WO2017094375A1 - Pipe connection structure - Google Patents

Pipe connection structure Download PDF

Info

Publication number
WO2017094375A1
WO2017094375A1 PCT/JP2016/080789 JP2016080789W WO2017094375A1 WO 2017094375 A1 WO2017094375 A1 WO 2017094375A1 JP 2016080789 W JP2016080789 W JP 2016080789W WO 2017094375 A1 WO2017094375 A1 WO 2017094375A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
working fluid
connection pipe
hole
connection
Prior art date
Application number
PCT/JP2016/080789
Other languages
French (fr)
Japanese (ja)
Inventor
大洋 緒方
吉則 形谷
英俊 河西
隼人 池田
Original Assignee
株式会社 荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 荏原製作所 filed Critical 株式会社 荏原製作所
Publication of WO2017094375A1 publication Critical patent/WO2017094375A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D33/00Rotary fluid couplings or clutches of the hydrokinetic type
    • F16D33/18Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L5/00Devices for use where pipes, cables or protective tubing pass through walls or partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L5/00Devices for use where pipes, cables or protective tubing pass through walls or partitions
    • F16L5/02Sealing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L5/00Devices for use where pipes, cables or protective tubing pass through walls or partitions
    • F16L5/02Sealing
    • F16L5/08Sealing by means of axial screws compressing a ring or sleeve

