WO2017098746A1 - Sensor for cortisol analysis, method for cortisol analysis, reagent for stress evaluation, method for stress evaluation, test reagent for cortisol-related disease, and test method for contraction risk of cortisol-related disease - Google Patents

Sensor for cortisol analysis, method for cortisol analysis, reagent for stress evaluation, method for stress evaluation, test reagent for cortisol-related disease, and test method for contraction risk of cortisol-related disease Download PDF

Info

Publication number
WO2017098746A1
WO2017098746A1 PCT/JP2016/071937 JP2016071937W WO2017098746A1 WO 2017098746 A1 WO2017098746 A1 WO 2017098746A1 JP 2016071937 W JP2016071937 W JP 2016071937W WO 2017098746 A1 WO2017098746 A1 WO 2017098746A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
cortisol
sensor
nucleic acid
polynucleotide
Prior art date
Application number
PCT/JP2016/071937
Other languages
French (fr)
Japanese (ja)
Inventor
金子 直人
宏貴 皆川
穣 秋冨
克紀 堀井
行大 白鳥
巌 和賀
Original Assignee
Necソリューションイノベータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necソリューションイノベータ株式会社 filed Critical Necソリューションイノベータ株式会社
Priority to JP2017554933A priority Critical patent/JP6642859B2/en
Publication of WO2017098746A1 publication Critical patent/WO2017098746A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a sensor for cortisol analysis, a cortisol analysis method, a stress evaluation reagent, a stress evaluation method, a test reagent for cortisol-related diseases, and a method for testing the possibility of cortisol-related diseases.
  • Non-Patent Document 1 It has been clarified that cortisol concentration in body fluids such as blood, urine and saliva correlates with stress. For this reason, it has been attempted to measure the degree of stress by measuring the concentration of cortisol in saliva that can be easily collected.
  • an object of the present invention is to provide a new sensor for cortisol analysis, a cortisol analysis method, a stress evaluation reagent, a stress evaluation method, a cortisol-related disease test reagent, and a cortisol-related disease morbidity possibility that can be used for cortisol analysis. It is to provide a method of testing.
  • the sensor for analyzing cortisol of the present invention includes the following (I) including a binding region (A) that binds to a target and a G-forming region (D) that forms a G-quartet structure.
  • a binding region (A) that binds to a target and a G-forming region (D) that forms a G-quartet structure.
  • the target is cortisol
  • the G-forming region (D) becomes inactive due to inhibition of formation of the G-quartet structure
  • the G-forming region (D) is activated by forming a G-quartet structure.
  • the binding region (A) has a stem formation region (S D ), an intermediate region (C), and a stem formation region (S C ),
  • the stem formation region (S D ) has a sequence complementary to the G formation region (D)
  • the stem-forming region (S C ) is a single-stranded nucleic acid molecule having a sequence complementary to the intermediate region (C).
  • the G formation region (D) includes a first region (D1) and a second region (D2), and a region in which a G-quartet is formed by the first region (D1) and the second region (D2) And A single-stranded nucleic acid molecule having the first region (D1) on one end side of the binding region (A) and the second region (D2) on the other end side of the binding region (A).
  • (III) a double-stranded nucleic acid molecule composed of a first strand (ss1) and a second strand (ss2),
  • the first strand (ss1) has the G-forming region (D) and the binding region (A) in this order
  • the second chain (ss2) has a stem formation region (S D ) and a stem formation region (S A ) in this order, and the stem formation region (S D ) is in the G formation region (D).
  • the cortisol analysis method of the present invention includes a contact step of bringing a sample into contact with the sensor for cortisol analysis of the present invention, and binding between cortisol in the sample and the sensor for cortisol analysis. It comprises a detection step of detecting cortisol in the sample by combining with the region (A).
  • the stress evaluation reagent of the present invention includes the aforementioned sensor for cortisol analysis of the present invention.
  • the stress evaluation method of the present invention (hereinafter also referred to as “evaluation method”) is a contact step of bringing a sample of a subject into contact with the sensor for cortisol analysis of the present invention, A detection step of detecting cortisol in the sample by binding cortisol in the sample and the binding region (A) in the sensor for cortisol analysis, and comparing the amount of cortisol in the detection step with a reference value Thus, an acquisition step for acquiring information on stress is included.
  • test reagent includes the sensor for cortisol analysis of the present invention.
  • a method for testing the possibility of cortisol-related disease of the present invention comprises a contact step of contacting a sample of a subject with the sensor for cortisol analysis of the present invention, A detection step for detecting cortisol in the sample by binding cortisol in the sample and a binding region (A) in the sensor for analyzing cortisol, and comparing the amount of cortisol in the detection step with a reference value
  • test method comprises a contact step of contacting a sample of a subject with the sensor for cortisol analysis of the present invention, A detection step for detecting cortisol in the sample by binding cortisol in the sample and a binding region (A) in the sensor for analyzing cortisol, and comparing the amount of cortisol in the detection step with a reference value
  • test method comprises a contact step of contacting a sample of a subject with the sensor for cortisol analysis of the present invention, A detection step for detecting cortisol in the sample by binding cortisol in the
  • the G-forming region (D) forms a G-quartet structure by cortisol binding to the binding region (A).
  • the G-forming region (D) in which the G-quartet structure is formed is an active type, and for example, it generates a catalytic function or emits fluorescence by forming a complex with porphyrin. For this reason, for example, by detecting the catalytic function or the fluorescence, cortisol can be easily analyzed.
  • the senor for analyzing cortisol according to the present invention has low cross-reactivity to similar compounds such as melatonin, L-tryptophan, cortisone, norepinephrine, epinephrine, and cholic acid. For this reason, the sensor for cortisol analysis of the present invention can specifically analyze cortisol, for example.
  • FIG. 1 is a graph showing the fluorescence intensity in a reaction solution using the analytical sensor of the present invention in Example 2.
  • FIG. 2 is a graph showing the absorbance in a reaction solution using the analytical sensor of the present invention in Example 3.
  • FIG. 3 is a graph showing the fluorescence intensity at each migration distance of the electrophoresis gel when the reaction solution using the analytical sensor of the present invention was electrophoresed in Example 4.
  • FIG. 4 is a graph showing the relative value of absorbance in a reaction solution using the analytical sensor of the present invention in Example 5.
  • FIG. 5 is a graph showing the degree of fluorescence polarization in a reaction solution using the analytical sensor of the present invention in Example 6.
  • the sensor for analyzing cortisol of the present invention includes the following (I), (II), and (II) including a binding region (A) that binds to a target and a G-forming region (D) that forms a G-quartet structure. III) comprising at least one nucleic acid molecule selected from the group consisting of The target is cortisol, In the absence of the target, the G-forming region (D) becomes inactive due to inhibition of formation of the G-quartet structure, In the presence of the target, the G-forming region (D) is activated by forming a G-quartet structure.
  • the binding region (A) has a stem formation region (S D ), an intermediate region (C), and a stem formation region (S C ),
  • the stem formation region (S D ) has a sequence complementary to the G formation region (D)
  • the stem-forming region (S C ) is a single-stranded nucleic acid molecule having a sequence complementary to the intermediate region (C).
  • the G formation region (D) includes a first region (D1) and a second region (D2), and a region in which a G-quartet is formed by the first region (D1) and the second region (D2) And A single-stranded nucleic acid molecule having the first region (D1) on one end side of the binding region (A) and the second region (D2) on the other end side of the binding region (A).
  • (III) a double-stranded nucleic acid molecule composed of a first strand (ss1) and a second strand (ss2),
  • the first strand (ss1) has the G-forming region (D) and the binding region (A) in this order
  • the second chain (ss2) has a stem formation region (S D ) and a stem formation region (S A ) in this order, and the stem formation region (S D ) is in the G formation region (D).
  • the region is also referred to as a nucleic acid region and cortisol as a target.
  • the single-stranded nucleic acid molecule and the double-stranded nucleic acid molecule in the present invention can also be referred to as, for example, a single-stranded nucleic acid element and a double-stranded nucleic acid element, respectively.
  • the inhibition of the formation of the G-quartet structure indicates that the switch-OFF (or turn-OFF) and the formation of the G-quartet structure indicate that the switch-ON (or (turn-ON).
  • the phrase “the other sequence is complementary to a certain sequence” means, for example, a sequence that can be annealed between the two. The annealing is also referred to as stem formation.
  • the term “complementary” means, for example, that complementarity when two kinds of sequences are aligned is, for example, 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more. More preferably 99% or more, particularly preferably 100%, that is, completely complementary.
  • another sequence is complementary to a certain sequence when the sequence is directed from the 5 ′ side to the 3 ′ side, and the sequence is directed from the other 3 ′ side to the 5 ′ side. Means that the bases of each other are complementary.
  • the binding region (A) is a nucleic acid that binds to cortisol and is also referred to as a cortisol-binding nucleic acid.
  • the dissociation constant for cortisol in the binding region (A) is not particularly limited.
  • the binding between the binding region (A) and the cortisol can be determined by, for example, surface plasmon resonance molecular interaction (SPR) analysis.
  • SPR surface plasmon resonance molecular interaction
  • ProteON BioRad
  • BioRad BioRad
  • the cortisol is represented by the following formula (1).
  • the cortisol may be a derivative such as an isomer, a salt, a hydrate, or a solvate.
  • the description regarding the said cortisol can be used for the said derivative
  • the binding region (A) includes, for example, at least one polynucleotide selected from the group consisting of L (a1) to (a3) and (a4).
  • A1 Poly consisting of a base sequence enclosed in a square in any one of the base sequences of SEQ ID NOs: 1 to 279 of Tables 1A to H, SEQ ID NOs: 280 to 299 of Table 2, and SEQ ID NOs: 300 to 427 of Tables 3A to D
  • Nucleotide (a2) A polynucleotide (a3) consisting of a base sequence in which one or several bases are deleted, substituted, inserted and / or added in any of the base sequences of (a1), and which binds to the cortisol
  • the polynucleotide of (a1) is a square in any one of the nucleotide sequences of SEQ ID NOS: 1 to 279 in Tables 1A to H, SEQ ID NOs: 280 to 299 in Table 2, and SEQ ID NOs: 300 to 427 in Tables 3A to D. It is a polynucleotide consisting of an enclosed base sequence.
  • “one or several” may be in the range where the polynucleotide (a2) binds to cortisol, for example.
  • the “one or several” is, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 3, 1 or 2, 1 in the base sequence of any of (a1). It is.
  • the numerical range of numbers such as the number of bases and the number of sequences, for example, discloses all positive integers belonging to the range. That is, for example, the description “1 to 5 bases” means all disclosures of “1, 2, 3, 4, 5 bases” (the same applies hereinafter).
  • the “identity” may be, for example, within a range in which the polynucleotide (a3) binds to cortisol.
  • the “identity” is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the identity can be calculated with default parameters using analysis software such as BLAST and FASTA (hereinafter the same).
  • the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide (a1).
  • the hybridization can be detected by, for example, various hybridization assays.
  • the hybridization assay is not particularly limited, for example, Zanburuku (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ,” [Cold Spring Harbor Laboratory Press (1989)] and the like can also be employed.
  • the “stringent conditions” may be, for example, any of low stringent conditions, medium stringent conditions, and high stringent conditions.
  • Low stringent conditions are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, and 32 ° C.
  • Medium stringent conditions are, for example, 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 42 ° C.
  • “High stringent conditions” are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C.
  • the degree of stringency can be set by those skilled in the art by appropriately selecting conditions such as temperature, salt concentration, probe concentration and length, ionic strength, time, and the like.
  • “Stringent conditions” are, for example, Zanburuku previously described (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ,” [Cold Spring Harbor Laboratory Press ( 1989)] etc. may be employed.
  • the binding region (A) may be, for example, a molecule composed of any one of the polynucleotides (a1) to (a3) and (a4) or a molecule containing the polynucleotide.
  • the binding region (A) may further have, for example, a linker sequence and / or an additional sequence in addition to the polynucleotide.
  • the length of the binding region (A) is not particularly limited, and the lower limit is, for example, 12 base length, 15 base length, 18 base length, and the upper limit is, for example, 140 base length, 80 base length and 60 base length, and the range is, for example, 12 to 140 base length, 15 to 80 base length, and 18 to 60 base length.
  • the polynucleotide of (a1) is a polynucleotide comprising a base sequence surrounded by a square in any of the base sequences of SEQ ID NOs: 1 to 279
  • the polynucleotides of (a2) to (a4) are, for example, In the base sequences of the respective sequence numbers in Table 6 below, it is preferable that the corresponding conserved base sequences are conserved.
  • the conserved base sequence is aligned with reference to the base sequence of each SEQ ID NO of the polynucleotide (a1), for example, and the corresponding (matching) base sequence is stored. It can be judged that the nucleotide sequence is.
  • the identity is, for example, 50% or more, 60% or more, 70% or more, 80 %, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more.
  • the G formation region (D) forms a G quartet structure
  • a catalytic function and fluorescence occur.
  • the sensor of the present invention for example, in the absence of the target, formation of the G quartet structure of the G formation region (D) is inhibited, and in the presence of the target, the binding between the target and the binding region (A) A G quartet structure of the G formation region (D) is formed.
  • the sensor of the present invention can detect the target by, for example, detecting at least one of the catalytic function and the generation of fluorescence due to the formation of the G quartet structure.
  • the G-forming region (D) when the G-forming region (D) forms a G-quartet structure, for example, it exhibits the two types of properties (catalytic function or fluorescence).
  • the sensor of the present invention can be used.
  • the G-forming region (D) is only required to form a G-quartet structure, and the catalytic function and the presence or absence of fluorescence are not particularly limited.
  • the G-forming region (D) forms the G-quartet structure
  • a complex with porphyrin is formed, whereby the complex emits fluorescence.
  • the G-quartet nucleic acid is also called a fluorescent nucleic acid.
  • the sensor of the present invention inhibits formation of a G-quartet structure in the G-forming region (D) in the absence of a target. Therefore, no fluorescence is emitted from the complex, and the switch is turned off. On the other hand, in the presence of the target, a G-quartet structure is formed in the G-forming region (D). In order to form a complex with porphyrin, fluorescence from the complex is emitted, and the switch is turned on. For this reason, for example, the presence or absence of the target or the target amount can be analyzed by fluorescence due to the complex formation between the G-forming region (D) and the porphyrin.
  • the G-forming region (D) forms the G-quartet structure
  • a complex with porphyrin is formed, thereby causing the catalytic function of the enzyme.
  • the G-quartet nucleic acid is also called a catalytic nucleic acid.
  • the catalytic function is, for example, a catalytic function of a redox reaction.
  • the oxidation-reduction reaction is, for example, a reaction that causes transfer of electrons between two substrates in the process of generating a product from the substrates.
  • the kind of the redox reaction is not particularly limited.
  • the catalytic function of the oxidation-reduction reaction includes, for example, the same activity as an enzyme, and specifically includes, for example, the same activity as peroxidase (hereinafter referred to as “peroxidase-like activity”).
  • peroxidase activity examples include horseradish peroxidase (HRP) activity.
  • the G-forming region (D) is generally called a DNA enzyme or DNAzyme in the case of a DNA sequence, and is called an RNA enzyme or RNAzyme in the case of an RNA sequence.
  • DNAzyme examples include nucleic acid molecules such as the following articles (1) to (4). (1) Travascio et al., Chem. Biol., 1998, vol.5, p.505-517 (2) Cheng et al., Biochemistry, 2009, vol.48, p.7817-7823 (3) Teller et al., Anal. Chem., 2009, vol.81, p.9114-9119 (4) Tao et al., Anal. Chem., 2009, vol.81, p.2144-2149
  • the sensor of the present invention inhibits formation of a G-quartet structure in the G-forming region (D) in the absence of a target. No complex is formed, and therefore the catalytic function of the complex does not occur and the switch is turned OFF. On the other hand, in the presence of the target, a G-quartet structure is formed in the G-forming region (D). In order to form the composite, the catalytic function of the composite is generated and the switch is turned on. Therefore, for example, by using a substrate corresponding to the catalytic function together, the presence or absence of the target or the target amount can be analyzed by the catalytic function due to the complex formation between the G-forming region (D) and the porphyrin.
  • the analytical sensor of the present invention can detect, for example, fluorescence by the complex without changing the sequence of the G-forming region (D), and in the presence of the substrate,
  • the catalytic function can also be detected by the complex.
  • the porphyrin that forms a complex with the G-forming region (D) is not particularly limited, and examples thereof include unsubstituted porphyrin and derivatives thereof.
  • the derivatives include substituted porphyrins, metal porphyrins formed with complexes with metal elements, and the like.
  • the substituted porphyrin include N-methylmesoporphyrin (NMM), Zn-DIGP, ZnPP9, and TMPyP.
  • Examples of the metal porphyrin include hemin, which is a trivalent iron complex.
  • the porphyrin when the catalytic function is caused, is preferably, for example, the metal porphyrin, and more preferably hemin.
  • the porphyrin when generating the fluorescence in the G-forming region (D), is preferably NMM, Zn-DIGP, ZnPP9, TMPyP, or the like.
  • the G-forming region (D) may be, for example, a single-stranded type or a double-stranded type.
  • the single-stranded type can form, for example, a G-quartet structure in a single-stranded G-forming region (D).
  • the double-stranded type includes, for example, a first region (D1) and a second region (D2), and a G-quartet structure is formed between the first region (D1) and the second region (D2). Can be formed.
  • the latter double-stranded type includes, for example, a structure in which the first region and the second region are indirectly linked, and will be specifically described in the nucleic acid molecule (II) described later.
  • the G-forming region (D) is, for example, at least one polynucleotide selected from the group consisting of the following (d1) to (d3) and (d4) including.
  • (D1) a polynucleotide comprising the underlined base sequence in any of the base sequences of SEQ ID NOs: 1 to 279 of Tables 1A to H and SEQ ID NOs: 300 to 427 of Tables 3A to D
  • (d2) any of the above (d1) A polynucleotide comprising the base sequence in which one or several bases are deleted, substituted, inserted and / or added, and forming the G-quartet structure
  • (d3) any one of (d1) A polynucleotide comprising the base sequence having 80% or more identity to the base sequence and forming the G-quartet structure
  • a polynucleotide comprising any one of the base sequences of (d1) A complementary nucleotide sequence to a polynucleotide that hybridizes under stringent conditions to form the G-quartet structure.
  • the polynucleotide (d1) is a polynucleotide comprising an underlined base sequence in any one of the base sequences of SEQ ID NOs: 1 to 279 of Tables 1A to H and SEQ ID NOs: 300 to 427 of Tables 3A to D. .
  • “one or several” may be in the range where the polynucleotide of (d2) forms the G-quartet structure, for example.
  • the “one or several” is, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 3, 1, or 2 in any of the base sequences of (d1).
  • identity may be, for example, within a range in which the polynucleotide of (d3) forms the G-quartet structure.
  • the “identity” is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide of (d1).
  • “hybridization” and “stringent conditions” the above description can be used.
  • the G-forming region (D) may be, for example, a molecule composed of any of the polynucleotides (d1) to (d4) or a molecule containing the polynucleotide. In the latter case, the G-forming region (D) may further have, for example, a linker sequence and / or an additional sequence in addition to the polynucleotide.
  • the length of the single-stranded G-forming region (D) is not particularly limited, and the lower limit is, for example, 11 base length, 13 base length, 15 base length, and the upper limit is, for example, 60 base length, It is 36 bases long and 18 bases long.
  • one of the first region (D1) and the second region (D2) is, for example, a group consisting of the following (e1) to (e3) and (e4)
  • the other region includes at least one polynucleotide selected from the group consisting of (f1) to (f3) and (f4) below.
  • the following polynucleotides (e2) to (e4) are, for example, polynucleotides that form a G-quartet structure with at least one of the following polynucleotides (f1) to (f3) and (f4).
  • polynucleotides (f2) to (f4) are, for example, polynucleotides that form a G-quartet structure with at least one of the following polynucleotides (e1) to (e3) and (e4).
  • (E1) a polynucleotide comprising the underlined base sequence in any one of SEQ ID NOS: 280 to 299 in Table 2 (e2) In the base sequence of any one of (e1), one or several bases Polynucleotide comprising a nucleotide sequence deleted, substituted, inserted and / or added (e3) Polynucleotide comprising a nucleotide sequence having 80% or more identity to any of the nucleotide sequences of (e1) (E4) a polynucleotide comprising a base sequence complementary to a polynucleotide that hybridizes under stringent conditions to the polynucleotide comprising any one of the base sequences of (e1)
  • (F1) a polynucleotide comprising the underlined base sequence enclosed in parentheses in the base sequence of SEQ ID NO: (e1)
  • (f2) In the base sequence of any one of (f1), one or several bases are Polynucleotide consisting of a base sequence deleted, substituted, inserted and / or added (f3)
  • (F4) a polynucleotide comprising a base sequence complementary to a polynucleotide that hybridizes under stringent conditions to the polynucleotide comprising any one of the base sequences (f1)
  • the polynucleotide (e1) is a polynucleotide comprising the underlined base sequence in any one of the sequence numbers 280 to 299 in Table 2.
  • “1 or several” is, for example, within a range in which the polynucleotide of (e2) forms a G-quartet structure with at least one of the polynucleotides (f1) to (f4). That's fine.
  • the “one or several” is, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 3, 1, or 2 in any one of the base sequences of (e1).
  • the “identity” is, for example, within the range in which the polynucleotide of (e3) forms the G-quartet structure with at least one of the polynucleotides (f1) to (f4). Good.
  • the “identity” is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide of (e1).
  • “hybridization” and “stringent conditions” the above description can be used.
  • the polynucleotide (f1) is a polynucleotide comprising an underlined base sequence surrounded by parentheses in any one of the base sequences of SEQ ID NOs: 280 to 299 in Table 2.
  • “1 or several” is, for example, within a range in which the polynucleotide of (f2) forms a G-quartet structure with at least one of the polynucleotides (e1) to (e4). That's fine.
  • the “one or several” is, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 3, 1, or 2 in any of the base sequences of (f1).
  • the “identity” is, for example, within a range in which the polynucleotide of (f3) forms the G-quartet structure with at least one polynucleotide of (e1) to (e4). Good.
  • the “identity” is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide of (f1).
  • “hybridization” and “stringent conditions” the above description can be used.
  • the length of the first region (D1) and the second region (D2) is not particularly limited, and both may be the same or different.
  • the length of the first region (D1) is not particularly limited, and the lower limit is, for example, 7 base length, 8 base length, 10 base length, and the upper limit is, for example, 30 base length, 20 base length, 10
  • the base length and the range thereof are, for example, 7 to 30 base length, 7 to 20 base length, and 7 to 10 base length.
  • the length of the second region (D2) is not particularly limited, and the lower limit is, for example, 7 base length, 8 base length, 10 base length, and the upper limit is, for example, 30 base length, 20 base length, 10
  • the base length and the range thereof are, for example, 7 to 30 base length, 7 to 20 base length, and 7 to 10 base length.
  • each of (I), (II), and (III) will be described below.
  • description of each nucleic acid molecule can each be used.
  • nucleic acid molecule (I) The nucleic acid molecule (I) has the G-forming region (D) and the binding region (A), The binding region (A) has a stem formation region (S D ), an intermediate region (C), and a stem formation region (S C ), The stem formation region (S D ) has a sequence complementary to the G formation region (D), The stem forming region (S C ) is a single-stranded nucleic acid molecule having a sequence complementary to the intermediate region (C).
  • the G-forming region (D) is, for example, the single-stranded type.
  • the G-quartet formation of the G-forming region (D) is controlled to be ON-OFF depending on the presence or absence of a target.
  • the present invention is not limited to this mechanism.
  • the nucleic acid molecule (I) is annealed between the G-forming region (D) and the stem-forming region (S D ) in the molecule, so that the G-forming region (D) Formation of the G-quartet structure is inhibited (switch-OFF), and as a result, for example, formation of a complex between the G-forming region (D) and porphyrin is inhibited.
  • the structure of the intermediate region (C) is also fixed by annealing the intermediate region (C) and the stem forming region (S C ) in the molecule.
  • the structure of the molecule in this state is also called an inactive type.
  • the nucleic acid molecule (I) is released from the annealing of the intermediate region (C) and the stem formation region (S C ) by the contact of the target with the binding region (A).
  • the three-dimensional structure of the binding region (A) changes to a more stable structure.
  • the annealing of the G formation region (D) and the stem formation region (S D ) is canceled, and a G-quartet structure is formed in the region of the G formation region (D) (switch-ON).
  • a complex of the G-forming region (D) and porphyrin is formed, and for example, a catalytic function and fluorescence are generated.
  • the structure of the molecule in this state is also called an active form. Therefore, for example, the nucleic acid molecule (I) does not cause the catalytic function and fluorescence due to the complex formation in the absence of the target, and the catalytic function and fluorescence due to the complex formation only in the presence of the target. Therefore, target analysis such as qualitative or quantitative is possible.
  • the stem formation region (S D ) preferably has a sequence that is entirely or partially complementary to a part of the G formation region (D).
  • the stem formation region (S C ) is, for example, a sequence that is entirely or partially complementary to a part of the intermediate region (C).
  • the order of the regions is such that the G-forming region (D) and the stem-forming region (S D ) are annealed in the molecule, and the intermediate region
  • the order of annealing of the region (C) and the stem formation region (S C ) may be sufficient.
  • the following order can be illustrated as a specific example. (1) 5'- D-S C -C-S D -3 ' (2) 5'- S D -C- S C -D -3 '
  • the formation of the G-quartet structure is turned on and off as follows.
  • the intermediate region (C) and the stem formation region (S C ), the G formation region (D) and the stem formation region (S D ) form a stem, and the G formation region ( Inhibits the formation of the G-quartet structure of D).
  • the respective stem formation is released by the contact of the target with the binding region (A), and a G-quartet structure is formed in the G formation region (D).
  • the stem formation region (S D ) is complementary to the 5′-side region of the G formation region (D), and the stem formation region (S C ) It is preferably complementary to the 5 ′ region of the region (C).
  • the regions may be connected directly or indirectly.
  • the direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region. It means that the “terminal” and the 5 ′ terminal of the other region are bonded via the intervening linker region (also referred to as “internal region”).
  • the intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former.
  • the nucleic acid molecule (I) preferably has, for example, two intervening linker regions that are non-complementary to each other as the intervening linker region.
  • the positions of the two intervening linker regions are not particularly limited.
  • the intervening linker region linked to the intermediate region (C) is (L 1 ) (also referred to as “internal region (I c )”), and the intervening linker region linked to the G-forming region (D) is ( L 2 ) (also referred to as “internal region (I D )”).
  • the nucleic acid molecule (I) may have, for example, both (L 1 ) and (L 2 ) as an intervening linker region, or may have only one of them.
  • the formation of the G-quartet structure is turned on and off as follows.
  • the intermediate region (C) and the stem forming region (S C ) the G forming region (D) and the stem forming region (S D ) form stems, respectively.
  • the intervening linker region (L 1 ) and the intervening linker region (L 2 ) form an internal loop that inhibits the formation of the G-quartet structure of the G-forming region (D).
  • the respective stem formation is released by the contact of the target with the binding region (A), and a G-quartet structure is formed in the G formation region (D).
  • the lengths of the stem-forming sequence (S C ) and the stem-forming sequence (S D ) are not particularly limited.
  • the length of the stem-forming sequence (S C ) is, for example, 1 to 60 bases long, 1 to 10 bases long, or 1 to 7 bases long.
  • the stem-forming sequence (S D ) has a length of, for example, 1 to 30 bases, 0 to 10 bases, 1 to 10 bases, 0 to 7 bases, or 1 to 7 bases.
  • the stem forming sequence (S C ) and the stem forming sequence (S D ) may have the same length, the former may be long, or the latter may be long.
  • the lengths of the intervening linker regions (L 1 ) and (L 2 ) are not particularly limited.
  • the lengths of the intervening linker regions (L 1 ) and (L 2 ) are, for example, 0 to 30 bases, 1 to 30 bases, 1 to 15 bases, and 1 to 6 bases, respectively.
  • the lengths of the intervening linker regions (L 1 ) and (L 2 ) may be the same or different, for example. In the latter case, the difference in length of the intervening linker region (L 1) and (L 2) is not particularly limited, for example, 1 to 10 bases in length, 1 or 2 bases in length, one base in length.
  • the binding region (A) is, for example, at least one polynucleotide selected from the group consisting of (a1) to (a4), wherein the polynucleotide of (a1) is It is a polynucleotide that has been replaced with a polynucleotide having a base sequence surrounded by a square in any of the base sequences of SEQ ID NOS: 1 to 279 in Tables 1A to H. The description can be used after the above replacement.
  • the G-forming region (D) is, for example, at least one polynucleotide selected from the group consisting of (d1) to (d4), and the polynucleotide of (d1), It is a polynucleotide that has been replaced with a polynucleotide comprising the underlined base sequence in any one of SEQ ID NOS: 1 to 279 in Tables 1A to H. The description can be used after the above replacement.
  • the nucleic acid molecule (I) is, for example, at least one polynucleotide selected from the group consisting of the following (s1) to (s3) and (s4).
  • (S1) A polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 1 to 279 (s2) In the nucleotide sequence of any of the above (s1), one or several bases are deleted, substituted, inserted and / or added
  • (S4) A polynucleotide having a function equivalent to that of (s1) (s4) From a base sequence complementary to a polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising any one of the base sequences of (s1) And a polynucleotide having a function equivalent to that of (s1)
  • “having the same function as (s1)” means that in the absence of the target, the G formation region (D) does not form a G-quartet structure, and in the presence of the target. This means that the target is bonded to the bonding region (A) and the G-forming region (D) forms a G-quartet structure.
  • the polynucleotide (s1) is a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 1 to 279.
  • one or several means, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 5 in any of the base sequences of (s1). Three, one or two.
  • identity is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide (s1).
  • “hybridization” and “stringent conditions” the above description can be used.
  • the conserved base sequence is, for example, aligned based on the base sequence of each SEQ ID NO of the polynucleotide of (s1), and the corresponding base sequence is the conserved base It can be judged as an array.
  • the identity is, for example, 50% or more, 60% or more, 70% or more, 80% or more 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the length of the nucleic acid molecule (I) is not particularly limited.
  • the length of the nucleic acid molecule (I) is, for example, 40 to 120 bases long, 45 to 100 bases long, 50 to 80 bases long.
  • the nucleic acid molecule (II) has the G-forming region (D) and the binding region (A),
  • the G formation region (D) includes a first region (D1) and a second region (D2), and a region in which a G-quartet is formed by the first region (D1) and the second region (D2)
  • a single-stranded nucleic acid molecule having the first region (D1) on one end side of the binding region (A) and the second region (D2) on the other end side of the binding region (A). is there.
  • the G-forming region (D) is, for example, the double-stranded type (hereinafter also referred to as “split type”).
  • the split-type G-forming region (D) is a molecule that includes the first region (D1) and the second region (D2), and forms a G-quartet structure.
  • the first region (D1) and the second region (D2) may be any sequence that forms the G-quartet structure, and more preferably, a guanine quadruplex structure. It is the arrangement
  • the G-quartet formation of the G-forming region (D) is controlled to ON-OFF depending on the presence or absence of a target. Note that the present invention is not limited to this mechanism.
  • the first region (D1) and the second region (D2) that form a G-quartet structure in a pair form the binding region (A). Are spaced apart from each other.
  • the first region (D1) and the second region (D2) are arranged at a distance, in the absence of the target, the first region (D1) and the second region ( D2) is inhibited from forming a G-quartet structure (switch-OFF), and as a result, for example, complex formation between the G-forming region (D) and porphyrin is inhibited.
  • the structure of the molecule in this state is also called an inactive type.
  • the nucleic acid molecule (II) has a more stable structure in which the three-dimensional structure of the binding region (A) has a stem-loop structure by the contact of the target with the binding region (A). Change.
  • the first region (D1) and the second region (D2) approach each other with the change in the three-dimensional structure of the binding region (A), and the first region (D1) and the second region (D2).
  • a G-quartet structure is formed (switch-ON) between them and, as a result, for example, a complex of the G-forming region (D) and porphyrin is formed, and a catalytic function and fluorescence are generated.
  • the structure of the molecule in this state is also called an active form. Therefore, for example, the nucleic acid molecule (II) does not cause the catalytic function and fluorescence due to the complex formation in the absence of the target, and the catalytic function and fluorescence due to the complex formation only in the presence of the target. As a result, target analysis such as qualitative or quantitative is possible.
  • the nucleic acid molecule (II) uses a double-stranded type as the G-forming region (D), and the first region (D1) and the second region via the binding region (A). Region (D2) is arranged. For this reason, for example, it is not necessary to set conditions for each type of binding nucleic acid molecule that binds to cortisol, and a desired cortisol-binding nucleic acid molecule can be set as the binding region (A).
  • the first region (D1) and the second region (D2) may be arranged via the binding region (A), and any of the binding regions (A) You may arrange
  • the first region (D1) is disposed on the 5 ′ side of the coupling region (A)
  • the second region (D2) is disposed on the 3 ′ side of the coupling region (A). An example is shown.
  • the first region (D1) and the binding region (A) may be connected directly or indirectly, or the second region (D2) and The binding region (A) may be connected directly or indirectly.
  • the direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region.
  • Means that the 'terminal and the 5' end of the other region are linked via the intervening linker region; specifically, the 3 'end of one region and the 5' end of the intervening linker region Means that the 3 ′ end of the intervening linker region and the 5 ′ end of the other region are directly bound.
  • the intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former.
  • the nucleic acid molecule (II) has the intervening linker region (first linker region (L 1 )) between the first region (D1) and the binding region (A), It is preferable to have the intervening linker region (second linker region (L 2 )) between the second region (D2) and the binding region (A).
  • the first linker region (L 1 ) and the second linker region (L 2 ) may be either one or preferably both. When both the first linker region (L 1 ) and the second linker region (L 2 ) are included, the respective lengths may be the same or different.
  • the length of the linker region is not particularly limited, and the lower limit is, for example, 1, 3, 5, 7, 9 bases, and the upper limit is, for example, 20, 15, 10 bases.
  • the base sequence from the 5 ′ end side of the first linker region (L 1 ) and the base sequence from the 3 ′ end side of the second linker region (L 2 ) are non-complementary to each other, for example. It is preferable.
  • (L 2 ) for example, the distance between the first region (D1) and the second region (D2) can be sufficiently maintained. For this reason, for example, the formation of a G-quartet structure by the first region (D1) and the second region (D2) in the absence of the target is sufficiently suppressed, and the catalytic function in the absence of the target is achieved. And the background based on fluorescence can be sufficiently reduced.
  • the nucleic acid molecule (II) can be represented by, for example, D1-W-D2, and specifically can be represented by the following formula (I).
  • 5 'side sequence (N) n1 -GGG- (N) n2 - (N) n3 - is the sequence of the first region (D1) (d1)
  • 3 ′ sequence-(N) m3- (N) m2 -GGG- (N) m1 is the sequence (d2) of the second region (D2)
  • W is a region between the first region (D1) and the second region (D2), including the coupling region (A)
  • N represents a base
  • n1, n2, and n3, and m1, m2, and m3 represent the number of repetitions of the base N, respectively.
  • Formula (I) shows a state in which the first region (D1) and the second region (D2) are aligned in the nucleic acid molecule (II), which is the first region (D1).
  • the second region (D2) are schematic views showing the arrangement relationship between the first region (D1) and the second region (D2) in the present invention. This is not a limitation.
  • (N) n1 and (N) m1 satisfy the following condition (1): N) n2 and (N) m2 preferably satisfy the following condition (2), and (N) n3 and (N) m3 preferably satisfy the following condition (3).
  • Condition (1) In (N) n1 and (N) m1 , the base sequence from the 5 ′ end of (N) n1 and the base sequence from the 3 ′ end of (N) m1 are complementary to each other, and n1 and m1 Are the same 0 or a positive integer.
  • Condition (2) (N) n2 and (N) m2 are such that the base sequence from the 5 ′ end of (N) n2 and the base sequence from the 3 ′ end of (N) m2 are non-complementary to each other, m2 is a positive integer, and may be the same or different.
  • (N) n3 and (N) m3 are those in which n3 and m3 are 3 or 4, respectively, and may be the same or different, have three bases G, and when n3 or m3 is 4, (N) n3 and (N) m3, the second or third base is a base H except G.
  • the condition (1) is a condition of (N) n1 at the 5 ′ end and (N) m1 at the 3 ′ end when the first region (D1) and the second region (D2) are aligned. .
  • the base sequence from the 5 ′ end of (N) n1 and the base sequence from the 3 ′ end of (N) m1 are complementary to each other and have the same length.
  • (N) n1 and (N) m1 are complementary sequences of the same length, they can be said to be stem regions that form stems in an aligned state.
  • N1 and m1 may be the same 0 or a positive integer, and are, for example, 0, 1 to 10, and preferably 1, 2, or 3, respectively.
  • the condition (2) is a condition of (N) n2 and (N) m2 when the first region (D1) and the second region (D2) are aligned.
  • the base sequence of (N) n2 and the base sequence of (N) m2 are non-complementary to each other, and n2 and m2 may have the same length or different lengths. Since (N) n2 and (N) m2 are non-complementary sequences, they can be said to be regions that form an inner loop in an aligned state.
  • N2 and m2 are positive integers, for example, 1 to 10 respectively, preferably 1 or 2.
  • n2 and m2 may be the same or different.
  • n2 m2, n2> m2, and n2 ⁇ m2, and preferably n2> m2 and n2 ⁇ m2.
  • the condition (3) is a condition of (N) n3 and (N) m3 when the first region (D1) and the second region (D2) are aligned.
  • the base sequence of (N) n3 and the base sequence of (N) m3 are 3 or 4 base length sequences having 3 bases G, and the same or different May be.
  • n3 or m3 is 4,
  • (N) n3 and (N) m3 are bases H other than G in the second or third base.
  • Examples of the base H that is a base other than G include A, C, T, and U, and preferably A, C, or T.
  • condition (3) include the following conditions (3-1), (3-2), and (3-3).
  • Condition (3-1) Among (N) n3 and (N) m3 , the sequence from one 5 ′ side is GHGG, and the sequence from the other 5 ′ side is GGG.
  • Condition (3-2) Among (N) n3 and (N) m3 , the sequence from one 5 ′ side is GGHG, and the sequence from the other 5 ′ side is GGG.
  • Condition (3-3) Both (N) n3 and (N) m3 sequences are GGG.
  • the binding region (A) is, for example, at least one polynucleotide selected from the group consisting of (a1) to (a4), wherein the polynucleotide of (a1) is This is the case of a polynucleotide comprising a base sequence surrounded by a square in any of the base sequences of SEQ ID NOS: 280 to 299 in Table 2, and the description thereof can be incorporated.
  • one of the first region (D1) and the second region (D2) is, for example, in at least one polynucleotide selected from the group consisting of (e1) to (e4)
  • the polynucleotide of (e1) is represented by SEQ ID NOs: 280 to 299 in Table 2 above. It is a polynucleotide that has been replaced with a polynucleotide comprising an underlined base sequence in any base sequence, and the description can be used after the above replacement.
  • the length of the first region (D1) is not particularly limited, and the lower limit is, for example, 7 base length, 8 base length, 10 base length, and the upper limit is, for example, 30 base length, 20 base length, 10
  • the base length and the range thereof are, for example, 7 to 30 base length, 7 to 20 base length, and 7 to 10 base length.
  • the length of the second region (D2) is not particularly limited, and the lower limit is, for example, 7 base length, 8 base length, 10 base length, and the upper limit is, for example, 30 base length, 20 base length, 10
  • the base length and the range thereof are, for example, 7 to 30 base length, 7 to 20 base length, and 7 to 10 base length.
  • the lengths of the first region (D1) and the second region (D2) may be the same or different.
  • the nucleic acid molecule (II) is, for example, at least one polynucleotide selected from the group consisting of the following (t1) to (t3) and (t4).
  • T1 A polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 280 to 299 (t2) In any one of the nucleotide sequences of (t1), one or several bases are deleted, substituted, inserted and / or added.
  • “having the same function as (t1)” means that in the absence of the target, the G formation region (D) does not form a G-quartet structure, and in the presence of the target. This means that the target is bonded to the bonding region (A) and the G-forming region (D) forms a G-quartet structure.
  • the polynucleotide (t1) is a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 280 to 299.
  • “1 or several” means, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 5 in any base sequence of (t1). Three, one or two.
  • identity is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide (t1).
  • “hybridization” and “stringent conditions” the above description can be used.
  • the polynucleotides (t2) to (t4) preferably have at least one base sequence of the binding region (A) and the G-forming region (D) conserved in the base sequence of each SEQ ID NO. .
  • the conserved base sequence is, for example, aligned based on the base sequence of each SEQ ID NO of the polynucleotide of (t1), and the corresponding base sequence is the conserved base It can be judged as an array.
  • the identity is, for example, 50% or more, 60% or more, 70% or more, 80% or more 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the length of the nucleic acid molecule (II) is not particularly limited.
  • the lower limit of the length of the nucleic acid molecule (II) is, for example, 25 base length, 30 base length, 35 base length, and the upper limit is, for example, 200 base length, 100 base length, 80 base length, the range is For example, it is 25 to 200 bases long, 30 to 100 bases long, 35 to 80 bases long.
  • the nucleic acid molecule (III) is a double-stranded nucleic acid molecule composed of a first strand (ss1) and a second strand (ss2),
  • the first strand (ss1) has the G-forming region (D) and the binding region (A) in this order
  • the second chain (ss2) has a stem formation region (S D ) and a stem formation region (S A ) in this order, and the stem formation region (S D ) is in the G formation region (D).
  • the stem-forming region (S A ) is a double-stranded nucleic acid molecule having a sequence complementary to the binding region (A).
  • the G-forming region (D) is, for example, the single-stranded type.
  • the G-quartet formation of the G-forming region (D) is controlled to be ON-OFF depending on the presence or absence of a target based on the following mechanism. Note that the present invention is not limited to this mechanism.
  • the nucleic acid molecule (III) anneals the G-forming region (D) of the first strand (ss1) and the stem-forming region (S D ) of the second strand (ss2).
  • formation of the G-quartet structure in the G-forming region (D) is inhibited (switch-OFF), and as a result, for example, formation of a complex between the G-forming region (D) and porphyrin is inhibited.
  • the binding region (A) of the first strand (ss1) and the stem formation region (S A ) of the second strand (ss2) are annealed, whereby the binding region (A ) Structure is also fixed.
  • the structure of the molecule in this state is also called an inactive type.
  • the nucleic acid molecule (III) is, under the target presence, by contact of the target to the binding region (A), annealing of the coupling region (A) and the stem forming regions (S A) is released The three-dimensional structure of the binding region (A) changes to a more stable structure.
  • the annealing of the G formation region (D) and the stem formation region (S D ) is canceled, and a G-quartet structure is formed in the region of the G formation region (D) (switch-ON).
  • a complex of the G-forming region (D) and porphyrin is formed, causing a catalytic function and fluorescence.
  • the structure of the molecule in this state is also called an active form.
  • the nucleic acid molecule (III) does not cause the catalytic function and fluorescence due to the complex formation in the absence of the target, and does not cause the catalytic function and fluorescence due to the complex formation only in the presence of the target. Therefore, target analysis such as qualitative or quantitative is possible.
  • the stem formation region (S D ) preferably has a sequence that is entirely or partially complementary to a part of the G formation region (D).
  • the stem forming region (S A ) is, for example, a sequence that is entirely or partially complementary to a part of the binding region (A).
  • the sequence of each region, the G forming region (D) and the stem forming region and the (S D) is annealed, the binding region (A) and the stem forming regions (S A ) And the annealing order.
  • the following order can be illustrated as a specific example. (1) ss1 5'- AD-3 ' ss2 3'- S A -S D -5 ' (2) ss1 5'- DA-3 ' ss2 3'- S D -S A -5 '
  • the stem formation region (S A ) is complementary to the 3′-side region of the binding region (A), and the stem formation region (S D ) is the G formation region (D). It is preferable to be complementary to the 5 ′ side region.
  • the stem formation region (S D ) is complementary to the 3′-side region of the G formation region (D), and the stem formation region (S A ) is the binding region (A). It is preferable to be complementary to the 5 ′ side region.
  • the regions may be connected directly or indirectly.
  • the direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region. It means that the “end” and the 5 ′ end of the other region are bound via the intervening linker region.
  • the intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former.
  • the nucleic acid molecule (III) is, for example, between the binding region (A) and the G-forming region (D) in the first strand (ss1) and the stem-forming region in the second strand (ss2). It is preferable to have the intervening linker region between (S D ) and the stem forming region (S A ).
  • the intervening linker region (L 1 ) in the first strand (ss1) and the intervening linker region (L 2 ) in the second strand (ss2) are preferably non-complementary sequences.
  • an intervening linker region that connects the binding region (A) and the G-forming region (D) is (L 1 ), the stem-forming region (S D ), and the stem-forming region (S A )
  • the intervening linker region linking is represented by (L 2 ).
  • the nucleic acid molecule (III) may have both (L 1 ) and (L 2 ) as an intervening linker region, or may have only one of them.
  • the formation of the G-quartet structure is turned on and off as follows.
  • the binding region (A), the stem formation region (S A ), the G formation region (D), and the stem formation region (S D ) form stems, respectively.
  • the intervening linker region (L 1 ) and the intervening linker region (L 2 ) form an internal loop that inhibits the formation of the G-quartet structure of the G-forming region (D).
  • the respective stem formation is released by the contact of the target with the binding region (A), and a G-quartet structure is formed in the G formation region (D).
  • the lengths of the stem-forming sequence (S A ) and the stem-forming sequence (S D ) are not particularly limited.
  • the length of the stem forming sequence (S A ) is, for example, 1 to 60 bases long, 1 to 10 bases long, or 1 to 7 bases long.
  • the stem-forming sequence (S D ) has a length of, for example, 1 to 30 bases, 0 to 10 bases, 1 to 10 bases, 0 to 7 bases, or 1 to 7 bases.
  • the stem forming sequence (S A ) and the stem forming sequence (S D ) may have the same length, the former may be long, or the latter may be long.
  • the lengths of the intervening linker regions (L 1 ) and (L 2 ) are not particularly limited.
  • the lengths of the intervening linker regions (L 1 ) and (L 2 ) are, for example, 0 to 30 bases, 1 to 30 bases, 1 to 15 bases, and 1 to 6 bases, respectively.
  • the lengths of the intervening linker regions (L 1 ) and (L 2 ) may be the same or different, for example. In the latter case, the difference in length of the intervening linker region (L 1) and (L 2) is not particularly limited, for example, 1 to 10 bases in length, 1 or 2 bases in length, one base in length.
  • the binding region (A) is, for example, at least one polynucleotide selected from the group consisting of (a1) to (a4), wherein the polynucleotide of (a1) is This is the case of a polynucleotide comprising a base sequence surrounded by a square in any one of SEQ ID NOS: 300 to 427 in Tables 3A to D, and the description thereof can be used.
  • the G-forming region (D) is, for example, at least one polynucleotide selected from the group consisting of (d1) to (d4), wherein the polynucleotide of (d1) is This is a case of a polynucleotide comprising the underlined base sequence in any of the base sequences of SEQ ID NOS: 300 to 427 in Tables 3A to D, and the description thereof can be used.
  • the first strand (ss1) is, for example, at least one polynucleotide selected from the group consisting of (u1) to (u3) and (u4) below.
  • (U1) A polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 300 to 427 (u2) In any one of the nucleotide sequences of (u1), one or several bases are deleted, substituted, inserted and / or added.
  • “having the same function as (u1)” means that in the absence of the target, the G formation region (D) does not form a G-quartet structure, and in the presence of the target. This means that the target is bonded to the bonding region (A) and the G-forming region (D) forms a G-quartet structure.
  • the polynucleotide (u1) is a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 300 to 427.
  • “1 or several” means, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 5 in any one of the nucleotide sequences of (u1). Three, one or two.
  • identity is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide (u1).
  • “hybridization” and “stringent conditions” the above description can be used.
  • the conserved base sequence is, for example, aligned based on the base sequence of each SEQ ID NO of the polynucleotide (u1), and the corresponding base sequence is the conserved base. It can be judged as an array.
  • the identity is, for example, 50% or more, 60% or more, 70% or more, 80% or more 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the second strand (ss2) is, for example, at least one polynucleotide selected from the group consisting of the following (v1) to (v3) and (v4).
  • V1 A polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 428 to 555 (v2) In the nucleotide sequence of any one of (v1), one or several bases are deleted, substituted, inserted and / or added.
  • a polynucleotide having a function equivalent to that of (v4) From a nucleotide sequence complementary to a polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising any one of the nucleotide sequences of (v1) above A polynucleotide having the same function as (v1) above
  • “having the same function as (v1)” means that the G-forming region (D) has a G-quartet structure by annealing with the first strand (ss1) in the absence of the target. In the presence of the target, the target binds to the binding region (A), annealing with the first strand (ss1) is released, and the G-forming region (D) becomes G- It means forming a quartet structure.
  • the polynucleotide (v1) is a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 428 to 555 in Tables 4A and B below.
  • “1 or several” means, for example, any one of the nucleotide sequences of (v1), for example, 1 to 10, 1 to 7, 1 to 5, 1 to Three, one or two.
  • identity is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide (v1).
  • “hybridization” and “stringent conditions” the above description can be used.
  • the combination of the first strand (ss1) and the second strand (ss2) of the nucleic acid molecule (III) is not particularly limited, and includes, for example, (1) to (127) and (128) in Table 5 below. It is at least one combination selected from the group, and each of the first strand (ss1) and the second strand (ss2) includes a polynucleotide having a base sequence having a sequence number corresponding to the combination.
  • the polynucleotide of (u1) may have the sequence number corresponding to the combination.
  • the polynucleotide may be replaced with a polynucleotide having a base sequence, and the description can be used after the above replacement.
  • the polynucleotide of (v1) has the sequence number corresponding to the combination.
  • the polynucleotide may be replaced with a polynucleotide having a base sequence, and the description can be used after the above replacement.
  • the lengths of the first strand (ss1) and the second strand (ss2) are not particularly limited.
  • the length of the first strand (ss1) is, for example, 40 to 200 bases long, 42 to 100 bases long, 45 to 60 bases long.
  • the length of the second strand (ss2) is, for example, 4 to 120 bases long, 5 to 25 bases long, or 10 to 15 bases long.
  • the nucleic acid molecule (III) includes, for example, a third strand (ss3), and the third strand has a stem forming region (S ′ D ) and a stem forming region (S ′ A ) in this order,
  • the stem formation region (S ′ D ) has a sequence complementary to the G formation region (D), and the stem formation region (S ′ A ) is complementary to the binding region (A). May have a different arrangement.
  • the third strand (ss3) can bind to, for example, the binding region (A) and the G-forming region (D) of the two first strands (ss1). That is, the third chain (ss3) can cross-link two first chains (ss1), for example.
  • the third strand (ss3) detects a target by, for example, crosslinking a plurality of first strands (ss1).
  • the first strand (ss1) can be integrated, and the sensitivity of the sensor can be improved.
  • a molecule in which a plurality of nucleic acid molecules (III) (first strand (ss1)) are cross-linked by the third strand (ss3) is also referred to as a nucleic acid complex (III).
  • the order of the regions is such that the G-forming region (D) and the stem-forming region (S ′ D ) are annealed, and the binding region (A ) And the stem forming region (S ′ A ) are annealed, and the first strand (ss1) in which the stem forming region (S ′ D ) is annealed and the stem forming region (S ′ A ) are annealed.
  • What is necessary is just the order from which the 1st chain
  • the stem formation region (S ′ A ) is complementary to the 5 ′ side region of the binding region (A), and the stem formation region (S ′ D ) is the G formation region ( It is preferably complementary to the 3 ′ region of D).
  • the stem formation region (S ′ D ) is complementary to the 5 ′ side region of the G formation region (D), and the stem formation region (S ′ A ) It is preferably complementary to the 3 ′ region of A).
  • the third chain (ss3) may be connected directly or indirectly between the regions, for example.
  • the above description can be used, for example.
  • the third strand (ss3) preferably has, for example, the intervening linker region (L 3 ) between the stem forming region (S ′ A ) and the stem forming region (S ′ D ).
  • the intervening linker region (L 3 ) and, for example, the intervening linker regions (L 1 ) and (L 2 ) are preferably non-complementary sequences.
  • an intervening linker region that connects the binding region (A) and the G-forming region (D) is (L 1 ), the stem-forming region (S ′ D ), and the stem-forming region (S ′ A And an intervening linker region linking with (L 3 ).
  • the nucleic acid molecule (III) may have, for example, any one of (L 1 ), (L 2 ) and (L 3 ) as an intervening linker region, or two or more. Or you may have everything.
  • the lengths of the stem-forming sequence (S ′ A ) and the stem-forming sequence (S ′ D ) are not particularly limited.
  • the length of the stem forming sequence (S ′ A ) is, for example, 1 to 60 bases long, 1 to 10 bases long, or 1 to 7 bases long.
  • the length of the stem forming sequence (S ′ D ) is, for example, 1 to 30 bases long, 1 to 10 bases long, or 1 to 7 bases long.
  • the stem forming sequence (S ′ A ) and the stem forming sequence (S ′ D ) may have the same length, the former may be long, or the latter may be long.
  • the length of the intervening linker region (L 3 ) is not particularly limited.
  • the length of the intervening linker region (L 3 ) is, for example, 1 to 30 bases long, 1 to 15 bases long, or 1 to 6 bases long.
  • the length of the intervening linker region (L 3 ) may be the same as or different from the length of the intervening linker regions (L 1 ) and (L 2 ), for example.
  • the number of the first strand (ss1) and the second strand (ss2) included in the nucleic acid complex (III) is not particularly limited.
  • the first strand (ss1) and the second strand (ss2) may be linked directly or indirectly.
  • the nucleic acid molecule (III) can be referred to as a single-stranded nucleic acid sensor, for example, and the first strand (ss1) ) And the second strand (ss2) can be referred to as a first region and a second region, respectively.
  • the direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region.
  • the intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former.
  • the length of the intervening linker region is not particularly limited and is, for example, 1 to 60 bases long.
  • the order of the regions in the nucleic acid molecule (III) is the G-forming region (D) and the stem-forming region.
  • S D may be annealed and the bonding region (A) and the stem formation region (S A ) may be annealed.
  • the following order can be illustrated as a specific example. (5) 5'- AD S D -S A -3 ' (6) 5'-S D -S A -AD -3 ' (7) 5'- A-D- L 1 -S D -S A -3 ' (8) 5'-S D -S A -L 1 -AD -3 '
  • the stem formation region (S A ) is complementary to the 3′-side region of the binding region (A), and the stem formation region (S D ) It is preferably complementary to the 5 ′ region of the region (D).
  • the stem formation region (S D ) is complementary to the 3′-side region of the G formation region (D), and the stem formation region (S A ) It is preferably complementary to the 5 ′ region of the region (A).
  • the regions may be connected directly or indirectly.
  • the direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region. It means that the “end” and the 5 ′ end of the other region are bound via the intervening linker region.
  • the intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former.
  • the nucleic acid molecule (III) is, for example, the binding region (A) in the first region and the G-forming region ( It is preferable that the intervening linker region is provided between the intermediate region D) and between the stem formation region (S D ) and the stem formation region (S A ) in the second region.
  • the intervening linker region (L 2 ) in the first region and the intervening linker region (L 3 ) in the second region are preferably non-complementary sequences.
  • an intervening linker region that connects the binding region (A) and the G-forming region (D) is (L 2 ), the stem-forming region (S D ), and the stem-forming region (S A )
  • the intervening linker region linking is represented by (L 3 ).
  • the nucleic acid molecule (III) can be used as, for example, an intervening linker region of (L 2 ) and (L 3 ). You may have both, and you may have only any one.
  • the formation of the G-quartet structure is turned on and off as follows.
  • the binding region (A), the stem formation region (S A ), the G formation region (D), and the stem formation region (S D ) form stems, respectively.
  • the intervening linker region (L 2 ) and the intervening linker region (L 3 ) form an internal loop that inhibits the formation of the G-quartet structure of the G-forming region (D).
  • the respective stem formation is released by the contact of the target with the binding region (A), and a G-quartet structure is formed in the G formation region (D).
  • the length of the stem-forming sequence (S A ) and the stem-forming sequence (S D ) in the nucleic acid molecule (III) is not particularly limited, and for example, the above description can be used.
  • the lengths of the intervening linker regions (L 2 ) and (L 3 ) are not particularly limited.
  • the lengths of the intervening linker regions (L 2 ) and (L 3 ) are, for example, 0 to 30 bases, 1 to 30 bases, 1 to 15 bases, and 1 to 6 bases, respectively.
  • the lengths of the intervening linker regions (L 2 ) and (L 3 ) may be the same or different, for example. In the latter case, the difference in length between the intervening linker regions (L 2 ) and (L 3 ) is not particularly limited, and is, for example, 1 to 10 bases long, 1 or 2 bases long, and 1 base long.
  • the sensor of the present invention may be, for example, a sensor including the nucleic acid molecule or a sensor composed of the nucleic acid molecule.
  • the sensor of the present invention is a molecule containing a nucleotide residue, and may be, for example, a molecule consisting only of a nucleotide residue or a molecule containing a nucleotide residue.
  • the nucleotide is, for example, ribonucleotide, deoxyribonucleotide and derivatives thereof.
  • the sensor may be, for example, DNA containing deoxyribonucleotide and / or a derivative thereof, RNA containing ribonucleotide and / or a derivative thereof, or a chimera (DNA / RNA) containing the former and the latter But you can.
  • the sensor is preferably DNA.
  • the nucleotide may contain, for example, either a natural base (non-artificial base) or a non-natural base (artificial base) as a base.
  • a natural base include A, C, G, T, U, and modified bases thereof.
  • the modification include methylation, fluorination, amination, and thiolation.
  • the unnatural base include 2′-fluoropyrimidine, 2′-O-methylpyrimidine and the like. Specific examples include 2′-fluorouracil, 2′-aminouracil, 2′-O-methyluracil, And 2'-thiouracil.
  • the nucleotide may be, for example, a modified nucleotide, and the modified nucleotide is, for example, a 2′-methylated-uracil nucleotide residue, 2′-methylated-cytosine nucleotide residue, 2′-fluorinated-uracil nucleotide. Residue, 2′-fluorinated-cytosine nucleotide residue, 2′-aminated-uracil nucleotide residue, 2′-aminated-cytosine nucleotide residue, 2′-thiolated-uracil nucleotide residue, 2′- Thio-cytosine nucleotide residues and the like.
  • the nucleic acid molecule may include non-nucleotides such as PNA (peptide nucleic acid) and LNA (Locked Nucleic Acid), for example.
  • the sensor of the present invention may further include, for example, a linker region (L), and the linker region (L) is preferably linked to the end of the nucleic acid molecule.
  • the linker region (L) may be linked to, for example, at least one or both of the 3 'end and the 5' end of the nucleic acid molecule, and is preferably linked to the 3 'end of the nucleic acid molecule.
  • the sensor of the present invention When the sensor of the present invention has the linker region (L), it may be immobilized on a carrier or the like by the linker region (L).
  • the analytical sensor of the present invention may be immobilized, for example, at the 3 ′ end or 5 ′ end of the linker region (L).
  • the linker region (L ) Are preferably immobilized at the 3 ′ end of the linker region (L).
  • the length of the linker region (L) is not particularly limited, and the lower limit is, for example, 1 base length, 3 base lengths, 5 base lengths, and the upper limit is, for example, 200 base length, 50 base length, 20 base length, 12 base length, 9 base length, the range is, for example, 1-200 base length, 1-50 base length, 1-20 base length, 3-12 base It is 5-9 bases long.
  • the linker region (L) is, for example, a nucleotide or a polynucleotide, and the structural unit is, for example, a nucleotide residue.
  • the above-mentioned illustration can be used for the said nucleotide residue, for example.
  • the linker region (L) is not particularly limited, and examples thereof include polynucleotides such as DNA consisting of deoxyribonucleotide residues and DNA containing ribonucleotide residues.
  • linker examples include polydeoxythymine (poly dT), polydeoxyadenine (poly dA), poly dAdT which is a repeating sequence of A and T, and preferably poly dT and poly dAdT.
  • the nucleic acid molecule may be, for example, a single-stranded polynucleotide.
  • the single-stranded polynucleotide is preferably capable of forming a stem structure and a loop structure by, for example, self-annealing. Specifically, for example, a stem loop structure, an internal loop structure and / or a bulge structure can be formed. It is preferable that
  • the stem structure and the loop structure can be formed means, for example, that the stem structure and the loop structure are actually formed, and even if the stem structure and the loop structure are not formed, the stem structure depending on the conditions. And the ability to form a loop structure.
  • a stem structure and a loop structure can be formed includes, for example, both experimental confirmation and prediction by a computer simulation.
  • the nucleic acid molecule is preferably nuclease resistant, for example.
  • the nucleic acid molecule preferably has, for example, the modified nucleotide residue and / or the artificial nucleic acid monomer residue for nuclease resistance.
  • the nucleic acid molecule is resistant to nuclease, for example, tens of kDa PEG (polyethylene glycol) or deoxythymidine may be bound to the 5 'end or 3' end.
  • the sensor of the present invention preferably further includes, for example, a carrier, and the nucleic acid molecule is immobilized on the carrier.
  • the nucleic acid molecule can be directly or indirectly immobilized at, for example, either the 3 ′ end or the 5 ′ end, and the indirect In the case of immobilization, the nucleic acid molecule can be immobilized with, for example, the linker region.
  • the nucleic acid molecule immobilization method is not particularly limited, and can be performed by, for example, a known nucleic acid immobilization method.
  • the sensor of the present invention may further include a reagent that reacts with the G-forming region (D), for example.
  • the reagent preferably contains, for example, porphyrin that forms a complex with the G-forming region (D) having a G-quartet structure.
  • porphyrin for example, the above description can be used.
  • the senor of the present invention can set the reagent depending on, for example, which function of the G formation region (D) is used in target analysis.
  • the analytical sensor of the present invention preferably contains, for example, a substrate for the oxidation-reduction reaction as the reagent, and includes both the porphyrin and the substrate. May be included.
  • the substrate is not particularly limited, and for example, 3,3 ′, 5,5′-tetramethylbenzidine (TMB), 1,2-phenylenediamine (OPD), 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulfoniconAcid ) MmAmmonium Salt (ABTS), 3,3′-Diaminobenzodinine (DAB), 3,3′-Diaminobenzodinine Tetrahydrochloride Hydrate (DAB4HCl), 3-Amino-9-ethylCarbolC1) 2,4,6-Tribromo-3-hydroxybenzoic acid, 2, -Dichlorophenol, 4-Aminoantipyrine, 4-Aminoantipyrine Hydrochloride, luminol and the like.
  • TMB 5,5′-tetramethylbenzidine
  • OPD 1,2-phenylenediamine
  • 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulfoniconAcid ) MmAmmonium Salt
  • the nucleic acid molecule may further have a labeling substance and may be labeled with the labeling substance.
  • the labeling substance is not particularly limited, and examples thereof include fluorescent substances, dyes, isotopes and enzymes.
  • the fluorescent substance include fluorophores such as pyrene, TAMRA, fluorescein, Cy (registered trademark) 3 dye, Cy (registered trademark) 5 dye, FAM dye, rhodamine dye, Texas red dye, JOE, MAX, HEX, and TYE.
  • the dye include Alexa dyes such as Alexa (registered trademark) 488 and Alexa (registered trademark) 647.
  • the enzyme include luciferase.
  • the labeling substance may be linked directly to the nucleic acid molecule or indirectly via the linker region (L), for example.
  • cortisol in a sample can be detected.
  • the analysis method of the present invention combines the contact step of bringing a sample into contact with the cortisol analysis sensor of the present invention, and combining the cortisol in the sample and the binding region (A) in the cortisol analysis sensor. And a detection step of detecting cortisol in the sample.
  • the analysis method of the present invention is characterized by using the sensor of the present invention, and other processes and conditions are not particularly limited.
  • cortisol specifically binds to the binding region (A) of the sensor of the present invention, and the G-forming region of the sensor of the present invention when cortisol is bound.
  • (D) forms a G-quartet structure and becomes active, for example, by detecting the binding between cortisol and the sensor using the active nature of the G-forming region (D), Cortisol in the sample can be specifically analyzed. Specifically, for example, since the presence or absence of cortisol or the amount of cortisol in a sample can be analyzed, it can be said that qualitative or quantitative determination is also possible.
  • the sample is not particularly limited.
  • the sample include a biological sample.
  • the biological sample include blood, serum, plasma, interstitial fluid, urine, saliva, sweat, tears, and runny nose.
  • the sample may be, for example, a liquid sample or a solid sample.
  • the sample is preferably a liquid sample because it is easy to contact with the nucleic acid molecule and is easy to handle.
  • a mixed solution, an extract, a dissolved solution, and the like may be prepared using a solvent and used.
  • the solvent is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
  • the method for contacting the sample with the analytical sensor is not particularly limited.
  • the contact between the sample and the analysis sensor is preferably performed in a liquid, for example.
  • the liquid is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
  • the contact condition between the sample and the sensor is not particularly limited.
  • the contact temperature is, for example, 4 to 37 ° C. or 18 to 25 ° C.
  • the contact time is, for example, 10 to 120 minutes or 30 to 60 minutes.
  • the senor may be, for example, an immobilized sensor in which the nucleic acid molecule is immobilized on a carrier, or an unfixed sensor in which the nucleic acid molecule is not immobilized and released. In the latter case, for example, the sample and the non-fixed sensor are brought into contact in a container.
  • the sensor is preferably, for example, the immobilized sensor because of excellent handling properties.
  • the carrier is not particularly limited, and examples thereof include a substrate, a bead, and a container. Examples of the container include a microplate and a tube.
  • the immobilization of the nucleic acid molecule in the sensor is, for example, as described above.
  • the detection step is a step of detecting the binding between cortisol in the sample and the binding region (A) in the sensor.
  • the detection step may further include, for example, a step of analyzing the presence or amount of cortisol in the sample based on the result of the detection step.
  • a step of analyzing the presence or amount of cortisol in the sample based on the result of the detection step.
  • the binding between the cortisol and the binding region (A) in the sensor cannot be detected, it can be determined that cortisol is not present in the sample, and if the binding is detected, It can be judged that cortisol is present. Further, based on the binding amount obtained in the detection step, the amount of the cortisol, and the correlation between the binding amounts of the two, for example, the amount of cortisol in the sample can be calculated.
  • the method for detecting the binding between the cortisol and the binding region (A) in the sensor is not particularly limited.
  • the active function of the G-forming region (D) linked to the binding region (A) Can be given.
  • the active function is not particularly limited, and examples thereof include the catalytic function of the G-forming region (D) and the fluorescence of the G-forming region (D) as described above.
  • the analysis reagent of the present invention includes the sensor for cortisol analysis of the present invention.
  • the analysis kit of the present invention includes the sensor for analyzing cortisol of the present invention.
  • the analysis reagent and analysis kit of the present invention only need to include the sensor for cortisol analysis of the present invention, and other configurations and conditions are not particularly limited. If the analysis reagent and analysis kit of the present invention are used, for example, cortisol can be detected as described above.
  • the analysis reagent and analysis kit of the present invention can be used, for example, in the stress evaluation method of the present invention described later and the method for testing the possibility of cortisol-related diseases of the present invention. Therefore, the analysis reagent can also be referred to as, for example, a stress evaluation reagent or a test reagent (diagnostic reagent) for cortisol-related diseases.
  • the analysis kit can also be referred to as, for example, a stress evaluation kit or a cortisol-related disease test kit (diagnostic kit).
  • the analysis reagent and analysis kit of the present invention may further contain a reagent that reacts with the G-forming region (D) of the sensor for cortisol analysis, for example.
  • a reagent that reacts with the G-forming region (D) of the sensor for cortisol analysis
  • the reagent include a porphyrin forming a complex with the G-forming region (D) having a G-quartet structure, a substrate for the catalytic function of the G-forming region (D) having a G-quartet structure, and the like. It is done.
  • the porphyrin for example, the above description can be used.
  • the analysis kit of the present invention may include other components in addition to the sensor of the present invention, for example.
  • the component include the carrier, the reagent, a buffer solution, and instructions for use.
  • the description of the sensor of the present invention can be used for the analysis reagent and analysis kit of the present invention, and the description of the sensor of the present invention and the analysis method of the present invention can also be used for the method of use thereof.
  • the stress evaluation reagent of the present invention includes the sensor for cortisol analysis of the present invention.
  • the stress evaluation kit of the present invention comprises the sensor for cortisol analysis of the present invention.
  • the evaluation reagent and the evaluation kit of the present invention only need to include the sensor for cortisol analysis of the present invention, and other configurations and conditions are not particularly limited. If the evaluation reagent and evaluation kit of the present invention are used, for example, stress evaluation can be performed as described later.
  • the description of the sensor, analysis reagent, and analysis kit of the present invention can be used, and the sensor, analysis reagent, analysis kit of the present invention, The description of the evaluation method of the present invention to be described later can be cited.
  • the stress evaluation method of the present invention includes a contact step of bringing a sample of a subject into contact with the sensor for cortisol analysis of the present invention, and the binding region (cortisol in the sample and the sensor for cortisol analysis) A detection step of detecting cortisol in the sample by combining with A), and an acquisition step of acquiring information on stress by comparing the cortisol amount in the detection step with a reference value Features.
  • the evaluation method of the present invention is characterized by using the sensor of the present invention, and other processes and conditions are not particularly limited.
  • the description of the sensor of the present invention and the analysis method of the present invention can be cited.
  • the description of the analysis method of the present invention can be used for the contact step and the detection step.
  • Examples of the subject include humans, non-human animals other than humans, and the non-human animals include, for example, mammals such as mice, rats, dogs, monkeys, rabbits, sheep, and horses, as described above. Can be given.
  • the reference value can be obtained using, for example, a sample isolated from a healthy person who is not stressed (unloaded state) and / or is stressed (loaded state).
  • the reference value may be measured simultaneously with the sample of the subject or may be measured in advance.
  • the unloaded state and the loaded state can be implemented by, for example, a known stress test.
  • a method for acquiring information related to the stress of the subject is not particularly limited, and can be appropriately determined according to the type of the reference value.
  • the amount of cortisol in the sample of the subject is higher than the amount of cortisol in the sample of the unloaded healthy subject, the case is the same as the amount of cortisol in the sample of the healthy healthy subject (significant difference) And / or if it is significantly higher than the amount of cortisol in the sample of the healthy subject under load, the subject can obtain information that it is in a stress state.
  • the subject when the amount of cortisol in the subject's sample is lower than the amount of cortisol in the unloaded healthy sample, the same amount as the cortisol in the unloaded healthy sample (significant difference And / or if the amount is significantly lower than the amount of cortisol in a sample of a healthy subject under load, the subject can obtain information that the subject is unstressed.
  • the test reagent (diagnostic reagent) for cortisol-related disease of the present invention includes the sensor for cortisol analysis of the present invention.
  • the test kit (diagnostic kit) for cortisol-related diseases of the present invention comprises the sensor for cortisol analysis of the present invention.
  • the test reagent and test kit of the present invention only need to include the sensor for cortisol analysis of the present invention, and other configurations and conditions are not particularly limited. If the test reagent and test kit of the present invention are used, for example, the possibility of morbidity of cortisol-related diseases can be tested as described later.
  • test reagent and test kit of the present invention for example, the description of the sensor, analysis reagent, and analysis kit of the present invention can be used, and the sensor, analysis reagent, analysis kit of the present invention, The description of the test method of the present invention described later can be cited.
  • the method for testing the morbidity of a cortisol-related disease includes a contact step of bringing a sample of a subject into contact with the sensor for cortisol analysis according to the present invention, and cortisol in the sample and the cortisol.
  • a contact step of bringing a sample of a subject into contact with the sensor for cortisol analysis according to the present invention, and cortisol in the sample and the cortisol.
  • test method of the present invention for example, the description of the sensor of the present invention and the analysis method and evaluation method of the present invention can be used.
  • the description of the analysis method of the present invention can be used for the contact step and the detection step.
  • cortisol-related disease for example, the possibility of the onset of cortisol-related disease (hereinafter also referred to as “related disease”), the presence or absence of the onset of the related disease, the degree of progression of the related disease and the prognostic state can be evaluated.
  • the related disease is, for example, a disease caused by an increase or decrease in the cortisol.
  • the related diseases caused by the decrease in cortisol include, for example, Addison's disease, congenital adrenal hypoplasia, congenital adrenal hyperplasia, pituitary tumor, pituitary hypoadrenocorticism, hypothalamus sexual adrenocortical hypofunction and the like.
  • the related diseases caused by the increase in cortisol include Cushing disease, Cushing syndrome, glucocorticoid refractory disease and the like.
  • the reference value is not particularly limited, and examples thereof include the amount of cortisol in healthy subjects, related disease patients, and related disease patients for each stage of related diseases.
  • the reference value may be, for example, the amount of cortisol after treatment (for example, immediately after treatment) of the same subject.
  • the reference value can be obtained using, for example, a sample isolated from a healthy person and / or a related disease patient (hereinafter also referred to as “reference sample”).
  • reference sample a sample isolated from a healthy person and / or a related disease patient
  • the reference value may be measured simultaneously with the sample of the subject or may be measured in advance.
  • a method for evaluating the risk of affliction of a subject's related disease is not particularly limited, and can be appropriately determined according to the type of the related disease and the reference value.
  • a disease caused by an increase in cortisol when the amount of cortisol in the subject sample is significantly higher than the amount of cortisol in the reference sample of the healthy subject, in the reference sample of the related disease patient If the amount of cortisol is the same (no significant difference) and / or significantly higher than the amount of cortisol in the reference sample of the related disease patient, the subject is at risk of developing the related disease. Can be evaluated as being at or high risk.
  • the amount of cortisol in the subject sample is the same as the amount of cortisol in the healthy subject reference sample (when there is no significant difference), it is significantly lower than the amount of cortisol in the healthy subject reference sample. If and / or significantly lower than the amount of cortisol in the reference sample of the patient with the relevant disease, the subject can be assessed as having no or low risk of suffering from the relevant disease.
  • the subject sample is significantly lower than the amount of cortisol in the healthy subject reference sample, If the amount is the same (no significant difference) and / or significantly lower than the amount of cortisol in the reference sample of the related disease patient, the subject is at risk of suffering from the related disease or It can be evaluated that the risk is high.
  • the amount of cortisol in the subject sample is the same as the amount of cortisol in the reference sample of the healthy subject (when there is no significant difference)
  • the amount of cortisol in the reference sample of the healthy subject is significantly higher. If and / or significantly higher than the amount of cortisol in the reference sample of the patient with the relevant disease, the subject can be assessed as having no or low risk of suffering from the relevant disease.
  • Example 1 The analytical sensor of the present invention was prepared, and cortisol was analyzed by fluorescence detection using the sensor.
  • the polynucleotides of SEQ ID NOs: 1 to 555 shown in Tables 1 to 4 were synthesized and used as the sensor for analysis.
  • the polynucleotides of SEQ ID NOs: 300 to 555 are a combination of (1) to (128) shown in Table 5 above, combining the first strand (ss1) and the second strand (ss2) to form a double strand Used as a nucleic acid sensor.
  • a sensor reagent including the analytical sensor was prepared by the following procedure.
  • a sensor reagent containing the single-stranded nucleic acid sensor was prepared by the following procedure. First, the polynucleotides of SEQ ID NOs: 1 to 299 were each dissolved in distilled water so that the final concentration of the polynucleotide was 10 ⁇ mol / L to prepare a polynucleotide solution. Next, 2 ⁇ L of the polynucleotide solution was added to 25 ⁇ L of Buffer A to prepare a diluted polynucleotide solution. The composition of the buffer A was 100 mmol / L Tris-HCl (pH 7.4) buffer containing 0.05% Triton (trademark) X-100.
  • a sensor reagent including the double-stranded nucleic acid sensor was prepared by the following procedure.
  • the polynucleotides of SEQ ID NOs: 300 to 427 were each dissolved in distilled water so as to have a final concentration of 10 ⁇ mol / L to prepare a first strand solution.
  • the polynucleotides of SEQ ID NOs: 428 to 555 were dissolved in distilled water so as to have a final concentration of 10 ⁇ mol / L, respectively, thereby preparing second strand solutions.
  • 2 ⁇ L of the first strand solution and 4 ⁇ L of the second strand solution were added to 25 ⁇ L of Buffer A to prepare a diluted polynucleotide solution. Except for this point, it was prepared in the same manner as the sensor reagent containing the single-stranded nucleic acid sensor.
  • Example 2 The analytical sensor of the present invention was prepared, and cortisol at different concentrations was analyzed by fluorescence detection using the sensor.
  • the sensor reagent As the sensor reagent, the sensor reagent containing the polynucleotides of SEQ ID NOs: 142 and 288, respectively, was used, except that the final concentration of cortisol in the reaction solution was a predetermined concentration (0, 100, 300, or 1000 ⁇ mol / L). The fluorescence intensity was measured in the same manner as in Example 1. Further, as a control, the fluorescence intensity was measured in the same manner except that the sensor reagent was not added.
  • FIG. 1 is a graph showing the fluorescence intensity of the analytical sensor.
  • the horizontal axis indicates the concentration of cortisol
  • the vertical axis indicates the fluorescence intensity.
  • all the sensors showed high fluorescence intensity with respect to the control.
  • the fluorescence intensity increased as the concentration of cortisol increased. From these results, it was found that the concentration of cortisol in the sample can be analyzed by measuring the fluorescence intensity using the analytical sensor of the present invention.
  • Example 3 The analytical sensor of the present invention was prepared, and cortisol was analyzed by color detection using the sensor.
  • the polynucleotide of SEQ ID NO: 142 was dissolved in distilled water so that the final concentration of the polynucleotide was 100 ⁇ mol / L to prepare a polynucleotide solution.
  • 1 ⁇ L of the polynucleotide solution was added to 50 ⁇ L of the buffer A to prepare a diluted polynucleotide solution.
  • the prepared solution was mixed and then incubated at 95 ° C. for 5 minutes using a heat block. After the incubation, incubation was performed at room temperature (around 25 ° C.), and the temperature of the solution was adjusted to room temperature.
  • the cortisol sample was added to the sensor reagent so that the final concentration of cortisol was a predetermined concentration (0, 111, 333, or 1000 ⁇ mol / L) to prepare a reaction solution. After mixing each reaction solution, it was added to a 96-well plate (Greiner), and 5 ⁇ L of 20 mmol / L ABTS (2,2′-Azinobis (3-ethylbenzothiazolin-6-sulfonic acid)) solution was added to each well. And 1 ⁇ L of a 10 mmol / L aqueous hydrogen peroxide solution were added and mixed. Immediately after the mixing, the absorbance of each reaction solution was measured. For the measurement of absorbance, the measurement apparatus (TECAN infinite M1000 PRO, manufactured by TECAN) was used, and the measurement wavelength was 415 nm. Further, as a control, the absorbance was measured in the same manner except that the sensor sample was not added.
  • FIG. 2 is a graph showing the absorbance of the analytical sensor.
  • the horizontal axis indicates the concentration of cortisol
  • the vertical axis indicates the absorbance.
  • all the sensors showed high absorbance with respect to the control.
  • the absorbance of each sensor increased as the concentration of cortisol increased. From these results, it was found that the cortisol concentration in the sample can be analyzed by measuring the absorbance using the analytical sensor of the present invention.
  • Example 4 The analytical sensor of the present invention was prepared, and cortisol was analyzed by capillary electrophoresis using the sensor.
  • the 5 ′ end of the polynucleotide of SEQ ID NO: 142 was labeled with a fluorescent dye (TYE (trademark) 665, Integrated DNA Technologies, manufactured by MBL).
  • the labeled polynucleotide was dissolved in buffer B so that the final concentration of the polynucleotide was 0.2 ⁇ mol / L, thereby preparing a sensor reagent.
  • the composition of the buffer B was a 40 mmol / L HEPES (pH 7.5) buffer containing 125 mmol / L NaCl, 5 mmol / L KCl, and 1 mmol / L MgCl 2 .
  • the sensor reagent was mixed with an equal amount of sample buffer, incubated at 95 ° C. for 5 minutes, and further incubated on ice for 5 minutes.
  • the composition of the sample buffer was 40 mmol / L HEPES buffer (pH 7.5) containing 20 mmol / L KCl and 0.01% Tween20. After the incubation, the cortisol sample was added to the mixed solution so that the final concentration of cortisol was a predetermined concentration (0, 2, or 5 mmol / L) to prepare a reaction solution.
  • electrophoresis gel (0.6% hydroxypropylmethylcellulose gel, manufactured by SIGMA), measuring chip (i-chip 12, manufactured by Hitachi Chemical) and measuring device (SV12120 Cosmo Eye, Hitachi, respectively) Electrophoresis was performed using a high technology company. In the electrophoresis, the concentration voltage was 600 V, the concentration time was 120 seconds, the separation voltage was 350 V, and the separation time was 240 seconds. Then, with respect to the electrophoresis gel, the fluorescence intensity at each migration distance was measured using the measurement apparatus with an excitation wavelength of 635 nm and an emission wavelength of 660 nm with reference to the migration start point.
  • FIG. 3 is a graph showing the fluorescence intensity at each migration distance of the electrophoresis gel.
  • the horizontal axis represents the migration distance with the migration start point as a reference, and the vertical axis represents the fluorescence intensity.
  • the peak around 400 nm is the detection peak of the complex of the analytical sensor and cortisol
  • the peak around 440 nm is the detection peak of the analytical sensor alone.
  • the concentration of cortisol increased, the fluorescence intensity of the peak around 400 nm increased and the fluorescence intensity of the peak around 440 nm decreased. From these results, it was found that the concentration of cortisol in the sample can be analyzed by capillary electrophoresis using the analytical sensor of the present invention.
  • Example 5 The analytical sensor of the present invention was prepared, and cortisol was analyzed by detecting gold colloid using the sensor.
  • the mixture was incubated at room temperature for 20 minutes.
  • the absorbance at 450 to 650 nm was measured (absorbance before aggregation) using the measurement apparatus (TECAN infinite M1000 PRO, manufactured by TECAN).
  • 1.5 ⁇ L of a 5 mol / L NaCl aqueous solution was added to each well and then stirred for 10 seconds with the measuring device.
  • the mixture was incubated at room temperature for 5 minutes.
  • the absorbance at 450 to 650 nm was measured using the measuring apparatus (absorbance after aggregation).
  • the absorbance before aggregation and the absorbance after aggregation were measured in the same manner except that the sensor reagent was not added. For each wavelength, correction was performed by subtracting the absorbance before aggregation from the absorbance after aggregation, and then the relative value of the absorbance at 650 nm with respect to the absorbance at 520 nm after correction was calculated. Furthermore, the absorbance of the reaction solution having a cortisol concentration of 0 ⁇ mol / L was taken as 1, and the relative value of the absorbance at each concentration was calculated.
  • FIG. 4 is a graph showing relative values of absorbance.
  • the horizontal axis indicates the concentration of cortisol, and the vertical axis indicates the relative value of absorbance.
  • all sensors showed a high relative value of absorbance with respect to the control.
  • the relative value of the absorbance increased in any sensor. From these results, it was found that the cortisol concentration in the sample can be analyzed by detecting the colloidal gold using the analytical sensor of the present invention.
  • Example 6 The analytical sensor of the present invention was confirmed to have low cross-reactivity with melatonin, L-tryptophan, cortisone, norepinephrine, epinephrine, and cholic acid.
  • the analytical sensor includes a combination of the polynucleotide of SEQ ID NO: 421 and the polynucleotide of SEQ ID NO: 549 as the first strand (ss1) and the second strand (ss2), respectively.
  • a double-stranded nucleic acid sensor was used.
  • the 5 ′ end of the polynucleotide of SEQ ID NO: 549 was labeled with the fluorescent dye (TYE TM 665).
  • the labeled polynucleotide was dissolved in distilled water so that the final concentration of the polynucleotide was 100 ⁇ mol / L to prepare a second strand solution.
  • the polynucleotide of SEQ ID NO: 421 was dissolved in distilled water so that the final concentration of the polynucleotide was 100 ⁇ mol / L to prepare a first strand solution. Further, 5 ⁇ L of the first strand solution and the second strand solution were added to 25 ⁇ L of Buffer D to prepare a diluted polynucleotide solution.
  • the composition of the buffer solution D was a 100 mmol / L Tris-HCl (pH 7.4) buffer solution containing 0.1% Triton (trademark) X-100 and 300 mmol / L NaCl.
  • the diluted polynucleotide solution was incubated at 95 ° C. for 5 minutes using a heat block. After the incubation, the solution was incubated at room temperature (around 25 ° C.) for 15 minutes, and the temperature of the solution was adjusted to room temperature (around 25 ° C.).
  • FIG. 5 is a graph showing the degree of fluorescence polarization.
  • the horizontal axis represents the concentration of each sample
  • the vertical axis represents the degree of fluorescence polarization (mP).
  • the degree of fluorescence polarization of the analytical sensor decreased in the cortisol sample depending on the concentration of cortisol. That is, it bound to cortisol.
  • the melatonin sample, the L-tryptophan sample, the cortisone sample, the norepinephrine sample, the epinephrine sample, and the cholic acid sample did not decrease the fluorescence polarization degree depending on the concentration of each sample. .
  • the analytical sensor does not bind or has low binding to these melatonin, L-tryptophan, cortisone, norepinephrine, epinephrine, and cholic acid. From these results, it was found that the analytical sensor of the present invention has low cross-reactivity with melatonin, L-tryptophan, cortisone, norepinephrine, epinephrine, and cholic acid. It was also found that the concentration of cortisol in the sample can be analyzed by fluorescence polarization using the analytical sensor of the present invention.
  • the senor of the present invention can be used in various detection methods.
  • the G-forming region (D) forms a G-quartet structure by cortisol binding to the binding region (A).
  • the G-forming region (D) in which the G-quartet structure is formed is an active type, and for example, it generates a catalytic function or emits fluorescence by forming a complex with porphyrin. For this reason, for example, by detecting the catalytic function or the fluorescence, cortisol can be easily analyzed.
  • the senor for analyzing cortisol according to the present invention has low cross-reactivity to similar compounds such as melatonin, L-tryptophan, cortisone, norepinephrine, epinephrine, and cholic acid.
  • the sensor for cortisol analysis of the present invention can specifically analyze cortisol, for example.
  • the sensor for cortisol analysis of this invention is applicable to the detection method of various cortisol, it can analyze cortisol in various situations. Therefore, it can be said that the sensor for cortisol analysis of the present invention is an extremely useful tool for analyzing cortisol in fields such as the analysis field, the medical field, and the life science field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Provided are: a novel sensor for cortisol analysis that is usable for analyzing cortisol; a method for cortisol analysis; a reagent for stress evaluation; a method for stress evaluation; a test reagent for a cortisol-related disease; and a test method for the contraction risk of a cortisol-related disease. The sensor for cortisol analysis according to the present invention, said sensor comprising at least one nucleic acid molecule selected from the group consisting of (I), (II) and (III) each containing a binding region (A) that binds to a target and a G-formation region (D) that forms a G-quartet structure, is characterized in that: the target is cortisol; in the absence of the target, the formation of a G-quartet structure is inhibited and thus the G-formation region (D) becomes inactive; and in the presence of the target, the G-formation region (D) forms a G-quartet structure and becomes active.

