WO2017095251A1 - Nanossistema de ouro com revestimento biopolimérico e gama de absorção no infravermelho próximo e método para a sua preparação - Google Patents

Nanossistema de ouro com revestimento biopolimérico e gama de absorção no infravermelho próximo e método para a sua preparação Download PDF

Info

Publication number
WO2017095251A1
WO2017095251A1 PCT/PT2016/000016 PT2016000016W WO2017095251A1 WO 2017095251 A1 WO2017095251 A1 WO 2017095251A1 PT 2016000016 W PT2016000016 W PT 2016000016W WO 2017095251 A1 WO2017095251 A1 WO 2017095251A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
nanosystem
nanoparticles
peptide
gold nanoparticles
Prior art date
Application number
PCT/PT2016/000016
Other languages
English (en)
French (fr)
Inventor
Catarina MENDES ALVES DE OLIVEIRA SILVA
Ana Catarina Beco Pinto Reis
Patrícia DIAS DE MENDONÇA RIJO
João Miguel PINTO COELHO
Ricardo Filipe DOS SANTOS GOMES
Original Assignee
Cofac - Cooperativa De Formação E Animação Cultural
Faculdade De Ciências Da Universidade De Lisboa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cofac - Cooperativa De Formação E Animação Cultural, Faculdade De Ciências Da Universidade De Lisboa filed Critical Cofac - Cooperativa De Formação E Animação Cultural
Publication of WO2017095251A1 publication Critical patent/WO2017095251A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/148Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/53Lamiaceae or Labiatae (Mint family), e.g. thyme, rosemary or lavender
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention belongs to the field of nanoparticles with pharmaceutical activity for therapeutic use.
  • the present invention relates to a nanosystem developed for phototherapy application consisting of gold nanoparticles produced by a plant extract-based reducing agent which may be adsorbed to the surface, with a polymeric and peptide coating and with a range of near infrared absorption.
  • the nanoparticles of the invention have a plant extract as a gold reducing agent, adsorbed to the surface of the gold core, as well as a polymeric and peptide coating that gives the nanosystem stability and directs it to the site of action.
  • the nanosystem of the invention has a wavelength in the optimal range of therapy, particularly near infrared, and acquires therapeutic activity when exposed to the incidence of a laser or light source. of similar application.
  • the invention also comprises a method of preparing the gold nanosystem consisting of the steps of reducing chlorouric acid (H ⁇ CJ.4) with the aqueous extract of a plant with high concentration of antioxidant compounds, addition of silver nitrate and L- ascorbic acid and coating of the nanoparticles thus obtained with a polymeric and peptide solution, which gives increased stability and vectorization of gold nanoparticles to the tumor site, or generally to the site of action.
  • H ⁇ CJ.4 reducing chlorouric acid
  • this nanosystem may be associated with cytostatic drugs and applied as a delivery system for targeted administration at the tumor site, and is also activated by hyperthermia through the incidence of a laser or similar light source.
  • nanoparticles have deserved attention as drug dispensing systems.
  • these polymeric coating layer systems have the disadvantage that they are not very specific for the site of administration. Often, the lipid layer dissolves before it reaches the target which reduces treatment therapy. Other nanoparticles that offered greater stability, biocompatibility and specificity were thus sought.
  • gold nanoparticles In this domain, one of the types of nanoparticles that has deserved more attention is the metallic core nanoparticles and in particular the gold ones. Since gold is a noble metal, reacting with a limited number of chemical species, and has the ability to form stable coordinate complexes with a diversity of compounds, gold nanoparticles are currently particularly promising in the development of methods of antitumor diagnosis and therapies. In particular, the optical activity of gold nanoparticles makes them especially suitable for phototherapy.
  • nanoparticle and ligand nanosystems must be stable and specific for the function to be performed, whether it is tumor cell labeling or drug delivery, on the other, they must be biocompatible ie the diffusion of the nanosystem. across cell membranes to the tumor cell must be possible.
  • nanosystems instead of a spherical shape that promotes and facilitates cell diffusion, nanosystems often come in cylindrical, elongated or triangular shapes. In this way, a gold-core nanosystem that is simultaneously stable, biocompatible and effective continues to be sought.
  • US 8057682 B2 relates to metal nanoparticles, including gold nanoparticles, and a method for their preparation, involving a natural extract of a plant.
  • the particle further involves the use of a synthetic reducing agent of high reactivity and toxicity. Nanoparticles are thus used to capture and remove contaminants present in tap water, wastewater and contaminated soil, proving to be unsuitable for pharmaceutical applications.
  • US patent application US 2009/0117045 A1 also discloses nanoparticles based on a natural extract of a plant and its method of production.
  • the natural compost comes from a plant of the Fabaceae family, in particular soy or lentils giving rise to a nanosystem with. absorption range in the order of 535 nanometers.
  • the present invention responds to the difficulties listed with a gold nanosystem consisting of gold nanoparticles (larger contact surface area) with a polymer-coated, plant-vectored natural plant extract coating with a peptide.
  • the natural plant extract is from the Lamiaceae family which gives the nanosystem antioxidant chemical properties, unlike state of the art nanosystems that use reducing agents with toxic effects.
  • the gold nanoparticles of the invention are prepared by reducing chlorouric acid as a gold source.
  • the nanosystem is formed by addition to the nanoparticles of polymers and peptides with affinity for specific receptors in tumors.
  • the nanosystem thus prepared has an essentially spherical shape, which favors cell diffusion and makes it particularly suitable for drug delivery.
  • gold nanoparticles are formulated into polymer-based nanosystems, peptide vectored, thereby acquiring the ability to deliver drugs.
  • the nanosystem of the invention has an absorption wavelength of gold nanoparticles in the near infrared range, between 650 and 900 nanometers, the range considered optimal for phototherapy since peel tolerates radiation without suffering morphological changes.
  • the near infrared range between 650 and 900 nanometers, tissues have less radiation absorption, minimizing the possibility of morphological changes.
  • the gold nanoparticles disclosed here when exposed to near infrared radiation (650 - 900 nanometers), absorb this radiation in the form of energy, overheating and promoting tissue destruction (necrosis), such as hyperthermia.
  • tissue destruction such as hyperthermia.
  • the hyperthermic activation and action of nanopart occur after their binding via the specific vectors (peptides) conjugated to the surface of the gold nanoparticles.
  • the present invention thus provides a high stability, safe, biocompatible nanosystem with high specificity for the target receptors.
  • the present invention relates to a tumor phototherapy nano system and dermatological pathology, locally administered and activated by hyperthermia through the incidence of a laser or similar light source.
  • the invention disclosed herein comprises gold nanoparticles having a plant extract as a reducing agent adsorbed to their surface, having a polymeric and peptide coating and having a wavelength in the range of 650 to 900 nanometers in the near infrared range.
  • the nanosystem exhibiting therapeutic activity when exposed to the incidence of a laser or light source of similar application by hyperthermia. It is a product with multifunctional activity, as it is adaptable to several tumors, and vectorized, as it has specificity to bind to different receptors, overexpressed in tumor cells.
  • the invention further relates to a method of preparing nanosi steraa with three distinct facies:
  • the gold nanoparticles described herein have an essentially spherical morphology, with a monodisperse population, with an average size of 100 nanometers, a polydispersion index of 0.2 and a mean negative surface charge (-19 mV).
  • the fact that the nanosystem has a mostly spherical morphology is crucial for carrying out the object of the invention, since the gold nanosystem occupies a small volume and consequently has a larger surface area of contact with the target cells.
  • the method of the present invention uses an aqueous extract of a Lamiaceae family plant with. high concentration of antioxidant compounds, which are responsible for the reduction of the gold compound in the gold nanoparticles. That is, the Plant extract acts as a major reducing agent of the gold nanoparticles described herein.
  • the compounds with antioxidant activity used in the invention are for example polyphenols, more precisely rosmarinic acid, caffeic acid and chlorogenic acid. These compounds are naturally present in plants of the Lamiaceae family and allow the use of synthetic compounds to be avoided, as is the case with hexadecyl trimethylammonium bromide, which is a reducing and / or stabilizing agent with toxic effects.
  • Gold nanopathies also include their function! using a peptide, the epidermal growth factor (EGF), on the surface of the nanoparticles themselves which leads to the vectorization of the formulation to the target cells.
  • EGF epidermal growth factor
  • the gold nanosystem binds to the tumor cells. In this way the nanosystem is directed to the tumor cells.
  • This kind of targeting of the gold nanosystem allows non-target tissues (ie healthy cells in the surrounding tumor zone) to be exposed to antitumor treatment, reducing possible adverse side effects.
  • the present invention concerning a gold nanosystem has advantages over other prior art nanosystems for the same purpose, namely:
  • a plant of the Lamiaceae family is used for preparing the natural extract and obtaining compounds with antioxidant activity that are adsorbed to the surface of gold nanoparticles.
  • the extract of the Lamiaceae family plants has a high concentration of antioxidants, being effective in reducing gold without compromise the biocompatibility of gold nanoparticles when administered at the site of action.
  • the present invention is useful in the treatment of tumors, whether superficial or deep, and other dermatological disorders, such as psoriasis, rosacea, keratosis, or other conditions.
  • tumors to which this invention is applicable and have positive effects on tumor cell reduction are skin carcinomas, lung carcinoma, breast tumor, among other tumors, whether they are superficial tumors, up to 5 cm deep. , whether they are deep tumors, more than 5 centimeters deep.
  • a laser or similar light source is used which activates the gold nanosystem by tissue hyperthermia.
  • the golden nanosystem binds to tumor cells, when activated by hyperthermia by the incidence of a laser or similar light source, promotes local tumor heating and consequently causes cell death (hyperthermic antitumor effect). .
  • Figure 1 is a schematic representation of the arrangement of nanosystem components and their production process by means of natural reducing agents.
  • the gold nanoparticles core (1) the polymeric coating (2), the peptide vectors (3), the Lamiaceae family plant extract (4), the hyaluronic acid (5) and the acid. oleic (o).
