tall oil and rosin.
  4. 前記混合物における、重合化粗トール油及び重合化蒸留トール油の合計の含有量は、30重量%超90重量%以下である、請求項3に記載のロジン変性樹脂。 The rosin-modified resin according to claim 3, wherein a total content of the polymerized crude tall oil and the polymerized distilled tall oil in the mixture is more than 30% by weight and 90% by weight or less.
  5. 前記重合化粗トール油の重合及び前記重合化蒸留トール油の重合は、触媒の存在下で実施される、請求項3に記載のロジン変性樹脂。 The rosin-modified resin according to claim 3, wherein the polymerization of the polymerized crude tall oil and the polymerization of the polymerized distilled tall oil are performed in the presence of a catalyst.
  6. 前記触媒が、ギ酸、酢酸、リン酸、硫酸、フェノールスルホン酸、パラトルエンスルホン酸、メタンスルホン酸、スルホコハク酸、5-スルホサリチル酸、4-スルホフタル酸、5-スルホイソフタル酸、その他のカルボキシル化スルホン酸、アルキル基で置換されたアリールスルホン酸、スルホン酸基を有する固体酸、フルオロスルホン酸、トリフルオロメタンスルホン酸、ポリスチレンスルホン酸やポリビニルスルホン酸又はスルホン酸型官能基を有するフッ素系ポリマー等のペンダントスルホン酸基を有する高分子フッ化水素、クレイ、塩化亜鉛、塩化アルミニウム、四塩化チタン、三フッ化ホウ素及び三フッ化ホウ素フェノール錯体、三フッ化ホウ素ジメチルエーテル錯体又は三フッ化ホウ素ジエチルエーテル錯体等の三フッ化ホウ素誘導体からなる群より選ばれる少なくとも1種である、請求項5に記載のロジン変性樹脂。 The catalyst is formic acid, acetic acid, phosphoric acid, sulfuric acid, phenolsulfonic acid, paratoluenesulfonic acid, methanesulfonic acid, sulfosuccinic acid, 5-sulfosalicylic acid, 4-sulfophthalic acid, 5-sulfoisophthalic acid, and other carboxylated sulfones. Pendants such as acids, arylsulfonic acids substituted with alkyl groups, solid acids having sulfonic acid groups, fluorosulfonic acids, trifluoromethanesulfonic acids, polystyrene sulfonic acids, polyvinyl sulfonic acids, or fluorinated polymers having sulfonic acid type functional groups Polymer hydrogen fluoride having sulfonic acid group, clay, zinc chloride, aluminum chloride, titanium tetrachloride, boron trifluoride and boron trifluoride phenol complex, boron trifluoride dimethyl ether complex or boron trifluoride diethyl ether complex, etc. No borotrifluoride It is at least one selected from the group consisting of derivatives, rosin-modified resin according to claim 5.
  7. 少なくとも
    (A)粗トール油及び/又は蒸留トール油、或いは、粗トール油及び/又は蒸留トール油とロジンとを含む混合物と、
    (B)多価アルコールと、
    (C)レゾール型フェノール樹脂と、
    を反応させて得られる、請求項1に記載のロジン変性樹脂。
    At least (A) crude tall oil and / or distilled tall oil, or a mixture comprising crude tall oil and / or distilled tall oil and rosin;
    (B) a polyhydric alcohol;
    (C) a resol type phenol resin;
    The rosin-modified resin according to claim 1, which is obtained by reacting.