Description

コルチゾール分析用センサ、コルチゾール分析方法、ストレス評価試薬、ストレス評価方法、コルチゾール関連疾患の試験試薬、およびコルチゾール関連疾患の罹患可能性を試験する方法Sensor for cortisol analysis, cortisol analysis method, stress evaluation reagent, stress evaluation method, test reagent for cortisol-related disease, and method for testing morbidity of cortisol-related disease
 本発明は、コルチゾール分析用センサ、コルチゾール分析方法、ストレス評価試薬、ストレス評価方法、コルチゾール関連疾患の試験試薬、およびコルチゾール関連疾患の罹患可能性を試験する方法に関する。 The present invention relates to a sensor for cortisol analysis, a cortisol analysis method, a stress evaluation reagent, a stress evaluation method, a test reagent for cortisol-related diseases, and a method for testing the possibility of cortisol-related diseases.
 血液、尿、唾液等の体液中のコルチゾール濃度は、ストレスと相関することが明らかとなっている。このため、採取が容易な唾液中のコルチゾール濃度を測定することにより、ストレス度合いを測定することが試みられている(非特許文献1)。 It has been clarified that cortisol concentration in body fluids such as blood, urine and saliva correlates with stress. For this reason, it has been attempted to measure the degree of stress by measuring the concentration of cortisol in saliva that can be easily collected (Non-Patent Document 1).
 そこで、本発明の目的は、コルチゾールの分析に利用可能な新たなコルチゾール分析用センサ、コルチゾール分析方法、ストレス評価試薬、ストレス評価方法、コルチゾール関連疾患の試験試薬、およびコルチゾール関連疾患の罹患可能性を試験する方法を提供することにある。 Therefore, an object of the present invention is to provide a new sensor for cortisol analysis, a cortisol analysis method, a stress evaluation reagent, a stress evaluation method, a cortisol-related disease test reagent, and a cortisol-related disease morbidity possibility that can be used for cortisol analysis. It is to provide a method of testing.
 本発明のコルチゾール分析用センサ(以下、「センサ」ともいう。)は、ターゲットに結合する結合領域(A)とG-カルテット構造を形成するG形成領域(D)とを含む下記(I)、(II)および(III)からなる群から選択された少なくとも1つの核酸分子を含み、
前記ターゲットが、コルチゾールであり、
前記ターゲット非存在下、前記G形成領域(D)は、G-カルテット構造の形成が阻害され不活性型となり、
前記ターゲット存在下、前記G形成領域(D)は、G-カルテット構造を形成して活性型となることを特徴とする。
(I)前記G形成領域(D)および前記結合領域(A)を有し、
前記結合領域(A)は、ステム形成領域(S)、中間領域(C)およびステム形成領域(S)を有し、
前記ステム形成領域(S)は、前記G形成領域(D)に対して相補的な配列を有し、
前記ステム形成領域(S)は、前記中間領域(C)に対して相補的な配列を有する一本鎖核酸分子。
(II)前記G形成領域(D)および前記結合領域(A)を有し、
前記G形成領域(D)が、第1領域(D1)と第2領域(D2)とを含み、前記第1領域(D1)と前記第2領域(D2)とによりG-カルテットを形成する領域であり、
前記結合領域(A)の一方の末端側に前記第1領域(D1)を有し、前記結合領域(A)の他方の末端側に前記第2領域(D2)を有する一本鎖核酸分子。
(III)第1鎖(ss1)と第2鎖(ss2)とから構成される二本鎖核酸分子であり、
前記第1鎖(ss1)は、前記G形成領域(D)と前記結合領域(A)とをこの順序で有し、
前記第2鎖(ss2)は、ステム形成領域(S)およびステム形成領域(S)をこの順序で有し、前記ステム形成領域(S)は、前記G形成領域(D)に対して相補的な配列を有し、前記ステム形成領域(S)は、前記結合領域(A)に対して相補的な配列を有する二本鎖核酸分子。
The sensor for analyzing cortisol of the present invention (hereinafter also referred to as “sensor”) includes the following (I) including a binding region (A) that binds to a target and a G-forming region (D) that forms a G-quartet structure. Comprising at least one nucleic acid molecule selected from the group consisting of (II) and (III),
The target is cortisol,
In the absence of the target, the G-forming region (D) becomes inactive due to inhibition of formation of the G-quartet structure,
In the presence of the target, the G-forming region (D) is activated by forming a G-quartet structure.
(I) having the G-forming region (D) and the binding region (A);
The binding region (A) has a stem formation region (S D ), an intermediate region (C), and a stem formation region (S C ),
The stem formation region (S D ) has a sequence complementary to the G formation region (D),
The stem-forming region (S C ) is a single-stranded nucleic acid molecule having a sequence complementary to the intermediate region (C).
(II) having the G-forming region (D) and the binding region (A),
The G formation region (D) includes a first region (D1) and a second region (D2), and a region in which a G-quartet is formed by the first region (D1) and the second region (D2) And
A single-stranded nucleic acid molecule having the first region (D1) on one end side of the binding region (A) and the second region (D2) on the other end side of the binding region (A).
(III) a double-stranded nucleic acid molecule composed of a first strand (ss1) and a second strand (ss2),
The first strand (ss1) has the G-forming region (D) and the binding region (A) in this order,
The second chain (ss2) has a stem formation region (S D ) and a stem formation region (S A ) in this order, and the stem formation region (S D ) is in the G formation region (D). A double-stranded nucleic acid molecule having a complementary sequence and the stem-forming region (S A ) having a sequence complementary to the binding region (A).
 本発明のコルチゾール分析方法(以下、「分析方法」ともいう。)は、試料と前記本発明のコルチゾール分析用センサとを接触させる接触工程、および
前記試料中のコルチゾールと前記コルチゾール分析用センサにおける結合領域(A)とを結合させることにより、前記試料中のコルチゾールを検出する検出工程を含むことを特徴とする。
The cortisol analysis method of the present invention (hereinafter also referred to as “analysis method”) includes a contact step of bringing a sample into contact with the sensor for cortisol analysis of the present invention, and binding between cortisol in the sample and the sensor for cortisol analysis. It comprises a detection step of detecting cortisol in the sample by combining with the region (A).
 本発明のストレス評価試薬(以下、「評価試薬」ともいう。)は、前記本発明のコルチゾール分析用センサを含むことを特徴とする。 The stress evaluation reagent of the present invention (hereinafter also referred to as “evaluation reagent”) includes the aforementioned sensor for cortisol analysis of the present invention.
 本発明のストレス評価方法(以下、「評価方法」ともいう。)は、被検者の試料と前記本発明のコルチゾール分析用センサとを接触させる接触工程、
前記試料中のコルチゾールと前記コルチゾール分析用センサにおける前記結合領域(A)とを結合させることにより、前記試料中のコルチゾールを検出する検出工程、および
前記検出工程における前記コルチゾール量を、基準値と比較することにより、ストレスに関する情報を取得する取得工程を含むことを特徴とする。
The stress evaluation method of the present invention (hereinafter also referred to as “evaluation method”) is a contact step of bringing a sample of a subject into contact with the sensor for cortisol analysis of the present invention,
A detection step of detecting cortisol in the sample by binding cortisol in the sample and the binding region (A) in the sensor for cortisol analysis, and comparing the amount of cortisol in the detection step with a reference value Thus, an acquisition step for acquiring information on stress is included.
 本発明のコルチゾール関連疾患の試験試薬(以下、「試験試薬」ともいう。)は、前記本発明のコルチゾール分析用センサを含むことを特徴とする。 The cortisol-related disease test reagent of the present invention (hereinafter also referred to as “test reagent”) includes the sensor for cortisol analysis of the present invention.
 本発明のコルチゾール関連疾患の罹患可能性を試験する方法(以下、「試験方法」ともいう。)は、被検者の試料と前記本発明のコルチゾール分析用センサとを接触させる接触工程、
前記試料中のコルチゾールと前記コルチゾール分析用センサにおける結合領域(A)とを結合させることにより、前記試料中のコルチゾールを検出する検出工程、および
前記検出工程における前記コルチゾール量を、基準値と比較することにより、コルチゾール関連疾患の罹患の可能性を試験する試験工程を含むことを特徴とする。
A method for testing the possibility of cortisol-related disease of the present invention (hereinafter, also referred to as “test method”) comprises a contact step of contacting a sample of a subject with the sensor for cortisol analysis of the present invention,
A detection step for detecting cortisol in the sample by binding cortisol in the sample and a binding region (A) in the sensor for analyzing cortisol, and comparing the amount of cortisol in the detection step with a reference value Thus, it is characterized in that it includes a test step for testing the possibility of suffering from a cortisol-related disease.
 本発明のコルチゾール分析用センサは、前記結合領域(A)にコルチゾールが結合することにより、前記G形成領域(D)がG-カルテット構造を形成する。G-カルテット構造を形成した前記G形成領域(D)は、活性型であり、例えば、それ自身が触媒機能を生起したり、ポルフィリンと複合体形成により蛍光を発したりする。このため、例えば、前記触媒機能の検出または前記蛍光の検出を行うことによって、簡便に、コルチゾールの分析を行うことができる。また、本発明のコルチゾール分析用センサは、例えば、メラトニン、L-トリプトファン、コルチゾン、ノルエピネフリン、エピネフリン、およびコール酸等の類似化合物に対する交差反応性が低い。このため、本発明のコルチゾール分析用センサは、例えば、特異的に、コルチゾールの分析を行うことができる。 In the sensor for cortisol analysis of the present invention, the G-forming region (D) forms a G-quartet structure by cortisol binding to the binding region (A). The G-forming region (D) in which the G-quartet structure is formed is an active type, and for example, it generates a catalytic function or emits fluorescence by forming a complex with porphyrin. For this reason, for example, by detecting the catalytic function or the fluorescence, cortisol can be easily analyzed. In addition, the sensor for analyzing cortisol according to the present invention has low cross-reactivity to similar compounds such as melatonin, L-tryptophan, cortisone, norepinephrine, epinephrine, and cholic acid. For this reason, the sensor for cortisol analysis of the present invention can specifically analyze cortisol, for example.
図1は、実施例2において、本発明の分析用センサを用いた反応液における蛍光強度を示すグラフである。FIG. 1 is a graph showing the fluorescence intensity in a reaction solution using the analytical sensor of the present invention in Example 2. 図2は、実施例3において、本発明の分析用センサを用いた反応液における吸光度を示すグラフである。FIG. 2 is a graph showing the absorbance in a reaction solution using the analytical sensor of the present invention in Example 3. 図3は、実施例4において、本発明の分析用センサを用いた反応液を電気泳動した際の泳動ゲルの各泳動距離における蛍光強度を示すグラフである。FIG. 3 is a graph showing the fluorescence intensity at each migration distance of the electrophoresis gel when the reaction solution using the analytical sensor of the present invention was electrophoresed in Example 4. 図4は、実施例5において、本発明の分析用センサを用いた反応液における吸光度の相対値を示すグラフである。FIG. 4 is a graph showing the relative value of absorbance in a reaction solution using the analytical sensor of the present invention in Example 5. 図5は、実施例6において、本発明の分析用センサを用いた反応液における蛍光偏光度を示すグラフである。FIG. 5 is a graph showing the degree of fluorescence polarization in a reaction solution using the analytical sensor of the present invention in Example 6.
<コルチゾール分析用センサ>
 本発明のコルチゾール分析用センサは、前述のように、ターゲットに結合する結合領域(A)とG-カルテット構造を形成するG形成領域(D)とを含む下記(I)、(II)および(III)からなる群から選択された少なくとも1つの核酸分子を含み、
前記ターゲットが、コルチゾールであり、
前記ターゲット非存在下、前記G形成領域(D)は、G-カルテット構造の形成が阻害され不活性型となり、
前記ターゲット存在下、前記G形成領域(D)は、G-カルテット構造を形成して活性型となることを特徴とする。
(I)前記G形成領域(D)および前記結合領域(A)を有し、
前記結合領域(A)は、ステム形成領域(S)、中間領域(C)およびステム形成領域(S)を有し、
前記ステム形成領域(S)は、前記G形成領域(D)に対して相補的な配列を有し、
前記ステム形成領域(S)は、前記中間領域(C)に対して相補的な配列を有する一本鎖核酸分子。
(II)前記G形成領域(D)および前記結合領域(A)を有し、
前記G形成領域(D)が、第1領域(D1)と第2領域(D2)とを含み、前記第1領域(D1)と前記第2領域(D2)とによりG-カルテットを形成する領域であり、
前記結合領域(A)の一方の末端側に前記第1領域(D1)を有し、前記結合領域(A)の他方の末端側に前記第2領域(D2)を有する一本鎖核酸分子。
(III)第1鎖(ss1)と第2鎖(ss2)とから構成される二本鎖核酸分子であり、
前記第1鎖(ss1)は、前記G形成領域(D)と前記結合領域(A)とをこの順序で有し、
前記第2鎖(ss2)は、ステム形成領域(S)およびステム形成領域(S)をこの順序で有し、前記ステム形成領域(S)は、前記G形成領域(D)に対して相補的な配列を有し、前記ステム形成領域(S)は、前記結合領域(A)に対して相補的な配列を有する二本鎖核酸分子。
<Sensor for cortisol analysis>
As described above, the sensor for analyzing cortisol of the present invention includes the following (I), (II), and (II) including a binding region (A) that binds to a target and a G-forming region (D) that forms a G-quartet structure. III) comprising at least one nucleic acid molecule selected from the group consisting of
The target is cortisol,
In the absence of the target, the G-forming region (D) becomes inactive due to inhibition of formation of the G-quartet structure,
In the presence of the target, the G-forming region (D) is activated by forming a G-quartet structure.
(I) having the G-forming region (D) and the binding region (A);
The binding region (A) has a stem formation region (S D ), an intermediate region (C), and a stem formation region (S C ),
The stem formation region (S D ) has a sequence complementary to the G formation region (D),
The stem-forming region (S C ) is a single-stranded nucleic acid molecule having a sequence complementary to the intermediate region (C).
(II) having the G-forming region (D) and the binding region (A),
The G formation region (D) includes a first region (D1) and a second region (D2), and a region in which a G-quartet is formed by the first region (D1) and the second region (D2) And
A single-stranded nucleic acid molecule having the first region (D1) on one end side of the binding region (A) and the second region (D2) on the other end side of the binding region (A).
(III) a double-stranded nucleic acid molecule composed of a first strand (ss1) and a second strand (ss2),
The first strand (ss1) has the G-forming region (D) and the binding region (A) in this order,
The second chain (ss2) has a stem formation region (S D ) and a stem formation region (S A ) in this order, and the stem formation region (S D ) is in the G formation region (D). A double-stranded nucleic acid molecule having a complementary sequence and the stem-forming region (S A ) having a sequence complementary to the binding region (A).
 以下、本発明において、領域を核酸領域、コルチゾールをターゲットともいう。本発明における前記一本鎖核酸分子および前記二本鎖核酸分子は、例えば、それぞれ、一本鎖核酸素子、二本鎖核酸素子ということもできる。また、前記G形成領域(D)について、G-カルテット構造の形成が阻害されることを、スイッチ-OFF(またはturn-OFF)、G-カルテット構造が形成されることを、スイッチ-ON(またはturn-ON)ともいう。 Hereinafter, in the present invention, the region is also referred to as a nucleic acid region and cortisol as a target. The single-stranded nucleic acid molecule and the double-stranded nucleic acid molecule in the present invention can also be referred to as, for example, a single-stranded nucleic acid element and a double-stranded nucleic acid element, respectively. Further, regarding the G-forming region (D), the inhibition of the formation of the G-quartet structure indicates that the switch-OFF (or turn-OFF) and the formation of the G-quartet structure indicate that the switch-ON (or (turn-ON).
 本発明において、ある配列に対して他の配列が相補的であるとは、例えば、両者間でアニーリングが生じ得る配列であることを意味する。前記アニーリングを、ステム形成ともいう。本発明において、相補的とは、例えば、2種類の配列をアラインメントした際の相補性が、例えば、90%以上であること、好ましくは95%以上、96%以上、97%以上、98%以上であり、より好ましくは99%以上であり、特に好ましくは100%、すなわち完全相補である。また、核酸分子内において、ある配列に対して他の配列が相補的であるとは、一方の5’側から3’側に向かう配列と、他方の3’側から5’側に向かう配列とを対比させた際に、互いの塩基が相補的であることを意味する。 In the present invention, the phrase “the other sequence is complementary to a certain sequence” means, for example, a sequence that can be annealed between the two. The annealing is also referred to as stem formation. In the present invention, the term “complementary” means, for example, that complementarity when two kinds of sequences are aligned is, for example, 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more. More preferably 99% or more, particularly preferably 100%, that is, completely complementary. In addition, in a nucleic acid molecule, another sequence is complementary to a certain sequence when the sequence is directed from the 5 ′ side to the 3 ′ side, and the sequence is directed from the other 3 ′ side to the 5 ′ side. Means that the bases of each other are complementary.
 本発明のセンサにおいて、前記結合領域(A)は、コルチゾールに結合する核酸であり、コルチゾール結合核酸ともいう。前記結合領域(A)のコルチゾールに対する解離定数は、特に制限されない。 In the sensor of the present invention, the binding region (A) is a nucleic acid that binds to cortisol and is also referred to as a cortisol-binding nucleic acid. The dissociation constant for cortisol in the binding region (A) is not particularly limited.
 前記結合領域(A)と前記コルチゾールとの結合は、例えば、表面プラズモン共鳴分子相互作用(SPR;Surface Plasmon resonance)解析等により決定できる。前記解析は、例えば、ProteON(BioRad社)が使用できる。 The binding between the binding region (A) and the cortisol can be determined by, for example, surface plasmon resonance molecular interaction (SPR) analysis. For example, ProteON (BioRad) can be used for the analysis.
 前記コルチゾールは、下記式(1)で表わされる。前記コルチゾールは、例えば、異性体、塩、水和物、溶媒和物等の誘導体でもよい。以下、前記コルチゾールに関する記載は、前記誘導体に援用できる。
Figure JPOXMLDOC01-appb-C000017
The cortisol is represented by the following formula (1). The cortisol may be a derivative such as an isomer, a salt, a hydrate, or a solvate. Hereinafter, the description regarding the said cortisol can be used for the said derivative | guide_body.
Figure JPOXMLDOC01-appb-C000017
 本発明のセンサにおいて、前記結合領域(A)は、例えば、L(a1)~(a3)および(a4)からなる群から選択された少なくとも1つのポリヌクレオチドを含む。 In the sensor of the present invention, the binding region (A) includes, for example, at least one polynucleotide selected from the group consisting of L (a1) to (a3) and (a4).
(a1)表1A~Hの配列番号1~279、表2の配列番号280~299、および表3A~Dの配列番号300~427のいずれかの塩基配列における四角で囲った塩基配列からなるポリヌクレオチド
(a2)前記(a1)のいずれかの前記塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、前記コルチゾールに結合するポリヌクレオチド
(a3)前記(a1)のいずれかの前記塩基配列に対して、80%以上の同一性を有する塩基配列からなり、前記コルチゾールに結合するポリヌクレオチド
(a4)前記(a1)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、前記コルチゾールに結合するポリヌクレオチド
(A1) Poly consisting of a base sequence enclosed in a square in any one of the base sequences of SEQ ID NOs: 1 to 279 of Tables 1A to H, SEQ ID NOs: 280 to 299 of Table 2, and SEQ ID NOs: 300 to 427 of Tables 3A to D Nucleotide (a2) A polynucleotide (a3) consisting of a base sequence in which one or several bases are deleted, substituted, inserted and / or added in any of the base sequences of (a1), and which binds to the cortisol A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of any one of the above (a1) and binding to the cortisol (a4) from any of the base sequences of the above (a1) Comprising a base sequence complementary to a polynucleotide that hybridizes under stringent conditions to the polynucleotide Polynucleotide that binds to Chizoru
 前記(a1)のポリヌクレオチドは、下記表1A~Hの配列番号1~279、表2の配列番号280~299、および表3A~Dの配列番号300~427のいずれかの塩基配列における四角で囲った塩基配列からなるポリヌクレオチドである。 The polynucleotide of (a1) is a square in any one of the nucleotide sequences of SEQ ID NOS: 1 to 279 in Tables 1A to H, SEQ ID NOs: 280 to 299 in Table 2, and SEQ ID NOs: 300 to 427 in Tables 3A to D. It is a polynucleotide consisting of an enclosed base sequence.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 前記(a2)のポリヌクレオチドにおいて、「1もしくは数個」は、例えば、前記(a2)のポリヌクレオチドが、コルチゾールに結合する範囲であればよい。前記「1もしくは数個」は、前記(a1)のいずれかの塩基配列において、例えば、1~10個、1~7個、1~5個、1~3個、1または2個、1個である。本発明において、塩基数および配列数等の個数の数値範囲は、例えば、その範囲に属する正の整数を全て開示するものである。つまり、例えば、「1~5塩基」との記載は、「1、2、3、4、5塩基」の全ての開示を意味する(以下、同様)。 In the polynucleotide (a2), “one or several” may be in the range where the polynucleotide (a2) binds to cortisol, for example. The “one or several” is, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 3, 1 or 2, 1 in the base sequence of any of (a1). It is. In the present invention, the numerical range of numbers such as the number of bases and the number of sequences, for example, discloses all positive integers belonging to the range. That is, for example, the description “1 to 5 bases” means all disclosures of “1, 2, 3, 4, 5 bases” (the same applies hereinafter).
 前記(a3)のポリヌクレオチドにおいて、「同一性」は、例えば、前記(a3)のポリヌクレオチドが、コルチゾールに結合する範囲であればよい。前記「同一性」は、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。前記同一性は、例えば、BLAST、FASTA等の解析ソフトウェアを用いて、デフォルトのパラメータにより算出できる(以下、同様)。 In the polynucleotide (a3), the “identity” may be, for example, within a range in which the polynucleotide (a3) binds to cortisol. The “identity” is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more. The identity can be calculated with default parameters using analysis software such as BLAST and FASTA (hereinafter the same).
 前記(a4)のポリヌクレオチドにおいて、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(a1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記ハイブリダイズは、例えば、各種ハイブリダイゼーションアッセイにより検出できる。前記ハイブリダイゼーションアッセイは、特に制限されず、例えば、ザンブルーク(Sambrook)ら編「モレキュラー・クローニング:ア・ラボラトリーマニュアル第2版(Molecular Cloning: A Laboratory Manual 2nd Ed.)」〔Cold Spring Harbor Laboratory Press (1989)〕等に記載されている方法を採用することもできる。 In the polynucleotide (a4), the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide (a1). The hybridization can be detected by, for example, various hybridization assays. The hybridization assay is not particularly limited, for example, Zanburuku (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ," [Cold Spring Harbor Laboratory Press (1989)] and the like can also be employed.
 前記(a4)において、「ストリンジェントな条件」は、例えば、低ストリンジェントな条件、中ストリンジェントな条件、高ストリンジェントな条件のいずれでもよい。「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、32℃の条件である。「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、42℃の条件である。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃の条件である。ストリンジェンシーの程度は、当業者であれば、例えば、温度、塩濃度、プローブの濃度および長さ、イオン強度、時間等の条件を適宜選択することで、設定可能である。「ストリンジェントな条件」は、例えば、前述したザンブルーク(Sambrook)ら編「モレキュラー・クローニング:ア・ラボラトリーマニュアル第2版(Molecular Cloning: A Laboratory Manual 2nd Ed.)」〔Cold Spring Harbor Laboratory Press (1989)〕等に記載されている方法を採用することもできる。 In the above (a4), the “stringent conditions” may be, for example, any of low stringent conditions, medium stringent conditions, and high stringent conditions. “Low stringent conditions” are, for example, conditions of 5 × SSC, 5 × Denhardt's solution, 0.5% SDS, 50% formamide, and 32 ° C. “Medium stringent conditions” are, for example, 5 × SSC, 5 × Denhardt's solution, 0.5% SDS, 50% formamide, 42 ° C. “High stringent conditions” are, for example, conditions of 5 × SSC, 5 × Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C. The degree of stringency can be set by those skilled in the art by appropriately selecting conditions such as temperature, salt concentration, probe concentration and length, ionic strength, time, and the like. "Stringent conditions" are, for example, Zanburuku previously described (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ," [Cold Spring Harbor Laboratory Press ( 1989)] etc. may be employed.
 本発明のセンサにおいて、前記結合領域(A)は、例えば、前記(a1)~(a3)および(a4)のいずれかのポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。後者の場合、前記結合領域(A)は、例えば、前記ポリヌクレオチドの他に、さらに、リンカー配列および/または付加配列等を有してもよい。 In the sensor of the present invention, the binding region (A) may be, for example, a molecule composed of any one of the polynucleotides (a1) to (a3) and (a4) or a molecule containing the polynucleotide. In the latter case, the binding region (A) may further have, for example, a linker sequence and / or an additional sequence in addition to the polynucleotide.
 本発明のセンサにおいて、前記結合領域(A)の長さは、特に制限されず、下限は、例えば、12塩基長、15塩基長、18塩基長であり、上限は、例えば、140塩基長、80塩基長、60塩基長であり、その範囲は、例えば、12~140塩基長であり、15~80塩基長であり、18~60塩基長である。 In the sensor of the present invention, the length of the binding region (A) is not particularly limited, and the lower limit is, for example, 12 base length, 15 base length, 18 base length, and the upper limit is, for example, 140 base length, 80 base length and 60 base length, and the range is, for example, 12 to 140 base length, 15 to 80 base length, and 18 to 60 base length.
 前記(a1)のポリヌクレオチドが前記配列番号1~279のいずれかの塩基配列における四角で囲った塩基配列からなるポリヌクレオチドである場合、前記(a2)~(a4)のポリヌクレオチドは、例えば、下記表6の各配列番号の塩基配列において、対応する各保存塩基配列が保存されていることが好ましい。前記各配列番号の塩基配列において、前記保存塩基配列は、例えば、前記(a1)のポリヌクレオチドの各配列番号の塩基配列を基準として、アライメントを行い、対応する(一致する)塩基配列を保存されている塩基配列と判断できる。 When the polynucleotide of (a1) is a polynucleotide comprising a base sequence surrounded by a square in any of the base sequences of SEQ ID NOs: 1 to 279, the polynucleotides of (a2) to (a4) are, for example, In the base sequences of the respective sequence numbers in Table 6 below, it is preferable that the corresponding conserved base sequences are conserved. In the base sequence of each SEQ ID NO, the conserved base sequence is aligned with reference to the base sequence of each SEQ ID NO of the polynucleotide (a1), for example, and the corresponding (matching) base sequence is stored. It can be judged that the nucleotide sequence is.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 前記(a3)のポリヌクレオチドは、前記各配列番号の塩基配列において、対応する前記保存塩基配列が保存されている場合、同一性は、例えば、50%以上、60%以上、70%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the polynucleotide (a3), when the corresponding conserved base sequence is conserved in the base sequence of each SEQ ID NO, the identity is, for example, 50% or more, 60% or more, 70% or more, 80 %, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more.
 本発明のセンサにおいて、前記G形成領域(D)は、Gカルテット構造を形成すると、例えば、触媒機能および蛍光性を生起する。そして、本発明のセンサは、例えば、ターゲット非存在下、前記G形成領域(D)のGカルテット構造の形成が阻害され、ターゲット存在下、前記ターゲットと前記結合領域(A)との結合により、前記G形成領域(D)のGカルテット構造が形成される。このため、本発明のセンサは、例えば、前記Gカルテット構造の形成による触媒機能および蛍光の発生の少なくとも一方の検出により前記ターゲットを検出できる。このように、本発明のセンサにおいて、前記G形成領域(D)は、G-カルテット構造を形成すると、例えば、前記2種類の性質(触媒機能または蛍光性)を示すため、その性質に応じて、本発明のセンサを使用することができる。なお、本発明において、前記G形成領域(D)は、G-カルテット構造を形成できればよく、前記触媒機能および蛍光性の有無は特に制限されない。 In the sensor of the present invention, when the G formation region (D) forms a G quartet structure, for example, a catalytic function and fluorescence occur. In the sensor of the present invention, for example, in the absence of the target, formation of the G quartet structure of the G formation region (D) is inhibited, and in the presence of the target, the binding between the target and the binding region (A) A G quartet structure of the G formation region (D) is formed. For this reason, the sensor of the present invention can detect the target by, for example, detecting at least one of the catalytic function and the generation of fluorescence due to the formation of the G quartet structure. Thus, in the sensor of the present invention, when the G-forming region (D) forms a G-quartet structure, for example, it exhibits the two types of properties (catalytic function or fluorescence). The sensor of the present invention can be used. In the present invention, the G-forming region (D) is only required to form a G-quartet structure, and the catalytic function and the presence or absence of fluorescence are not particularly limited.
 第1に、前記G形成領域(D)は、前記G-カルテット構造を形成すると、例えば、ポルフィリンとの複合体を形成し、これによって、前記複合体が蛍光を発する。この場合、前記G-カルテット核酸は、蛍光核酸ともいう。 First, when the G-forming region (D) forms the G-quartet structure, for example, a complex with porphyrin is formed, whereby the complex emits fluorescence. In this case, the G-quartet nucleic acid is also called a fluorescent nucleic acid.
 前記G形成領域(D)が前記蛍光核酸の場合、本発明のセンサは、ターゲット非存在下では、前記G形成領域(D)においてG-カルテット構造の形成が阻害されるため、例えば、前記ポリフィリンとの複合体は形成されず、したがって、前記複合体による蛍光を発することはなく、スイッチ-OFFとなり、他方、ターゲット存在下では、前記G形成領域(D)においてG-カルテット構造が形成され、ポルフィリンとの複合体を形成するため、前記複合体による蛍光を発し、スイッチ-ONとなる。このため、例えば、ターゲットの有無またはターゲット量を、前記G形成領域(D)とポルフィリンとの複合体形成による蛍光によって、分析できる。 When the G-forming region (D) is the fluorescent nucleic acid, the sensor of the present invention inhibits formation of a G-quartet structure in the G-forming region (D) in the absence of a target. Therefore, no fluorescence is emitted from the complex, and the switch is turned off. On the other hand, in the presence of the target, a G-quartet structure is formed in the G-forming region (D). In order to form a complex with porphyrin, fluorescence from the complex is emitted, and the switch is turned on. For this reason, for example, the presence or absence of the target or the target amount can be analyzed by fluorescence due to the complex formation between the G-forming region (D) and the porphyrin.
 第2に、前記G形成領域(D)は、前記G-カルテット構造を形成すると、例えば、ポルフィリンとの複合体を形成し、これによって、酵素の触媒機能を生起する。この場合、前記G-カルテット核酸は、触媒核酸ともいう。前記触媒機能は、例えば、酸化還元反応の触媒機能である。前記酸化還元反応は、例えば、基質から生成物が生成される過程において、二つの基質の間に電子の授受を生じる反応である。前記酸化還元反応の種類は、特に制限されない。前記酸化還元反応の触媒機能は、例えば、酵素と同様の活性があげられ、具体的には、例えば、ペルオキシダーゼと同様の活性(以下、「ペルオキシダーゼ様活性」という)等があげられる。前記ペルオキシダーゼ活性は、例えば、西洋わさび由来ペルオキシダーゼ(HRP)活性があげられる。前記G形成領域(D)は、一般に、DNA配列の場合、DNAエンザイムまたはDNAzymeと呼ばれ、RNA配列の場合、RNAエンザイムまたはRNAzymeと呼ばれる。 Second, when the G-forming region (D) forms the G-quartet structure, for example, a complex with porphyrin is formed, thereby causing the catalytic function of the enzyme. In this case, the G-quartet nucleic acid is also called a catalytic nucleic acid. The catalytic function is, for example, a catalytic function of a redox reaction. The oxidation-reduction reaction is, for example, a reaction that causes transfer of electrons between two substrates in the process of generating a product from the substrates. The kind of the redox reaction is not particularly limited. The catalytic function of the oxidation-reduction reaction includes, for example, the same activity as an enzyme, and specifically includes, for example, the same activity as peroxidase (hereinafter referred to as “peroxidase-like activity”). Examples of the peroxidase activity include horseradish peroxidase (HRP) activity. The G-forming region (D) is generally called a DNA enzyme or DNAzyme in the case of a DNA sequence, and is called an RNA enzyme or RNAzyme in the case of an RNA sequence.
 前記DNAzymeとしては、例えば、下記論文(1)~(4)等の核酸分子が例示できる。
(1)Travascioら, Chem. Biol., 1998年, vol.5, p.505-517
(2)Chengら, Biochemistry, 2009年, vol.48, p.7817-7823
(3)Tellerら, Anal. Chem., 2009年, vol.81, p.9114-9119
(4)Taoら, Anal. Chem., 2009年, vol.81, p.2144-2149
Examples of the DNAzyme include nucleic acid molecules such as the following articles (1) to (4).
(1) Travascio et al., Chem. Biol., 1998, vol.5, p.505-517
(2) Cheng et al., Biochemistry, 2009, vol.48, p.7817-7823
(3) Teller et al., Anal. Chem., 2009, vol.81, p.9114-9119
(4) Tao et al., Anal. Chem., 2009, vol.81, p.2144-2149
 前記G形成領域(D)が前記触媒核酸の場合、本発明のセンサは、ターゲット非存在下では、前記G形成領域(D)においてG-カルテット構造の形成が阻害されるため、前記ポルフィリンとの複合体は形成されず、したがって、前記複合体による触媒機能が生起されず、スイッチ-OFFとなり、他方、ターゲット存在下では、前記G形成領域(D)においてG-カルテット構造が形成され、ポルフィリンとの複合体を形成するため、前記複合体による触媒機能が生起され、スイッチ-ONとなる。このため、例えば、前記触媒機能に対応する基質を併用することにより、ターゲットの有無またはターゲット量を、前記G形成領域(D)とポルフィリンとの複合体形成による触媒機能で、分析できる。 When the G-forming region (D) is the catalytic nucleic acid, the sensor of the present invention inhibits formation of a G-quartet structure in the G-forming region (D) in the absence of a target. No complex is formed, and therefore the catalytic function of the complex does not occur and the switch is turned OFF. On the other hand, in the presence of the target, a G-quartet structure is formed in the G-forming region (D). In order to form the composite, the catalytic function of the composite is generated and the switch is turned on. Therefore, for example, by using a substrate corresponding to the catalytic function together, the presence or absence of the target or the target amount can be analyzed by the catalytic function due to the complex formation between the G-forming region (D) and the porphyrin.
 なお、本発明の分析用センサは、例えば、前記G形成領域(D)の配列を変更することなく、例えば、前記複合体による蛍光の検出を行うこともできるし、前記基質の共存下、前記複合体による触媒機能の検出を行うこともできる。 Note that the analytical sensor of the present invention can detect, for example, fluorescence by the complex without changing the sequence of the G-forming region (D), and in the presence of the substrate, The catalytic function can also be detected by the complex.
 前記G形成領域(D)との複合体を形成するポルフィリンは、特に制限されず、例えば、無置換体のポルフィリンおよびその誘導体があげられる。前記誘導体は、例えば、置換体のポルフィリン、金属元素との錯体を形成した金属ポルフィリン等があげられる。前記置換体のポルフィリンは、例えば、N-メチルメソポルフィリン(NMM)、Zn-DIGP、ZnPP9およびTMPyP等があげられる。前記金属ポルフィリンは、例えば、三価鉄錯体であるヘミン等があげられる。 The porphyrin that forms a complex with the G-forming region (D) is not particularly limited, and examples thereof include unsubstituted porphyrin and derivatives thereof. Examples of the derivatives include substituted porphyrins, metal porphyrins formed with complexes with metal elements, and the like. Examples of the substituted porphyrin include N-methylmesoporphyrin (NMM), Zn-DIGP, ZnPP9, and TMPyP. Examples of the metal porphyrin include hemin, which is a trivalent iron complex.
 前記G形成領域(D)について、前記触媒機能を生起させる場合、前記ポルフィリンは、例えば、前記金属ポルフィリンが好ましく、より好ましくはヘミンである。また、前記G形成領域(D)について、前記蛍光を発生させる場合、前記ポルフィリンは、例えば、NMM、Zn-DIGP、ZnPP9およびTMPyP等が好ましい。 In the G-forming region (D), when the catalytic function is caused, the porphyrin is preferably, for example, the metal porphyrin, and more preferably hemin. In addition, when generating the fluorescence in the G-forming region (D), the porphyrin is preferably NMM, Zn-DIGP, ZnPP9, TMPyP, or the like.
 前記G形成領域(D)は、例えば、一本鎖型でもよいし、二本鎖型でもよい。前記一本鎖型は、例えば、一本鎖のG形成領域(D)内で、G-カルテット構造を形成できる。前記二本鎖型は、例えば、第1領域(D1)と第2領域(D2)とからなり、前記第1領域(D1)と前記第2領域(D2)との間で、G-カルテット構造を形成できる。後者の二本鎖型は、例えば、前記第1領域と、前記第2領域とが、間接的に連結された構造があげられ、具体的には、後述する核酸分子(II)において説明する。 The G-forming region (D) may be, for example, a single-stranded type or a double-stranded type. The single-stranded type can form, for example, a G-quartet structure in a single-stranded G-forming region (D). The double-stranded type includes, for example, a first region (D1) and a second region (D2), and a G-quartet structure is formed between the first region (D1) and the second region (D2). Can be formed. The latter double-stranded type includes, for example, a structure in which the first region and the second region are indirectly linked, and will be specifically described in the nucleic acid molecule (II) described later.
 前記G形成領域(D)が一本鎖型の場合、前記G形成領域(D)は、例えば、下記(d1)~(d3)および(d4)からなる群から選択された少なくとも1つのポリヌクレオチドを含む。 When the G-forming region (D) is single-stranded, the G-forming region (D) is, for example, at least one polynucleotide selected from the group consisting of the following (d1) to (d3) and (d4) including.
(d1)表1A~Hの配列番号1~279および表3A~Dの配列番号300~427のいずれかの塩基配列における下線部の塩基配列からなるポリヌクレオチド
(d2)前記(d1)のいずれかの前記塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、前記G-カルテット構造を形成するポリヌクレオチド
(d3)前記(d1)のいずれかの前記塩基配列に対して、80%以上の同一性を有する塩基配列からなり、前記G-カルテット構造を形成するポリヌクレオチド
(d4)前記(d1)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、前記G-カルテット構造を形成するポリヌクレオチド
(D1) a polynucleotide comprising the underlined base sequence in any of the base sequences of SEQ ID NOs: 1 to 279 of Tables 1A to H and SEQ ID NOs: 300 to 427 of Tables 3A to D (d2) any of the above (d1) A polynucleotide comprising the base sequence in which one or several bases are deleted, substituted, inserted and / or added, and forming the G-quartet structure (d3) any one of (d1) A polynucleotide comprising the base sequence having 80% or more identity to the base sequence and forming the G-quartet structure (d4) and a polynucleotide comprising any one of the base sequences of (d1) A complementary nucleotide sequence to a polynucleotide that hybridizes under stringent conditions to form the G-quartet structure. Polynucleotide
 前記(d1)のポリヌクレオチドは、前記表1A~Hの配列番号1~279および前記表3A~Dの配列番号300~427のいずれかの塩基配列における下線部の塩基配列からなるポリヌクレオチドである。 The polynucleotide (d1) is a polynucleotide comprising an underlined base sequence in any one of the base sequences of SEQ ID NOs: 1 to 279 of Tables 1A to H and SEQ ID NOs: 300 to 427 of Tables 3A to D. .
 前記(d2)において、「1もしくは数個」は、例えば、前記(d2)のポリヌクレオチドが、前記G-カルテット構造を形成する範囲であればよい。前記「1もしくは数個」は、前記(d1)のいずれかの塩基配列において、例えば、1~10個、1~7個、1~5個、1~3個、1または2個である。 In the above (d2), “one or several” may be in the range where the polynucleotide of (d2) forms the G-quartet structure, for example. The “one or several” is, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 3, 1, or 2 in any of the base sequences of (d1).
 前記(d3)において、「同一性」は、例えば、前記(d3)のポリヌクレオチドが、前記G-カルテット構造を形成する範囲であればよい。前記「同一性」は、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the above (d3), “identity” may be, for example, within a range in which the polynucleotide of (d3) forms the G-quartet structure. The “identity” is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
 前記(d4)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(d1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。「ハイブリダイズ」および「ストリンジェントな条件」については、前述の記載を援用できる。 In (d4), the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide of (d1). As for “hybridization” and “stringent conditions”, the above description can be used.
 本発明の分析用センサにおいて、前記G形成領域(D)は、例えば、前記(d1)~(d4)のいずれかのポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。後者の場合、前記G形成領域(D)は、例えば、前記ポリヌクレオチドの他に、さらに、リンカー配列および/または付加配列等を有してもよい。 In the analytical sensor of the present invention, the G-forming region (D) may be, for example, a molecule composed of any of the polynucleotides (d1) to (d4) or a molecule containing the polynucleotide. In the latter case, the G-forming region (D) may further have, for example, a linker sequence and / or an additional sequence in addition to the polynucleotide.
 前記一本鎖型のG形成領域(D)の長さは、特に制限されず、下限は、例えば、11塩基長、13塩基長、15塩基長であり、上限は、例えば、60塩基長、36塩基長、18塩基長である。 The length of the single-stranded G-forming region (D) is not particularly limited, and the lower limit is, for example, 11 base length, 13 base length, 15 base length, and the upper limit is, for example, 60 base length, It is 36 bases long and 18 bases long.
