WO2014041890A1 - Rosin-modified phenolic resin, ink varnish composition, and print ink - Google Patents

Rosin-modified phenolic resin, ink varnish composition, and print ink Download PDF

Info

Publication number
WO2014041890A1
WO2014041890A1 PCT/JP2013/069416 JP2013069416W WO2014041890A1 WO 2014041890 A1 WO2014041890 A1 WO 2014041890A1 JP 2013069416 W JP2013069416 W JP 2013069416W WO 2014041890 A1 WO2014041890 A1 WO 2014041890A1
Authority
WO
WIPO (PCT)
Prior art keywords
rosin
mass
phenolic resin
modified phenolic
ink
Prior art date
Application number
PCT/JP2013/069416
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 元陽
博 江波戸
Original Assignee
Dicグラフィックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dicグラフィックス株式会社 filed Critical Dicグラフィックス株式会社
Priority to JP2013546476A priority Critical patent/JP5543676B1/en
Publication of WO2014041890A1 publication Critical patent/WO2014041890A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/08Printing inks based on natural resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds

Definitions

  • the present invention is a rosin-modified phenolic resin obtained by reacting polyhydric alcohol and phenol having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position as essential raw material components
  • the present invention relates to an ink varnish composition containing the rosin-modified phenolic resin and a printing ink.
  • offset printing dampening water is attached to a printing plate composed of an oleophilic part and a hydrophilic part, and water is attached to the hydrophilic part.
  • This is a printing method in which an oleophilic part to which oil-based ink adheres is used as an image line part, the ink is transferred to a blanket, and this is transferred again to paper, etc.
  • Offset sheet-fed printing, offset rotary printing, offset newspaper printing, etc. Can be mentioned. While offset printing is a general-purpose printing technique, the performance required of printing ink is very large and complex, and in order to optimize the balance of various performances, the design of ink resins is important.
  • offset printing uses water at the time of printing, so the printing ink needs to have moderate hydrophilicity, but if the hydrophilicity is too high, the ink adheres to the part that should originally be a non-image area.
  • problems such as blurring and the printing surface being difficult to dry and the setting being delayed.
  • the hydrophilicity of the ink is too low, there is a problem that the ink is not placed on the boundary between the hydrophilic portion and the oleophilic portion, and the portion that should originally become the image line portion is not printed.
  • the viscosity and elasticity of the printing ink must be high to some extent. However, when the viscosity is too high, the fluidity is lowered and the printed surface is inferior in gloss.
  • an object of the present invention is to provide a printing ink that is excellent in setability and misting resistance and that can provide a high gloss printing surface, a varnish composition for the printing ink, and a rosin-modified phenolic resin.
  • the present inventors have obtained a rosin-modified phenolic resin obtained by using a phenol having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position. Has optimal emulsification ability and fluidity for printing inks, so that printing inks obtained using this have excellent setability and misting resistance, and a highly glossy printing surface can be obtained. As a result, the present invention has been completed.
  • the present invention relates to a phenol compound (A), rosin or rosin derivative (B), aldehyde (C) and polyhydric alcohol (unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position).
  • the present invention relates to a rosin-modified phenolic resin obtained by reacting D) as an essential raw material component.
  • the present invention further relates to an ink varnish composition containing the rosin-modified phenolic resin and the organic solvent (E) as essential components.
  • the present invention further relates to a printing ink containing the varnish composition for ink and the pigment (F) as essential components.
  • the varnish composition for printing ink, and rosin modification A phenolic resin can be provided.
  • the rosin-modified phenolic resin of the present invention comprises a phenol compound (A), rosin or rosin derivative (B), aldehyde (C) and polyhydric acid having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position. It is obtained by reacting a monohydric alcohol (D) as an essential raw material component.
  • a phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position is used as a raw material for the rosin-modified phenol resin.
  • the phenol compound (A) is represented by the following general formula (1).
  • R represents an unsaturated hydrocarbon group having 10 to 20 carbon atoms
  • R ′ represents a hydrocarbon group having 1 to 4 carbon atoms, a carboxyl group, a hydroxyl group, This represents any substituent selected from the group consisting of methoxy groups, and n represents an integer of 0-2.
  • n represents an integer of 0-2.
  • the said phenol compound (A) may be used individually by 1 type, and may use 2 or more types together.
  • a rosin-modified phenol resin having emulsifiability suitable for ink use can be obtained.
  • the number of carbon atoms is less than 10
  • the resulting rosin-modified phenolic resin has too high hydrophilicity, so that ink adheres or bleeds to the part that should be the non-image area, or the printed surface is Problems such as difficulty in drying and slow setting.
  • the hydrophilicity of the obtained rosin-modified phenolic resin is lowered when it exceeds 20, the ink does not appear on the boundary between the hydrophilic part and the lipophilic part, and the part that should originally become the image line part is not printed. Will occur.
  • a rosin-modified phenol which is more excellent in emulsification ability is obtained, and therefore a phenol having an unsaturated hydrocarbon group having 12 to 18 carbon atoms in the meta position is more preferable, and having 14 to 16 carbon atoms.
  • Particularly preferred is a phenol having an unsaturated hydrocarbon group in the meta position at the meta position.
  • the unsaturated hydrocarbon group having 10 to 20 carbon atoms in the phenol compound (A) used in the present invention has an unsaturated bond
  • the unsaturated bond will be described later.
  • the carboxyl group of rosin or rosin derivative (B) and various hydroxyl groups By reacting with the carboxyl group of rosin or rosin derivative (B) and various hydroxyl groups, a crosslinked structure is formed, and appropriate viscoelasticity and emulsification performance are imparted.
  • the resin having a high molecular weight by the reaction has a characteristic of having a low viscosity while being highly elastic.
  • hydrocarbon groups having unsaturated bonds in the range of 1 to 5 are preferred, and unsaturated bonds in the range of 2 to 3 because a resin for printing ink having excellent fluidity and emulsification suitability can be obtained.
  • the hydrocarbon group is particularly preferable.
  • the most preferable phenol compound (A) is an unsaturated hydrocarbon group having a carbon atom number in the range of 14 to 16 and an unsaturated bond number in the range of 2 to 3.
  • This is a phenol compound (a) having a meta position.
  • Such a compound may be a pure product of the compound represented by the general formula (1) or a compound derived from a natural product such as cardanol.
  • a rosin-modified phenolic resin having high elasticity and low viscosity is obtained, and a printing ink excellent in fluidity and gloss is obtained, and since it is easily available, a compound derived from a natural product such as cardanol is used. It is preferable to use it.
  • cardanol is a mixture of four phenolic compounds having a hydrocarbon group having 15 carbon atoms in the meta position shown in Table 1 below, and the average number of double bonds possessed by the hydrocarbon group is 2. is there.
  • the phenolic compound (A) has a good balance between elasticity and viscosity, and becomes a rosin-modified phenolic resin having excellent fluidity and gloss when inked. Therefore, the total amount of the phenolic compound (A) is 100 parts by mass. In contrast, the phenol compound (a) is preferably contained in an amount of 50 parts by mass or more, and more preferably 75 parts by mass or more.
  • Naturally derived compounds such as cardanol mentioned as the phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position include, for example, urushiaceae such as urushi, mango and cashew. It can be obtained as a component contained in the extract and purified from the plant.
  • urushiaceae such as urushi, mango and cashew. It can be obtained as a component contained in the extract and purified from the plant.
  • cashew shell oil obtained by heating and purifying an oily liquid contained in cashew husks contains the above-mentioned cardanol in higher purity and can be obtained industrially at a low price. To preferred.
  • an extraction product such as cashew shell oil
  • the rosin-modified phenol resin is excellent in emulsification suitability, has a good balance between elasticity and viscosity, and has excellent fluidity and gloss when inked.
  • the phenol compound (A) is preferably used in the range of 0.5 to 40 parts by mass, more preferably in the range of 5 to 35 parts by mass with respect to parts by mass.
  • the phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position is used as the phenol component. If necessary, the phenol compound (A) Other phenol compounds (A ′) other than those may be used in combination.
  • Examples of the other phenol compound (A ′) include phenol, cresol, amylphenol, bisphenol A, p-tert-butylphenol, dibutylphenol, and dimethylphenol.
  • p-tert-butylphenol is preferred because a rosin-modified phenolic resin can be stably produced, a printing ink can be obtained that has excellent setability and anti-misting properties and can provide a high gloss printing surface.
  • a ′ is preferably used in the range of 5 to 70 parts by mass.
  • rosin or rosin derivative (B) used in the present invention will be described.
  • examples of the rosin used in the present invention include gum rosin, tall oil rosin, wood rosin and the like, and these are natural resins.
  • the hydrogenated rosin is obtained by saturating a part or all of the unsaturated bonds by hydrogenating rosin.
  • the polymerized rosin is obtained by polymerizing rosin in the presence of a catalyst such as sulfuric acid, and is a mixture containing not only a dimer but also a monomer and a multimer of trimers or more.
  • the disproportionated rosin is obtained by transferring hydrogen between molecules by heating the rosin or the like to saturate the unsaturated bond of one molecule and simultaneously unsaturate the other saturated bond. .
  • the reinforced rosin is a modified rosin obtained by modifying a rosin with an ⁇ , ⁇ -unsaturated carboxylic acid such as maleic anhydride, fumaric acid or acrylic acid.
  • the rosin ester is a rosin obtained by modifying rosin with a polyhydric alcohol such as glycerin, diglycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, sorbitol. These may be used alone or in combination.
  • a polyhydric alcohol such as glycerin, diglycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, sorbitol.
  • rosins such as gum rosin, tall oil rosin, and wood rosin are preferable because they are excellent in reactivity with other components and are industrially inexpensive, and more, there are many abietane skeletons having unsaturated bond sites. Gum rosin is more preferable because of its high reactivity.
  • aldehyde (C) used in the present invention examples include formaldehyde, acetaldehyde, propionaldehyde and the like.
  • examples of the formaldehyde include decomposition products such as formalin, paraformaldehyde, and trioxane. These may be used alone or in combination. Among these, formaldehyde is preferable and paraformaldehyde is more preferable because of its high reactivity with the phenol compound (A).
  • the aldehyde (C) contains an aldehyde (C) with respect to a total of 1 mol of hydroxyl groups contained in the phenol compound (A) because a rosin-modified phenol resin having excellent misting resistance and emulsification suitability is obtained.
  • the carbonyl group to be used is preferably used in a ratio of 1.5 to 3.0 mol.
  • the phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position and the other phenol compound (A ′) are used in combination, the phenol In such a ratio that the carbonyl group contained in the aldehyde (C) is in the range of 1.5 to 3.0 moles per 1 mole of the total hydroxyl group contained in the compound (A) and the phenol compound (A ′). It is preferable to use it.
  • Examples of the polyhydric alcohol (D) used in the present invention include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, butanediol, hexanediol, octanediol, and nonane.
  • Examples include dihydric alcohols such as diol and neopentyl glycol; trihydric or higher alcohols such as glycerin, diglycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, and sorbitol.
  • the trivalent or higher alcohol is preferable, and glycerin or pentaerythritol is preferable.
  • the polyhydric alcohol (D) can easily adjust the molecular weight of the obtained rosin-modified phenol resin to a preferable value, and has excellent misting resistance and emulsification suitability. Therefore, the rosin or rosin derivative (B ) Is preferably used in such a ratio that the hydroxyl group contained in the polyhydric alcohol (D) is in the range of 0.5 to 1.5 moles with respect to 1 mole of the carboxyl group.
  • the rosin-modified phenolic resin of the present invention may contain vegetable oil or the like as a raw material component in addition to the phenol compound (A), rosin or rosin derivative (B), aldehyde (C) and polyhydric alcohol (D).
  • the vegetable oils used here include, for example, vegetable oils such as linseed oil, tung oil, safflower oil, dehydrated castor oil, soybean oil, and other vegetable oils that have been regenerated after using these vegetable oils for food processing, etc.
  • Examples include vegetable oil fatty acid monoesters such as fatty acid methyl, soybean oil fatty acid methyl, linseed oil fatty acid ethyl, soybean oil fatty acid ethyl, linseed oil fatty acid propyl, soybean oil fatty acid propyl, linseed oil fatty acid butyl, soybean oil fatty acid butyl, and the like. These may be used alone or in combination of two or more. When other raw material components such as vegetable oil are used, the effect of the present invention is remarkably exhibited as a resin having excellent emulsification suitability and fluidity, excellent setability and misting resistance, and high gloss printing ink can be obtained.
  • Examples of the rosin-modified phenolic resin of the present invention include those obtained by any of the following methods (1) to (3).
  • Method (2) A phenol compound (A) having an unsaturated hydrocarbon group having a carbon atom number in the range of 10 to 20 in the meta position, rosin or rosin derivative (B), and aldehyde (C) are reacted, and then a polyhydric alcohol ( A method of adding D) and causing an esterification reaction.
  • Method (3) A condensate obtained by reacting a phenol compound (A) having an unsaturated group having 10 to 20 carbon atoms at the meta position with an aldehyde (C), rosin or a rosin derivative (B) and a polyhydric alcohol (D) A method in which a rosin ester obtained by reacting is separately produced, and then the condensate is reacted with a rosin ester.
  • the condensate obtained by reacting an aldehyde (C) with a phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 atoms in the meta position is, for example, ( ⁇ ) a resole obtained by reacting a phenolic compound (A) having an unsaturated hydrocarbon group having 10 to 20 atoms in the meta position with an aldehyde (C) in the presence of a basic catalyst, ( ⁇ ) A phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 atoms in the meta position and an aldehyde (C) are reacted in the presence of an acidic catalyst in advance, and then an aldehyde (C ) And a novolak resole obtained by reacting in the presence of a basic catalyst.
  • a resol is preferable because a printing ink with little resin coloring and excellent color development can be obtained.
  • the other phenol compound (A ′) when the other phenol compound (A ′) is used, a method of charging and reacting with the phenol compound (A) may be used, or the other phenol compound (A ′).
  • a natural product-derived raw material such as cashew shell oil
  • the other phenol compound (A ′) and aldehyde (C) are reacted.
  • a method of adding a raw material derived from natural products such as cashew shell oil together with polyhydric alcohol (D) may be used.
  • the basic catalyst used is, for example, a metal catalyst such as sodium hydroxide, potassium hydroxide, calcium oxide, calcium hydroxide, zinc oxide, zinc acetate, etc.
  • alkylamines such as ammonia, methylamine, dimethylamine, diethylamine, trimethylamine, ethylamine, diethylamine and triethylamine, and alkanolamines such as ethanolamine, diethanolamine and triethanolamine.
  • the acidic catalyst used is, for example, sulfonic acid such as paratoluenesulfonic acid, dodecylbenzenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, or the like.
  • sulfonic acid such as paratoluenesulfonic acid, dodecylbenzenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, or the like.
  • mineral acids such as sulfuric acid and hydrochloric acid.
  • the molecular weight and solvent solubility of the obtained rosin-modified phenol resin can be easily adjusted, and the rosin-modified phenol is excellent in misting resistance and drying properties.
  • the condensate obtained by reacting the compound (A ′) is preferably in the range of 15 to 70 parts by mass.
  • esterification reaction temperature is preferably 200 ° C. or higher and lower than 300 ° C. Below 200 ° C., the reaction proceeds very slowly and is not suitable for practical use. On the other hand, at 300 ° C. or higher, the decomposition reaction tends to occur, and the desired resin physical properties are difficult to obtain.
  • a catalyst As the catalyst, an acid catalyst or a metal catalyst is used.
  • Known acid catalysts can be used for the esterification reaction.
  • examples thereof include sulfonic acids such as paratoluenesulfonic acid, dodecylbenzenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, and sulfuric acid.
  • sulfonic acids such as paratoluenesulfonic acid, dodecylbenzenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, and sulfuric acid.
  • p-toluenesulfonic acid is preferable from the viewpoints of price and compatibility with the resin.
  • Examples of the metal catalyst used in the esterification reaction include zinc oxide, zinc acetate, magnesium oxide, calcium oxide, calcium hydroxide, and lithium hydroxide.
  • a phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position, rosin or rosin derivative (B), and aldehyde (C) are reacted.
  • a process can be performed more efficiently and in a short time, for example by heating in a sealed state using a pressure-resistant reaction kettle.
  • the phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position can be easily introduced into the resin, and the misting resistance,
  • the method (1) is preferable because a resin having excellent gloss and fluidity can be easily obtained.
  • the acid value is preferably 50 mgKOH / g or less, and more preferably in the range of 1 to 30 mgKOH / g.
  • the weight average molecular weight (Mw) of the rosin-modified phenolic resin of the present invention is preferably in the range of 10,000 to 200,000, and is preferably in the range of 30,000 to 130,000, since it has a viscosity suitable for printing ink applications. More preferably, it is the range.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured by gel permeation chromatography (GPC) under the following conditions.
  • Measuring device “HLC-8320 GPC” manufactured by Tosoh Corporation Column: Guard column “HZ-H” manufactured by Tosoh Corporation + Tosoh Co., Ltd.
  • TSK-GEL SuperHZM-H x 4 detectors: RI (differential refractometer)
  • Data processing “GPC-8320 EcoSEC application” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Developing solvent Tetrahydrofuran Flow rate 0.6 ml / min Standard: The following monodispersed polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8320 EcoSEC application”.
  • the cloudiness temperature of the rosin-modified phenolic resin of the present invention is in the range of 30 to 220 ° C. because it is easy to obtain a printing ink having a sufficiently high viscosity and excellent misting resistance and excellent pigment dispersibility. It is preferable.
  • the cloudiness temperature means that 2 g of rosin-modified phenolic resin and 18 g of an organic solvent (“AF Solvent 6” manufactured by Nippon Oil Corporation) are placed in a glass tube, a magnetic stirrer is added, and the temperature is increased. It is the temperature at which the temperature becomes normal turbidity after being heated and dissolved at 230 ° C., and measured with a fully automatic turbidity measuring device [NOVOCONTROL manufactured by Chemotronic II] under the following conditions. Is the value to be It shows that the solubility to a solvent is so favorable that temperature is low. Holding time: 2 minutes Rotation speed N1: 1100 rpm Rotation speed N2 ... 800rpm Rotation speed N13 ... 1000rpm Holding temperature T1 ... 230 ° C Temperature T3 ... 80 ° C Turbidity detection level 4 Turbidity calibration mode: Ac
  • the ink varnish composition of the present invention contains the rosin-modified phenolic resin and the organic solvent (E) as essential components.
  • Examples of the organic solvent (E) include vegetable oils and petroleum solvents.
  • the vegetable oil includes, for example, vegetable oils such as linseed oil, tung oil, safflower oil, dehydrated castor oil, soybean oil, and regenerated vegetable oils that have been regenerated after these vegetable oils have been used for food processing or the like, as well as linseed oil fatty acid methyl
  • the vegetable oil fatty acid monoesters such as soybean oil fatty acid methyl, linseed oil fatty acid ethyl, soybean oil fatty acid ethyl, linseed oil fatty acid propyl, soybean oil fatty acid propyl, linseed oil fatty acid butyl, soybean oil fatty acid butyl, and the like.
  • vegetable oils having unsaturated bonds in the molecules such as linseed oil, tung oil, soybean oil and the like are preferable because an ink having excellent drying properties is obtained, and soybean oil and its regenerated oil are more preferable because of low environmental load. .
  • Examples of the petroleum solvent include, for example, No. 0 solvent, No. 4 solvent, No. 5 solvent, No. 6 solvent, No. 7 solvent, AF solvent No. 4 and AF solvent 5 which are petroleum solvents manufactured by Nippon Oil Corporation. No., AF Solvent No. 6, AF Solvent No. 7 and the like. These may be used alone or in combination of two or more. Among them, since the load on the environment is small, the boiling point of AF Solvent No. 4, AF Solvent No. 5, AF Solvent No. 6, AF Solvent No. 7, etc. is 200 ° C. or higher and the aromatic hydrocarbon content is 1% by mass or less. Some petroleum solvents are preferred.
  • the rosin-modified phenolic resin of the present invention can be used for various printing ink applications, but when used for offset ink applications, the viscosity of the organic solvent (E) in the ink varnish composition can be adjusted. Since it is easy, it is preferably 40 to 75% by mass. At this time, it is preferable to use only vegetable oil as the organic solvent (E) in order to reduce VOC and make ink with a small environmental load. On the other hand, when used for ink applications, such as for web offset printing, where the solvent component is evaporated by hot air to promote setting, there are many cases where a petroleum-based solvent is used more than vegetable oil. In the present invention, vegetable oil and petroleum solvent may be used in an appropriate ratio depending on the purpose.
  • the ink varnish composition of the present invention may contain additives such as a gelling agent and an antioxidant in addition to the organic solvent (E).
  • the gelling agent is used for the purpose of adjusting the viscoelasticity of the ink varnish composition.
  • the gelling agent is used for the purpose of adjusting the viscoelasticity of the ink varnish composition.
  • Various known materials such as isocyanate and isophorone diisocyanate can be used without particular limitation. These may be used alone or in combination of two or more.
  • the amount of the gelling agent used is adjusted according to the target viscoelasticity, but is usually in the range of 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the ink varnish composition.
  • the antioxidant is used for the purpose of preventing skinning of the ink varnish composition, and various known ones such as 2,6-di-tert-butyl-4-methylphenol are used without any particular limitation. it can.
  • the amount of the antioxidant used is determined in consideration of the storage period and the like, but is usually in the range of 0.1 to 1.0 part by mass with respect to 100 parts by mass of the ink varnish composition.
  • the ink varnish composition can be produced by mixing and stirring the above-mentioned components, but when mixing and stirring, these are usually heated to a temperature in the range of 100 ° C to 240 ° C. Thus, each component is dissolved and mixed.
  • the printing ink of the present invention contains the ink varnish composition, that is, the rosin-modified phenol of the present invention, the organic solvent (E), and the pigment (F) as essential components.
  • Examples of the pigment (F) include colored pigments such as yellow, red, indigo or black, and colorless extender pigments.
  • the content of the pigment (F) is preferably in the range of 5 to 55 parts by mass in 100 parts by mass of the printing ink because it has excellent colorability and high fluidity.
  • the printing ink of the present invention may contain various additives such as a wax, a drying accelerator (dryer), a drying inhibitor, in addition to the ink varnish composition and the pigment (F).
  • a drying accelerator dryer
  • a drying inhibitor in addition to the ink varnish composition and the pigment (F).
  • the wax is added for the purpose of improving the friction resistance, anti-blocking property, slipperiness, anti-scratch property, etc. of the ink coating film, such as carnauba wax, wax, lanolin, montan wax, paraffin wax. And natural waxes such as microcrystalline wax; synthetic waxes such as Fischer-Trops wax, polyethylene wax, polypropylene wax, polytetrafluoroethylene wax, polyamide wax, and silicone compound.
  • the content of the wax is excellent in abrasion resistance and blocking resistance, and is excellent in color tone and gloss. Therefore, the content of the wax is in the range of 0.1 to 7.0 parts by mass with respect to 100 parts by mass of the printing ink. Preferably there is.
  • the drying accelerator (dryer) is added for the purpose of improving the drying property of the ink coating film.
  • metals such as cobalt, manganese, lead, iron, and zinc and octylic acid, naphthenic acid, neodecanoic acid are used.
  • metal soaps which are salts with carboxylic acids such as
  • the content of the drying accelerator is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the printing ink because an ink having excellent drying properties can be obtained.
  • the drying inhibitor is added for the purpose of improving storage stability and suppressing skinning, and examples thereof include hydroquinone, methoquinone, tert-butylhydroquinone, and the like.
  • the content of the drying inhibitor is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the printing ink since the ability to suppress skinning is sufficiently exhibited.
  • These various additives added to the printing ink may be added at any stage of the printing ink production as long as they can be uniformly mixed in the printing ink. Specifically, it may be added at the final stage of printing ink production, or may be added in advance at the production stage of the ink varnish composition.
  • the pigment can be stably dispersed and it is easy to adjust the viscosity to be suitable for printing. Therefore, the organic solvent (E) is added in an amount of 10 to 65 to 100 parts by mass of the printing ink. It is preferable to contain in the range of mass parts.
  • the printing ink of the present invention uses, for example, a raw material containing rosin-modified phenol resin, organic solvent (E) and pigment (F) as essential components, using a known ink manufacturing apparatus such as a roll mill, a ball mill, an attritor, or a sand mill. It can be obtained by cooking and preparing meat.
  • a known ink manufacturing apparatus such as a roll mill, a ball mill, an attritor, or a sand mill. It can be obtained by cooking and preparing meat.
  • a part and% are a mass part and the mass%, respectively.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured under the following conditions using a gel permeation chromatograph (GPC).
  • Measuring device “HLC-8320 GPC” manufactured by Tosoh Corporation Column: Guard column “HZ-H” manufactured by Tosoh Corporation + Tosoh Co., Ltd. “TSK-GEL SuperHZM-H” x 4 detectors: RI (differential refractometer)
  • Data processing “GPC-8320 EcoSEC application” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Developing solvent Tetrahydrofuran Flow rate 0.6 ml / min Standard: The following monodispersed polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8320 EcoSEC application”.
  • the cloudiness temperature is a value measured under the following conditions.
  • a glass tube is charged with 2 g of rosin-modified phenolic resin and 18 g of an organic solvent (“AF Solvent No. 6” manufactured by Shin Nippon Oil Co., Ltd.), a magnetic stirrer is added, the temperature is increased by stirring, the solution is dissolved at 230 ° C., and then cooled.
  • the temperature at which the specified turbidity was reached was measured with a fully automatic turbidity point measuring device ["Cemotronic II” manufactured by NOVOCONTROL Co., Ltd.] under the following conditions.
  • Holding time 2 minutes
  • Rotation speed N1 1100 rpm Rotation speed N2 ... 800rpm Rotation speed N13 ... 1000rpm
  • Turbidity detection level 4 Turbidity calibration mode: Ac
  • the maximum emulsification rate is a value measured under the following conditions. Using an emulsification tester (“High Speed Lithotronic Emulsification Tester” manufactured by Novo Control), under the following conditions, continuously measure the torque value when water is gradually added to the sample. When the standard deviation of the latest 10 measured values exceeded 100 after starting to fluctuate stably, the value calculated by the following formula was defined as the maximum emulsification rate.
  • Maximum emulsification rate (%) [Drip amount of water (g)] / [Sample amount (g) ⁇ 100] Conditioning time (preliminary stirring time without adding water) ... 300 sec Stirring speed ... 1200rpm Sample amount ... 25g Temperature ... 40 ° C Dripping amount of water ...
  • N-Heptane tolerance is the amount (mL) of n-heptane that was gradually dropped into 1 g of a sample and dropped to the cloud point where the letters on the newspaper laid under the bottom of the flask disappeared.
  • a four-necked separable flask equipped with a stirrer, a reflux condenser with a separator, and a thermometer was charged with 800 parts by weight of gum rosin and heated to 170 ° C. while blowing nitrogen gas to melt the gum rosin. It was. While stirring the molten gum rosin, the whole amount of the condensate (F-1) solution obtained above and 5 parts by mass of zinc oxide were added, and the temperature was further raised to 220 ° C.
  • the acid value of the obtained rosin-modified phenol resin (1) was 24.0 mgKOH / g, the weight average molecular weight (Mw) was 60,000, and the cloudiness temperature was 180 ° C.
  • the rosin-modified phenol resin (1) is a resin using 1.0% by mass of cardanol with respect to 100 parts by mass of the resin raw material.
  • Example 2-1 Production of rosin-modified phenolic resin (2) In a four-necked flask equipped with a stirrer, a reflux condenser, and a thermometer, 130 parts by mass of pt-butylphenol, 130 parts by mass of cardanol, 92% After charging 85 parts by mass of paraformaldehyde and 187 parts by mass of toluene and heating the contents to 50 ° C., 1.3 parts by mass of 48% aqueous sodium hydroxide solution was added. The contents were further heated to 80 ° C. and reacted for 6 hours, neutralized by adding 1.7 parts by mass of 35% hydrochloric acid, and washed with 51 parts by mass of water. After standing for 7 hours, the aqueous layer was removed to obtain a condensate (F-2) solution.
  • F-2 condensate
  • a four-necked separable flask equipped with a stirrer, a reflux condenser with a separator, and a thermometer was charged with 800 parts by weight of gum rosin and heated to 170 ° C. while blowing nitrogen gas to melt the gum rosin. It was. While stirring the molten gum rosin, the whole amount of the condensate (F-2) solution obtained above and 5 parts by mass of zinc oxide were added, and the temperature was further raised to 220 ° C. Next, 72 parts by mass of glycerin was added, and the temperature was raised to 240 ° C. while taking toluene and water out of the reaction system with a reflux condenser with a separator.
  • F-2 condensate
  • the acid value reached 30 mgKOH / g When the acid value reached 30 mgKOH / g, the pressure in the four-necked flask was reduced to 20 mmHg with a vacuum pump, and maintained under reduced pressure for 60 minutes to obtain rosin-modified phenolic resin (2).
  • the acid value of the obtained rosin-modified phenol resin (2) was 25.6 mgKOH / g, the weight average molecular weight (Mw) was 120,000, and the cloudiness temperature was 209 ° C.
  • the rosin-modified phenol resin (2) is a resin using 12.0% by mass of cardanol with respect to 100 parts by mass of the resin raw material.
  • Example 3-1 Production of rosin-modified phenolic resin (3)
  • a stirrer 130 parts by mass of pt-butylphenol, 65 parts by mass of cardanol, 92%
  • a reflux condenser 130 parts by mass of pt-butylphenol, 65 parts by mass of cardanol, 92%
  • a reflux condenser 130 parts by mass of pt-butylphenol, 65 parts by mass of cardanol, 92%
  • 1.1 parts by mass of 48% aqueous sodium hydroxide solution was added.
  • the contents were further heated to 80 ° C. and reacted for 6 hours, neutralized by adding 1.4 parts by mass of 35% hydrochloric acid, and washed with 39 parts by mass of water.
  • the aqueous layer was removed to obtain a condensate (F-3) solution.
  • a four-neck separable flask equipped with a stirrer, a reflux condenser with a separator, and a thermometer was charged with 800 parts by mass of gum rosin and heated to 170 ° C. while blowing nitrogen gas to melt the gum rosin. . While stirring the molten gum rosin, the whole amount of the condensate (F-3) solution obtained above was added, and the temperature was further raised to 215 ° C. Next, 65 parts by mass of glycerin and 8 parts by mass of pentaerythritol were added, and the temperature was raised to 250 ° C. while taking out toluene and water out of the reaction system with a reflux condenser with a separator.
  • the reaction was carried out for 4 hours while maintaining the temperature at 250 ° C., and 0.6 parts by mass of paratoluenesulfonic acid was added when the acid value reached 50 mgKOH / g, followed by further reaction for 5 hours.
  • the pressure in the four-necked flask was reduced to 20 mmHg with a vacuum pump, and kept under reduced pressure conditions for 60 minutes to obtain rosin-modified phenolic resin (3).
  • the acid value of the obtained rosin-modified phenol resin (3) was 21.6 mgKOH / g, the weight average molecular weight (Mw) was 34,000, and the cloudiness temperature was 130 ° C.
  • the rosin-modified phenolic resin (3) is a resin using 6.4% by mass of cardanol with respect to 100 parts by mass of the resin raw material.
  • Example 4-1 Production of rosin-modified phenolic resin (4)
  • a stirrer In a four-necked flask equipped with a stirrer, a reflux condenser, and a thermometer, 54 parts by mass of pt-butylphenol, 433 parts by mass of cardanol, 92%
  • a reflux condenser After 117 parts by mass of paraformaldehyde and 329 parts by mass of toluene were charged and the contents were heated to 50 ° C., 1.8 parts by mass of 48% aqueous sodium hydroxide solution was added.
  • the contents were further heated to 70 ° C., reacted for 6 hours, neutralized by adding 2.4 parts by mass of 35% hydrochloric acid, and washed with 90 parts by mass of water. After standing for 7 hours, the aqueous layer was removed to obtain a condensate (F-4) solution.
  • F-4 condensate
  • a four-neck separable flask equipped with a stirrer, a reflux condenser with a separator, and a thermometer was charged with 800 parts by mass of gum rosin and heated to 170 ° C. while blowing nitrogen gas to melt the gum rosin. .
  • the entire amount of the condensate (F-4) solution obtained above and 5 parts by mass of zinc oxide were added to the gum rosin, and the temperature was further raised to 220 ° C.
  • 58 parts by mass of glycerin was added, and the temperature was raised to 240 ° C. while taking toluene and water out of the reaction system with a reflux condenser with a separator.
  • the reaction was further carried out while maintaining the temperature at 240 ° C., and when the acid value reached 30 mgKOH / g, the inside of the four-necked flask was reduced to 20 mmHg with a vacuum pump, and kept under reduced pressure for 60 minutes, and rosin-modified phenol Resin (4) was obtained.
  • the acid value of the obtained rosin-modified phenol resin (4) was 27.2 mgKOH / g, the weight average molecular weight (Mw) was 100,000, and the cloudiness temperature was 161 ° C.
  • the rosin-modified phenol resin (4) is a resin using 33.2% by mass of cardanol with respect to 100 parts by mass of the resin raw material.
  • Example 5-1 Production of rosin-modified phenolic resin (5)
  • a stirrer a reflux condenser, and a thermometer
  • 78 parts by mass of pt-butylphenol 544 parts by mass of cardanol
  • 92% After charging 152 parts by mass of paraformaldehyde and 421 parts by mass of toluene and heating the contents to 50 ° C., 2.4 parts by mass of 48% aqueous sodium hydroxide solution was added.
  • the contents were further heated to 80 ° C., reacted for 6 hours, neutralized by adding 3 parts by mass of 35% hydrochloric acid, and washed with 115 parts by mass of water. After standing for 7 hours, the aqueous layer was removed to obtain a condensate (F-5) solution.
  • a four-neck separable flask equipped with a stirrer, a reflux condenser with a separator, and a thermometer was charged with 800 parts by mass of gum rosin and heated to 170 ° C. while blowing nitrogen gas to melt the gum rosin. .
  • the whole amount of the condensate (F-5) solution obtained above and 5 parts by mass of zinc oxide were added, and the temperature was further raised to 220 ° C.
  • 69 parts by mass of glycerin was added, and the temperature was raised to 240 ° C. while taking toluene and water out of the reaction system with a reflux condenser with a separator.
  • the reaction was carried out while maintaining the temperature at 240 ° C., and when the acid value reached 30 mg KOH / g, the pressure in the four-necked flask was reduced to 20 mmHg with a vacuum pump, and the pressure was maintained for 60 minutes under the reduced pressure condition. (5) was obtained.
  • the acid value of the obtained rosin-modified phenol resin (5) was 28.0, the weight average molecular weight (Mw) was 80,000, and the cloudiness temperature was 158 ° C.
  • the rosin-modified phenol resin (5) is a resin using 36.6% by mass of cardanol with respect to 100 parts by mass of the resin raw material.
  • Table 1 summarizes the property values of rosin-modified phenolic resins (1) to (5) and (1 ').
  • Example 1-2 Production of Varnish Composition for ink (1) 40 parts by mass of crushed rosin-modified phenolic resin (1) obtained in Example 1-1, 30 parts by mass of soybean oil, and an organic solvent (new 30 parts by weight of Nippon Oil Co., Ltd. “AF Solvent No. 7”) is put into a four-necked separable flask, the contents are heated to 210 ° C. while blowing nitrogen gas, stirred for 1 hour, and then cooled to 130 ° C. did. 1.1 parts by mass of a gelling agent solution [a solution obtained by dissolving a gelling agent (“ALCH” manufactured by Kawaken Fine Chemical Co., Ltd.) with an equal amount of organic solvent (“AF Solvent No.
  • the temperature was raised to 160 ° C. and kept for 1 hour to obtain an ink varnish composition (1).
  • the resulting ink varnish composition had a cell viscosity of 6,000 dPa ⁇ s, a maximum emulsification rate (EC%) of 40%, and a heptane tolerance of 16 mL.
  • Example 2-2 to 5-2 and Comparative Example 1-2 The rosin-modified phenolic resin (1) is changed to the rosin-modified phenolic resin (2) to (5) or (1 ′) so that the bubble viscosity of the contents is in the range of 6,000 to 8,000 dPa ⁇ s.
  • Table 1 shows the cell viscosity, maximum emulsification rate (EC%), and heptane tolerance of the resulting ink varnish compositions (2) to (5) and (1 ′).
  • Example 1-3 Production of Printing Ink (1) 40 parts by mass of the ink varnish composition (1) obtained in Example 1-2 and 40 parts by mass of a yellow flash base were kneaded with a three roll, An organic solvent (“AF Solvent No. 4” manufactured by Shin Nippon Oil Co., Ltd.) was gradually added and adjusted so that the Raleigh viscosity was 13 to 18 Pa ⁇ s to obtain a printing ink (1).
  • An organic solvent (“AF Solvent No. 4” manufactured by Shin Nippon Oil Co., Ltd.) was gradually added and adjusted so that the Raleigh viscosity was 13 to 18 Pa ⁇ s to obtain a printing ink (1).
  • “20% or more and 90% or less” is a level at which appropriate ink emulsification can be performed, and ink smear is hardly generated in the portion where the ink should be placed on the image area and become the non-image area.
  • “Over 90% and 130% or less, or 10% or more and less than 20%”, so that a certain level of ink can be emulsified, and the ink should be placed on the image area to become a non-image area. Ink smear is at a level where there is no practical problem.
  • Gloss of printed surface 0.4 ml of the obtained printing ink (1) was developed on art paper using an RI tester, and this art paper was dried in an oven at 130 ° C. for 15 seconds to obtain an ink coating film. .
  • the 60 ° -60 ° reflectivity of the ink coating surface was measured by a gloss meter (“micro TRI gloss 4520” manufactured by BYK) and evaluated according to the following criteria.
  • Gloss is slightly superior (60% or more and less than 70%)
  • Gloss is at a practical level (55% or more and less than 60%)
  • X The gloss does not reach a practical level (less than 55%)
  • -Setting property 0.4 mL of the obtained printing ink (1) was developed on art paper using an RI tester, and this art paper was dried in an oven at 130 ° C for 15 seconds to obtain an ink coating film.
  • the dry touch state of the ink coating film was determined according to the following criteria. ⁇ : The printing surface layer and the inside of the printing surface layer are dry well and have no stickiness. X: The printing surface layer part and the inside of the printing surface layer are poorly dry and sticky.
  • Example 2-3 to 5-3 and Comparative Example 1-3 Printing inks (2) to (5) were prepared in the same manner as in Example 1-3 except that the ink varnish composition (1) was changed to the ink varnish compositions (2) to (5) or (1 ′). ) And (1 ′) were obtained, and various evaluation tests were conducted in the same manner as in Example 1-3. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

