WO2017098901A1 - Cooling system for vehicle - Google Patents

Cooling system for vehicle Download PDF

Info

Publication number
WO2017098901A1
WO2017098901A1 PCT/JP2016/084432 JP2016084432W WO2017098901A1 WO 2017098901 A1 WO2017098901 A1 WO 2017098901A1 JP 2016084432 W JP2016084432 W JP 2016084432W WO 2017098901 A1 WO2017098901 A1 WO 2017098901A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
chiller
cooling water
circulation channel
intercooler
Prior art date
Application number
PCT/JP2016/084432
Other languages
French (fr)
Japanese (ja)
Inventor
則義 宮嶋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680068250.6A priority Critical patent/CN108291473B/en
Publication of WO2017098901A1 publication Critical patent/WO2017098901A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K13/00Arrangement in connection with combustion air intake or gas exhaust of propulsion units
    • B60K13/02Arrangement in connection with combustion air intake or gas exhaust of propulsion units concerning intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control

Definitions

  • the present disclosure relates to a vehicle cooling system that cools intake air of an engine and cools and dehumidifies air blown into a vehicle interior.
  • Patent Document 1 describes a vehicle thermal management system that circulates cooling water through a cooler core, an intercooler, a chiller, and a radiator.
  • the cooler core is a heat exchanger that exchanges heat between the air blown into the passenger compartment and the cooling water.
  • the intercooler is a heat exchanger that exchanges heat between supercharged intake air and cooling water of the engine.
  • the chiller is a heat exchanger that cools the cooling water by exchanging heat between the low-pressure refrigerant in the refrigeration cycle and the cooling water.
  • the radiator is a heat exchanger that exchanges heat between outside air and cooling water.
  • the cooling water can be cooled to about 0 ° C with a radiator. If the cooling water cooled to about 0 ° C. by the radiator is circulated to the cooler core, the air blown into the passenger compartment can be cooled and dehumidified without driving the compressor of the refrigeration cycle, so that power consumption can be reduced. It becomes possible.
  • the present disclosure aims to reduce power consumption of a cooling system for a vehicle that cools intake air of an engine and cools and dehumidifies air blown into a vehicle interior.
  • a cooling system for a vehicle includes a chiller, a cooler core, a first circulation channel forming unit, an intercooler, a radiator, a second circulation channel forming unit, and a first communication channel forming unit. And a second communication flow path forming part and a switching part.
  • the chiller cools the heat medium by exchanging heat between the low-pressure side refrigerant of the refrigeration cycle and the heat medium.
  • the cooler core cools the air by exchanging heat between the heat medium cooled by the chiller and the air blown into the vehicle interior.
  • the first circulation flow path forming unit forms a first circulation flow path for circulating the heat medium between the chiller and the cooler core.
  • the intercooler cools the intake air by exchanging heat between the intake air of the engine and the heat medium.
  • the radiator exchanges heat between the heat medium exchanged by the intercooler and the outside air.
  • the second circulation flow path forming unit forms a second circulation flow path for circulating the heat medium between the intercooler and the radiator.
  • the first communication flow path forming unit includes a portion of the first circulation flow path on the heat medium outlet side of the cooler core and the heat medium inlet side of the chiller, and a heat medium outlet side of the intercooler of the second circulation flow path and the radiator.
  • a first communication channel is formed that is connected to a portion on the heat medium inlet side and communicates the first circulation channel and the second circulation channel.
  • the second communication flow path forming unit includes a portion of the first circulation flow path on the heat medium outlet side of the chiller and the heat medium inlet side of the cooler core, and a heat medium outlet side of the radiator and the intercooler of the second circulation flow path.
  • a second communication channel is formed which is connected to the portion on the heat medium inlet side and communicates the first circulation channel and the second circulation channel.
  • the switching unit switches between a state in which the first circulation channel and the second circulation channel communicate with each other through the first communication channel and the second communication channel and a state in which the first circulation channel and the second circulation channel do not communicate with each other.
  • the switching unit allows the first circulation channel and the second circulation channel to communicate with each other, so that the heat medium cooled by the radiator can flow to the cooler core without using the intercooler.
  • a vehicle cooling system 10 shown in FIG. 1 is used to cool intake air of an engine and cool and dehumidify air blown into a vehicle interior.
  • the vehicle cooling system 10 includes a first pump 11, a second pump 12, a radiator 13, a chiller 14, an intercooler 15, and a cooler core 16.
  • the first pump 11 and the second pump 12 are electric pumps that suck and discharge cooling water.
  • the cooling water is a fluid as a heat medium.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water.
  • the first pump 11 and the second pump 12 are flow rate adjusting devices that adjust the flow rate of the cooling water flowing through each cooling water circulation device.
  • the radiator 13, the chiller 14, the intercooler 15, and the cooler core 16 are cooling water circulation devices through which cooling water circulates.
  • the first pump 11 may be a first flow rate adjusting device
  • the second pump 12 may be a second flow rate adjusting device.
  • the radiator 13 is a cooling water outdoor air heat exchanger that exchanges heat between cooling water and outside air (hereinafter referred to as outside air).
  • outside air cooling water outdoor air heat exchanger that exchanges heat between cooling water and outside air
  • sensible heat exchange is performed between the cooling water and the air outside the passenger compartment.
  • the outdoor blower 20 is an outside air blower that blows outside air to the radiator 13.
  • the outdoor blower 20 is an electric blower.
  • the radiator 13 and the outdoor blower 20 are disposed in the foremost part of the vehicle. For this reason, the traveling wind can be applied to the radiator 13 when the vehicle is traveling.
  • the outdoor blower 20 is a flow rate adjusting device that adjusts the flow rate of outside air flowing through the radiator 13.
  • the chiller 14 is a cooling water cooling heat exchanger that cools the cooling water.
  • the chiller 14 is a low-pressure side heat exchanger that absorbs heat from the cooling water to the low-pressure side refrigerant by exchanging heat between the low-pressure side refrigerant of the refrigeration cycle 31 and the cooling water.
  • the chiller 14 is an evaporator that evaporates the low-pressure side refrigerant of the refrigeration cycle 31.
  • the refrigeration cycle 31 is a vapor compression refrigerator that includes a compressor 32, a condenser 33, an expansion valve 34, and a chiller 14.
  • a chlorofluorocarbon refrigerant is used as the refrigerant of the refrigeration cycle 31, and the refrigeration cycle 31 is a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
  • Compressor 32 is a belt-driven compressor, and sucks, compresses and discharges the refrigerant of refrigeration cycle 31.
  • a belt drive type compressor is a compressor driven with an engine belt by the driving force of an engine.
  • the condenser 33 is a condenser that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 32 and the outside air. In the condenser 33, the high-pressure refrigerant discharged from the compressor 32 changes in latent heat.
  • the expansion valve 34 is a decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the condenser 33.
  • the expansion valve 34 is a temperature type expansion valve having a temperature sensing part.
  • the temperature sensing unit detects the degree of superheat of the chiller 14 outlet side refrigerant based on the temperature and pressure of the chiller 14 outlet side refrigerant.
  • the temperature type expansion valve has a mechanical mechanism that adjusts the throttle passage area so that the degree of superheat of the refrigerant on the outlet side of the chiller 14 falls within a predetermined range.
  • the chiller 14 is an evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 34 and the cooling water.
  • the low-pressure refrigerant decompressed and expanded by the expansion valve 34 changes in latent heat.
  • the gas phase refrigerant evaporated by the chiller 14 is sucked into the compressor 32 and compressed.
  • the cooling water In the radiator 13, the cooling water is cooled by outside air, whereas in the chiller 14, the cooling water is cooled by the low-pressure refrigerant of the refrigeration cycle 31. For this reason, the temperature of the cooling water cooled by the chiller 14 can be made lower than the temperature of the cooling water cooled by the radiator 13. Specifically, the radiator 13 cannot cool the cooling water to a temperature lower than the outside air temperature, whereas the chiller 14 can cool the cooling water to a temperature lower than the outside air temperature.
  • the intercooler 15 is an intake air cooler that cools the supercharged intake air by exchanging heat between the supercharged intake air that has been compressed by the turbocharger and becomes high temperature and the cooling water.
  • the turbocharger is a supercharger that supercharges engine intake air.
  • the cooler core 16 is an air cooling heat exchanger that adjusts the temperature of the blown air by exchanging heat between the cooling water cooled by the chiller 14 and the blown air to the passenger compartment.
  • the cooler core 16 is an air cooling heat exchanger that performs heat exchange between cooling water and air blown into the vehicle interior to cool and dehumidify the air blown into the vehicle interior.
  • the first pump 11, the chiller 14, and the cooler core 16 are disposed in the first circulation channel 21.
  • the first circulation channel 21 is an annular channel through which cooling water circulates.
  • the first circulation channel 21 is formed by a first circulation channel forming part.
  • the first pump 11, the chiller 14, and the cooler core 16 are arranged in series in the first circulation channel 21 so that the cooling water flows in the order of the first pump 11, the cooler core 16, and the chiller 14.
  • the second pump 12, the radiator 13, and the intercooler 15 are disposed in the second circulation channel 22.
  • the second circulation channel 22 is an annular channel through which cooling water circulates.
  • the second circulation channel 22 is formed by a second circulation channel forming part.
  • the second pump 12, the radiator 13 and the intercooler 15 are arranged in series so that the cooling water flows in the order of the second pump 12, the intercooler 15 and the radiator 13 in the second circulation flow path 22.
  • the first circulation channel 21 and the second circulation channel 22 communicate with each other via the first communication channel 23 and the second communication channel 24.
  • the first communication channel 23 includes a portion of the first circulation channel 21 on the cooling water outlet side of the cooler core 16 and the cooling water inlet side of the chiller 14 and a cooling water outlet of the intercooler 15 in the second circulation channel 22. And a portion of the radiator 13 on the cooling water inlet side.
  • the first communication channel 23 is formed by a first communication channel forming part.
  • the second communication flow path 24 includes a cooling water outlet side of the chiller 14 and a cooling water suction side portion of the first pump 11 in the first circulation flow path 21 and a cooling water of the radiator 13 in the second circulation flow path 22. It is connected to the outlet side and a portion of the second pump 12 on the cooling water suction side.
  • the second communication flow path 24 includes a portion of the first circulation flow path 21 on the cooling water outlet side of the chiller 14 and the cooling water inlet side of the cooler core 16, and the second circulation flow path 22 of the radiator 13.
  • the cooling water outlet side and the part of the intercooler 15 on the cooling water inlet side are connected.
  • the second communication channel 24 is formed by a second communication channel forming part.
  • a first three-way valve 25 is disposed at a connection portion between the first communication channel 23 and the first circulation channel 21.
  • the first three-way valve 25 has three ports on the cooling water outlet side of the cooler core 16, the cooling water inlet side of the chiller 14, and the first communication channel 23 side.
  • the first three-way valve 25 is an electromagnetic valve that switches the communication state between the three ports on the cooling water outlet side of the cooler core 16, the cooling water inlet side of the chiller 14, and the first communication flow path 23 side. The operation of the first three-way valve 25 is controlled by the control device 40.
  • the first three-way valve 25 can communicate all three ports on the cooling water outlet side of the cooler core 16, the cooling water inlet side of the chiller 14, and the first communication channel 23 side.
  • the first three-way valve 25 can communicate only two ports on the cooling water outlet side of the cooler core 16 and the cooling water inlet side of the chiller 14 with each other.
  • the first three-way valve 25 can communicate only two ports of the cooler core 16 on the cooling water outlet side and the first communication channel 23 side.
  • the first three-way valve 25 can communicate only two ports of the chiller 14 on the cooling water inlet side and the first communication channel 23 side.
  • the first three-way valve 25 is a switching unit that switches between a state in which the first circulation channel 21 and the second circulation channel 22 communicate with each other through the first communication channel 23 and the second communication channel 24 and a state in which the first circulation channel 21 and the second circulation channel 22 do not communicate with each other. .
  • a bypass flow path 26 is connected to the second circulation flow path 22.
  • the bypass channel 26 includes a portion of the second circulation channel 22 that is closer to the coolant outlet side of the intercooler 15 than a connection portion with the first communication channel 23 and a second communication channel of the second circulation channel 22.
  • the portion of the second pump 12 on the cooling water suction side is connected to the connecting portion with the passage 24.
  • the bypass channel 26 is formed by a bypass channel forming part.
  • the second three-way valve 27 is arranged at the junction where the second circulation channel 22 and the bypass channel 26 merge. Specifically, the second three-way valve 27 is disposed in a connection portion between the bypass flow passage 26 and a portion of the second circulation flow path 22 on the cooling water outlet side of the radiator 13 and the cooling water suction side of the second pump 12. Has been.
  • the second three-way valve 27 has three ports on the cooling water outlet side of the radiator 13, the cooling water suction side of the second pump 12, and the bypass flow path 26 side.
  • the second three-way valve 27 is a thermostat that switches the communication state between the three ports.
  • the thermostat is a cooling water temperature responsive valve.
  • the cooling water temperature responsive valve has a thermo wax and a mechanical mechanism. Thermowax changes in volume with temperature. The mechanical mechanism displaces the valve body by changing the volume of the thermowax to open and close the cooling water flow path.
  • the second three-way valve 27 may be an electromagnetic valve whose operation is controlled by the control device 40.
  • the second three-way valve 27 can communicate all three ports on the cooling water outlet side of the radiator 13, the cooling water suction side of the second pump 12, and the bypass channel 26 side.
  • the second three-way valve 27 can communicate only two ports on the cooling water outlet side of the radiator 13 and the cooling water suction side of the second pump 12 with each other.
  • the second three-way valve 27 can cause only the two ports on the cooling water suction side and the bypass flow path 26 side of the second pump 12 to communicate with each other.
  • the second three-way valve 27 is a flow rate ratio adjusting unit that adjusts the flow rate ratio between the cooling water flowing through the bypass passage 26 and the cooling water flowing through the radiator 13.
  • the cooler core 16 is accommodated in the case of the indoor air conditioning unit of the vehicle air conditioner.
  • the case of the indoor air conditioning unit forms an air passage for blown air to be blown into the vehicle interior, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside / outside air switching box is arranged on the most upstream side of the air flow in the case of the indoor air conditioning unit.
  • the inside / outside air switching box is an inside / outside air introduction section that switches between and introduces vehicle interior air (hereinafter referred to as interior air) and vehicle exterior air (hereinafter referred to as exterior air).
  • the inside / outside air switching door is a suction port mode switching unit that switches the suction port mode of the indoor air conditioning unit to the inside air introduction mode or the outside air introduction mode.
  • room air introduction mode room air is introduced into the case of the indoor air conditioning unit.
  • outside air introduction mode outside air is introduced into the case of the indoor air conditioning unit.
  • An indoor blower is arranged on the downstream side of the air flow in the inside / outside air switching box.
  • the indoor blower is a blower that blows air sucked through the inside / outside air switching box (that is, inside air and outside air) toward the vehicle interior.
  • the indoor blower is an electric blower that drives a centrifugal multiblade fan (in other words, a sirocco fan) by an electric motor.
  • a cooler core 16 is disposed on the downstream side of the air flow of the indoor blower.
  • a heater core is arranged on the downstream side of the air flow of the cooler core 16 in the case of the indoor air conditioning unit.
  • the heater core is an air heating heat exchanger that heats the air flowing in the case of the indoor air conditioning unit by exchanging heat between the engine coolant and the air flowing in the case of the indoor air conditioning unit.
  • Engine cooling water is an engine cooling heat medium for cooling the engine.
  • the engine coolant circulates through the engine cooling circuit.
  • An engine, a heater core, and the like are arranged in the engine cooling circuit.
  • a heater core bypass passage is formed at the downstream side of the air flow of the cooler core 16.
  • the heater core bypass passage is an air passage through which air that has passed through the cooler core 16 flows without passing through the heater core.
  • an air mix door is disposed between the cooler core 16 and the heater core.
  • the air mix door is an air volume ratio adjusting unit that continuously changes the air volume ratio between the air flowing into the heater core and the air flowing into the heater core bypass passage.
  • the air mix door is a rotatable plate-like door, a slidable door, or the like, and is driven by an electric actuator.
  • the air outlet is arranged at the most downstream part of the air flow in the case of the indoor air conditioning unit.
  • the air flowing in the case of the indoor air conditioning unit is blown out from the blowout opening into the vehicle interior that is the air conditioning target space.
  • a defroster outlet, a face outlet, and a foot outlet are provided as the outlet.
  • the defroster outlet blows air conditioned air toward the inner surface of the front window glass of the vehicle.
  • the face air outlet blows conditioned air toward the upper body of the passenger.
  • the air outlet blows air-conditioned air toward the passenger's feet.
  • an air outlet mode door is arranged on the upstream side of the air flow of the air outlet.
  • a blower outlet mode door is a blower outlet mode switching part which switches blower outlet mode.
  • the outlet mode door is driven by an electric actuator.
  • the outlet mode switched by the outlet mode door for example, there are a face mode, a bi-level mode, a foot mode, and a foot defroster mode.
  • the face mode is a blowout mode in which the face blowout is fully opened and air is blown out from the face blowout toward the upper body of the passenger in the passenger compartment.
  • the bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment.
  • the foot mode is a blowout mode in which the foot blowout opening is fully opened and the defroster blowout opening is opened by a small opening so that air is mainly blown out from the foot blowout opening.
  • the foot defroster mode is an air outlet mode in which the foot air outlet and the defroster air outlet are opened to the same extent and air is blown out from both the foot air outlet and the defroster air outlet.
  • the EGR cooler is a heat exchanger that constitutes an EGR (exhaust gas recirculation) device that recirculates a part of the exhaust gas of the engine to the intake side to reduce the pumping loss generated by the throttle valve. It is a heat exchanger that adjusts the temperature of the reflux gas by exchanging heat with water.
  • EGR exhaust gas recirculation
  • the control device 40 is composed of a well-known microcomputer including a CPU, a ROM, a RAM and the like and its peripheral circuits, performs various calculations and processing based on an air conditioning control program stored in the ROM, and is connected to the output side. Control the operation of various controlled devices.
  • the control target devices controlled by the control device 40 are the first pump 11, the second pump 12, the first three-way valve 25, the outdoor blower 20, the compressor 32, and the like.
  • control device 40 hardware and software that control the operation of various control target devices connected to the output side are control units that control the operation of each control target device.
  • the hardware and software for controlling the operation of the first pump 11 and the second pump 12 in the control device 40 are a pump control unit 40a.
  • the hardware and software for controlling the operation of the first three-way valve 25 in the control device 40 is a valve control unit 40b.
  • the valve control unit 40b is a switching control unit that switches the circulating state of the cooling water.
  • the hardware and software for controlling the operation of the outdoor blower 20 in the control device 40 is an outdoor blower control unit 40c.
  • the hardware and software for controlling the operation of the compressor 32 in the control device 40 is a compressor control unit 40d.
  • Each control unit 40a, 40b, 40c, 40d may be configured separately from the control device 40.
  • detection signals of sensor groups such as an inside air temperature sensor 41, an outside air temperature sensor 42, a solar radiation sensor 43, a chiller temperature sensor 44, a cooler core temperature sensor 45, a radiator temperature sensor 46, an intercooler temperature sensor 47, and the like. Is entered.
  • the inside air temperature sensor 41 is a detection unit that detects the temperature of inside air (in other words, the vehicle interior temperature).
  • the outside air temperature sensor 42 is a detection unit that detects the temperature of outside air (in other words, the temperature outside the passenger compartment).
  • the solar radiation sensor 43 is a detection unit that detects the amount of solar radiation in the passenger compartment.
  • the chiller temperature sensor 44 is a detection unit that detects the temperature of the chiller 14. For example, the chiller temperature sensor 44 detects the temperature of the cooling water flowing out from the chiller 14.
  • the cooler core temperature sensor 45 is a detection unit that detects the temperature of the cooler core 16.
  • the cooler core temperature sensor 45 is, for example, a fin thermistor that detects the temperature of the heat exchange fins of the cooler core 16, a water temperature sensor that detects the temperature of the cooling water flowing through the cooler core 16, or the like.
  • the radiator temperature sensor 46 is a detection unit that detects the temperature of the radiator 13.
  • the radiator temperature sensor 46 is a detection unit that detects the temperature of the cooling water flowing out of the radiator 13.
  • the intercooler temperature sensor 47 is a detection unit that detects the temperature of the intercooler 15.
  • the intercooler temperature sensor 47 is a fin thermistor that detects the temperature of the outlet air intake of the intercooler 15, a water temperature sensor that detects the temperature of cooling water flowing through the intercooler 15, or the like.
  • Operation signals from various air conditioning operation switches provided on the operation panel 48 are input to the input side of the control device 40.
  • the operation panel 48 is disposed near the instrument panel in the front part of the vehicle interior.
  • Various air conditioning operation switches provided on the operation panel 48 are a defroster switch, an air conditioner switch, an auto switch, a vehicle interior temperature setting switch, an air volume setting switch, an air conditioning stop switch, and the like.
  • the defroster switch is a switch that sets or cancels the defroster mode.
  • the air-conditioning air is blown from the defroster outlet of the indoor air conditioning unit toward the inner surface of the front window glass to prevent fogging of the front window glass, or to remove window fogging when the window is fogged It is.
  • the air conditioner switch is a switch for switching on / off (in other words, on / off) of cooling or dehumidification.
  • the air volume setting switch is a switch for setting the air volume blown from the indoor blower.
  • the auto switch is a switch for setting or canceling automatic control of air conditioning.
  • the vehicle interior temperature setting switch is a target temperature setting unit that sets the vehicle interior target temperature by the operation of the passenger.
  • the air conditioning stop switch is a switch that stops air conditioning.
  • the control device 40 determines the air conditioning mode based on the outside air temperature and the target blowout air temperature TAO of the passenger compartment.
  • the target blowing temperature TAO is a value that is determined in order to quickly bring the inside air temperature Tr close to the occupant's desired target temperature Tset, and is calculated by the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C F1
  • Tset is the target temperature in the vehicle interior set by the vehicle interior temperature setting switch
  • Tr is the internal air temperature detected by the internal air temperature sensor 41
  • Tam is the external air temperature detected by the external air temperature sensor 42
  • Ts is the amount of solar radiation detected by the solar radiation sensor 43.
  • Kset, Kr, Kam, Ks are control gains
  • C is a correction constant.
  • the control device 40 determines the air conditioning mode as the cooling mode, and when the target blowing temperature TAO is higher than the outside air temperature, the control device 40 determines the air conditioning mode as the heating mode.
  • the hardware and software for determining the air conditioning mode in the control device 40 are an air conditioning mode determining unit.
  • the air conditioning mode determination unit may be configured separately from the control device 40.
  • the control device 40 controls the operation of the first pump 11, the second pump 12, the compressor 32, the first three-way valve 25, etc., thereby switching to various operation modes.
  • the operation mode can be switched to the independent operation mode, the compressor dehumidification mode, the intake air cooling priority mode, and the intake air cooling assist mode.
  • the independent operation mode, the compressor dehumidification mode, the intake air cooling priority mode, and the intake air cooling auxiliary mode will be described.
  • the independent operation mode shown in FIG. 3 is an operation mode in which intake air cooling by the intercooler 15 and cooling dehumidification by the cooler core 16 are performed independently of each other.
  • the independent operation mode is a basic operation mode that is most frequently used.
  • the first three-way valve 25 allows only the two ports on the cooling water outlet side of the cooler core 16 and the cooling water inlet side of the chiller 14 to communicate with each other.
  • the cooling water circulates through the first circulation channel 21 and the second circulation channel 22 independently of each other as shown by the thick solid lines in FIG. Even if the cooling water temperature changes in one of the channels, the other channel is not affected.
  • the temperature of the cooling water flowing into the cooler core 16 can be changed by changing the heat exchange amount in the chiller 14 by turning on / off the compressor 32 and controlling the capacity. Can control the heat exchange capacity.
  • the heat exchange capability of the cooler core 16 can also be controlled by changing the flow rate of the cooling water discharged from the first pump 11.
  • the flow rate of the cooling water to the radiator 13 is changed by the valve opening degree of the second three-way valve 27 and the amount of heat released to the outside air is changed, so that the temperature of the cooling water flowing into the intercooler 15 is changed.
  • the valve opening degree of the second three-way valve 27 changes so that the temperature of the intake air heat-exchanged by the intercooler 15 does not become a predetermined temperature (for example, 30 to 40 ° C.) or less.
  • a predetermined temperature for example, 30 to 40 ° C.
  • the compressor stop dehumidification mode shown in FIG. 4 is executed when the suction port mode of the indoor air conditioning unit is the inside air introduction mode and the outside air temperature is lower than the vehicle interior temperature.
  • the compressor stop dehumidification mode is an operation mode in which the cooling water cooled by the outside air by the radiator 13 is sent to the cooler core 16 to dehumidify the inside air.
  • the compressor stop dehumidification mode is executed to stop the compressor 32 and reduce power consumption.
  • the first three-way valve 25 allows only the two ports on the cooling water outlet side and the first communication channel 23 side of the cooler core 16 to communicate with each other.
  • the cooling water discharged from the first pump 11 circulates in the order of the cooler core 16, the first three-way valve 25, the radiator 13, and the first pump 11.
  • the cooling water discharged from the second pump 12 circulates in the order of the intercooler 15, the radiator 13, and the second pump 12.
  • the cooling water in the first circulation channel 21 and the cooling water in the second circulation channel 22 are mixed, so that the first circulation channel 21 and the second circulation channel 22 are cooled with each other. To affect.
  • the second three-way valve 27 may adjust the valve opening so that most of the cooling water flows through the bypass flow path 26 and the flow rate of the cooling water toward the radiator 13 becomes a very small amount. The reason is as follows.
  • the temperature of the intake air flowing into the intercooler 15 is also lower in the compressor stop dehumidification mode.
  • the 15 hourly average heat exchange amount is very small (for example, about 0.2 kW or less).
  • the cooler core 16 when the inside air having a temperature of 25 ° C., a humidity of 50%, and a flow rate of 200 m 3 / h is cooled to 1 ° C. by the cooler core 16, if the cooling water flow rate in the cooler core 16 is 10 L / min, it flows into the cooler core 16.
  • the cooling water is required to be about ⁇ 5 ° C., the required cooling amount is about 2.8 kW, and the temperature of the cooling water flowing out of the cooler core 16 is about 0 ° C.
  • the radiator 13 needs only to be able to dissipate about 3 kW together with the amount of intake air cooling. Therefore, the general radiator can sufficiently dissipate heat.
  • the radiator 13 can generate cooling water having a temperature about 5 ° C. higher than the temperature of the outside air, and therefore cools the inside air at 25 ° C. if the outside air temperature is about 5 ° C. or less. Can be dehumidified.
  • the first three-way valve 25 allows only the two ports on the cooling water inlet side and the first communication flow path 23 side of the chiller 14 to communicate with each other.
  • the first pump 11 is stopped.
  • the cooling water discharged from the second pump 12 flows through the intercooler 15 and then branches to the radiator 13 side and the chiller 14 side, and the radiator 13 and the chiller 14. After flowing in parallel, they merge and are sucked into the second pump 12.
  • the intercooler 15 While the temperature of the cooling water flowing in becomes 44 ° C. and the temperature of the intake air flowing out from the intercooler 15 becomes 50 ° C., when the cooling water cooling capacity of the chiller 14 is used 3 kW, the cooling water flowing into the inter cooler 15 is used. , The temperature of the intake air flowing out from the intercooler 15 can be lowered to about 43 ° C., and the engine output can be increased by about 7 kW.
  • the amount of heat radiation is also reduced by 2 kW in the radiator 13, and the increase in the total cooling amount is 1 kW.
  • the compressor 32 is driven to cool the cooling water by the chiller 14, about 1.5 kW of power is consumed by the compressor 32. Since the compressor 32 is driven by the driving force of the engine, the engine output improvement effect is reduced by that amount, but an engine output improvement effect of 5.5 kW can be obtained by subtraction.
  • the first three-way valve 25 causes all three ports on the cooling water outlet side of the cooler core 16, the cooling water inlet side of the chiller 14, and the first communication flow path 23 side to communicate with each other. Further, the opening degree of the first three-way valve 25 is adjusted so that the cooling water from the cooler core 16 side and the cooling water from the intercooler 15 side flow to the chiller 14 side at a predetermined flow rate ratio.
  • the cooling water discharged from the first pump 11 and the cooling water discharged from the second pump 12 flow into the chiller 14 and are cooled by the chiller 14.
  • a part of the air flows through the intercooler 15 to cool the intake air, and the remaining cooling water cooled by the chiller 14 flows through the cooler core 16 to perform cooling.
  • the temperature of the cooling water flowing into the intercooler 15 is adjusted by changing the flow rate of the cooling water to the radiator 13 to adjust the amount of heat released to the outside air and mixing it with the water bypassing the radiator 13.
  • the outlet intake air temperature of the intercooler 15 can be controlled by changing the temperature.
  • the first communication channel 23 includes the intercooler of the first circulation channel 21 on the cooling water outlet side of the cooler core 16 and the cooling water inlet side of the chiller 14 and the intercooler of the second circulation channel 22.
  • 15 is connected to the cooling water outlet side and to the portion of the radiator 13 on the cooling water inlet side.
  • the second communication channel 24 includes a portion of the first circulation channel 21 on the cooling water outlet side of the chiller 14 and the cooling water inlet side of the cooler core 16, and a portion of the second circulation channel 22 on the cooling water outlet side of the radiator 13.
  • the intercooler 15 is connected to a portion on the cooling water inlet side.
  • the first three-way valve 25 switches between a state in which the first circulation channel 21 and the second circulation channel 22 communicate with each other through the first communication channel 23 and the second communication channel 24 and a state in which the first circulation channel 21 and the second circulation channel 22 do not communicate with each other.
  • the first three-way valve 25 allows the first circulation passage 21 and the second circulation passage 22 to communicate with each other, so that the cooling water cooled by the radiator 13 can flow to the cooler core 16. Therefore, the air can be cooled and dehumidified by the cooler core 16 even when the compressor 32 of the refrigeration cycle 31 is stopped at a low outside air temperature.
  • the first three-way valve 25 is disposed at a connection portion between the first circulation channel 21 and the first communication channel 23.
  • the first three-way valve 25 has a state in which the cooling water outlet side of the cooler core 16 and the cooling water inlet side of the chiller 14 are in communication, a state in which the cooling water outlet side of the cooler core 16 and the first communication channel 23 are in communication, The state where the cooling water inlet side of the chiller 14 and the first communication flow path 23 side are communicated with each other can be switched.
  • the first three-way valve 25 includes cooling water that flows from the cooling water outlet side of the cooler core 16 toward the cooling water inlet side of the chiller 14 and the cooling water inlet side of the chiller 14 from the first communication channel 23 side.
  • the flow rate ratio with the cooling water flowing toward is adjustable. Thereby, both the cooler core 16 and the intercooler 15 can be adjusted to an appropriate temperature.
  • the second three-way valve 27 adjusts the flow rate ratio between the cooling water flowing through the bypass flow path 26 and the cooling water flowing through the radiator 13.
  • the amount of heat released to the outside air can be adjusted by changing the flow rate of the cooling water to the radiator 13, so that the intake air cooling temperature of the intercooler 15 can be controlled.
  • the second three-way valve 27 is disposed in a connection portion between the bypass circulation channel 26 and the portion of the second circulation flow path 22 on the cooling water outlet side of the radiator 13 and the cooling water inlet side of the intercooler 15. ing.
  • the second three-way valve 27 includes cooling water that flows from the cooling water outlet side of the radiator 13 toward the cooling water inlet side of the intercooler 15, and cooling that flows from the bypass flow path 26 side toward the cooling water inlet side of the intercooler 15. Adjust the flow ratio with water. Thereby, the intercooler 15 can be adjusted to an appropriate temperature.
  • FIG. 7 shows an overall configuration of the vehicle cooling system 10 in the present embodiment.
  • positioning of the 1st pump 11, the chiller 14, and the cooler core 16 is changed with respect to 1st Embodiment.
  • the independent operation mode shown in FIG. 8 the compressor dehumidification mode shown in FIG. 9, the intake air cooling priority mode shown in FIG. 10, and the intake air cooling auxiliary mode shown in FIG. Can be switched.
  • the cooling water circulation direction in the first circulation passage 21 is opposite to that of the first embodiment, but the same effects as those of the first embodiment can be achieved. .
  • the intercooler 15 is disposed between the second pump 12 and the radiator 13, but the intercooler 15 is disposed between the second three-way valve 27 and the second pump 12. Also good.
  • the second three-way valve 27 is disposed at the junction where the second circulation channel 22 and the bypass channel 26 merge, but the second three-way valve 27 extends from the second circulation channel 22. You may arrange
  • the first pump 11 is disposed between the chiller 14 and the cooler core 16, but the first pump 11 may be disposed between the cooler core 16 and the first three-way valve 25. .
  • cooling water is used as the heat medium of the vehicle cooling system 10, but various media such as oil may be used as the heat medium.
  • Nanofluid may be used as the heat medium.
  • a nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed.
  • antifreeze liquid ethylene glycol
  • the effect of improving the thermal conductivity in a specific temperature range the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature
  • liquidity of can be acquired.
  • Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
  • the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
  • the amount of heat stored in the heat medium itself can be increased.
  • the amount of cold storage heat of the heat medium itself is the amount of cold storage heat by sensible heat.
  • the aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained.
  • the aspect ratio is a shape index that represents the ratio between the vertical and horizontal dimensions of the nanoparticles.
  • Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT, graphene, graphite core-shell nanoparticle, Au nanoparticle-containing CNT, and the like can be used as the constituent atoms of the nanoparticle.
  • CNT is a carbon nanotube.
  • the graphite core-shell type nanoparticle is a particle body having a structure such as a carbon nanotube surrounding the atom.
  • a chlorofluorocarbon refrigerant is used as the refrigerant.
  • the type of the refrigerant is not limited to this, and a natural refrigerant such as carbon dioxide, a hydrocarbon refrigerant, or the like may be used. .
  • the refrigeration cycle 31 of the above embodiment constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but constitutes a supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