 前記G形成領域(D)が二本鎖の場合、前記第1領域(D1)および前記第2領域(D2)の一方が、例えば、下記(e1)~(e3)および(e4)からなる群から選択された少なくとも1つのポリヌクレオチドを含み、他方の領域が、下記(f1)~(f3)および(f4)からなる群から選択された少なくとも1つのポリヌクレオチドを含む。下記(e2)~(e4)のポリヌクレオチドは、例えば、下記(f1)~(f3)および(f4)の少なくとも1つのポリヌクレオチドとG-カルテット構造を形成するポリヌクレオチドである。下記(f2)~(f4)のポリヌクレオチドは、例えば、下記(e1)~(e3)および(e4)の少なくとも1つのポリヌクレオチドとG-カルテット構造を形成するポリヌクレオチドである。 When the G-forming region (D) is double-stranded, one of the first region (D1) and the second region (D2) is, for example, a group consisting of the following (e1) to (e3) and (e4) And the other region includes at least one polynucleotide selected from the group consisting of (f1) to (f3) and (f4) below. The following polynucleotides (e2) to (e4) are, for example, polynucleotides that form a G-quartet structure with at least one of the following polynucleotides (f1) to (f3) and (f4). The following polynucleotides (f2) to (f4) are, for example, polynucleotides that form a G-quartet structure with at least one of the following polynucleotides (e1) to (e3) and (e4).
(e1)表2の配列番号280~299のいずれかの塩基配列における下線部の塩基配列からなるポリヌクレオチド
(e2)前記(e1)のいずれかの前記塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなるポリヌクレオチド
(e3)前記(e1)のいずれかの前記塩基配列に対して、80%以上の同一性を有する塩基配列からなるポリヌクレオチド
(e4)前記(e1)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなるポリヌクレオチド
(E1) a polynucleotide comprising the underlined base sequence in any one of SEQ ID NOS: 280 to 299 in Table 2 (e2) In the base sequence of any one of (e1), one or several bases Polynucleotide comprising a nucleotide sequence deleted, substituted, inserted and / or added (e3) Polynucleotide comprising a nucleotide sequence having 80% or more identity to any of the nucleotide sequences of (e1) (E4) a polynucleotide comprising a base sequence complementary to a polynucleotide that hybridizes under stringent conditions to the polynucleotide comprising any one of the base sequences of (e1)
(f1)前記(e1)の配列番号の塩基配列におけるかっこで囲んだ下線部の塩基配列からなるポリヌクレオチド
(f2)前記(f1)のいずれかの前記塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなるポリヌクレオチド
(f3)前記(f1)のいずれかの前記塩基配列に対して、80%以上の同一性を有する塩基配列からなるポリヌクレオチド
(f4)前記(f1)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなるポリヌクレオチド
(F1) a polynucleotide comprising the underlined base sequence enclosed in parentheses in the base sequence of SEQ ID NO: (e1) (f2) In the base sequence of any one of (f1), one or several bases are Polynucleotide consisting of a base sequence deleted, substituted, inserted and / or added (f3) A polynucleotide consisting of a base sequence having 80% or more identity to any of the base sequences of (f1) (F4) a polynucleotide comprising a base sequence complementary to a polynucleotide that hybridizes under stringent conditions to the polynucleotide comprising any one of the base sequences (f1)
 前記(e1)のポリヌクレオチドは、前記表2の配列番号280~299のいずれかの塩基配列における下線部の塩基配列からなるポリヌクレオチドである。 The polynucleotide (e1) is a polynucleotide comprising the underlined base sequence in any one of the sequence numbers 280 to 299 in Table 2.
 前記(e2)において、「1もしくは数個」は、例えば、前記(e2)のポリヌクレオチドが、前記(f1)~(f4)の少なくとも1つのポリヌクレオチドとG-カルテット構造を形成する範囲であればよい。前記「1もしくは数個」は、前記(e1)のいずれかの塩基配列において、例えば、1~10個、1~7個、1~5個、1~3個、1または2個である。 In (e2) above, “1 or several” is, for example, within a range in which the polynucleotide of (e2) forms a G-quartet structure with at least one of the polynucleotides (f1) to (f4). That's fine. The “one or several” is, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 3, 1, or 2 in any one of the base sequences of (e1).
 前記(e3)において、「同一性」は、例えば、前記(e3)のポリヌクレオチドが、前記(f1)~(f4)の少なくとも1つのポリヌクレオチドと前記G-カルテット構造を形成する範囲であればよい。前記「同一性」は、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the above (e3), the “identity” is, for example, within the range in which the polynucleotide of (e3) forms the G-quartet structure with at least one of the polynucleotides (f1) to (f4). Good. The “identity” is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
 前記(e4)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(e1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。「ハイブリダイズ」および「ストリンジェントな条件」については、前述の記載を援用できる。 In the above (e4), the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide of (e1). As for “hybridization” and “stringent conditions”, the above description can be used.
 前記(f1)のポリヌクレオチドは、前記表2の配列番号280~299のいずれかの塩基配列におけるかっこで囲んだ下線部の塩基配列からなるポリヌクレオチドである。 The polynucleotide (f1) is a polynucleotide comprising an underlined base sequence surrounded by parentheses in any one of the base sequences of SEQ ID NOs: 280 to 299 in Table 2.
 前記(f2)において、「1もしくは数個」は、例えば、前記(f2)のポリヌクレオチドが、前記(e1)~(e4)の少なくとも1つのポリヌクレオチドとG-カルテット構造を形成する範囲であればよい。前記「1もしくは数個」は、前記(f1)のいずれかの塩基配列において、例えば、1~10個、1~7個、1~5個、1~3個、1または2個である。 In (f2), “1 or several” is, for example, within a range in which the polynucleotide of (f2) forms a G-quartet structure with at least one of the polynucleotides (e1) to (e4). That's fine. The “one or several” is, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 3, 1, or 2 in any of the base sequences of (f1).
 前記(f3)において、「同一性」は、例えば、前記(f3)のポリヌクレオチドが、前記(e1)~(e4)の少なくとも1つのポリヌクレオチドと前記G-カルテット構造を形成する範囲であればよい。前記「同一性」は、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the above (f3), the “identity” is, for example, within a range in which the polynucleotide of (f3) forms the G-quartet structure with at least one polynucleotide of (e1) to (e4). Good. The “identity” is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
 前記(f4)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(f1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。「ハイブリダイズ」および「ストリンジェントな条件」については、前述の記載を援用できる。 In the above (f4), the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide of (f1). As for “hybridization” and “stringent conditions”, the above description can be used.
 前記二本鎖型のG形成領域(D)において、前記第1領域(D1)および前記第2領域(D2)の長さは、特に制限されず、両者は同じであっても異なってもよい。前記第1領域(D1)の長さは、特に制限されず、下限は、例えば、7塩基長、8塩基長、10塩基長であり、上限は、例えば、30塩基長、20塩基長、10塩基長、その範囲は、例えば、7~30塩基長、7~20塩基長、7~10塩基長である。前記第2領域(D2)の長さは、特に制限されず、下限は、例えば、7塩基長、8塩基長、10塩基長であり、上限は、例えば、30塩基長、20塩基長、10塩基長、その範囲は、例えば、7~30塩基長、7~20塩基長、7~10塩基長である。 In the double-stranded G-forming region (D), the length of the first region (D1) and the second region (D2) is not particularly limited, and both may be the same or different. . The length of the first region (D1) is not particularly limited, and the lower limit is, for example, 7 base length, 8 base length, 10 base length, and the upper limit is, for example, 30 base length, 20 base length, 10 The base length and the range thereof are, for example, 7 to 30 base length, 7 to 20 base length, and 7 to 10 base length. The length of the second region (D2) is not particularly limited, and the lower limit is, for example, 7 base length, 8 base length, 10 base length, and the upper limit is, for example, 30 base length, 20 base length, 10 The base length and the range thereof are, for example, 7 to 30 base length, 7 to 20 base length, and 7 to 10 base length.
 本発明のセンサにおける前記核酸分子について、前記(I)、(II)、および(III)のそれぞれを、以下に説明する。なお、特に示さない限り、各核酸分子の記載を、それぞれ援用できる。 Referring to the nucleic acid molecules in the sensor of the present invention, each of (I), (II), and (III) will be described below. In addition, unless otherwise indicated, description of each nucleic acid molecule can each be used.
(1)核酸分子(I)
 前記核酸分子(I)は、前記G形成領域(D)および前記結合領域(A)を有し、
前記結合領域(A)は、ステム形成領域(S)、中間領域(C)およびステム形成領域(S)を有し、
前記ステム形成領域(S)は、前記G形成領域(D)に対して相補的な配列を有し、
前記ステム形成領域(S)は、前記中間領域(C)に対して相補的な配列を有する一本鎖核酸分子である。
(1) Nucleic acid molecule (I)
The nucleic acid molecule (I) has the G-forming region (D) and the binding region (A),
The binding region (A) has a stem formation region (S D ), an intermediate region (C), and a stem formation region (S C ),
The stem formation region (S D ) has a sequence complementary to the G formation region (D),
The stem forming region (S C ) is a single-stranded nucleic acid molecule having a sequence complementary to the intermediate region (C).
 前記核酸分子(I)において、前記G形成領域(D)は、例えば、前記一本鎖型である。 In the nucleic acid molecule (I), the G-forming region (D) is, for example, the single-stranded type.
 前記核酸分子(I)は、例えば、以下のようなメカニズムに基づいて、ターゲットの存否により、前記G形成領域(D)のG-カルテット形成が、ON-OFFに制御される。なお、本発明は、このメカニズムには制限されない。前記核酸分子(I)は、ターゲット非存在下では、前記分子内で、前記G形成領域(D)と前記ステム形成領域(S)とがアニーリングすることで、前記G形成領域(D)のG-カルテット構造の形成が阻害され(スイッチ-OFF)、結果として、例えば、前記G形成領域(D)とポルフィリンとの複合体形成が阻害される。また、前記分子内で、前記中間領域(C)と前記ステム形成領域(S)とがアニーリングすることで、前記中間領域(C)の構造も固定されている。この状態の前記分子の構造を、不活性型ともいう。他方、前記核酸分子(I)は、ターゲット存在下では、前記結合領域(A)への前記ターゲットの接触によって、前記中間領域(C)と前記ステム形成領域(S)とのアニーリングが解除され、前記結合領域(A)の立体構造が、より安定な構造に変化する。これに伴い、前記G形成領域(D)と前記ステム形成領域(S)とのアニーリングが解除され、前記G形成領域(D)の領域内でG-カルテット構造が形成され(スイッチ-ON)、結果として、例えば、前記G形成領域(D)とポルフィリンとの複合体が形成され、例えば、触媒機能および蛍光性を生起する。この状態の前記分子の構造を、活性型ともいう。このため、前記核酸分子(I)は、例えば、ターゲット非存在下では、前記複合体形成による触媒機能および蛍光性を生起せず、ターゲット存在下でのみ、前記複合体形成による触媒機能および蛍光性を生起できるため、定性または定量等のターゲット分析が可能となる。 In the nucleic acid molecule (I), for example, based on the following mechanism, the G-quartet formation of the G-forming region (D) is controlled to be ON-OFF depending on the presence or absence of a target. Note that the present invention is not limited to this mechanism. In the absence of a target, the nucleic acid molecule (I) is annealed between the G-forming region (D) and the stem-forming region (S D ) in the molecule, so that the G-forming region (D) Formation of the G-quartet structure is inhibited (switch-OFF), and as a result, for example, formation of a complex between the G-forming region (D) and porphyrin is inhibited. Further, the structure of the intermediate region (C) is also fixed by annealing the intermediate region (C) and the stem forming region (S C ) in the molecule. The structure of the molecule in this state is also called an inactive type. On the other hand, in the presence of the target, the nucleic acid molecule (I) is released from the annealing of the intermediate region (C) and the stem formation region (S C ) by the contact of the target with the binding region (A). The three-dimensional structure of the binding region (A) changes to a more stable structure. Accordingly, the annealing of the G formation region (D) and the stem formation region (S D ) is canceled, and a G-quartet structure is formed in the region of the G formation region (D) (switch-ON). As a result, for example, a complex of the G-forming region (D) and porphyrin is formed, and for example, a catalytic function and fluorescence are generated. The structure of the molecule in this state is also called an active form. Therefore, for example, the nucleic acid molecule (I) does not cause the catalytic function and fluorescence due to the complex formation in the absence of the target, and the catalytic function and fluorescence due to the complex formation only in the presence of the target. Therefore, target analysis such as qualitative or quantitative is possible.
 前記ステム形成領域(S)は、例えば、その全部または一部が、前記G形成領域(D)の一部に対して相補的な配列であることが好ましい。また、前記ステム形成領域(S)は、例えば、その全部または一部が、前記中間領域(C)の一部に対して相補的な配列であることが好ましい。 For example, the stem formation region (S D ) preferably has a sequence that is entirely or partially complementary to a part of the G formation region (D). Moreover, it is preferable that the stem formation region (S C ) is, for example, a sequence that is entirely or partially complementary to a part of the intermediate region (C).
 前記核酸分子(I)の前記結合領域(A)において、前記各領域の順序は、前記分子内で、前記G形成領域(D)と前記ステム形成領域(S)とがアニーリングし、前記中間領域(C)と前記ステム形成領域(S)とがアニーリングする順序であればよい。具体例としては、以下の順序が例示できる。
  (1) 5’- D-S-C-S -3’
  (2) 5’- S-C-S-D -3’
In the binding region (A) of the nucleic acid molecule (I), the order of the regions is such that the G-forming region (D) and the stem-forming region (S D ) are annealed in the molecule, and the intermediate region The order of annealing of the region (C) and the stem formation region (S C ) may be sufficient. The following order can be illustrated as a specific example.
(1) 5'- D-S C -C-S D -3 '
(2) 5'- S D -C- S C -D -3 '
 前記(1)および(2)の形態は、例えば、以下のように、G-カルテット構造の形成がON-OFFされる。ターゲット非存在下、前記中間領域(C)と前記ステム形成領域(S)、前記G形成領域(D)と前記ステム形成領域(S)が、それぞれステムを形成し、前記G形成領域(D)のG-カルテット構造の形成を阻害する。そして、ターゲット存在下、前記結合領域(A)へのターゲットの接触により、前記それぞれのステム形成が解除され、前記G形成領域(D)において、G-カルテット構造が形成される。 In the forms (1) and (2), for example, the formation of the G-quartet structure is turned on and off as follows. In the absence of a target, the intermediate region (C) and the stem formation region (S C ), the G formation region (D) and the stem formation region (S D ) form a stem, and the G formation region ( Inhibits the formation of the G-quartet structure of D). Then, in the presence of the target, the respective stem formation is released by the contact of the target with the binding region (A), and a G-quartet structure is formed in the G formation region (D).
 前記(1)および(2)において、前記ステム形成領域(S)は、前記G形成領域(D)の5’側領域と相補的であり、前記ステム形成領域(S)は、前記中間領域(C)の5’側領域と相補的であることが好ましい。 In (1) and (2), the stem formation region (S D ) is complementary to the 5′-side region of the G formation region (D), and the stem formation region (S C ) It is preferably complementary to the 5 ′ region of the region (C).
 前記核酸分子(I)は、例えば、前記各領域間が、直接的または間接的に連結してもよい。前記直接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが直接結合していることを意味し、前記間接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが、前記介在リンカー領域(「内部領域」ともいう)を介して結合していることを意味する。前記介在リンカー領域は、例えば、核酸配列でもよいし、非核酸配列でもよく、好ましくは前者である。 In the nucleic acid molecule (I), for example, the regions may be connected directly or indirectly. The direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region. It means that the “terminal” and the 5 ′ terminal of the other region are bonded via the intervening linker region (also referred to as “internal region”). The intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former.
 前記核酸分子(I)は、例えば、前記介在リンカー領域として、互いに非相補的な2つの介在リンカー領域を有することが好ましい。前記2つの介在リンカー領域の位置は、特に制限されない。 The nucleic acid molecule (I) preferably has, for example, two intervening linker regions that are non-complementary to each other as the intervening linker region. The positions of the two intervening linker regions are not particularly limited.
 具体例として、前記(1)および(2)が、さらに2つの介在リンカー領域を有する形態について、例えば、以下の順序が例示できる。以下の例示において、前記中間領域(C)に連結する介在リンカー領域を(L)(「内部領域(I)」ともいう)、前記G形成領域(D)に連結する介在リンカー領域を(L)(「内部領域(I)」ともいう)で示す。前記核酸分子(I)は、例えば、介在リンカー領域として、例えば、(L)および(L)の両方を有してもよいし、いずれか一方のみを有してもよい。
  (1’) 5’- D-L-S-C-L-S -3’
  (2’) 5’- S-L-C-S-L-D -3’
As a specific example, the following order can be illustrated about the form in which the (1) and (2) further have two intervening linker regions, for example. In the following examples, the intervening linker region linked to the intermediate region (C) is (L 1 ) (also referred to as “internal region (I c )”), and the intervening linker region linked to the G-forming region (D) is ( L 2 ) (also referred to as “internal region (I D )”). For example, the nucleic acid molecule (I) may have, for example, both (L 1 ) and (L 2 ) as an intervening linker region, or may have only one of them.
(1 ') 5'- D-L 2 -S C -C-L 1 -S D -3'
(2 ') 5'- S D -L 1 -C-S C -L 2 -D -3'
 前記(1’)および(2’)の形態は、例えば、以下のように、G-カルテット構造の形成がON-OFFされる。ターゲット非存在下において、例えば、前記中間領域(C)と前記ステム形成領域(S)、前記G形成領域(D)と前記ステム形成領域(S)が、それぞれステムを形成し、これら2つのステムの間で、前記介在リンカー領域(L)と前記介在リンカー領域(L)が、内部ループを形成して、前記G形成領域(D)のG-カルテット構造の形成を阻害する。そして、ターゲット存在下、前記結合領域(A)へのターゲットの接触により、前記それぞれのステム形成が解除され、前記G形成領域(D)において、G-カルテット構造が形成される。 In the forms (1 ′) and (2 ′), for example, the formation of the G-quartet structure is turned on and off as follows. In the absence of the target, for example, the intermediate region (C) and the stem forming region (S C ), the G forming region (D) and the stem forming region (S D ) form stems, respectively. Between the two stems, the intervening linker region (L 1 ) and the intervening linker region (L 2 ) form an internal loop that inhibits the formation of the G-quartet structure of the G-forming region (D). Then, in the presence of the target, the respective stem formation is released by the contact of the target with the binding region (A), and a G-quartet structure is formed in the G formation region (D).
 前記核酸分子(I)において、前記ステム形成配列(S)および前記ステム形成配列(S)の長さは、特に制限されない。前記ステム形成配列(S)の長さは、例えば、1~60塩基長、1~10塩基長、1~7塩基長である。前記ステム形成配列(S)の長さは、例えば、1~30塩基長、0~10塩基長、1~10塩基長、0~7塩基長、1~7塩基長である。前記ステム形成配列(S)と前記ステム形成配列(S)は、例えば、同じ長さでもよいし、前者が長くてもよいし、後者が長くてもよい。 In the nucleic acid molecule (I), the lengths of the stem-forming sequence (S C ) and the stem-forming sequence (S D ) are not particularly limited. The length of the stem-forming sequence (S C ) is, for example, 1 to 60 bases long, 1 to 10 bases long, or 1 to 7 bases long. The stem-forming sequence (S D ) has a length of, for example, 1 to 30 bases, 0 to 10 bases, 1 to 10 bases, 0 to 7 bases, or 1 to 7 bases. For example, the stem forming sequence (S C ) and the stem forming sequence (S D ) may have the same length, the former may be long, or the latter may be long.
 前記介在リンカー領域(L)および(L)の長さは、特に制限されない。前記介在リンカー領域(L)および(L)の長さは、それぞれ、例えば、0~30塩基長、1~30塩基長、1~15塩基長、1~6塩基長である。また、前記介在リンカー領域(L)および(L)の長さは、例えば、同じでも、異なってもよい。後者の場合、前記介在リンカー領域(L)および(L)の長さの差は、特に制限されず、例えば、1~10塩基長、1または2塩基長、1塩基長である。 The lengths of the intervening linker regions (L 1 ) and (L 2 ) are not particularly limited. The lengths of the intervening linker regions (L 1 ) and (L 2 ) are, for example, 0 to 30 bases, 1 to 30 bases, 1 to 15 bases, and 1 to 6 bases, respectively. The lengths of the intervening linker regions (L 1 ) and (L 2 ) may be the same or different, for example. In the latter case, the difference in length of the intervening linker region (L 1) and (L 2) is not particularly limited, for example, 1 to 10 bases in length, 1 or 2 bases in length, one base in length.
 前記核酸分子(I)において、前記結合領域(A)は、例えば、前記(a1)~(a4)からなる群から選択された少なくとも1つのポリヌクレオチドにおいて、前記(a1)のポリヌクレオチドを、前記表1A~Hの配列番号1~279のいずれかの塩基配列における四角で囲った塩基配列からなるポリヌクレオチドに読み替えたポリヌクレオチドであり、前記読み替えを行った上で、その説明を援用できる。 In the nucleic acid molecule (I), the binding region (A) is, for example, at least one polynucleotide selected from the group consisting of (a1) to (a4), wherein the polynucleotide of (a1) is It is a polynucleotide that has been replaced with a polynucleotide having a base sequence surrounded by a square in any of the base sequences of SEQ ID NOS: 1 to 279 in Tables 1A to H. The description can be used after the above replacement.
 前記核酸分子(I)において、前記G形成領域(D)は、例えば、前記(d1)~(d4)からなる群から選択された少なくとも1つのポリヌクレオチドにおいて、前記(d1)のポリヌクレオチドを、前記表1A~Hの配列番号1~279のいずれかの塩基配列における下線部の塩基配列からなるポリヌクレオチドに読み替えたポリヌクレオチドであり、前記読み替えを行った上で、その説明を援用できる。 In the nucleic acid molecule (I), the G-forming region (D) is, for example, at least one polynucleotide selected from the group consisting of (d1) to (d4), and the polynucleotide of (d1), It is a polynucleotide that has been replaced with a polynucleotide comprising the underlined base sequence in any one of SEQ ID NOS: 1 to 279 in Tables 1A to H. The description can be used after the above replacement.
 具体例として、前記核酸分子(I)は、例えば、下記(s1)~(s3)および(s4)からなる群から選択された少なくとも1つのポリヌクレオチドである。 As a specific example, the nucleic acid molecule (I) is, for example, at least one polynucleotide selected from the group consisting of the following (s1) to (s3) and (s4).
(s1)配列番号1~279のいずれかの塩基配列からなるポリヌクレオチド
(s2)前記(s1)のいずれかの塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、前記(s1)と同等の機能を奏するポリヌクレオチド
(s3)前記(s1)のいずれかの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、前記(s1)と同等の機能を奏するポリヌクレオチド
(s4)前記(s1)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、前記(s1)と同等の機能を奏するポリヌクレオチド
(S1) A polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 1 to 279 (s2) In the nucleotide sequence of any of the above (s1), one or several bases are deleted, substituted, inserted and / or added A polynucleotide having a function equivalent to that of (s1), (s3) consisting of a base sequence having 80% or more identity to any of the base sequences of (s1), (S4) A polynucleotide having a function equivalent to that of (s1) (s4) From a base sequence complementary to a polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising any one of the base sequences of (s1) And a polynucleotide having a function equivalent to that of (s1)
 本発明において、「前記(s1)と同等の機能を奏する」とは、前記ターゲット非存在下で、前記G形成領域(D)がG-カルテット構造を形成せず、且つ、前記ターゲット存在下で、前記結合領域(A)に前記ターゲットが結合し、前記G形成領域(D)がG-カルテット構造を形成することを意味する。 In the present invention, “having the same function as (s1)” means that in the absence of the target, the G formation region (D) does not form a G-quartet structure, and in the presence of the target. This means that the target is bonded to the bonding region (A) and the G-forming region (D) forms a G-quartet structure.
 前記(s1)のポリヌクレオチドは、配列番号1~279のいずれかの塩基配列からなるポリヌクレオチドである。 The polynucleotide (s1) is a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 1 to 279.
 前記(s2)のポリヌクレオチドにおいて、「1もしくは数個」は、例えば、前記(s1)のいずれかの塩基配列において、例えば、1~10個、1~7個、1~5個、1~3個、1または2個である。 In the polynucleotide of (s2), “one or several” means, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 5 in any of the base sequences of (s1). Three, one or two.
 前記(s3)のポリヌクレオチドにおいて、「同一性」は、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the polynucleotide (s3), “identity” is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more. .
 前記(s4)のポリヌクレオチドにおいて、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(s1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。「ハイブリダイズ」および「ストリンジェントな条件」については、前述の記載を援用できる。 In the polynucleotide (s4), the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide (s1). As for “hybridization” and “stringent conditions”, the above description can be used.
 前記(s2)~(s4)のポリヌクレオチドは、前記各配列番号の塩基配列において、前記結合領域(A)および前記G形成領域(D)の少なくとも一方の塩基配列が保存されていることが好ましい。前記各配列番号の塩基配列において、前記保存塩基配列は、例えば、前記(s1)のポリヌクレオチドの各配列番号の塩基配列を基準として、アライメントを行い、対応する塩基配列を前記保存されている塩基配列と判断できる。 In the polynucleotides (s2) to (s4), it is preferable that at least one base sequence of the binding region (A) and the G-forming region (D) is conserved in the base sequence of each SEQ ID NO. . In the base sequence of each SEQ ID NO, the conserved base sequence is, for example, aligned based on the base sequence of each SEQ ID NO of the polynucleotide of (s1), and the corresponding base sequence is the conserved base It can be judged as an array.
 前記(s3)のポリヌクレオチドは、前記各配列番号の塩基配列において、前記保存塩基配列が保存されている場合、同一性は、例えば、50%以上、60%以上、70%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the polynucleotide (s3), when the conserved base sequence is conserved in the base sequence of each SEQ ID NO, the identity is, for example, 50% or more, 60% or more, 70% or more, 80% or more 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
 前記核酸分子(I)の長さは、特に制限されない。前記核酸分子(I)の長さは、例えば、40~120塩基長、45~100塩基長、50~80塩基長である。 The length of the nucleic acid molecule (I) is not particularly limited. The length of the nucleic acid molecule (I) is, for example, 40 to 120 bases long, 45 to 100 bases long, 50 to 80 bases long.
(2)核酸分子(II)
 前記核酸分子(II)は、前記G形成領域(D)および前記結合領域(A)を有し、
前記G形成領域(D)が、第1領域(D1)と第2領域(D2)とを含み、前記第1領域(D1)と前記第2領域(D2)とによりG-カルテットを形成する領域であり、
前記結合領域(A)の一方の末端側に前記第1領域(D1)を有し、前記結合領域(A)の他方の末端側に前記第2領域(D2)を有する一本鎖核酸分子である。
(2) Nucleic acid molecule (II)
The nucleic acid molecule (II) has the G-forming region (D) and the binding region (A),
The G formation region (D) includes a first region (D1) and a second region (D2), and a region in which a G-quartet is formed by the first region (D1) and the second region (D2) And
A single-stranded nucleic acid molecule having the first region (D1) on one end side of the binding region (A) and the second region (D2) on the other end side of the binding region (A). is there.
 前記核酸分子(II)において、前記G形成領域(D)は、例えば、前記二本鎖型(以下、「スプリット型」ともいう)である。前記スプリット型のG形成領域(D)は、前記第1領域(D1)と前記第2領域(D2)とを含み、両者が一対となりG-カルテット構造を形成する分子である。前記核酸分子(II)において、前記第1領域(D1)および前記第2領域(D2)は、それぞれ、前記G-カルテット構造を形成する配列であればよく、より好ましくは、グアニン四重鎖構造を形成する配列である。 In the nucleic acid molecule (II), the G-forming region (D) is, for example, the double-stranded type (hereinafter also referred to as “split type”). The split-type G-forming region (D) is a molecule that includes the first region (D1) and the second region (D2), and forms a G-quartet structure. In the nucleic acid molecule (II), the first region (D1) and the second region (D2) may be any sequence that forms the G-quartet structure, and more preferably, a guanine quadruplex structure. It is the arrangement | sequence which forms.
 前記核酸分子(II)は、例えば、以下のようなメカニズムに基づいて、ターゲットの存否により、前記G形成領域(D)のG-カルテット形成が、ON-OFFに制御される。なお、本発明は、このメカニズムには制限されない。前記核酸分子(II)は、前述のように、一対となってG-カルテット構造を形成する前記第1領域(D1)と前記第2領域(D2)とが、前記結合領域(A)を介して、それぞれ離れて配置されている。このように、前記第1領域(D1)と前記第2領域(D2)とが距離を置いて配置されているため、ターゲット非存在下では、前記第1領域(D1)と前記第2領域(D2)との間で、G-カルテット構造の形成が阻害され(スイッチ-OFF)、結果として、例えば、前記G形成領域(D)とポルフィリンとの複合体形成が阻害される。この状態の前記分子の構造を、不活性型ともいう。他方、前記核酸分子(II)は、ターゲット存在下では、前記結合領域(A)への前記ターゲットの接触によって、前記結合領域(A)の立体構造が、ステムループ構造を有するより安定な構造に変化する。この前記結合領域(A)の立体構造の変化に伴い、前記第1領域(D1)と前記第2領域(D2)とが接近し、前記第1領域(D1)と前記第2領域(D2)との間で、G-カルテット構造が形成され(スイッチ-ON)、結果として、例えば、前記G形成領域(D)とポルフィリンとの複合体が形成され、触媒機能および蛍光性を生起する。この状態の前記分子の構造を、活性型ともいう。このため、前記核酸分子(II)は、例えば、ターゲット非存在下では、前記複合体形成による触媒機能および蛍光性を生起せず、ターゲット存在下でのみ、前記複合体形成による触媒機能および蛍光性を生起するため、定性または定量等のターゲット分析が可能となる。 In the nucleic acid molecule (II), for example, based on the following mechanism, the G-quartet formation of the G-forming region (D) is controlled to ON-OFF depending on the presence or absence of a target. Note that the present invention is not limited to this mechanism. As described above, in the nucleic acid molecule (II), the first region (D1) and the second region (D2) that form a G-quartet structure in a pair form the binding region (A). Are spaced apart from each other. Thus, since the first region (D1) and the second region (D2) are arranged at a distance, in the absence of the target, the first region (D1) and the second region ( D2) is inhibited from forming a G-quartet structure (switch-OFF), and as a result, for example, complex formation between the G-forming region (D) and porphyrin is inhibited. The structure of the molecule in this state is also called an inactive type. On the other hand, in the presence of a target, the nucleic acid molecule (II) has a more stable structure in which the three-dimensional structure of the binding region (A) has a stem-loop structure by the contact of the target with the binding region (A). Change. The first region (D1) and the second region (D2) approach each other with the change in the three-dimensional structure of the binding region (A), and the first region (D1) and the second region (D2). A G-quartet structure is formed (switch-ON) between them and, as a result, for example, a complex of the G-forming region (D) and porphyrin is formed, and a catalytic function and fluorescence are generated. The structure of the molecule in this state is also called an active form. Therefore, for example, the nucleic acid molecule (II) does not cause the catalytic function and fluorescence due to the complex formation in the absence of the target, and the catalytic function and fluorescence due to the complex formation only in the presence of the target. As a result, target analysis such as qualitative or quantitative is possible.
 前記核酸分子(II)は、前述のように、G形成領域(D)として、二本鎖型を使用し、前記結合領域(A)を介して、前記第1領域(D1)と前記第2領域(D2)とを配置している。このため、例えば、コルチゾールに結合する結合核酸分子の種類ごとに条件設定を行う必要がなく、前記結合領域(A)として所望のコルチゾール結合核酸分子をセットできることから、汎用性に優れる。 As described above, the nucleic acid molecule (II) uses a double-stranded type as the G-forming region (D), and the first region (D1) and the second region via the binding region (A). Region (D2) is arranged. For this reason, for example, it is not necessary to set conditions for each type of binding nucleic acid molecule that binds to cortisol, and a desired cortisol-binding nucleic acid molecule can be set as the binding region (A).
 前記核酸分子(II)において、前記第1領域(D1)と前記第2領域(D2)は、前記結合領域(A)を介して配置されていればよく、いずれが前記結合領域(A)の5’側または3’側に配置されてもよい。以下、特に説明しない限り、便宜上、前記結合領域(A)の5’側に前記第1領域(D1)、前記結合領域(A)の3’側に前記第2領域(D2)が配置されている例を示す。 In the nucleic acid molecule (II), the first region (D1) and the second region (D2) may be arranged via the binding region (A), and any of the binding regions (A) You may arrange | position to 5 'side or 3' side. Hereinafter, unless otherwise specified, for convenience, the first region (D1) is disposed on the 5 ′ side of the coupling region (A), and the second region (D2) is disposed on the 3 ′ side of the coupling region (A). An example is shown.
 前記核酸分子(II)は、例えば、前記第1領域(D1)と前記結合領域(A)との間が、直接的または間接的に連結してもよいし、前記第2領域(D2)と前記結合領域(A)との間が、直接的または間接的に連結してもよい。前記直接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが直接結合していることを意味し、前記間接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが、前記介在リンカー領域を介して結合していることを意味し、具体的には、一方の領域の3’末端と前記介在リンカー領域の5’末端とが直接結合し、前記介在リンカー領域の3’末端と他方の領域の5’末端とが直接結合していることを意味する。前記介在リンカー領域は、例えば、核酸配列でもよいし、非核酸配列でもよく、好ましくは前者である。 In the nucleic acid molecule (II), for example, the first region (D1) and the binding region (A) may be connected directly or indirectly, or the second region (D2) and The binding region (A) may be connected directly or indirectly. The direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region. Means that the 'terminal and the 5' end of the other region are linked via the intervening linker region; specifically, the 3 'end of one region and the 5' end of the intervening linker region Means that the 3 ′ end of the intervening linker region and the 5 ′ end of the other region are directly bound. The intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former.
 前記核酸分子(II)は、前述のように、前記第1領域(D1)と前記結合領域(A)との間に前記介在リンカー領域(第1リンカー領域(L))を有し、前記第2領域(D2)と前記結合領域(A)との間に前記介在リンカー領域(第2リンカー領域(L))を有することが好ましい。前記第1リンカー領域(L)および前記第2リンカー領域(L)は、いずれか一方でもよく、両方を有することが好ましい。前記第1リンカー領域(L)と前記第2リンカー領域(L)の両方を有する場合、それぞれの長さは、同じ長さでもよいし異なってもよい。 As described above, the nucleic acid molecule (II) has the intervening linker region (first linker region (L 1 )) between the first region (D1) and the binding region (A), It is preferable to have the intervening linker region (second linker region (L 2 )) between the second region (D2) and the binding region (A). The first linker region (L 1 ) and the second linker region (L 2 ) may be either one or preferably both. When both the first linker region (L 1 ) and the second linker region (L 2 ) are included, the respective lengths may be the same or different.
 前記リンカー領域の長さは、特に制限されず、その下限は、例えば、1、3、5、7、9塩基長であり、その上限は、例えば、20、15、10塩基長である。 The length of the linker region is not particularly limited, and the lower limit is, for example, 1, 3, 5, 7, 9 bases, and the upper limit is, for example, 20, 15, 10 bases.
 また、前記第1リンカー領域(L)の5’末端側からの塩基配列と前記第2リンカー領域(L)の3’末端側からの塩基配列とは、例えば、互いに非相補的であることが好ましい。この場合、前記第1リンカー領域(L)の5’末端側からの塩基配列と前記第2リンカー領域(L)の3’末端側からの塩基配列は、アライメントした状態で、前記核酸分子(II)の分子内で内部ループを形成する領域ともいえる。このように、前記第1領域(D1)および前記第2領域(D2)と前記結合領域(A)との間に、非相補的な前記第1リンカー領域(L)と前記第2リンカー領域(L)を有することで、例えば、前記第1領域(D1)と前記第2領域(D2)との距離を十分に保つことができる。このため、例えば、ターゲット非存在下における、前記第1領域(D1)と前記第2領域(D2)とによるG-カルテット構造の形成を、十分に抑制し、ターゲット非存在下での、触媒機能および蛍光性に基づくバックグラウンドを十分に低下することができる。 Further, the base sequence from the 5 ′ end side of the first linker region (L 1 ) and the base sequence from the 3 ′ end side of the second linker region (L 2 ) are non-complementary to each other, for example. It is preferable. In this case, the nucleic acid molecule in a state where the base sequence from the 5 ′ end side of the first linker region (L 1 ) and the base sequence from the 3 ′ end side of the second linker region (L 2 ) are aligned. It can be said that it is a region forming an internal loop in the molecule of (II). Thus, the first linker region (L 1 ) and the second linker region that are non-complementary between the first region (D1) and the second region (D2) and the binding region (A). By having (L 2 ), for example, the distance between the first region (D1) and the second region (D2) can be sufficiently maintained. For this reason, for example, the formation of a G-quartet structure by the first region (D1) and the second region (D2) in the absence of the target is sufficiently suppressed, and the catalytic function in the absence of the target is achieved. And the background based on fluorescence can be sufficiently reduced.
 前記核酸分子(II)は、例えば、D1-W-D2で表すことができ、具体的には、下記式(I)で表すことができる。
Figure JPOXMLDOC01-appb-C000032
The nucleic acid molecule (II) can be represented by, for example, D1-W-D2, and specifically can be represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000032
 前記式(I)中、
5’側の配列(N)n1-GGG-(N)n2-(N)n3-が、前記第1領域(D1)の配列(d1)であり、
3’側の配列-(N)m3-(N)m2-GGG-(N)m1が、前記第2領域(D2)の配列(d2)であり、
Wが、前記第1領域(D1)と前記第2領域(D2)との間の領域であって、前記結合領域(A)を含み、
Nは、塩基を示し、n1、n2およびn3ならびにm1、m2およびm3は、それぞれ塩基Nの繰り返し個数を示す。
In the formula (I),
5 'side sequence (N) n1 -GGG- (N) n2 - (N) n3 - is the sequence of the first region (D1) (d1),
3 ′ sequence-(N) m3- (N) m2 -GGG- (N) m1 is the sequence (d2) of the second region (D2),
W is a region between the first region (D1) and the second region (D2), including the coupling region (A),
N represents a base, and n1, n2, and n3, and m1, m2, and m3 represent the number of repetitions of the base N, respectively.
 前記式(I)は、前記核酸分子(II)において、前記第1領域(D1)と前記第2領域(D2)とを分子内アライメントした状態を示すが、これは、前記第1領域(D1)と前記第2領域(D2)との配列の関係を示すための模式図であって、本発明において、前記第1領域(D1)と前記第2領域(D2)とが、この状態を取ることを限定するものではない。 Formula (I) shows a state in which the first region (D1) and the second region (D2) are aligned in the nucleic acid molecule (II), which is the first region (D1). ) And the second region (D2) are schematic views showing the arrangement relationship between the first region (D1) and the second region (D2) in the present invention. This is not a limitation.
 前記第1領域(D1)の配列(d1)および前記第2領域(D2)の配列(d2)は、例えば、(N)n1と(N)m1とが、下記条件(1)を満たし、(N)n2と(N)m2とが、下記条件(2)を満たし、(N)n3と(N)m3とが、下記条件(3)を満たすことが好ましい。 In the arrangement (d1) of the first region (D1) and the arrangement (d2) of the second region (D2), for example, (N) n1 and (N) m1 satisfy the following condition (1): N) n2 and (N) m2 preferably satisfy the following condition (2), and (N) n3 and (N) m3 preferably satisfy the following condition (3).
条件(1)
 (N)n1および(N)m1は、(N)n1の5’末端側からの塩基配列と(N)m1の3’末端側からの塩基配列とが、互いに相補的であり、n1およびm1は、同じ0または正の整数である。
条件(2)
 (N)n2および(N)m2は、(N)n2の5’末端側からの塩基配列と(N)m2の3’末端側からの塩基配列とが、互いに非相補的であり、n2およびm2は、それぞれ、正の整数であり、同じでも異なってもよい。
条件(3)
 (N)n3および(N)m3は、n3およびm3が、それぞれ、3または4であり、同じでも異なってもよく、3つの塩基Gを有し、n3またはm3が4の場合、(N)n3および(N)m3は、2番目または3番目の塩基がG以外の塩基Hである。
Condition (1)
In (N) n1 and (N) m1 , the base sequence from the 5 ′ end of (N) n1 and the base sequence from the 3 ′ end of (N) m1 are complementary to each other, and n1 and m1 Are the same 0 or a positive integer.
Condition (2)
(N) n2 and (N) m2 are such that the base sequence from the 5 ′ end of (N) n2 and the base sequence from the 3 ′ end of (N) m2 are non-complementary to each other, m2 is a positive integer, and may be the same or different.
Condition (3)
(N) n3 and (N) m3 are those in which n3 and m3 are 3 or 4, respectively, and may be the same or different, have three bases G, and when n3 or m3 is 4, (N) n3 and (N) m3, the second or third base is a base H except G.
 前記条件(1)は、前記第1領域(D1)と前記第2領域(D2)とをアライメントした場合の5’末端の(N)n1と3’末端の(N)m1との条件である。前記条件(1)において、前記(N)n1の5’末端側からの塩基配列と前記(N)m1の3’末端側からの塩基配列とは、互いに相補的であり、同じ長さである。(N)n1と(N)m1とは、同じ長さの相補的な配列であるため、アライメントした状態で、ステムを形成するステム領域ともいえる。 The condition (1) is a condition of (N) n1 at the 5 ′ end and (N) m1 at the 3 ′ end when the first region (D1) and the second region (D2) are aligned. . In the condition (1), the base sequence from the 5 ′ end of (N) n1 and the base sequence from the 3 ′ end of (N) m1 are complementary to each other and have the same length. . Since (N) n1 and (N) m1 are complementary sequences of the same length, they can be said to be stem regions that form stems in an aligned state.