The purpose of the present invention is to provide a print ink that has excellent setting and antimisting properties and yields a high-gloss print surface, and a varnish composition for the print ink, as well as a rosin-modified phenolic resin. The problem is solved by using a rosin-modified phenolic resin obtained by reacting, as essential stock components, a phenolic compound (A) having a C10-20 unsaturated hydrocarbon group at the meta-position, a rosin (B), an aldehyde (C), and a polyhydric alcohol (D).

Description

ロジン変性フェノール樹脂、インキ用ワニス組成物及び印刷インキRosin-modified phenolic resin, varnish composition for ink and printing ink
 本発明は、多価アルコール及び炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノールを必須の原料成分として反応させて得られることを特徴とするロジン変性フェノール樹脂、該ロジン変性フェノール樹脂を含有するインキ用ワニス組成物及び印刷インキに関する。 The present invention is a rosin-modified phenolic resin obtained by reacting polyhydric alcohol and phenol having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position as essential raw material components The present invention relates to an ink varnish composition containing the rosin-modified phenolic resin and a printing ink.
 オフセット印刷は、親油性部と親水性部によって構成される印刷版に湿し水を付着させ、親水性部に水を付着させることにより、油性インキが付着しない親水性部を非画線部とし、油性インキが付着する親油性部を画線部として、そのインキをブランケットに転写し、これを紙等に再度転写する印刷方式であり、オフセット枚葉印刷、オフセット輪転印刷、オフセット新聞印刷等が挙げられる。オフセット印刷は汎用な印刷手法である反面、印刷インキに求められる性能は非常に多く複雑であり、様々な性能のバランスを最適化するためには、インキ用樹脂の設計が重要である。 In offset printing, dampening water is attached to a printing plate composed of an oleophilic part and a hydrophilic part, and water is attached to the hydrophilic part. This is a printing method in which an oleophilic part to which oil-based ink adheres is used as an image line part, the ink is transferred to a blanket, and this is transferred again to paper, etc. Offset sheet-fed printing, offset rotary printing, offset newspaper printing, etc. Can be mentioned. While offset printing is a general-purpose printing technique, the performance required of printing ink is very large and complex, and in order to optimize the balance of various performances, the design of ink resins is important.
 例えば、オフセット印刷は印刷時に水を用いることから、印刷インキは適度な親水性を有する必要があるが、親水性が高すぎる場合には、本来非画線部となるべき部分へのインキの付着或いはにじみが生じたり、印刷面が乾きにくくセットが遅くなるなどする問題が発生する。一方、インキの親水性が低すぎる場合には、親水性部と親油性部との境界にインキが載らず、本来画線部となるべき部分が印刷されない問題が発生する。また、印刷時のミスチングを防ぐためには印刷インキの粘性及び弾性がある程度高い必要があるが、粘性が高すぎる場合には流動性が低下するために印刷面の光沢に劣るものとなる。 For example, offset printing uses water at the time of printing, so the printing ink needs to have moderate hydrophilicity, but if the hydrophilicity is too high, the ink adheres to the part that should originally be a non-image area. Alternatively, there are problems such as blurring and the printing surface being difficult to dry and the setting being delayed. On the other hand, when the hydrophilicity of the ink is too low, there is a problem that the ink is not placed on the boundary between the hydrophilic portion and the oleophilic portion, and the portion that should originally become the image line portion is not printed. Further, in order to prevent misting during printing, the viscosity and elasticity of the printing ink must be high to some extent. However, when the viscosity is too high, the fluidity is lowered and the printed surface is inferior in gloss.
 これら様々な性能を兼備するインキ用樹脂として、原料にオクチルフェノールやノニルフェノール等の中鎖アルキル基を有するフェノール化合物を用いる方法が従来から知られている。しかしながら、昨今これらの化合物に環境ホルモンの疑いがあることが分かり、欧州では高懸念物質に指定されるなどの動きがあることから、これらの化合物を使用せずとも高い性能を発揮できる印刷インキ用樹脂が求められている。 As a resin for ink having these various properties, a method using a phenol compound having a medium chain alkyl group such as octylphenol or nonylphenol as a raw material has been conventionally known. However, these compounds have recently been found to be suspected of environmental hormones, and in Europe, there are moves such as being designated as a substance of high concern, so for printing inks that can demonstrate high performance without using these compounds There is a need for resins.
 オクチルフェノールやノニルフェノールを使用しない印刷インキ用樹脂として、3-ペンタデシルフェノールのようなメタ位に炭素原子数10~20のアルキル基を有するフェノール、ガムロジン、ホルムアルデヒド及びグリセリンを反応させて得られる樹脂が知られている(特許文献1参照)。しかしながら、特許文献1に記載の樹脂は、弾性を高めながら粘性を低減させることが難しいため、印刷インキの耐ミスチング性と印刷面の光沢とを両立させることが困難なものであり、例えば、特許文献1の実施例6のように、光沢を向上させるために粘性を下げ流動性の高い樹脂設計とすると、同時に弾性も低下してしまうことから、ミスチングが発生してしまうものであった。また、樹脂構造中に長鎖のアルキル基を多く含むことから溶剤への親和性が高く、印刷面が乾き難いためにセットが遅くなり、印刷の高速化が進む昨今において十分な性能を有するものではなかった。 As resins for printing inks that do not use octylphenol or nonylphenol, there are known resins obtained by reacting phenol, gum rosin, formaldehyde and glycerin having an alkyl group having 10 to 20 carbon atoms at the meta position, such as 3-pentadecylphenol. (See Patent Document 1). However, since the resin described in Patent Document 1 is difficult to reduce viscosity while enhancing elasticity, it is difficult to achieve both the misting resistance of printing ink and the gloss of the printed surface. As in Example 6 of Document 1, if a resin design with a low viscosity and high fluidity is used in order to improve glossiness, the elasticity also decreases at the same time, resulting in misting. In addition, since the resin structure contains many long-chain alkyl groups, it has a high affinity for solvents, and the printing surface is difficult to dry. It wasn't.
 したがって、印刷インキ用として最適な乳化適性と流動性とを有し、これを用いて得られる印刷インキがセット性や耐ミスチング性に優れ、かつ、高光沢の印刷面が得られる印刷インキ用樹脂の開発が求められていた。 Therefore, it has the best emulsification ability and fluidity for printing ink, and the printing ink obtained by using this is excellent in setability and misting resistance, and provides a high gloss printing surface. The development of was demanded.
特開平06-041487号公報(特許第3277520号)Japanese Patent Laid-Open No. 06-041487 (Patent No. 3277520)
 従って、本発明は、セット性や耐ミスチング性に優れ、かつ、高光沢の印刷面が得られる印刷インキ、該印刷インキ用ワニス組成物、及びロジン変性フェノール樹脂を提供することを課題とする。 Therefore, an object of the present invention is to provide a printing ink that is excellent in setability and misting resistance and that can provide a high gloss printing surface, a varnish composition for the printing ink, and a rosin-modified phenolic resin.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノールを用いて得られるロジン変性フェノール樹脂が印刷インキ用として最適な乳化適性と流動性とを有することから、これを用いて得られる印刷インキがセット性や耐ミスチング性に優れたものとなり、かつ、高光沢の印刷面が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have obtained a rosin-modified phenolic resin obtained by using a phenol having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position. Has optimal emulsification ability and fluidity for printing inks, so that printing inks obtained using this have excellent setability and misting resistance, and a highly glossy printing surface can be obtained. As a result, the present invention has been completed.
 即ち、本発明は、炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)、ロジン又はロジン誘導体(B)、アルデヒド(C)及び多価アルコール(D)を必須の原料成分として反応させて得られることを特徴とするロジン変性フェノール樹脂に関する。 That is, the present invention relates to a phenol compound (A), rosin or rosin derivative (B), aldehyde (C) and polyhydric alcohol (unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position). The present invention relates to a rosin-modified phenolic resin obtained by reacting D) as an essential raw material component.
 本発明は、更に、前記ロジン変性フェノール樹脂と有機溶剤(E)とを必須の成分として含有するインキ用ワニス組成物に関する。 The present invention further relates to an ink varnish composition containing the rosin-modified phenolic resin and the organic solvent (E) as essential components.
 本発明は、更に、前記インキ用ワニス組成物と、顔料(F)とを必須の成分として含有する印刷インキに関する。 The present invention further relates to a printing ink containing the varnish composition for ink and the pigment (F) as essential components.
 本発明によれば、乳化適性と流動性とに優れることから、セット性や耐ミスチング性に優れ、高光沢の印刷面を得ることが出来る印刷インキ、該印刷インキ用ワニス組成物、及びロジン変性フェノール樹脂を提供することができる。 According to the present invention, since it is excellent in emulsification suitability and fluidity, it is excellent in setability and misting resistance, and can obtain a highly glossy printed surface, the varnish composition for printing ink, and rosin modification A phenolic resin can be provided.
 本発明のロジン変性フェノール樹脂は、炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)、ロジン又はロジン誘導体(B)、アルデヒド(C)及び多価アルコール(D)を必須の原料成分として反応させて得られるものである。 The rosin-modified phenolic resin of the present invention comprises a phenol compound (A), rosin or rosin derivative (B), aldehyde (C) and polyhydric acid having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position. It is obtained by reacting a monohydric alcohol (D) as an essential raw material component.
 本発明では、ロジン変性フェノール樹脂の原料として、炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)を用いる。該フェノール化合物(A)は、具体的には、下記一般式(1) In the present invention, a phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position is used as a raw material for the rosin-modified phenol resin. Specifically, the phenol compound (A) is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
(式中、Rは炭素原子数が10~20の範囲である不飽和炭化水素基を表し、また、R’は炭素原子数が1~4の範囲である炭化水素基、カルボキシル基、水酸基、メトキシ基からなる群から選択されるいずれかの置換基を示し、nは0~2の整数を表す。)
で表される化合物である。前記フェノール化合物(A)は一種類を単独で用いても良いし、2種類以上を併用しても良い。
Figure JPOXMLDOC01-appb-C000002
(Wherein R represents an unsaturated hydrocarbon group having 10 to 20 carbon atoms, and R ′ represents a hydrocarbon group having 1 to 4 carbon atoms, a carboxyl group, a hydroxyl group, This represents any substituent selected from the group consisting of methoxy groups, and n represents an integer of 0-2.)
It is a compound represented by these. The said phenol compound (A) may be used individually by 1 type, and may use 2 or more types together.
 前記フェノール化合物(A)は、分子構造中に炭素原子数が10~20の範囲である不飽和炭化水素基を有することにより、インキ用途に適した乳化性を有するロジン変性フェノール樹脂が得られる。炭素原子数が10未満の場合には得られるロジン変性フェノール樹脂の親水性が高すぎるものとなるため、本来非画線部となるべき部分へのインキの付着或いはにじみが生じたり、印刷面が乾きにくくセットが遅くなるなどする問題が発生する。また、20を超える場合には得られるロジン変性フェノール樹脂の親水性が低下するため、親水性部と親油性部との境界にインキが載らず、本来画線部となるべき部分が印刷されない問題が発生する。中でも乳化適性により優れるロジン変性フェノールが得られることから炭素原子数が12~18の範囲である不飽和炭化水素基をメタ位に有するフェノールであることがより好ましく、炭素原子数が14~16の範囲である不飽和炭化水素基をメタ位に有するフェノールであることが特に好ましい。 When the phenol compound (A) has an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the molecular structure, a rosin-modified phenol resin having emulsifiability suitable for ink use can be obtained. When the number of carbon atoms is less than 10, the resulting rosin-modified phenolic resin has too high hydrophilicity, so that ink adheres or bleeds to the part that should be the non-image area, or the printed surface is Problems such as difficulty in drying and slow setting. Moreover, since the hydrophilicity of the obtained rosin-modified phenolic resin is lowered when it exceeds 20, the ink does not appear on the boundary between the hydrophilic part and the lipophilic part, and the part that should originally become the image line part is not printed. Will occur. Among them, a rosin-modified phenol which is more excellent in emulsification ability is obtained, and therefore a phenol having an unsaturated hydrocarbon group having 12 to 18 carbon atoms in the meta position is more preferable, and having 14 to 16 carbon atoms. Particularly preferred is a phenol having an unsaturated hydrocarbon group in the meta position at the meta position.
 また、本発明で用いる前記フェノール化合物(A)が有する炭素原子数が10~20の範囲である不飽和炭化水素基は、不飽和結合を有するものであることから、該不飽和結合が後述するロジン又はロジン誘導体(B)のカルボキシル基や、各種水酸基と反応を生じるなどすることにより、架橋構造が形成され、適度な粘弾性や乳化性能が付与される。また、該反応により高分子量化された樹脂は、高弾性でありながら、粘性の低いものとなる特徴を有する。中でも、流動性と乳化適性とに優れる印刷インキ用樹脂が得られることから、不飽和結合を1~5の範囲で有する炭化水素基であることが好ましく、不飽和結合を2~3の範囲で有する炭化水素基であることが特に好ましい。 Further, since the unsaturated hydrocarbon group having 10 to 20 carbon atoms in the phenol compound (A) used in the present invention has an unsaturated bond, the unsaturated bond will be described later. By reacting with the carboxyl group of rosin or rosin derivative (B) and various hydroxyl groups, a crosslinked structure is formed, and appropriate viscoelasticity and emulsification performance are imparted. In addition, the resin having a high molecular weight by the reaction has a characteristic of having a low viscosity while being highly elastic. Of these, hydrocarbon groups having unsaturated bonds in the range of 1 to 5 are preferred, and unsaturated bonds in the range of 2 to 3 because a resin for printing ink having excellent fluidity and emulsification suitability can be obtained. The hydrocarbon group is particularly preferable.
 以上のことから、前記フェノール化合物(A)の最も好ましいものは、炭素原子数が14~16の範囲であり、かつ、不飽和結合の数が2~3の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(a)である。このような化合物は、前記一般式(1)で示した化合物の純粋物、又はカルダノールのような天然物由来の化合物でも良い。本発明では特に、高弾性でありながら粘性の低いロジン変性フェノール樹脂となり、流動性と光沢とに優れる印刷インキが得られる上、入手が容易であることから、カルダノール等の天然物由来の化合物を用いることが好ましい。 From the above, the most preferable phenol compound (A) is an unsaturated hydrocarbon group having a carbon atom number in the range of 14 to 16 and an unsaturated bond number in the range of 2 to 3. This is a phenol compound (a) having a meta position. Such a compound may be a pure product of the compound represented by the general formula (1) or a compound derived from a natural product such as cardanol. Particularly in the present invention, a rosin-modified phenolic resin having high elasticity and low viscosity is obtained, and a printing ink excellent in fluidity and gloss is obtained, and since it is easily available, a compound derived from a natural product such as cardanol is used. It is preferable to use it.
 ここでカルダノールとは、下記表1に示す炭素原子数15の炭化水素基をメタ位に有するフェノール化合物4成分からなる混合物であり、該炭化水素基が有する二重結合数の平均値は2である。 Here, cardanol is a mixture of four phenolic compounds having a hydrocarbon group having 15 carbon atoms in the meta position shown in Table 1 below, and the average number of double bonds possessed by the hydrocarbon group is 2. is there.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記フェノール化合物(A)は、弾性と粘性とのバランスが良く、インキ化した際の流動性と光沢とに優れるロジン変性フェノール樹脂となることから、該フェノール化合物(A)の総量100質量部に対し、前記フェノール化合物(a)を50質量部以上含有することが好ましく、75質量部以上含有することがより好ましい。 The phenolic compound (A) has a good balance between elasticity and viscosity, and becomes a rosin-modified phenolic resin having excellent fluidity and gloss when inked. Therefore, the total amount of the phenolic compound (A) is 100 parts by mass. In contrast, the phenol compound (a) is preferably contained in an amount of 50 parts by mass or more, and more preferably 75 parts by mass or more.
 前記炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)として挙げたカルダノールのような天然由来化合物は、例えば、ウルシやマンゴー、カシュー等のウルシ科の植物から抽出精製物の含有成分として得ることが出来る。このような抽出精製物の中でも、カシュー実の殻に含まれる油状の液体を加熱精製して得られるカシューシェルオイルは、前記カルダノールをより高純度で含有し、かつ、工業的に安価で入手できることから好ましい。 Naturally derived compounds such as cardanol mentioned as the phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position include, for example, urushiaceae such as urushi, mango and cashew. It can be obtained as a component contained in the extract and purified from the plant. Among such extracted and purified products, cashew shell oil obtained by heating and purifying an oily liquid contained in cashew husks contains the above-mentioned cardanol in higher purity and can be obtained industrially at a low price. To preferred.
 前記炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)を含む原料成分として、カシューシェルオイル等の抽出生成物を用いる場合、弾性と粘性とのバランスが良く、インキ化した際の流動性と光沢とに優れるロジン変性フェノール樹脂となることから、カルダノールを50質量%以上含有するものが好ましく、75質量%以上含有するものがより好ましい。 When an extraction product such as cashew shell oil is used as a raw material component containing a phenol compound (A) having an unsaturated hydrocarbon group having a carbon number of 10 to 20 in the meta position, elasticity and viscosity Since it becomes a rosin-modified phenolic resin having a good balance and excellent fluidity and gloss when inked, it preferably contains 50% by mass or more, more preferably 75% by mass or more.