  • Figure 2 represents the optical absorption spectrum with wavelength nanometers on the abscissa axis and the ordinate absorbance on the ordinate of: A) commercial spherical nanopicks (maximum absorbance peak: 530 nm) (broken line); B) gold nanoparticles produced with. the aqueous extract of the Lamiaceae family plant with a maximum absorption wavelength in the optimal range of therapy, ie near infrared (650 - 900 nanometer) (continuous line).
  • Figure 3 is a microscopic electron transmission image showing the essentially spherical form of the nanosystem of the invention.
  • the present invention relates to a nanosystem developed for phototherapy that contains multifunctional gold nanoparticles, functionalized with polymers and peptides.
  • the gold nanosystem of the invention has the particularity of having a wavelength in the optimal range of therapy, that is, in near infrared, and having antitumor activity when exposed to the incidence of a laser or light source of similar application.
  • the following terms used thus far have the following meaning:
  • Purified water refers to deionized and bi-distilled water, followed by an ultraviolet sterilization process.
  • Biopoiomer is understood to be a naturally occurring, carbon source polymeric material structurally classified as polysaccharide, polyester or polyamide.
  • Antioxidant compounds comprise molecules capable of inhibiting the oxidation of other molecules and, consequently, are molecules with potential action as reducing agents.
  • "Diterpenoid” or “diterpene” consist of terpene class secondary metabolites consisting of 20 carbon atoms, corresponding to four isoprene units.
  • “Optimum range of therapy” comprises the near infrared wavelength range (650 - 900 nanometers), for which tissues are reported to have very low energy absorption.
  • Laser refers to a device that produces electromagnetic radiation resulting from light amplification by stimulated emission of radiation.
  • Laser "light source of similar application” means any device for light stimulation by stimulated emission of radiation such as led superiuminescent.
  • Polyphenol is an antioxidant compound that has one or more hydroxyl groups attached to an aromatic ring, and may have one or more hydroxyl groups and more than one aromatic ring. They are natural substances found in plants, such as flavonoids, tannins, lignans, caffeic acid derivatives, among others.
  • nano refers to a structure whose diameter is between 1 and 1000 nanometers.
  • Gold nanoparticle refers to the gold metallic core (i).
  • Nanosystem refers to the structure formed by nanoparticles and one or more components deposited on its surface.
  • Gold nanosystem refers to the structure formed by the gold metallic core (1), the natural plant extract (4) and the polymeric (2) and peptide (3) coating.
  • Polymeric coating (2) refers to the polymer that is adsorbed to the surface of the gold metallic core (1), formed by reducing the plant extract (4), evenly covering it.
  • Protein Coating refers to peptide vectors (3) that bind at specific places to the polymeric po1 coating (2).
  • Vectorization means the targeting of a nanoparticle (or other drug delivery system) to a specific site of action where it acts by binding to specific receptors for which it has high affinity.
  • the present invention relates to a gold nanosystem composed of plant-extracted gold nanoparticles (4) of the Lamiaceae family adsorbed to. surface as a reducing agent, with polymeric (2) and peptide (3) coating and having a near infrared gamma wavelength in the range of 650 to 900 nanometers.
  • the nanosystem of the invention exhibits antitumour activity when exposed to the incidence of a laser or similarly applied source of lu2.
  • the invention further relates to a method of preparing the nanosystem in three stages:
  • the present invention uses the aqueous extract of a plant of the Larniaceae family which functions as the reducing agent by action of the antioxidant compounds present in the plant, namely polyphenols and diterpenoids.
  • the plants in this family are rich in polyphenolic antioxidant compounds, more specifically rosmarinic acid, caffeic acid and chlorogenic acid.
  • Larniaceae plants are endemic to the Mediterranean regions, although they can also be found in other regions. They are usually aromatic flowering plants due to the essential oils, with quadrangular stems and simple, opposite, petiolate or sessile leaves.
  • Examples of plants in the Lamiceae family are the plants of the subfamily Salvia, species Acanthomintha, Achyrospermum, acinos, acrocephalus, acrotome, acridia, adeiaosa, aegifila, agastache, ajuga, ajugoides, A.lajja, alvesia, amasonia, amethystea Anisomeles, Antonina, Aphanochilus, Archboldia, Ascocarydion, Asterohyptis, Atelandra, Aud ⁇ bert ⁇ a, Ballota, Basilicum, Becium, Benguellia, Betonica, Blephilia, Bostrychanthera, Bovonia, Brachysternura, Brazoria,
  • Che1onops is, Ch1oanthes, C1eonia, Clerodendranthus, Clerodendrum, Clinopodium, Colebrookea, Collinsonia, Colobandra, Colquhounia, Comanthosphace, Congea, Conradina, Coridothymus, Cornutia, Craniotome, Cyclone, Cyclia, Cyclone, Ciara, Cyoneia, Ciathia ichium, Cymaria, Dauphinea, Dentidia, Dicerandra, Dicrastylis, Dorystaechas, Dracocephalum, Drepanocaryum, Dysophylla, Eichlerago, Elsholtzia, Endostemon.
  • Isodictyophorus Isodon, Isoleucas, Karomia, Eiskea, Kinosteroon, Koellia, Kudrj Aschevia, Urzamra, Lachnostachys, Lagochilus, Lagopsis, Lallemantia, Lamiastrum, Lamiophlomis, Lamium, Lavandula, Leocus, Leonotis, Leucum, Leucum, Leucum, Leucum , Lophanthus, Loxocal x, Lycopus Macbridea, Majorana, Mahya, Mallophora, Marbled, Marbled, Marsypianthes, Meehania, Melissa, Mel.ittis, Me tha, Eiandra, Mesona, Metastachydium, Microcorys, Micromeria, Microtoena, Minavost, Molavica , Monarda, Monardella, Monochilus, Moschosma, Mosla, Neoeplingia, Neohyptis, Eomueller
  • Octomeron Ombrocharis Oncinocalyx, Oreosphacus, Origanum, Orthodon, Orthosiphon, Otostegia, Oxera, Panzerine, Paraeremostachys, Paralamiuna, Paraphlomis, Paravitex, Peltodon, Pentapleura, Periula, Perilomy, Perilomy, Peronemais, Peronemais, Peronemais, Peronemais, Peronemaphis, Peronomy Phlomoides, Phyiiostegia, Physoleucas, Physopsis, Physostegia, Piloblephis, Pitardia, Pityrodia, Platostorna, Plectranthastrum, Plectranthus, Pogogyne, Pogostemon, Poliomintha, Porphyra, Prasium, Premna, Prostanthera, Prudium, Pudulea
  • Pseudochamaesphacos Pseudomar rubium, Pulegium, Puntia, Pycnanthemum, Pycnostachys, Rabdosiella, Renschia,
  • the preferred plants of the Lamiaceae family are plants of the species Plectranthus ornatus, Plectranthus ecklonii, Plectranthus barbatus, Plectranthus saccatus, Lavandula stoechas ssp. iuisieri, La andula pedunculata, Salvia officinalis and Rosmarinus officinalis.
  • the plant is dried and cut into small fragments. Extraction is obtained when the fragments are exposed to the microwave at a frequency of 2.45 Ghz. , and lyophilized. One milligram of dried plant yields 5.9% osmarinic acid, 0.026% caffeic acid and 0.042% chlorogenic acid.
  • the gold nanosystem preparation phase consists of the preparation of the gold nanoparticles and mixing of the Lamiaceae family plant extract (4) for adsorption of the reducing compound to the surface of the gold core (1).
  • Gold nanoparticles are prepared by reducing chlorouric acid (HAUCI4) with the aqueous plant extract prepared in Example 1. 9 ml of a 1 mM chlorouric acid solution (HAuCl-s) are added. Then the following compounds are added sequentially:
  • the content of antioxidant compounds varies and thus the molar ratio of the aqueous extract of the plant to the gold nanoparticles changes.
  • the molar ratio of plant aqueous extract to gold nanoparticles ranges from 2: 1 to 1:20, depending on the molar mass of the major antioxidant compound. present in the plant and the gold concentration in the gold nanoparticles.
  • plants in the Laraiaceae family contain rosminic acid as an anti-oxidant compound.
  • the concentration of the chlorouric acid solution used in the reduction may range from 0.2 to 1 mH and the reaction time may range from 15 minutes to 24 hours, with stirring at 200 to 1000 revolutions per minute to one. pH comprised between 7 and 10 and a temperature 2S between 35 ° C and r 'C.
  • modulating and co-added agents in the gold reduction process namely silver rat, at concentrations between 1 and 10 nm, and L-ascorbic acid, at concentrations between 2 and 20 mH It is advantageous for the yield of the reaction.
  • the polymeric (2) and peptide (3) coating is applied onto the nanoparticles to obtain the gold nanosystem.
  • Gold nanoparticles coated with a polymeric and peptide solution Gold nanoparticles coated with a polymeric and peptide solution
  • the preparation of the gold nanosystem comprises the following steps:
  • the gold nanoparticles described herein have an essentially spherical morphology, with a monodisperse population, with an average size of 100 nanometers, a polydispersion index of 0.2 and an average negative surface charge (-19 mV).
  • Gold nanoparticles with anisotropic structures are not favorable in terms of thermodynamics; However, when associated with stabilizing agents such as biomolecules present in plant extracts, they have an absorption band in the near infrared region of the order of 650 to 900 nanometers.
  • Particles prepared according to the invention have essentially spherical morphology. This feature is relevant to fulfill the therapeutic purpose of the invention. While spherical morphology facilitates cellular diffusion of the nanosystem, on the other hand, the fact that it occupies a small volume makes the nanosystem have a larger surface area of contact with the target cells.
  • the therapeutic activity of the gold nanosystem of the invention is confirmed by several tests, namely:
  • Target cell vectoring assay after conjugation of gold nanoparticles with different peptides (Example 4 ⁇ ;
  • both EGF epidermal growth factor and lysozyme were reconsituted in 20 mM phosphate buffer (pH 7.4) at 10 ⁇ and 2.5 ⁇ , respectively. Then the three solutions (protein / peptide, gold nanoparticles and polymer solution) were mixed at a ratio of 1: 1: 1 (v / v / v) and allowed to interact for 30 minutes at room temperature and 24 hours at room temperature. 4 ° C without stirring. The solution was centrifuged to remove unbound peptides and the gold nanosystem was resuspended in pH 7.4 phosphate buffer.
  • the absorption wavelength of the particles was approximately 800 - 830 nanometers.
  • gold nanoparticles did not induce protein denaturation.
  • gold nanoparticles promoted protection for both lysozyme and epidermal growth factor, reducing fluorescence decay kinetics and, comparatively, the effects of photooxidation and protein conformation / structure alteration were lower.
  • HaCaT cells were seeded in 96-well plate at a density of 5000 cells / well.
  • the aqueous extract of the Lam ⁇ aceae plant extract was prepared by dilution in dimethylsulfoxide with the following final concentrations: 0-500 g / mL.
  • the gold nanosystem was also tested at different concentrations: 0-80 ⁇ (from gold concentration).
  • the cells were exposed to different treatments for 24 hours. After this time, the cells were washed with phosphate buffered saline pH 7.4 and incubated with a tetrazoline bromide solution (0.5 mg / ml in culture medium) for 2.5 hours and at 37 ° C.
  • Gold nanoparticles conjugated with epidermal growth factor were used in A549 cell lines in vitro.
  • the assay is based on the expression of green fluorescence protein (GFP), which is coupled to cell line membrane receptors. A549. When internalization occurs, the receiver changes to green, and this process can be monitored on the spot.
  • GFP green fluorescence protein
  • test samples namely:
  • Gold nanoparticles epidermal growth factor (Alexa Fluor 647-labeled epidermal growth factor); Gold nanoparticle epidermal growth factor (double labeled: Alexa Fluor 647 for peptide; Coumarin-6 for gold nanoparticles).
  • LAI monoclonal antibody anti-EGFR neutralizer antibody