In a cooling system for a vehicle, a first circulation flow passage-forming section (21) circulates a heat medium between a chiller (14) and a cooler core (16). A second circulation flow passage-forming section (22) circulates the heat medium between an intercooler (15) and a radiator (13). A first communication flow passage-forming section (23) is connected to the portion of a first circulation flow passage, which is in communication with the heat medium outlet side of the cooler core and with the heat medium inlet side of the chiller, the first communication flow passage-forming section (23) being also connected to the portion of a second circulation flow passage, which is in communication with the heat medium outlet side of the intercooler and with the heat medium inlet side of the radiator, the first communication flow passage-forming section (23) providing communication between the first circulation flow passage and the second circulation flow passage. A second communication flow passage-forming section (24) is connected to the portion of the first circulation flow passage, which is in communication with the heat medium outlet side of the chiller and with the heat medium inlet side of the cooler core, the second communication flow passage-forming section (24) being also connected to the portion of the second circulation flow passage, which is in communication with the heat medium outlet side of the radiator and with the heat medium inlet side of the intercooler, the second communication flow passage-forming section (24) providing communication between the first circulation flow passage and the second circulation flow passage. A switching section (25) switches between a state in which the first circulation flow passage and the second circulation flow passage are in communication with each other through the first communication flow passage and the second communication flow passage, and a state in which the first circulation flow passage and the second circulation flow passage are not in communication with each other.