 本発明では、乳化適性に優れ、かつ、弾性と粘性とのバランスが良く、インキ化した際の流動性と光沢とに優れるロジン変性フェノール樹脂となることから、ロジン変性フェノール樹脂の全原料成分100質量部に対し、前記フェノール化合物(A)を0.5~40質量部の範囲で用いることが好ましく、5~35質量部の範囲で用いることがより好ましい。 In the present invention, the rosin-modified phenol resin is excellent in emulsification suitability, has a good balance between elasticity and viscosity, and has excellent fluidity and gloss when inked. The phenol compound (A) is preferably used in the range of 0.5 to 40 parts by mass, more preferably in the range of 5 to 35 parts by mass with respect to parts by mass.
 本発明では、フェノール成分として、前記炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)を用いるが、必要に応じて、前記フェノール化合物(A)以外のその他のフェノール化合物(A’)を併用しても良い。 In the present invention, the phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position is used as the phenol component. If necessary, the phenol compound (A) Other phenol compounds (A ′) other than those may be used in combination.
 前記他のフェノール化合物(A’)は、例えば、フェノール、クレゾール、アミルフェノール、ビスフェノールA、p-tert-ブチルフェノール、ジブチルフェノール、ジメチルフェノール等が挙げられる。中でも、ロジン変性フェノール樹脂を安定に製造でき、セット性や耐ミスチング性に優れ、かつ、高光沢の印刷面が得られる印刷インキが得られることから、p-tert-ブチルフェノールが好ましい。 Examples of the other phenol compound (A ′) include phenol, cresol, amylphenol, bisphenol A, p-tert-butylphenol, dibutylphenol, and dimethylphenol. Of these, p-tert-butylphenol is preferred because a rosin-modified phenolic resin can be stably produced, a printing ink can be obtained that has excellent setability and anti-misting properties and can provide a high gloss printing surface.
 前記炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)と、その他のフェノール化合物(A’)とを併用する場合、これらの使用割合は、ロジン変性フェノール樹脂を安定に製造でき、セット性や耐ミスチング性に優れ、かつ、高光沢の印刷面が得られる印刷インキが得られることから、両者の合計100質量部に対し、その他のフェノール化合物(A’)を5~70質量部の範囲で用いることが好ましい。 When the phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position and the other phenol compound (A ′) are used in combination, Since the modified phenolic resin can be stably produced, a printing ink that is excellent in setability and misting resistance and can obtain a high gloss printing surface can be obtained. A ′) is preferably used in the range of 5 to 70 parts by mass.
 次に、本発明で用いるロジン又はロジン誘導体(B)について説明する。本発明で用いるロジンは、例えば、ガムロジン、トール油ロジン、ウッドロジン等が挙げられ、これらは天然樹脂である。 Next, the rosin or rosin derivative (B) used in the present invention will be described. Examples of the rosin used in the present invention include gum rosin, tall oil rosin, wood rosin and the like, and these are natural resins.
 また、本発明で用いるロジン誘導体は、例えば、水添ロジン、重合ロジン、不均化ロジン、強化ロジン、ロジンエステル等が挙げられる。 Examples of the rosin derivative used in the present invention include hydrogenated rosin, polymerized rosin, disproportionated rosin, reinforced rosin, and rosin ester.
 前記水添ロジンは、ロジンを水添することにより、不飽和結合の一部又は全部を飽和させることにより得られるものである。 The hydrogenated rosin is obtained by saturating a part or all of the unsaturated bonds by hydrogenating rosin.
 前記重合ロジンは、ロジンを硫酸等の触媒の存在下に重合することにより得られるものであり、二量体のほか単量体、三量体以上の多量体も含む混合物である。 The polymerized rosin is obtained by polymerizing rosin in the presence of a catalyst such as sulfuric acid, and is a mixture containing not only a dimer but also a monomer and a multimer of trimers or more.
 前記不均化ロジンは、ロジンを加熱等することにより、分子間で水素を移動させ、一方の分子の不飽和結合を飽和させると同時にもう一方の飽和結合を不飽和化して得られるものである。 The disproportionated rosin is obtained by transferring hydrogen between molecules by heating the rosin or the like to saturate the unsaturated bond of one molecule and simultaneously unsaturate the other saturated bond. .
 前記強化ロジンは、ロジンを無水マレイン酸、フマル酸、アクリル酸等のα,β-不飽和カルボン酸にて変性した変性ロジンである。 The reinforced rosin is a modified rosin obtained by modifying a rosin with an α, β-unsaturated carboxylic acid such as maleic anhydride, fumaric acid or acrylic acid.
 前記ロジンエステルは、ロジンをグリセリン、ジグリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ソルビトール等の多価アルコールにて変性したロジンである。これらは単独で用いても良いし、併用しても良い。 The rosin ester is a rosin obtained by modifying rosin with a polyhydric alcohol such as glycerin, diglycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, sorbitol. These may be used alone or in combination.
 これらの中でも、他の成分との反応性に優れ、かつ、工業的に安価であることから、ガムロジン、トール油ロジン、ウッドロジン等のロジンが好ましく、更に、不飽和結合部位を有するアビエタン骨格が多く、反応性が高いことからガムロジンがより好ましい。 Among these, rosins such as gum rosin, tall oil rosin, and wood rosin are preferable because they are excellent in reactivity with other components and are industrially inexpensive, and more, there are many abietane skeletons having unsaturated bond sites. Gum rosin is more preferable because of its high reactivity.
 本発明で用いるアルデヒド(C)は、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等が挙げられる。前記ホルムアルデヒドは、例えば、ホルマリンやパラホルムアルデヒド、トリオキサン等の分解物が挙げられる。これらは単独で用いても良いし、併用しても良い。中でも、前記フェノール化合物(A)との反応性が高いことからホルムアルデヒドが好ましく、パラホルムアルデヒドがより好ましい。 Examples of the aldehyde (C) used in the present invention include formaldehyde, acetaldehyde, propionaldehyde and the like. Examples of the formaldehyde include decomposition products such as formalin, paraformaldehyde, and trioxane. These may be used alone or in combination. Among these, formaldehyde is preferable and paraformaldehyde is more preferable because of its high reactivity with the phenol compound (A).
 前記アルデヒド(C)は、耐ミスチング性と乳化適性とに優れるロジン変性フェノール樹脂が得られることから、前記フェノール化合物(A)が含有する水酸基の合計1モルに対して、アルデヒド(C)が含有するカルボニル基が1.5~3.0モルの範囲となる割合で用いることが好ましい。また、前記前記炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)と前記その他のフェノール化合物(A’)とを併用する場合には、前記フェノール化合物(A)と、前記フェノール化合物(A’)とが含有する水酸基の合計1モルに対して、アルデヒド(C)が含有するカルボニル基が1.5~3.0モルの範囲となる割合で用いることが好ましい。 The aldehyde (C) contains an aldehyde (C) with respect to a total of 1 mol of hydroxyl groups contained in the phenol compound (A) because a rosin-modified phenol resin having excellent misting resistance and emulsification suitability is obtained. The carbonyl group to be used is preferably used in a ratio of 1.5 to 3.0 mol. When the phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position and the other phenol compound (A ′) are used in combination, the phenol In such a ratio that the carbonyl group contained in the aldehyde (C) is in the range of 1.5 to 3.0 moles per 1 mole of the total hydroxyl group contained in the compound (A) and the phenol compound (A ′). It is preferable to use it.
 本発明で用いる多価アルコール(D)は、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、ネオペンチルグリコール等の2価アルコール;グリセリン、ジグリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ソルビトール等の3価以上のアルコール等が挙げられる。これらは単独で用いても良いし、併用しても良い。これらの中でも得られるロジン変性フェノール樹脂の分子量や、融点等を好ましい値に調整することが容易となることから、前記3価以上のアルコールが好ましく、グリセリン又はペンタエリスリトールが好ましい。 Examples of the polyhydric alcohol (D) used in the present invention include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, butanediol, hexanediol, octanediol, and nonane. Examples include dihydric alcohols such as diol and neopentyl glycol; trihydric or higher alcohols such as glycerin, diglycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, and sorbitol. These may be used alone or in combination. Among these, since it becomes easy to adjust the molecular weight, melting point, and the like of the rosin-modified phenol resin obtained to a preferable value, the trivalent or higher alcohol is preferable, and glycerin or pentaerythritol is preferable.
 前記多価アルコール(D)は、得られるロジン変性フェノール樹脂の分子量を好ましい値に調整することが容易となり、耐ミスチング性と乳化適性とに優れるものとなることから、前記ロジン又はロジン誘導体(B)が含有するカルボキシル基1モルに対して、多価アルコール(D)が含有する水酸基が0.5~1.5モルの範囲となる割合で用いることが好ましい。 The polyhydric alcohol (D) can easily adjust the molecular weight of the obtained rosin-modified phenol resin to a preferable value, and has excellent misting resistance and emulsification suitability. Therefore, the rosin or rosin derivative (B ) Is preferably used in such a ratio that the hydroxyl group contained in the polyhydric alcohol (D) is in the range of 0.5 to 1.5 moles with respect to 1 mole of the carboxyl group.
 本発明のロジン変性フェノール樹脂は、前記フェノール化合物(A)、ロジン又はロジン誘導体(B)、アルデヒド(C)及び多価アルコール(D)以外に、植物油等を原料成分として含んでいても良い。ここで用いる植物油は、例えば、アマニ油、桐油、サフラワー油、脱水ヒマシ油、大豆油等の植物油、および、これら植物油を食品加工用等に使用した後に再生処理した再生植物油の他、アマニ油脂肪酸メチル、大豆油脂肪酸メチル、アマニ油脂肪酸エチル、大豆油脂肪酸エチル、アマニ油脂肪酸プロピル、大豆油脂肪酸プロピル、アマニ油脂肪酸ブチル、大豆油脂肪酸ブチルなどといった前記植物油脂肪酸のモノエステルなどが挙げられる。これらは単独で用いても2種以上を適宜に併用しても良い。植物油等のその他の原料成分を用いる場合、乳化適性と流動性とに優れる樹脂となり、セット性や耐ミスチング性に優れ、高光沢の印刷インキが得られるという本発明の効果が顕著に発揮されることから、ロジン変性フェノール樹脂の原料の総質量100質量部に対し、前記成分前記フェノール化合物(A)、前記他のフェノール化合物(A’)、ロジン又はロジン誘導体(B)、アルデヒド(C)及び多価アルコール(D)の合計質量が80質量部以上となるように用いることが好ましい。 The rosin-modified phenolic resin of the present invention may contain vegetable oil or the like as a raw material component in addition to the phenol compound (A), rosin or rosin derivative (B), aldehyde (C) and polyhydric alcohol (D). The vegetable oils used here include, for example, vegetable oils such as linseed oil, tung oil, safflower oil, dehydrated castor oil, soybean oil, and other vegetable oils that have been regenerated after using these vegetable oils for food processing, etc. Examples include vegetable oil fatty acid monoesters such as fatty acid methyl, soybean oil fatty acid methyl, linseed oil fatty acid ethyl, soybean oil fatty acid ethyl, linseed oil fatty acid propyl, soybean oil fatty acid propyl, linseed oil fatty acid butyl, soybean oil fatty acid butyl, and the like. These may be used alone or in combination of two or more. When other raw material components such as vegetable oil are used, the effect of the present invention is remarkably exhibited as a resin having excellent emulsification suitability and fluidity, excellent setability and misting resistance, and high gloss printing ink can be obtained. Therefore, with respect to the total mass of 100 parts by mass of the raw material of the rosin-modified phenol resin, the component phenol compound (A), the other phenol compound (A ′), rosin or rosin derivative (B), aldehyde (C) and It is preferable to use it so that the total mass of the polyhydric alcohol (D) is 80 parts by mass or more.
 本発明のロジン変性フェノール樹脂は、例えば、下記方法(1)~(3)のいずれかにより得られるものが挙げられる。 Examples of the rosin-modified phenolic resin of the present invention include those obtained by any of the following methods (1) to (3).
方法(1)
 炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)とアルデヒド(C)とを反応させて縮合物を得、得られた縮合物とロジン又はロジン誘導体(B)とを反応させた後、更に多価アルコール(D)を加えてエステル化反応させる方法。
Method (1)
Reaction of phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position with aldehyde (C) to obtain a condensate, and the resulting condensate and rosin or rosin A method in which a polyhydric alcohol (D) is further added and esterified by reacting with the derivative (B).
方法(2)
 炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)、ロジン又はロジン誘導体(B)、及びアルデヒド(C)を反応させ、次いで、多価アルコール(D)を加えてエステル化反応させる方法。
Method (2)
A phenol compound (A) having an unsaturated hydrocarbon group having a carbon atom number in the range of 10 to 20 in the meta position, rosin or rosin derivative (B), and aldehyde (C) are reacted, and then a polyhydric alcohol ( A method of adding D) and causing an esterification reaction.
方法(3)
 メタ位に炭素数10~20の不飽和基を有するフェノール化合物(A)とアルデヒド(C)を反応させて得られる縮合物と、ロジン又はロジン誘導体(B)と多価アルコール(D)とを反応させて得られるロジンエステルとをそれぞれ別途製造し、次いで前記縮合物とロジンエステルとを反応させて製造する方法。
Method (3)
A condensate obtained by reacting a phenol compound (A) having an unsaturated group having 10 to 20 carbon atoms at the meta position with an aldehyde (C), rosin or a rosin derivative (B) and a polyhydric alcohol (D) A method in which a rosin ester obtained by reacting is separately produced, and then the condensate is reacted with a rosin ester.
 前記方法(1)~(3)において、前記その他のフェノール化合物(A’)を用いる場合には、前記フェノール化合物(A)と同時に仕込んで反応させることが出来る。 In the above methods (1) to (3), when the other phenol compound (A ′) is used, it can be charged and reacted simultaneously with the phenol compound (A).
 前記方法(1)について、原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)とアルデヒド(C)とを反応させて得られる縮合物は、例えば、
(α)原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)とアルデヒド(C)とを、塩基性触媒存在下で反応させて得られるレゾールや、
(β)原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)とアルデヒド(C)とを予め酸性触媒存在下で反応させた後、さらにアルデヒド(C)を加えて塩基性触媒存在下で反応させて得られるノボラックレゾールが挙げられる。これらは単独で用いても良いし併用しても良い。中でも樹脂の着色が少なく、発色に優れる印刷インキが得られることから、レゾールであることが好ましい。
Regarding the method (1), the condensate obtained by reacting an aldehyde (C) with a phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 atoms in the meta position is, for example,
(Α) a resole obtained by reacting a phenolic compound (A) having an unsaturated hydrocarbon group having 10 to 20 atoms in the meta position with an aldehyde (C) in the presence of a basic catalyst,
(Β) A phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 atoms in the meta position and an aldehyde (C) are reacted in the presence of an acidic catalyst in advance, and then an aldehyde (C ) And a novolak resole obtained by reacting in the presence of a basic catalyst. These may be used alone or in combination. Among these, a resol is preferable because a printing ink with little resin coloring and excellent color development can be obtained.
 前記方法(1)において、前記その他のフェノール化合物(A’)を用いる場合には、前記フェノール化合物(A)と同時に仕込んで反応させる方法でも良いし、或いは、前記その他のフェノール化合物(A’)を併用する場合であって、更に、前記フェノール化合物(A)としてカシューシェルオイル等の天然物由来原料を用いる場合には、他のフェノール化合物(A’)とアルデヒド(C)とを反応させて縮合物を得、これとロジン又はロジン誘導体(B)とを反応させた後、多価アルコール(D)と共にカシューシェルオイル等の天然物由来原料を加える方法でも良い。 In the method (1), when the other phenol compound (A ′) is used, a method of charging and reacting with the phenol compound (A) may be used, or the other phenol compound (A ′). In addition, when a natural product-derived raw material such as cashew shell oil is used as the phenol compound (A), the other phenol compound (A ′) and aldehyde (C) are reacted. After obtaining a condensate and reacting this with rosin or rosin derivative (B), a method of adding a raw material derived from natural products such as cashew shell oil together with polyhydric alcohol (D) may be used.
 前記方法(1)で前記フェノール化合物(A)をレゾール化する場合、用いる塩基性触媒は、例えば、水酸化ナトリウム、水酸化カリウム、酸化カルシウム、水酸化カルシウム、酸化亜鉛、酢酸亜鉛等の金属触媒、アンモニア、メチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン等のアルキルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン等が挙げられる。 When the phenol compound (A) is resolated in the method (1), the basic catalyst used is, for example, a metal catalyst such as sodium hydroxide, potassium hydroxide, calcium oxide, calcium hydroxide, zinc oxide, zinc acetate, etc. And alkylamines such as ammonia, methylamine, dimethylamine, diethylamine, trimethylamine, ethylamine, diethylamine and triethylamine, and alkanolamines such as ethanolamine, diethanolamine and triethanolamine.
 また、前記方法(1)で前記フェノール化合物(A)をノボラックレゾール化する場合、用いる酸性触媒は、例えば、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、メタンスルホン酸、エタンスルホン酸等のスルホン酸又は硫酸、塩酸等の鉱酸が挙げられる。 In addition, when the phenol compound (A) is novolak resolated in the method (1), the acidic catalyst used is, for example, sulfonic acid such as paratoluenesulfonic acid, dodecylbenzenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, or the like. Examples include mineral acids such as sulfuric acid and hydrochloric acid.
 前記方法(1)によりロジン変性フェノール樹脂を得る場合、得られるロジン変性フェノール樹脂の分子量及び溶剤溶解性の調整が容易となり、耐ミスチング性と乾燥性とに優れるものとなることから、ロジン変性フェノール樹脂の原料の合計量100質量部対し、前記原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)アルデヒド(C)、及び必要に応じてその他のフェノール化合物(A’)を反応させて得られる縮合物が15~70質量部の範囲となることが好ましい。 When the rosin-modified phenol resin is obtained by the above method (1), the molecular weight and solvent solubility of the obtained rosin-modified phenol resin can be easily adjusted, and the rosin-modified phenol is excellent in misting resistance and drying properties. Phenol compound (A) aldehyde (C) having an unsaturated hydrocarbon group in the range of 10 to 20 atoms in the meta position with respect to 100 parts by mass of the total amount of resin raw materials, and other phenols as required The condensate obtained by reacting the compound (A ′) is preferably in the range of 15 to 70 parts by mass.