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Botany (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Zoology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Nanossistema composto por nanopartículas de ouro produzidas através de um extrato de planta (4) como agente redutor adsorvido à superfície de um núcleo metálico de ouro (1) e um revestimento polimérico (2) e peptídico (3), de forma essencialmente esférica e com gama de absorção no infravermelho próximo, e método para a sua preparação a partir de ácido hialurónico (5) e ácido oleico (6). O nanossistema apresenta atividade terapêutica em tumores superficiais, nomeadamente localizados a profundidade inferior a 5 centímetros, e profundos, nomeadamente localizados a profundidade superior a 5 centímetros, e em patologias dermatológicas quando ativado por hipertermia através da incidência de um laser ou de uma fonte de luz de aplicação similar.

Description

DESCRIÇÃO
NANOSSISTEMA DE OURO COM REVESTIMENTO BIOPOLIMERICO E GAMA DE ABSORÇÃO NO INFRAVERMELHO PRÓXIMO E MÉTODO PARA A SUA
PREPARAÇÃO
DOMÍNIO TÉCNICO DA INVENÇÃO
A presente invenção pertence ao domínio das nanopartículas com atividade farmacêutica para uso terapêutico.
A presente invenção diz respeito a um nanossístema desenvolvido para aplicação em fototerapia, que consiste em nanopartículas de ouro produzidas através de ura agente redutor à base de extrato de planta que poderá encontrar-se adsorvido à superfície, cora revestimento poiimérico e peptídico e com gama de absorção no infravermelho próximo. As nanopartículas da invenção possuem um extrato de planta como agente redutor do ouro, adsorvido à superfície do núcleo de ouro, bem como um revestimento poiimérico e peptídico que confere ao nanossistema estabilidade e o direciona para o local do ação. O nanossistema da invenção apresenta um comprimento de onda na gama ótíma de terapia, designadamente no infravermelho próximo, e adquire atividade terapêutica quando exposto à incidência de um laser ou de uma fonte de luz. de aplicação similar.
A invenção compreende também um método de preparação do nanossistema de ouro, que consiste nos passos de redução de ácido cloroáuríco (HÃuCJ.4) com o extrato aquoso de uma planta, com elevada concentração de compostos antioxidantes, adição de nitrato de prata e L-ácido ascórbico e revestimento das nanopartículas assim obtidas com uma solução polirnérica e peptídíca, que confere um aumento da estabilidade e vectorizaçao das nanopartícuias de ouro para o local do tumor, ou de forma generalizada, para o local de ação.
Quando aplicável, este nanossistema poderá ser associado a fármacos citostáticos e aplicado como sistema de veiculação para administração direcionada no locai do tumor, sendo igualmente, ativado por hipertermia a avés da incidência de um laser ou de uma fonte de luz de aplicação similar.
ANTECEDENTES DA INVENÇÃO
A versatilidade de aplicações farmacológicas, a facilidade de produção, as propriedades ópticas e a escala compatível cora a di usão cel lar fazem com que as nanopartícuias sejam u a das áreas de maior interesse na biologia molecular e na medicina. Sm particular, as nanopartí cuias têm merecido atenção como sistemas dispensadores de fármacos.
O pedido de patente internacional WO 2011/116963 A2 , por exemplo, apresenta um sistema nanoparticulado baseado numa camada de encapsulamento lipídica. O composto activo é encapsulado num revestimento poiimérico de natureza lipídica. Já o pedido de patente internacional WO 2012/038061. A2 divulga nanocápsulas poliméricas contendo microemulsões de óleo em água, sem recorrer a reagentes orgânicos, que podem ser aplicadas como sistemas de veiculação de compostos farmacêuticos, alimentares e/ou cosméticos.
Apesar da facilidade de difusão, estes sistemas de camada de revestimento polimérica apresentam o inconveniente de não serem muito específicos quanto ao local de administração. Frequentemente, a camada lipídica díssolve-se antes de atingir o alvo o que reduz o tratamento da terapia. Procuraram-se assim outras nanoparticulas que oferecessem maior estabilidade, biocompâtibi1idade e especificidade.
Neste domínio, um dos tipos de nanopartícuias que tem merecido mais atenção são as nanoparticulas com núcleo metálico e em particular as de ouro. Uma vez que o ouro é um metal nobre, reagindo com um número limitado de espécies químicas, e tem a capacidade de formar complexos coordenados estáveis com uma diversidade de compostos, as nanoparticulas de ouro apresentam-se actualmente como particularmente promissoras no desenvolvimento de métodos de diagnóstico e terapias ant itumoraís . Em particular, a atívidade ótica das nanoparticulas de ouro tornam-nas especialmente adequadas para a fototerapia.
Os nanossistemas formados pela associação de nanoparticulas a outros compostos, designadamente ligandos, adquirem uma função no diagnóstico de tumores, quando os ligandos são biomarcadores para as células tumorais, ou terapêutica, quando os ligandos são compostos activos que o nanossistema veicula até à célula ou células alvo.
À conjugação das nanoparticulas de ouro com ligandos específicos representa neste momento o maio desafio científico. Por um lado os nanossistemas constituídos pelas nanoparticulas e pelos ligandos têm de ser estáveis e específicos para a função a desempenhar, seja ela a marcação das células tumorais ou a administração de fármacos, por outro têm de ser biocompât íveis ou seja, a difusão do nanossistema pelas membranas celulares até à célula tumorai tem de ser possível.
.Acontece que frequentemente a natureza do ligando deforma a estrutura do nanossistema. Assim, era vez de u a forma esférica que promove e facilita a difusão celular, os nanossistemas apresentam-se frequentemente com formas cilíndricas, alongadas ou triangulares. Desta forma, continua a procurar-se um nanossistema com núcleo de ouro que seja simultaneamente estável, biocompatível e eficaz.
O pedido de patente internacional WO 2012/039685 Al descreve um sistema coloidal contendo nanopartículas de ouro revestidas por polietilenoglicol que se liga ao composto farmacologicamente ativo para a sua veiculação ao local de administração. Verifica-se no entanto que frequentemente as partículas adquirem uma forma oblonga ou trílobada, o que dificulta a difusão celular. Além disso, a gama de absorção do sistema situa-se nos 530 nanómetros, uma gama de absorção que não é a mais adequada em fototerapia jã que tem uma maior absorção e um maior potencial para danificar os tecidos saudáveis .
A patente americana US 8057682 B2 diz respeito a nanopartículas metálicas, entre elas de ouro, e a um método para a sua preparação, envolvendo um extrato natural de uma planta. A partícula envolve ainda o uso de um agente redutor sintético, de elevada reatividade e toxicidade. A nanopartícuia é assim usada para captação e remoção de contaminantes presentes em água para aba tecimento, água residual e solos contaminados, demonstrando ser inadequada para aplicações farmacêuticas.
O pedido de patente americano US 2009/0117045 Al divulga também nanopartículas com base num extrato natural de uma planta e respetivo método de produção. O composto natural é proveniente de uma planta da família Fabaceae, em particular soja ou lentilha dando origem a ura nanossistema com. gama de absorção na ordem dos 535 nanómetros. Ά presente invenção vem dar respost às dificuldades enumeradas, cora um nanossistema de ouro constituído por nanopart icuias (maior área de superfície de contacto) de ouro com um revestimento à base de extrato de planta natural, revestida por urn polímero e vetorizada cora um péptido. O extrato de planta natural é da família Lamiaceae o que confere ao nanossistema propriedades químicas antioxidantes, contrariamente aos nanossistemas do estado da técnica que recorrem a agentes redutores com efeitos tóxicos.
As nanopartícuias de ouro da invenção são preparadas a partir da redução do ácido cloroáuríco como fonte de ouro. 0 nanossistema é formando por adição às nanopartícuias de polímeros e péptidos com afinidade para recetores específicos em cé1u1a s tumo ai s .
O nanossistema assim preparado apresenta uma forma essencialmente esférica, o que favorece a difusão celular e o torna particularmente adequado para a veiculação de fármacos.
Com vista à administração farmacêutica, as nanopartícuias de ouro são formuladas em nanossistemas à base de polímeros, vetorizados com péptidos, adquirindo desta forma a capacidade de veicular fármacos.
Verifica-se ainda que o nanossistema da invenção apresenta um comprimento de onda de absorção das nanopartícuias de ouro na gama do infravermelho próximo, entre os 650 e os 900 nanómetros, a gama considerada óptima para fototerapia uma vez que a peie tolera a radiação sem sofrer alterações morfológicas. Em particular, verífica~se que na gama do infravermelho próximo, entre os 650 e os 900 nanómetros, os tecidos apresentam uma menor absorção da radiação, minimizando a possibilidade de alterações morfológicas.
As nanopartí cuias de ouro aqui divulgadas, quando expostas a radiação no infravermelho próximo {650 - 900 nanómetros) , absorvem essa radiação sob a forma de enerqia, sobreaquecendo e promovendo a destruição dos tecidos (necrose) , po hiperterrnia . A ativação e ação hipertérmicas das nanopart. ículas ocorrem após a sua ligação por via dos vetores específicos (péptidos) conjugados à superfície das nanoparticulas de ouro.
.A presente invenção fornece assim um nanossistema de elevada estabilidade, seguro, bíocompatível e com elevada especificidade para os recetores alvo.
SUMÁRIO DA INVENÇÃO
A presente invenção diz respeito a um nanossistema para fototerapia de tumores e patologias dermatológicas, administrado localmente e atívado por hiperterrnia através da incidência de um laser ou de uma fonte de luz de aplicação similar .
A invenção aqui divulgada compreende nanoparticulas de ouro, com um extraio de planta como agente redutor adsorvido à sua superfície, com um revestimento políméríco e peptidico e apresenta um comprimento de onda na ordem dos 650 a 900 nanómetros, na gama de infravermelho próximo. 0 nanossistema apresentando atividade terapêutica, quando exposto à incidência de um laser ou de uma fonte de luz de aplicação similar, por hiperterrnia. Trata-se de um produto, com ativídade multifuncional, na medida em que é adaptável a diversos tumores, e vetorizado, na medida em que possui especificidade para se ligar a diferentes recetores, sobreexpressos nas células tumorais .