Description

車両用冷却システムVehicle cooling system 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年12月9日に出願された日本特許出願2015-240024を基にしている。 This application is based on Japanese Patent Application No. 2015-240024 filed on Dec. 9, 2015, the disclosure of which is incorporated herein by reference.
 本開示は、エンジンの吸気を冷却するとともに車室内へ送風される空気を冷却除湿する車両用冷却システムに関する。 The present disclosure relates to a vehicle cooling system that cools intake air of an engine and cools and dehumidifies air blown into a vehicle interior.
 従来、特許文献1には、クーラコア、インタークーラ、チラーおよびラジエータに冷却水を循環させる車両用熱管理システムが記載されている。 Conventionally, Patent Document 1 describes a vehicle thermal management system that circulates cooling water through a cooler core, an intercooler, a chiller, and a radiator.
 クーラコアは、車室内へ送風される空気と冷却水とを熱交換させる熱交換器である。インタークーラは、エンジンの過給吸気と冷却水とを熱交換させる熱交換器である。チラーは、冷凍サイクルの低圧側冷媒と冷却水とを熱交換させて冷却水を冷却する熱交換器である。ラジエータは、外気と冷却水とを熱交換させる熱交換器である。 The cooler core is a heat exchanger that exchanges heat between the air blown into the passenger compartment and the cooling water. The intercooler is a heat exchanger that exchanges heat between supercharged intake air and cooling water of the engine. The chiller is a heat exchanger that cools the cooling water by exchanging heat between the low-pressure refrigerant in the refrigeration cycle and the cooling water. The radiator is a heat exchanger that exchanges heat between outside air and cooling water.
 この従来技術によると、クーラコアおよびインタークーラに冷却水を循環させることによって、車室内へ送風される空気を冷却除湿できるとともにエンジンの過給吸気を冷却できる。 According to this prior art, by circulating the cooling water through the cooler core and the intercooler, the air blown into the passenger compartment can be cooled and dehumidified and the supercharged intake air of the engine can be cooled.
 この従来技術では、チラーで冷却水を冷却する際、冷凍サイクルの圧縮機を駆動するための動力が消費される。 In this prior art, when cooling water is cooled by the chiller, power for driving the compressor of the refrigeration cycle is consumed.
特開2015-123829号公報Japanese Patent Laying-Open No. 2015-123829
 上記従来技術において、クーラコアに流入する冷却水の温度が0℃程度であれば、25℃程度の空気を冷却除湿できる。 In the above prior art, if the temperature of the cooling water flowing into the cooler core is about 0 ° C., air at about 25 ° C. can be cooled and dehumidified.
 冬期や寒冷地走行時のように外気の温度が零下である場合、ラジエータで冷却水を0℃程度に冷却できる。ラジエータで0℃程度に冷却された冷却水をクーラコアに循環させれば、冷凍サイクルの圧縮機を駆動することなく、車室内へ送風される空気を冷却除湿できるので、消費動力を低減することが可能になる。 When the temperature of the outside air is below zero, such as during winter or when driving in cold regions, the cooling water can be cooled to about 0 ° C with a radiator. If the cooling water cooled to about 0 ° C. by the radiator is circulated to the cooler core, the air blown into the passenger compartment can be cooled and dehumidified without driving the compressor of the refrigeration cycle, so that power consumption can be reduced. It becomes possible.
 しかしながら、上記従来技術では、ラジエータで冷却された冷却水のみならずインタークーラで熱交換された冷却水もクーラコアに流入する。そのため、冷凍サイクルの圧縮機を駆動しない場合、外気の温度が零下であっても、クーラコアに流入する冷却水の温度を0℃程度にするのが困難な場合があり、クーラコアで空気を冷却除湿するのが困難である場合がある。 However, in the above prior art, not only the cooling water cooled by the radiator but also the cooling water heat-exchanged by the intercooler flows into the cooler core. For this reason, when the compressor of the refrigeration cycle is not driven, it may be difficult to reduce the temperature of the cooling water flowing into the cooler core to about 0 ° C. even if the outside air temperature is below zero. May be difficult to do.
 本開示は上記点に鑑みて、エンジンの吸気を冷却するとともに車室内へ送風される空気を冷却除湿する車両用冷却システムの消費動力を低減することを目的とする。 In view of the above points, the present disclosure aims to reduce power consumption of a cooling system for a vehicle that cools intake air of an engine and cools and dehumidifies air blown into a vehicle interior.
 本開示の一態様による車両用冷却システムは、チラーと、クーラコアと、第1循環流路形成部と、インタークーラと、ラジエータと、第2循環流路形成部と、第1連通流路形成部と、第2連通流路形成部と、切替部と、を備える。チラーは、冷凍サイクルの低圧側冷媒と熱媒体とを熱交換させて熱媒体を冷却する。クーラコアは、チラーで冷却された熱媒体と車室内へ送風される空気とを熱交換させて空気を冷却する。第1循環流路形成部は、チラーとクーラコアとの間で熱媒体を循環させる第1循環流路を形成する。インタークーラは、エンジンの吸気と熱媒体とを熱交換させて吸気を冷却する。ラジエータは、インタークーラで熱交換された熱媒体と外気とを熱交換させる。第2循環流路形成部は、インタークーラとラジエータとの間で熱媒体を循環させる第2循環流路を形成する。第1連通流路形成部は、第1循環流路のうちクーラコアの熱媒体出口側かつチラーの熱媒体入口側の部位と、第2循環流路のうちインタークーラの熱媒体出口側かつラジエータの熱媒体入口側の部位とに接続され、第1循環流路と第2循環流路とを連通する第1連通流路を形成する。第2連通流路形成部は、第1循環流路のうちチラーの熱媒体出口側かつクーラコアの熱媒体入口側の部位と、第2循環流路のうちラジエータの熱媒体出口側かつインタークーラの熱媒体入口側の部位とに接続され、第1循環流路と第2循環流路とを連通する第2連通流路を形成する。切替部は、第1循環流路と第2循環流路とが第1連通流路および第2連通流路によって連通する状態と連通しない状態とを切り替える。 A cooling system for a vehicle according to an aspect of the present disclosure includes a chiller, a cooler core, a first circulation channel forming unit, an intercooler, a radiator, a second circulation channel forming unit, and a first communication channel forming unit. And a second communication flow path forming part and a switching part. The chiller cools the heat medium by exchanging heat between the low-pressure side refrigerant of the refrigeration cycle and the heat medium. The cooler core cools the air by exchanging heat between the heat medium cooled by the chiller and the air blown into the vehicle interior. The first circulation flow path forming unit forms a first circulation flow path for circulating the heat medium between the chiller and the cooler core. The intercooler cools the intake air by exchanging heat between the intake air of the engine and the heat medium. The radiator exchanges heat between the heat medium exchanged by the intercooler and the outside air. The second circulation flow path forming unit forms a second circulation flow path for circulating the heat medium between the intercooler and the radiator. The first communication flow path forming unit includes a portion of the first circulation flow path on the heat medium outlet side of the cooler core and the heat medium inlet side of the chiller, and a heat medium outlet side of the intercooler of the second circulation flow path and the radiator. A first communication channel is formed that is connected to a portion on the heat medium inlet side and communicates the first circulation channel and the second circulation channel. The second communication flow path forming unit includes a portion of the first circulation flow path on the heat medium outlet side of the chiller and the heat medium inlet side of the cooler core, and a heat medium outlet side of the radiator and the intercooler of the second circulation flow path. A second communication channel is formed which is connected to the portion on the heat medium inlet side and communicates the first circulation channel and the second circulation channel. The switching unit switches between a state in which the first circulation channel and the second circulation channel communicate with each other through the first communication channel and the second communication channel and a state in which the first circulation channel and the second circulation channel do not communicate with each other.
 これによると、切替部が第1循環流路と第2循環流路とを連通させることによって、ラジエータで冷却された熱媒体を、インタークーラを介することなくクーラコアに流すことができる。 According to this, the switching unit allows the first circulation channel and the second circulation channel to communicate with each other, so that the heat medium cooled by the radiator can flow to the cooler core without using the intercooler.
 そのため、外気の温度が零下である場合、冷凍サイクルの圧縮機を駆動させることなくクーラコアで空気を冷却除湿できるので、消費動力を低減できる。 Therefore, when the temperature of the outside air is below zero, air can be cooled and dehumidified by the cooler core without driving the compressor of the refrigeration cycle, so that power consumption can be reduced.
本開示の第1実施形態における車両用冷却システムを示す全体構成図である。It is a whole lineblock diagram showing the cooling system for vehicles in a 1st embodiment of this indication. 第1実施形態の車両用冷却システムにおける電気制御部を示すブロック図である。It is a block diagram which shows the electric control part in the cooling system for vehicles of 1st Embodiment. 第1実施形態における車両用冷却システムの独立作動モードを示す説明図である。It is explanatory drawing which shows the independent operation mode of the cooling system for vehicles in 1st Embodiment. 第1実施形態における車両用冷却システムの圧縮機停止除湿モードを示す説明図である。It is explanatory drawing which shows the compressor stop dehumidification mode of the cooling system for vehicles in 1st Embodiment. 第1実施形態における車両用冷却システムの吸気冷却優先モードを示す説明図である。It is explanatory drawing which shows the intake air cooling priority mode of the cooling system for vehicles in 1st Embodiment. 第1実施形態における車両用冷却システムの吸気冷却補助モードを示す説明図である。It is explanatory drawing which shows the intake air cooling assistance mode of the cooling system for vehicles in 1st Embodiment. 本開示の第2実施形態における車両用冷却システムを示す全体構成図である。It is a whole lineblock diagram showing the cooling system for vehicles in a 2nd embodiment of this indication. 第2実施形態における車両用冷却システムの独立作動モードを示す説明図である。It is explanatory drawing which shows the independent operation mode of the cooling system for vehicles in 2nd Embodiment. 第2実施形態における車両用冷却システムの圧縮機停止除湿モードを示す説明図である。It is explanatory drawing which shows the compressor stop dehumidification mode of the cooling system for vehicles in 2nd Embodiment. 第2実施形態における車両用冷却システムの吸気冷却優先モードを示す説明図である。It is explanatory drawing which shows the intake air cooling priority mode of the cooling system for vehicles in 2nd Embodiment. 第2実施形態における車両用冷却システムの吸気冷却補助モードを示す説明図である。It is explanatory drawing which shows the intake air cooling assistance mode of the cooling system for vehicles in 2nd Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 以下、実施形態について図に基づいて説明する。以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 図1に示す車両用冷却システム10は、エンジンの吸気を冷却するとともに、車室内へ送風される空気を冷却除湿するために用いられる。
(First embodiment)
A vehicle cooling system 10 shown in FIG. 1 is used to cool intake air of an engine and cool and dehumidify air blown into a vehicle interior.
 図1に示すように、車両用冷却システム10は、第1ポンプ11、第2ポンプ12、ラジエータ13、チラー14、インタークーラ15およびクーラコア16を備えている。 As shown in FIG. 1, the vehicle cooling system 10 includes a first pump 11, a second pump 12, a radiator 13, a chiller 14, an intercooler 15, and a cooler core 16.
 第1ポンプ11および第2ポンプ12は、冷却水を吸入して吐出する電動ポンプである。冷却水は、熱媒体としての流体である。本実施形態では、冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。 The first pump 11 and the second pump 12 are electric pumps that suck and discharge cooling water. The cooling water is a fluid as a heat medium. In the present embodiment, as the cooling water, a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used.
 第1ポンプ11および第2ポンプ12は、各冷却水流通機器を流れる冷却水の流量を調節する流量調節装置である。ラジエータ13、チラー14、インタークーラ15、クーラコア16は、冷却水が流通する冷却水流通機器である。第1ポンプ11は第1流量調整装置でも良く、第2ポンプ12は第2流量調整装置でも良い。 The first pump 11 and the second pump 12 are flow rate adjusting devices that adjust the flow rate of the cooling water flowing through each cooling water circulation device. The radiator 13, the chiller 14, the intercooler 15, and the cooler core 16 are cooling water circulation devices through which cooling water circulates. The first pump 11 may be a first flow rate adjusting device, and the second pump 12 may be a second flow rate adjusting device.
 ラジエータ13は、冷却水と車室外空気(以下、外気と言う。)とを熱交換させる冷却水外気熱交換器である。ラジエータ13では、冷却水と車室外空気とが顕熱交換する。ラジエータ13に外気温以上の温度の冷却水を流すことにより、冷却水から外気に放熱させることが可能である。 The radiator 13 is a cooling water outdoor air heat exchanger that exchanges heat between cooling water and outside air (hereinafter referred to as outside air). In the radiator 13, sensible heat exchange is performed between the cooling water and the air outside the passenger compartment. By flowing cooling water having a temperature equal to or higher than the outside air temperature to the radiator 13, heat can be radiated from the cooling water to the outside air.
 室外送風機20は、ラジエータ13へ外気を送風する外気送風機である。室外送風機20は電動送風機である。ラジエータ13および室外送風機20は車両の最前部に配置されている。このため、車両の走行時にはラジエータ13に走行風を当てることができる。室外送風機20は、ラジエータ13を流れる外気の流量を調節する流量調節装置である。 The outdoor blower 20 is an outside air blower that blows outside air to the radiator 13. The outdoor blower 20 is an electric blower. The radiator 13 and the outdoor blower 20 are disposed in the foremost part of the vehicle. For this reason, the traveling wind can be applied to the radiator 13 when the vehicle is traveling. The outdoor blower 20 is a flow rate adjusting device that adjusts the flow rate of outside air flowing through the radiator 13.
 チラー14は、冷却水を冷却する冷却水冷却用熱交換器である。チラー14は、冷凍サイクル31の低圧側冷媒と冷却水とを熱交換させることによって冷却水から低圧側冷媒に吸熱させる低圧側熱交換器である。チラー14は、冷凍サイクル31の低圧側冷媒を蒸発させる蒸発器である。 The chiller 14 is a cooling water cooling heat exchanger that cools the cooling water. The chiller 14 is a low-pressure side heat exchanger that absorbs heat from the cooling water to the low-pressure side refrigerant by exchanging heat between the low-pressure side refrigerant of the refrigeration cycle 31 and the cooling water. The chiller 14 is an evaporator that evaporates the low-pressure side refrigerant of the refrigeration cycle 31.
 冷凍サイクル31は、圧縮機32、コンデンサ33、膨張弁34およびチラー14を備える蒸気圧縮式冷凍機である。本実施形態では、冷凍サイクル31の冷媒としてフロン系冷媒を用いており、冷凍サイクル31は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルである。 The refrigeration cycle 31 is a vapor compression refrigerator that includes a compressor 32, a condenser 33, an expansion valve 34, and a chiller 14. In the present embodiment, a chlorofluorocarbon refrigerant is used as the refrigerant of the refrigeration cycle 31, and the refrigeration cycle 31 is a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
 圧縮機32は、ベルト駆動式圧縮機であり、冷凍サイクル31の冷媒を吸入して圧縮して吐出する。ベルト駆動式圧縮機は、エンジンの駆動力によってエンジンベルトで駆動される圧縮機である。 Compressor 32 is a belt-driven compressor, and sucks, compresses and discharges the refrigerant of refrigeration cycle 31. A belt drive type compressor is a compressor driven with an engine belt by the driving force of an engine.
 コンデンサ33は、圧縮機32から吐出された高圧側冷媒と外気とを熱交換させることによって高圧側冷媒を凝縮させる凝縮器である。コンデンサ33では、圧縮機32から吐出された高圧側冷媒が潜熱変化する。 The condenser 33 is a condenser that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 32 and the outside air. In the condenser 33, the high-pressure refrigerant discharged from the compressor 32 changes in latent heat.
 膨張弁34は、コンデンサ33から流出した液相冷媒を減圧膨張させる減圧部である。膨張弁34は、感温部を有する温度式膨張弁である。感温部は、チラー14出口側冷媒の温度および圧力に基づいてチラー14出口側冷媒の過熱度を検出する。温度式膨張弁は、チラー14出口側冷媒の過熱度が予め定めた所定範囲となるように絞り通路面積を調節する機械的機構を有している。 The expansion valve 34 is a decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the condenser 33. The expansion valve 34 is a temperature type expansion valve having a temperature sensing part. The temperature sensing unit detects the degree of superheat of the chiller 14 outlet side refrigerant based on the temperature and pressure of the chiller 14 outlet side refrigerant. The temperature type expansion valve has a mechanical mechanism that adjusts the throttle passage area so that the degree of superheat of the refrigerant on the outlet side of the chiller 14 falls within a predetermined range.
 チラー14は、膨張弁34で減圧膨張された低圧冷媒と冷却水とを熱交換させることによって低圧冷媒を蒸発させる蒸発器である。チラー14では、膨張弁34で減圧膨張された低圧冷媒が潜熱変化する。チラー14で蒸発した気相冷媒は圧縮機32に吸入されて圧縮される。 The chiller 14 is an evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 34 and the cooling water. In the chiller 14, the low-pressure refrigerant decompressed and expanded by the expansion valve 34 changes in latent heat. The gas phase refrigerant evaporated by the chiller 14 is sucked into the compressor 32 and compressed.
 ラジエータ13では外気によって冷却水を冷却するのに対し、チラー14では冷凍サイクル31の低圧冷媒によって冷却水を冷却する。このため、チラー14で冷却された冷却水の温度を、ラジエータ13で冷却された冷却水の温度に比べて低くできる。具体的には、ラジエータ13では冷却水を外気の温度よりも低い温度まで冷却できないのに対し、チラー14では冷却水を外気の温度よりも低い温度まで冷却できる。 In the radiator 13, the cooling water is cooled by outside air, whereas in the chiller 14, the cooling water is cooled by the low-pressure refrigerant of the refrigeration cycle 31. For this reason, the temperature of the cooling water cooled by the chiller 14 can be made lower than the temperature of the cooling water cooled by the radiator 13. Specifically, the radiator 13 cannot cool the cooling water to a temperature lower than the outside air temperature, whereas the chiller 14 can cool the cooling water to a temperature lower than the outside air temperature.
 インタークーラ15は、ターボチャージャで圧縮されて高温になった過給吸気と冷却水とを熱交換して過給吸気を冷却する吸気冷却器である。ターボチャージャは、エンジンの吸気を過給する過給機である。 The intercooler 15 is an intake air cooler that cools the supercharged intake air by exchanging heat between the supercharged intake air that has been compressed by the turbocharger and becomes high temperature and the cooling water. The turbocharger is a supercharger that supercharges engine intake air.
 クーラコア16は、チラー14で冷却された冷却水と車室内への送風空気とを熱交換させて送風空気の温度を調節する空気冷却用熱交換器である。 The cooler core 16 is an air cooling heat exchanger that adjusts the temperature of the blown air by exchanging heat between the cooling water cooled by the chiller 14 and the blown air to the passenger compartment.
 クーラコア16は、冷却水と車室内への送風空気とを熱交換させて車室内への送風空気を冷却除湿する空気冷却用熱交換器である。 The cooler core 16 is an air cooling heat exchanger that performs heat exchange between cooling water and air blown into the vehicle interior to cool and dehumidify the air blown into the vehicle interior.