 前記方法(1)~(3)について、ロジン又はロジン誘導体(B)由来のカルボキシル基と多価アルコール(D)由来の水酸基をエステル化する工程がある。このエステル化の反応温度は、200℃以上300℃未満が好ましい。200℃未満では、反応の進行が非常に遅く、実用性に向かない。一方、300℃以上では、分解反応が起こり易く、目的とする樹脂物性が得られにくい。このエステル化を促進するために、触媒を使用することが好ましい。触媒としては、酸触媒、または、金属触媒が使用される。 In the above methods (1) to (3), there is a step of esterifying a carboxyl group derived from rosin or rosin derivative (B) and a hydroxyl group derived from polyhydric alcohol (D). The esterification reaction temperature is preferably 200 ° C. or higher and lower than 300 ° C. Below 200 ° C., the reaction proceeds very slowly and is not suitable for practical use. On the other hand, at 300 ° C. or higher, the decomposition reaction tends to occur, and the desired resin physical properties are difficult to obtain. In order to promote this esterification, it is preferable to use a catalyst. As the catalyst, an acid catalyst or a metal catalyst is used.
 エステル化反応に用いる酸触媒としては、公知のものが使用できる。たとえばパラトルエンスルホン酸、ドデシルベンゼンスルホン酸、メタンスルホン酸、エタンスルホン酸等のスルホン酸及び硫酸が挙げられる。中でも、価格、および、樹脂との相溶性の観点から、パラトルエンスルホン酸が好ましい。 Known acid catalysts can be used for the esterification reaction. Examples thereof include sulfonic acids such as paratoluenesulfonic acid, dodecylbenzenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, and sulfuric acid. Among these, p-toluenesulfonic acid is preferable from the viewpoints of price and compatibility with the resin.
 エステル化反応に用いる金属触媒としては、たとえば酸化亜鉛、酢酸亜鉛、酸化マグネシウム、酸化カルシウム、水酸化カルシウム、水酸化リチウム等が挙げられる。 Examples of the metal catalyst used in the esterification reaction include zinc oxide, zinc acetate, magnesium oxide, calcium oxide, calcium hydroxide, and lithium hydroxide.
 前記方法(2)について、炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)、ロジン又はロジン誘導体(B)、及びアルデヒド(C)を反応させる工程は、例えば、耐圧反応釜を用いて密閉状態で加熱することにより、より効率よく短時間で行うことができる。 In the method (2), a phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position, rosin or rosin derivative (B), and aldehyde (C) are reacted. A process can be performed more efficiently and in a short time, for example by heating in a sealed state using a pressure-resistant reaction kettle.
 これら方法(1)~(3)の中でも、炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)を樹脂に導入しやすくなり、耐ミスチング性、光沢、流動性に優れる樹脂が容易に得られることから、前記方法(1)が好ましい。 Among these methods (1) to (3), the phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position can be easily introduced into the resin, and the misting resistance, The method (1) is preferable because a resin having excellent gloss and fluidity can be easily obtained.
 本発明のロジン変性フェノール樹脂は、印刷時に汚れ等のトラブルが発生し難いことから、酸価が50mgKOH/g以下であることが好ましく、1~30mgKOH/gの範囲であることがより好ましい。 In the rosin-modified phenolic resin of the present invention, since troubles such as stains are less likely to occur during printing, the acid value is preferably 50 mgKOH / g or less, and more preferably in the range of 1 to 30 mgKOH / g.
 本発明のロジン変性フェノール樹脂の重量平均分子量(Mw)は、印刷インキ用途に適した粘度となることから、10,000~200,000の範囲であることが好ましく、30,000~130,000の範囲であることがより好ましい。 The weight average molecular weight (Mw) of the rosin-modified phenolic resin of the present invention is preferably in the range of 10,000 to 200,000, and is preferably in the range of 30,000 to 130,000, since it has a viscosity suitable for printing ink applications. More preferably, it is the range.
 尚、本発明において、重量平均分子量(Mw)及び数平均分子量(Mn)は下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。
 測定装置 :東ソー株式会社製「HLC-8320 GPC」、
 カラム:東ソー株式会社製ガードカラム「HZ-H」
    +東ソー株式会社製「TSK-GEL SuperHZM-H」×4本
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8320 EcoSECアプリケーション」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     0.6ml/分
 標準  : 前記「GPC-8320 EcoSECアプリケーション」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
   東ソー株式会社製「F-380」
   東ソー株式会社製「F-450」
   東ソー株式会社製「F-850」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィ
ルターでろ過したもの(50μl)。
In the present invention, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured by gel permeation chromatography (GPC) under the following conditions.
Measuring device: “HLC-8320 GPC” manufactured by Tosoh Corporation
Column: Guard column "HZ-H" manufactured by Tosoh Corporation
+ Tosoh Co., Ltd. “TSK-GEL SuperHZM-H” x 4 detectors: RI (differential refractometer)
Data processing: “GPC-8320 EcoSEC application” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran Flow rate 0.6 ml / min Standard: The following monodispersed polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8320 EcoSEC application”.
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
“A-2500” manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
“F-380” manufactured by Tosoh Corporation
“F-450” manufactured by Tosoh Corporation
“F-850” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids and filtered through a microfilter (50 μl).
 また、本発明のロジン変性フェノール樹脂の白濁温度は、粘度が十分に高く耐ミスチング性に優れ、かつ、顔料分散性にも優れる印刷インキが得られやすくなることから30~220℃の範囲であることが好ましい。 Further, the cloudiness temperature of the rosin-modified phenolic resin of the present invention is in the range of 30 to 220 ° C. because it is easy to obtain a printing ink having a sufficiently high viscosity and excellent misting resistance and excellent pigment dispersibility. It is preferable.
 尚、本発明において、白濁温度とは、ガラス管にロジン変性フェノール樹脂2gと、有機溶剤(新日本石油(株)製「AFソルベント6」)18gとを仕込み、マグネチックスタラーを入れ、攪拌昇温し230℃で溶解後、冷却を行い、規定濁度になった時の温度であり、下記条件の全自動濁点測定装置[ノボコントロール(NOVOCONTROL)(株)製「ケモトロニックII」]により測定される値である。温度が低いほど、溶媒への溶解性が良好であることを示す。
保持時間・・・2分
ローテーションスピード N1・・・1100rpm
ローテーションスピード N2・・・800rpm
ローテーションスピード N13・・・1000rpm
保持温度 T1・・・230℃
温度 T3・・・80℃
濁度検知レベル・・・4
濁度校正モード・・・Ac
In the present invention, the cloudiness temperature means that 2 g of rosin-modified phenolic resin and 18 g of an organic solvent (“AF Solvent 6” manufactured by Nippon Oil Corporation) are placed in a glass tube, a magnetic stirrer is added, and the temperature is increased. It is the temperature at which the temperature becomes normal turbidity after being heated and dissolved at 230 ° C., and measured with a fully automatic turbidity measuring device [NOVOCONTROL manufactured by Chemotronic II] under the following conditions. Is the value to be It shows that the solubility to a solvent is so favorable that temperature is low.
Holding time: 2 minutes Rotation speed N1: 1100 rpm
Rotation speed N2 ... 800rpm
Rotation speed N13 ... 1000rpm
Holding temperature T1 ... 230 ° C
Temperature T3 ... 80 ° C
Turbidity detection level 4
Turbidity calibration mode: Ac
 本発明のインキ用ワニス組成物は、前記ロジン変性フェノール樹脂と、有機溶剤(E)とを必須の成分として含有する。 The ink varnish composition of the present invention contains the rosin-modified phenolic resin and the organic solvent (E) as essential components.
 前記有機溶剤(E)は、例えば、植物油や石油系溶剤が挙げられる。前記植物油は、例えば、アマニ油、桐油、サフラワー油、脱水ヒマシ油、大豆油等の植物油、および、これら植物油を食品加工用等に使用した後に再生処理した再生植物油の他、アマニ油脂肪酸メチル、大豆油脂肪酸メチル、アマニ油脂肪酸エチル、大豆油脂肪酸エチル、アマニ油脂肪酸プロピル、大豆油脂肪酸プロピル、アマニ油脂肪酸ブチル、大豆油脂肪酸ブチルなどといった前記植物油脂肪酸のモノエステルなどが挙げられる。これらは単独で用いても2種以上を適宜に併用しても良い。中でも、乾燥性に優れるインキが得られることから、亜麻仁油、桐油、大豆油等の分子中に不飽和結合を有する植物油が好ましく、環境に対する負荷が小さいことから大豆油及びその再生油がより好ましい。 Examples of the organic solvent (E) include vegetable oils and petroleum solvents. The vegetable oil includes, for example, vegetable oils such as linseed oil, tung oil, safflower oil, dehydrated castor oil, soybean oil, and regenerated vegetable oils that have been regenerated after these vegetable oils have been used for food processing or the like, as well as linseed oil fatty acid methyl And the vegetable oil fatty acid monoesters such as soybean oil fatty acid methyl, linseed oil fatty acid ethyl, soybean oil fatty acid ethyl, linseed oil fatty acid propyl, soybean oil fatty acid propyl, linseed oil fatty acid butyl, soybean oil fatty acid butyl, and the like. These may be used alone or in combination of two or more. Among them, vegetable oils having unsaturated bonds in the molecules such as linseed oil, tung oil, soybean oil and the like are preferable because an ink having excellent drying properties is obtained, and soybean oil and its regenerated oil are more preferable because of low environmental load. .
 前記石油系溶剤とは、例えば、新日本石油(株)製の石油系溶剤である0号ソルベント、4号ソルベント、5号ソルベント、6号ソルベント、7号ソルベント、AFソルベント4号、AFソルベント5号、AFソルベント6号、AFソルベント7号などがあげられる。これらは単独で用いても2種以上を適宜に併用しても良い。中でも、環境に対する負荷が小さいことから、AFソルベント4号、AFソルベント5号、AFソルベント6号、AFソルベント7号等の沸点が200℃以上で芳香族炭化水素の含有率が1質量%以下である石油系溶剤が好ましい。 Examples of the petroleum solvent include, for example, No. 0 solvent, No. 4 solvent, No. 5 solvent, No. 6 solvent, No. 7 solvent, AF solvent No. 4 and AF solvent 5 which are petroleum solvents manufactured by Nippon Oil Corporation. No., AF Solvent No. 6, AF Solvent No. 7 and the like. These may be used alone or in combination of two or more. Among them, since the load on the environment is small, the boiling point of AF Solvent No. 4, AF Solvent No. 5, AF Solvent No. 6, AF Solvent No. 7, etc. is 200 ° C. or higher and the aromatic hydrocarbon content is 1% by mass or less. Some petroleum solvents are preferred.
 本発明のロジン変性フェノール樹脂は、各種の印刷インキ用途に用いることができるが、オフセットインキ用途に用いる場合、インキ用ワニス組成物中の前記有機溶剤(E)の割合は、その粘度の調整が容易なことから、40~75質量%であることが好ましい。このとき、VOCを低減して環境負荷の小さいインキとするには、有機溶剤(E)として植物油のみを用いることが好ましい。一方、オフセット輪転印刷向け等、熱風により溶剤成分を蒸発させてセットを促すインキ用途に用いる場合には、植物油よりも石油系溶剤を多く使用するケースが多い。本発明においては、その目的に応じて植物油と石油系溶剤とを、適切な比率で使用してよい。 The rosin-modified phenolic resin of the present invention can be used for various printing ink applications, but when used for offset ink applications, the viscosity of the organic solvent (E) in the ink varnish composition can be adjusted. Since it is easy, it is preferably 40 to 75% by mass. At this time, it is preferable to use only vegetable oil as the organic solvent (E) in order to reduce VOC and make ink with a small environmental load. On the other hand, when used for ink applications, such as for web offset printing, where the solvent component is evaporated by hot air to promote setting, there are many cases where a petroleum-based solvent is used more than vegetable oil. In the present invention, vegetable oil and petroleum solvent may be used in an appropriate ratio depending on the purpose.
 本発明のインキ用ワニス組成物は、前記有機溶剤(E)の他、ゲル化剤や、酸化防止剤等の添加剤を含有しても良い。 The ink varnish composition of the present invention may contain additives such as a gelling agent and an antioxidant in addition to the organic solvent (E).
 前記ゲル化剤は、インキ用ワニス組成物の粘弾性を調整する目的で用いるものであり、例えば、オクチル酸アルミニウム、ステアリン酸アルミニウム、アルミニウムトリイソプロポキシド、アルミニウムトリブトキシド、アルミニウムジプロポキシドモノアセチルアセテート、アルミニウムジブトキシドモノアセチルアセテート、アルミニウムトリアセチルアセテート、テトライソプロポキシチタン、テトラブトキシチタン、ジプロポキシビス(アセチルアセトナト)チタン、テトラブトキシジルコニウム、トリレンジイソシアネート、ジフェニルジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネートなど各種公知のものを特に限定無く使用できる。これらは1種を単独で用いても2種以上を併用してもよい。 The gelling agent is used for the purpose of adjusting the viscoelasticity of the ink varnish composition. For example, aluminum octylate, aluminum stearate, aluminum triisopropoxide, aluminum tributoxide, aluminum dipropoxide monoacetyl. Acetate, aluminum dibutoxide monoacetyl acetate, aluminum triacetyl acetate, tetraisopropoxy titanium, tetrabutoxy titanium, dipropoxy bis (acetylacetonato) titanium, tetrabutoxy zirconium, tolylene diisocyanate, diphenyl diisocyanate, hexamethylene diisocyanate, xylylene diene Various known materials such as isocyanate and isophorone diisocyanate can be used without particular limitation. These may be used alone or in combination of two or more.
 前記ゲル化剤の使用量は、目標の粘弾性により調整するが、通常はインキ用ワニス組成物100質量部に対し、0.1~2.0質部の範囲である。 The amount of the gelling agent used is adjusted according to the target viscoelasticity, but is usually in the range of 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the ink varnish composition.
 前記酸化防止剤は、インキ用ワニス組成物の皮張りを防止する目的で用いるものであり、例えば、2,6-ジ-tert-ブチル-4-メチルフェノールなど各種公知のものを特に限定無く使用できる。 The antioxidant is used for the purpose of preventing skinning of the ink varnish composition, and various known ones such as 2,6-di-tert-butyl-4-methylphenol are used without any particular limitation. it can.
 前記酸化防止剤の使用量は、保存期間等を考慮して配合量を決定するが、通常はインキ用ワニス組成物100質量部に対し、0.1~1.0質量部の範囲である。 The amount of the antioxidant used is determined in consideration of the storage period and the like, but is usually in the range of 0.1 to 1.0 part by mass with respect to 100 parts by mass of the ink varnish composition.
 インキ用ワニス組成物は、上記各成分を混合、攪拌して製造することができるが、混合攪拌の際には、これらを、通常、100℃以上240℃以下の範囲内の温度に加熱することにより、各成分を溶解させて混合して得られる。 The ink varnish composition can be produced by mixing and stirring the above-mentioned components, but when mixing and stirring, these are usually heated to a temperature in the range of 100 ° C to 240 ° C. Thus, each component is dissolved and mixed.
 本発明の印刷インキは、前記インキ用ワニス組成物、即ち、本発明のロジン変性フェノール及び有機溶剤(E)と、顔料(F)とを必須の成分として含有する。 The printing ink of the present invention contains the ink varnish composition, that is, the rosin-modified phenol of the present invention, the organic solvent (E), and the pigment (F) as essential components.
 前記顔料(F)は、例えば、黄色、紅色、藍色又は黒色などの着色顔料、および、無色の体質顔料等が挙げられる。前記顔料(F)の含有率は、着色性に優れ、かつ、流動性の高いものとなることから、印刷インキ100質量部中、5~55質量部の範囲であることが好ましい。 Examples of the pigment (F) include colored pigments such as yellow, red, indigo or black, and colorless extender pigments. The content of the pigment (F) is preferably in the range of 5 to 55 parts by mass in 100 parts by mass of the printing ink because it has excellent colorability and high fluidity.
 本発明の印刷インキは、前記インキ用ワニス組成物及び前記顔料(F)の他、ワックス、乾燥促進剤(ドライヤー)、乾燥抑制剤等の各種添加剤を含有していても良い The printing ink of the present invention may contain various additives such as a wax, a drying accelerator (dryer), a drying inhibitor, in addition to the ink varnish composition and the pigment (F).
 前記ワックスは、インキ塗膜の耐摩擦性、ブロッキング防止性、スベリ性、スリキズ防止性等を向上させる目的で添加されるものであり、例えば、カルナバワックス、木ろう、ラノリン、モンタンワックス、パラフィンワックス、マイクロクリスタリンワックス等の天然ワックス;フィッシャートロプスワックス、ポリエチレンワックス、ポリプロピレンワックス、ポリテトラフルオロエチレンワックス、ポリアミドワックス、シリコーン化合物等の合成ワックス等が挙げられる。ワックスの含有量は、耐摩耗性や耐ブロッキング性に優れ、かつ、色調や光沢にも優れるものとなることから、印刷インキ100質量部に対し、0.1~7.0質量部の範囲であることが好ましい。 The wax is added for the purpose of improving the friction resistance, anti-blocking property, slipperiness, anti-scratch property, etc. of the ink coating film, such as carnauba wax, wax, lanolin, montan wax, paraffin wax. And natural waxes such as microcrystalline wax; synthetic waxes such as Fischer-Trops wax, polyethylene wax, polypropylene wax, polytetrafluoroethylene wax, polyamide wax, and silicone compound. The content of the wax is excellent in abrasion resistance and blocking resistance, and is excellent in color tone and gloss. Therefore, the content of the wax is in the range of 0.1 to 7.0 parts by mass with respect to 100 parts by mass of the printing ink. Preferably there is.
 前記乾燥促進剤(ドライヤー)は、インキ塗膜の乾燥性を向上させる目的で添加されるものであり、例えば、コバルト、マンガン、鉛、鉄、亜鉛等の金属とオクチル酸、ナフテン酸、ネオデカン酸等のカルボン酸との塩である金属石鹸類等が挙げられる。乾燥促進剤の含有量は、乾燥性に優れるインキが得られることから、印刷インキ100質量部に対し、0.01~5質量部の範囲であることが好ましい。 The drying accelerator (dryer) is added for the purpose of improving the drying property of the ink coating film. For example, metals such as cobalt, manganese, lead, iron, and zinc and octylic acid, naphthenic acid, neodecanoic acid are used. And metal soaps which are salts with carboxylic acids such as The content of the drying accelerator is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the printing ink because an ink having excellent drying properties can be obtained.
 前記乾燥抑制剤は、保存安定性を向上させ、皮張りを抑制する目的で添加されるものであり、例えば、ハイドロキノン、メトキノン、tert-ブチルハイドロキノン等が挙げられる。乾燥抑制剤は、乾燥抑制剤の含有量は、皮張り抑制能が十分に発揮されることから、印刷インキ100質量部に対し、0.01~5質量部の範囲であることが好ましい。 The drying inhibitor is added for the purpose of improving storage stability and suppressing skinning, and examples thereof include hydroquinone, methoquinone, tert-butylhydroquinone, and the like. In the drying inhibitor, the content of the drying inhibitor is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the printing ink since the ability to suppress skinning is sufficiently exhibited.