A invenção diz ainda respeito ao um método de preparação do nanossi steraa com três feises distintas:
1. Redução de ácido cloroáurico (HAuCl.4) com o extrato aquoso de uma planta com elevada concentração de compostos antioxidantes;
2. Adição de nitrato de prata e L-ácido ascórbico;
3. Revestimento das nanoparticulas com urna solução polimérica e peptídica, que confere ura aumento da estabilidade e vectorizaçâo do nanossístema de ouro para o local do tumor.
As nanoparticulas de ouro aqui descritas apresentam urna morfologia essencialmente esférica, com u a população monodispersa, com um tamanho médio de 100 nanómetros, índice de polidispersão de 0,2 e carga superficial média negativa (-19 mV) . O facto do nanossístema apresentar uma morfologia maioritariamente esférica é crucial para executar o objeto da invenção, uma vez que o nanossístema de ouro ocupa um pequeno volume e, consequentemente, apresenta uma maior área de superfície de contacto com as células alvo.
Contrariamente aos métodos de preparação de nanoparticulas de ouro convencionais, em que habitualmente se recorre a agentes redutores sintéticos, o método da presente invenção recorre á utilização de um extrato aquoso de uma planta da família Lamiaceae, com. elevada concentração de compostos antioxidantes, que são responsáveis pela redução do composto de ouro existente nas nanoparticulas de ouro. Ou seja, o extrato da planta funciona como agente redutor maioritário das nanopartí cuias de ouro aqui descritas.
Os compostos com atividade antioxidante usados na invenção são por exemplo os polifenóis, mais precisamente o ácido rosmarínico, ácido cafeico e ácido clorogénico. Estes compostos estão naturalmente presentes nas plantas da família Lamiaceae e permitem evitar a utilização de compostos sintéticos, corno é o caso do brometo de hexadecilt rimet ilamónio, que é um agente redutor e/ou estabilizador com efeitos tóxicos.
As nanopa tí cuias de ouro compreendem também a sua f ncional! zação com um péptido, o fator de crescimento epidérmico (EGF) , à superfície das próprias nanopartícuias que conduz à vetorização da formulação para as células alvo. Por exemplo, no caso de um tratamento pari o cancro, considerando que as células tumoraís sobreexpressam um recetor especifico para o péptido, o fator de crescimento epidérmico, o nanossistema de ouro liga- se ás células tumorais. Deste modo o nanossistema é direcionado para as células tumorais. Este tipo de direcionamento do nanossistema de ouro permite que os tecidos não-alvo (isto é, as células saudáveis nas regiões circundantes da zona do tumor) não sejam expostos ao tratamento antitumoral, diminuindo possíveis efeitos secundários adversos.
A presente invenção referente a um nanossistema de ouro apresenta vantagens sobre outros nanossístemas do estado da técnica com o mesmo objetivo, nomeadamente:
a) Aumento da viabilidade de células não tumorais (devido à utilização de compostos naturais para redução do ouro, ao revestimento com polímeros biocompatíveis e biodegradáveis e à vetori zaçao eficaz do nanossistema cie ouro multif ncional, especificamente para as células tumorais) ;
b) Eficácia na vetorização do nanossistema de ouro para as células tumorais, devido à presença de ura péptido, designadamente o fator de crescimento epidérmico (EGF) , na superfície da própria nanopartícula, que se liga aos recetores do fator de crescimento epidérmico (EGFR) soforeexpressos em células tumorais, que se torna específico e dirigido para o local do tumor;
c) Especificidade do nanossistema de ouro para as células tumorais, não afetando as células não tumorais localizadas na região do tumor, o que permite um tratamento com menores efeitos secundários;
d) Ativação do nanossistema de ouro por um processo exógeno e não invasivo ao organismo, através da hipertermia tecidu l por um laser ou por urna fonte de luz ie aplicação similar, na gama de absorção da proximidade aos infravermelhos, na ordem de 650 a 900 nanómetros; e) Permite a utilização de diversas técnicas de fototerapia que apenas eliminam células tumorais, após concentração do nanossistema de ouro nessa região, por mecanismos de ativação fotónica;
f ) Adaptabilidade do nanossistema de ouro modificado para diferentes tumores e outras patologias dermatológicas, bem como para associação com fármacos citostát cos .
Na presente invenção é utilizada uma planta da família Lamiaceae para preparação do extrato natural e obtenção de compostos com atívidade antioxidante que são adsor idos à superfície das nanopartículas de ouro. O extrato das plantas da família Lamiaceae apresenta uma elevada concentração de antioxidantes, sendo eficaz na redução do ouro, sem comprometer a biocompatibilídade das nanopartícuias de ouro quando administradas no local de ação.
A presente invenção é útil no tratamento de tumores, sejam estes superficiais ou profundos, e de outras patologias dermatológicas, como por exemplo a psoríase, a rosácea, a queratose, ou outras patologias. Alguns exemplos dos tumores para os quais esta invenção é aplicável e apresenta efeitos positivos na redução de células tumorais, são os carcinomas da pele, carcinoma do pulmão, tumor da mama, entre outros tumores, quer estes sejam tumores superficiais, até 5 centímetros de profundidade, quer sejam tumores profundos, com mais de 5 centímetros de profundidade. Sobre os tumores é utilizado um laser ou uma fonte de luz de aplicação similar, que ativa o nanossistema de ouro por hipertermia teciduai . O nanossistema de ouro liga-se às células tumorais, ao ser ativada por hipertermia pela incidência de um laser ou de uma fonte de luz de aplicação similar, promove o aquecimento locai do tumor e, consequente, provoca a morte celular (efeito antitumoral hipertêrmico) .
DESCRIÇÃO DAS FIGURAS
A Figura 1 consiste numa representação esquemática da disposição dos componentes do nanossistema e do seu processo de produção por intermédio dos agentes redutores naturais. Na figura pode observar-se o núcleo de nanopartícuia de ouro (1) , o revestimento polímérico (2), os vetores péptidicos {3), o extrato de planta da família Lamiaceae {4}, o ácido hialuróníco (5) e o ácido oleico (o). A Figura 2 representa o espetro de absorção ótica com o comprimento de onda em nanómetros no eixo das abscissas e a absorvância no eixo das ordenadas de: A) nanopa ticuias esféricas comerciais (pico de absorvância máxima: 530 nm) (linha inter ompida); B) nanoparticuias de ouro produzidas com. o extrato aquoso de planta da família Lamiaceae, com um comprimento de onda de absorção máxima na gama ótima de terapia, isto é, no infravermelho próximo (650 - 900 nanómetro) (linha contínua).
A Figura 3 é uma imagem microscópica de transmissão electrónica onde se observa a forma essencialmente esférica do nanossístema da invenção.
DESCRIÇÃO DETALHADA DA INVENÇÃO
A presente invenção diz respeito a um nanossístema desenvolvido para a fototerapia que contém nanoparticuias de ouro com atividade multifuncional, funcional izadas com polímeros e péptídos.
As nanoparticuias de ouro produzida através de um extrato de uma planta da família Lamiaceae como agente redutor do ouro, bem como um revestimento polimérico (2) e peptídico (3) que, por sua vez, confere estabilidade ao nanossístema e o dir ciona para o local do ação. O nanossístema de ouro da invenção tem como particularidade apresentar um comprimento de onda na gama ótima de terapia, isto é, em infravermelho próximo, e apresentar atividade antítumoral quando exposta à incidência de um laser ou de uma fonte de luz de aplicação similar. Os seguintes termos usados até aqui têm o seguinte significado :
"Água purificada" refere-.se a água deonizada e bi-destilada, seguida por um processo de esterilização por raios ultravioleta .
"Biopoiímero" entende-se como um material polimérico, de origem natural e fonte de carbono, estruturalmente classificado como pol issacárido, poliéster ou poliamida.
"Compostos antioxidantes" compreendem moléculas capazes de inibir a oxidação de outras moléculas e, consequentemente, são moléculas com um potencial açáo como agentes de redução. "Diterpenóide" ou "diterpeno" consistem em metabol.itos secundários da classe dos terpenos constituídos por 20 átomos de carbono, correspondendo a quatro unidades de isopreno. "Gama ótima de terapia" compreende o intervalo de comprimentos de onda no infravermelho próximo {650 - 900 nanómetros), para o qual está descrito que os tecidos têm uma absorção muito reduzida da energia.
"Laser" refere-se a um dispositivo que produz radiação elet romagnética resultante da ampliação de luz por emissão estimulada de radiação.
Por "fonte de luz de aplicação similar" a laser entende-se qualquer dispositivo de amplificação de luz por emissão estimulada de radiação como por exemplo led superiuminescent .
"Polifenol" consiste num composto antioxidante que possui uma ou mais grupos hidroxilos ligados a um anel aromático, podendo apresentar um ou mais grupos hidroxilo e mais de um anel aromático. São substâncias naturais encontradas em plantas, tais como f lavonóides, taninos, lignanas, derivados do ácido cafeico, entre outras.
A designação genérica "nano" refere-se a uma estrutura cujo diâmetro está compreendido entre 1 e 1000 nanómetros. "Nanopartícula de ouro" refere-se ao núcleo metálico de ouro ( i ) .
Nanossistema" refere-se à estrutura formada por nanoparticuias e por um ou mais componentes depositados na sua superfície.
"Nanossistema de ouro" refere-se à estrutura formada pelo núcleo metálico de ouro (1), pelo extrato natural de planta (4) e pelo revestimento polimérico (2) e peptídíco (3).
"Revestimento polimérico" (2) refere-se ao polímero que está adsorvido à superfície do núcleo metálico de ouro (1) , formado por redução do extrato de planta (4), cobrindo-o uniformemente .
"Revestimento peptídico" refere-se aos vectores peptídicos (3) que se ligam em lugares específicos ao revestimento po1 ímérico ( 2 ) .