 n1およびm1は、同じ0または正の整数であればよく、例えば、それぞれ、0、1~10であり、好ましくは、1、2または3である。 N1 and m1 may be the same 0 or a positive integer, and are, for example, 0, 1 to 10, and preferably 1, 2, or 3, respectively.
 前記条件(2)は、前記第1領域(D1)と前記第2領域(D2)とをアライメントした場合の(N)n2と(N)m2との条件である。前記条件(2)において、前記(N)n2の塩基配列と前記(N)m2の塩基配列とは、互いに非相補的であり、n2およびm2は、同じ長さでも異なる長さでもよい。(N)n2と(N)m2とは、非相補的な配列であるため、アライメントした状態で、内部ループを形成する領域ともいえる。 The condition (2) is a condition of (N) n2 and (N) m2 when the first region (D1) and the second region (D2) are aligned. In the condition (2), the base sequence of (N) n2 and the base sequence of (N) m2 are non-complementary to each other, and n2 and m2 may have the same length or different lengths. Since (N) n2 and (N) m2 are non-complementary sequences, they can be said to be regions that form an inner loop in an aligned state.
 n2およびm2は、正の整数であり、例えば、それぞれ、1~10であり、好ましくは、1または2である。n2とm2とは、同じでも異なってもよく、例えば、n2=m2、n2>m2、n2<m2のいずれでもよく、好ましくはn2>m2、n2<m2である。 N2 and m2 are positive integers, for example, 1 to 10 respectively, preferably 1 or 2. n2 and m2 may be the same or different. For example, n2 = m2, n2> m2, and n2 <m2, and preferably n2> m2 and n2 <m2.
 前記条件(3)は、前記第1領域(D1)と前記第2領域(D2)とをアライメントした場合の(N)n3と(N)m3との条件である。前記条件(3)において、前記(N)n3の塩基配列と前記(N)m3の塩基配列とは、それぞれ、3つの塩基Gを有する3塩基長または4塩基長の配列であり、同じでも異なってもよい。n3またはm3が4の場合、(N)n3および(N)m3は、2番目または3番目の塩基がG以外の塩基Hである。3つのGを有する(N)n3および(N)m3は、(N)n1と(N)n2との間のGGGおよび(N)m1と(N)m2との間のGGGとともに、G-カルテット構造を形成するG形成領域(D)である。 The condition (3) is a condition of (N) n3 and (N) m3 when the first region (D1) and the second region (D2) are aligned. In the condition (3), the base sequence of (N) n3 and the base sequence of (N) m3 are 3 or 4 base length sequences having 3 bases G, and the same or different May be. When n3 or m3 is 4, (N) n3 and (N) m3 are bases H other than G in the second or third base. (N) n3 and (N) m3 with three Gs together with GGG between (N) n1 and (N) n2 and GGG between (N) m1 and (N) m2 G formation region (D) forming the structure.
 n3およびm3は、例えば、n3=m3、n3>m3、n3<m3のいずれでもよく、好ましくはn3>m3、n3<m3である。 N3 and m3 may be any of n3 = m3, n3> m3, and n3 <m3, and preferably n3> m3 and n3 <m3.
 G以外の塩基である前記塩基Hは、例えば、A、C、TまたはUがあげられ、好ましくは、A、CまたはTである。 Examples of the base H that is a base other than G include A, C, T, and U, and preferably A, C, or T.
 前記条件(3)は、具体例として、下記条件(3-1)、(3-2)または(3-3)があげられる。
条件(3-1)
 (N)n3および(N)m3のうち、一方の5’側からの配列がGHGGであり、他方の5’側からの配列がGGGである。
条件(3-2)
 (N)n3および(N)m3のうち、一方の5’側からの配列がGGHGであり、他方の5’側からの配列がGGGである。
条件(3-3)
 (N)n3および(N)m3の両方の配列がGGGである。
Specific examples of the condition (3) include the following conditions (3-1), (3-2), and (3-3).
Condition (3-1)
Among (N) n3 and (N) m3 , the sequence from one 5 ′ side is GHGG, and the sequence from the other 5 ′ side is GGG.
Condition (3-2)
Among (N) n3 and (N) m3 , the sequence from one 5 ′ side is GGHG, and the sequence from the other 5 ′ side is GGG.
Condition (3-3)
Both (N) n3 and (N) m3 sequences are GGG.
 前記核酸分子(II)において、前記結合領域(A)は、例えば、前記(a1)~(a4)からなる群から選択された少なくとも1つのポリヌクレオチドにおいて、前記(a1)のポリヌクレオチドが、前記表2の配列番号280~299のいずれかの塩基配列における四角で囲った塩基配列からなるポリヌクレオチドである場合であり、その説明を援用できる。 In the nucleic acid molecule (II), the binding region (A) is, for example, at least one polynucleotide selected from the group consisting of (a1) to (a4), wherein the polynucleotide of (a1) is This is the case of a polynucleotide comprising a base sequence surrounded by a square in any of the base sequences of SEQ ID NOS: 280 to 299 in Table 2, and the description thereof can be incorporated.
 前記核酸分子(II)において、前記第1領域(D1)および前記第2領域(D2)の一方が、例えば、前記(e1)~(e4)からなる群から選択された少なくとも1つのポリヌクレオチドにおいて、前記(e1)のポリヌクレオチドを、前記表2の配列番号280~299のいずれかの塩基配列における下線部の塩基配列からなるポリヌクレオチドに読み替えたポリヌクレオチドであり、前記読み替えを行った上で、その説明を援用できる。また、他方の領域が、例えば、前記(f1)~(f4)からなる群から選択された少なくとも1つのポリヌクレオチドにおいて、前記(e1)のポリヌクレオチドを、前記表2の配列番号280~299のいずれかの塩基配列における下線部の塩基配列からなるポリヌクレオチドに読み替えたポリヌクレオチドであり、前記読み替えを行った上で、その説明を援用できる。 In the nucleic acid molecule (II), one of the first region (D1) and the second region (D2) is, for example, in at least one polynucleotide selected from the group consisting of (e1) to (e4) A polynucleotide obtained by replacing the polynucleotide of (e1) with a polynucleotide having an underlined base sequence in any of the base sequences of SEQ ID NOS: 280 to 299 in Table 2, and after the above replacement The explanation can be used. In addition, in the other region, for example, in at least one polynucleotide selected from the group consisting of (f1) to (f4), the polynucleotide of (e1) is represented by SEQ ID NOs: 280 to 299 in Table 2 above. It is a polynucleotide that has been replaced with a polynucleotide comprising an underlined base sequence in any base sequence, and the description can be used after the above replacement.
 前記第1領域(D1)の長さは、特に制限されず、下限は、例えば、7塩基長、8塩基長、10塩基長であり、上限は、例えば、30塩基長、20塩基長、10塩基長、その範囲は、例えば、7~30塩基長、7~20塩基長、7~10塩基長である。前記第2領域(D2)の長さは、特に制限されず、下限は、例えば、7塩基長、8塩基長、10塩基長であり、上限は、例えば、30塩基長、20塩基長、10塩基長、その範囲は、例えば、7~30塩基長、7~20塩基長、7~10塩基長である。前記第1領域(D1)と前記第2領域(D2)の長さは、それぞれ同じであっても異なってもよい。 The length of the first region (D1) is not particularly limited, and the lower limit is, for example, 7 base length, 8 base length, 10 base length, and the upper limit is, for example, 30 base length, 20 base length, 10 The base length and the range thereof are, for example, 7 to 30 base length, 7 to 20 base length, and 7 to 10 base length. The length of the second region (D2) is not particularly limited, and the lower limit is, for example, 7 base length, 8 base length, 10 base length, and the upper limit is, for example, 30 base length, 20 base length, 10 The base length and the range thereof are, for example, 7 to 30 base length, 7 to 20 base length, and 7 to 10 base length. The lengths of the first region (D1) and the second region (D2) may be the same or different.
 具体例として、前記核酸分子(II)は、例えば、下記(t1)~(t3)および(t4)からなる群から選択された少なくとも1つのポリヌクレオチドである。 As a specific example, the nucleic acid molecule (II) is, for example, at least one polynucleotide selected from the group consisting of the following (t1) to (t3) and (t4).
(t1)配列番号280~299のいずれかの塩基配列からなるポリヌクレオチド
(t2)前記(t1)のいずれかの塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、前記(t1)と同等の機能を奏するポリヌクレオチド
(t3)前記(t1)のいずれかの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、前記(t1)と同等の機能を奏するポリヌクレオチド
(t4)前記(t1)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、前記(t1)と同等の機能を奏するポリヌクレオチド
(T1) A polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 280 to 299 (t2) In any one of the nucleotide sequences of (t1), one or several bases are deleted, substituted, inserted and / or added. A polynucleotide having a function equivalent to that of (t1) (t3) comprising a base sequence having 80% or more identity to any of the base sequences of (t1), A polynucleotide having a function equivalent to that of (t1) (t4) from a nucleotide sequence complementary to a polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising any one of the nucleotide sequences of (t1) And a polynucleotide having a function equivalent to that of (t1)
 本発明において、「前記(t1)と同等の機能を奏する」とは、前記ターゲット非存在下で、前記G形成領域(D)がG-カルテット構造を形成せず、且つ、前記ターゲット存在下で、前記結合領域(A)に前記ターゲットが結合し、前記G形成領域(D)がG-カルテット構造を形成することを意味する。 In the present invention, “having the same function as (t1)” means that in the absence of the target, the G formation region (D) does not form a G-quartet structure, and in the presence of the target. This means that the target is bonded to the bonding region (A) and the G-forming region (D) forms a G-quartet structure.
 前記(t1)のポリヌクレオチドは、配列番号280~299のいずれかの塩基配列からなるポリヌクレオチドである。 The polynucleotide (t1) is a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 280 to 299.
 前記(t2)のポリヌクレオチドにおいて、「1もしくは数個」は、例えば、前記(t1)のいずれかの塩基配列において、例えば、1~10個、1~7個、1~5個、1~3個、1または2個である。 In the polynucleotide (t2), “1 or several” means, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 5 in any base sequence of (t1). Three, one or two.
 前記(t3)のポリヌクレオチドにおいて、「同一性」は、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the polynucleotide (t3), “identity” is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more. .
 前記(t4)のポリヌクレオチドにおいて、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(t1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。「ハイブリダイズ」および「ストリンジェントな条件」については、前述の記載を援用できる。 In the polynucleotide (t4), the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide (t1). As for “hybridization” and “stringent conditions”, the above description can be used.
 前記(t2)~(t4)のポリヌクレオチドは、前記各配列番号の塩基配列において、前記結合領域(A)および前記G形成領域(D)の少なくとも一方の塩基配列が保存されていることが好ましい。前記各配列番号の塩基配列において、前記保存塩基配列は、例えば、前記(t1)のポリヌクレオチドの各配列番号の塩基配列を基準として、アライメントを行い、対応する塩基配列を前記保存されている塩基配列と判断できる。 The polynucleotides (t2) to (t4) preferably have at least one base sequence of the binding region (A) and the G-forming region (D) conserved in the base sequence of each SEQ ID NO. . In the base sequence of each SEQ ID NO, the conserved base sequence is, for example, aligned based on the base sequence of each SEQ ID NO of the polynucleotide of (t1), and the corresponding base sequence is the conserved base It can be judged as an array.
 前記(t3)のポリヌクレオチドは、前記各配列番号の塩基配列において、前記保存塩基配列が保存されている場合、同一性は、例えば、50%以上、60%以上、70%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the polynucleotide of (t3), when the conserved base sequence is conserved in the base sequence of each SEQ ID NO, the identity is, for example, 50% or more, 60% or more, 70% or more, 80% or more 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
 前記核酸分子(II)の長さは、特に制限されない。前記核酸分子(II)の長さは、下限は、例えば、25塩基長、30塩基長、35塩基長であり、上限は、例えば、200塩基長、100塩基長、80塩基長、その範囲は、例えば、25~200塩基長、30~100塩基長、35~80塩基長である。 The length of the nucleic acid molecule (II) is not particularly limited. The lower limit of the length of the nucleic acid molecule (II) is, for example, 25 base length, 30 base length, 35 base length, and the upper limit is, for example, 200 base length, 100 base length, 80 base length, the range is For example, it is 25 to 200 bases long, 30 to 100 bases long, 35 to 80 bases long.
(3)核酸分子(III)
 前記核酸分子(III)は、第1鎖(ss1)と第2鎖(ss2)とから構成される二本鎖核酸分子であり、
前記第1鎖(ss1)は、前記G形成領域(D)と前記結合領域(A)とをこの順序で有し、
前記第2鎖(ss2)は、ステム形成領域(S)およびステム形成領域(S)をこの順序で有し、前記ステム形成領域(S)は、前記G形成領域(D)に対して相補的な配列を有し、前記ステム形成領域(S)は、前記結合領域(A)に対して相補的な配列を有する二本鎖核酸分子である。
(3) Nucleic acid molecule (III)
The nucleic acid molecule (III) is a double-stranded nucleic acid molecule composed of a first strand (ss1) and a second strand (ss2),
The first strand (ss1) has the G-forming region (D) and the binding region (A) in this order,
The second chain (ss2) has a stem formation region (S D ) and a stem formation region (S A ) in this order, and the stem formation region (S D ) is in the G formation region (D). The stem-forming region (S A ) is a double-stranded nucleic acid molecule having a sequence complementary to the binding region (A).
 前記核酸分子(III)において、前記G形成領域(D)は、例えば、前記一本鎖型である。 In the nucleic acid molecule (III), the G-forming region (D) is, for example, the single-stranded type.
 前記核酸分子(III)は、例えば、以下のようなメカニズムに基づいて、ターゲットの存否により、前記G形成領域(D)のG-カルテット形成が、ON-OFFに制御される。なお、本発明は、このメカニズムには制限されない。前記核酸分子(III)は、ターゲット非存在下では、前記第1鎖(ss1)の前記G形成領域(D)と前記第2鎖(ss2)の前記ステム形成領域(S)とがアニーリングすることで、前記G形成領域(D)のG-カルテット構造の形成が阻害され(スイッチ-OFF)、結果として、例えば、前記G形成領域(D)とポルフィリンとの複合体形成が阻害される。また、前記分子内で、前記第1鎖(ss1)の前記結合領域(A)と前記第2鎖(ss2)の前記ステム形成領域(S)とがアニーリングすることで、前記結合領域(A)の構造も固定されている。この状態の前記分子の構造を、不活性型ともいう。他方、前記核酸分子(III)は、ターゲット存在下では、前記結合領域(A)への前記ターゲットの接触によって、前記結合領域(A)と前記ステム形成領域(S)とのアニーリングが解除され、前記結合領域(A)の立体構造が、より安定な構造に変化する。これに伴い、前記G形成領域(D)と前記ステム形成領域(S)とのアニーリングが解除され、前記G形成領域(D)の領域内でG-カルテット構造が形成され(スイッチ-ON)、結果として、例えば、前記G形成領域(D)とポルフィリンとの複合体が形成され、触媒機能および蛍光性を生起する。この状態の前記分子の構造を、活性型ともいう。このため、前記核酸分子(III)は、ターゲット非存在下では、前記複合体形成による触媒機能および蛍光性を生起せず、ターゲット存在下でのみ、前記複合体形成による触媒機能および蛍光性を生起するため、定性または定量等のターゲット分析が可能となる。 In the nucleic acid molecule (III), for example, the G-quartet formation of the G-forming region (D) is controlled to be ON-OFF depending on the presence or absence of a target based on the following mechanism. Note that the present invention is not limited to this mechanism. In the absence of a target, the nucleic acid molecule (III) anneals the G-forming region (D) of the first strand (ss1) and the stem-forming region (S D ) of the second strand (ss2). As a result, formation of the G-quartet structure in the G-forming region (D) is inhibited (switch-OFF), and as a result, for example, formation of a complex between the G-forming region (D) and porphyrin is inhibited. Further, in the molecule, the binding region (A) of the first strand (ss1) and the stem formation region (S A ) of the second strand (ss2) are annealed, whereby the binding region (A ) Structure is also fixed. The structure of the molecule in this state is also called an inactive type. On the other hand, the nucleic acid molecule (III) is, under the target presence, by contact of the target to the binding region (A), annealing of the coupling region (A) and the stem forming regions (S A) is released The three-dimensional structure of the binding region (A) changes to a more stable structure. Accordingly, the annealing of the G formation region (D) and the stem formation region (S D ) is canceled, and a G-quartet structure is formed in the region of the G formation region (D) (switch-ON). As a result, for example, a complex of the G-forming region (D) and porphyrin is formed, causing a catalytic function and fluorescence. The structure of the molecule in this state is also called an active form. For this reason, the nucleic acid molecule (III) does not cause the catalytic function and fluorescence due to the complex formation in the absence of the target, and does not cause the catalytic function and fluorescence due to the complex formation only in the presence of the target. Therefore, target analysis such as qualitative or quantitative is possible.
 前記ステム形成領域(S)は、例えば、その全部または一部が、前記G形成領域(D)の一部に対して相補的な配列であることが好ましい。また、前記ステム形成領域(S)は、例えば、その全部または一部が、前記結合領域(A)の一部に対して相補的な配列であることが好ましい。 For example, the stem formation region (S D ) preferably has a sequence that is entirely or partially complementary to a part of the G formation region (D). Moreover, it is preferable that the stem forming region (S A ) is, for example, a sequence that is entirely or partially complementary to a part of the binding region (A).
 前記核酸分子(III)において、前記各領域の順序は、前記G形成領域(D)と前記ステム形成領域(S)とがアニーリングし、前記結合領域(A)と前記ステム形成領域(S)とがアニーリングする順序であればよい。具体例としては、以下の順序が例示できる。
  (1) ss1  5’- A-D -3’
      ss2  3’- S-SD -5’
  (2) ss1  5’- D-A -3’
      ss2  3’- S-SA -5’
In the nucleic acid molecule (III), the sequence of each region, the G forming region (D) and the stem forming region and the (S D) is annealed, the binding region (A) and the stem forming regions (S A ) And the annealing order. The following order can be illustrated as a specific example.
(1) ss1 5'- AD-3 '
ss2 3'- S A -S D -5 '
(2) ss1 5'- DA-3 '
ss2 3'- S D -S A -5 '
 前記(1)において、前記ステム形成領域(S)は、前記結合領域(A)の3’側領域と相補的であり、前記ステム形成領域(S)は、前記G形成領域(D)の5’側領域と相補的であることが好ましい。前記(2)において、前記ステム形成領域(S)は、前記G形成領域(D)の3’側領域と相補的であり、前記ステム形成領域(S)は、前記結合領域(A)の5’側領域と相補的であることが好ましい。 In (1), the stem formation region (S A ) is complementary to the 3′-side region of the binding region (A), and the stem formation region (S D ) is the G formation region (D). It is preferable to be complementary to the 5 ′ side region. In (2), the stem formation region (S D ) is complementary to the 3′-side region of the G formation region (D), and the stem formation region (S A ) is the binding region (A). It is preferable to be complementary to the 5 ′ side region.
 前記核酸分子(III)は、例えば、前記各領域間が、直接的または間接的に連結してもよい。前記直接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが直接結合していることを意味し、前記間接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが、前記介在リンカー領域を介して結合していることを意味する。前記介在リンカー領域は、例えば、核酸配列でもよいし、非核酸配列でもよく、好ましくは前者である。 In the nucleic acid molecule (III), for example, the regions may be connected directly or indirectly. The direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region. It means that the “end” and the 5 ′ end of the other region are bound via the intervening linker region. The intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former.
 前記核酸分子(III)は、例えば、前記第1鎖(ss1)における前記結合領域(A)と前記G形成領域(D)との間、および、前記第2鎖(ss2)における前記ステム形成領域(S)と前記ステム形成領域(S)との間に、前記介在リンカー領域を有することが好ましい。前記第1鎖(ss1)における介在リンカー領域(L)と、前記第2鎖(ss2)における介在リンカー領域(L)とは、互いに非相補的な配列であることが好ましい。 The nucleic acid molecule (III) is, for example, between the binding region (A) and the G-forming region (D) in the first strand (ss1) and the stem-forming region in the second strand (ss2). It is preferable to have the intervening linker region between (S D ) and the stem forming region (S A ). The intervening linker region (L 1 ) in the first strand (ss1) and the intervening linker region (L 2 ) in the second strand (ss2) are preferably non-complementary sequences.
 具体例として、前記(1)および(2)が、前記第1鎖(ss1)および前記第2鎖(ss2)に前記介在リンカー領域を有する形態について、例えば、以下の順序が例示できる。以下の例示において、前記結合領域(A)と前記G形成領域(D)とを連結する介在リンカー領域を(L)、前記ステム形成領域(S)と前記ステム形成領域(S)とを連結する介在リンカー領域を(L)で示す。前記核酸分子(III)は、例えば、介在リンカー領域として、例えば、(L)および(L)の両方を有してもよいし、いずれか一方のみを有してもよい。
  (1’) ss1  5’- A-L-D -3’
       ss2  3’- S-L-SD -5’
  (2’) ss1  5’- D-L-A -3’
       ss2  3’- S-L-SA -5’
As a specific example, for example, the following order can be exemplified for the forms in which (1) and (2) have the intervening linker region in the first chain (ss1) and the second chain (ss2). In the following examples, an intervening linker region that connects the binding region (A) and the G-forming region (D) is (L 1 ), the stem-forming region (S D ), and the stem-forming region (S A ) The intervening linker region linking is represented by (L 2 ). For example, the nucleic acid molecule (III) may have both (L 1 ) and (L 2 ) as an intervening linker region, or may have only one of them.
(1 ') ss1 5'- AL 1 -D -3'
ss2 3'- S A -L 2 -S D -5 '
(2 ') ss1 5'- DL 1 -A -3'
ss2 3'- S D -L 2 -S A -5 '
 前記(1’)および(2’)の形態は、例えば、以下のように、G-カルテット構造の形成がON-OFFされる。ターゲット非存在下において、例えば、前記結合領域(A)と前記ステム形成領域(S)、前記G形成領域(D)と前記ステム形成領域(S)が、それぞれステムを形成し、これら2つのステムの間で、前記介在リンカー領域(L)と前記介在リンカー領域(L)が、内部ループを形成して、前記G形成領域(D)のG-カルテット構造の形成を阻害する。そして、ターゲット存在下、前記結合領域(A)へのターゲットの接触により、前記それぞれのステム形成が解除され、前記G形成領域(D)において、G-カルテット構造が形成される。 In the forms (1 ′) and (2 ′), for example, the formation of the G-quartet structure is turned on and off as follows. In the absence of the target, for example, the binding region (A), the stem formation region (S A ), the G formation region (D), and the stem formation region (S D ) form stems, respectively. Between the two stems, the intervening linker region (L 1 ) and the intervening linker region (L 2 ) form an internal loop that inhibits the formation of the G-quartet structure of the G-forming region (D). Then, in the presence of the target, the respective stem formation is released by the contact of the target with the binding region (A), and a G-quartet structure is formed in the G formation region (D).
 前記核酸分子(III)において、前記ステム形成配列(S)および前記ステム形成配列(S)の長さは、特に制限されない。前記ステム形成配列(S)の長さは、例えば、1~60塩基長、1~10塩基長、1~7塩基長である。前記ステム形成配列(S)の長さは、例えば、1~30塩基長、0~10塩基長、1~10塩基長、0~7塩基長、1~7塩基長である。前記ステム形成配列(S)と前記ステム形成配列(S)は、例えば、同じ長さでもよいし、前者が長くてもよいし、後者が長くてもよい。 In the nucleic acid molecule (III), the lengths of the stem-forming sequence (S A ) and the stem-forming sequence (S D ) are not particularly limited. The length of the stem forming sequence (S A ) is, for example, 1 to 60 bases long, 1 to 10 bases long, or 1 to 7 bases long. The stem-forming sequence (S D ) has a length of, for example, 1 to 30 bases, 0 to 10 bases, 1 to 10 bases, 0 to 7 bases, or 1 to 7 bases. For example, the stem forming sequence (S A ) and the stem forming sequence (S D ) may have the same length, the former may be long, or the latter may be long.
 前記介在リンカー領域(L)および(L)の長さは、特に制限されない。前記介在リンカー領域(L)および(L)の長さは、それぞれ、例えば、0~30塩基長、1~30塩基長、1~15塩基長、1~6塩基長である。また、前記介在リンカー領域(L)および(L)の長さは、例えば、同じでも、異なってもよい。後者の場合、前記介在リンカー領域(L)および(L)の長さの差は、特に制限されず、例えば、1~10塩基長、1または2塩基長、1塩基長である。 The lengths of the intervening linker regions (L 1 ) and (L 2 ) are not particularly limited. The lengths of the intervening linker regions (L 1 ) and (L 2 ) are, for example, 0 to 30 bases, 1 to 30 bases, 1 to 15 bases, and 1 to 6 bases, respectively. The lengths of the intervening linker regions (L 1 ) and (L 2 ) may be the same or different, for example. In the latter case, the difference in length of the intervening linker region (L 1) and (L 2) is not particularly limited, for example, 1 to 10 bases in length, 1 or 2 bases in length, one base in length.
 前記核酸分子(III)において、前記結合領域(A)は、例えば、前記(a1)~(a4)からなる群から選択された少なくとも1つのポリヌクレオチドにおいて、前記(a1)のポリヌクレオチドが、前記表3A~Dの配列番号300~427いずれかの塩基配列における四角で囲った塩基配列からなるポリヌクレオチドである場合であり、その説明を援用できる。 In the nucleic acid molecule (III), the binding region (A) is, for example, at least one polynucleotide selected from the group consisting of (a1) to (a4), wherein the polynucleotide of (a1) is This is the case of a polynucleotide comprising a base sequence surrounded by a square in any one of SEQ ID NOS: 300 to 427 in Tables 3A to D, and the description thereof can be used.
 前記核酸分子(III)において、前記G形成領域(D)は、例えば、前記(d1)~(d4)からなる群から選択された少なくとも1つのポリヌクレオチドにおいて、前記(d1)のポリヌクレオチドが、前記表3A~Dの配列番号300~427のいずれかの塩基配列における下線部の塩基配列からなるポリヌクレオチドである場合であり、その説明を援用できる。 In the nucleic acid molecule (III), the G-forming region (D) is, for example, at least one polynucleotide selected from the group consisting of (d1) to (d4), wherein the polynucleotide of (d1) is This is a case of a polynucleotide comprising the underlined base sequence in any of the base sequences of SEQ ID NOS: 300 to 427 in Tables 3A to D, and the description thereof can be used.
 具体例として、前記核酸分子(III)において、前記第1鎖(ss1)は、例えば、下記(u1)~(u3)および(u4)からなる群から選択された少なくとも1つのポリヌクレオチドである。 As a specific example, in the nucleic acid molecule (III), the first strand (ss1) is, for example, at least one polynucleotide selected from the group consisting of (u1) to (u3) and (u4) below.
(u1)配列番号300~427のいずれかの塩基配列からなるポリヌクレオチド
(u2)前記(u1)のいずれかの塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、前記(u1)と同等の機能を奏するポリヌクレオチド
(u3)前記(u1)のいずれかの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、前記(u1)と同等の機能を奏するポリヌクレオチド
(u4)前記(u1)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、前記(u1)と同等の機能を奏するポリヌクレオチド
(U1) A polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 300 to 427 (u2) In any one of the nucleotide sequences of (u1), one or several bases are deleted, substituted, inserted and / or added. A polynucleotide having a function equivalent to that of (u1) (u3) comprising a base sequence having 80% or more identity to any of the base sequences of (u1), A polynucleotide having a function equivalent to that of (u1) (u4) from a nucleotide sequence complementary to a polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising any one of the nucleotide sequences of (u1) And a polynucleotide having a function equivalent to that of (u1)
 本発明において、「前記(u1)と同等の機能を奏する」とは、前記ターゲット非存在下で、前記G形成領域(D)がG-カルテット構造を形成せず、且つ、前記ターゲット存在下で、前記結合領域(A)に前記ターゲットが結合し、前記G形成領域(D)がG-カルテット構造を形成することを意味する。 In the present invention, “having the same function as (u1)” means that in the absence of the target, the G formation region (D) does not form a G-quartet structure, and in the presence of the target. This means that the target is bonded to the bonding region (A) and the G-forming region (D) forms a G-quartet structure.
 前記(u1)のポリヌクレオチドは、配列番号300~427のいずれかの塩基配列からなるポリヌクレオチドである。 The polynucleotide (u1) is a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 300 to 427.
 前記(u2)のポリヌクレオチドにおいて、「1もしくは数個」は、例えば、前記(u1)のいずれかの塩基配列において、例えば、1~10個、1~7個、1~5個、1~3個、1または2個である。 In the polynucleotide (u2), “1 or several” means, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 5 in any one of the nucleotide sequences of (u1). Three, one or two.
 前記(u3)のポリヌクレオチドにおいて、「同一性」は、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the polynucleotide (u3), “identity” is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more. .
 前記(u4)のポリヌクレオチドにおいて、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(u1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。「ハイブリダイズ」および「ストリンジェントな条件」については、前述の記載を援用できる。 In the polynucleotide (u4), the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide (u1). As for “hybridization” and “stringent conditions”, the above description can be used.
 前記(u2)~(u4)のポリヌクレオチドは、前記各配列番号の塩基配列において、前記結合領域(A)および前記G形成領域(D)の少なくとも一方の塩基配列が保存されていることが好ましい。前記各配列番号の塩基配列において、前記保存塩基配列は、例えば、前記(u1)のポリヌクレオチドの各配列番号の塩基配列を基準として、アライメントを行い、対応する塩基配列を前記保存されている塩基配列と判断できる。 In the polynucleotides (u2) to (u4), it is preferable that at least one base sequence of the binding region (A) and the G-forming region (D) is conserved in the base sequence of each SEQ ID NO. . In the base sequence of each SEQ ID NO, the conserved base sequence is, for example, aligned based on the base sequence of each SEQ ID NO of the polynucleotide (u1), and the corresponding base sequence is the conserved base. It can be judged as an array.
 前記(u3)のポリヌクレオチドは、前記各配列番号の塩基配列において、前記保存塩基配列が保存されている場合、同一性は、例えば、50%以上、60%以上、70%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the polynucleotide (u3), when the conserved base sequence is conserved in the base sequence of each SEQ ID NO, the identity is, for example, 50% or more, 60% or more, 70% or more, 80% or more 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
 また、前記核酸分子(III)において、前記第2鎖(ss2)は、例えば、下記(v1)~(v3)および(v4)からなる群から選択された少なくとも1つのポリヌクレオチドである。 In the nucleic acid molecule (III), the second strand (ss2) is, for example, at least one polynucleotide selected from the group consisting of the following (v1) to (v3) and (v4).
(v1)配列番号428~555のいずれかの塩基配列からなるポリヌクレオチド
(v2)前記(v1)のいずれかの塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、前記(v1)と同等の機能を奏するポリヌクレオチド
(v3)前記(v1)のいずれかの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、前記(v1)と同等の機能を奏するポリヌクレオチド
(v4)前記(v1)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、前記(v1)と同等の機能を奏するポリヌクレオチド
(V1) A polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 428 to 555 (v2) In the nucleotide sequence of any one of (v1), one or several bases are deleted, substituted, inserted and / or added. A polynucleotide having a function equivalent to that of (v1) (v3) consisting of a base sequence having 80% or more identity to any of the base sequences of (v1), (V4) A polynucleotide having a function equivalent to that of (v4) From a nucleotide sequence complementary to a polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising any one of the nucleotide sequences of (v1) above A polynucleotide having the same function as (v1) above
 本発明において、「前記(v1)と同等の機能を奏する」とは、前記ターゲット非存在下で、前記第1鎖(ss1)とのアニーリングにより、前記G形成領域(D)がG-カルテット構造を形成せず、且つ、前記ターゲット存在下で、前記結合領域(A)に前記ターゲットが結合し、前記第1鎖(ss1)とのアニーリングが解除され、前記G形成領域(D)がG-カルテット構造を形成することを意味する。 In the present invention, “having the same function as (v1)” means that the G-forming region (D) has a G-quartet structure by annealing with the first strand (ss1) in the absence of the target. In the presence of the target, the target binds to the binding region (A), annealing with the first strand (ss1) is released, and the G-forming region (D) becomes G- It means forming a quartet structure.
 前記(v1)のポリヌクレオチドは、下記表4AおよびBの配列番号428~555のいずれかの塩基配列からなるポリヌクレオチドである。 The polynucleotide (v1) is a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 428 to 555 in Tables 4A and B below.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 前記(v2)のポリヌクレオチドにおいて、「1もしくは数個」は、例えば、前記(v1)のいずれかの塩基配列において、例えば、1~10個、1~7個、1~5個、1~3個、1または2個である。 In the polynucleotide (v2), “1 or several” means, for example, any one of the nucleotide sequences of (v1), for example, 1 to 10, 1 to 7, 1 to 5, 1 to Three, one or two.
 前記(v3)のポリヌクレオチドにおいて、「同一性」は、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the polynucleotide (v3), “identity” is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more. .
 前記(v4)のポリヌクレオチドにおいて、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(v1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。「ハイブリダイズ」および「ストリンジェントな条件」については、前述の記載を援用できる。 In the polynucleotide (v4), the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide (v1). As for “hybridization” and “stringent conditions”, the above description can be used.
 前記核酸分子(III)の前記第1鎖(ss1)および前記第2鎖(ss2)の組合せは、特に制限されず、例えば、下記表5の(1)~(127)および(128)からなる群から選択された少なくとも1つの組合せであり、前記第1鎖(ss1)および前記第2鎖(ss2)が、それぞれ、前記組合せに対応する配列番号の塩基配列からなるポリヌクレオチドを含む。前記第1鎖(ss1)は、例えば、前記(u1)~(u4)からなる群から選択された少なくとも1つのポリヌクレオチドにおいて、前記(u1)のポリヌクレオチドを、前記組合せに対応する配列番号の塩基配列からなるポリヌクレオチドに読み替えたポリヌクレオチドでもよく、前記読み替えを行った上で、その説明を援用できる。前記第2鎖(ss2)は、例えば、前記(v1)~(v4)からなる群から選択された少なくとも1つのポリヌクレオチドにおいて、前記(v1)のポリヌクレオチドが、前記組合せに対応する配列番号の塩基配列からなるポリヌクレオチドに読み替えたポリヌクレオチドでもよく、前記読み替えを行った上で、その説明を援用できる。 The combination of the first strand (ss1) and the second strand (ss2) of the nucleic acid molecule (III) is not particularly limited, and includes, for example, (1) to (127) and (128) in Table 5 below. It is at least one combination selected from the group, and each of the first strand (ss1) and the second strand (ss2) includes a polynucleotide having a base sequence having a sequence number corresponding to the combination. In the first strand (ss1), for example, in at least one polynucleotide selected from the group consisting of (u1) to (u4), the polynucleotide of (u1) may have the sequence number corresponding to the combination. The polynucleotide may be replaced with a polynucleotide having a base sequence, and the description can be used after the above replacement. In the second strand (ss2), for example, in at least one polynucleotide selected from the group consisting of (v1) to (v4), the polynucleotide of (v1) has the sequence number corresponding to the combination. The polynucleotide may be replaced with a polynucleotide having a base sequence, and the description can be used after the above replacement.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 前記核酸分子(III)において、前記第1鎖(ss1)および前記第2鎖(ss2)の長さは、特に制限されない。前記第1鎖(ss1)の長さは、例えば、40~200塩基長、42~100塩基長、45~60塩基長である。前記第2鎖(ss2)の長さは、例えば、4~120塩基長、5~25塩基長、10~15塩基長である。 In the nucleic acid molecule (III), the lengths of the first strand (ss1) and the second strand (ss2) are not particularly limited. The length of the first strand (ss1) is, for example, 40 to 200 bases long, 42 to 100 bases long, 45 to 60 bases long. The length of the second strand (ss2) is, for example, 4 to 120 bases long, 5 to 25 bases long, or 10 to 15 bases long.
 前記核酸分子(III)は、例えば、第3鎖(ss3)を含み、前記第3鎖は、ステム形成領域(S’)およびステム形成領域(S’)をこの順序で有し、前記ステム形成領域(S’)は、前記G形成領域(D)に対して相補的な配列を有し、前記ステム形成領域(S’)は、前記結合領域(A)に対して相補的な配列を有してもよい。前記第3鎖(ss3)は、例えば、2つの前記第1鎖(ss1)の結合領域(A)およびG形成領域(D)と結合できる。すなわち、前記第3鎖(ss3)は、例えば、2つの前記第1鎖(ss1)を架橋できる。このため、前記核酸分子(III)が前記第3鎖(ss3)を含む場合、前記第3鎖(ss3)は、例えば、複数の第1鎖(ss1)を架橋することにより、ターゲットを検出する前記第1鎖(ss1)を集積でき、前記センサの感度を向上できる。以下、複数の核酸分子(III)(第1鎖(ss1))が前記第3鎖(ss3)により架橋された分子を、核酸複合体(III)ともいう。 The nucleic acid molecule (III) includes, for example, a third strand (ss3), and the third strand has a stem forming region (S ′ D ) and a stem forming region (S ′ A ) in this order, The stem formation region (S ′ D ) has a sequence complementary to the G formation region (D), and the stem formation region (S ′ A ) is complementary to the binding region (A). May have a different arrangement. The third strand (ss3) can bind to, for example, the binding region (A) and the G-forming region (D) of the two first strands (ss1). That is, the third chain (ss3) can cross-link two first chains (ss1), for example. For this reason, when the nucleic acid molecule (III) includes the third strand (ss3), the third strand (ss3) detects a target by, for example, crosslinking a plurality of first strands (ss1). The first strand (ss1) can be integrated, and the sensitivity of the sensor can be improved. Hereinafter, a molecule in which a plurality of nucleic acid molecules (III) (first strand (ss1)) are cross-linked by the third strand (ss3) is also referred to as a nucleic acid complex (III).
 前記第3鎖(ss3)において、前記各領域の順序は、前記G形成領域(D)と前記ステム形成領域(S’)とがアニーリングし、前記第1鎖(ss1)の結合領域(A)と前記ステム形成領域(S’)とがアニーリングし、前記ステム形成領域(S’)がアニーリングしている第1鎖(ss1)と前記ステム形成領域(S’)がアニーリングしている第1鎖(ss1)とが、異なる第1鎖(ss1)となる順序であればよい。具体例としては、以下の順序が例示できる。
  (3) ss1  5’- A-D -3’
      ss3    3’- S’D -S’-5’
  (4) ss1  5’- D-A -3’
      ss3    3’- S’A -S’-5’
In the third strand (ss3), the order of the regions is such that the G-forming region (D) and the stem-forming region (S ′ D ) are annealed, and the binding region (A ) And the stem forming region (S ′ A ) are annealed, and the first strand (ss1) in which the stem forming region (S ′ D ) is annealed and the stem forming region (S ′ A ) are annealed. What is necessary is just the order from which the 1st chain | strand (ss1) which becomes a different 1st chain | strand (ss1). The following order can be illustrated as a specific example.
(3) ss1 5'- AD-3 '
ss3 3'- S ' D -S' A -5 '
(4) ss1 5'- DA-3 '
ss3 3'- S 'A -S' D -5 '
 前記(3)において、前記ステム形成領域(S’)は、前記結合領域(A)の5’側領域と相補的であり、前記ステム形成領域(S’)は、前記G形成領域(D)の3’側領域と相補的であることが好ましい。前記(4)において、前記ステム形成領域(S’)は、前記G形成領域(D)の5’側領域と相補的であり、前記ステム形成領域(S’)は、前記結合領域(A)の3’側領域と相補的であることが好ましい。 In (3), the stem formation region (S ′ A ) is complementary to the 5 ′ side region of the binding region (A), and the stem formation region (S ′ D ) is the G formation region ( It is preferably complementary to the 3 ′ region of D). In (4), the stem formation region (S ′ D ) is complementary to the 5 ′ side region of the G formation region (D), and the stem formation region (S ′ A ) It is preferably complementary to the 3 ′ region of A).
 前記第3鎖(ss3)は、例えば、前記各領域間が、直接的または間接的に連結してもよい。前記直接的および間接的な連結は、例えば、前述の説明を援用できる。 The third chain (ss3) may be connected directly or indirectly between the regions, for example. For the direct and indirect connection, the above description can be used, for example.
 前記第3鎖(ss3)は、例えば、前記ステム形成領域(S’)と前記ステム形成領域(S’)との間に、前記介在リンカー領域(L)を有することが好ましい。前記介在リンカー領域(L)と、例えば、前記介在リンカー領域(L)および(L)とは、互いに非相補的な配列であることが好ましい。 The third strand (ss3) preferably has, for example, the intervening linker region (L 3 ) between the stem forming region (S ′ A ) and the stem forming region (S ′ D ). The intervening linker region (L 3 ) and, for example, the intervening linker regions (L 1 ) and (L 2 ) are preferably non-complementary sequences.
 具体例として、前記(3)および(4)が、前記第1鎖(ss1)および前記第3鎖(ss3)に前記介在リンカー領域を有する形態について、例えば、以下の順序が例示できる。以下の例示において、前記結合領域(A)と前記G形成領域(D)とを連結する介在リンカー領域を(L)、前記ステム形成領域(S’)と前記ステム形成領域(S’)とを連結する介在リンカー領域を(L)で示す。前記核酸分子(III)は、例えば、介在リンカー領域として、例えば、(L)、(L)および(L)のうちいずれか1つを有してもよいし、2つ以上を有してもよいし、全てを有してもよい。
  (3’) ss1  5’- A-L-D -3’
       ss3       3’- S’-L-S’A -5’
  (4’) ss1  5’- D-L-A -3’
       ss3       3’- S’-L-S’D -5’
As a specific example, the following order can be illustrated about the form in which the (3) and (4) have the intervening linker region in the first chain (ss1) and the third chain (ss3), for example. In the following examples, an intervening linker region that connects the binding region (A) and the G-forming region (D) is (L 1 ), the stem-forming region (S ′ D ), and the stem-forming region (S ′ A And an intervening linker region linking with (L 3 ). The nucleic acid molecule (III) may have, for example, any one of (L 1 ), (L 2 ) and (L 3 ) as an intervening linker region, or two or more. Or you may have everything.
(3 ') ss1 5'- AL 1 -D -3'
ss3 3'- S 'D -L 3 -S ' A -5 '
(4 ') ss1 5'- DL 1 -A -3'
ss3 3'- S ' A -L 3 -S' D -5 '