 これら印刷インキに添加される各種添加剤は、印刷インキ中に均一に混合できれば、印刷インキ製造のいずれの段階で添加しても構わない。具体的には、印刷インキ製造の最終段階で添加しても良いし、インキ用ワニス組成物の製造段階で予め添加しても構わない。 These various additives added to the printing ink may be added at any stage of the printing ink production as long as they can be uniformly mixed in the printing ink. Specifically, it may be added at the final stage of printing ink production, or may be added in advance at the production stage of the ink varnish composition.
 本発明の印刷インキは、顔料が安定に分散でき、かつ、印刷に適した粘度に調整することが容易となることから、印刷インキ100質量部に対し、前記有機溶剤(E)を10~65質量部の範囲で含有することが好ましい。 In the printing ink of the present invention, the pigment can be stably dispersed and it is easy to adjust the viscosity to be suitable for printing. Therefore, the organic solvent (E) is added in an amount of 10 to 65 to 100 parts by mass of the printing ink. It is preferable to contain in the range of mass parts.
 本発明の印刷インキは、例えば、ロジン変性フェノール樹脂、有機溶剤(E)及び顔料(F)を必須の成分とする原料を、ロールミル、ボールミル、アトライター、サンドミルといった公知のインキ製造装置を用いて、練肉・調製することにより得ることができる。 The printing ink of the present invention uses, for example, a raw material containing rosin-modified phenol resin, organic solvent (E) and pigment (F) as essential components, using a known ink manufacturing apparatus such as a roll mill, a ball mill, an attritor, or a sand mill. It can be obtained by cooking and preparing meat.
 以下に、実施例に基づいて本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。尚、実施例中、部、%は、それぞれ質量部、質量%である。 Hereinafter, the present invention will be more specifically described based on examples, but the present invention is not limited to these examples. In addition, in an Example, a part and% are a mass part and the mass%, respectively.
 尚、本発明の実施例において、重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフ(GPC)を用い、下記の条件により測定した値である。 In the examples of the present invention, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured under the following conditions using a gel permeation chromatograph (GPC).
 測定装置 :東ソー株式会社製「HLC-8320 GPC」、
 カラム:東ソー株式会社製ガードカラム「HZ-H」
    +東ソー株式会社製「TSK-GEL SuperHZM-H」×4本
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8320 EcoSECアプリケーション」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     0.6ml/分
 標準  : 前記「GPC-8320 EcoSECアプリケーション」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
   東ソー株式会社製「F-380」
   東ソー株式会社製「F-450」
   東ソー株式会社製「F-850」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
Measuring device: “HLC-8320 GPC” manufactured by Tosoh Corporation
Column: Guard column "HZ-H" manufactured by Tosoh Corporation
+ Tosoh Co., Ltd. “TSK-GEL SuperHZM-H” x 4 detectors: RI (differential refractometer)
Data processing: “GPC-8320 EcoSEC application” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran Flow rate 0.6 ml / min Standard: The following monodispersed polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8320 EcoSEC application”.
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
“A-2500” manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
“F-380” manufactured by Tosoh Corporation
“F-450” manufactured by Tosoh Corporation
“F-850” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids and filtered through a microfilter (50 μl).
 13C-NMRは以下の条件にて測定した。
装置:日本電子(株)製 AL-400
測定モード:SGNNE(NOE消去の1H完全デカップリング法)
溶媒 :ジメチルスルホキシド
パルス角度:45℃パルス
試料濃度 :30wt%
積算回数 :10000回
13C- NMR was measured under the following conditions.
Device: AL-400 manufactured by JEOL Ltd.
Measurement mode: SGNNE (1H complete decoupling method of NOE elimination)
Solvent: Dimethyl sulfoxide pulse angle: 45 ° C pulse Sample concentration: 30 wt%
Integration count: 10,000 times
 白濁温度は、下記条件により測定した値である。
 ガラス管にロジン変性フェノール樹脂2gと、有機溶剤(新日本石油(株)製「AFソルベント6号」)18gとを仕込み、マグネチックスタラーを入れ、攪拌昇温し230℃で溶解後、冷却を行い、規定濁度になった時の温度を、下記条件の全自動濁点測定装置[ノボコントロール(NOVOCONTROL)(株)製「ケモトロニックII」]により測定した。
保持時間・・・2分
ローテーションスピード N1・・・1100rpm
ローテーションスピード N2・・・800rpm
ローテーションスピード N13・・・1000rpm
保持温度 T1・・・230℃
温度 T3・・・80℃
濁度検知レベル・・・4
濁度校正モード・・・Ac
The cloudiness temperature is a value measured under the following conditions.
A glass tube is charged with 2 g of rosin-modified phenolic resin and 18 g of an organic solvent (“AF Solvent No. 6” manufactured by Shin Nippon Oil Co., Ltd.), a magnetic stirrer is added, the temperature is increased by stirring, the solution is dissolved at 230 ° C., and then cooled. The temperature at which the specified turbidity was reached was measured with a fully automatic turbidity point measuring device ["Cemotronic II" manufactured by NOVOCONTROL Co., Ltd.] under the following conditions.
Holding time: 2 minutes Rotation speed N1: 1100 rpm
Rotation speed N2 ... 800rpm
Rotation speed N13 ... 1000rpm
Holding temperature T1 ... 230 ° C
Temperature T3 ... 80 ° C
Turbidity detection level 4
Turbidity calibration mode: Ac
 最大乳化率は、下記の条件により測定した値である。
 乳化試験機(ノボコントロール社製「高速リソトロニック乳化試験機」)を用い、下記条件にて、サンプルに水を徐々に添加した時のトルクの値を連続的に測定し、トルクの値が不安定に変動し始めて、直近10回の計測値の標準偏差が100を超えた時、下記式により算出される値を最大乳化率と定義した。
最大乳化率(%)=[水の滴下量(g)]/[サンプル量(g)×100]
コンディショニングタイム(水を加えない予備撹拌時間)・・・300sec
撹拌速度・・・1200rpm
サンプルの量・・・25g
温度・・・40℃
水の滴下量・・・2g/分
プロペラ・・・プロペラ角度10°、厚み1.5mm
プロペラとカップ底面の距離・・・1mm
 水を滴下する際は、水を注入するニードルをカップ壁面に接触させて、水が静かにサンプル内に入るようにし、水滴によるトルクカーブのノイズを最小限に抑えた。
The maximum emulsification rate is a value measured under the following conditions.
Using an emulsification tester (“High Speed Lithotronic Emulsification Tester” manufactured by Novo Control), under the following conditions, continuously measure the torque value when water is gradually added to the sample. When the standard deviation of the latest 10 measured values exceeded 100 after starting to fluctuate stably, the value calculated by the following formula was defined as the maximum emulsification rate.
Maximum emulsification rate (%) = [Drip amount of water (g)] / [Sample amount (g) × 100]
Conditioning time (preliminary stirring time without adding water) ... 300 sec
Stirring speed ... 1200rpm
Sample amount ... 25g
Temperature ... 40 ° C
Dripping amount of water ... 2g / min propeller ... propeller angle 10 °, thickness 1.5mm
Distance between propeller and cup bottom: 1mm
When dripping water, the needle for injecting water was brought into contact with the cup wall surface so that the water quietly entered the sample, and noise in the torque curve due to water drops was minimized.
 n-ヘプタントレランスは、サンプル1gにn―ヘプタンを徐々に滴下し、フラスコ底面の下に敷いた新聞紙の文字が見えなくなる濁点まで滴下したn-ヘプタンの量(mL)である。 N-Heptane tolerance is the amount (mL) of n-heptane that was gradually dropped into 1 g of a sample and dropped to the cloud point where the letters on the newspaper laid under the bottom of the flask disappeared.
<ロジン変性フェノール樹脂>
実施例1-1 ロジン変性フェノール樹脂(1)の製造
 撹拌器、還流冷却管、及び温度計を装備した4つ口フラスコ中に、p-tert-ブチルフェノール263質量部、92%パラホルムアルデヒド114質量部、及びトルエン203質量部を仕込み、内容物を50℃まで加熱した後、48%水酸化ナトリウム水溶液1.8質量部を加えた。内容物を更に80℃まで加熱し、8時間反応させた後、35%塩酸2.3質量部を加えて中和し、55質量部の水で水洗した。7時間静置した後、水層を除去することにより縮合物(F-1)溶液を得た。
<Rosin modified phenolic resin>
Example 1-1 Production of rosin-modified phenolic resin (1) In a four-necked flask equipped with a stirrer, a reflux condenser, and a thermometer, 263 parts by mass of p-tert-butylphenol and 114 parts by mass of 92% paraformaldehyde , And 203 parts by mass of toluene were charged and the contents were heated to 50 ° C., and 1.8 parts by mass of 48% aqueous sodium hydroxide solution was added. The contents were further heated to 80 ° C. and reacted for 8 hours, then neutralized by adding 2.3 parts by mass of 35% hydrochloric acid, and washed with 55 parts by mass of water. After standing for 7 hours, the aqueous layer was removed to obtain a condensate (F-1) solution.
 撹拌器、分離器付き還流冷却器、及び温度計を装備した4つ口セパラブルフラスコに、ガムロジン800質量部を仕込み、窒素ガスを吹き込みながら170℃にまで加熱することにより、前記ガムロジンを溶融させた。溶融状態となっているガムロジンを撹拌しながら、前記で得られた縮合物(F-1)溶液全量および酸化亜鉛5質量部を投入した後、更に220℃まで昇温させた。次に、グリセリン72質量部および、カシューシェルオイル(TaoNguyen社製「カシューナッツシェルオイル」:13C-NMRの測定結果を元に算出したカルダノール含有率は88質量%)12質量部を投入し、トルエンと水とを分離器付き還流冷却器で反応系外に取り出しながら、240℃まで昇温させた。酸価が30mgKOH/gになった時点で、四つ口フラスコ内を減圧ポンプにて20mmHgまで減圧し、減圧条件下で60分間保持し、ロジン変性フェノール樹脂(1)得た。得られたロジン変性フェノール樹脂(1)の酸価は24.0mgKOH/g、重量平均分子量(Mw)は60,000、白濁温度は180℃であった。ロジン変性フェノール樹脂(1)は、樹脂原料100質量部に対しカルダノールを1.0質量%用いた樹脂である。 A four-necked separable flask equipped with a stirrer, a reflux condenser with a separator, and a thermometer was charged with 800 parts by weight of gum rosin and heated to 170 ° C. while blowing nitrogen gas to melt the gum rosin. It was. While stirring the molten gum rosin, the whole amount of the condensate (F-1) solution obtained above and 5 parts by mass of zinc oxide were added, and the temperature was further raised to 220 ° C. Next, 72 parts by mass of glycerin and 12 parts by mass of cashew shell oil (“Cashew nut shell oil” manufactured by TaoNguyen: cardanol content calculated based on the measurement result of 13 C-NMR is 88% by mass) are added, and toluene is added. And water were taken out of the reaction system with a reflux condenser with a separator, and the temperature was raised to 240 ° C. When the acid value reached 30 mgKOH / g, the pressure in the four-necked flask was reduced to 20 mmHg with a vacuum pump, and kept under reduced pressure for 60 minutes to obtain rosin-modified phenolic resin (1). The acid value of the obtained rosin-modified phenol resin (1) was 24.0 mgKOH / g, the weight average molecular weight (Mw) was 60,000, and the cloudiness temperature was 180 ° C. The rosin-modified phenol resin (1) is a resin using 1.0% by mass of cardanol with respect to 100 parts by mass of the resin raw material.
実施例2-1 ロジン変性フェノール樹脂(2)の製造
 撹拌器、還流冷却管、及び温度計を装備した4つ口フラスコ中に、p-t-ブチルフェノール130質量部、カルダノール130質量部、92%パラホルムアルデヒド85質量部、及びトルエン187質量部を仕込み、内容物を50℃まで加熱した後、48%水酸化ナトリウム水溶液1.3質量部を投入した。内容物を更に80℃に加熱し、6時間反応させた後、35%塩酸1.7質量部を加えて中和し、51質量部の水で水洗した。7時間静置後、水層を除去することにより縮合物(F-2)溶液を得た。
Example 2-1 Production of rosin-modified phenolic resin (2) In a four-necked flask equipped with a stirrer, a reflux condenser, and a thermometer, 130 parts by mass of pt-butylphenol, 130 parts by mass of cardanol, 92% After charging 85 parts by mass of paraformaldehyde and 187 parts by mass of toluene and heating the contents to 50 ° C., 1.3 parts by mass of 48% aqueous sodium hydroxide solution was added. The contents were further heated to 80 ° C. and reacted for 6 hours, neutralized by adding 1.7 parts by mass of 35% hydrochloric acid, and washed with 51 parts by mass of water. After standing for 7 hours, the aqueous layer was removed to obtain a condensate (F-2) solution.
 撹拌器、分離器付き還流冷却器、及び温度計を装備した4つ口セパラブルフラスコに、ガムロジン800質量部を仕込み、窒素ガスを吹き込みながら170℃にまで加熱することにより、前記ガムロジンを溶融させた。溶融状態となっているガムロジンを撹拌しながら、前記で得られた縮合物(F-2)溶液全量および酸化亜鉛5質量部を投入した後、更に220℃まで昇温させた。次に、グリセリン72質量部を投入し、トルエンと水とを分離器付き還流冷却器で反応系外に取り出しながら、240℃まで昇温させた。酸価が30mgKOH/gになった時点で、四つ口フラスコ内を減圧ポンプにて20mmHgまで減圧し、減圧条件下で60分間保持し、ロジン変性フェノール樹脂(2)を得た。得られたロジン変性フェノール樹脂(2)の酸価は25.6mgKOH/g、重量平均分子量(Mw)は120,000、白濁温度は209℃であった。ロジン変性フェノール樹脂(2)は、樹脂原料100質量部に対しカルダノールを12.0質量%用いた樹脂である。 A four-necked separable flask equipped with a stirrer, a reflux condenser with a separator, and a thermometer was charged with 800 parts by weight of gum rosin and heated to 170 ° C. while blowing nitrogen gas to melt the gum rosin. It was. While stirring the molten gum rosin, the whole amount of the condensate (F-2) solution obtained above and 5 parts by mass of zinc oxide were added, and the temperature was further raised to 220 ° C. Next, 72 parts by mass of glycerin was added, and the temperature was raised to 240 ° C. while taking toluene and water out of the reaction system with a reflux condenser with a separator. When the acid value reached 30 mgKOH / g, the pressure in the four-necked flask was reduced to 20 mmHg with a vacuum pump, and maintained under reduced pressure for 60 minutes to obtain rosin-modified phenolic resin (2). The acid value of the obtained rosin-modified phenol resin (2) was 25.6 mgKOH / g, the weight average molecular weight (Mw) was 120,000, and the cloudiness temperature was 209 ° C. The rosin-modified phenol resin (2) is a resin using 12.0% by mass of cardanol with respect to 100 parts by mass of the resin raw material.
実施例3-1 ロジン変性フェノール樹脂(3)の製造
 撹拌器、還流冷却管、及び温度計を装備した4つ口フラスコ中に、p-t-ブチルフェノール130質量部、カルダノール65質量部、92%パラホルムアルデヒド71質量部、及びトルエン144質量部を仕込み、内容物を50℃まで加熱した後、48%水酸化ナトリウム水溶液1.1質量部を投入した。内容物を更に80℃に加熱し、6時間反応させた後、35%塩酸1.4質量部を加えて中和し、39質量部の水で水洗した。7時間静置後、水層を除去することにより縮合物(F-3)溶液を得た。
Example 3-1 Production of rosin-modified phenolic resin (3) In a four-necked flask equipped with a stirrer, a reflux condenser, and a thermometer, 130 parts by mass of pt-butylphenol, 65 parts by mass of cardanol, 92% After charging 71 parts by mass of paraformaldehyde and 144 parts by mass of toluene and heating the contents to 50 ° C., 1.1 parts by mass of 48% aqueous sodium hydroxide solution was added. The contents were further heated to 80 ° C. and reacted for 6 hours, neutralized by adding 1.4 parts by mass of 35% hydrochloric acid, and washed with 39 parts by mass of water. After standing for 7 hours, the aqueous layer was removed to obtain a condensate (F-3) solution.
 撹拌器、分離器付き還流冷却器、及び温度計を装備した4つ口セパラブルフラスコに、ガムロジン800質量部を仕込み、窒素ガスを吹き込みながら170℃にまで加熱することにより前記ガムロジンを溶融させた。溶融状態となっているガムロジンを撹拌しながら、前記で得られた縮合物(F-3)溶液全量を投入した後、更に215℃まで昇温させた。次に、グリセリン65質量部とペンタエリスリトール8質量部とを投入し、トルエンと水とを分離器付き還流冷却器で反応系外に取り出しながら、250℃まで昇温させた。250℃に維持した状態で4時間反応させ、酸価が50mgKOH/gになった時点でパラトルエンスルホン酸0.6質量部を投入した後、更に5時間反応させた。250℃のまま、四つ口フラスコ内を減圧ポンプにて20mmHgまで減圧し、減圧条件下で60分間保持し、ロジン変性フェノール樹脂(3)を得た。得られたロジン変性フェノール樹脂(3)の酸価は21.6mgKOH/g、重量平均分子量(Mw)は34,000白濁温度は130℃であった。ロジン変性フェノール樹脂(3)は、樹脂原料100質量部に対しカルダノールを6.4質量%用いた樹脂である。 A four-neck separable flask equipped with a stirrer, a reflux condenser with a separator, and a thermometer was charged with 800 parts by mass of gum rosin and heated to 170 ° C. while blowing nitrogen gas to melt the gum rosin. . While stirring the molten gum rosin, the whole amount of the condensate (F-3) solution obtained above was added, and the temperature was further raised to 215 ° C. Next, 65 parts by mass of glycerin and 8 parts by mass of pentaerythritol were added, and the temperature was raised to 250 ° C. while taking out toluene and water out of the reaction system with a reflux condenser with a separator. The reaction was carried out for 4 hours while maintaining the temperature at 250 ° C., and 0.6 parts by mass of paratoluenesulfonic acid was added when the acid value reached 50 mgKOH / g, followed by further reaction for 5 hours. While maintaining the temperature at 250 ° C., the pressure in the four-necked flask was reduced to 20 mmHg with a vacuum pump, and kept under reduced pressure conditions for 60 minutes to obtain rosin-modified phenolic resin (3). The acid value of the obtained rosin-modified phenol resin (3) was 21.6 mgKOH / g, the weight average molecular weight (Mw) was 34,000, and the cloudiness temperature was 130 ° C. The rosin-modified phenolic resin (3) is a resin using 6.4% by mass of cardanol with respect to 100 parts by mass of the resin raw material.
実施例4-1 ロジン変性フェノール樹脂(4)の製造
 撹拌器、還流冷却管、及び温度計を装備した4つ口フラスコ中に、p-t-ブチルフェノール54質量部、カルダノール433質量部、92%パラホルムアルデヒド117質量部、及びトルエン329質量部を仕込み、内容物を50℃まで加熱した後、48%水酸化ナトリウム水溶液1.8質量部を投入した。内容物を更に70℃に加熱し、6時間反応した後、35%塩酸2.4質量部を加えて中和し、90質量部の水で水洗した。7時間静置後、水層を除去することにより縮合物(F-4)溶液を得た。