"Vetorização" entende-se como o direcionamento de uma nanopartícula (ou outro sistema de veiculação de fármaco) para um local de ação específico, onde atua por ligação a recetores específicos, para os quais possui alta afinidade. h presente invenção diz respeito a um nanossistema de ouro composto por nanopar icuias de ouro com extrato de planta (4) da família Lamiaceae adsorvido à. superfície como agente redutor, com revestimento polimérico (2) e peptídico (3) e que apresenta um comprimento de onda gama de infravermelho próximo, na ordem dos 650 a 900 nanómetros . O nanossistema da invenção apresenta ati idade antitumorai quando exposto à incidência de um laser ou de uma fonte de l.u.2 de aplicação similar. Trata-se de um produto, baseado em nanoparticuias de ouro com atividade multifuncional, na medida em que é adaptável a diversos tumores, e vetorizada, na medida em que possuí especificidade para ligar-se aos recetores sobreexpressos nas células tumorais. A invenção diz ainda respeito a um método de preparação do nanossistema, em três fases:
1. Redução de ácido cloroáurico (HAUCJ ) com o extrato aquoso de uma planta com elevada concentração de compostos antioxidantes (como por exemplo, ácido rosmarinico, ácido cafeico e ácido clorogénico)
2. Adição de nitrato de prata e L-ácido ascórbico;
3. Revestimento das nanopartícuias com uma solução polimérica e peptídica, que confere vectorização das nanopartícuias de ouro para o local do tumor.
A presente invenção recorre à utilização do extrato aquoso de uma planta da família Larniaceae que funciona co o agente redutor por acão dos compostos antioxidantes presentes na planta, nomeadamente os polifenóís e os diterpenóides . Em particular, as plantas desta família são ricas em compostos antioxidantes polifenólicos, mais precisamente, ácido rosmarinico, ácido cafeico e ácido clorogénico. As plantas da família Larniaceae são endémicas das regiões mediterrânicas, embora possam também encontrar-se noutras regiões. São habitualmente plantas de flor aromática devido aos óleos essenciais, com caules quadrangulares e folhas simples, opostas, pecioladas ou sésseis. Exemplos de plantas da família Lamiceae são as plantas da subfamílía Salvia, espécie Acanthomintha, Achyrospermum, Acinos, Acrocephalus, Acrotome, Acrymia, Adeíosa, Aegíphila , Aeollanthus , Agastache, Ajuga, Ajugoides, A.lajja, Alvesia, Amasonia, Amethystea, Anisochilus, Anisomeles, Antonina , Aphanochilus , Archboldia, Ascocarydíon, Asterohyptis , Atelandra, Audíbertía, Ballota, Basilicum, Becium, Benguellia, Betónica, Blephilia, Bostrychanthera , Bovonia, Brachysternura, Brazoria,
Brittonastrum Bystropogon, Calamintha, Calapodium, Callicarpa, Capítanopsis, Capitanya, Caryopteris., Catoferia, Cedronella, Ceratanthus, Ceratominthe, Chaiturus,
C amaesphacos, Chaunos oroa, Che1onops is , Ch1oanthes , C1eonia, Clerodendranthus, Clerodendrum, Clinopodium, Colebrookea, Collinsonia, Colobandra, Colquhounia, Comanthosphace, Congea, Conradina, Coridothymus, Cornutia, Craniotome , Cruzia, Cuminia, Cunila, Cyanostegia, Cyclonema , Cyclot ichium, Cymaria, Dauphinea, Dentidia, Dicerandra, Dicrastylis, Dorystaechas, Dracocephalum, Drepanocaryum, Dysophylla, Eichlerago, Elsholtzia, Endostemon, Englerastruro, Epimeredi, Eremostachys , Eriope, Eriophyton, Eriopidion, Eriothymus, Erythrochlamys , Euhesperida, Eurysolen, Eusteralis, Faradaya, Fuerstia, Galeobdolon, Galeopsis, Gardoquia, Garrettia, Geniosporum, Germariea, Geunsia, Glecoma, Glechon, Glossocarya, Gmelina, Gomphostemma, Gontscharovia, Hanceola, Haplostachys, Harlanlewisia: Haurnaniastrum, Hedeoma, Hemiandra, Hemlgenia, Hemiphora, Hemizygia, Hesperozygi s , Heterola iuro, Hoehnea, Holmskioldia ,. Holocheila, Holostylon, Horminum, Hosea, Hoslundia, Hosta {botânica) , Huxleya, Hymenocrater , Hymenopyramis , Hypenia, Hypogomphia,
Hyptidendron, Hyptis, Hyssopus, Iboza, Isanthus,
Isodictyophorus , Isodon , Isoleucas, Karomia, eiskea, Kinosteroon, Koellia, Kudrj aschevia, urzamra, Lachnostachys , Lagochilus, Lagopsis, Lallemantia, Lamiastrum, Lamiophlomis , Lamium, Lavandula, Leocus, Leonotis, Leonurus, Lepechinia, Leucas, Leucosceptrum, Leucophae, Lirnniboza, Lophanthus, Loxocal x, Lycopus, Macbridea, Majorana, Mahya, Mallophora, Marmorítis, Marrubiura, Marsypianthes, Meehania, Melissa, Mel.ittis, Me tha, eriandra, Mesona, Metastachydium, Microcorys, Micromeria, Microtoena, Minthostachys , Moldavica, Moluccelia, Monarda, Monardella, Monochilus, Moschosma, Mosla, Neoeplingia, Neohyptis, eomuellera, Neorapinia, epeta , Newcastelia, Noseraa, Notochaete, Ocimum. , Octomeron, Ombrocharis, Oncinocalyx, Oreosphacus, Origanum , Orthodon, Orthosiphon, Otostegia, Oxera, Panzerina, Paraeremostachys , Paralamiuna, Paraphlomis, Paravitex, Peltodon, Pentapleura, Perílla, Periilula, Perilomia, Peronema, Perovskia, Perrierastrum, Petitia, Petraeovitex, Phlomidoschema, Phlorois, Phlomoides, Phyiiostegia, Physoleucas, Physopsis, Physostegia, Piloblephis, Pitardia, Pityrodia, Platostorna, Plectranthastrum, Plectranthus, Pogogyne, Pogostemon, Poliomintha, Porphyra, Prasium, Premna, Prostanthera, Pr. nel la , Pseuderemostachys , Pseudoearpidium,
Pseudochamaesphacos , Pseudomar rubium, Pulegium, Puntia, Pycnanthemum, Pycnostachys, Rabdosiella, Renschia,
Rhabdocaulon, Rabdosia, Rhaphiodon, Rhododon, Rosmarinus, Rostrinucula, Rotheca, Roylea, Rubiteucris, Sabaudia, Saccocalyx, Salazaria, Salvia, Salviastrum, Satureja, Schizonepeta, Schnabelia, Scutellaria, Sideritis,
Siphonanthus, Siphocranion, Skapanthus, Solenosteraon, Spartothamnella, Sphacele, Sphenodesme, Stachydeoma, Stachyopsis , Stachys, Stenogyne, Stiptanthus, Sulaimania, Suzukia, Symphorema, Symphostemon, Synandra, Syncolostemon, Talígalea, Tec ona, Teíj smanrriodendron, Tetraclea,
Tetradenia, Teucridium, Teucrium, Thorncroftia, Thuspeinanta, Thymbra, Thymus, Tinnea, Trichostema, Tsoongia, Tullia, Vitex, Viticipremna, Volkameria, ench-engia, Westringia, Wiedemannia, Wrixonia, Xenopoma, Zappania, Zataria, Zhumeria, Ziziphora. Em particular, as plantas preferidas da familia Lamiaceae são as plantas da espécie Plectranthus ornatus, Plectranthus ecklonii, Plectranthus barbatus, Plectranthus saccatus, Lavandula stoechas ssp. iuisieri, La andula pedunculata, Salvia officinalis e Rosmarinus officinalis . Exemplo 1
Preparação do extrato aquoso a partir de -uma planta da espécie Plectranthus sacca us
A planta é seca e cortada em pequenos fragmentos. A extração é obtida quando os fragmentos são expostos ao microondas, com u a frequência a 2,45 Ghz . , e liofilizados . Um miligrama de planta seca origina 5,9% ácido osmarinico, 0,026% ácido cafeico e 0,042% ácido clorogénico.
A fase da preparação do nanossistema de ouro consiste na preparação das nanopartícuias de ouro e mistura do extrato de planta (4) da família Lamiaceae para adsorçâo do composto redutor à superfície do núcleo de ouro (1).
Exemplo 2
Redução do ácido cloroáurico (HAUCIÍ) através do extrato aquoso de planta e formação das nanopartícuias de ouro
As nanopart icu.las de ouro são preparadas por redução do ácido cloroáurico (HAUCI4) com o extrato aquoso de planta preparado no Exemplo 1. São adicionados 9 mL de uma solução de ácido cloroáurico (HAuCl-s) com a concentração de 1 mM. Em seguida adicíonam-se sequencialmente os compostos seguintes:
a) solução aquosa de nitrato de prata (10 mM; 5 μ.Ι,) ;
b) solução aquosa de L-ácido ascórbico (20 mM; 500 μΐ,) ;
c) solução aquosa de extrato de planta (10 mg/m.L; 100 -
1000 uL; preparado no Exemplo 1
Consoante a espécie de planta usada também o conteúdo em compostos antioxidantes varia e deste modo, a razão molar do extrato aquoso da planta para as nanopart iculas de ouro aitera-se. Regra geral, a razão molar do extrato aquoso da planta para as nanopart iculas de ouro varia entre 2:1 a 1:20, conforme a massa molar do composto antioxidante maioritário presente na planta e a concentração do ouro nas nanopart ículas de ouro. Habitualment. , as plantas da família Laraiaceae contêm ácido rosmnrinico corno composto antioxi dante m iori ãrí o . a concentração da solução de ácido cloroáurico usada na redução pode variar entre os 0,2 e 1 mH e o tempo de reação pode variar entre 15 minutos a 24 horas, com uma agitação entre as 200 e as 1000 rotações por minuto, para um. pH compreendido entre os 7 e os 10 e uma temperatura entre os 2S°C e os 35 r'C.
A adição de agentes moduladores e co-adi uvant.es no processo de redução do ouro, nomeadamente ni rato de prata, em concentrações entre o 1 e os 10 rn , e L~ácido ascórbico, em concentrações entre os 2 e os 20 mH é vantajosa para o rendimento da reação.
Após obtenção das nanopart iculas de ouro com o agente redutor adsorvído á superfície, a lica -se o revestimento polimérico (2) e peptidico (3) sobre as nanopart icuias para obtenção do nanossistema de ouro.
Exemplo 3
Revestimento das nanoparticuias de ouro com tuna solução polimérica e peptidica
A preparação do nanossistema de ouro compreende os passos seguintes :
a) Adição de ácido hialurónico (5) e ácido oleico (HAOA;
(6) {1:1, v/v), à concentração de 1 íag/mL para cada composto, que são incubados numa solução aquosa, com pH = 10 (NaOH 1M, 0,3%, v/v), durante 24 horas a 60°C, á solução contendo as nanopartículas de ouro preparada no Exemplo 2;
b) Adição do péptido fa or de crescimento epidérmico (EGF) , à concentração de 2,5 μΜ (em tampão fosfato salino pH 7.4), à solução de nanopartículas de ouro, ácido hialurónico (55 e ácido oleico (6) (1:1:1, v/v/v) , sob agitação a 800 rotações por minuto, durante 30 minutos, à temperatura ambiente e, posteriormente, era repouso a 4°C;
c) Centrifugação de l,820g a 7, 200g da mistura obtida nos passos a) e b) , durante 15 minutos e conservação das nanopartículas de ouro, em água purificada ou tampão fosfato salino.
O nanossistema de ouro da invenção e produzido de acordo com o método descrito, foi caracterizado era termos de:
a) Tamanho médio das partículas e índice de polidispersão (PI)
As nanopartículas de ouro aqui descritas apresentam uma morfologia essencialmente esférica, com uma população monodispersa, com um tamanho médio de 100 nanómetros, índice de polidispersão de 0,2 e carga superficial média negativa (-19 mV) . b) Comprimento de onda para a absorvância máxima da amostra
Foi obtido o espetro de absorção ótica da Figura 2 onde se pode observar um pico de absorção na gama ótima de terapia, ou seja, no infravermelho próximo (650 - 900 nanómetro) . c) Morfologia e superfície das nanopartículas, por microscopia eletrónica de transmissão e analisados com uma tensão de aceleração de 10-20kV.
Foi obtida a imagem microscópica de transmissão electrónica da Figura 3, onde se observa a forma essencialmente esférica do nanossistema da invenção.