 第1ポンプ11、チラー14およびクーラコア16は、第1循環流路21に配置されている。第1循環流路21は、冷却水が循環する環状の流路である。第1循環流路21は、第1循環流路形成部によって形成されている。 The first pump 11, the chiller 14, and the cooler core 16 are disposed in the first circulation channel 21. The first circulation channel 21 is an annular channel through which cooling water circulates. The first circulation channel 21 is formed by a first circulation channel forming part.
 第1ポンプ11、チラー14およびクーラコア16は、第1循環流路21において、第1ポンプ11、クーラコア16、チラー14の順番に冷却水が流れるように互いに直列に配置されている。 The first pump 11, the chiller 14, and the cooler core 16 are arranged in series in the first circulation channel 21 so that the cooling water flows in the order of the first pump 11, the cooler core 16, and the chiller 14.
 第2ポンプ12、ラジエータ13およびインタークーラ15は、第2循環流路22に配置されている。第2循環流路22は、冷却水が循環する環状の流路である。第2循環流路22は、第2循環流路形成部によって形成されている。 The second pump 12, the radiator 13, and the intercooler 15 are disposed in the second circulation channel 22. The second circulation channel 22 is an annular channel through which cooling water circulates. The second circulation channel 22 is formed by a second circulation channel forming part.
 第2ポンプ12、ラジエータ13およびインタークーラ15は、第2循環流路22において、第2ポンプ12、インタークーラ15、ラジエータ13の順番に冷却水が流れるように互いに直列に配置されている。 The second pump 12, the radiator 13 and the intercooler 15 are arranged in series so that the cooling water flows in the order of the second pump 12, the intercooler 15 and the radiator 13 in the second circulation flow path 22.
 第1循環流路21および第2循環流路22は、第1連通流路23および第2連通流路24を介して、互いに連通している。 The first circulation channel 21 and the second circulation channel 22 communicate with each other via the first communication channel 23 and the second communication channel 24.
 第1連通流路23は、第1循環流路21のうちクーラコア16の冷却水出口側かつチラー14の冷却水入口側の部位と、第2循環流路22のうちインタークーラ15の冷却水出口側かつラジエータ13の冷却水入口側の部位とに接続されている。第1連通流路23は、第1連通流路形成部によって形成されている。 The first communication channel 23 includes a portion of the first circulation channel 21 on the cooling water outlet side of the cooler core 16 and the cooling water inlet side of the chiller 14 and a cooling water outlet of the intercooler 15 in the second circulation channel 22. And a portion of the radiator 13 on the cooling water inlet side. The first communication channel 23 is formed by a first communication channel forming part.
 第2連通流路24は、第1循環流路21のうちチラー14の冷却水出口側かつ第1ポンプ11の冷却水吸入側の部位と、第2循環流路22のうちラジエータ13の冷却水出口側かつ第2ポンプ12の冷却水吸入側の部位とに接続されている。換言すれば、第2連通流路24は、第1循環流路21のうちチラー14の冷却水出口側かつクーラコア16の冷却水入口側の部位と、第2循環流路22のうちラジエータ13の冷却水出口側かつインタークーラ15の冷却水入口側の部位とに接続されている。第2連通流路24は、第2連通流路形成部によって形成されている。 The second communication flow path 24 includes a cooling water outlet side of the chiller 14 and a cooling water suction side portion of the first pump 11 in the first circulation flow path 21 and a cooling water of the radiator 13 in the second circulation flow path 22. It is connected to the outlet side and a portion of the second pump 12 on the cooling water suction side. In other words, the second communication flow path 24 includes a portion of the first circulation flow path 21 on the cooling water outlet side of the chiller 14 and the cooling water inlet side of the cooler core 16, and the second circulation flow path 22 of the radiator 13. The cooling water outlet side and the part of the intercooler 15 on the cooling water inlet side are connected. The second communication channel 24 is formed by a second communication channel forming part.
 第1連通流路23と第1循環流路21との接続部には第1三方弁25が配置されている。第1三方弁25は、クーラコア16の冷却水出口側、チラー14の冷却水入口側、および第1連通流路23側の3つのポートを有している。 A first three-way valve 25 is disposed at a connection portion between the first communication channel 23 and the first circulation channel 21. The first three-way valve 25 has three ports on the cooling water outlet side of the cooler core 16, the cooling water inlet side of the chiller 14, and the first communication channel 23 side.
 第1三方弁25は、クーラコア16の冷却水出口側、チラー14の冷却水入口側、および第1連通流路23側の3つのポート間の連通状態を切り替える電磁弁である。第1三方弁25の作動は、制御装置40によって制御される。 The first three-way valve 25 is an electromagnetic valve that switches the communication state between the three ports on the cooling water outlet side of the cooler core 16, the cooling water inlet side of the chiller 14, and the first communication flow path 23 side. The operation of the first three-way valve 25 is controlled by the control device 40.
 第1三方弁25は、クーラコア16の冷却水出口側、チラー14の冷却水入口側および第1連通流路23側の3つのポートを全て互いに連通させることができる。 The first three-way valve 25 can communicate all three ports on the cooling water outlet side of the cooler core 16, the cooling water inlet side of the chiller 14, and the first communication channel 23 side.
 第1三方弁25は、クーラコア16の冷却水出口側およびチラー14の冷却水入口側の2つのポートのみを互いに連通させることができる。第1三方弁25は、クーラコア16の冷却水出口側および第1連通流路23側の2つのポートのみを互いに連通させることができる。第1三方弁25は、チラー14の冷却水入口側および第1連通流路23側の2つのポートのみを互いに連通させることができる。 The first three-way valve 25 can communicate only two ports on the cooling water outlet side of the cooler core 16 and the cooling water inlet side of the chiller 14 with each other. The first three-way valve 25 can communicate only two ports of the cooler core 16 on the cooling water outlet side and the first communication channel 23 side. The first three-way valve 25 can communicate only two ports of the chiller 14 on the cooling water inlet side and the first communication channel 23 side.
 第1三方弁25は、第1循環流路21と第2循環流路22とが第1連通流路23および第2連通流路24によって連通する状態と連通しない状態とを切り替える切替部である。 The first three-way valve 25 is a switching unit that switches between a state in which the first circulation channel 21 and the second circulation channel 22 communicate with each other through the first communication channel 23 and the second communication channel 24 and a state in which the first circulation channel 21 and the second circulation channel 22 do not communicate with each other. .
 第2循環流路22にはバイパス流路26が接続されている。バイパス流路26は、第2循環流路22のうち第1連通流路23との接続部よりもインタークーラ15の冷却水出口側の部位と、第2循環流路22のうち第2連通流路24との接続部よりも第2ポンプ12の冷却水吸入側の部位とを接続している。バイパス流路26は、バイパス流路形成部によって形成されている。 A bypass flow path 26 is connected to the second circulation flow path 22. The bypass channel 26 includes a portion of the second circulation channel 22 that is closer to the coolant outlet side of the intercooler 15 than a connection portion with the first communication channel 23 and a second communication channel of the second circulation channel 22. The portion of the second pump 12 on the cooling water suction side is connected to the connecting portion with the passage 24. The bypass channel 26 is formed by a bypass channel forming part.
 第2三方弁27は、第2循環流路22とバイパス流路26とが合流する合流部に配置されている。具体的には、第2三方弁27は、第2循環流路22のうちラジエータ13の冷却水出口側かつ第2ポンプ12の冷却水吸入側の部位とバイパス流路26との接続部に配置されている。 The second three-way valve 27 is arranged at the junction where the second circulation channel 22 and the bypass channel 26 merge. Specifically, the second three-way valve 27 is disposed in a connection portion between the bypass flow passage 26 and a portion of the second circulation flow path 22 on the cooling water outlet side of the radiator 13 and the cooling water suction side of the second pump 12. Has been.
 第2三方弁27は、ラジエータ13の冷却水出口側、第2ポンプ12の冷却水吸入側、およびバイパス流路26側の3つのポートを有している。第2三方弁27は、3つのポート間の連通状態を切り替えるサーモスタットである。 The second three-way valve 27 has three ports on the cooling water outlet side of the radiator 13, the cooling water suction side of the second pump 12, and the bypass flow path 26 side. The second three-way valve 27 is a thermostat that switches the communication state between the three ports.
 サーモスタットは冷却水温度応動弁である。冷却水温度応動弁は、サーモワックスと機械的機構とを有している。サーモワックスは、温度によって体積変化する。機械的機構は、サーモワックスの体積変化によって弁体を変位させて冷却水流路を開閉する。第2三方弁27は、制御装置40によってその作動が制御される電磁弁であってもよい。 The thermostat is a cooling water temperature responsive valve. The cooling water temperature responsive valve has a thermo wax and a mechanical mechanism. Thermowax changes in volume with temperature. The mechanical mechanism displaces the valve body by changing the volume of the thermowax to open and close the cooling water flow path. The second three-way valve 27 may be an electromagnetic valve whose operation is controlled by the control device 40.
 第2三方弁27は、ラジエータ13の冷却水出口側、第2ポンプ12の冷却水吸入側、およびバイパス流路26側の3つのポートを全て互いに連通させることができる。 The second three-way valve 27 can communicate all three ports on the cooling water outlet side of the radiator 13, the cooling water suction side of the second pump 12, and the bypass channel 26 side.
 第2三方弁27は、ラジエータ13の冷却水出口側、および第2ポンプ12の冷却水吸入側の2つのポートのみを互いに連通させることができる。第2三方弁27は、第2ポンプ12の冷却水吸入側、およびバイパス流路26側の2つのポートのみを互いに連通させることができる。 The second three-way valve 27 can communicate only two ports on the cooling water outlet side of the radiator 13 and the cooling water suction side of the second pump 12 with each other. The second three-way valve 27 can cause only the two ports on the cooling water suction side and the bypass flow path 26 side of the second pump 12 to communicate with each other.
 第2三方弁27は、バイパス流路26を流れる冷却水とラジエータ13を流れる冷却水との流量比を調整する流量比調整部である。 The second three-way valve 27 is a flow rate ratio adjusting unit that adjusts the flow rate ratio between the cooling water flowing through the bypass passage 26 and the cooling water flowing through the radiator 13.
 クーラコア16は、車両用空調装置の室内空調ユニットのケースに収容されている。室内空調ユニットのケースは、車室内に送風される送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。室内空調ユニットのケース内の空気流れ最上流側には、内外気切替箱が配置されている。内外気切替箱は、車室内空気(以下、内気と言う。)と車室外空気(以下、外気と言う。)とを切替導入する内外気導入部である。 The cooler core 16 is accommodated in the case of the indoor air conditioning unit of the vehicle air conditioner. The case of the indoor air conditioning unit forms an air passage for blown air to be blown into the vehicle interior, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength. An inside / outside air switching box is arranged on the most upstream side of the air flow in the case of the indoor air conditioning unit. The inside / outside air switching box is an inside / outside air introduction section that switches between and introduces vehicle interior air (hereinafter referred to as interior air) and vehicle exterior air (hereinafter referred to as exterior air).
 内外気切替ドアは、室内空調ユニットの吸込口モードを内気導入モードまたは外気導入モードに切り替える吸込口モード切替部である。内気導入モードでは、室内空調ユニットのケース内に内気が導入される。外気導入モードでは、室内空調ユニットのケース内に外気が導入される。 The inside / outside air switching door is a suction port mode switching unit that switches the suction port mode of the indoor air conditioning unit to the inside air introduction mode or the outside air introduction mode. In the room air introduction mode, room air is introduced into the case of the indoor air conditioning unit. In the outside air introduction mode, outside air is introduced into the case of the indoor air conditioning unit.
 内外気切替箱の空気流れ下流側には、室内送風機が配置されている。室内送風機は、内外気切替箱を介して吸入した空気(すなわち内気および外気)を車室内へ向けて送風する送風装置である。室内送風機は、遠心多翼ファン(換言すればシロッコファン)を電動モータにて駆動する電動送風機である。 室内 An indoor blower is arranged on the downstream side of the air flow in the inside / outside air switching box. The indoor blower is a blower that blows air sucked through the inside / outside air switching box (that is, inside air and outside air) toward the vehicle interior. The indoor blower is an electric blower that drives a centrifugal multiblade fan (in other words, a sirocco fan) by an electric motor.
 室内空調ユニットのケース内において室内送風機の空気流れ下流側には、クーラコア16が配置されている。室内空調ユニットのケース内においてクーラコア16の空気流れ下流側には、ヒータコアが配置されている。ヒータコアは、エンジン冷却水と室内空調ユニットのケース内を流れる空気とを熱交換させて、室内空調ユニットのケース内を流れる空気を加熱する空気加熱用熱交換器である。 In the case of the indoor air conditioning unit, a cooler core 16 is disposed on the downstream side of the air flow of the indoor blower. A heater core is arranged on the downstream side of the air flow of the cooler core 16 in the case of the indoor air conditioning unit. The heater core is an air heating heat exchanger that heats the air flowing in the case of the indoor air conditioning unit by exchanging heat between the engine coolant and the air flowing in the case of the indoor air conditioning unit.
 エンジン冷却水は、エンジンを冷却するためのエンジン冷却用熱媒体である。エンジン冷却水は、エンジン冷却回路を循環する。エンジン冷却回路には、エンジンおよびヒータコア等が配置されている。 Engine cooling water is an engine cooling heat medium for cooling the engine. The engine coolant circulates through the engine cooling circuit. An engine, a heater core, and the like are arranged in the engine cooling circuit.
 室内空調ユニットのケース内においてクーラコア16の空気流れ下流側部位には、ヒータコアバイパス通路が形成されている。ヒータコアバイパス通路は、クーラコア16を通過した空気を、ヒータコアを通過させずに流す空気通路である。 In the case of the indoor air conditioning unit, a heater core bypass passage is formed at the downstream side of the air flow of the cooler core 16. The heater core bypass passage is an air passage through which air that has passed through the cooler core 16 flows without passing through the heater core.
 室内空調ユニットのケース内においてクーラコア16とヒータコアとの間には、エアミックスドアが配置されている。 In the case of the indoor air conditioning unit, an air mix door is disposed between the cooler core 16 and the heater core.
 エアミックスドアは、ヒータコアへ流入させる空気と、ヒータコアバイパス通路へ流入させる空気との風量割合を連続的に変化させる風量割合調節部である。エアミックスドアは、回動可能な板状ドアや、スライド可能なドア等であり、電動アクチュエータによって駆動される。 The air mix door is an air volume ratio adjusting unit that continuously changes the air volume ratio between the air flowing into the heater core and the air flowing into the heater core bypass passage. The air mix door is a rotatable plate-like door, a slidable door, or the like, and is driven by an electric actuator.
 室内空調ユニットのケースの空気流れ最下流部には、吹出口が配置されている。室内空調ユニットのケース内を流れる空気は、吹出口から、空調対象空間である車室内へ吹き出される。この吹出口としては、具体的には、デフロスタ吹出口、フェイス吹出口およびフット吹出口が設けられている。 The air outlet is arranged at the most downstream part of the air flow in the case of the indoor air conditioning unit. The air flowing in the case of the indoor air conditioning unit is blown out from the blowout opening into the vehicle interior that is the air conditioning target space. Specifically, a defroster outlet, a face outlet, and a foot outlet are provided as the outlet.
 デフロスタ吹出口は、車両前面窓ガラスの内側の面に向けて空調風を吹き出す。フェイス吹出口は、乗員の上半身に向けて空調風を吹き出す。フット吹出口は、乗員の足元に向けて空調風を吹き出す。 The defroster outlet blows air conditioned air toward the inner surface of the front window glass of the vehicle. The face air outlet blows conditioned air toward the upper body of the passenger. The air outlet blows air-conditioned air toward the passenger's feet.
 室内空調ユニットのケース内において吹出口の空気流れ上流側には、吹出口モードドアが配置されている。吹出口モードドアは、吹出口モードを切り替える吹出口モード切替部である。吹出口モードドアは、電動アクチュエータによって駆動される。 In the case of the indoor air conditioning unit, an air outlet mode door is arranged on the upstream side of the air flow of the air outlet. A blower outlet mode door is a blower outlet mode switching part which switches blower outlet mode. The outlet mode door is driven by an electric actuator.
 吹出口モードドアによって切り替えられる吹出口モードとしては、例えば、フェイスモード、バイレベルモード、フットモードおよびフットデフロスタモードがある。 As the outlet mode switched by the outlet mode door, for example, there are a face mode, a bi-level mode, a foot mode, and a foot defroster mode.
 フェイスモードは、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。 The face mode is a blowout mode in which the face blowout is fully opened and air is blown out from the face blowout toward the upper body of the passenger in the passenger compartment. The bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment.
 フットモードは、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。フットデフロスタモードは、フット吹出口およびデフロスタ吹出口を同程度開口して、フット吹出口およびデフロスタ吹出口の双方から空気を吹き出す吹出口モードである。 The foot mode is a blowout mode in which the foot blowout opening is fully opened and the defroster blowout opening is opened by a small opening so that air is mainly blown out from the foot blowout opening. The foot defroster mode is an air outlet mode in which the foot air outlet and the defroster air outlet are opened to the same extent and air is blown out from both the foot air outlet and the defroster air outlet.
 EGRクーラは、エンジンの排気ガスの一部を吸気側に還流させてスロットルバルブで発生するポンピングロスを低減させるEGR(排気ガス再循環)装置を構成する熱交換器であって、還流ガスと冷却水とを熱交換させて還流ガスの温度を調節する熱交換器である。 The EGR cooler is a heat exchanger that constitutes an EGR (exhaust gas recirculation) device that recirculates a part of the exhaust gas of the engine to the intake side to reduce the pumping loss generated by the throttle valve. It is a heat exchanger that adjusts the temperature of the reflux gas by exchanging heat with water.
 次に、車両用冷却システム10の電気制御部を図2に基づいて説明する。制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器の作動を制御する。 Next, the electric control unit of the vehicle cooling system 10 will be described with reference to FIG. The control device 40 is composed of a well-known microcomputer including a CPU, a ROM, a RAM and the like and its peripheral circuits, performs various calculations and processing based on an air conditioning control program stored in the ROM, and is connected to the output side. Control the operation of various controlled devices.