Example 4-1 Production of rosin-modified phenolic resin (4) In a four-necked flask equipped with a stirrer, a reflux condenser, and a thermometer, 54 parts by mass of pt-butylphenol, 433 parts by mass of cardanol, 92% After 117 parts by mass of paraformaldehyde and 329 parts by mass of toluene were charged and the contents were heated to 50 ° C., 1.8 parts by mass of 48% aqueous sodium hydroxide solution was added. The contents were further heated to 70 ° C., reacted for 6 hours, neutralized by adding 2.4 parts by mass of 35% hydrochloric acid, and washed with 90 parts by mass of water. After standing for 7 hours, the aqueous layer was removed to obtain a condensate (F-4) solution.
 撹拌器、分離器付き還流冷却器、及び温度計を装備した4つ口セパラブルフラスコに、ガムロジン800質量部を仕込み、窒素ガスを吹き込みながら170℃にまで加熱することにより前記ガムロジンを溶融させた。溶融状態となっているガムロジンを撹拌しながら、そのガムロジンに前記で得られた縮合物(F-4)溶液全量および酸化亜鉛5質量部を投入した後、更に220℃まで昇温させた。次に、グリセリン58質量部を投入し、トルエンと水とを分離器付き還流冷却器で反応系外に取り出しながら、240℃まで昇温させた。240℃に維持した状態で更に反応させ、酸価が30mgKOH/gになった時点で、四つ口フラスコ内を減圧ポンプにて20mmHgまで減圧し、減圧条件下で60分間保持し、ロジン変性フェノール樹脂(4)を得た。得られたロジン変性フェノール樹脂(4)の酸価は27.2mgKOH/g、重量平均分子量(Mw)は100,000、白濁温度は161℃であった。ロジン変性フェノール樹脂(4)は、樹脂原料100質量部に対しカルダノールを33.2質量%用いた樹脂である。 A four-neck separable flask equipped with a stirrer, a reflux condenser with a separator, and a thermometer was charged with 800 parts by mass of gum rosin and heated to 170 ° C. while blowing nitrogen gas to melt the gum rosin. . While stirring the molten gum rosin, the entire amount of the condensate (F-4) solution obtained above and 5 parts by mass of zinc oxide were added to the gum rosin, and the temperature was further raised to 220 ° C. Next, 58 parts by mass of glycerin was added, and the temperature was raised to 240 ° C. while taking toluene and water out of the reaction system with a reflux condenser with a separator. The reaction was further carried out while maintaining the temperature at 240 ° C., and when the acid value reached 30 mgKOH / g, the inside of the four-necked flask was reduced to 20 mmHg with a vacuum pump, and kept under reduced pressure for 60 minutes, and rosin-modified phenol Resin (4) was obtained. The acid value of the obtained rosin-modified phenol resin (4) was 27.2 mgKOH / g, the weight average molecular weight (Mw) was 100,000, and the cloudiness temperature was 161 ° C. The rosin-modified phenol resin (4) is a resin using 33.2% by mass of cardanol with respect to 100 parts by mass of the resin raw material.
実施例5-1 ロジン変性フェノール樹脂(5)の製造
 撹拌器、還流冷却管、及び温度計を装備した4つ口フラスコ中に、p-t-ブチルフェノール78質量部、カルダノール544質量部、92%パラホルムアルデヒド152質量部、及びトルエン421質量部を仕込み、内容物を50℃まで加熱した後、48%水酸化ナトリウム水溶液2.4質量部を投入した。内容物を更に80℃に加熱し、6時間反応した後、35%塩酸3質量部を加えて中和し、115質量部の水で水洗した。7時間静置後、水層を除去することにより縮合物(F-5)溶液を得た。
Example 5-1 Production of rosin-modified phenolic resin (5) In a four-necked flask equipped with a stirrer, a reflux condenser, and a thermometer, 78 parts by mass of pt-butylphenol, 544 parts by mass of cardanol, 92% After charging 152 parts by mass of paraformaldehyde and 421 parts by mass of toluene and heating the contents to 50 ° C., 2.4 parts by mass of 48% aqueous sodium hydroxide solution was added. The contents were further heated to 80 ° C., reacted for 6 hours, neutralized by adding 3 parts by mass of 35% hydrochloric acid, and washed with 115 parts by mass of water. After standing for 7 hours, the aqueous layer was removed to obtain a condensate (F-5) solution.
 撹拌器、分離器付き還流冷却器、及び温度計を装備した4つ口セパラブルフラスコに、ガムロジン800質量部を仕込み、窒素ガスを吹き込みながら170℃にまで加熱することにより前記ガムロジンを溶融させた。溶融状態となっているガムロジンを撹拌しながら、前記で得られた縮合物(F-5)溶液全量及び酸化亜鉛5質量部を投入した後、更に220℃まで昇温させた。次に、グリセリン69質量部を投入し、トルエンと水とを分離器付き還流冷却器で反応系外に取り出しながら、240℃まで昇温させた。240℃に維持した状態で反応させ、酸価が30mgKOH/gになった時点で、四つ口フラスコ内を減圧ポンプにて20mmHgまで減圧し、減圧条件下で60分間保持し、ロジン変性フェノール樹脂(5)を得た。得られたロジン変性フェノール樹脂(5)の酸価は28.0、重量平均分子量(Mw)は80,000白濁温度は158℃であった。ロジン変性フェノール樹脂(5)は、樹脂原料100質量部に対しカルダノールを36.6質量%用いた樹脂である。 A four-neck separable flask equipped with a stirrer, a reflux condenser with a separator, and a thermometer was charged with 800 parts by mass of gum rosin and heated to 170 ° C. while blowing nitrogen gas to melt the gum rosin. . While stirring the molten gum rosin, the whole amount of the condensate (F-5) solution obtained above and 5 parts by mass of zinc oxide were added, and the temperature was further raised to 220 ° C. Next, 69 parts by mass of glycerin was added, and the temperature was raised to 240 ° C. while taking toluene and water out of the reaction system with a reflux condenser with a separator. The reaction was carried out while maintaining the temperature at 240 ° C., and when the acid value reached 30 mg KOH / g, the pressure in the four-necked flask was reduced to 20 mmHg with a vacuum pump, and the pressure was maintained for 60 minutes under the reduced pressure condition. (5) was obtained. The acid value of the obtained rosin-modified phenol resin (5) was 28.0, the weight average molecular weight (Mw) was 80,000, and the cloudiness temperature was 158 ° C. The rosin-modified phenol resin (5) is a resin using 36.6% by mass of cardanol with respect to 100 parts by mass of the resin raw material.
比較例1-1 ロジン変性フェノール樹脂(1’)の製造
 撹拌器、分離器付き還流冷却器、及び温度計を装備した4つ口セパラブルフラスコに、ガムロジン800質量部を仕込み、窒素ガスを吹き込みながら170℃にまで加熱することにより前記ガムロジンを溶融させた。溶融状態となっているガムロジンを撹拌しながら、前記で得られた縮合物(F-1)溶液全量及び酸化亜鉛5質量部を投入した後、更に220℃まで昇温させた。次に、グリセリン72質量部を投入しトルエンと水とを分離器付き還流冷却器で反応系外に取り出しながら、240℃まで昇温した。240℃に維持した状態で反応させ、酸価が30mgKOH/gになった時点で、四つ口フラスコ内を減圧ポンプにて20mmHgまで減圧し、減圧条件下で60分間保持し、ロジン変性フェノール樹脂(1’)を得た。得られたロジン変性フェノール樹脂(1’)の酸価は24.8mgKOH/、重量平均分子量(Mw)は42,000、白濁温度は202℃であった。
Comparative Example 1-1 Production of rosin-modified phenolic resin (1 ′) Into a four-necked separable flask equipped with a stirrer, a reflux condenser with a separator, and a thermometer, 800 parts by mass of gum rosin was charged and nitrogen gas was blown. The gum rosin was melted by heating to 170 ° C. While stirring the molten gum rosin, the whole amount of the condensate (F-1) solution obtained above and 5 parts by mass of zinc oxide were added, and the temperature was further raised to 220 ° C. Next, 72 parts by mass of glycerin was added, and the temperature was raised to 240 ° C. while taking toluene and water out of the reaction system with a reflux condenser with a separator. The reaction was carried out while maintaining the temperature at 240 ° C., and when the acid value reached 30 mg KOH / g, the pressure in the four-necked flask was reduced to 20 mmHg with a vacuum pump, and the pressure was maintained for 60 minutes under the reduced pressure condition. (1 ') was obtained. The acid value of the obtained rosin-modified phenol resin (1 ′) was 24.8 mgKOH /, the weight average molecular weight (Mw) was 42,000, and the cloudiness temperature was 202 ° C.
 ロジン変性フェノール樹脂(1)~(5)及び(1’)の各性状値の値を、表1にまとめる。 Table 1 summarizes the property values of rosin-modified phenolic resins (1) to (5) and (1 ').
<インキ用ワニス組成物>
実施1-2 インキ用ワニス組成物(1)の製造
 前記実施例1-1で得たロジン変性フェノール樹脂(1)を粉砕したものを40質量部、大豆油30質量部、及び有機溶剤(新日本石油(株)製「AFソルベント7号」)30質量部を4つ口セパラブルフラスコに入れ、窒素ガスを吹き込みながら内容物を210℃まで加熱し、1時間撹拌した後、130℃まで冷却した。ゲル化剤溶液[ゲル化剤(川研ファインケミカル社製「ALCH」)を等量の有機溶剤(新日本石油社製「AFソルベント7号」)で溶解した溶液]を1.1質量部添加し、次いで、160℃まで昇温して1時間保温し、インキ用ワニス組成物(1)を得た。得られたインキ用ワニス組成物の気泡粘度は6,000dPa・s、最大乳化率(EC%)は40%、へプタントレランスは16mLであった。
<Varnish composition for ink>
Example 1-2 Production of Varnish Composition for Ink (1) 40 parts by mass of crushed rosin-modified phenolic resin (1) obtained in Example 1-1, 30 parts by mass of soybean oil, and an organic solvent (new 30 parts by weight of Nippon Oil Co., Ltd. “AF Solvent No. 7”) is put into a four-necked separable flask, the contents are heated to 210 ° C. while blowing nitrogen gas, stirred for 1 hour, and then cooled to 130 ° C. did. 1.1 parts by mass of a gelling agent solution [a solution obtained by dissolving a gelling agent (“ALCH” manufactured by Kawaken Fine Chemical Co., Ltd.) with an equal amount of organic solvent (“AF Solvent No. 7” manufactured by Nippon Oil Corporation)] Then, the temperature was raised to 160 ° C. and kept for 1 hour to obtain an ink varnish composition (1). The resulting ink varnish composition had a cell viscosity of 6,000 dPa · s, a maximum emulsification rate (EC%) of 40%, and a heptane tolerance of 16 mL.
実施例2-2~5-2及び比較例1-2
 ロジン変性フェノール樹脂(1)を、ロジン変性フェノール樹脂(2)~(5)又は(1’)に変更し、内容物の気泡粘度が6,000~8,000dPa・sの範囲となるようにゲル化剤溶液の添加量を0.8~1.1質量部の範囲で調節した以外は、実施例1-2と同様にしてインキ用ワニス組成物(2)~(5)及び(1’)を得た。得られたインキ用ワニス組成物(2)~(5)及び(1’)の気泡粘度、最大乳化率(EC%)、及びへプタントレランスの値を表1に示す。
Examples 2-2 to 5-2 and Comparative Example 1-2
The rosin-modified phenolic resin (1) is changed to the rosin-modified phenolic resin (2) to (5) or (1 ′) so that the bubble viscosity of the contents is in the range of 6,000 to 8,000 dPa · s. Ink varnish compositions (2) to (5) and (1 ′) in the same manner as in Example 1-2 except that the addition amount of the gelling agent solution was adjusted in the range of 0.8 to 1.1 parts by mass. ) Table 1 shows the cell viscosity, maximum emulsification rate (EC%), and heptane tolerance of the resulting ink varnish compositions (2) to (5) and (1 ′).
<印刷インキ>
実施例1-3 印刷インキ(1)の製造
 前記実施例1-2で得たインキ用ワニス組成物(1)40質量部と、黄色フラッシュベース40質量部とを三本ロールにより練肉し、ラレー粘度が13~18Pa・sになるように有機溶剤(新日本石油社製「AFソルベント4号」)を徐々に添加して調整し、印刷インキ(1)を得た。
<Printing ink>
Example 1-3 Production of Printing Ink (1) 40 parts by mass of the ink varnish composition (1) obtained in Example 1-2 and 40 parts by mass of a yellow flash base were kneaded with a three roll, An organic solvent (“AF Solvent No. 4” manufactured by Shin Nippon Oil Co., Ltd.) was gradually added and adjusted so that the Raleigh viscosity was 13 to 18 Pa · s to obtain a printing ink (1).
印刷インキの評価
 得られた印刷インキ(1)について、下記の各種評価試験を行った。結果を表1に示す。
Evaluation of printing ink The obtained printing ink (1) was subjected to the following various evaluation tests. The results are shown in Table 1.
・最大乳化率
 上記の方法により測定し、以下の基準で評価した。
○:「20%以上90%以下」であることで、適切なインキの乳化ができ、画線部にインキが載り非画線部となるべき部分のインキ汚れがほとんど発生しないレベルである。
△:「90%を超えて130%以下、又は、10%以上20%未満」であることで、一定レベルのインキの乳化ができ、画線部にインキが載り非画線部となるべき部分のインキ汚れが実用上問題ないレベルである。
×:「130%を超える場合、又は、10%未満」であることで、適切なインキの乳化ができず、画線部にインキが載らず画線部となるべき部分が印刷されない問題という問題が生じるレベルである。
-Maximum emulsification rate It measured by said method and evaluated by the following references | standards.
◯: “20% or more and 90% or less” is a level at which appropriate ink emulsification can be performed, and ink smear is hardly generated in the portion where the ink should be placed on the image area and become the non-image area.
Δ: “Over 90% and 130% or less, or 10% or more and less than 20%”, so that a certain level of ink can be emulsified, and the ink should be placed on the image area to become a non-image area. Ink smear is at a level where there is no practical problem.
X: “If it exceeds 130% or less than 10%”, it is impossible to properly emulsify the ink, and there is a problem that the ink is not placed on the image line portion and the portion to be the image line portion is not printed. Is a level where
・耐ミスチング性
 インコメーター(東洋精機社製「INK-O-METER」)に得られた印刷インキ(1)を付着させ、ローラー群を回転させた時の印刷インキの飛散状態を、インコメーターの周辺においた白紙の汚れ具合を目視で判定した。
◎:汚れない
○:ほとんど汚れず、実用上問題ない。
△:一部、汚れが目立つ。
×:汚れが目立つ。
・ Missing resistance The inkometer ("INK-O-METER" manufactured by Toyo Seiki Co., Ltd.) is attached to the printing ink (1), and when the rollers are rotated, The degree of dirt on the white paper placed around was visually judged.
◎: No stain ○: Almost no stain and practically no problem.
Δ: Some dirt is noticeable.
X: Dirt is conspicuous.
・印刷面の光沢
 得られた印刷インキ(1)0.4mLを、RIテスターを使用してアート紙に展色し、このアート紙を130℃オーブンで15秒間乾かして、インキ塗膜を得た。インキ塗膜面の60゜-60゜の反射率を光沢計(BYK社製「micro TRI gloss 4520」)により測定し、以下の基準で評価した。
◎:光沢が優れている(70%以上)
○:光沢がやや優れている(60%以上70%未満)
△:光沢が実用レベルである(55%以上60%未満)
×:光沢が実用レベルに達していない(55%未満)
Gloss of printed surface 0.4 ml of the obtained printing ink (1) was developed on art paper using an RI tester, and this art paper was dried in an oven at 130 ° C. for 15 seconds to obtain an ink coating film. . The 60 ° -60 ° reflectivity of the ink coating surface was measured by a gloss meter (“micro TRI gloss 4520” manufactured by BYK) and evaluated according to the following criteria.
A: Excellent gloss (70% or more)
○: Gloss is slightly superior (60% or more and less than 70%)
Δ: Gloss is at a practical level (55% or more and less than 60%)
X: The gloss does not reach a practical level (less than 55%)
・セット性
 得られた印刷インキ(1)0.4mLを、RIテスターを使用してアート紙に展色し、このアート紙を130℃オーブンで15秒間乾かして、インキ塗膜を得た。該インキ塗膜の指触乾燥状態を以下の基準で判定した。
○:印刷表層部および印刷表層内部の乾燥が良くベタつきがない。
×:印刷表層部および印刷表層内部の乾燥が悪くべたつく。
-Setting property 0.4 mL of the obtained printing ink (1) was developed on art paper using an RI tester, and this art paper was dried in an oven at 130 ° C for 15 seconds to obtain an ink coating film. The dry touch state of the ink coating film was determined according to the following criteria.
○: The printing surface layer and the inside of the printing surface layer are dry well and have no stickiness.
X: The printing surface layer part and the inside of the printing surface layer are poorly dry and sticky.
・流動性
 得られた印刷インキ(1)1.3mLをガラス板にのせ、水平から70度傾けて1時間放置した際に、印刷インキが流れた距離(mm)を測定し、以下の基準で評価した。
◎:印刷時のミスチングの発生する可能性がほとんどなく、印刷面の光沢が劣る可能性がほとんどない、優れた流動性である(200mm以上300mm以下)。
○:印刷時のミスチングの発生する可能性が若干あるか、印刷面の光沢が劣る可能性が若干ある、やや優れる流動性である(150mm以上200mm未満、又は、300mmを超えて350mm以下)。
△:印刷時のミスチングの発生する可能性があるか、印刷面の光沢が劣る可能性があるが、実用レベルの流動性である(350mmを超えて450mm以下又は、100mm以上150mm未満)。
×:印刷時のミスチングの発生する可能性が極めて高いか、印刷面の光沢が劣る可能性が極めて高い、実用レベルでない流動性である(450mmを超える、又は、100mm未満)。
・ Flowability When 1.3 ml of the obtained printing ink (1) is placed on a glass plate and left to stand at an angle of 70 degrees from the horizontal for 1 hour, the distance (mm) that the printing ink has flown is measured. evaluated.
A: Excellent fluidity with little possibility of occurrence of misting during printing and almost no possibility of inferior gloss on the printed surface (200 mm or more and 300 mm or less).
○: There is a slight possibility of occurrence of misting during printing, or there is a possibility that the gloss of the printed surface is slightly inferior, and the fluidity is somewhat excellent (150 mm or more and less than 200 mm, or more than 300 mm and 350 mm or less).
(Triangle | delta): Although misting at the time of printing may generate | occur | produce, or the glossiness of a printing surface may be inferior, it is the fluidity | liquidity of a practical use level (above 350 mm and 450 mm or less or 100 mm or more and less than 150 mm).
X: The possibility of occurrence of misting during printing is extremely high, or the gloss of the printed surface is extremely high, and the fluidity is not at a practical level (more than 450 mm or less than 100 mm).
実施例2-3~5-3及び比較例1-3
 インキ用ワニス組成物(1)を、インキ用ワニス組成物(2)~(5)又は(1’)に変更した以外は、実施例1-3と同様にして印刷インキ(2)~(5)及び(1’)を得、実施例1-3と同様に各種の評価試験を行った。結果を表1に示す。
Examples 2-3 to 5-3 and Comparative Example 1-3
Printing inks (2) to (5) were prepared in the same manner as in Example 1-3 except that the ink varnish composition (1) was changed to the ink varnish compositions (2) to (5) or (1 ′). ) And (1 ′) were obtained, and various evaluation tests were conducted in the same manner as in Example 1-3. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1の結果から、従来技術であるカルダノールを使用していない比較例1に比べ、本発明の実施例は乳化適性と流動性とに優れることから、セット性や耐ミスチング性に優れ、高光沢の印刷面を得ることが出来る印刷インキ、該印刷インキ用ワニス組成物、及びロジン変性フェノール樹脂が提供できることがわかる。 From the results shown in Table 1, since the examples of the present invention are superior in emulsification suitability and fluidity as compared with Comparative Example 1 that does not use cardanol, which is the prior art, it is excellent in setability and misting resistance and has high gloss. It can be seen that there can be provided a printing ink capable of obtaining a printing surface, a varnish composition for printing ink, and a rosin-modified phenolic resin.