 前記第3鎖(ss3)において、前記ステム形成配列(S’)および前記ステム形成配列(S’)の長さは、特に制限されない。前記ステム形成配列(S’)の長さは、例えば、1~60塩基長、1~10塩基長、1~7塩基長である。前記ステム形成配列(S’)の長さは、例えば、1~30塩基長、1~10塩基長、1~7塩基長である。前記ステム形成配列(S’)と前記ステム形成配列(S’)は、例えば、同じ長さでもよいし、前者が長くてもよいし、後者が長くてもよい。 In the third strand (ss3), the lengths of the stem-forming sequence (S ′ A ) and the stem-forming sequence (S ′ D ) are not particularly limited. The length of the stem forming sequence (S ′ A ) is, for example, 1 to 60 bases long, 1 to 10 bases long, or 1 to 7 bases long. The length of the stem forming sequence (S ′ D ) is, for example, 1 to 30 bases long, 1 to 10 bases long, or 1 to 7 bases long. For example, the stem forming sequence (S ′ A ) and the stem forming sequence (S ′ D ) may have the same length, the former may be long, or the latter may be long.
 前記介在リンカー領域(L)の長さは、特に制限されない。前記介在リンカー領域(L)の長さは、例えば、1~30塩基長、1~15塩基長、1~6塩基長である。また、前記介在リンカー領域(L)の長さは、例えば、前記介在リンカー領域(L)および(L)の長さと同じでも、異なってもよい。 The length of the intervening linker region (L 3 ) is not particularly limited. The length of the intervening linker region (L 3 ) is, for example, 1 to 30 bases long, 1 to 15 bases long, or 1 to 6 bases long. The length of the intervening linker region (L 3 ) may be the same as or different from the length of the intervening linker regions (L 1 ) and (L 2 ), for example.
 本発明のセンサが、前記核酸複合体(III)を含む場合、前記核酸複合体(III)に含まれる前記第1鎖(ss1)および前記第2鎖(ss2)の個数は、特に制限されない。 When the sensor of the present invention includes the nucleic acid complex (III), the number of the first strand (ss1) and the second strand (ss2) included in the nucleic acid complex (III) is not particularly limited.
 前記核酸分子(III)は、例えば、前記第1鎖(ss1)と前記第2鎖(ss2)との間が、直接的または間接的に連結してもよい。前記第1鎖(ss1)と前記第2鎖(ss2)とが連結している場合、前記核酸分子(III)は、例えば、一本鎖型核酸センサということができ、前記第1鎖(ss1)および前記第2鎖(ss2)は、それぞれ、第1領域および第2領域ということができる。前記直接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが直接結合していることを意味し、前記間接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが、介在リンカー領域(L)を介して結合していることを意味し、具体的には、一方の領域の3’末端と前記介在リンカー領域の5’末端とが直接結合し、前記介在リンカー領域の3’末端と他方の領域の5’末端とが直接結合していることを意味する。前記介在リンカー領域は、例えば、核酸配列でもよいし、非核酸配列でもよく、好ましくは前者である。前記介在リンカー領域の長さは、特に制限されず、例えば、1~60塩基長である。 In the nucleic acid molecule (III), for example, the first strand (ss1) and the second strand (ss2) may be linked directly or indirectly. When the first strand (ss1) and the second strand (ss2) are linked, the nucleic acid molecule (III) can be referred to as a single-stranded nucleic acid sensor, for example, and the first strand (ss1) ) And the second strand (ss2) can be referred to as a first region and a second region, respectively. The direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region. It means that the “terminal” and the 5 ′ terminal of the other region are linked via an intervening linker region (L 1 ), specifically, the 3 ′ end of one region and the intervening linker region This means that the 5 ′ end is directly bonded, and the 3 ′ end of the intervening linker region and the 5 ′ end of the other region are directly bonded. The intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former. The length of the intervening linker region is not particularly limited and is, for example, 1 to 60 bases long.
 前記第1鎖(ss1)と前記第2鎖(ss2)とが連結している場合、前記核酸分子(III)において、前記各領域の順序は、前記G形成領域(D)と前記ステム形成領域(S)とがアニーリングし、前記結合領域(A)と前記ステム形成領域(S)とがアニーリングする順序であればよい。具体例としては、以下の順序が例示できる。
  (5)5’- A-D-S-S -3’
  (6)5’- S-S-A-D -3’
  (7)5’- A-D-L-S-S -3’
  (8)5’- S-S-L-A-D -3’
When the first strand (ss1) and the second strand (ss2) are linked, the order of the regions in the nucleic acid molecule (III) is the G-forming region (D) and the stem-forming region. (S D ) may be annealed and the bonding region (A) and the stem formation region (S A ) may be annealed. The following order can be illustrated as a specific example.
(5) 5'- AD S D -S A -3 '
(6) 5'-S D -S A -AD -3 '
(7) 5'- A-D- L 1 -S D -S A -3 '
(8) 5'-S D -S A -L 1 -AD -3 '
 前記(5)および(7)において、前記ステム形成領域(S)は、前記結合領域(A)の3’側領域と相補的であり、前記ステム形成領域(S)は、前記G形成領域(D)の5’側領域と相補的であることが好ましい。前記(6)および(8)において、前記ステム形成領域(S)は、前記G形成領域(D)の3’側領域と相補的であり、前記ステム形成領域(S)は、前記結合領域(A)の5’側領域と相補的であることが好ましい。 In (5) and (7), the stem formation region (S A ) is complementary to the 3′-side region of the binding region (A), and the stem formation region (S D ) It is preferably complementary to the 5 ′ region of the region (D). In (6) and (8), the stem formation region (S D ) is complementary to the 3′-side region of the G formation region (D), and the stem formation region (S A ) It is preferably complementary to the 5 ′ region of the region (A).
 前記核酸分子(III)は、例えば、前記各領域間が、直接的または間接的に連結してもよい。前記直接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが直接結合していることを意味し、前記間接的な連結は、例えば、一方の領域の3’末端と他方の領域の5’末端とが、前記介在リンカー領域を介して結合していることを意味する。前記介在リンカー領域は、例えば、核酸配列でもよいし、非核酸配列でもよく、好ましくは前者である。 In the nucleic acid molecule (III), for example, the regions may be connected directly or indirectly. The direct connection means that, for example, the 3 ′ end of one region and the 5 ′ end of the other region are directly bonded, and the indirect connection is, for example, 3 of one region. It means that the “end” and the 5 ′ end of the other region are bound via the intervening linker region. The intervening linker region may be, for example, a nucleic acid sequence or a non-nucleic acid sequence, preferably the former.
 前記第1鎖(ss1)と前記第2鎖(ss2)とが連結している場合、前記核酸分子(III)は、例えば、前記第1領域における前記結合領域(A)と前記G形成領域(D)との間、および、前記第2領域における前記ステム形成領域(S)と前記ステム形成領域(S)との間に、前記介在リンカー領域を有することが好ましい。前記第1領域における介在リンカー領域(L)と、前記第2領域における介在リンカー領域(L)とは、互いに非相補的な配列であることが好ましい。 In the case where the first strand (ss1) and the second strand (ss2) are linked, the nucleic acid molecule (III) is, for example, the binding region (A) in the first region and the G-forming region ( It is preferable that the intervening linker region is provided between the intermediate region D) and between the stem formation region (S D ) and the stem formation region (S A ) in the second region. The intervening linker region (L 2 ) in the first region and the intervening linker region (L 3 ) in the second region are preferably non-complementary sequences.
 具体例として、前記(5)~(8)が、前記第1領域および前記第2領域に前記介在リンカー領域を有する形態について、例えば、以下の順序が例示できる。以下の例示において、前記結合領域(A)と前記G形成領域(D)とを連結する介在リンカー領域を(L)、前記ステム形成領域(S)と前記ステム形成領域(S)とを連結する介在リンカー領域を(L)で示す。前記第1鎖(ss1)と前記第2鎖(ss2)とが連結している場合、前記核酸分子(III)は、例えば、介在リンカー領域として、例えば、(L)および(L)の両方を有してもよいし、いずれか一方のみを有してもよい。
  (5’)5’- A-L-D-S-L-S -3’
  (6’)5’- S-L-S-A-L-D -3’
  (7’)5’- A-L-D-L-S-L-S -3’
  (8’)5’- S-L-S-L-A-L-D -3’
As a specific example, the following order can be exemplified for the forms (5) to (8) having the intervening linker region in the first region and the second region. In the following examples, an intervening linker region that connects the binding region (A) and the G-forming region (D) is (L 2 ), the stem-forming region (S D ), and the stem-forming region (S A ) The intervening linker region linking is represented by (L 3 ). When the first strand (ss1) and the second strand (ss2) are linked, the nucleic acid molecule (III) can be used as, for example, an intervening linker region of (L 2 ) and (L 3 ). You may have both, and you may have only any one.
(5 ') 5'- A-L 2 -D-S D -L 3 -S A -3'
(6 ′) 5′-S D -L 3 -S A -AL 2 -D -3 '
(7 ′) 5′-AL 2 -DL 1 -S D -L 3 -S A -3 ′
(8 ′) 5′-S D -L 3 -S A -L 1 -AL 2 -D -3 '
 前記(5’)~(8’)の形態は、例えば、以下のように、G-カルテット構造の形成がON-OFFされる。ターゲット非存在下において、例えば、前記結合領域(A)と前記ステム形成領域(S)、前記G形成領域(D)と前記ステム形成領域(S)が、それぞれステムを形成し、これら2つのステムの間で、前記介在リンカー領域(L)と前記介在リンカー領域(L)が、内部ループを形成して、前記G形成領域(D)のG-カルテット構造の形成を阻害する。そして、ターゲット存在下、前記結合領域(A)へのターゲットの接触により、前記それぞれのステム形成が解除され、前記G形成領域(D)において、G-カルテット構造が形成される。 In the forms (5 ′) to (8 ′), for example, the formation of the G-quartet structure is turned on and off as follows. In the absence of the target, for example, the binding region (A), the stem formation region (S A ), the G formation region (D), and the stem formation region (S D ) form stems, respectively. Between the two stems, the intervening linker region (L 2 ) and the intervening linker region (L 3 ) form an internal loop that inhibits the formation of the G-quartet structure of the G-forming region (D). Then, in the presence of the target, the respective stem formation is released by the contact of the target with the binding region (A), and a G-quartet structure is formed in the G formation region (D).
 前記第1鎖(ss1)と前記第2鎖(ss2)とが連結している場合、前記核酸分子(III)において、前記ステム形成配列(S)および前記ステム形成配列(S)の長さは、特に制限されず、例えば、前述の説明を援用できる。 When the first strand (ss1) and the second strand (ss2) are linked, the length of the stem-forming sequence (S A ) and the stem-forming sequence (S D ) in the nucleic acid molecule (III) The length is not particularly limited, and for example, the above description can be used.
 前記介在リンカー領域(L)および(L)の長さは、特に制限されない。前記介在リンカー領域(L)および(L)の長さは、それぞれ、例えば、0~30塩基長、1~30塩基長、1~15塩基長、1~6塩基長である。また、前記介在リンカー領域(L)および(L)の長さは、例えば、同じでも、異なってもよい。後者の場合、前記介在リンカー領域(L)および(L)の長さの差は、特に制限されず、例えば、1~10塩基長、1または2塩基長、1塩基長である。 The lengths of the intervening linker regions (L 2 ) and (L 3 ) are not particularly limited. The lengths of the intervening linker regions (L 2 ) and (L 3 ) are, for example, 0 to 30 bases, 1 to 30 bases, 1 to 15 bases, and 1 to 6 bases, respectively. The lengths of the intervening linker regions (L 2 ) and (L 3 ) may be the same or different, for example. In the latter case, the difference in length between the intervening linker regions (L 2 ) and (L 3 ) is not particularly limited, and is, for example, 1 to 10 bases long, 1 or 2 bases long, and 1 base long.
 本発明のセンサは、例えば、前記核酸分子を含むセンサでもよいし、前記核酸分子からなるセンサでもよい。 The sensor of the present invention may be, for example, a sensor including the nucleic acid molecule or a sensor composed of the nucleic acid molecule.
 本発明のセンサは、ヌクレオチド残基を含む分子であり、例えば、ヌクレオチド残基のみからなる分子でもよいし、ヌクレオチド残基を含む分子でもよい。前記ヌクレオチドは、例えば、リボヌクレオチド、デオキシリボヌクレオチドおよびそれらの誘導体である。具体的に、前記センサは、例えば、デオキシリボヌクレオチドおよび/またはその誘導体を含むDNAでもよいし、リボヌクレオチドおよび/またはその誘導体を含むRNAでもよいし、前者と後者とを含むキメラ(DNA/RNA)でもよい。前記センサは、好ましくは、DNAである。 The sensor of the present invention is a molecule containing a nucleotide residue, and may be, for example, a molecule consisting only of a nucleotide residue or a molecule containing a nucleotide residue. The nucleotide is, for example, ribonucleotide, deoxyribonucleotide and derivatives thereof. Specifically, the sensor may be, for example, DNA containing deoxyribonucleotide and / or a derivative thereof, RNA containing ribonucleotide and / or a derivative thereof, or a chimera (DNA / RNA) containing the former and the latter But you can. The sensor is preferably DNA.
 前記ヌクレオチドは、塩基として、例えば、天然塩基(非人工塩基)および非天然塩基(人工塩基)のいずれを含んでもよい。前記天然塩基は、例えば、A、C、G、T、Uおよびこれらの修飾塩基があげられる。前記修飾は、例えば、メチル化、フルオロ化、アミノ化、チオ化等があげられる。前記非天然塩基は、例えば、2’-フルオロピリミジン、2’-O-メチルピリミジン等があげられ、具体例としては、2’-フルオロウラシル、2’-アミノウラシル、2’-O-メチルウラシル、2’-チオウラシル等があげられる。前記ヌクレオチドは、例えば、修飾されたヌクレオチドでもよく、前記修飾ヌクレオチドは、例えば、2’-メチル化-ウラシルヌクレオチド残基、2’-メチル化-シトシンヌクレオチド残基、2’-フルオロ化-ウラシルヌクレオチド残基、2’-フルオロ化-シトシンヌクレオチド残基、2’-アミノ化-ウラシルヌクレオチド残基、2’-アミノ化-シトシンヌクレオチド残基、2’-チオ化-ウラシルヌクレオチド残基、2’-チオ化-シトシンヌクレオチド残基等があげられる。前記核酸分子は、例えば、PNA(ペプチド核酸)、LNA(Locked Nucleic Acid)等の非ヌクレオチドを含んでもよい。 The nucleotide may contain, for example, either a natural base (non-artificial base) or a non-natural base (artificial base) as a base. Examples of the natural base include A, C, G, T, U, and modified bases thereof. Examples of the modification include methylation, fluorination, amination, and thiolation. Examples of the unnatural base include 2′-fluoropyrimidine, 2′-O-methylpyrimidine and the like. Specific examples include 2′-fluorouracil, 2′-aminouracil, 2′-O-methyluracil, And 2'-thiouracil. The nucleotide may be, for example, a modified nucleotide, and the modified nucleotide is, for example, a 2′-methylated-uracil nucleotide residue, 2′-methylated-cytosine nucleotide residue, 2′-fluorinated-uracil nucleotide. Residue, 2′-fluorinated-cytosine nucleotide residue, 2′-aminated-uracil nucleotide residue, 2′-aminated-cytosine nucleotide residue, 2′-thiolated-uracil nucleotide residue, 2′- Thio-cytosine nucleotide residues and the like. The nucleic acid molecule may include non-nucleotides such as PNA (peptide nucleic acid) and LNA (Locked Nucleic Acid), for example.
 本発明のセンサは、例えば、さらに、リンカー領域(L)を含んでもよく、前記核酸分子の末端に、前記リンカー領域(L)が連結していることが好ましい。前記リンカー領域(L)は、例えば、前記核酸分子の3’末端および5’末端の少なくとも一方または両方に連結してもよく、前記核酸分子の3’末端に連結していることが好ましい。 The sensor of the present invention may further include, for example, a linker region (L), and the linker region (L) is preferably linked to the end of the nucleic acid molecule. The linker region (L) may be linked to, for example, at least one or both of the 3 'end and the 5' end of the nucleic acid molecule, and is preferably linked to the 3 'end of the nucleic acid molecule.
 本発明のセンサが、前記リンカー領域(L)を有する場合、前記リンカー領域(L)により、担体等に固定化されてもよい。本発明の分析用センサは、例えば、前記リンカー領域(L)の3’末端または5’末端で、固定化してもよく、前述のように、前記核酸分子の3’末端に前記リンカー領域(L)が連結している場合は、前記リンカー領域(L)の3’末端で、固定化されていることが好ましい。 When the sensor of the present invention has the linker region (L), it may be immobilized on a carrier or the like by the linker region (L). The analytical sensor of the present invention may be immobilized, for example, at the 3 ′ end or 5 ′ end of the linker region (L). As described above, the linker region (L ) Are preferably immobilized at the 3 ′ end of the linker region (L).
 本発明のセンサにおいて、例えば、前記リンカー領域(L)の長さは、特に制限されず、それぞれ、下限は、例えば、1塩基長、3塩基長、5塩基長であり、上限は、例えば、200塩基長、50塩基長、20塩基長、12塩基長、9塩基長であり、その範囲は、例えば、1~200塩基長、1~50塩基長、1~20塩基長、3~12塩基長、5~9塩基長である。 In the sensor of the present invention, for example, the length of the linker region (L) is not particularly limited, and the lower limit is, for example, 1 base length, 3 base lengths, 5 base lengths, and the upper limit is, for example, 200 base length, 50 base length, 20 base length, 12 base length, 9 base length, the range is, for example, 1-200 base length, 1-50 base length, 1-20 base length, 3-12 base It is 5-9 bases long.
 前記リンカー領域(L)は、例えば、ヌクレオチドまたはポリヌクレオチドであり、構成単位が、例えば、ヌクレオチド残基である。前記ヌクレオチド残基は、例えば、前述の例示を援用できる。前記リンカー領域(L)は、特に制限されず、例えば、デオキシリボヌクレオチド残基からなるDNA、リボヌクレオチド残基を含むDNA等のポリヌクレオチドがあげられる。前記リンカーの具体例として、例えば、ポリデオキシチミン(ポリdT)、ポリデオキシアデニン(ポリdA)、AとTの繰り返し配列であるポリdAdT等があげられ、好ましくはポリdT、ポリdAdTである。 The linker region (L) is, for example, a nucleotide or a polynucleotide, and the structural unit is, for example, a nucleotide residue. The above-mentioned illustration can be used for the said nucleotide residue, for example. The linker region (L) is not particularly limited, and examples thereof include polynucleotides such as DNA consisting of deoxyribonucleotide residues and DNA containing ribonucleotide residues. Specific examples of the linker include polydeoxythymine (poly dT), polydeoxyadenine (poly dA), poly dAdT which is a repeating sequence of A and T, and preferably poly dT and poly dAdT.
 本発明の分析用センサにおいて、前記核酸分子は、例えば、一本鎖ポリヌクレオチドであってもよい。前記一本鎖ポリヌクレオチドは、例えば、自己アニーリングによりステム構造およびループ構造を形成可能であることが好ましく、具体的に、例えば、ステムループ構造、インターナルループ構造および/またはバルジ構造等を形成可能であることが好ましい。 In the analytical sensor of the present invention, the nucleic acid molecule may be, for example, a single-stranded polynucleotide. The single-stranded polynucleotide is preferably capable of forming a stem structure and a loop structure by, for example, self-annealing. Specifically, for example, a stem loop structure, an internal loop structure and / or a bulge structure can be formed. It is preferable that
 本発明において、「ステム構造およびループ構造を形成可能」とは、例えば、実際にステム構造およびループ構造を形成すること、ならびに、ステム構造およびループ構造が形成されていなくても、条件によってステム構造およびループ構造を形成可能なことも含む。「ステム構造およびループ構造を形成可能」とは、例えば、実験的に確認した場合、および、コンピュータ等のシミュレーションで予測した場合の双方を含む。 In the present invention, “the stem structure and the loop structure can be formed” means, for example, that the stem structure and the loop structure are actually formed, and even if the stem structure and the loop structure are not formed, the stem structure depending on the conditions. And the ability to form a loop structure. “A stem structure and a loop structure can be formed” includes, for example, both experimental confirmation and prediction by a computer simulation.
 本発明のセンサにおいて、前記核酸分子は、例えば、ヌクレアーゼ耐性であることが好ましい。前記核酸分子は、ヌクレアーゼ耐性のため、例えば、前記修飾化ヌクレオチド残基および/または前記人工核酸モノマー残基を有することが好ましい。また、本発明の分析用センサにおいて、前記核酸分子は、ヌクレアーゼ耐性のため、例えば、5’末端または3’末端に、数10kDaのPEG(ポリエチレングリコール)またはデオキシチミジン等が結合してもよい。 In the sensor of the present invention, the nucleic acid molecule is preferably nuclease resistant, for example. The nucleic acid molecule preferably has, for example, the modified nucleotide residue and / or the artificial nucleic acid monomer residue for nuclease resistance. In the analytical sensor of the present invention, since the nucleic acid molecule is resistant to nuclease, for example, tens of kDa PEG (polyethylene glycol) or deoxythymidine may be bound to the 5 'end or 3' end.
 本発明のセンサは、例えば、さらに、担体を含み、前記担体に、前記核酸分子が固定化されていることが好ましい。本発明の分析用センサが前記担体を有する場合、前記核酸分子は、例えば、その3’末端および5’末端のいずれかにおいて、直接的または間接的に固定化することができ、前記間接的に固定化する場合、前記核酸分子は、例えば、前記リンカー領域を有して固定化することができる。前記核酸分子の固定化方法は、特に制限されず、例えば、公知の核酸固定化方法により実施できる。 The sensor of the present invention preferably further includes, for example, a carrier, and the nucleic acid molecule is immobilized on the carrier. When the analytical sensor of the present invention has the carrier, the nucleic acid molecule can be directly or indirectly immobilized at, for example, either the 3 ′ end or the 5 ′ end, and the indirect In the case of immobilization, the nucleic acid molecule can be immobilized with, for example, the linker region. The nucleic acid molecule immobilization method is not particularly limited, and can be performed by, for example, a known nucleic acid immobilization method.
 本発明のセンサは、例えば、さらに前記G形成領域(D)と反応する試薬を含んでもよい。前記試薬は、例えば、G-カルテット構造を形成した前記G形成領域(D)との複合体を形成するポルフィリンを含むことが好ましい。前記ポルフィリンは、例えば、前述の説明を援用できる。 The sensor of the present invention may further include a reagent that reacts with the G-forming region (D), for example. The reagent preferably contains, for example, porphyrin that forms a complex with the G-forming region (D) having a G-quartet structure. For the porphyrin, for example, the above description can be used.
 また、本発明のセンサは、例えば、ターゲットの分析において前記G形成領域(D)のいずれの機能を利用するかによって、前記試薬を設定することができる。前記G形成領域(D)の前記触媒機能を利用する場合、本発明の分析用センサは、前記試薬として、例えば、前記酸化還元反応の基質を含むことが好ましく、前記ポルフィリンと前記基質の両方を含んでもよい。 In addition, the sensor of the present invention can set the reagent depending on, for example, which function of the G formation region (D) is used in target analysis. When utilizing the catalytic function of the G-forming region (D), the analytical sensor of the present invention preferably contains, for example, a substrate for the oxidation-reduction reaction as the reagent, and includes both the porphyrin and the substrate. May be included.
 前記基質は、特に制限されず、例えば、3,3’,5,5’-Tetramethylbenzidine(TMB)、1,2-Phenylenediamine(OPD)、2,2’-Azinobis(3-ethylbenzothiazoline-6-sulfonic Acid) Ammonium Salt(ABTS)、3,3’-Diaminobenzidine(DAB)、3,3’-Diaminobenzidine Tetrahydrochloride Hydrate(DAB4HCl)、3-Amino-9-ethylcarbazole(AEC)、4-Chloro-1-naphthol(4C1N)、2,4,6-Tribromo-3-hydroxybenzoic Acid、2,4-Dichlorophenol、4-Aminoantipyrine、4-Aminoantipyrine Hydrochloride、ルミノール等があげられる。 The substrate is not particularly limited, and for example, 3,3 ′, 5,5′-tetramethylbenzidine (TMB), 1,2-phenylenediamine (OPD), 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulfoniconAcid ) MmAmmonium Salt (ABTS), 3,3′-Diaminobenzodinine (DAB), 3,3′-Diaminobenzodinine Tetrahydrochloride Hydrate (DAB4HCl), 3-Amino-9-ethylCarbolC1) 2,4,6-Tribromo-3-hydroxybenzoic acid, 2, -Dichlorophenol, 4-Aminoantipyrine, 4-Aminoantipyrine Hydrochloride, luminol and the like.
 本発明のセンサにおいて、例えば、前記核酸分子が、さらに標識物質を有し、前記標識物質で標識化されてもよい。前記標識物質は、特に制限されず、例えば、蛍光物質、色素、同位体、酵素等があげられる。前記蛍光物質は、例えば、ピレン、TAMRA、フルオレセイン、Cy(登録商標)3色素、Cy(登録商標)5色素、FAM色素、ローダミン色素、テキサスレッド色素、JOE、MAX、HEX、TYE等の蛍光団があげられ、前記色素は、例えば、Alexa(登録商標)488、Alexa(登録商標)647等のAlexa色素等があげられる。前記酵素は、例えば、ルシフェラーゼ等があげられる。 In the sensor of the present invention, for example, the nucleic acid molecule may further have a labeling substance and may be labeled with the labeling substance. The labeling substance is not particularly limited, and examples thereof include fluorescent substances, dyes, isotopes and enzymes. Examples of the fluorescent substance include fluorophores such as pyrene, TAMRA, fluorescein, Cy (registered trademark) 3 dye, Cy (registered trademark) 5 dye, FAM dye, rhodamine dye, Texas red dye, JOE, MAX, HEX, and TYE. Examples of the dye include Alexa dyes such as Alexa (registered trademark) 488 and Alexa (registered trademark) 647. Examples of the enzyme include luciferase.
 前記標識物質は、例えば、前記核酸分子に直接的に連結してもよいし、前記リンカー領域(L)を介して、間接的に連結してもよい。 The labeling substance may be linked directly to the nucleic acid molecule or indirectly via the linker region (L), for example.
 本発明のセンサによれば、後述するように、例えば、試料中のコルチゾールを検出できる。 According to the sensor of the present invention, as described later, for example, cortisol in a sample can be detected.
<コルチゾール分析方法>
 本発明の分析方法は、前述のように、試料と前記本発明のコルチゾール分析用センサとを接触させる接触工程、および前記試料中のコルチゾールと前記コルチゾール分析用センサにおける結合領域(A)とを結合させることにより、前記試料中のコルチゾールを検出する検出工程を含むことを特徴とする。本発明の分析方法は、前記本発明のセンサを使用することが特徴であって、その他の工程および条件等は、特に制限されない。
<Method for analyzing cortisol>
As described above, the analysis method of the present invention combines the contact step of bringing a sample into contact with the cortisol analysis sensor of the present invention, and combining the cortisol in the sample and the binding region (A) in the cortisol analysis sensor. And a detection step of detecting cortisol in the sample. The analysis method of the present invention is characterized by using the sensor of the present invention, and other processes and conditions are not particularly limited.
 本発明の分析方法によれば、前記本発明のセンサにおける前記結合領域(A)に、コルチゾールが特異的に結合し、且つ、コルチゾールが結合した際に、前記本発明のセンサにおける前記G形成領域(D)がG-カルテット構造を形成して活性型となるため、例えば、コルチゾールと前記センサとの結合を、前記G形成領域(D)の活性型の性質を使用して検出することによって、試料中のコルチゾールを特異的に分析可能である。具体的には、例えば、試料中のコルチゾールの有無またはコルチゾールの量を分析可能であることから、定性または定量も可能といえる。 According to the analysis method of the present invention, cortisol specifically binds to the binding region (A) of the sensor of the present invention, and the G-forming region of the sensor of the present invention when cortisol is bound. (D) forms a G-quartet structure and becomes active, for example, by detecting the binding between cortisol and the sensor using the active nature of the G-forming region (D), Cortisol in the sample can be specifically analyzed. Specifically, for example, since the presence or absence of cortisol or the amount of cortisol in a sample can be analyzed, it can be said that qualitative or quantitative determination is also possible.
 本発明において、前記試料は、特に制限されない。前記試料は、例えば、生体試料があげられる。また、前記生体試料は、例えば、血液、血清、血漿、間質液、尿、唾液、汗、涙、および鼻水等があげられる。 In the present invention, the sample is not particularly limited. Examples of the sample include a biological sample. Examples of the biological sample include blood, serum, plasma, interstitial fluid, urine, saliva, sweat, tears, and runny nose.
 前記試料は、例えば、液体試料でもよいし、固体試料でもよい。前記試料は、例えば、前記核酸分子と接触させ易く、取扱いが簡便であることから、液体試料が好ましい。前記固体試料の場合、例えば、溶媒を用いて、混合液、抽出液、溶解液等を調製し、これを使用してもよい。前記溶媒は、特に制限されず、例えば、水、生理食塩水、緩衝液等があげられる。 The sample may be, for example, a liquid sample or a solid sample. For example, the sample is preferably a liquid sample because it is easy to contact with the nucleic acid molecule and is easy to handle. In the case of the solid sample, for example, a mixed solution, an extract, a dissolved solution, and the like may be prepared using a solvent and used. The solvent is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
 前記接触工程において、前記試料と前記分析用センサとの接触方法は、特に制限されない。前記試料と前記分析用センサとの接触は、例えば、液体中で行われることが好ましい。前記液体は、特に制限されず、例えば、水、生理食塩水、緩衝液等があげられる。 In the contact step, the method for contacting the sample with the analytical sensor is not particularly limited. The contact between the sample and the analysis sensor is preferably performed in a liquid, for example. The liquid is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
 前記接触工程において、前記試料と前記センサとの接触条件は、特に制限されない。接触温度は、例えば、4~37℃、18~25℃であり、接触時間は、例えば、10~120分、30~60分である。 In the contact step, the contact condition between the sample and the sensor is not particularly limited. The contact temperature is, for example, 4 to 37 ° C. or 18 to 25 ° C., and the contact time is, for example, 10 to 120 minutes or 30 to 60 minutes.
 前記接触工程において、前記センサは、例えば、前記核酸分子が担体に固定化された固定化センサでもよいし、前記核酸分子が未固定で遊離した未固定センサでもよい。後者の場合、例えば、容器内で、前記試料と前記未固定センサとを接触させる。前記センサは、例えば、取扱性に優れることから、前記固定化センサが好ましい。前記担体は、特に制限されず、例えば、基板、ビーズ、容器等があげられ、前記容器は、例えば、マイクロプレート、チューブ等があげられる。前記センサにおける前記核酸分子の固定化は、例えば、前述の通りである。 In the contacting step, the sensor may be, for example, an immobilized sensor in which the nucleic acid molecule is immobilized on a carrier, or an unfixed sensor in which the nucleic acid molecule is not immobilized and released. In the latter case, for example, the sample and the non-fixed sensor are brought into contact in a container. The sensor is preferably, for example, the immobilized sensor because of excellent handling properties. The carrier is not particularly limited, and examples thereof include a substrate, a bead, and a container. Examples of the container include a microplate and a tube. The immobilization of the nucleic acid molecule in the sensor is, for example, as described above.
 前記検出工程は、前述のように、前記試料中のコルチゾールと前記センサにおける前記結合領域(A)との結合を検出する工程である。前記検出工程は、例えば、さらに、前記検出工程の結果に基づいて、前記試料中のコルチゾールの有無または量を分析する工程を含んでもよい。前記両者の結合の有無を検出することによって、例えば、前記試料中のコルチゾールの有無を分析(定性)でき、また、前記両者の結合の程度(結合量)を検出することによって、例えば、前記試料中のコルチゾールの量を分析(定量)できる。前者の場合、本発明の分析方法は、例えば、検出方法ということもできる。 As described above, the detection step is a step of detecting the binding between cortisol in the sample and the binding region (A) in the sensor. The detection step may further include, for example, a step of analyzing the presence or amount of cortisol in the sample based on the result of the detection step. By detecting the presence or absence of binding between the two, for example, the presence or absence of cortisol in the sample can be analyzed (qualitative), and by detecting the degree of binding (binding amount) between the two, for example, the sample The amount of cortisol can be analyzed (quantified). In the former case, the analysis method of the present invention can also be called a detection method, for example.
 そして、前記コルチゾールと前記センサにおける前記結合領域(A)との結合が検出できなかった場合は、前記試料中にコルチゾールは存在しないと判断でき、前記結合が検出された場合は、前記試料中にコルチゾールが存在すると判断できる。また、前記検出工程において得られた結合量と、前記コルチゾールの量および前記両者の結合量の相関関係とに基づき、例えば、前記試料中のコルチゾールの量を算出できる。 If the binding between the cortisol and the binding region (A) in the sensor cannot be detected, it can be determined that cortisol is not present in the sample, and if the binding is detected, It can be judged that cortisol is present. Further, based on the binding amount obtained in the detection step, the amount of the cortisol, and the correlation between the binding amounts of the two, for example, the amount of cortisol in the sample can be calculated.
 前記コルチゾールと前記センサにおける前記結合領域(A)との結合の検出方法は、特に制限されず、例えば、前記結合領域(A)と連動している前記G形成領域(D)の活性型の機能があげられる。前記活性型の機能は、特に制限されず、例えば、前述のように、前記G形成領域(D)の触媒機能、前記G形成領域(D)の蛍光性等があげられる。 The method for detecting the binding between the cortisol and the binding region (A) in the sensor is not particularly limited. For example, the active function of the G-forming region (D) linked to the binding region (A) Can be given. The active function is not particularly limited, and examples thereof include the catalytic function of the G-forming region (D) and the fluorescence of the G-forming region (D) as described above.
<分析試薬および分析キット>
 本発明の分析試薬は、前記本発明のコルチゾール分析用センサを含むことを特徴とする。本発明の分析キットは、前記本発明のコルチゾール分析用センサを含むことを特徴とする。本発明の分析試薬および分析キットは、前記本発明のコルチゾール分析用センサを含んでいればよく、その他の構成および条件は、特に制限されない。本発明の分析試薬および分析キットを使用すれば、前述のように、例えば、コルチゾールの検出を行うことができる。
<Analysis reagents and analysis kits>
The analysis reagent of the present invention includes the sensor for cortisol analysis of the present invention. The analysis kit of the present invention includes the sensor for analyzing cortisol of the present invention. The analysis reagent and analysis kit of the present invention only need to include the sensor for cortisol analysis of the present invention, and other configurations and conditions are not particularly limited. If the analysis reagent and analysis kit of the present invention are used, for example, cortisol can be detected as described above.
 本発明の分析試薬および分析キットは、例えば、後述する本発明のストレス評価方法および本発明のコルチゾール関連疾患の罹患可能性を試験する方法に使用できる。このため、前記分析試薬は、例えば、ストレス評価試薬、コルチゾール関連疾患の試験試薬(診断試薬)ということもできる。また、前記分析キットは、例えば、ストレス評価キット、コルチゾール関連疾患の試験キット(診断キット)ということもできる。 The analysis reagent and analysis kit of the present invention can be used, for example, in the stress evaluation method of the present invention described later and the method for testing the possibility of cortisol-related diseases of the present invention. Therefore, the analysis reagent can also be referred to as, for example, a stress evaluation reagent or a test reagent (diagnostic reagent) for cortisol-related diseases. The analysis kit can also be referred to as, for example, a stress evaluation kit or a cortisol-related disease test kit (diagnostic kit).
 本発明の分析試薬および分析キットは、例えば、さらに、前記コルチゾール分析用センサのG形成領域(D)と反応する試薬を含んでもよい。前記試薬は、例えば、G-カルテット構造を形成した前記G形成領域(D)と複合体を形成するポルフィリン、G-カルテット構造を形成した前記G形成領域(D)の触媒機能に対する基質等があげられる。前記ポルフィリンは、例えば、前述の説明が援用できる。 The analysis reagent and analysis kit of the present invention may further contain a reagent that reacts with the G-forming region (D) of the sensor for cortisol analysis, for example. Examples of the reagent include a porphyrin forming a complex with the G-forming region (D) having a G-quartet structure, a substrate for the catalytic function of the G-forming region (D) having a G-quartet structure, and the like. It is done. For the porphyrin, for example, the above description can be used.
 本発明の分析キットは、例えば、前記本発明のセンサの他に、その他の構成要素を含んでもよい。前記構成要素は、例えば、前記担体、前記試薬、緩衝液、使用説明書等があげられる。 The analysis kit of the present invention may include other components in addition to the sensor of the present invention, for example. Examples of the component include the carrier, the reagent, a buffer solution, and instructions for use.
 本発明の分析試薬および分析キットは、例えば、本発明のセンサの説明を援用でき、また、その使用方法についても、本発明のセンサおよび本発明の分析方法の説明を援用できる。 For example, the description of the sensor of the present invention can be used for the analysis reagent and analysis kit of the present invention, and the description of the sensor of the present invention and the analysis method of the present invention can also be used for the method of use thereof.
<ストレス評価試薬および評価キット>
 本発明のストレス評価試薬は、前述のように、前記本発明のコルチゾール分析用センサを含むことを特徴とする。本発明のストレス評価キットは、前記本発明のコルチゾール分析用センサを含むことを特徴とする。本発明の評価試薬および評価キットは、前記本発明のコルチゾール分析用センサを含んでいればよく、その他の構成および条件は、特に制限されない。本発明の評価試薬および評価キットを使用すれば、後述するように、例えば、ストレス評価を行うことができる。本発明の評価試薬および評価キットは、例えば、前記本発明のセンサ、分析試薬、および分析キット等の説明を援用でき、また、その使用方法についても、本発明のセンサ、分析試薬、分析キット、および後述する本発明の評価方法等の説明を援用できる。
<Stress evaluation reagent and evaluation kit>
As described above, the stress evaluation reagent of the present invention includes the sensor for cortisol analysis of the present invention. The stress evaluation kit of the present invention comprises the sensor for cortisol analysis of the present invention. The evaluation reagent and the evaluation kit of the present invention only need to include the sensor for cortisol analysis of the present invention, and other configurations and conditions are not particularly limited. If the evaluation reagent and evaluation kit of the present invention are used, for example, stress evaluation can be performed as described later. For the evaluation reagent and evaluation kit of the present invention, for example, the description of the sensor, analysis reagent, and analysis kit of the present invention can be used, and the sensor, analysis reagent, analysis kit of the present invention, The description of the evaluation method of the present invention to be described later can be cited.
<ストレス評価方法>
 本発明のストレス評価方法は、前述のように、被検者の試料と前記本発明のコルチゾール分析用センサとを接触させる接触工程、前記試料中のコルチゾールと前記コルチゾール分析用センサにおける前記結合領域(A)とを結合させることにより、前記試料中のコルチゾールを検出する検出工程、および前記検出工程における前記コルチゾール量を、基準値と比較することにより、ストレスに関する情報を取得する取得工程を含むことを特徴とする。本発明の評価方法は、前記本発明のセンサを使用することが特徴であって、その他の工程および条件等は、特に制限されない。
<Stress evaluation method>
As described above, the stress evaluation method of the present invention includes a contact step of bringing a sample of a subject into contact with the sensor for cortisol analysis of the present invention, and the binding region (cortisol in the sample and the sensor for cortisol analysis) A detection step of detecting cortisol in the sample by combining with A), and an acquisition step of acquiring information on stress by comparing the cortisol amount in the detection step with a reference value Features. The evaluation method of the present invention is characterized by using the sensor of the present invention, and other processes and conditions are not particularly limited.
 本発明の評価方法は、例えば、本発明のセンサおよび本発明の分析方法等の説明を援用できる。また、本発明の評価方法において、前記接触工程および前記検出工程は、前記本発明の分析方法の説明を援用できる。 For the evaluation method of the present invention, for example, the description of the sensor of the present invention and the analysis method of the present invention can be cited. In the evaluation method of the present invention, the description of the analysis method of the present invention can be used for the contact step and the detection step.
 前記被検者は、例えば、ヒト、ヒトを除く非ヒト動物等があげられ、前記非ヒト動物は、前述のように、例えば、マウス、ラット、イヌ、サル、ウサギ、ヒツジ、ウマ等の哺乳類があげられる。 Examples of the subject include humans, non-human animals other than humans, and the non-human animals include, for example, mammals such as mice, rats, dogs, monkeys, rabbits, sheep, and horses, as described above. Can be given.
 前記基準値は、例えば、ストレスを負荷していない状態(非負荷状態)および/またはストレスを負荷した状態(負荷状態)の健常者から単離した試料を用いて、得ることができる。前記基準値は、例えば、前記被検者の試料と同時に測定してもよいし、予め測定してもよい。前記非負荷状態および前記負荷状態は、例えば、公知のストレステストにより実施できる。 The reference value can be obtained using, for example, a sample isolated from a healthy person who is not stressed (unloaded state) and / or is stressed (loaded state). For example, the reference value may be measured simultaneously with the sample of the subject or may be measured in advance. The unloaded state and the loaded state can be implemented by, for example, a known stress test.
 前記取得工程において、前記被検者のストレスに関する情報の取得方法は、特に制限されず、前記基準値の種類によって適宜決定できる。具体例として、前記被検者の試料におけるコルチゾールの量が、前記非負荷状態の健常者の試料におけるコルチゾールの量より高い場合、前記負荷状態の健常者の試料におけるコルチゾール量と同じ場合(有意差がない場合)、および/または、前記負荷状態の健常者の試料におけるコルチゾール量より有意に高い場合、前記被検者は、ストレス状態であるとの情報を取得できる。また、前記被検者の試料におけるコルチゾールの量が、前記非負荷状態の健常者の試料におけるコルチゾールの量より低い場合、前記非負荷状態の健常者の試料におけるコルチゾール量と同じ場合(有意差がない場合)、および/または、前記負荷状態の健常者の試料におけるコルチゾール量より有意に低い場合、前記被検者は、非ストレス状態であるとの情報を取得できる。 In the acquisition step, a method for acquiring information related to the stress of the subject is not particularly limited, and can be appropriately determined according to the type of the reference value. As a specific example, when the amount of cortisol in the sample of the subject is higher than the amount of cortisol in the sample of the unloaded healthy subject, the case is the same as the amount of cortisol in the sample of the healthy healthy subject (significant difference) And / or if it is significantly higher than the amount of cortisol in the sample of the healthy subject under load, the subject can obtain information that it is in a stress state. Further, when the amount of cortisol in the subject's sample is lower than the amount of cortisol in the unloaded healthy sample, the same amount as the cortisol in the unloaded healthy sample (significant difference And / or if the amount is significantly lower than the amount of cortisol in a sample of a healthy subject under load, the subject can obtain information that the subject is unstressed.