 制御装置40によって制御される制御対象機器は、第1ポンプ11、第2ポンプ12、第1三方弁25、室外送風機20および圧縮機32等である。 The control target devices controlled by the control device 40 are the first pump 11, the second pump 12, the first three-way valve 25, the outdoor blower 20, the compressor 32, and the like.
 制御装置40のうち、その出力側に接続された各種制御対象機器の作動を制御するハードウェアおよびソフトウェアは、それぞれの制御対象機器の作動を制御する制御部である。 In the control device 40, hardware and software that control the operation of various control target devices connected to the output side are control units that control the operation of each control target device.
 制御装置40のうち第1ポンプ11および第2ポンプ12の作動を制御するハードウェアおよびソフトウェアは、ポンプ制御部40aである。 The hardware and software for controlling the operation of the first pump 11 and the second pump 12 in the control device 40 are a pump control unit 40a.
 制御装置40のうち第1三方弁25の作動を制御するハードウェアおよびソフトウェアは、弁制御部40bである。弁制御部40bは、冷却水の循環状態を切り替える切替制御部である。 The hardware and software for controlling the operation of the first three-way valve 25 in the control device 40 is a valve control unit 40b. The valve control unit 40b is a switching control unit that switches the circulating state of the cooling water.
 制御装置40のうち室外送風機20の作動を制御するハードウェアおよびソフトウェアは、室外送風機制御部40cである。制御装置40のうち圧縮機32の作動を制御するハードウェアおよびソフトウェアは、圧縮機制御部40dである。 The hardware and software for controlling the operation of the outdoor blower 20 in the control device 40 is an outdoor blower control unit 40c. The hardware and software for controlling the operation of the compressor 32 in the control device 40 is a compressor control unit 40d.
 各制御部40a、40b、40c、40dは、制御装置40に対して別体で構成されていてもよい。 Each control unit 40a, 40b, 40c, 40d may be configured separately from the control device 40.
 制御装置40の入力側には、内気温度センサ41、外気温度センサ42、日射センサ43、チラー温度センサ44、クーラコア温度センサ45、ラジエータ温度センサ46、インタークーラ温度センサ47等のセンサ群の検出信号が入力される。 On the input side of the control device 40, detection signals of sensor groups such as an inside air temperature sensor 41, an outside air temperature sensor 42, a solar radiation sensor 43, a chiller temperature sensor 44, a cooler core temperature sensor 45, a radiator temperature sensor 46, an intercooler temperature sensor 47, and the like. Is entered.
 内気温度センサ41は、内気の温度(換言すれば車室内温度)を検出する検出部である。外気温度センサ42は、外気の温度(換言すれば車室外温度)を検出する検出部である。日射センサ43は、車室内の日射量を検出する検出部である。 The inside air temperature sensor 41 is a detection unit that detects the temperature of inside air (in other words, the vehicle interior temperature). The outside air temperature sensor 42 is a detection unit that detects the temperature of outside air (in other words, the temperature outside the passenger compartment). The solar radiation sensor 43 is a detection unit that detects the amount of solar radiation in the passenger compartment.
 チラー温度センサ44は、チラー14の温度を検出する検出部である。例えば、チラー温度センサ44は、チラー14から流出した冷却水の温度を検出する。 The chiller temperature sensor 44 is a detection unit that detects the temperature of the chiller 14. For example, the chiller temperature sensor 44 detects the temperature of the cooling water flowing out from the chiller 14.
 クーラコア温度センサ45は、クーラコア16の温度を検出する検出部である。クーラコア温度センサ45は、例えば、クーラコア16の熱交換フィンの温度を検出するフィンサーミスタや、クーラコア16を流れる冷却水の温度を検出する水温センサ等である。 The cooler core temperature sensor 45 is a detection unit that detects the temperature of the cooler core 16. The cooler core temperature sensor 45 is, for example, a fin thermistor that detects the temperature of the heat exchange fins of the cooler core 16, a water temperature sensor that detects the temperature of the cooling water flowing through the cooler core 16, or the like.
 ラジエータ温度センサ46は、ラジエータ13の温度を検出する検出部である。例えば、ラジエータ温度センサ46は、ラジエータ13から流出した冷却水の温度を検出する検出部である。 The radiator temperature sensor 46 is a detection unit that detects the temperature of the radiator 13. For example, the radiator temperature sensor 46 is a detection unit that detects the temperature of the cooling water flowing out of the radiator 13.
 インタークーラ温度センサ47は、インタークーラ15の温度を検出する検出部である。例えば、インタークーラ温度センサ47は、インタークーラ15の出口吸気の温度を検出するフィンサーミスタや、インタークーラ15を流れる冷却水の温度を検出する水温センサ等である。 The intercooler temperature sensor 47 is a detection unit that detects the temperature of the intercooler 15. For example, the intercooler temperature sensor 47 is a fin thermistor that detects the temperature of the outlet air intake of the intercooler 15, a water temperature sensor that detects the temperature of cooling water flowing through the intercooler 15, or the like.
 制御装置40の入力側には、操作パネル48に設けられた各種空調操作スイッチからの操作信号が入力される。例えば、操作パネル48は、車室内前部の計器盤付近に配置されている。 Operation signals from various air conditioning operation switches provided on the operation panel 48 are input to the input side of the control device 40. For example, the operation panel 48 is disposed near the instrument panel in the front part of the vehicle interior.
 操作パネル48に設けられた各種空調操作スイッチは、デフロスタスイッチ、エアコンスイッチ、オートスイッチ、車室内温度設定スイッチ、風量設定スイッチおよび空調停止スイッチ等である。 Various air conditioning operation switches provided on the operation panel 48 are a defroster switch, an air conditioner switch, an auto switch, a vehicle interior temperature setting switch, an air volume setting switch, an air conditioning stop switch, and the like.
 デフロスタスイッチは、デフロスタモードを設定または解除するスイッチである。デフロスタモードは、室内空調ユニットのデフロスタ吹出口からフロント窓ガラスの内面に向けて空調風を吹き出してフロント窓ガラスの曇りを防止したり、窓曇りした場合に窓曇りを除去したりする吹出口モードである。 The defroster switch is a switch that sets or cancels the defroster mode. In the defroster mode, the air-conditioning air is blown from the defroster outlet of the indoor air conditioning unit toward the inner surface of the front window glass to prevent fogging of the front window glass, or to remove window fogging when the window is fogged It is.
 エアコンスイッチは、冷房または除湿の作動・停止(換言すればオン・オフ)を切り替えるスイッチである。風量設定スイッチは、室内送風機から送風される風量を設定するスイッチである。オートスイッチは、空調の自動制御を設定または解除するスイッチである。 The air conditioner switch is a switch for switching on / off (in other words, on / off) of cooling or dehumidification. The air volume setting switch is a switch for setting the air volume blown from the indoor blower. The auto switch is a switch for setting or canceling automatic control of air conditioning.
 車室内温度設定スイッチは、乗員の操作によって車室内目標温度を設定する目標温度設定部である。空調停止スイッチは、空調を停止させるスイッチである。 The vehicle interior temperature setting switch is a target temperature setting unit that sets the vehicle interior target temperature by the operation of the passenger. The air conditioning stop switch is a switch that stops air conditioning.
 制御装置40は、外気温度と車室内吹出空気の目標吹出温度TAOとに基づいて空調モードを決定する。目標吹出温度TAOは、内気温Trを速やかに乗員の所望の目標温度Tsetに近づけるために決定される値であって、下記数式F1により算出される。 The control device 40 determines the air conditioning mode based on the outside air temperature and the target blowout air temperature TAO of the passenger compartment. The target blowing temperature TAO is a value that is determined in order to quickly bring the inside air temperature Tr close to the occupant's desired target temperature Tset, and is calculated by the following formula F1.
 TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C …F1
 この数式において、Tsetは車室内温度設定スイッチによって設定された車室内の目標温度であり、Trは内気温度センサ41によって検出された内気温度であり、Tamは外気温度センサ42によって検出された外気温度であり、Tsは日射センサ43によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × Ts + C F1
In this equation, Tset is the target temperature in the vehicle interior set by the vehicle interior temperature setting switch, Tr is the internal air temperature detected by the internal air temperature sensor 41, and Tam is the external air temperature detected by the external air temperature sensor 42. Ts is the amount of solar radiation detected by the solar radiation sensor 43. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
 例えば、制御装置40は、外気温度よりも目標吹出温度TAOが低い場合、空調モードを冷房モードに決定し、外気温度よりも目標吹出温度TAOが高い場合、空調モードを暖房モードに決定する。 For example, when the target blowing temperature TAO is lower than the outside air temperature, the control device 40 determines the air conditioning mode as the cooling mode, and when the target blowing temperature TAO is higher than the outside air temperature, the control device 40 determines the air conditioning mode as the heating mode.
 制御装置40のうち空調モードを決定するハードウェアおよびソフトウェアは、空調モード決定部である。空調モード決定部は、制御装置40に対して別体で構成されていてもよい。 The hardware and software for determining the air conditioning mode in the control device 40 are an air conditioning mode determining unit. The air conditioning mode determination unit may be configured separately from the control device 40.
 次に、上記構成における作動を説明する。制御装置40が第1ポンプ11、第2ポンプ12、圧縮機32および第1三方弁25等の作動を制御することによって、種々の作動モードに切り替えられる。 Next, the operation in the above configuration will be described. The control device 40 controls the operation of the first pump 11, the second pump 12, the compressor 32, the first three-way valve 25, etc., thereby switching to various operation modes.
 例えば、独立作動モード、圧縮機停止除湿モード、吸気冷却優先モード、吸気冷却補助モードに切り替えられる。以下、独立作動モード、圧縮機停止除湿モード、吸気冷却優先モードおよび吸気冷却補助モードを説明する。 For example, the operation mode can be switched to the independent operation mode, the compressor dehumidification mode, the intake air cooling priority mode, and the intake air cooling assist mode. Hereinafter, the independent operation mode, the compressor dehumidification mode, the intake air cooling priority mode, and the intake air cooling auxiliary mode will be described.
 (1)独立作動モード
 図3に示す独立作動モードは、インタークーラ15による吸気冷却と、クーラコア16による冷却除湿とを互いに独立して行う作動モードである。独立作動モードは、最も使用頻度の高い基本の作動モードである。
(1) Independent operation mode The independent operation mode shown in FIG. 3 is an operation mode in which intake air cooling by the intercooler 15 and cooling dehumidification by the cooler core 16 are performed independently of each other. The independent operation mode is a basic operation mode that is most frequently used.
 独立作動モードでは、第1三方弁25は、クーラコア16の冷却水出口側およびチラー14の冷却水入口側の2つのポートのみを互いに連通させる。 In the independent operation mode, the first three-way valve 25 allows only the two ports on the cooling water outlet side of the cooler core 16 and the cooling water inlet side of the chiller 14 to communicate with each other.
 これにより、図3の太実線に示すように第1循環流路21および第2循環流路22に互いに独立して冷却水が循環するので、第1循環流路21および第2循環流路22のうち一方の流路で冷却水温度が変化しても他方の流路に影響を与えない。 As a result, the cooling water circulates through the first circulation channel 21 and the second circulation channel 22 independently of each other as shown by the thick solid lines in FIG. Even if the cooling water temperature changes in one of the channels, the other channel is not affected.
 独立作動モードでは、圧縮機32のオン・オフや容量制御を行うことによって、チラー14での熱交換量を変化させてクーラコア16に流入する冷却水の温度を変化させることができるので、クーラコア16の熱交換能力を制御できる。 In the independent operation mode, the temperature of the cooling water flowing into the cooler core 16 can be changed by changing the heat exchange amount in the chiller 14 by turning on / off the compressor 32 and controlling the capacity. Can control the heat exchange capacity.
 独立作動モードでは、第1ポンプ11が吐出する冷却水の流量を変化させることによっても、クーラコア16の熱交換能力を制御できる。 In the independent operation mode, the heat exchange capability of the cooler core 16 can also be controlled by changing the flow rate of the cooling water discharged from the first pump 11.
 独立作動モードでは、第2三方弁27の弁開度によってラジエータ13への冷却水流量が変化して外気への放熱量が変化するので、インタークーラ15に流入する冷却水の温度が変化する。例えば、インタークーラ15で熱交換された吸気の温度が所定温度(例えば30~40℃)以下にならないように第2三方弁27の弁開度が変化する。さらに、第2ポンプ12が吐出する冷却水の流量を変化させることによって、インタークーラ15で熱交換された吸気の温度をより細やかに制御できる。 In the independent operation mode, the flow rate of the cooling water to the radiator 13 is changed by the valve opening degree of the second three-way valve 27 and the amount of heat released to the outside air is changed, so that the temperature of the cooling water flowing into the intercooler 15 is changed. For example, the valve opening degree of the second three-way valve 27 changes so that the temperature of the intake air heat-exchanged by the intercooler 15 does not become a predetermined temperature (for example, 30 to 40 ° C.) or less. Further, by changing the flow rate of the cooling water discharged from the second pump 12, the temperature of the intake air heat exchanged by the intercooler 15 can be controlled more finely.
 (2)圧縮機停止除湿モード
 図4に示す圧縮機停止除湿モードは、室内空調ユニットの吸込口モードが内気導入モードであり、かつ外気温が車室内温度よりも低い場合に実行される。圧縮機停止除湿モードは、ラジエータ13で外気によって冷却された冷却水をクーラコア16に送って内気を除湿する作動モードである。圧縮機停止除湿モードは、圧縮機32を停止させて消費動力を低減するために実行される。
(2) Compressor Stop Dehumidification Mode The compressor stop dehumidification mode shown in FIG. 4 is executed when the suction port mode of the indoor air conditioning unit is the inside air introduction mode and the outside air temperature is lower than the vehicle interior temperature. The compressor stop dehumidification mode is an operation mode in which the cooling water cooled by the outside air by the radiator 13 is sent to the cooler core 16 to dehumidify the inside air. The compressor stop dehumidification mode is executed to stop the compressor 32 and reduce power consumption.
 圧縮機停止除湿モードでは、第1三方弁25は、クーラコア16の冷却水出口側および第1連通流路23側の2つのポートのみを互いに連通させる。 In the compressor stop dehumidification mode, the first three-way valve 25 allows only the two ports on the cooling water outlet side and the first communication channel 23 side of the cooler core 16 to communicate with each other.
 これにより、図4の太実線に示すように冷却水が循環する。第1ポンプ11から吐出された冷却水は、クーラコア16、第1三方弁25、ラジエータ13、第1ポンプ11の順に循環する。第2ポンプ12から吐出された冷却水は、インタークーラ15、ラジエータ13、第2ポンプ12の順に循環する。 This causes the cooling water to circulate as shown by the thick solid line in FIG. The cooling water discharged from the first pump 11 circulates in the order of the cooler core 16, the first three-way valve 25, the radiator 13, and the first pump 11. The cooling water discharged from the second pump 12 circulates in the order of the intercooler 15, the radiator 13, and the second pump 12.
 ラジエータ13では、第1循環流路21の冷却水と第2循環流路22の冷却水とが混合されるので、第1循環流路21と第2循環流路22とが互いに冷却水の温度に影響を与える。 In the radiator 13, the cooling water in the first circulation channel 21 and the cooling water in the second circulation channel 22 are mixed, so that the first circulation channel 21 and the second circulation channel 22 are cooled with each other. To affect.
 圧縮機停止除湿モードでは、第2三方弁27は、冷却水のほとんどがバイパス流路26を流れ、ラジエータ13へ向かう冷却水の流量が微量になるように弁開度を調整すればよい。その理由は以下のとおりである。 In the compressor stop dehumidification mode, the second three-way valve 27 may adjust the valve opening so that most of the cooling water flows through the bypass flow path 26 and the flow rate of the cooling water toward the radiator 13 becomes a very small amount. The reason is as follows.
 圧縮機停止除湿モードは、外気温が車室内温度よりも低い場合に実施されるので、圧縮機停止除湿モードでは、インタークーラ15に流入する吸気の温度も低めである。本実施形態では、吸気から凝縮水が発生しないように、インタークーラ15で冷却された吸気の温度を下げ過ぎないようにする必要がある。また、例えば、市街地走行や平坦路の100km/h程度の走行である場合、走行負荷が高くなって吸気が過給されるのは発進や加速時等のわずかな機会のみであるので、インタークーラ15の時間平均の熱交換量はほんのわずか(例えば、0.2kW程度以下)である。 Since the compressor stop dehumidification mode is performed when the outside air temperature is lower than the vehicle interior temperature, the temperature of the intake air flowing into the intercooler 15 is also lower in the compressor stop dehumidification mode. In the present embodiment, it is necessary to prevent the temperature of the intake air cooled by the intercooler 15 from being excessively lowered so that condensed water is not generated from the intake air. In addition, for example, when driving on an urban area or about 100 km / h on a flat road, it is only a few occasions such as when starting or accelerating that the driving load increases and the intake air is supercharged. The 15 hourly average heat exchange amount is very small (for example, about 0.2 kW or less).
 一方、例えば、温度が25℃、湿度が50%、流量が200m3/hの内気をクーラコア16で1℃まで冷却する場合、クーラコア16における冷却水の流量を10L/minとすると、クーラコア16に流入する冷却水を-5℃程度にする必要があり、必要な冷却量は2.8kW程度であり、クーラコア16から流出する冷却水の温度は0℃程度になる。 On the other hand, for example, when the inside air having a temperature of 25 ° C., a humidity of 50%, and a flow rate of 200 m 3 / h is cooled to 1 ° C. by the cooler core 16, if the cooling water flow rate in the cooler core 16 is 10 L / min, it flows into the cooler core 16. The cooling water is required to be about −5 ° C., the required cooling amount is about 2.8 kW, and the temperature of the cooling water flowing out of the cooler core 16 is about 0 ° C.
 そのため、ラジエータ13は、吸気冷却分と合わせ、3kW程度放熱できればよいことになるため、一般的なラジエータで十分放熱可能である。 Therefore, the radiator 13 needs only to be able to dissipate about 3 kW together with the amount of intake air cooling. Therefore, the general radiator can sufficiently dissipate heat.
 すなわち、本実施形態によれば、ラジエータ13では、外気の温度よりも5℃程度高い温度の冷却水を作り出すことができるので、外気温が5℃程度以下であれば、25℃の内気を冷却除湿できる。 That is, according to the present embodiment, the radiator 13 can generate cooling water having a temperature about 5 ° C. higher than the temperature of the outside air, and therefore cools the inside air at 25 ° C. if the outside air temperature is about 5 ° C. or less. Can be dehumidified.
 (3)吸気冷却優先モード
 図5に示す吸気冷却優先モードは、クーラコア16による冷房を停止して、ラジエータ13の冷却水冷却能力に加えてチラー14の冷却水冷却能力も利用して吸気温度を下げてエンジン出力を増大可能にする作動モードである。