  8. (A)が、重合化粗トール油及び/又は重合化蒸留トール油、或いは、重合化粗トール油及び/又は重合化蒸留トール油とロジンとを含む混合物である、請求項7に記載のロジン変性樹脂。 The rosin according to claim 7, wherein (A) is a polymerized crude tall oil and / or polymerized distilled tall oil, or a mixture comprising polymerized crude tall oil and / or polymerized distilled tall oil and rosin. Modified resin.
  9. (A)が、重合化粗トール油及び/又は重合化蒸留トール油とロジンとを含む混合物であって、前記混合物における、重合化粗トール油及び重合化蒸留トール油の合計の含有量は、50重量%以上100重量%以下である、請求項8に記載のロジン変性樹脂。 (A) is a mixture comprising polymerized crude tall oil and / or polymerized distilled tall oil and rosin, and the total content of the polymerized crude tall oil and polymerized distilled tall oil in the mixture is: The rosin-modified resin according to claim 8, which is 50% by weight or more and 100% by weight or less.
  10. 前記重合化粗トール油の重合及び前記重合化蒸留トール油の重合は、触媒の存在下で実施される、請求項8に記載のロジン変性樹脂。 The rosin-modified resin according to claim 8, wherein the polymerization of the polymerized crude tall oil and the polymerization of the polymerized distilled tall oil are performed in the presence of a catalyst.
  11. 前記触媒が、ギ酸、酢酸、リン酸、硫酸、フェノールスルホン酸、パラトルエンスルホン酸、メタンスルホン酸、スルホコハク酸、5-スルホサリチル酸、4-スルホフタル酸、5-スルホイソフタル酸、その他のカルボキシル化スルホン酸、アルキル基で置換されたアリールスルホン酸、スルホン酸基を有する固体酸、フルオロスルホン酸、トリフルオロメタンスルホン酸、ポリスチレンスルホン酸やポリビニルスルホン酸又はスルホン酸型官能基を有するフッ素系ポリマー等のペンダントスルホン酸基を有する高分子フッ化水素、クレイ、塩化亜鉛、塩化アルミニウム、四塩化チタン、三フッ化ホウ素及び三フッ化ホウ素フェノール錯体、三フッ化ホウ素ジメチルエーテル錯体又は三フッ化ホウ素ジエチルエーテル錯体等の三フッ化ホウ素誘導体からなる群より選ばれる少なくとも1種である、請求項9に記載のロジン変性樹脂。 The catalyst is formic acid, acetic acid, phosphoric acid, sulfuric acid, phenolsulfonic acid, paratoluenesulfonic acid, methanesulfonic acid, sulfosuccinic acid, 5-sulfosalicylic acid, 4-sulfophthalic acid, 5-sulfoisophthalic acid, and other carboxylated sulfones. Pendants such as acids, arylsulfonic acids substituted with alkyl groups, solid acids having sulfonic acid groups, fluorosulfonic acids, trifluoromethanesulfonic acids, polystyrene sulfonic acids, polyvinyl sulfonic acids, or fluorinated polymers having sulfonic acid type functional groups Polymer hydrogen fluoride having sulfonic acid group, clay, zinc chloride, aluminum chloride, titanium tetrachloride, boron trifluoride and boron trifluoride phenol complex, boron trifluoride dimethyl ether complex or boron trifluoride diethyl ether complex, etc. No trifluoride It is at least one selected from the group consisting of derivatives, rosin-modified resin according to claim 9.
  12.  (C)が、C~C20アルキル基を有するフェノール類の反応物である、請求項7に記載のロジン変性フェノール樹脂。 The rosin-modified phenolic resin according to claim 7, wherein (C) is a reaction product of a phenol having a C 1 to C 20 alkyl group.