As nanopartículas de ouro que apresentam estruturas anísotrópicas não são favoráveis em termos de termodinâmica; contudo, quando associadas a agentes estabilizantes como, por exemplo, as biomoléculas presentes nos extratos de plantas, apresentam uma banda de absorção na região do infravermelho próximo na ordem dos 650 a 900 nanômetros.
As partículas preparadas segundo a invenção apresentam morfologia essencialmente esférica. Esta característica é relevante para cumprir o objetivo terapêutico da invenção. Se por um lado a morfologia esférica facilita a difusão celular do nanossistema, por outro, o facto de ocupa um pequeno volume faz com que o nanossistema tenha uma maior área de superfície de contacto com as células alvo.
A atividade terapêutica do nanossistema de ouro da invenção é confirmada através de diversos ensaios, nomeadamente:
Ensaio de vectorização para a célula alvo, após a conjugação das nanopartículas de ouro com diferentes pép idos (Exemplo 4};
- Teste de inocuidade das células não alvo através de ensaios de viabilidade celular sobre linhas celulares "normais"/ células não tumoraís (Exemplo 5);
Ensaio de eficácia do nanossistema por análise da internaiização celular em linhas celulares tumorais (Exemplo 6 ϊ . Exemplo 4
Comprovação da vectorização para a célula alvo
Para comprovar a vectori ação do nanossistema para uma célula ou células alvo, são aqui apresentados dois ensaios das nanopartículas de ouro conjugada com dois modelos de proteina/péptido, de cargas distintas. São feitos ensaios, ura com fator de crescimento epidérmico (EGF - >Aepidermal growth factor") e outro com lisozima.
A fira de preparar as nanopartículas de ouro conjugadas com os dois péptidos de diferentes cargas superficiais e massas moleculares, tanto o fator de crescimento epidérmico EGF como a lisozima, foram recons ituídos em tampão fosfato 20 mM (pH 7,4) a 10 μ e 2,5 μΜ, respetívamente . Ern seguida, as três soluções (proteina/péptido, nanopartículas de ouro e solução poliméríca) foram misturadas numa proporção de 1:1:1 (v/v/v) e deíxo -se interagir durante 30 minutos à temperatura ambiente e 24 horas a 4 °C, sem agitação. A solução foi centrifugada para remover péptidos não ligados e o nanossistema de ouro foram resuspensas em tampão fosfato pH 7,4.
As partículas do nanossistema de ouro apresentam ura tamanho de cerca de 100-150 nanómetros (PI =~ 0,2), após análise de caracterização de partículas. 0 comprimento de onda de absorção das partículas foi de aproximadamente 800 - 830 nanómetros .
Apôs conjugação com o fator de crescimento epidérmico estas apresentaram uma banda de absorção aproximada aos 650 - 900 nanómetros. Após conjugação com fator de crescimento epidérmico, o potencial zeta das nanopartículas manteve-se negativo. A conjugação do fator de crescimento epidérmico às nanoparticulas também foi verificada através da visualização das mesmas através de microscópio confocal . Foi aplicada a técnica de Mco-localização" com dois marcadores fluorescentes, cujos espectros de emissão apresentam comprimentos de onda distintos. As partículas do nanossistema de ouro foram marcadas com Coumar.ína-6, enquanto o fator de crescimento epidérmico utilizado para conjugação nestes estudos foi o fator de crescimento epidérmico marcado com Alexa Fluor 647. A presença de regiões ern que há sobreposição de cores permitiu confirmar que o fator de crescimento epidérmico está conjugado ao nanossistema de ouro.
Estudaram-se também as possíveis modificações associadas à proteína lisozima e ao péptído fator de crescimento epidérmico, após exposição à radiação ultravioleta-B (foto- iluminação) , temperatura e após conjugação com as nanoparticulas de ouro. Os resultados obtidos através de ensaios com espectroscopia de fluorescência mostraram a iluminação contínua a 295 nanómetros (radiação utravíoleta-B) da proteína lisozima e do péptído fator de crescimento epidérmico, no seu estado livre (ou se a, não conjugadas ás nanoparticulas biopoliméricas) conduziu à diminuição da fluorescência dos resíduos aromáticos (espectros de excitação e emissão) e à formação de produtos fotoquímicos oxídatívos (por exemplo, di-tírusina, quínurenina, N' -formil- qu.inurenína) , provocando alterações na sua estrutura nativa. Por sua vez, a conj ugaç.ão com nanoparticulas de ouro não induziu a desnaturação das proteínas. Além disso, as nanoparticulas de ouro promoveram a proteção tanto para a lisozima como para o fator de crescimento epidérmico, reduzindo a cinética de decaimento da fluorescência e, comparativamente, os efeitos de foto-oxidação e alteração de conformação/estrutura proteicas foram inferiores.
Exemplo 5
Comprovação da inocuidade das células não alvo
A inocuidade das células não alvo é aqui comprovada através de ensaios de viabilidade celular sobre linhas celulares "normais"/ células não tumorais. Para tal, foram estudadas em. linhas celulares de queratinócitos humanos (modelo HaCaT) , através do método colo imétrico de brometo de tetrazolina . Inicialmente, avaliou-se a citotox.ícidade do extrato isolado da planta da família Lamíaceae a diferentes concent rações e, posteriormente, das nanopartícuias de ouro, com e sem conjugação com. fator de crescimento epidérmico. As células foram cultivadas em meio de Eagle modificado por Dulbelcco (DMEM - "Dulbelcco' s modified Eagle médium") suplementado com 10% soro fetal bovino e solução de antibióticos ípenieilina/estreptomicina, 1%). As células HaCaT foram semeadas em placa de 96 poços a uma densidade de 5000 células/poço. A solução aquosa de extrato da planta da família Lamíaceae foi preparada por diluição em dimetílsufóxido, com as seguintes concentrações finais: 0-500 g/mL. O nanossistema de ouro foi também testado a diferentes concentrações: 0-80 μΜ {a partir da concentração de ouro). As células foram expostas aos diferentes tratamentos durante 24 horas. Após este período, as células foram lavadas com tampão fosfato salino pH 7.4 e incubadas com uma solução de brometo de tetrazolina (0,5 mg/mL em meio de cultura) durante 2,5 horas e a 37°C. Por último, o meio foi removido e as células foram lavadas com tampão fosfato salino pH 7.4. Uma alíquota de 200 pL de dimetílsufóxido por poço foi. adicionada para dissolver os cristais de formazan e a absorvância foi lida a 595 nanómetros. Foram realizados, para cada tratamento, três ensaios independentes, cada um composto por quatro réplicas. O extraio da planta usado apresentou valores elevados de viabilidade celular (> 80%, para concentração mais elevada, usada para a produção das nanopartículas de ouro) . Tanto as nanopartícuias de ouro conjugadas com fator de crescimento epidérmico, como as nanopartículas de ouro não conjugadas, demonstraram um valor elevado (> 70%). de viabilidade celular em modelo HaCaT.
Exemplo 6
Comprovação da eficácia do nanossistema de ouro
Para comprovar a eficácia das nanopartículas de ouro, foram realizados ensaios para verificar a internai! zação celular e ligação do nanossistema de ouro em linhas celulares tumorais. O ensaio foi realizado numa linha de células de carcinoma do pulmão (células A549).
Foram usadas nanopartículas de ouro conjugadas com fator de crescimento epidérmico em linhas de células A549, ín vitro. O ensaio baseia~se na expressão da proteína fluorescente GFP ("green fluorescence protein"), que está acoplada aos recetores membranares da linha celular. A549. Quando ocorre internaiização, o recetor muda para a cor verde, sendo possível monitorizar ín loco este processo.
As células foram cultivadas em poços e após 24 horas foram adicionados, para além do controlo (sem tratamento) , as amostras em análise, nomeadamente:
- Fator de crescimento epidérmico livre;
Fator de crescimento epidérmíco-nanopartícuias de ouro (fator de crescimento epidérmico marcado com Alexa Fluor 647); Fator de crescimento epidérmico-nanopartí.culas de ouro (duplamente marcadas: Alexa Fluor 647 para o péptido; Coumarina-6 para as nanopartículas de ouro) .
Ern alguns poços foi também previamente adicionado anticorpo neutrali zante anti-EGFR ("primary mouse monoclonal antibody anti-EGFR neutralizer antibody LAI), de modo a avaliar o possível efeito competidor do fator de crescimento epidérmico livre, e o fator de crescimento epidérmico conjugado às nanopartículas de ouro. As células foram expostas aos vários tratamentos durante dois tempos diferentes, a 1,5 horas e a 3 horas, à temperatura de 37 °C. Após este período, as células foram lavadas com tampão fosfato salino pH 7.4, para remover resíduos de péptido e partículas não internalizadas e foram analisadas .
Os resultados foram idênticos paira ambos os ensaios. Observou-se que tanto o fator de crescimento epidérmico livre, como as nanopartículas de ouro conjugadas com fator de crescimento epidérmico internai izara ao f inal de 1, 5h em contacto com a linha celular de carcinoma do pulmão. Nestes ensaios foi igualmente possível verificar que as nanopartículas de ouro conjugadas com fator de crescimento epidérmico são internalizadas peias células de forma eficiente, uma vez que acrescem nos mecanismos de ativaçào compara i amente ao fator de crescimento epidérmico isolado e também competem diretamente com o anticorpo anti-EGFR.
Os exemplos de aplicação anteriores visam confirmar a atividade do nanossxstema da invenção e o seu importante potencial em terapia antítumoral. Ao demonstrar através de ensaios a vectorização do nanossistema de ouro da invenção para o local de açao comprova-se que a invenção vem dar resposta à necessidade de nanoparticulas especificas e d.i. recionadas para o desenvolvimento de uma terapêutica contra o cancro ou ρatologia derinato1ógica .
Por outro lado, ao confirmar através de ensaios a inocuidade do nanossistema de ouro da invenç:ão para as células nâo alvo demonstra-se a segurança do nanossistema.
Finalmente, ao confirmar a internai ização celular do nanossistema de ouro quando aplicado a uma linha celular de carcinoma humano de pulmão (linha A549) , demonstra-se a biocompatibil idade do nanossistema da invenção e a sua adaptabilidade a condições patológicas diversas.
No entanto, os exemplos de aplicação anterior não devem ser interpretados como limitadores da vocação dos nanossistemas de ouro da invenção, podendo surgir aplicações futuras com o aprofundamento da investigação associada a estes compostos.