Claims (10)

  1.  炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)、ロジン又はロジン誘導体(B)、アルデヒド(C)及び多価アルコール(D)を必須の原料成分として反応させて得られることを特徴とするロジン変性フェノール樹脂。 Essential raw materials of phenolic compound (A), rosin or rosin derivative (B), aldehyde (C) and polyhydric alcohol (D) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position A rosin-modified phenolic resin obtained by reacting as a component.
  2.  前記炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)が有する不飽和炭化水素基が、不飽和結合を1~5個有するものである請求項1記載のロジン変性フェノール樹脂。 The unsaturated hydrocarbon group of the phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position has 1 to 5 unsaturated bonds. The rosin-modified phenol resin according to 1.
  3.  前記炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)が、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭素原子数が10~20の範囲である不飽和炭化水素基を表し、また、R’は炭素原子数が1~4の範囲である炭化水素基、カルボキシル基、水酸基、メトキシ基からなる群から選択されるいずれかの置換基を示し、nは0~2の整数を表す。)
    で表される化合物である請求項1記載のロジン変性フェノール樹脂。
    The phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position is represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R represents an unsaturated hydrocarbon group having 10 to 20 carbon atoms, and R ′ represents a hydrocarbon group having 1 to 4 carbon atoms, a carboxyl group, a hydroxyl group, This represents any substituent selected from the group consisting of methoxy groups, and n represents an integer of 0-2.)
    The rosin-modified phenolic resin according to claim 1, which is a compound represented by the formula:
  4.  前記炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)が、カルダノールである請求項1記載のロジン変性フェノール樹脂。 The rosin-modified phenolic resin according to claim 1, wherein the phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position is cardanol.
  5.  全原料成分100質量部に対し、前記炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)を0.5~40質量部の範囲となる割合で用いる請求項1記載のロジン変性フェノール樹脂。 The phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position with respect to 100 parts by mass of all raw material components in a ratio of 0.5 to 40 parts by mass. The rosin-modified phenolic resin according to claim 1 to be used.
  6.  更に、前記炭素原子数が10~20の範囲である不飽和炭化水素基をメタ位に有するフェノール化合物(A)以外のその他のフェノール化合物(A’)を必須の原料成分として反応させて得られる請求項1記載のロジン変性フェノール樹脂。 Further, it can be obtained by reacting other phenol compound (A ′) other than the phenol compound (A) having an unsaturated hydrocarbon group having 10 to 20 carbon atoms in the meta position as an essential raw material component. The rosin-modified phenolic resin according to claim 1.
  7.  前記ロジン又はロジン誘導体(B)が、ガムロジンである請求項1記載のロジン変性フェノール樹脂。 The rosin-modified phenolic resin according to claim 1, wherein the rosin or rosin derivative (B) is gum rosin.
  8. 重量平均分子量(Mw)が10,000~200,000の範囲である請求項1記載のロジン変性フェノール樹脂。 The rosin-modified phenolic resin according to claim 1, wherein the weight average molecular weight (Mw) is in the range of 10,000 to 200,000.
  9.  請求項1~8のいずれか一つに記載のロジン変性フェノール樹脂と、有機溶剤(E)とを必須の成分として含有するインキ用ワニス組成物。 A varnish composition for ink containing the rosin-modified phenolic resin according to any one of claims 1 to 8 and an organic solvent (E) as essential components.
  10.  請求項1~8のいずれか一つに記載のロジン変性フェノール樹脂、有機溶剤(E)及び顔料(F)を必須の成分として含有する印刷インキ。 Printing ink containing the rosin-modified phenolic resin according to any one of claims 1 to 8, the organic solvent (E) and the pigment (F) as essential components.
PCT/JP2013/069416 2012-09-13 2013-07-17 Rosin-modified phenolic resin, ink varnish composition, and print ink WO2014041890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013546476A JP5543676B1 (en) 2012-09-13 2013-07-17 Rosin-modified phenolic resin, varnish composition for ink and printing ink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-201574 2012-09-13
JP2012201574 2012-09-13