  13.  前記粗トール油及び/又は蒸留トール油が松由来である、請求項1に記載のロジン変性樹脂。 The rosin-modified resin according to claim 1, wherein the crude tall oil and / or distilled tall oil is derived from pine.
  14.  (B)が、グリセリン及び/又はペンタエリスリトールである、請求項1に記載のロジン変性樹脂。 The rosin-modified resin according to claim 1, wherein (B) is glycerin and / or pentaerythritol.
  15. 請求項1に記載のロジン変性樹脂と、乾性油又は半乾性油と、溶剤とを含有することを特徴とする印刷インキ用ワニス。 A varnish for printing ink, comprising the rosin-modified resin according to claim 1, a drying oil or semi-drying oil, and a solvent.
  16. 請求項1に記載のロジン変性樹脂と、乾性油又は半乾性油と、溶剤と、ゲル化剤と、顔料とを含有することを特徴とする印刷インキ。 A printing ink comprising the rosin-modified resin according to claim 1, a drying oil or semi-drying oil, a solvent, a gelling agent, and a pigment.
  17. 粗トール油及び/又は蒸留トール油を触媒下において100~200℃の温度条件にて重合化する第1工程と、
    少なくとも、重合化粗トール油及び/又は重合化蒸留トール油、或いは、粗トール油及び/又は蒸留トール油とロジンとを含む混合物と、多価アルコールとを反応させる第2工程と、
    を含むことを特徴とするロジン変性樹脂の製造方法。
    A first step of polymerizing crude tall oil and / or distilled tall oil under a temperature condition of 100 to 200 ° C. under a catalyst;
    A second step of reacting at least a polymerized crude tall oil and / or polymerized distilled tall oil, or a mixture comprising crude tall oil and / or distilled tall oil and rosin, and a polyhydric alcohol;
    A process for producing a rosin-modified resin, comprising:
  18.  前記第2行程は、重合化粗トール油及び/又は重合化蒸留トール油と、レゾール型フェノール樹脂と、多価アルコールとを反応させる工程を含む、請求項17に記載のロジン変性樹脂の製造方法。 The method for producing a rosin-modified resin according to claim 17, wherein the second step includes a step of reacting a polymerized crude tall oil and / or a polymerized distilled tall oil, a resol type phenol resin, and a polyhydric alcohol. .
  19.  前記第2行程は、粗トール油及び/又は蒸留トール油とロジンとを含む混合物と、レゾール型フェノール樹脂と、多価アルコールとを反応させる工程を含む、請求項17に記載のロジン変性樹脂の製造方法。 The rosin-modified resin according to claim 17, wherein the second step includes a step of reacting a mixture containing crude tall oil and / or distilled tall oil and rosin, a resol type phenol resin, and a polyhydric alcohol. Production method.
PCT/JP2016/086438 2015-12-09 2016-12-07 Resin for printing ink, varnish for printing ink, printing ink, and process for producing resin for printing ink WO2017099146A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017555114A JP6773681B2 (en) 2015-12-09 2016-12-07 Manufacturing method of printing ink resin, printing ink varnish, printing ink and printing ink resin
CN201680072042.3A CN108368243B (en) 2015-12-09 2016-12-07 Resin for printing ink, varnish for printing ink, and method for producing resin for printing ink