<コルチゾール関連疾患の試験試薬および試験キット>
 本発明のコルチゾール関連疾患の試験試薬(診断試薬)は、前述のように、前記本発明のコルチゾール分析用センサを含むことを特徴とする。本発明のコルチゾール関連疾患の試験キット(診断キット)は、前記本発明のコルチゾール分析用センサを含むことを特徴とする。本発明の試験試薬および試験キットは、前記本発明のコルチゾール分析用センサを含んでいればよく、その他の構成および条件は、特に制限されない。本発明の試験試薬および試験キットを使用すれば、後述するように、例えば、コルチゾール関連疾患の罹患可能性の試験を行うことができる。本発明の試験試薬および試験キットは、例えば、前記本発明のセンサ、分析試薬、および分析キット等の説明を援用でき、また、その使用方法についても、本発明のセンサ、分析試薬、分析キット、および後述する本発明の試験方法等の説明を援用できる。
<Test reagents and test kits for cortisol-related diseases>
As described above, the test reagent (diagnostic reagent) for cortisol-related disease of the present invention includes the sensor for cortisol analysis of the present invention. The test kit (diagnostic kit) for cortisol-related diseases of the present invention comprises the sensor for cortisol analysis of the present invention. The test reagent and test kit of the present invention only need to include the sensor for cortisol analysis of the present invention, and other configurations and conditions are not particularly limited. If the test reagent and test kit of the present invention are used, for example, the possibility of morbidity of cortisol-related diseases can be tested as described later. For the test reagent and test kit of the present invention, for example, the description of the sensor, analysis reagent, and analysis kit of the present invention can be used, and the sensor, analysis reagent, analysis kit of the present invention, The description of the test method of the present invention described later can be cited.
<コルチゾール関連疾患の罹患可能性を試験する方法>
 本発明のコルチゾール関連疾患の罹患可能性を試験する方法は、前述のように、被検者の試料と前記本発明のコルチゾール分析用センサとを接触させる接触工程、前記試料中のコルチゾールと前記コルチゾール分析用センサにおける結合領域(A)とを結合させることにより、前記試料中のコルチゾールを検出する検出工程、および前記検出工程における前記コルチゾールの量を、基準値と比較することにより、コルチゾール関連疾患の罹患の可能性を試験する試験工程を含むことを特徴とする。本発明の評価方法は、前記本発明のセンサを使用することが特徴であって、その他の工程および条件等は、特に制限されない。
<Method for testing morbidity of cortisol-related diseases>
As described above, the method for testing the morbidity of a cortisol-related disease according to the present invention includes a contact step of bringing a sample of a subject into contact with the sensor for cortisol analysis according to the present invention, and cortisol in the sample and the cortisol. By detecting the cortisol in the sample by binding the binding region (A) in the analytical sensor, and comparing the amount of the cortisol in the detection step with a reference value, It is characterized by including a test process for testing the possibility of morbidity. The evaluation method of the present invention is characterized by using the sensor of the present invention, and other processes and conditions are not particularly limited.
 本発明の試験方法は、例えば、本発明のセンサおよび本発明の分析方法、評価方法等の説明を援用できる。また、本発明の試験方法において、前記接触工程および前記検出工程は、前記本発明の分析方法の説明を援用できる。 For the test method of the present invention, for example, the description of the sensor of the present invention and the analysis method and evaluation method of the present invention can be used. In the test method of the present invention, the description of the analysis method of the present invention can be used for the contact step and the detection step.
 本発明の試験方法によれば、例えば、コルチゾール関連疾患(以下、「関連疾患」ともいう)の発症の可能性、関連疾患の発症の有無、関連疾患の進行度および予後の状態等を評価できる。前記関連疾患は、例えば、前記コルチゾールの増加または減少により生じる疾患である。具体例として、前記コルチゾールの減少により生じる関連疾患としては、例えば、アジソン病、先天性副腎低形成症、先天性副腎皮質過形成症、下垂体腫瘍、下垂体性副腎皮質機能低下症、視床下部性副腎皮質機能低下症等があげられる。前記コルチゾールの増加により生じる関連疾患としては、例えば、クッシング病、クッシング症候群、グルココルチコイド不応症等があげられる。 According to the test method of the present invention, for example, the possibility of the onset of cortisol-related disease (hereinafter also referred to as “related disease”), the presence or absence of the onset of the related disease, the degree of progression of the related disease and the prognostic state can be evaluated. . The related disease is, for example, a disease caused by an increase or decrease in the cortisol. As specific examples, the related diseases caused by the decrease in cortisol include, for example, Addison's disease, congenital adrenal hypoplasia, congenital adrenal hyperplasia, pituitary tumor, pituitary hypoadrenocorticism, hypothalamus Sexual adrenocortical hypofunction and the like. Examples of the related diseases caused by the increase in cortisol include Cushing disease, Cushing syndrome, glucocorticoid refractory disease and the like.
 前記基準値は、特に制限されず、例えば、健常者、関連疾患患者および関連疾患のステージごとの関連疾患患者のコルチゾールの量があげられる。予後の評価の場合、前記基準値は、例えば、同じ被検者の治療後(例えば、治療直後)のコルチゾールの量であってもよい。 The reference value is not particularly limited, and examples thereof include the amount of cortisol in healthy subjects, related disease patients, and related disease patients for each stage of related diseases. In the case of prognostic evaluation, the reference value may be, for example, the amount of cortisol after treatment (for example, immediately after treatment) of the same subject.
 前記基準値は、例えば、健常者および/または関連疾患患者から単離した試料(以下、「基準試料」ともいう。)を用いて、得ることができる。また、予後の評価の場合、例えば、同じ被検者から治療後に単離した基準試料を用いてもよい。前記基準値は、例えば、前記被検者の試料と同時に測定してもよいし、予め測定してもよい。 The reference value can be obtained using, for example, a sample isolated from a healthy person and / or a related disease patient (hereinafter also referred to as “reference sample”). In the case of prognostic evaluation, for example, a reference sample isolated from the same subject after treatment may be used. For example, the reference value may be measured simultaneously with the sample of the subject or may be measured in advance.
 前記試験工程において、被検者の関連疾患の罹患危険度の評価方法は、特に制限されず、前記関連疾患および前記基準値の種類によって適宜決定できる。具体例として、コルチゾールの増加により生じる疾患の場合、前記被検者の試料におけるコルチゾールの量が、前記健常者の基準試料におけるコルチゾールの量よりも有意に高い場合、前記関連疾患患者の基準試料におけるコルチゾールの量と同じ場合(有意差がない場合)、および/または、前記関連疾患患者の基準試料におけるコルチゾールの量よりも有意に高い場合、前記被検者は、関連疾患に罹患する危険性があるまたは危険性が高いと評価できる。また、前記被検者の試料におけるコルチゾールの量が、前記健常者の基準試料におけるコルチゾールの量と同じ場合(有意差が無い場合)、前記健常者の基準試料におけるコルチゾールの量よりも有意に低い場合、および/または、前記関連疾患患者の基準試料におけるコルチゾールの量よりも有意に低い場合、前記被検者は、関連疾患に罹患する危険性が無いまたは危険性が低いと評価できる。他方、コルチゾールの減少により生じる疾患の場合、前記被検者の試料におけるコルチゾールの量が、前記健常者の基準試料におけるコルチゾールの量よりも有意に低い場合、前記関連疾患患者の基準試料におけるコルチゾールの量と同じ場合(有意差がない場合)、および/または、前記関連疾患患者の基準試料におけるコルチゾールの量よりも有意に低い場合、前記被検者は、関連疾患に罹患する危険性があるまたは危険性が高いと評価できる。また、前記被検者の試料におけるコルチゾールの量が、前記健常者の基準試料におけるコルチゾールの量と同じ場合(有意差が無い場合)、前記健常者の基準試料におけるコルチゾールの量よりも有意に高い場合、および/または、前記関連疾患患者の基準試料におけるコルチゾールの量よりも有意に高い場合、前記被検者は、関連疾患に罹患する危険性が無いまたは危険性が低いと評価できる。 In the test process, a method for evaluating the risk of affliction of a subject's related disease is not particularly limited, and can be appropriately determined according to the type of the related disease and the reference value. As a specific example, in the case of a disease caused by an increase in cortisol, when the amount of cortisol in the subject sample is significantly higher than the amount of cortisol in the reference sample of the healthy subject, in the reference sample of the related disease patient If the amount of cortisol is the same (no significant difference) and / or significantly higher than the amount of cortisol in the reference sample of the related disease patient, the subject is at risk of developing the related disease. Can be evaluated as being at or high risk. In addition, when the amount of cortisol in the subject sample is the same as the amount of cortisol in the healthy subject reference sample (when there is no significant difference), it is significantly lower than the amount of cortisol in the healthy subject reference sample. If and / or significantly lower than the amount of cortisol in the reference sample of the patient with the relevant disease, the subject can be assessed as having no or low risk of suffering from the relevant disease. On the other hand, in the case of a disease caused by a decrease in cortisol, if the amount of cortisol in the subject sample is significantly lower than the amount of cortisol in the healthy subject reference sample, If the amount is the same (no significant difference) and / or significantly lower than the amount of cortisol in the reference sample of the related disease patient, the subject is at risk of suffering from the related disease or It can be evaluated that the risk is high. In addition, when the amount of cortisol in the subject sample is the same as the amount of cortisol in the reference sample of the healthy subject (when there is no significant difference), the amount of cortisol in the reference sample of the healthy subject is significantly higher. If and / or significantly higher than the amount of cortisol in the reference sample of the patient with the relevant disease, the subject can be assessed as having no or low risk of suffering from the relevant disease.
 つぎに、本発明の実施例について説明する。ただし、本発明は、下記実施例により制限されない。市販の試薬は、特に示さない限り、それらのプロトコールに基づいて使用した。 Next, examples of the present invention will be described. However, the present invention is not limited by the following examples. Commercially available reagents were used based on their protocol unless otherwise indicated.
[実施例1]
 本発明の分析用センサを作製し、これを用いた蛍光検出によりコルチゾールの分析を行った。
[Example 1]
The analytical sensor of the present invention was prepared, and cortisol was analyzed by fluorescence detection using the sensor.
(1)分析用センサ
 前記表1~4に示す配列番号1~555のポリヌクレオチドを合成し、前記分析用センサとして使用した。なお、配列番号300~555のポリヌクレオチドは、前記表5に示す(1)~(128)の組合せで、前記第1鎖(ss1)と前記第2鎖(ss2)とを組合せ、二本鎖核酸センサとして使用した。具体的に、前記分析用センサを含むセンサ試薬は、下記の手順で調製した。
(1) Sensor for analysis The polynucleotides of SEQ ID NOs: 1 to 555 shown in Tables 1 to 4 were synthesized and used as the sensor for analysis. The polynucleotides of SEQ ID NOs: 300 to 555 are a combination of (1) to (128) shown in Table 5 above, combining the first strand (ss1) and the second strand (ss2) to form a double strand Used as a nucleic acid sensor. Specifically, a sensor reagent including the analytical sensor was prepared by the following procedure.
 前記一本鎖核酸センサを含むセンサ試薬は以下の手順で調製した。まず、前記配列番号1~299のポリヌクレオチドを、それぞれ、前記ポリヌクレオチドの終濃度が10μmol/Lとなるように蒸留水に溶解し、ポリヌクレオチド溶液を調製した。つぎに、25μLの緩衝液Aに、2μLのポリヌクレオチド溶液を添加し、希釈ポリヌクレオチド溶液を調製した。前記緩衝液Aの組成は、0.05%Triton(商標)X-100を含む100mmol/L Tris-HCl(pH7.4)緩衝液とした。 A sensor reagent containing the single-stranded nucleic acid sensor was prepared by the following procedure. First, the polynucleotides of SEQ ID NOs: 1 to 299 were each dissolved in distilled water so that the final concentration of the polynucleotide was 10 μmol / L to prepare a polynucleotide solution. Next, 2 μL of the polynucleotide solution was added to 25 μL of Buffer A to prepare a diluted polynucleotide solution. The composition of the buffer A was 100 mmol / L Tris-HCl (pH 7.4) buffer containing 0.05% Triton (trademark) X-100.
 つぎに、1.5μLの5mol/L NaCl水溶液を、前記希釈ポリヌクレオチド溶液に添加した。得られた溶液を混合後、ヒートブロックを用いて、95℃、5分の条件でインキュベートした。前記インキュベート後、室温(25℃前後)でインキュベートし、前記溶液の温度を室温に調整した。さらに、25μLの蒸留水、1μLの10μmol/L NMM水溶液および1μLの1mol/L KCl水溶液を添加し、混合し、センサ試薬を調製した。 Next, 1.5 μL of a 5 mol / L NaCl aqueous solution was added to the diluted polynucleotide solution. After mixing the obtained solution, it incubated on 95 degreeC and the conditions for 5 minutes using the heat block. After the incubation, incubation was performed at room temperature (around 25 ° C.), and the temperature of the solution was adjusted to room temperature. Furthermore, 25 μL of distilled water, 1 μL of 10 μmol / L NMM aqueous solution and 1 μL of 1 mol / L KCl aqueous solution were added and mixed to prepare a sensor reagent.
 つぎに、前記二本鎖核酸センサを含むセンサ試薬は以下の手順で調製した。まず、配列番号300~427のポリヌクレオチドを、それぞれ、終濃度が10μmol/Lとなるように蒸留水に溶解し、第1鎖溶液を調製した。また、配列番号428~555のポリヌクレオチドを、それぞれ、終濃度が10μmol/Lとなるように蒸留水に溶解し、第2鎖溶液を調製した。つぎに、25μLの緩衝液Aに、2μLの第1鎖溶液および4μLの第2鎖溶液を添加し、希釈ポリヌクレオチド溶液を調製した。この点を除き、前記一本鎖核酸センサを含むセンサ試薬と同様にして調製した。 Next, a sensor reagent including the double-stranded nucleic acid sensor was prepared by the following procedure. First, the polynucleotides of SEQ ID NOs: 300 to 427 were each dissolved in distilled water so as to have a final concentration of 10 μmol / L to prepare a first strand solution. Further, the polynucleotides of SEQ ID NOs: 428 to 555 were dissolved in distilled water so as to have a final concentration of 10 μmol / L, respectively, thereby preparing second strand solutions. Next, 2 μL of the first strand solution and 4 μL of the second strand solution were added to 25 μL of Buffer A to prepare a diluted polynucleotide solution. Except for this point, it was prepared in the same manner as the sensor reagent containing the single-stranded nucleic acid sensor.
(2)試料
 100mmol/L コルチゾールとなるように、DMSOに溶解したコルチゾール試料を調製し、以下の分析に使用した。
(2) Sample A cortisol sample dissolved in DMSO was prepared so as to be 100 mmol / L cortisol, and used for the following analysis.
(3)蛍光分析
 前記コルチゾール試料を、コルチゾールの終濃度が1mmol/Lとなるように、各センサ試薬に添加し、反応液を調製した。各反応液を混合後、384wellのブラックフラットプレート(Greiner社製)に添加し、各反応液の蛍光強度を測定した。蛍光強度の測定は、測定装置(TECAN infinite M1000 PRO、TECAN社製)を使用し、励起波長は399nmとし、発光波長は605nmとした。また、コントロールは、前記コルチゾール試料を未添加とした以外は、同様にして、蛍光強度を測定した。そして、各分析センサについて、前記試料未添加の反応液と前記試料添加の反応液との蛍光強度の比であるS/N比を求めた。
(3) Fluorescence analysis The cortisol sample was added to each sensor reagent so that the final concentration of cortisol was 1 mmol / L to prepare a reaction solution. After mixing each reaction solution, it was added to a 384-well black flat plate (Greiner), and the fluorescence intensity of each reaction solution was measured. The fluorescence intensity was measured using a measuring device (TECAN infinite M1000 PRO, manufactured by TECAN), with an excitation wavelength of 399 nm and an emission wavelength of 605 nm. Further, as a control, the fluorescence intensity was measured in the same manner except that the cortisol sample was not added. And about each analytical sensor, S / N ratio which is a ratio of the fluorescence intensity of the reaction liquid without the sample and the reaction liquid with the sample was obtained.
 この結果を下記表7A~Cに示す。下記表7A~Cにおいて、一本鎖型センサは、各センサが含むポリヌクレオチドの配列番号、二本鎖核酸センサは、各センサが含む第1鎖(ss1)の配列番号で示している。下記表7に示すように、いずれのセンサもS/N比が1以上であり、コルチゾールを分析できることがわかった。 The results are shown in Tables 7A to C below. In Tables 7A to 7C below, single-stranded sensors are indicated by SEQ ID NOs of polynucleotides included in each sensor, and double-stranded nucleic acid sensors are indicated by SEQ ID NOs of the first strand (ss1) included in each sensor. As shown in Table 7 below, it was found that each sensor had an S / N ratio of 1 or more, and cortisol could be analyzed.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
[実施例2]
 本発明の分析用センサを作製し、これを用いた蛍光検出により異なる濃度のコルチゾールの分析を行った。
[Example 2]
The analytical sensor of the present invention was prepared, and cortisol at different concentrations was analyzed by fluorescence detection using the sensor.
 前記センサ試薬として、配列番号142および288のポリヌクレオチドをそれぞれ含むセンサ試薬を用い、前記反応液におけるコルチゾールの終濃度を所定濃度(0、100、300または1000μmol/L)とした以外は、前記実施例1と同様にして蛍光強度を測定した。また、コントロールは、前記センサ試薬を添加しなかった以外は同様にして蛍光強度を測定した。 As the sensor reagent, the sensor reagent containing the polynucleotides of SEQ ID NOs: 142 and 288, respectively, was used, except that the final concentration of cortisol in the reaction solution was a predetermined concentration (0, 100, 300, or 1000 μmol / L). The fluorescence intensity was measured in the same manner as in Example 1. Further, as a control, the fluorescence intensity was measured in the same manner except that the sensor reagent was not added.
 この結果を図1に示す。図1は、分析用センサの蛍光強度を示すグラフである。図1において、横軸は、コルチゾールの濃度を示し、縦軸は、蛍光強度を示す。図1に示すように、いずれのセンサも、コントロールに対して高い蛍光強度を示した。また、いずれのセンサも、コルチゾールの濃度が増加するにつれて、蛍光強度が増加した。これらの結果から、本発明の分析用センサを用い、蛍光強度を測定することで、試料中のコルチゾール濃度を分析できることがわかった。 The result is shown in FIG. FIG. 1 is a graph showing the fluorescence intensity of the analytical sensor. In FIG. 1, the horizontal axis indicates the concentration of cortisol, and the vertical axis indicates the fluorescence intensity. As shown in FIG. 1, all the sensors showed high fluorescence intensity with respect to the control. Moreover, in any sensor, the fluorescence intensity increased as the concentration of cortisol increased. From these results, it was found that the concentration of cortisol in the sample can be analyzed by measuring the fluorescence intensity using the analytical sensor of the present invention.
[実施例3]
 本発明の分析用センサを作製し、これを用いた発色検出によりコルチゾールの分析を行った。
[Example 3]
The analytical sensor of the present invention was prepared, and cortisol was analyzed by color detection using the sensor.
(1)分析用センサ
 前記配列番号142のポリヌクレオチドを、前記ポリヌクレオチドの終濃度が100μmol/Lとなるように蒸留水に溶解し、ポリヌクレオチド溶液を調製した。つぎに、50μLの前記緩衝液Aに、1μLのポリヌクレオチド溶液を添加し、希釈ポリヌクレオチド溶液を調製した。前記調製後の溶液を混合後、ヒートブロックを用いて、95℃、5分の条件でインキュベートした。前記インキュベート後、室温(25℃前後)でインキュベートし、前記溶液の温度を室温に調整した。さらに、39μLの蒸留水、1μLの100μmol/L ヘミン水溶液および2μLの1mol/L KCl水溶液を添加し、混合し、センサ試薬を調製した。
(1) Analytical Sensor The polynucleotide of SEQ ID NO: 142 was dissolved in distilled water so that the final concentration of the polynucleotide was 100 μmol / L to prepare a polynucleotide solution. Next, 1 μL of the polynucleotide solution was added to 50 μL of the buffer A to prepare a diluted polynucleotide solution. The prepared solution was mixed and then incubated at 95 ° C. for 5 minutes using a heat block. After the incubation, incubation was performed at room temperature (around 25 ° C.), and the temperature of the solution was adjusted to room temperature. Furthermore, 39 μL of distilled water, 1 μL of a 100 μmol / L hemin aqueous solution and 2 μL of a 1 mol / L KCl aqueous solution were added and mixed to prepare a sensor reagent.
(2)発色分析
 前記コルチゾール試料を、コルチゾールの終濃度が所定濃度(0、111、333、または1000μmol/L)となるように、センサ試薬に添加し、反応液を調製した。各反応液を混合後、96wellのプレート(Greiner社製)に添加し、さらに、各Wellに、5μLの20mmol/L ABTS(2,2'-Azinobis(3-ethylbenzothiazolin-6-sulfonic Acid))溶液および1μLの10mmol/L 過酸化水素水溶液を添加し、混合した。前記混合後、すぐに各反応液の吸光度を測定した。吸光度の測定は、前記測定装置(TECAN infinite M1000 PRO、TECAN社製)を使用し、測定波長は415nmとした。また、コントロールは、前記センサ試料を未添加とした以外は、同様にして、吸光度を測定した。
(2) Color Analysis The cortisol sample was added to the sensor reagent so that the final concentration of cortisol was a predetermined concentration (0, 111, 333, or 1000 μmol / L) to prepare a reaction solution. After mixing each reaction solution, it was added to a 96-well plate (Greiner), and 5 μL of 20 mmol / L ABTS (2,2′-Azinobis (3-ethylbenzothiazolin-6-sulfonic acid)) solution was added to each well. And 1 μL of a 10 mmol / L aqueous hydrogen peroxide solution were added and mixed. Immediately after the mixing, the absorbance of each reaction solution was measured. For the measurement of absorbance, the measurement apparatus (TECAN infinite M1000 PRO, manufactured by TECAN) was used, and the measurement wavelength was 415 nm. Further, as a control, the absorbance was measured in the same manner except that the sensor sample was not added.
 この結果を図2に示す。図2は、分析用センサの吸光度を示すグラフである。図2において、横軸は、コルチゾールの濃度を示し、縦軸は、吸光度を示す。図2に示すように、いずれのセンサも、コントロールに対して高い吸光度を示した。また、いずれのセンサも、コルチゾールの濃度が増加するにつれて、吸光度が増加した。これらの結果から、本発明の分析用センサを用い、吸光度を測定することで、試料中のコルチゾール濃度を分析できることがわかった。 This result is shown in FIG. FIG. 2 is a graph showing the absorbance of the analytical sensor. In FIG. 2, the horizontal axis indicates the concentration of cortisol, and the vertical axis indicates the absorbance. As shown in FIG. 2, all the sensors showed high absorbance with respect to the control. In addition, the absorbance of each sensor increased as the concentration of cortisol increased. From these results, it was found that the cortisol concentration in the sample can be analyzed by measuring the absorbance using the analytical sensor of the present invention.
[実施例4]
 本発明の分析用センサを作製し、これを用いたキャピラリー電気泳動によりコルチゾールの分析を行った。
[Example 4]
The analytical sensor of the present invention was prepared, and cortisol was analyzed by capillary electrophoresis using the sensor.
(1)分析用センサ
 前記配列番号142のポリヌクレオチドの5’末端を、蛍光色素(TYE(商標)665、Integrated DNA Technologies、MBL社製)で標識した。前記標識後のポリヌクレオチドを、前記ポリヌクレオチドの終濃度が0.2μmol/Lとなるように緩衝液Bに溶解し、センサ試薬を調製した。前記緩衝液Bの組成は、125mmol/L NaCl、5mmol/L KClおよび1mmol/L MgClを含む40mmol/L HEPES(pH7.5)緩衝液とした。
(1) Sensor for analysis The 5 ′ end of the polynucleotide of SEQ ID NO: 142 was labeled with a fluorescent dye (TYE (trademark) 665, Integrated DNA Technologies, manufactured by MBL). The labeled polynucleotide was dissolved in buffer B so that the final concentration of the polynucleotide was 0.2 μmol / L, thereby preparing a sensor reagent. The composition of the buffer B was a 40 mmol / L HEPES (pH 7.5) buffer containing 125 mmol / L NaCl, 5 mmol / L KCl, and 1 mmol / L MgCl 2 .
(2)キャピラリー電気泳動
 前記センサ試薬を等量のサンプルバッファーと混合後、95℃、5分の条件でインキュベート後、さらに、氷上で5分間インキュベートした。前記サンプルバッファーの組成は、20mmol/L KClおよび0.01% Tween20を含む40mmol/L HEPES緩衝液(pH7.5)とした。前記インキュベート後、前記コルチゾール試料を、コルチゾールの終濃度が所定濃度(0、2、または5mmol/L)となるように、混合液に添加し、反応液を調製した。そして、10μLの各反応液について、それぞれ、泳動ゲル(0.6%ヒドロキシプロピルメチルセルロースゲル、SIGMA社製)、測定チップ(i-チップ12、Hitachi Chemical社製)および測定装置(SV12120形コスモアイ、日立ハイテクノロジー社製)を用いて、電気泳動を行った。なお、前記電気泳動において、濃縮電圧は、600V、濃縮時間は、120秒、分離電圧は、350V、分離時間は、240秒とした。そして、前記泳動ゲルについて、前記測定装置を用い、励起波長を635nm、発光波長を660nmとし、泳動開始点を基準として各泳動距離における蛍光強度を測定した。
(2) Capillary electrophoresis The sensor reagent was mixed with an equal amount of sample buffer, incubated at 95 ° C. for 5 minutes, and further incubated on ice for 5 minutes. The composition of the sample buffer was 40 mmol / L HEPES buffer (pH 7.5) containing 20 mmol / L KCl and 0.01% Tween20. After the incubation, the cortisol sample was added to the mixed solution so that the final concentration of cortisol was a predetermined concentration (0, 2, or 5 mmol / L) to prepare a reaction solution. For 10 μL of each reaction solution, electrophoresis gel (0.6% hydroxypropylmethylcellulose gel, manufactured by SIGMA), measuring chip (i-chip 12, manufactured by Hitachi Chemical) and measuring device (SV12120 Cosmo Eye, Hitachi, respectively) Electrophoresis was performed using a high technology company. In the electrophoresis, the concentration voltage was 600 V, the concentration time was 120 seconds, the separation voltage was 350 V, and the separation time was 240 seconds. Then, with respect to the electrophoresis gel, the fluorescence intensity at each migration distance was measured using the measurement apparatus with an excitation wavelength of 635 nm and an emission wavelength of 660 nm with reference to the migration start point.
 この結果を図3に示す。図3は、前記泳動ゲルの各泳動距離における蛍光強度を示すグラフである。図3において、横軸は、泳動開始点を基準とした泳動距離を示し、縦軸は、蛍光強度を示す。また、図3において、400nm前後のピークが、前記分析用センサおよびコルチゾールの複合体の検出ピークであり、440nm前後のピークが前記分析用センサのみの検出ピークである。図3に示すように、コルチゾールの濃度が増加するにつれて、400nm前後のピークの蛍光強度が上昇し、440nm前後のピークの蛍光強度が減少した。これらの結果から、本発明の分析用センサを用い、キャピラリー電気泳動により、試料中のコルチゾール濃度を分析できることがわかった。 This result is shown in FIG. FIG. 3 is a graph showing the fluorescence intensity at each migration distance of the electrophoresis gel. In FIG. 3, the horizontal axis represents the migration distance with the migration start point as a reference, and the vertical axis represents the fluorescence intensity. In FIG. 3, the peak around 400 nm is the detection peak of the complex of the analytical sensor and cortisol, and the peak around 440 nm is the detection peak of the analytical sensor alone. As shown in FIG. 3, as the concentration of cortisol increased, the fluorescence intensity of the peak around 400 nm increased and the fluorescence intensity of the peak around 440 nm decreased. From these results, it was found that the concentration of cortisol in the sample can be analyzed by capillary electrophoresis using the analytical sensor of the present invention.
[実施例5]
 本発明の分析用センサを作製し、これを用いた金コロイドの検出によりコルチゾールの分析を行った。
[Example 5]
The analytical sensor of the present invention was prepared, and cortisol was analyzed by detecting gold colloid using the sensor.
(1)分析用センサ
 前記配列番号28および142のポリヌクレオチドを、それぞれ、前記ポリヌクレオチドの終濃度が、2μmol/Lとなるように蒸留水に溶解し、センサ試薬を調製した。
(1) Sensor for analysis The polynucleotides of SEQ ID NOs: 28 and 142 were each dissolved in distilled water so that the final concentration of the polynucleotide was 2 μmol / L to prepare a sensor reagent.
(2)金コロイドの検出
 前記ポリヌクレオチドの終濃度が、0.2μmol/Lになるように、5μLの前記センサ試薬および45μLの10nm金コロイド分散液(SIGMA社製、カタログ番号:G1527-25ML)を96Well Uボトムプレート(Greiner社製)に添加し、前記室温、10秒、1000rpmの条件で、プレートシェーカーを用いて撹拌した。前記撹拌後、室温、1時間の条件でインキュベートした。さらに、前記コルチゾール試料を、コルチゾールの終濃度が所定濃度(0、4、40、または400μmol/L)となるように、各Wellに添加し、反応液を調製した。前記反応液を、前記室温、10秒、1000rpmの条件で、プレートシェーカーを用いて撹拌した。
(2) Detection of gold colloid 5 μL of the sensor reagent and 45 μL of 10 nm colloidal gold dispersion (catalog number: G1527-25ML) so that the final concentration of the polynucleotide is 0.2 μmol / L. Was added to a 96 Well U bottom plate (manufactured by Greiner) and stirred using a plate shaker at room temperature, 10 seconds, and 1000 rpm. After the stirring, the mixture was incubated at room temperature for 1 hour. Further, the cortisol sample was added to each well so that the final concentration of cortisol was a predetermined concentration (0, 4, 40, or 400 μmol / L) to prepare a reaction solution. The reaction solution was stirred using a plate shaker under the conditions of room temperature, 10 seconds, and 1000 rpm.
 前記撹拌後、室温、20分の条件でインキュベートした。つぎに、前記プレートの各Wellについて、前記測定装置(TECAN infinite M1000 PRO、TECAN社製)を使用し、450~650nmの吸光度を測定した(凝集前吸光度)。さらに、1.5μLの5mol/L NaCl水溶液を各Wellに添加後、前記測定装置で10秒攪拌した。前記撹拌後、前記室温、5分の条件でインキュベートした。そして、前記プレートの各Wellについて、前記測定装置を使用し、450~650nmの吸光度を測定した(凝集後吸光度)。また、コントロールは、前記センサ試薬を添加しない以外は同様にして、凝集前吸光度および凝集後吸光度を測定した。そして、各波長について、前記凝集後吸光度から前記凝集前吸光度を引いて補正した後、補正後の520nmの吸光度に対する650nmの吸光度の相対値を算出した。さらに、コルチゾール濃度が0μmol/Lの反応液の吸光度を1とし、各濃度の吸光度の相対値を算出した。 After the stirring, the mixture was incubated at room temperature for 20 minutes. Next, with respect to each well of the plate, the absorbance at 450 to 650 nm was measured (absorbance before aggregation) using the measurement apparatus (TECAN infinite M1000 PRO, manufactured by TECAN). Further, 1.5 μL of a 5 mol / L NaCl aqueous solution was added to each well and then stirred for 10 seconds with the measuring device. After the stirring, the mixture was incubated at room temperature for 5 minutes. Then, for each well of the plate, the absorbance at 450 to 650 nm was measured using the measuring apparatus (absorbance after aggregation). For the control, the absorbance before aggregation and the absorbance after aggregation were measured in the same manner except that the sensor reagent was not added. For each wavelength, correction was performed by subtracting the absorbance before aggregation from the absorbance after aggregation, and then the relative value of the absorbance at 650 nm with respect to the absorbance at 520 nm after correction was calculated. Furthermore, the absorbance of the reaction solution having a cortisol concentration of 0 μmol / L was taken as 1, and the relative value of the absorbance at each concentration was calculated.
 この結果を図4に示す。図4は、吸光度の相対値を示すグラフである。図4において、横軸は、コルチゾールの濃度を示し、縦軸は、吸光度の相対値を示す。図4に示すように、いずれのセンサも、コントロールに対して高い吸光度の相対値を示した。また、いずれのセンサも、コルチゾールの濃度が増加するにつれて、吸光度の相対値が増加した。これらの結果から、本発明の分析用センサを用い、金コロイドの検出により、試料中のコルチゾール濃度を分析できることがわかった。 This result is shown in FIG. FIG. 4 is a graph showing relative values of absorbance. In FIG. 4, the horizontal axis indicates the concentration of cortisol, and the vertical axis indicates the relative value of absorbance. As shown in FIG. 4, all sensors showed a high relative value of absorbance with respect to the control. Moreover, as for the concentration of cortisol, the relative value of the absorbance increased in any sensor. From these results, it was found that the cortisol concentration in the sample can be analyzed by detecting the colloidal gold using the analytical sensor of the present invention.
[実施例6]
 本発明の分析用センサが、メラトニン、L-トリプトファン、コルチゾン、ノルエピネフリン、エピネフリン、およびコール酸に対する交差反応性が低いことを確認した。
[Example 6]
The analytical sensor of the present invention was confirmed to have low cross-reactivity with melatonin, L-tryptophan, cortisone, norepinephrine, epinephrine, and cholic acid.
(1)分析用センサ
 前記分析用センサとしては、配列番号421のポリヌクレオチドおよび配列番号549のポリヌクレオチドを、それぞれ、前記第1鎖(ss1)および前記第2鎖(ss2)として組合せた、二本鎖核酸センサを使用した。
(1) Analytical sensor The analytical sensor includes a combination of the polynucleotide of SEQ ID NO: 421 and the polynucleotide of SEQ ID NO: 549 as the first strand (ss1) and the second strand (ss2), respectively. A double-stranded nucleic acid sensor was used.
 まず、配列番号549のポリヌクレオチドの5’末端を、前記蛍光色素(TYE(商標)665)で標識した。前記標識後のポリヌクレオチドを、前記ポリヌクレオチドの終濃度が100μmol/Lとなるように蒸留水に溶解し、第2鎖溶液を調製した。 First, the 5 ′ end of the polynucleotide of SEQ ID NO: 549 was labeled with the fluorescent dye (TYE ™ 665). The labeled polynucleotide was dissolved in distilled water so that the final concentration of the polynucleotide was 100 μmol / L to prepare a second strand solution.
 つぎに、配列番号421のポリヌクレオチドを、前記ポリヌクレオチドの終濃度が100μmol/Lとなるように蒸留水に溶解し、第1鎖溶液を調製した。さらに、25μLの緩衝液Dに、5μLの前記第1鎖溶液および前記第2鎖溶液を、それぞれ添加し、希釈ポリヌクレオチド溶液を調製した。前記緩衝液Dの組成は、0.1%Triton(商標)X-100および300mmol/L NaClを含む100mmol/L Tris-HCl(pH7.4)緩衝液とした。そして、前記希釈ポリヌクレオチド溶液を、ヒートブロックを用いて、95℃、5分の条件でインキュベートした。前記インキュベート後、室温(25℃前後)で15分間インキュベートし、前記溶液の温度を室温(25℃前後)に調整した。 Next, the polynucleotide of SEQ ID NO: 421 was dissolved in distilled water so that the final concentration of the polynucleotide was 100 μmol / L to prepare a first strand solution. Further, 5 μL of the first strand solution and the second strand solution were added to 25 μL of Buffer D to prepare a diluted polynucleotide solution. The composition of the buffer solution D was a 100 mmol / L Tris-HCl (pH 7.4) buffer solution containing 0.1% Triton (trademark) X-100 and 300 mmol / L NaCl. Then, the diluted polynucleotide solution was incubated at 95 ° C. for 5 minutes using a heat block. After the incubation, the solution was incubated at room temperature (around 25 ° C.) for 15 minutes, and the temperature of the solution was adjusted to room temperature (around 25 ° C.).
(2)試料
 後述する反応液を調製した際に、前記反応液において、各化合物の終濃度が所定濃度(0、100、500、または1000μmol/L)となるように、コルチゾール、メラトニン、L-トリプトファン、コルチゾン、DL-ノルエピネフリン塩酸塩、(±)-エピネフリン塩酸塩、およびコール酸をそれぞれ、DMSOに溶解し、コルチゾール試料、メラトニン試料、L-トリプトファン試料、コルチゾン試料、ノルエピネフリン試料、エピネフリン試料、およびコール酸試料を調製した。
(2) Sample Cortisol, melatonin, L- so that when a reaction solution described later is prepared, the final concentration of each compound in the reaction solution is a predetermined concentration (0, 100, 500, or 1000 μmol / L). Tryptophan, cortisone, DL-norepinephrine hydrochloride, (±) -epinephrine hydrochloride, and cholic acid are each dissolved in DMSO, cortisol sample, melatonin sample, L-tryptophan sample, cortisone sample, norepinephrine sample, epinephrine sample, and A cholic acid sample was prepared.
(3)蛍光偏光法
 35μLの前記希釈ポリヌクレオチド、1μLの1mol/L KCl水溶液、13.5μLの蒸留水、および0.5μLの前記試料を含む反応液を、前記試料毎に、調製した。前記反応液を撹拌後、それぞれ、384Well フラットボトムブラックプレート(Greiner社製)に添加後、前記測定装置を使用し、励起波長635nm、蛍光波長670nmにおける蛍光偏光度を測定した。なお、前記蛍光偏光度は、前記配列番号421のポリヌクレオチドおよび前記試料を添加しないサンプルの対照偏光度を20mPとした場合の相対値として、算出した。
(3) Fluorescence Polarization Method A reaction solution containing 35 μL of the diluted polynucleotide, 1 μL of 1 mol / L KCl aqueous solution, 13.5 μL of distilled water, and 0.5 μL of the sample was prepared for each sample. After stirring the reaction solution, each was added to a 384 Well flat bottom black plate (Greiner), and the degree of fluorescence polarization at an excitation wavelength of 635 nm and a fluorescence wavelength of 670 nm was measured using the measuring device. The fluorescence polarization degree was calculated as a relative value when the control polarization degree of the sample to which the polynucleotide of SEQ ID NO: 421 and the sample were not added was 20 mP.
 この結果を図5に示す。図5は、蛍光偏光度を示すグラフである。図5において、横軸は、各試料の濃度を示し、縦軸は、蛍光偏光度(mP)を示す。図5に示すように、前記分析用センサは、前記コルチゾール試料においては、コルチゾールの濃度依存的に、蛍光偏光度が低下した。すなわち、コルチゾールに結合した。これに対し、前記分析用センサは、メラトニン試料、L-トリプトファン試料、コルチゾン試料、ノルエピネフリン試料、エピネフリン試料、およびコール酸試料においては、各試料の濃度依存的に、蛍光偏光度が低下しなかった。すなわち、前記分析用センサは、これらのメラトニン、L-トリプトファン、コルチゾン、ノルエピネフリン、エピネフリン、およびコール酸に対して、結合しないまたは結合性が低いことが分かった。これらの結果から、本発明の分析用センサが、メラトニン、L-トリプトファン、コルチゾン、ノルエピネフリン、エピネフリン、およびコール酸に対する交差反応性が低いことわかった。また、本発明の分析用センサを用い、蛍光偏光法により、試料中のコルチゾール濃度を分析できることがわかった。 This result is shown in FIG. FIG. 5 is a graph showing the degree of fluorescence polarization. In FIG. 5, the horizontal axis represents the concentration of each sample, and the vertical axis represents the degree of fluorescence polarization (mP). As shown in FIG. 5, the degree of fluorescence polarization of the analytical sensor decreased in the cortisol sample depending on the concentration of cortisol. That is, it bound to cortisol. In contrast, in the analytical sensor, the melatonin sample, the L-tryptophan sample, the cortisone sample, the norepinephrine sample, the epinephrine sample, and the cholic acid sample did not decrease the fluorescence polarization degree depending on the concentration of each sample. . That is, it was found that the analytical sensor does not bind or has low binding to these melatonin, L-tryptophan, cortisone, norepinephrine, epinephrine, and cholic acid. From these results, it was found that the analytical sensor of the present invention has low cross-reactivity with melatonin, L-tryptophan, cortisone, norepinephrine, epinephrine, and cholic acid. It was also found that the concentration of cortisol in the sample can be analyzed by fluorescence polarization using the analytical sensor of the present invention.
 以上のことから、本発明のセンサは、様々な検出方法で使用できることがわかった。 From the above, it was found that the sensor of the present invention can be used in various detection methods.
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は、上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をできる。 As mentioned above, although this invention was demonstrated with reference to embodiment and an Example, this invention is not limited to the said embodiment and Example. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2015年12月11日に出願された日本出願特願2015-241924を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-241924 filed on Dec. 11, 2015, the entire disclosure of which is incorporated herein.
 本発明のコルチゾール分析用センサは、前記結合領域(A)にコルチゾールが結合することにより、前記G形成領域(D)がG-カルテット構造を形成する。G-カルテット構造を形成した前記G形成領域(D)は、活性型であり、例えば、それ自身が触媒機能を生起したり、ポルフィリンと複合体形成により蛍光を発したりする。このため、例えば、前記触媒機能の検出または前記蛍光の検出を行うことによって、簡便に、コルチゾールの分析を行うことができる。また、本発明のコルチゾール分析用センサは、例えば、メラトニン、L-トリプトファン、コルチゾン、ノルエピネフリン、エピネフリン、およびコール酸等の類似化合物に対する交差反応性が低い。このため、本発明のコルチゾール分析用センサは、例えば、特異的に、コルチゾールの分析を行うことができる。そして、本発明のコルチゾール分析用センサは、多様なコルチゾールの検出方法に適用できることからも、多様な状況でコルチゾールを分析できる。したがって、本発明のコルチゾール分析用センサは、例えば、分析分野、医療分野、ライフサイエンス分野等の分野におけるコルチゾールの分析に、極めて有用なツールといえる。 In the sensor for cortisol analysis of the present invention, the G-forming region (D) forms a G-quartet structure by cortisol binding to the binding region (A). The G-forming region (D) in which the G-quartet structure is formed is an active type, and for example, it generates a catalytic function or emits fluorescence by forming a complex with porphyrin. For this reason, for example, by detecting the catalytic function or the fluorescence, cortisol can be easily analyzed. In addition, the sensor for analyzing cortisol according to the present invention has low cross-reactivity to similar compounds such as melatonin, L-tryptophan, cortisone, norepinephrine, epinephrine, and cholic acid. For this reason, the sensor for cortisol analysis of the present invention can specifically analyze cortisol, for example. And since the sensor for cortisol analysis of this invention is applicable to the detection method of various cortisol, it can analyze cortisol in various situations. Therefore, it can be said that the sensor for cortisol analysis of the present invention is an extremely useful tool for analyzing cortisol in fields such as the analysis field, the medical field, and the life science field.