Publications (1)

Publication Number Publication Date
WO2014041890A1 true WO2014041890A1 (en) 2014-03-20

Family

ID=50278020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069416 WO2014041890A1 (en) 2012-09-13 2013-07-17 Rosin-modified phenolic resin, ink varnish composition, and print ink

Country Status (3)

Country Link
JP (1) JP5543676B1 (en)
TW (1) TW201410748A (en)
WO (1) WO2014041890A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078127A (en) * 2015-10-21 2017-04-27 住友ベークライト株式会社 Liquid resol-type phenol resin, method for producing liquid resol-type phenol resin, and article
WO2017099146A1 (en) * 2015-12-09 2017-06-15 ハリマ化成株式会社 Resin for printing ink, varnish for printing ink, printing ink, and process for producing resin for printing ink

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105622874B (en) * 2014-12-26 2018-08-28 彤程化学(中国)有限公司 With rosin or the phenol-formaldehyde resin and its preparation method and application of maleic rosin and modified by cardanol

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259620A (en) * 1985-09-09 1987-03-16 Kashiyuu Kk Curable resin
JPH0641487A (en) * 1991-07-15 1994-02-15 Arakawa Chem Ind Co Ltd Resin for offset ink
JPH073198A (en) * 1991-07-11 1995-01-06 Arakawa Chem Ind Co Ltd Resin for waterless plate ink
JP2005501145A (en) * 2001-08-27 2005-01-13 アリゾナ ケミカル カンパニー Tall oil pitch modified phenolic resin and related methods
JP2007002032A (en) * 2005-06-22 2007-01-11 Sumitomo Bakelite Co Ltd Modified phenol resin, method for producing the same, and modified phenol resin composition
CN101092473A (en) * 2007-08-13 2007-12-26 山东圣泉化工股份有限公司 Anti hot cracking phenol-formaldehyde resin in use for foundry

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261768A (en) * 2000-03-14 2001-09-26 Taniguchi Ink Seizo Kk Method for producing varnish containing resin modified with rosin and ink for printing
CN1165588C (en) * 2000-09-29 2004-09-08 周文富 Titanium chelating phenolic acetal ether and its IPN anticorrosive paint series
DE10158693A1 (en) * 2001-11-29 2003-06-26 Ashland Suedchemie Kernfest Coated granular fabrics
JP2004137442A (en) * 2002-10-18 2004-05-13 Hitachi Kasei Polymer Co Ltd Rosin-modified phenolic resin
JP5298586B2 (en) * 2008-03-21 2013-09-25 荒川化学工業株式会社 Rosin-modified phenolic resin, resin varnish for printing ink, pigment coating agent and printing ink

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259620A (en) * 1985-09-09 1987-03-16 Kashiyuu Kk Curable resin
JPH073198A (en) * 1991-07-11 1995-01-06 Arakawa Chem Ind Co Ltd Resin for waterless plate ink
JPH0641487A (en) * 1991-07-15 1994-02-15 Arakawa Chem Ind Co Ltd Resin for offset ink
JP2005501145A (en) * 2001-08-27 2005-01-13 アリゾナ ケミカル カンパニー Tall oil pitch modified phenolic resin and related methods
JP2007002032A (en) * 2005-06-22 2007-01-11 Sumitomo Bakelite Co Ltd Modified phenol resin, method for producing the same, and modified phenol resin composition
CN101092473A (en) * 2007-08-13 2007-12-26 山东圣泉化工股份有限公司 Anti hot cracking phenol-formaldehyde resin in use for foundry

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078127A (en) * 2015-10-21 2017-04-27 住友ベークライト株式会社 Liquid resol-type phenol resin, method for producing liquid resol-type phenol resin, and article
WO2017068866A1 (en) * 2015-10-21 2017-04-27 住友ベークライト株式会社 Liquid phenolic resol resin, method for preparing liquid phenolic resol resin, and article
WO2017099146A1 (en) * 2015-12-09 2017-06-15 ハリマ化成株式会社 Resin for printing ink, varnish for printing ink, printing ink, and process for producing resin for printing ink
CN108368243A (en) * 2015-12-09 2018-08-03 哈利玛化成株式会社 Resin for printing ink, printing ink varnish, the manufacturing method for printing ink and resin for printing ink

Also Published As

Publication number Publication date
JP5543676B1 (en) 2014-07-09
JPWO2014041890A1 (en) 2016-08-18
TW201410748A (en) 2014-03-16

Similar Documents

Publication Publication Date Title
JP5582419B2 (en) Rosin-modified phenolic resin, its production method and printing ink
JP5648813B2 (en) Rosin-modified phenolic resin, production method thereof, varnish for printing ink, and printing ink
JP5543676B1 (en) Rosin-modified phenolic resin, varnish composition for ink and printing ink
JP6040686B2 (en) Rosin polyhydric alcohol ester resin, ink emulsification suitability improver, varnish for offset printing ink and ink composition for offset printing
JP2018159013A (en) Resin for planographic printing ink and planographic printing ink and printed matter
JP2012001714A (en) Rosin-modified phenolic resin, printing ink varnish, and printing ink
JP2014181313A (en) Lithographic printing ink and printed matter
JP5796274B2 (en) Rosin-modified phenolic resin, its production method and printing ink
WO2012070093A1 (en) Process for manufacturing rosin-modified phenol resin for offset printing ink and process for manufacturing varnish for offset printing ink
JP2015110750A (en) Rosin-modified phenolic resin, binder for offset printing ink, varnish for offset printing ink, and offset printing ink
JP2019019317A (en) Manufacturing method of rosin-modified phenol resin for offset printing ink, rosin-modified phenol resin for offset printing ink, varnish for offset printing ink, and offset printing ink
JP6103482B2 (en) Offset printing rosin-modified phenolic resin, gel varnish for offset printing ink, and offset printing ink
JP6284033B2 (en) Method for producing rosin-modified phenolic resin for offset printing ink, gel varnish for offset printing ink, and offset printing ink
JP5708946B2 (en) Printing ink binder, printing ink varnish and printing ink
JP2015168774A (en) Rosin-modified phenol resin
JP5703557B2 (en) Additive for offset ink, varnish for offset ink, and ink composition for offset printing
JP4968391B1 (en) Lithographic printing ink and printed matter
JP2013213113A (en) Resin for lithographic ink and lithographic ink
JP6061141B2 (en) Composition for offset printing ink binder, gel varnish for offset printing ink, offset printing ink
JP2021155715A (en) Rosin-modified phenolic resin, varnish for print ink and print ink
JPH0813948B2 (en) Printing ink
JP2017137421A (en) Resin for lithographic printing ink and lithographic printing ink
JP2014173056A (en) Resin for a lithographic printing ink, lithographic printing ink, and printed matter
JP2016160375A (en) Lithographic printing ink composition and printed matter thereof
JP6494437B2 (en) Alkyd-modified resole resin and printing ink

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013546476

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837012

Country of ref document: EP

Kind code of ref document: A1