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015240128 2015-12-09
JP2015-240128 2015-12-09
JP2015-250390 2015-12-22
JP2015250390 2015-12-22
JP2016024339 2016-02-12
JP2016-024339 2016-02-12

Publications (1)

Publication Number Publication Date
WO2017099146A1 true WO2017099146A1 (en) 2017-06-15

Family

ID=59013247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086438 WO2017099146A1 (en) 2015-12-09 2016-12-07 Resin for printing ink, varnish for printing ink, printing ink, and process for producing resin for printing ink

Country Status (3)

Country Link
JP (1) JP6773681B2 (en)
CN (1) CN108368243B (en)
WO (1) WO2017099146A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110501A1 (en) * 2018-11-30 2020-06-04 サカタインクス株式会社 Ink composition for offset printing, method for producing same, and method for producing printed matter in which same is used
JP2020164560A (en) * 2019-03-28 2020-10-08 東洋インキScホールディングス株式会社 Rosin-modified polyester resin for active energy ray-curable lithographic printing ink, active energy ray-curable lithographic printing ink, and printed matter
JP2021098770A (en) * 2019-12-20 2021-07-01 東洋インキScホールディングス株式会社 Active energy ray-curable ink composition and printed matter of the same
JP7164782B1 (en) 2021-08-19 2022-11-02 東洋インキScホールディングス株式会社 Active energy ray-curable coating varnish and laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647303B (en) * 2020-06-30 2022-10-14 湖南科茂林化有限公司 Phenolic-free rosin ester resin for offset printing ink and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269752A (en) * 2003-03-10 2004-09-30 Harima Chem Inc Rosin-modified phenol resin, gel varnish, printing ink and printing method each using the same resin and method for producing rosin-modified phenol resin
JP2004300400A (en) * 2003-03-28 2004-10-28 Hitachi Kasei Polymer Co Ltd Resin for offset ink
JP2010285520A (en) * 2009-06-10 2010-12-24 Harima Chem Inc Varnish for printing ink, and printing ink composition
JP2011184660A (en) * 2010-03-11 2011-09-22 Arakawa Chem Ind Co Ltd Rosin-modified phenol resin, method for producing the same and printing ink
WO2014024549A1 (en) * 2012-08-09 2014-02-13 ハリマ化成株式会社 Resin for offset printing ink
WO2014041890A1 (en) * 2012-09-13 2014-03-20 Dicグラフィックス株式会社 Rosin-modified phenolic resin, ink varnish composition, and print ink
JP2015189894A (en) * 2014-03-28 2015-11-02 東洋インキScホールディングス株式会社 Resin for lithographic printing ink and lithographic printing ink composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886128A (en) * 1997-06-17 1999-03-23 Union Camp Corporation Modified phenolic resin and uses related thereto
US6469125B1 (en) * 2001-08-27 2002-10-22 Arizona Chemical Company Tall oil pitch-modified phenolic resin and methods related thereto
RU2266921C1 (en) * 2004-06-25 2005-12-27 Добровинский Лев Абрамович Method for preparing alkyde resin
FI121626B (en) * 2009-01-29 2011-02-15 Stora Enso Oyj Process for making olefinic monomers
CN102070437B (en) * 2011-01-06 2013-06-26 陈春林 Method for polymerizing unsaturated fatty acid in presence of water
EP2847248B1 (en) * 2012-05-08 2016-07-13 DSM IP Assets B.V. Resin, composition and use
CN103910842B (en) * 2013-01-09 2016-08-03 华奇(中国)化工有限公司 A kind of tall oil modified alkyd resin and its preparation method and application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269752A (en) * 2003-03-10 2004-09-30 Harima Chem Inc Rosin-modified phenol resin, gel varnish, printing ink and printing method each using the same resin and method for producing rosin-modified phenol resin
JP2004300400A (en) * 2003-03-28 2004-10-28 Hitachi Kasei Polymer Co Ltd Resin for offset ink
JP2010285520A (en) * 2009-06-10 2010-12-24 Harima Chem Inc Varnish for printing ink, and printing ink composition
JP2011184660A (en) * 2010-03-11 2011-09-22 Arakawa Chem Ind Co Ltd Rosin-modified phenol resin, method for producing the same and printing ink
WO2014024549A1 (en) * 2012-08-09 2014-02-13 ハリマ化成株式会社 Resin for offset printing ink
WO2014041890A1 (en) * 2012-09-13 2014-03-20 Dicグラフィックス株式会社 Rosin-modified phenolic resin, ink varnish composition, and print ink
JP2015189894A (en) * 2014-03-28 2015-11-02 東洋インキScホールディングス株式会社 Resin for lithographic printing ink and lithographic printing ink composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110501A1 (en) * 2018-11-30 2020-06-04 サカタインクス株式会社 Ink composition for offset printing, method for producing same, and method for producing printed matter in which same is used
JP2020084126A (en) * 2018-11-30 2020-06-04 サカタインクス株式会社 Ink composition for offset printing and manufacturing method therefor, and manufacturing method of printed matter using the same
JP7309347B2 (en) 2018-11-30 2023-07-18 サカタインクス株式会社 Ink composition for offset printing, method for producing the same, and method for producing printed matter using the same
JP2020164560A (en) * 2019-03-28 2020-10-08 東洋インキScホールディングス株式会社 Rosin-modified polyester resin for active energy ray-curable lithographic printing ink, active energy ray-curable lithographic printing ink, and printed matter
JP7163844B2 (en) 2019-03-28 2022-11-01 東洋インキScホールディングス株式会社 Rosin-modified polyester resin for active energy ray-curable lithographic printing ink, active energy ray-curable lithographic printing ink, and printed matter
JP2021098770A (en) * 2019-12-20 2021-07-01 東洋インキScホールディングス株式会社 Active energy ray-curable ink composition and printed matter of the same
JP7342683B2 (en) 2019-12-20 2023-09-12 東洋インキScホールディングス株式会社 Active energy ray-curable ink composition and its printed matter
JP7164782B1 (en) 2021-08-19 2022-11-02 東洋インキScホールディングス株式会社 Active energy ray-curable coating varnish and laminate
JP2023029202A (en) * 2021-08-19 2023-03-03 東洋インキScホールディングス株式会社 Active-energy-ray-curable coating varnish, and laminate