Claims (41)

  1. ターゲットに結合する結合領域(A)とG-カルテット構造を形成するG形成領域(D)とを含む下記(I)、(II)および(III)からなる群から選択された少なくとも1つの核酸分子を含み、
    前記ターゲットが、コルチゾールであり、
    前記ターゲット非存在下、前記G形成領域(D)は、G-カルテット構造の形成が阻害され不活性型となり、
    前記ターゲット存在下、前記G形成領域(D)は、G-カルテット構造を形成して活性型となることを特徴とする、コルチゾール分析用センサ。
    (I)前記G形成領域(D)および前記結合領域(A)を有し、
    前記結合領域(A)は、ステム形成領域(S)、中間領域(C)およびステム形成領域(S)を有し、
    前記ステム形成領域(S)は、前記G形成領域(D)に対して相補的な配列を有し、
    前記ステム形成領域(S)は、前記中間領域(C)に対して相補的な配列を有する一本鎖核酸分子。
    (II)前記G形成領域(D)および前記結合領域(A)を有し、
    前記G形成領域(D)が、第1領域(D1)と第2領域(D2)とを含み、前記第1領域(D1)と前記第2領域(D2)とによりG-カルテットを形成する領域であり、
    前記結合領域(A)の一方の末端側に前記第1領域(D1)を有し、前記結合領域(A)の他方の末端側に前記第2領域(D2)を有する一本鎖核酸分子。
    (III)第1鎖(ss1)と第2鎖(ss2)とから構成される二本鎖核酸分子であり、
    前記第1鎖(ss1)は、前記G形成領域(D)と前記結合領域(A)とをこの順序で有し、
    前記第2鎖(ss2)は、ステム形成領域(S)およびステム形成領域(S)をこの順序で有し、前記ステム形成領域(S)は、前記G形成領域(D)に対して相補的な配列を有し、前記ステム形成領域(S)は、前記結合領域(A)に対して相補的な配列を有する二本鎖核酸分子。
    At least one nucleic acid molecule selected from the group consisting of the following (I), (II), and (III), comprising a binding region (A) that binds to a target and a G-forming region (D) that forms a G-quartet structure Including
    The target is cortisol,
    In the absence of the target, the G-forming region (D) becomes inactive due to inhibition of formation of the G-quartet structure,
    In the presence of the target, the G-forming region (D) forms a G-quartet structure to become an active type, and a sensor for cortisol analysis.
    (I) having the G-forming region (D) and the binding region (A);
    The binding region (A) has a stem formation region (S D ), an intermediate region (C), and a stem formation region (S C ),
    The stem formation region (S D ) has a sequence complementary to the G formation region (D),
    The stem-forming region (S C ) is a single-stranded nucleic acid molecule having a sequence complementary to the intermediate region (C).
    (II) having the G-forming region (D) and the binding region (A),
    The G formation region (D) includes a first region (D1) and a second region (D2), and a region in which a G-quartet is formed by the first region (D1) and the second region (D2) And
    A single-stranded nucleic acid molecule having the first region (D1) on one end side of the binding region (A) and the second region (D2) on the other end side of the binding region (A).
    (III) a double-stranded nucleic acid molecule composed of a first strand (ss1) and a second strand (ss2),
    The first strand (ss1) has the G-forming region (D) and the binding region (A) in this order,
    The second chain (ss2) has a stem formation region (S D ) and a stem formation region (S A ) in this order, and the stem formation region (S D ) is in the G formation region (D). A double-stranded nucleic acid molecule having a complementary sequence and the stem-forming region (S A ) having a sequence complementary to the binding region (A).
  2. 前記ターゲットの存在下、前記G形成領域(D)がG-カルテット構造を形成してポルフィリンと複合体を形成することにより、前記複合体が蛍光を生じる、請求項1記載のコルチゾール分析用センサ。 The sensor for cortisol analysis according to claim 1, wherein in the presence of the target, the G-forming region (D) forms a G-quartet structure to form a complex with porphyrin, whereby the complex generates fluorescence.
  3. 前記ターゲットの存在下、前記G形成領域(D)がG-カルテット構造を形成してポルフィリンと複合体を形成することにより、触媒機能を生起する、請求項1記載のコルチゾール分析用センサ。 The sensor for cortisol analysis according to claim 1, wherein in the presence of the target, the G-forming region (D) forms a G-quartet structure to form a complex with porphyrin, thereby generating a catalytic function.
  4. 前記核酸分子(I)において、前記G形成領域(D)、前記ステム形成領域(S)、前記中間領域(C)および前記ステム形成領域(S)が、下記(1)または(2)の順序で連結している、請求項1から3のいずれか一項の記載のコルチゾール分析用センサ。
    (1) 前記G形成領域(D)、前記ステム形成領域(S)、前記中間領域(C)、および前記ステム形成領域(S)の順序
    (2) 前記ステム形成領域(S)、前記中間領域(C)、前記ステム形成領域(S)および前記G形成領域(D)の順序
    In the nucleic acid molecule (I), the G-forming region (D), the stem-forming region (S D ), the intermediate region (C) and the stem-forming region (S C ) are the following (1) or (2) The sensor for cortisol analysis according to any one of claims 1 to 3, wherein the sensors are connected in the following order.
    (1) Order of the G formation region (D), the stem formation region (S C ), the intermediate region (C), and the stem formation region (S D ) (2) The stem formation region (S D ), Order of the intermediate region (C), the stem formation region (S C ), and the G formation region (D)
  5. 前記核酸分子(I)が、さらに、
    内部領域(I)および内部領域(I)を含み、
    前記ステム形成領域(S)と前記G形成領域(D)との間に、内部領域(I)が配置され、
    前記ステム形成領域(S)と前記中間領域(C)との間に、内部領域(I)が配置され、
    前記内部領域(I)と前記内部領域(I)とが、互いに非相補的である、請求項1から4のいずれか一項の記載のコルチゾール分析用センサ。
    The nucleic acid molecule (I) is further
    Including an internal region (I D ) and an internal region (I A ),
    An internal region (I D ) is disposed between the stem formation region (S C ) and the G formation region (D),
    An internal region (I C ) is disposed between the stem formation region (S D ) and the intermediate region (C),
    The sensor for cortisol analysis according to any one of claims 1 to 4, wherein the internal region (I D ) and the internal region (I C ) are non-complementary to each other.
  6. 前記核酸分子(I)において、前記結合領域(A)が、下記表1A~GおよびHの配列番号1~279のいずれかの塩基配列における四角で囲った塩基配列からなるポリヌクレオチドを含む、請求項1から5のいずれか一項に記載のコルチゾール分析用センサ。
    Figure JPOXMLDOC01-appb-T000001
    Figure JPOXMLDOC01-appb-T000002
    Figure JPOXMLDOC01-appb-T000003
    Figure JPOXMLDOC01-appb-T000004
    Figure JPOXMLDOC01-appb-T000005
    Figure JPOXMLDOC01-appb-T000006
    Figure JPOXMLDOC01-appb-T000007
    Figure JPOXMLDOC01-appb-T000008
    In the nucleic acid molecule (I), the binding region (A) includes a polynucleotide having a base sequence surrounded by a square in any one of the base sequences of SEQ ID NOS: 1 to 279 of Tables 1A to G and H below. Item 6. The sensor for cortisol analysis according to any one of Items 1 to 5.
    Figure JPOXMLDOC01-appb-T000001
    Figure JPOXMLDOC01-appb-T000002
    Figure JPOXMLDOC01-appb-T000003
    Figure JPOXMLDOC01-appb-T000004
    Figure JPOXMLDOC01-appb-T000005
    Figure JPOXMLDOC01-appb-T000006
    Figure JPOXMLDOC01-appb-T000007
    Figure JPOXMLDOC01-appb-T000008
  7. 前記(I)の核酸分子において、前記G形成領域(D)が、前記表1A~Hの配列番号1~279のいずれかの塩基配列における下線部の塩基配列からなるポリヌクレオチドを含む、請求項1から6のいずれか一項に記載のコルチゾール分析用センサ。 The nucleic acid molecule (I), wherein the G-forming region (D) comprises a polynucleotide comprising an underlined base sequence in any one of the base sequences of SEQ ID NOS: 1 to 279 of Tables 1A to H. The sensor for cortisol analysis according to any one of 1 to 6.
  8. 前記核酸分子(I)が、配列番号1~279からなる群から選択された少なくとも一つの塩基配列からなるポリヌクレオチドを含む、請求項1から7のいずれか一項に記載のコルチゾール分析用センサ。 The sensor for cortisol analysis according to any one of claims 1 to 7, wherein the nucleic acid molecule (I) comprises a polynucleotide comprising at least one base sequence selected from the group consisting of SEQ ID NOs: 1 to 279.
  9. 前記核酸分子(II)において、前記結合領域(A)が、下記表2の配列番号280~299のいずれかの塩基配列における四角で囲った塩基配列からなるポリヌクレオチドを含む、請求項1から3のいずれか一項に記載のコルチゾール分析用センサ。
    Figure JPOXMLDOC01-appb-T000009
    The nucleic acid molecule (II), wherein the binding region (A) comprises a polynucleotide comprising a base sequence surrounded by a square in any one of the base sequences of SEQ ID NOS: 280 to 299 in Table 2 below. The sensor for cortisol analysis as described in any one of these.
    Figure JPOXMLDOC01-appb-T000009
  10. 前記核酸分子(II)において、前記第1領域(D1)および前記第2領域(D2)の一方が、前記表2の配列番号280~299のいずれかの塩基配列における下線部の塩基配列からなるポリヌクレオチドを含み、
    他方の領域が、同じ配列番号の塩基配列におけるかっこで囲んだ下線部の塩基配列からなるポリヌクレオチドを含む、請求項1から3および9のいずれか一項に記載のコルチゾール分析用センサ。
    In the nucleic acid molecule (II), one of the first region (D1) and the second region (D2) is composed of an underlined base sequence in any one of the base sequences of SEQ ID NOs: 280 to 299 in Table 2. Comprising a polynucleotide;
    The sensor for cortisol analysis according to any one of claims 1 to 3 and 9, wherein the other region comprises a polynucleotide comprising an underlined base sequence surrounded by parentheses in the base sequence of the same SEQ ID NO.
  11. 前記核酸分子(II)が、配列番号280~299からなる群から選択された少なくとも一つの塩基配列からなるポリヌクレオチドを含む、請求項1から3、9および10のいずれか一項に記載のコルチゾール分析用センサ。 The cortisol according to any one of claims 1 to 3, 9, and 10, wherein the nucleic acid molecule (II) comprises a polynucleotide comprising at least one base sequence selected from the group consisting of SEQ ID NOs: 280 to 299. Sensor for analysis.
  12. 前記核酸分子(III)において、前記第1鎖(ss1)の前記結合領域(A)が、下記表3A~CおよびDの配列番号300~427のいずれかの塩基配列における四角で囲った塩基配列からなるポリヌクレオチドを含む、請求項1から3のいずれか一項に記載のコルチゾール分析用センサ。
    Figure JPOXMLDOC01-appb-T000010
    Figure JPOXMLDOC01-appb-T000011
    Figure JPOXMLDOC01-appb-T000012
    Figure JPOXMLDOC01-appb-T000013
    In the nucleic acid molecule (III), the binding region (A) of the first strand (ss1) is a base sequence surrounded by a square in any one of the base sequences of SEQ ID NOS: 300 to 427 in Tables 3A to C and D below. The sensor for cortisol analysis as described in any one of Claim 1 to 3 containing the polynucleotide which consists of.
    Figure JPOXMLDOC01-appb-T000010
    Figure JPOXMLDOC01-appb-T000011
    Figure JPOXMLDOC01-appb-T000012
    Figure JPOXMLDOC01-appb-T000013
  13. 前記核酸分子(III)において、前記第1鎖(ss1)の前記G形成領域(D)が、前記表3A~CおよびDの配列番号300~427のいずれかの塩基配列における下線で示した塩基配列からなるポリヌクレオチドを含む、請求項1から3および12のいずれか一項に記載のコルチゾール分析用センサ。 In the nucleic acid molecule (III), the G-forming region (D) of the first strand (ss1) is an underlined base in any one of the nucleotide sequences of SEQ ID NOS: 300 to 427 in Tables 3A to C and D The sensor for cortisol analysis according to any one of claims 1 to 3 and 12, comprising a polynucleotide comprising a sequence.
  14. 前記核酸分子(III)において、前記第1鎖(ss1)が、前記表3A~CおよびDの配列番号300~427のいずれかの塩基配列からなるポリヌクレオチドを含む、請求項1から3、12および13のいずれか一項に記載のコルチゾール分析用センサ。 The nucleic acid molecule (III), wherein the first strand (ss1) comprises a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOs: 300 to 427 in Tables 3A to C and D. The sensor for cortisol analysis according to any one of 14 and 13.
  15. 前記核酸分子(III)において、前記第2鎖(ss2)が、下記表4AおよびBの配列番号428~555のいずれかの塩基配列からなるポリヌクレオチドを含む、請求項1から3および12から14のいずれか一項に記載のコルチゾール分析用センサ。
    Figure JPOXMLDOC01-appb-T000014
    Figure JPOXMLDOC01-appb-T000015
    The nucleic acid molecule (III), wherein the second strand (ss2) comprises a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 428 to 555 in Tables 4A and B below: The sensor for cortisol analysis as described in any one of these.
    Figure JPOXMLDOC01-appb-T000014
    Figure JPOXMLDOC01-appb-T000015
  16. 前記核酸分子(III)の前記第1鎖(ss1)および前記第2鎖(ss2)の組合せが、下記表5の(1)~(127)および(128)からなる群から選択された少なくとも1つの組合せであり、
    前記第1鎖(ss1)および前記第2鎖(ss2)が、それぞれ、前記組合せに対応する配列番号の塩基配列からなるポリヌクレオチドを含む、請求項1から3および12から15のいずれか一項に記載のコルチゾール分析用センサ。
    Figure JPOXMLDOC01-appb-T000016
    The combination of the first strand (ss1) and the second strand (ss2) of the nucleic acid molecule (III) is at least one selected from the group consisting of (1) to (127) and (128) in Table 5 below A combination of
    The said 1st strand (ss1) and the said 2nd strand (ss2) respectively contain the polynucleotide which consists of a base sequence of the sequence number corresponding to the said combination, Each one of Claim 1 to 3 and 12 to 15 The sensor for cortisol analysis described in 1.
    Figure JPOXMLDOC01-appb-T000016
  17. さらに、リンカー領域(L)を含み、
    前記核酸分子の末端に、前記リンカー領域(L)が連結している、請求項1から16のいずれか一項に記載のコルチゾール分析用センサ。
    Furthermore, a linker region (L) is included,
    The sensor for cortisol analysis according to any one of claims 1 to 16, wherein the linker region (L) is linked to an end of the nucleic acid molecule.
  18. 前記核酸分子の3’末端に、前記リンカー領域(L)が連結している、請求項17記載のコルチゾール分析用センサ。 The sensor for cortisol analysis according to claim 17, wherein the linker region (L) is linked to the 3 'end of the nucleic acid molecule.
  19. 前記リンカー領域(L)の3’末端が、固定化されている、請求項18記載のコルチゾール分析用センサ。 The sensor for cortisol analysis according to claim 18, wherein the 3 'end of the linker region (L) is immobilized.
  20. さらに、担体を含み、
    前記担体に、前記核酸分子が固定化されている、請求項1から19のいずれか一項に記載のコルチゾール分析用センサ。
    And further comprising a carrier,
    The sensor for cortisol analysis according to any one of claims 1 to 19, wherein the nucleic acid molecule is immobilized on the carrier.
  21. さらに、前記G形成領域(D)と反応する試薬を含む、請求項20記載のコルチゾール分析用センサ。 The sensor for cortisol analysis according to claim 20, further comprising a reagent that reacts with the G-forming region (D).
  22. 前記試薬が、G-カルテット構造を形成した前記G形成領域(D)と複合体を形成するポルフィリンを含む、請求項21記載のコルチゾール分析用センサ。 The sensor for cortisol analysis according to claim 21, wherein the reagent contains porphyrin that forms a complex with the G-forming region (D) having a G-quartet structure.
  23. 前記ポルフィリンが、N-メチルメソポルフィリン、Zn-DIGP、ZnPP9およびTMPyPからなる群から選択された少なくとも一つのポルフィリンである、請求項22記載のコルチゾール分析用センサ。 The sensor for cortisol analysis according to claim 22, wherein the porphyrin is at least one porphyrin selected from the group consisting of N-methylmesoporphyrin, Zn-DIGP, ZnPP9 and TMPyP.
  24. 前記試薬が、G-カルテット構造を形成した前記G形成領域(D)の触媒機能に対する基質を含む、請求項21から23のいずれか一項に記載のコルチゾール分析用センサ。 The sensor for cortisol analysis according to any one of claims 21 to 23, wherein the reagent contains a substrate for the catalytic function of the G-forming region (D) having a G-quartet structure.
  25. 前記ポリヌクレオチドが、DNAである、請求項1から24のいずれか一項に記載のコルチゾール分析用センサ。 The sensor for cortisol analysis according to any one of claims 1 to 24, wherein the polynucleotide is DNA.
  26. 前記ポリヌクレオチドが、修飾塩基を含む、請求項1から25のいずれか一項に記載のコルチゾール分析用センサ。 The sensor for cortisol analysis according to any one of claims 1 to 25, wherein the polynucleotide comprises a modified base.
  27. 試料と請求項1から26のいずれか一項に記載のコルチゾール分析用センサとを接触させる接触工程、および
    前記試料中のコルチゾールと前記コルチゾール分析用センサにおける前記結合領域(A)とを結合させることにより、前記試料中のコルチゾールを検出する検出工程を含むことを特徴とする、コルチゾール分析方法。
    A contact step of bringing a sample into contact with the sensor for cortisol analysis according to any one of claims 1 to 26, and binding of cortisol in the sample to the binding region (A) in the sensor for cortisol analysis And a detection step of detecting cortisol in the sample.
  28. 前記試料が、生体試料である、請求項27記載のコルチゾール分析方法。 28. The cortisol analysis method according to claim 27, wherein the sample is a biological sample.
  29. 前記試料が、血液、血清、血漿、間質液、尿、唾液、汗、涙、および鼻水からなる群から選択された少なくとも1つの試料である、請求項27または28記載のコルチゾール分析方法。 29. The cortisol analysis method according to claim 27 or 28, wherein the sample is at least one sample selected from the group consisting of blood, serum, plasma, interstitial fluid, urine, saliva, sweat, tears, and runny nose.
  30. 前記検出工程において、ポルフィリン存在下、前記結合領域(A)と前記ポルフィリンとの複合体による蛍光を検出することによって、前記コルチゾールを検出する、請求項27から29のいずれか一項に記載のコルチゾール分析方法。 The cortisol according to any one of claims 27 to 29, wherein in the detection step, the cortisol is detected by detecting fluorescence due to a complex of the binding region (A) and the porphyrin in the presence of porphyrin. Analysis method.
  31. 前記検出工程において、前記蛍光の検出が、蛍光強度の測定である、請求項30記載のコルチゾール分析方法。 The cortisol analysis method according to claim 30, wherein, in the detection step, the detection of the fluorescence is a measurement of fluorescence intensity.
  32. 前記検出工程において、前記コルチゾール分析用センサにおける前記G形成領域(D)の触媒機能を検出することによって、前記コルチゾールを検出する、請求27から29のいずれか一項に記載のコルチゾール分析方法。 30. The cortisol analysis method according to any one of claims 27 to 29, wherein in the detection step, the cortisol is detected by detecting a catalytic function of the G formation region (D) in the sensor for cortisol analysis.
  33. 前記検出工程において、前記G形成領域(D)の触媒機能に対する基質の存在下、前記触媒機能を検出する、請求項32記載のコルチゾール分析方法。 The cortisol analysis method according to claim 32, wherein in the detection step, the catalytic function is detected in the presence of a substrate for the catalytic function of the G-forming region (D).
  34. 請求項1から26のいずれか一項に記載のコルチゾール分析用センサを含むことを特徴とする、ストレス評価試薬。 A stress evaluation reagent comprising the sensor for cortisol analysis according to any one of claims 1 to 26.
  35. さらに、前記コルチゾール分析用センサのG形成領域(D)と反応する試薬を含む、請求項34記載のストレス評価試薬。 The stress evaluation reagent according to claim 34, further comprising a reagent that reacts with the G-forming region (D) of the sensor for cortisol analysis.
  36. 前記試薬が、G-カルテット構造を形成した前記G形成領域(D)と複合体を形成するポルフィリンを含む、請求項35記載のストレス評価試薬。 The stress evaluation reagent according to claim 35, wherein the reagent contains porphyrin forming a complex with the G-forming region (D) having a G-quartet structure.
  37. 前記ポルフィリンが、N-メチルメソポルフィリン、Zn-DIGP、ZnPP9およびTMPyPからなる群から選択された少なくとも一つのポルフィリンである、請求項36記載のストレス評価試薬。 The stress evaluation reagent according to claim 36, wherein the porphyrin is at least one porphyrin selected from the group consisting of N-methylmesoporphyrin, Zn-DIGP, ZnPP9 and TMPyP.
  38. 前記試薬が、G-カルテット構造を形成した前記G形成領域(D)の触媒機能に対する基質を含む、請求項35から37のいずれか一項に記載のストレス評価試薬。 The stress evaluation reagent according to any one of claims 35 to 37, wherein the reagent contains a substrate for the catalytic function of the G-forming region (D) having a G-quartet structure.
  39. 被検者の試料と請求項1から26のいずれか一項に記載のコルチゾール分析用センサとを接触させる接触工程、
    前記試料中のコルチゾールと前記コルチゾール分析用センサにおける前記結合領域(A)とを結合させることにより、前記試料中のコルチゾールを検出する検出工程、および
    前記検出工程における前記コルチゾール量を、基準値と比較することにより、ストレスに関する情報を取得する取得工程を含むことを特徴とする、ストレス評価方法。
    A contact step of bringing a sample of the subject into contact with the sensor for cortisol analysis according to any one of claims 1 to 26;
    A detection step of detecting cortisol in the sample by binding cortisol in the sample and the binding region (A) in the sensor for cortisol analysis, and comparing the amount of cortisol in the detection step with a reference value A stress evaluation method comprising an acquisition step of acquiring information related to stress.
  40. 請求項1から26のいずれか一項に記載のコルチゾール分析用センサを含むことを特徴とする、コルチゾール関連疾患の試験試薬。 A test reagent for cortisol-related diseases, comprising the sensor for analyzing cortisol according to any one of claims 1 to 26.
  41. 被検者の試料と請求項1から26のいずれか一項に記載のコルチゾール分析用センサとを接触させる接触工程、
    前記試料中のコルチゾールと前記コルチゾール分析用センサにおける前記結合領域(A)とを結合させることにより、前記試料中のコルチゾールを検出する検出工程、および
    前記検出工程における前記コルチゾール量を、基準値と比較することにより、コルチゾール関連疾患の罹患の可能性を試験する試験工程を含むことを特徴とする、コルチゾール関連疾患の罹患可能性を試験する方法。
    A contact step of bringing a sample of the subject into contact with the sensor for cortisol analysis according to any one of claims 1 to 26;
    A detection step of detecting cortisol in the sample by binding cortisol in the sample and the binding region (A) in the sensor for cortisol analysis, and comparing the amount of cortisol in the detection step with a reference value A test method for testing the possibility of cortisol-related disease, comprising a test step of testing the possibility of suffering from a cortisol-related disease.
PCT/JP2016/071937 2015-12-11 2016-07-26 Sensor for cortisol analysis, method for cortisol analysis, reagent for stress evaluation, method for stress evaluation, test reagent for cortisol-related disease, and test method for contraction risk of cortisol-related disease WO2017098746A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017554933A JP6642859B2 (en) 2015-12-11 2016-07-26 Cortisol analysis sensor, cortisol analysis method, stress evaluation reagent, stress evaluation method, test reagent for cortisol-related disease, and method for testing morbidity of cortisol-related disease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015241924 2015-12-11
JP2015-241924 2015-12-11