(3) Intake air cooling priority mode In the air intake cooling priority mode shown in FIG. 5, the cooling by the cooler core 16 is stopped, and the intake air temperature is controlled using the cooling water cooling capacity of the chiller 14 in addition to the cooling water cooling capacity of the radiator 13. This is an operation mode in which the engine output can be increased by lowering.
 吸気冷却優先モードでは、第1三方弁25は、チラー14の冷却水入口側および第1連通流路23側の2つのポートのみを互いに連通させる。また、吸気冷却優先モードでは、第1ポンプ11は停止される。 In the intake air cooling priority mode, the first three-way valve 25 allows only the two ports on the cooling water inlet side and the first communication flow path 23 side of the chiller 14 to communicate with each other. In the intake air cooling priority mode, the first pump 11 is stopped.
 これにより、図5の太実線に示すように、第2ポンプ12から吐出された冷却水は、インタークーラ15を流れた後にラジエータ13側とチラー14側とに分岐してラジエータ13とチラー14とを並列に流れた後、合流して第2ポンプ12に吸入される。 As a result, as shown by the thick solid line in FIG. 5, the cooling water discharged from the second pump 12 flows through the intercooler 15 and then branches to the radiator 13 side and the chiller 14 side, and the radiator 13 and the chiller 14. After flowing in parallel, they merge and are sucked into the second pump 12.
 例えば、エンジンの排気量が1500cc程度であり、エンジンの出力が最大であるときのラジエータ13の放熱量が15kW程度である場合において、チラー14の冷却水冷却能力を利用しない場合、インタークーラ15に流入する冷却水の温度が44℃になり、インタークーラ15から流出する吸気の温度が50℃になるのに対し、チラー14の冷却水冷却能力を3kW利用すると、インタークーラ15に流入する冷却水の温度をおおよそ37℃、インタークーラ15から流出する吸気の温度をおおよそ43℃に低下させることができ、ひいてはエンジン出力を7kW程度増加させることができる。 For example, when the engine exhaust amount is about 1500 cc and the heat dissipation amount of the radiator 13 when the engine output is maximum is about 15 kW, and the cooling water cooling capacity of the chiller 14 is not used, the intercooler 15 While the temperature of the cooling water flowing in becomes 44 ° C. and the temperature of the intake air flowing out from the intercooler 15 becomes 50 ° C., when the cooling water cooling capacity of the chiller 14 is used 3 kW, the cooling water flowing into the inter cooler 15 is used. , The temperature of the intake air flowing out from the intercooler 15 can be lowered to about 43 ° C., and the engine output can be increased by about 7 kW.
 なお、チラー14で冷却水を冷却することによってラジエータ13に流入する冷却水の温度も低下するので、ラジエータ13でも放熱量が2kW減少し、全体での冷却量の増加は1kWとなる。 In addition, since the temperature of the cooling water flowing into the radiator 13 is lowered by cooling the cooling water with the chiller 14, the amount of heat radiation is also reduced by 2 kW in the radiator 13, and the increase in the total cooling amount is 1 kW.
 また、チラー14で冷却水を冷却するために圧縮機32が駆動されるので、圧縮機32で1.5kW程度の動力が消費される。圧縮機32はエンジンの駆動力によって駆動されるため、その分、エンジン出力向上効果が減少するが、差し引きで5.5kWのエンジン出力向上効果を得ることができる。 Also, since the compressor 32 is driven to cool the cooling water by the chiller 14, about 1.5 kW of power is consumed by the compressor 32. Since the compressor 32 is driven by the driving force of the engine, the engine output improvement effect is reduced by that amount, but an engine output improvement effect of 5.5 kW can be obtained by subtraction.
 (4)吸気冷却補助モード
 図6に示す吸気冷却補助モードは、チラー14の冷却水冷却能力を利用してクーラコア16による冷房を行いつつ、チラー14の冷却水冷却能力の一部を吸気冷却の補助として利用する作動モードである。
(4) Intake air cooling auxiliary mode In the air intake air cooling assistance mode shown in FIG. 6, while cooling by the cooler core 16 using the cooling water cooling capacity of the chiller 14, a part of the cooling water cooling capacity of the chiller 14 is used for intake air cooling. This is an operation mode used as an auxiliary.
 吸気冷却補助モードでは、第1三方弁25は、クーラコア16の冷却水出口側、チラー14の冷却水入口側、および第1連通流路23側の3つのポートを全て互いに連通させる。また、第1三方弁25は、クーラコア16側からの冷却水とインタークーラ15側からの冷却水とが所定の流量割合でチラー14側に流れるように弁開度が調整される。 In the intake air cooling assist mode, the first three-way valve 25 causes all three ports on the cooling water outlet side of the cooler core 16, the cooling water inlet side of the chiller 14, and the first communication flow path 23 side to communicate with each other. Further, the opening degree of the first three-way valve 25 is adjusted so that the cooling water from the cooler core 16 side and the cooling water from the intercooler 15 side flow to the chiller 14 side at a predetermined flow rate ratio.
 これにより、図6の太実線に示すように、第1ポンプ11から吐出された冷却水と第2ポンプ12から吐出された冷却水とがチラー14に流入し、チラー14で冷却された冷却水の一部がインタークーラ15を流れて吸気を冷却し、チラー14で冷却された冷却水の残りがクーラコア16を流れて冷房を行う。 As a result, as shown by the thick solid line in FIG. 6, the cooling water discharged from the first pump 11 and the cooling water discharged from the second pump 12 flow into the chiller 14 and are cooled by the chiller 14. A part of the air flows through the intercooler 15 to cool the intake air, and the remaining cooling water cooled by the chiller 14 flows through the cooler core 16 to perform cooling.
 また、第2ポンプ12の出力を高め、第1ポンプ11の出力を下げるようにポンプ出力を制御することによって、インタークーラ15から流出した冷却水がチラー14側に引き込まれやすくする。 Further, by controlling the pump output so that the output of the second pump 12 is increased and the output of the first pump 11 is decreased, the cooling water flowing out from the intercooler 15 is easily drawn into the chiller 14 side.
 上記各作動モードでは、ラジエータ13への冷却水流量を変化させて外気への放熱量を調整し、ラジエータ13をバイパスしてきた水と混合させることによって、インタークーラ15に流入する冷却水の温度を変化させてインタークーラ15の出口吸気温度を制御できる。 In each of the above operation modes, the temperature of the cooling water flowing into the intercooler 15 is adjusted by changing the flow rate of the cooling water to the radiator 13 to adjust the amount of heat released to the outside air and mixing it with the water bypassing the radiator 13. The outlet intake air temperature of the intercooler 15 can be controlled by changing the temperature.
 本実施形態では、第1連通流路23は、第1循環流路21のうちクーラコア16の冷却水出口側かつチラー14の冷却水入口側の部位と、第2循環流路22のうちインタークーラ15の冷却水出口側かつラジエータ13の冷却水入口側の部位とに接続されている。第2連通流路24は、第1循環流路21のうちチラー14の冷却水出口側かつクーラコア16の冷却水入口側の部位と、第2循環流路22のうちラジエータ13の冷却水出口側かつインタークーラ15の冷却水入口側の部位とに接続されている。第1三方弁25は、第1循環流路21と第2循環流路22とが第1連通流路23および第2連通流路24によって連通する状態と連通しない状態とを切り替える。 In the present embodiment, the first communication channel 23 includes the intercooler of the first circulation channel 21 on the cooling water outlet side of the cooler core 16 and the cooling water inlet side of the chiller 14 and the intercooler of the second circulation channel 22. 15 is connected to the cooling water outlet side and to the portion of the radiator 13 on the cooling water inlet side. The second communication channel 24 includes a portion of the first circulation channel 21 on the cooling water outlet side of the chiller 14 and the cooling water inlet side of the cooler core 16, and a portion of the second circulation channel 22 on the cooling water outlet side of the radiator 13. The intercooler 15 is connected to a portion on the cooling water inlet side. The first three-way valve 25 switches between a state in which the first circulation channel 21 and the second circulation channel 22 communicate with each other through the first communication channel 23 and the second communication channel 24 and a state in which the first circulation channel 21 and the second circulation channel 22 do not communicate with each other.
 これによると、第1三方弁25が第1循環流路21と第2循環流路22とを連通させることによって、ラジエータ13で冷却された冷却水をクーラコア16に流すことができる。そのため、低外気温時、冷凍サイクル31の圧縮機32を停止させてもクーラコア16で空気を冷却除湿できる。 According to this, the first three-way valve 25 allows the first circulation passage 21 and the second circulation passage 22 to communicate with each other, so that the cooling water cooled by the radiator 13 can flow to the cooler core 16. Therefore, the air can be cooled and dehumidified by the cooler core 16 even when the compressor 32 of the refrigeration cycle 31 is stopped at a low outside air temperature.
 本実施形態では、第1三方弁25は、第1循環流路21と第1連通流路23との接続部に配置されている。第1三方弁25は、クーラコア16の冷却水出口側とチラー14の冷却水入口側とを連通させる状態と、クーラコア16の冷却水出口側と第1連通流路23とを連通させる状態と、チラー14の冷却水入口側と第1連通流路23側とを連通させる状態とを切り替え可能になっている。 In the present embodiment, the first three-way valve 25 is disposed at a connection portion between the first circulation channel 21 and the first communication channel 23. The first three-way valve 25 has a state in which the cooling water outlet side of the cooler core 16 and the cooling water inlet side of the chiller 14 are in communication, a state in which the cooling water outlet side of the cooler core 16 and the first communication channel 23 are in communication, The state where the cooling water inlet side of the chiller 14 and the first communication flow path 23 side are communicated with each other can be switched.
 これにより、図3~6に示す独立作動モード、圧縮機停止除湿モード、吸気冷却優先モード、吸気冷却補助モードに切り替えることができる。 This makes it possible to switch to the independent operation mode, compressor stop dehumidification mode, intake air cooling priority mode, and intake air cooling auxiliary mode shown in FIGS.
 本実施形態では、第1三方弁25は、クーラコア16の冷却水出口側からチラー14の冷却水入口側へ向かって流れる冷却水と、第1連通流路23側からチラー14の冷却水入口側へ向かって流れる冷却水との流量比を調整可能になっている。これにより、クーラコア16およびインタークーラ15の両方を適切な温度に調整できる。 In the present embodiment, the first three-way valve 25 includes cooling water that flows from the cooling water outlet side of the cooler core 16 toward the cooling water inlet side of the chiller 14 and the cooling water inlet side of the chiller 14 from the first communication channel 23 side. The flow rate ratio with the cooling water flowing toward is adjustable. Thereby, both the cooler core 16 and the intercooler 15 can be adjusted to an appropriate temperature.
 本実施形態では、第2三方弁27は、バイパス流路26を流れる冷却水と、ラジエータ13を流れる冷却水との流量比を調整する。これにより、ラジエータ13への冷却水の流量を変化させて外気への放熱量を調整できるので、インタークーラ15の吸気冷却温度を制御できる。 In the present embodiment, the second three-way valve 27 adjusts the flow rate ratio between the cooling water flowing through the bypass flow path 26 and the cooling water flowing through the radiator 13. As a result, the amount of heat released to the outside air can be adjusted by changing the flow rate of the cooling water to the radiator 13, so that the intake air cooling temperature of the intercooler 15 can be controlled.
 本実施形態では、第2三方弁27は、第2循環流路22のうちラジエータ13の冷却水出口側かつインタークーラ15の冷却水入口側の部位とバイパス流路26との接続部に配置されている。第2三方弁27は、ラジエータ13の冷却水出口側からインタークーラ15の冷却水入口側へ向かって流れる冷却水と、バイパス流路26側からインタークーラ15の冷却水入口側へ向かって流れる冷却水との流量比を調整する。これにより、インタークーラ15を適切な温度に調整できる。 In the present embodiment, the second three-way valve 27 is disposed in a connection portion between the bypass circulation channel 26 and the portion of the second circulation flow path 22 on the cooling water outlet side of the radiator 13 and the cooling water inlet side of the intercooler 15. ing. The second three-way valve 27 includes cooling water that flows from the cooling water outlet side of the radiator 13 toward the cooling water inlet side of the intercooler 15, and cooling that flows from the bypass flow path 26 side toward the cooling water inlet side of the intercooler 15. Adjust the flow ratio with water. Thereby, the intercooler 15 can be adjusted to an appropriate temperature.
 (第2実施形態)
 本実施形態における車両用冷却システム10の全体構成を図7に示す。本実施形態では、第1実施形態に対して、第1ポンプ11、チラー14およびクーラコア16の配置が変更されている。
(Second Embodiment)
FIG. 7 shows an overall configuration of the vehicle cooling system 10 in the present embodiment. In this embodiment, arrangement | positioning of the 1st pump 11, the chiller 14, and the cooler core 16 is changed with respect to 1st Embodiment.
 本実施形態においても、第1実施形態と同様に、図8に示す独立作動モード、図9に示す圧縮機停止除湿モード、図10に示す吸気冷却優先モード、図11に示す吸気冷却補助モードに切り替えることができる。 Also in the present embodiment, as in the first embodiment, the independent operation mode shown in FIG. 8, the compressor dehumidification mode shown in FIG. 9, the intake air cooling priority mode shown in FIG. 10, and the intake air cooling auxiliary mode shown in FIG. Can be switched.
 本実施形態の上記各モードでは、第1循環流路21における冷却水の循環方向が第1実施形態に対して反対になっているが、第1実施形態と同様の作用効果を奏することができる。 In each mode of the present embodiment, the cooling water circulation direction in the first circulation passage 21 is opposite to that of the first embodiment, but the same effects as those of the first embodiment can be achieved. .
 上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。 The above embodiments can be appropriately combined. The above embodiment can be variously modified as follows, for example.
 上記実施形態では、インタークーラ15は、第2ポンプ12とラジエータ13との間に配置されているが、インタークーラ15は、第2三方弁27と第2ポンプ12との間に配置されていてもよい。 In the above embodiment, the intercooler 15 is disposed between the second pump 12 and the radiator 13, but the intercooler 15 is disposed between the second three-way valve 27 and the second pump 12. Also good.
 上記実施形態では、第2三方弁27は、第2循環流路22とバイパス流路26とが合流する合流部に配置されているが、第2三方弁27は、第2循環流路22からバイパス流路26が分岐する分岐部に配置されていてもよい。車両用冷却システム10は、バイパス流路26および第2三方弁27を有さなくても良い。 In the above embodiment, the second three-way valve 27 is disposed at the junction where the second circulation channel 22 and the bypass channel 26 merge, but the second three-way valve 27 extends from the second circulation channel 22. You may arrange | position in the branch part which the bypass flow path 26 branches. The vehicle cooling system 10 may not have the bypass flow path 26 and the second three-way valve 27.
 上記実施形態では、第1ポンプ11は、チラー14とクーラコア16との間に配置されているが、第1ポンプ11は、クーラコア16と第1三方弁25との間に配置されていてもよい。 In the above embodiment, the first pump 11 is disposed between the chiller 14 and the cooler core 16, but the first pump 11 may be disposed between the cooler core 16 and the first three-way valve 25. .
 上記実施形態では、車両用冷却システム10の熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。 In the above embodiment, cooling water is used as the heat medium of the vehicle cooling system 10, but various media such as oil may be used as the heat medium.
 熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。ナノ粒子を熱媒体に混入させることで、エチレングリコールを用いた冷却水(いわゆる不凍液)のように凝固点を低下させる作用効果に加えて、次のような作用効果を得ることができる。 Nanofluid may be used as the heat medium. A nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed. In addition to the effect of lowering the freezing point as in the case of cooling water using ethylene glycol (so-called antifreeze liquid), the following effects can be obtained by mixing the nanoparticles with the heat medium.
 すなわち、特定の温度帯での熱伝導率を向上させる作用効果、熱媒体の熱容量を増加させる作用効果、金属配管の防食効果やゴム配管の劣化を防止する作用効果、および極低温での熱媒体の流動性を高める作用効果を得ることができる。 That is, the effect of improving the thermal conductivity in a specific temperature range, the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature The effect which improves the fluidity | liquidity of can be acquired.
 このような作用効果は、ナノ粒子の粒子構成、粒子形状、配合比率、付加物質によって様々に変化する。 Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
 これによると、熱伝導率を向上させることができるので、エチレングリコールを用いた冷却水と比較して少ない量の熱媒体であっても同等の冷却効率を得ることが可能になる。 According to this, since the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
 また、熱媒体の熱容量を増加させることができるので、熱媒体自体の蓄冷熱量を増加させることができる。熱媒体自体の蓄冷熱量とは、顕熱による蓄冷熱の量のことである。 Also, since the heat capacity of the heat medium can be increased, the amount of heat stored in the heat medium itself can be increased. The amount of cold storage heat of the heat medium itself is the amount of cold storage heat by sensible heat.
 蓄冷熱量を増加させることにより、圧縮機32を作動させない状態であっても、ある程度の時間は蓄冷熱を利用した機器の冷却、加熱の温調が実施できるため、車両用冷却システム10の省動力化が可能になる。 Even if the compressor 32 is not operated by increasing the amount of regenerative heat, it is possible to control the temperature and temperature of the equipment using the regenerative heat for a certain amount of time. Can be realized.
 ナノ粒子のアスペクト比は50以上であるのが好ましい。十分な熱伝導率を得ることができるからである。なお、アスペクト比は、ナノ粒子の縦と横の比率を表す形状指標である。 The aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained. The aspect ratio is a shape index that represents the ratio between the vertical and horizontal dimensions of the nanoparticles.
 ナノ粒子としては、Au、Ag、CuおよびCのいずれかを含むものを用いることができる。具体的には、ナノ粒子の構成原子として、Auナノ粒子、Agナノワイヤー、CNT、グラフェン、グラファイトコアシェル型ナノ粒子、およびAuナノ粒子含有CNTなどを用いることができる。CNTとは、カーボンナノチューブのことである。グラファイトコアシェル型ナノ粒子とは、上記原子を囲むようにカーボンナノチューブ等の構造体があるような粒子体のことである。 Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT, graphene, graphite core-shell nanoparticle, Au nanoparticle-containing CNT, and the like can be used as the constituent atoms of the nanoparticle. CNT is a carbon nanotube. The graphite core-shell type nanoparticle is a particle body having a structure such as a carbon nanotube surrounding the atom.
 上記実施形態の冷凍サイクル31では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。 In the refrigeration cycle 31 of the above embodiment, a chlorofluorocarbon refrigerant is used as the refrigerant. However, the type of the refrigerant is not limited to this, and a natural refrigerant such as carbon dioxide, a hydrocarbon refrigerant, or the like may be used. .
 上記実施形態の冷凍サイクル31は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。 The refrigeration cycle 31 of the above embodiment constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but constitutes a supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. It may be.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (9)