Also Published As

Publication number Publication date
CN108368243B (en) 2021-08-20
JPWO2017099146A1 (en) 2018-09-27
JP6773681B2 (en) 2020-10-21
CN108368243A (en) 2018-08-03

Similar Documents

Publication Publication Date Title
JP6773681B2 (en) Manufacturing method of printing ink resin, printing ink varnish, printing ink and printing ink resin
JP5582419B2 (en) Rosin-modified phenolic resin, its production method and printing ink
JP5648813B2 (en) Rosin-modified phenolic resin, production method thereof, varnish for printing ink, and printing ink
JP5682444B2 (en) Rosin-modified phenolic resin, varnish for printing ink, and printing ink
JP6040686B2 (en) Rosin polyhydric alcohol ester resin, ink emulsification suitability improver, varnish for offset printing ink and ink composition for offset printing
JP6098932B2 (en) Resin composition for printing ink, varnish for printing ink, and printing ink
JP5796274B2 (en) Rosin-modified phenolic resin, its production method and printing ink
JP5543676B1 (en) Rosin-modified phenolic resin, varnish composition for ink and printing ink
WO2012070093A1 (en) Process for manufacturing rosin-modified phenol resin for offset printing ink and process for manufacturing varnish for offset printing ink
JP2019019317A (en) Manufacturing method of rosin-modified phenol resin for offset printing ink, rosin-modified phenol resin for offset printing ink, varnish for offset printing ink, and offset printing ink
JP6103482B2 (en) Offset printing rosin-modified phenolic resin, gel varnish for offset printing ink, and offset printing ink
JP5050338B2 (en) New petroleum resin-containing rosin-modified phenolic resin
JP6284033B2 (en) Method for producing rosin-modified phenolic resin for offset printing ink, gel varnish for offset printing ink, and offset printing ink
JP5708946B2 (en) Printing ink binder, printing ink varnish and printing ink
JP5464945B2 (en) Oxidation-stable rosin-modified phenolic resin and varnish for printing ink containing the same
JP6061141B2 (en) Composition for offset printing ink binder, gel varnish for offset printing ink, offset printing ink
JP2004300399A (en) Rosin-modified phenol resin
JP2017171892A (en) Rosin modified phenol resin for offset printing, varnish for offset printing ink and offset printing ink
JP2023143757A (en) Rosin-modified phenol resin, varnish for printing ink, printing ink and printed matter
JP4734600B2 (en) Resin for printing ink
JP2005154703A (en) Resin varnish for printing ink and method for producing the same
JP2019048971A (en) Varnish composition for off-set printing ink, and off-set printing ink
JP2009242648A (en) Rosin-modified phenolic resin, manufacturing method, printing ink resin varnish and printing ink
JP2005154704A (en) Method for producing print ink resin varnish
JP2014185324A (en) Rosin-modified phenol resin, binder resin for offset printing ink, resin varnish composition for offset printing ink and offset printing ink composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555114

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873039

Country of ref document: EP

Kind code of ref document: A1