Claims

REIVINDICAÇÕES
1. Nanossistema de ouro caracterizado pelo facto de ser constituído por um núcleo metálico de ouro (1) com um extrato de planta (4) adsorvido à superfície como agente redutor e por um revestimento de um polímero (2) e de um péptido (3) e por apresentar uma morfologia essencialmente esférica.
2. Nanossistema de ouro de acordo com a reivindicação 1 caracterizado pelo facto de a planta usada no extrato de planta (4) usado como agente redutor pertencer à família Lamiaceae .
3. Nanossistema de ouro de acordo com a reivindicação 1 e 2 caracterizado pelo facto de o polímero ser seleccionado entre o grupo constituído por polissacáridos, poliésteres ou poliamidas .
4. Nanossistema de ouro de acordo com a rei indicação 1 a 3 caracterizado pelo facto de o péptido ser seleccionado entre o grupo constituído pelo fator de crescimento epidérmico ( EGF) e pela 1 i so zima .
5. Nanossistema de ouro de acordo com a reivi dicação 1 a 4 caracterizado pelo facto da gama de absorção no infravermelho próximo ôipresentar um máximo na ordem dos 650 a 900 iim.
6. Nanossistema de ouro de acordo com as reivindicações 1 a. para uso na fototerapia de tumores caracterizado pelo facto do nanossistema adquirir ativídade terapêutica quando exposto à incidência de um laser ou de uma fonte de luz de aplicação similar por hípertermía .
7. Nanossistema de ouro de acordo com as reivindicações 1 et 6 para uso na fototerapia de tumores caracterizado pelo facto do nanossistema ser administ ado localmente e ativado por hipertermia através da incidência de um laser ou de uma fonte de luz de aplicação similar.
8. Processo de preparação das nanopartícuias de ouro constituintes do nanossistema de ouro das reivindicações 1 a 7, caracterizado por:
a) Se dissolver o ácido cloroáurico numa concentração compreendida entre 0,2 e 1 mM. durante 15 minutos a 24 horas; b) Se adicionar o extracto aquoso de planta da família Lamiaceae numa razão molar seleccionada entre o grupo 2:1, 1:2, 1:4, 1:8, 1:10 e 1:20;
c) Se adicionarem agentes moduladores e co~adjuvant.es no processo de redução do ouro.
9. Nanopartícuias de ouro preparadas de acordo com a reivindicação 8 caracterizadas por conterem um núcleo metálico de ouro (1) e um extrato de planta (4) adsorvido à superfície do metal com função redutora.
10. Processo de preparação do nanossistema de ouro das reivindicações 1 e 7 caracterizado pelo fato de a solução de revestimento das nanopartícuias de ouro ser preparada segundo os passos seguintes:
a) Adição de uma solução de ácido híalurónico (5) e de ácido oleico (6) numa proporção de 1:1;
b) Adição de um péptido seleccionado entre o grupo constituído por Fator de Crescimento Epidérmico (EGF) e Lisoz ima ;
c) Obtenção das partículas do nanossistema de ouro por centrif gação .
11. anossi tema de ouro de acordo core as reivindicações 1 a 7, para uso na fototerapia de tumores caracterizado por os tumores serem seleccionados entre o grupo constituído por carcinomas da peie e tumor da mama.
12. anoss is tema de ouro de acordo com as rei s/indicações 1 a 7 para uso na fototerapia de tumores caracterizado por os tumores estarem localizados a mais de 5 centímetros de profundidade .
PCT/PT2016/000016 2015-11-30 2016-11-30 Nanossistema de ouro com revestimento biopolimérico e gama de absorção no infravermelho próximo e método para a sua preparação WO2017095251A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT108994A PT108994A (pt) 2015-11-30 2015-11-30 Nanossistema de ouro com revestimento biopolimérico e gama de absorção no infravermelho próximo e método para a sua preparação
PT108994 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017095251A1 true WO2017095251A1 (pt) 2017-06-08