  1.  冷凍サイクル(31)の低圧側冷媒と熱媒体とを熱交換させて前記熱媒体を冷却するチラー(14)と、
     前記チラー(14)で冷却された前記熱媒体と車室内へ送風される空気とを熱交換させて前記空気を冷却するクーラコア(16)と、
     前記チラー(14)と前記クーラコア(16)との間で前記熱媒体を循環させる第1循環流路を形成する第1循環流路形成部(21)と、
     エンジンの吸気と前記熱媒体とを熱交換させて前記吸気を冷却するインタークーラ(15)と、
     前記インタークーラ(15)で熱交換された前記熱媒体と外気とを熱交換させるラジエータ(13)と、
     前記インタークーラ(15)と前記ラジエータ(13)との間で前記熱媒体を循環させる第2循環流路を形成する第2循環流路形成部(22)と、
     前記第1循環流路(21)のうち前記クーラコア(16)の熱媒体出口側かつ前記チラー(14)の熱媒体入口側の部位と、前記第2循環流路(22)のうち前記インタークーラ(15)の熱媒体出口側かつ前記ラジエータ(13)の熱媒体入口側の部位とに接続され、前記第1循環流路(21)と前記第2循環流路(22)とを連通する第1連通流路を形成する第1連通流路形成部(23)と、
     前記第1循環流路(21)のうち前記チラー(14)の熱媒体出口側かつ前記クーラコア(16)の熱媒体入口側の部位と、前記第2循環流路(22)のうち前記ラジエータ(13)の熱媒体出口側かつ前記インタークーラ(15)の熱媒体入口側の部位とに接続され、前記第1循環流路(21)と前記第2循環流路(22)とを連通する第2連通流路を形成する第2連通流路形成部(24)と、
     前記第1循環流路(21)と前記第2循環流路(22)とが前記第1連通流路(23)および前記第2連通流路(24)によって連通する状態と連通しない状態とを切り替える切替部(25)とを備える車両用冷却システム。
    A chiller (14) for exchanging heat between the low-pressure side refrigerant of the refrigeration cycle (31) and the heat medium to cool the heat medium;
    A cooler core (16) that cools the air by exchanging heat between the heat medium cooled by the chiller (14) and air blown into the vehicle interior;
    A first circulation channel forming part (21) for forming a first circulation channel for circulating the heat medium between the chiller (14) and the cooler core (16);
    An intercooler (15) that cools the intake air by exchanging heat between the intake air of the engine and the heat medium;
    A radiator (13) for exchanging heat between the heat medium exchanged by the intercooler (15) and the outside air;
    A second circulation channel forming part (22) for forming a second circulation channel for circulating the heat medium between the intercooler (15) and the radiator (13);
    A portion of the first circulation channel (21) on the heat medium outlet side of the cooler core (16) and a heat medium inlet side of the chiller (14), and the intercooler of the second circulation channel (22). (15) connected to the heat medium outlet side and the radiator (13) on the heat medium inlet side, and communicates the first circulation channel (21) and the second circulation channel (22). A first communication channel forming part (23) for forming one communication channel;
    A part of the first circulation channel (21) on the heat medium outlet side of the chiller (14) and a heat medium inlet side of the cooler core (16), and the radiator of the second circulation channel (22) ( 13) connected to the heat medium outlet side of the intercooler (15) and the heat medium inlet side portion of the intercooler (15), and communicates the first circulation channel (21) and the second circulation channel (22). A second communication channel forming part (24) for forming two communication channels;
    A state in which the first circulation channel (21) and the second circulation channel (22) are communicated with each other by the first communication channel (23) and the second communication channel (24); A vehicle cooling system comprising a switching unit (25) for switching.
  2.  前記切替部(25)は、
     前記第1循環流路(21)と前記第1連通流路(23)との接続部に配置された三方弁であり、
     前記クーラコア(16)の熱媒体出口側と前記チラー(14)の熱媒体入口側とを連通させる状態と、前記クーラコア(16)の熱媒体出口側と前記第1連通流路(23)とを連通させる状態と、前記チラー(14)の熱媒体入口側と前記第1連通流路(23)側とを連通させる状態とを切り替え可能になっている請求項1に記載の車両用冷却システム。
    The switching unit (25)
    A three-way valve disposed at a connection between the first circulation channel (21) and the first communication channel (23);
    A state in which the heat medium outlet side of the cooler core (16) communicates with the heat medium inlet side of the chiller (14), and a heat medium outlet side of the cooler core (16) and the first communication flow path (23). 2. The vehicle cooling system according to claim 1, wherein the vehicle cooling system can be switched between a communication state and a state where the chiller (14) communicates with the heat medium inlet side and the first communication flow path (23) side.
  3.  前記切替部(25)は、
     前記クーラコア(16)の熱媒体出口側から前記チラー(14)の熱媒体入口側へ向かって流れる前記熱媒体と、前記第1連通流路(23)側から前記チラー(14)の熱媒体入口側へ向かって流れる前記熱媒体との流量比を調整可能になっている請求項2に記載の車両用冷却システム。
    The switching unit (25)
    The heat medium that flows from the heat medium outlet side of the cooler core (16) toward the heat medium inlet side of the chiller (14), and the heat medium inlet of the chiller (14) from the first communication channel (23) side The vehicle cooling system according to claim 2, wherein a flow rate ratio to the heat medium flowing toward the side is adjustable.
  4.  前記インタークーラ(15)で熱交換された前記熱媒体が前記ラジエータ(13)をバイパスして流れるバイパス流路を形成するバイパス流路形成部(26)と、
     前記バイパス流路(26)を流れる前記熱媒体と、前記ラジエータ(13)を流れる前記熱媒体との流量比を調整する流量比調整部(27)とを備える請求項1ないし3のいずれか1つに記載の車両用冷却システム。
    A bypass flow path forming section (26) for forming a bypass flow path in which the heat medium exchanged by the intercooler (15) flows by bypassing the radiator (13);
    The flow rate ratio adjusting part (27) for adjusting a flow rate ratio between the heat medium flowing through the bypass flow path (26) and the heat medium flowing through the radiator (13). Vehicle cooling system as described in one.
  5.  前記流量比調整部(27)は、
     前記第2循環流路(22)のうち前記ラジエータ(13)の熱媒体出口側かつ前記インタークーラ(15)の熱媒体入口側の部位と前記バイパス流路(26)との接続部に配置された三方弁であり、
     前記ラジエータ(13)の熱媒体出口側から前記インタークーラ(15)の熱媒体入口側へ向かって流れる前記熱媒体と、前記バイパス流路(26)側から前記インタークーラ(15)の熱媒体入口側へ向かって流れる前記熱媒体との流量比を調整する請求項4に記載の車両用冷却システム。
    The flow rate ratio adjustment unit (27)
    Of the second circulation channel (22), it is disposed at a connection portion between the bypass channel (26) and a portion on the heat medium outlet side of the radiator (13) and the heat medium inlet side of the intercooler (15). Three-way valve
    The heat medium that flows from the heat medium outlet side of the radiator (13) toward the heat medium inlet side of the intercooler (15), and the heat medium inlet of the intercooler (15) from the bypass flow path (26) side The cooling system for vehicles according to claim 4 which adjusts a flow rate ratio with said heat carrier which flows toward the side.
  6.  制御装置(40)を更に備え、
     前記制御装置(40)は独立作動モードにおいて、前記切替部(25)を、前記クーラコア(16)の熱媒体出口側と前記チラー(14)の熱媒体入口側のみが連通するように制御することで、前記第1循環流路(21)および前記第2循環流路(22)に互いに独立して前記熱媒体を循環させる、請求項2に記載の車両用冷却システム。
    A control device (40),
    In the independent operation mode, the control device (40) controls the switching unit (25) so that only the heat medium outlet side of the cooler core (16) and the heat medium inlet side of the chiller (14) communicate with each other. The vehicle cooling system according to claim 2, wherein the heat medium is circulated through the first circulation channel (21) and the second circulation channel (22) independently of each other.
  7.  前記冷凍サイクル(31)に配置され、吸入した冷媒を圧縮して吐出する圧縮機(32)と、
     制御装置(40)とをさらに備え、
     前記制御装置(40)は、圧縮機停止除湿モードにおいて、
      前記切替部(25)を、前記クーラコア(16)の熱媒体出口側および前記第1連通流路のみを互いに連通させるように制御することで、前記チラー(14)を迂回するように前記熱媒体を循環させ、
      前記圧縮機(32)を停止させるように制御する、
     請求項2に記載の車両用冷却システム。
    A compressor (32) disposed in the refrigeration cycle (31) for compressing and discharging the sucked refrigerant;
    A control device (40),
    In the compressor stop dehumidification mode, the control device (40)
    By controlling the switching unit (25) so that only the heat medium outlet side of the cooler core (16) and the first communication channel communicate with each other, the heat medium so as to bypass the chiller (14). Circulate
    Controlling the compressor (32) to stop;
    The vehicle cooling system according to claim 2.
  8.  前記第1循環流路(21)に配置され、前記熱媒体の流量を調整する流量調整装置(11)と、
     制御装置(40)を更に備え、
     前記制御装置(40)は、吸気冷却優先モードにおいて、
      前記チラー(14)の熱媒体入口側および前記第1連通流路のみを互いに連通させるように前記切替部(25)を制御し、
      前記流量調整装置(11)を停止させるように制御することで、前記クーラコア(16)を迂回するように前記熱媒体を循環させる、
     請求項2に記載の車両用冷却システム。
    A flow rate adjusting device (11) arranged in the first circulation channel (21) for adjusting the flow rate of the heat medium;
    A control device (40),
    In the intake air cooling priority mode, the control device (40)
    Controlling the switching unit (25) so that only the heat medium inlet side of the chiller (14) and the first communication channel communicate with each other;
    The heat medium is circulated so as to bypass the cooler core (16) by controlling the flow rate adjusting device (11) to stop.
    The vehicle cooling system according to claim 2.
  9.  制御装置(40)を更に備え、
     前記制御装置(40)は、吸気冷却補助モードにおいて、前記クーラコア(16)の熱媒体出口側、前記チラー(14)の熱媒体入口側、および前記第1連通流路を互いに連通させるように前記切替部(25)を制御する、請求項2に記載の車両用冷却システム。
    A control device (40),
    In the intake air cooling assist mode, the control device (40) is configured to communicate the heat medium outlet side of the cooler core (16), the heat medium inlet side of the chiller (14), and the first communication channel with each other. The cooling system for vehicles according to claim 2 which controls switching part (25).
PCT/JP2016/084432 2015-12-09 2016-11-21 Cooling system for vehicle WO2017098901A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680068250.6A CN108291473B (en) 2015-12-09 2016-11-21 Cooling system for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015240024A JP6390601B2 (en) 2015-12-09 2015-12-09 Vehicle cooling system
JP2015-240024 2015-12-09