Publications (1)

Publication Number Publication Date
WO2017098746A1 true WO2017098746A1 (en) 2017-06-15

Family

ID=59013913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071937 WO2017098746A1 (en) 2015-12-11 2016-07-26 Sensor for cortisol analysis, method for cortisol analysis, reagent for stress evaluation, method for stress evaluation, test reagent for cortisol-related disease, and test method for contraction risk of cortisol-related disease

Country Status (2)

Country Link
JP (1) JP6642859B2 (en)
WO (1) WO2017098746A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179514A1 (en) * 2017-03-27 2018-10-04 Necソリューションイノベータ株式会社 Steroid-skeleton-containing-compound detecting device and steroid-skeleton-containing-compound detecting method using same
CN109709181A (en) * 2019-03-04 2019-05-03 济南大学 It is a kind of based on the photic electrochemical method of porphyrin nano stick-CdTe quantum array detection cancer cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306761A (en) * 2004-04-20 2005-11-04 Shida Kanzume Kk Anti-cortisol agent and functional food containing anti-cortisol agent
JP2010150216A (en) * 2008-12-26 2010-07-08 Shiseido Co Ltd Stress hormone action demulcent
WO2013046826A1 (en) * 2011-09-30 2013-04-04 株式会社日立製作所 Molecular template and method for producing same
WO2013140629A1 (en) * 2012-03-23 2013-09-26 Necソフト株式会社 Atp or amp analysis device and analysis method
WO2013141291A1 (en) * 2012-03-23 2013-09-26 Necソフト株式会社 Device for target analysis of streptavidin, and analysis method
WO2015012059A1 (en) * 2013-07-23 2015-01-29 Necソリューションイノベータ株式会社 Fluorescence sensor for target analysis, kit for target analysis, and target analysis method using same
WO2015012060A1 (en) * 2013-07-23 2015-01-29 Necソリューションイノベータ株式会社 Sensor for target analysis, device for target analysis, and target analysis method using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306761A (en) * 2004-04-20 2005-11-04 Shida Kanzume Kk Anti-cortisol agent and functional food containing anti-cortisol agent
JP2010150216A (en) * 2008-12-26 2010-07-08 Shiseido Co Ltd Stress hormone action demulcent
WO2013046826A1 (en) * 2011-09-30 2013-04-04 株式会社日立製作所 Molecular template and method for producing same
WO2013140629A1 (en) * 2012-03-23 2013-09-26 Necソフト株式会社 Atp or amp analysis device and analysis method
WO2013141291A1 (en) * 2012-03-23 2013-09-26 Necソフト株式会社 Device for target analysis of streptavidin, and analysis method
WO2013140681A1 (en) * 2012-03-23 2013-09-26 Necソフト株式会社 Device for target analysis, and analysis method
WO2015012059A1 (en) * 2013-07-23 2015-01-29 Necソリューションイノベータ株式会社 Fluorescence sensor for target analysis, kit for target analysis, and target analysis method using same
WO2015012060A1 (en) * 2013-07-23 2015-01-29 Necソリューションイノベータ株式会社 Sensor for target analysis, device for target analysis, and target analysis method using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAYASU KUWAHARA: "Polymerase reactions using artificial nucleic acids and creation of artificial nucleic acid aptamers", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, vol. 82, no. 4, April 2010 (2010-04-01), pages 318 - 323 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179514A1 (en) * 2017-03-27 2018-10-04 Necソリューションイノベータ株式会社 Steroid-skeleton-containing-compound detecting device and steroid-skeleton-containing-compound detecting method using same
JPWO2018179514A1 (en) * 2017-03-27 2019-11-21 Necソリューションイノベータ株式会社 Steroid skeleton-containing compound detection device and method for detecting steroid skeleton-containing compound using the same
CN109709181A (en) * 2019-03-04 2019-05-03 济南大学 It is a kind of based on the photic electrochemical method of porphyrin nano stick-CdTe quantum array detection cancer cell

Also Published As

Publication number Publication date
JPWO2017098746A1 (en) 2018-11-15
JP6642859B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
Maleki et al. A practical guide to studying G-quadruplex structures using single-molecule FRET
JP6281953B2 (en) Method for evaluating redox activity of nucleic acid molecule and nucleic acid molecule having redox activity
WO2013161964A1 (en) Nucleic acid molecules for highly sensitive detection of ligands, screening method for nucleic acid molecules, and optimization method for sensitivity of nucleic acid molecules
Bialy et al. Protein‐mediated suppression of rolling circle amplification for biosensing with an aptamer‐containing DNA primer
JP2017525390A (en) Detection of residual host cell proteins in recombinant protein preparations
Wang et al. Selection and characterization of thioflavin T aptamers for the development of light-up probes
US11834756B2 (en) Methods and compositions for protein and peptide sequencing
US20210102248A1 (en) Methods and compositions for protein and peptide sequencing
Kim et al. Development of a ssDNA aptamer system with reduced graphene oxide (rGO) to detect nonylphenol ethoxylate in domestic detergent
WO2017098746A1 (en) Sensor for cortisol analysis, method for cortisol analysis, reagent for stress evaluation, method for stress evaluation, test reagent for cortisol-related disease, and test method for contraction risk of cortisol-related disease
JP6041408B2 (en) Nucleic acid element candidate molecule and method for screening nucleic acid element for target analysis using the same
Xue et al. Aptamer-based exonuclease protection and enzymatic recycling cleavage amplification homogeneous assay for the highly sensitive detection of thrombin
US11834664B2 (en) Methods and compositions for protein and peptide sequencing
US20210171937A1 (en) Methods and compositions for protein and peptide sequencing
EP3201629A1 (en) Method for detecting a spatial proximity of a first and a second epitope
JP6347498B2 (en) Nucleic acid molecules that bind to egg allergens and uses thereof
JP6414907B2 (en) Nucleic acid molecules that bind to buckwheat allergens and uses thereof
JP6598315B2 (en) Nucleic acid molecules that bind to wheat allergens and uses thereof
JP5652850B2 (en) Nucleic acid binding protein assays and kits
Pang et al. Visual detection of CaMV35S promoter via target-triggered rolling circle amplification of DNAzyme
JP6399611B2 (en) Nucleic acid molecules that bind to shrimp allergens and uses thereof
JP2022521667A (en) RNA aptamer that specifically binds to histamine
Davydova et al. Reporter-recruiting bifunctional aptasensor for bioluminescent analytical assays
US20240209378A1 (en) Methods and compositions for protein and peptide sequencing
Diaz et al. Programmable cell-free transcriptional switches for antibodies detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872646

Country of ref document: EP

Kind code of ref document: A1