Family

ID=57737957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PT2016/000016 WO2017095251A1 (pt) 2015-11-30 2016-11-30 Nanossistema de ouro com revestimento biopolimérico e gama de absorção no infravermelho próximo e método para a sua preparação

Country Status (2)

Country Link
PT (1) PT108994A (pt)
WO (1) WO2017095251A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111230135A (zh) * 2020-03-17 2020-06-05 江南大学 一种制备金纳米颗粒的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090117045A1 (en) 2007-10-01 2009-05-07 The Curators Of The University Of Missouri Soy or lentil stabilized gold nanoparticles and method for making same
WO2011116963A2 (en) 2010-03-24 2011-09-29 Lipotec S.A. Lipid nanoparticle capsules
US8057682B2 (en) 2008-05-16 2011-11-15 Verutek Technologies, Inc. Green synthesis of nanometals using plant extracts and use thereof
WO2012039685A1 (en) 2010-09-24 2012-03-29 Agency For Science, Technology And Research A nanoprobe comprising gold colloid nanoparticles for multimodality optical imaging of cancer and targeted drug delivery for cancer
WO2012038061A2 (en) 2010-09-21 2012-03-29 Lipotec, S.A. Nanocapsules containing microemulsions
US20130129618A1 (en) * 2007-09-17 2013-05-23 The Curators Of The University Of Missouri Egcg stabilized gold nanoparticles and method for making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130129618A1 (en) * 2007-09-17 2013-05-23 The Curators Of The University Of Missouri Egcg stabilized gold nanoparticles and method for making same
US20090117045A1 (en) 2007-10-01 2009-05-07 The Curators Of The University Of Missouri Soy or lentil stabilized gold nanoparticles and method for making same
US8057682B2 (en) 2008-05-16 2011-11-15 Verutek Technologies, Inc. Green synthesis of nanometals using plant extracts and use thereof
WO2011116963A2 (en) 2010-03-24 2011-09-29 Lipotec S.A. Lipid nanoparticle capsules
WO2012038061A2 (en) 2010-09-21 2012-03-29 Lipotec, S.A. Nanocapsules containing microemulsions
WO2012039685A1 (en) 2010-09-24 2012-03-29 Agency For Science, Technology And Research A nanoprobe comprising gold colloid nanoparticles for multimodality optical imaging of cancer and targeted drug delivery for cancer

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Handbook of Photomedicine", 2013, CRC PRESS, article GIRGIS OBAID, DAVID A. RUSSELL: "Nanoparticles for photodynamic cancer therapy", pages: 367 - 378, XP002767057 *
ANETA J. MIESZAWSKA ET AL: "Multifunctional Gold Nanoparticles for Diagnosis and Therapy of Disease", MOLECULAR PHARMACEUTICS, vol. 10, no. 3, 4 March 2013 (2013-03-04), US, pages 831 - 847, XP055343279, ISSN: 1543-8384, DOI: 10.1021/mp3005885 *
DESHPANDE RAGHUNANDAN ET AL: "Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts", CANCER NANOTECHNOLOGY, vol. 2, no. 1-6, 10 May 2011 (2011-05-10), pages 57 - 65, XP055153234, ISSN: 1868-6958, DOI: 10.1007/s12645-011-0014-8 *
KAI SUN ET AL: "Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles", JOURNAL OF MATERIALS SCIENCE, vol. 44, no. 3, 27 December 2008 (2008-12-27), KLUWER ACADEMIC PUBLISHERS, BO, pages 754 - 758, XP019679527, ISSN: 1573-4803 *
SILVA C O ET AL: "Hybrid nanoparticles for photodynamic and targeted cancer therapy: Cytotoxicity studies", TOXICOLOGY LETTERS, vol. 238, no. 2, 16 October 2015 (2015-10-16), pages S204, XP029285004, ISSN: 0378-4274, DOI: 10.1016/J.TOXLET.2015.08.611 *
YANG LIU ET AL: "A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy", THERANOSTICS, vol. 5, no. 9, 23 May 2015 (2015-05-23), AU, pages 946 - 960, XP055344344, ISSN: 1838-7640, DOI: 10.7150/thno.11974 *
YEHUDA ZEIRI ET AL: "Green synthesis of gold nanoparticles using plant extracts as reducing agents", INTERNATIONAL JOURNAL OF NANOMEDICINE, 1 August 2014 (2014-08-01), pages 4007 - 4021, XP055343271, DOI: 10.2147/IJN.S57343 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111230135A (zh) * 2020-03-17 2020-06-05 江南大学 一种制备金纳米颗粒的方法
CN111230135B (zh) * 2020-03-17 2021-08-24 江南大学 一种制备金纳米颗粒的方法

Also Published As

Publication number Publication date
PT108994A (pt) 2017-05-30

Similar Documents

Publication Publication Date Title
Ramezani Farani et al. Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer
Qin et al. pH-responsive polymer-stabilized ZIF-8 nanocomposites for fluorescence and magnetic resonance dual-modal imaging-guided chemo-/photodynamic combinational cancer therapy
Chowdhuri et al. Carbon dots embedded magnetic nanoparticles@ chitosan@ metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery
Wang et al. Platelet membrane biomimetic bufalin-loaded hollow MnO2 nanoparticles for MRI-guided chemo-chemodynamic combined therapy of cancer
Wo et al. A multimodal system with synergistic effects of magneto-mechanical, photothermal, photodynamic and chemo therapies of cancer in graphene-quantum dot-coated hollow magnetic nanospheres
Wang et al. Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles
Thakur et al. Development of gold-based phototheranostic nanoagents through a bioinspired route and their applications in photodynamic therapy
Xie et al. Hybrid nanoparticles for drug delivery and bioimaging: mesoporous silica nanoparticles functionalized with carboxyl groups and a near-infrared fluorescent dye
Wan et al. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells
Fang et al. Dual‐targeted selenium nanoparticles for synergistic photothermal therapy and chemotherapy of tumors
Zhang et al. Near‐Infrared Light and pH‐Responsive Polypyrrole@ Polyacrylic acid/Fluorescent Mesoporous Silica Nanoparticles for Imaging and Chemo‐Photothermal Cancer Therapy
US10220004B2 (en) Method of controlled delivery using sub-micron-scale machines
Yang et al. Near‐infrared‐controlled, targeted hydrophobic drug‐delivery system for synergistic cancer therapy
Morales et al. New Drug‐Structure‐Directing Agent Concept: Inherent Pharmacological Activity Combined with Templating Solid and Hollow‐Shell Mesostructured Silica Nanoparticles
Wang et al. Facile synthesis of the Cu, N-CDs@ GO-CS hydrogel with enhanced antibacterial activity for effective treatment of wound infection
Zhang et al. Self-assembled thermal gold nanorod-loaded thermosensitive liposome-encapsulated ganoderic acid for antibacterial and cancer photochemotherapy
Tang et al. Cytochrome C capped mesoporous silica nanocarriers for pH-sensitive and sustained drug release
Owoseni-Fagbenro et al. Egg proteins stabilized green silver nanoparticles as delivery system for hesperidin enhanced bactericidal potential against resistant S. aureus
Liu et al. N, Cl-codoped carbon dots from Impatiens balsamina L. stems and a deep eutectic solvent and their applications for gram-positive bacteria identification, antibacterial activity, cell imaging, and ClO–sensing
Nasr et al. Mesoporous silica nanoparticles, a safe option for silymarin delivery: preparation, characterization, and in vivo evaluation
Cheng et al. Fabrication of multifunctional triple-responsive platform based on CuS-capped periodic mesoporous organosilica nanoparticles for chemo-photothermal therapy
Ma et al. Preparation of highly ordered hierarchical CaCO3 hemisphere and the application as pH value-sensitive anticancer drug carrier
Cai et al. Mesoporous carbon nanospheres with ZnO nanolids for multimodal therapy of lung cancer
Parsaei et al. Magnetic UiO-66-NH2 Core–Shell Nanohybrid as a Promising Carrier for Quercetin Targeted Delivery toward Human Breast Cancer Cells
Hemmati et al. In vitro evaluation of curcumin-loaded chitosan-coated hydroxyapatite nanocarriers as a potential system for effective treatment of cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16822547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16822547

Country of ref document: EP

Kind code of ref document: A1