Publications (1)

Publication Number Publication Date
WO2017098901A1 true WO2017098901A1 (en) 2017-06-15

Family

ID=59014097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084432 WO2017098901A1 (en) 2015-12-09 2016-11-21 Cooling system for vehicle

Country Status (3)

Country Link
JP (1) JP6390601B2 (en)
CN (1) CN108291473B (en)
WO (1) WO2017098901A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020076213A1 (en) * 2018-10-09 2020-04-16 Scania Cv Ab A temperature control system, a vehicle provided therewith and a method for controlling the operation thereof
SE1950710A1 (en) * 2019-06-13 2020-12-14 Scania Cv Ab Method of Controlling Flow of Coolant, Vehicle Cooling System, and Related Devices

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109367351B (en) * 2018-10-13 2021-10-08 朱森林 Multifunctional system for electric automobile
JP7159877B2 (en) 2019-01-08 2022-10-25 トヨタ自動車株式会社 battery cooling system
JP7251229B2 (en) * 2019-03-13 2023-04-04 トヨタ自動車株式会社 In-vehicle temperature controller
JP2020164153A (en) * 2019-03-29 2020-10-08 株式会社デンソー Air conditioner
JP7392296B2 (en) * 2019-06-10 2023-12-06 株式会社デンソー Refrigeration cycle equipment
JP7294186B2 (en) * 2020-03-02 2023-06-20 トヨタ自動車株式会社 HEAT EXCHANGE SYSTEM, METHOD, PROGRAM AND VEHICLE
JP2021154822A (en) * 2020-03-26 2021-10-07 いすゞ自動車株式会社 Vehicle cooling device
JP2021154823A (en) * 2020-03-26 2021-10-07 いすゞ自動車株式会社 Vehicle cooling device
JP7288127B1 (en) * 2022-09-16 2023-06-06 三菱重工サーマルシステムズ株式会社 Vehicle temperature control system and temperature control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315513A (en) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd Radiator system for fuel cell/automobile
JP2014000946A (en) * 2012-05-23 2014-01-09 Denso Corp Thermal management system for vehicle
JP2015163503A (en) * 2014-01-29 2015-09-10 株式会社デンソー Air conditioning apparatus for vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910517B2 (en) * 2012-02-02 2016-04-27 株式会社デンソー Heat exchanger
JP5983187B2 (en) * 2012-08-28 2016-08-31 株式会社デンソー Thermal management system for vehicles
JP6303615B2 (en) * 2014-03-05 2018-04-04 株式会社デンソー Thermal management system for vehicles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315513A (en) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd Radiator system for fuel cell/automobile
JP2014000946A (en) * 2012-05-23 2014-01-09 Denso Corp Thermal management system for vehicle
JP2015163503A (en) * 2014-01-29 2015-09-10 株式会社デンソー Air conditioning apparatus for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020076213A1 (en) * 2018-10-09 2020-04-16 Scania Cv Ab A temperature control system, a vehicle provided therewith and a method for controlling the operation thereof
SE1950710A1 (en) * 2019-06-13 2020-12-14 Scania Cv Ab Method of Controlling Flow of Coolant, Vehicle Cooling System, and Related Devices
SE543426C2 (en) * 2019-06-13 2021-02-16 Scania Cv Ab Method of Controlling Flow of Coolant, Vehicle Cooling System, and Related Devices

Also Published As

Publication number Publication date
JP6390601B2 (en) 2018-09-19
CN108291473B (en) 2020-06-23
CN108291473A (en) 2018-07-17
JP2017106367A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6390601B2 (en) Vehicle cooling system
US11498391B2 (en) Air conditioner
US10562376B2 (en) Refrigeration cycle device
US10906376B2 (en) Thermal management system for vehicle
CN108779942B (en) Refrigeration cycle device
JP6551374B2 (en) Vehicle thermal management device
WO2014196138A1 (en) Vehicular heat management system
WO2015015754A1 (en) Refrigeration cycle device for vehicle
WO2019058838A1 (en) Refrigeration cycle device
WO2018092464A1 (en) Refrigeration cycle device
WO2018042859A1 (en) Refrigeration cycle device
WO2015015726A1 (en) Air conditioning device for vehicle
JP2015140115A (en) Air conditioner
WO2015115050A1 (en) Vehicle heat management system
JP2018058573A (en) Vehicular air conditioner
WO2014174786A1 (en) Vehicle heat management device
WO2019031123A1 (en) Air-conditioning apparatus
WO2015097987A1 (en) Vehicle air-conditioning device
WO2016006174A1 (en) Temperature control device for vehicle
WO2017130846A1 (en) Heat management device for vehicle
JP6060799B2 (en) Air conditioner for vehicles
WO2018066276A1 (en) Air-conditioning device for vehicle
WO2017010239A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872801

Country of ref document: EP

Kind code of ref document: A1