Definitions

  • the present invention relates to a pipe connection structure for connecting one pipe to the other pipe, and more particularly to a pipe connection structure applied to a pipe through which a working fluid of a fluid coupling flows.
  • the fluid coupling is a device that transmits the rotation of the input shaft to the output shaft via the working fluid that exists between the impeller that is the input-side impeller and the runner that is the output-side impeller.
  • hydraulic oil is used as the working fluid.
  • the fluid coupling includes a scoop tube (rake pipe) that increases or decreases the amount of working fluid in a fluid chamber formed between the impeller and the runner. By increasing or decreasing the amount of working fluid in the fluid chamber, the rotational speed of the output shaft relative to the input shaft can be changed steplessly.
  • the pressure and temperature of the working fluid increase.
  • the working fluid temperature can reach 100 degrees.
  • the hot working fluid scooped up by the scoop tube is sent to the fluid cooling device, cooled by the fluid cooling device, and then returned to the fluid chamber.
  • the working fluid circulates between the fluid chamber and the fluid cooling device through the piping.
  • the piping expands due to the heat of the working fluid, and a load is applied to the piping and the connection portion between the pipings. And this causes damage to the piping and damage to the connecting portion, which may cause the working fluid to leak.
  • the present invention has been made in view of the above-described problems, and provides a pipe connection structure capable of preventing damage to a pipe and damage to a connection portion between pipes even when thermal expansion of the pipe occurs. For the purpose.
  • one aspect of the present invention includes a connection pipe through which a working fluid of a fluid coupling flows, a support member having a through hole into which the connection pipe is inserted, an outer peripheral surface of the connection pipe, and the An annular seal that seals a gap between the through hole and a flange member that presses the annular seal against the support member, and the diameter of the outer peripheral surface of the connection pipe is smaller than the diameter of the through hole.
  • the through hole has an annular inclined surface that gradually expands toward an end of the through hole, and the annular seal includes the annular inclined surface, the outer peripheral surface of the connection pipe, It is in contact with the flange member.
  • the connecting pipe is made of metal.
  • an external pipe having an external flange connected to the flange member is further provided.
  • a gap is formed between an end portion of the connection pipe and an end portion of the external pipe.
  • an inner diameter of the flange member is larger than a diameter of an outer peripheral surface of the connection pipe.
  • the connecting pipe is gently inserted into the through hole of the support member, the connecting pipe is allowed to move in the axial direction when the connecting pipe is thermally expanded. Therefore, no load is applied to the connecting pipe, and the connecting pipe can be prevented from being damaged. Furthermore, since the annular seal seals the gap between the outer peripheral surface of the connecting pipe and the through hole, the working fluid can be prevented from leaking.
  • FIG. 1 is a plan view schematically showing a fluid coupling.
  • the fluid coupling includes an impeller 1 and a runner 2 arranged to face each other, a drive shaft 11 to which the impeller 1 is fixed, and an output shaft 12 to which the runner 2 is fixed.
  • the impeller 1 is also called an input side impeller
  • the runner 2 is also called an output side impeller.
  • the impeller 1 and the runner 2 each have a hemispherical shape having a plurality of radial blades inside, and a fluid chamber 5 is formed between the impeller 1 and the runner 2.
  • the input shaft 15 is arranged in parallel with the drive shaft 11.
  • the input shaft 15 is supported by radial bearings 16 and 17.
  • a large gear 21 is fixed to the input shaft 15, and a small gear 22 that meshes with the large gear 21 is fixed to the drive shaft 11.
  • the end of the input shaft 15 is connected to a prime mover (not shown) such as an electric motor or a gas turbine. The rotation of the prime mover is transmitted from the input shaft 15 to the drive shaft 11 via the large gear 21 and the small gear 22.
  • the fluid coupling includes a working fluid circulation system 25 that supplies a working fluid to a fluid chamber 5 formed between the impeller 1 and the runner 2, and a scoop tube for increasing or decreasing the amount of the working fluid in the fluid chamber 5 ( Rake pipe) 30.
  • the tip 30 a of the scoop tube 30 is located in the impeller casing 7.
  • the impeller casing 7 is fixed to the impeller 1 and has a shape surrounding the runner 2.
  • the impeller casing 7 rotates together with the impeller 1.
  • An actuator 31 such as a hydraulic servo is connected to the scoop tube 30, and the scoop tube 30 can be moved in the radial direction of the impeller 1 and the runner 2 by the actuator 31.
  • the working fluid for example, hydraulic oil
  • the working fluid in the impeller casing 7 flows by the rotating impeller 1, and the flowing working fluid rotates the runner 2.
  • the working fluid circulation system 25 includes a fluid cooling device 26 for cooling the working fluid, and a working fluid circulation line 27 extending through the fluid cooling device 26.
  • the inlet of the working fluid circulation line 27 is connected to the scoop tube 30, and the outlet of the working fluid circulation line 27 communicates with the fluid chamber 5 between the impeller 1 and the runner 2.
  • the working fluid discharged from the impeller casing 7 through the scoop tube 30 flows through the working fluid circulation line 27 and is sent to the fluid cooling device 26.
  • the working fluid is cooled by heat exchange with the cooling water, and then returned to the fluid chamber 5 through the working fluid circulation line 27. In this way, the working fluid circulates between the fluid chamber 5 and the fluid cooling device 26 by its own pressure raised by the rotating impeller 1.
  • the impeller 1 is fixed to the drive shaft 11 and the runner 2 is fixed to the output shaft 12.
  • the rotation of the drive shaft 11 is transmitted from the impeller 1 to the runner 2 via the working fluid, and the output shaft 12 rotates.
  • the rotational speed of the runner 2 varies depending on the amount of working fluid in the fluid chamber 5 formed between the impeller 1 and the runner 2. Specifically, the rotation speed of the runner 2 increases as the amount of working fluid increases.
  • the amount of working fluid in the fluid chamber 5 varies depending on the position of the scoop tube 30. That is, when the tip 30a of the scoop tube 30 moves radially outward, the amount of working fluid decreases, and when the tip 30a of the scoop tube 30 moves radially inward, the amount of working fluid increases.
  • the amount of working fluid in the fluid chamber 5, that is, the rotational speed of the output shaft 12 can be changed.
  • FIG. 2 is a cross-sectional view showing an embodiment of the pipe connection structure.
  • the pipe connection structure includes a connection pipe 34 through which a working fluid of a fluid coupling flows, and a support member 35 having a through hole 35 a into which the connection pipe 34 is inserted.
  • the support member 35 is a casing that houses components such as the impeller 1 and the runner 2 described above.
  • the connecting pipe 34 is made of metal.
  • the diameter of the outer peripheral surface 34 a of the connection pipe 34 (that is, the outer diameter of the connection pipe 34) is slightly smaller than the diameter of the through hole 35 a, and the connection pipe 34 is supported by the support member 35. Since the connecting pipe 34 is gently inserted into the through hole 35a of the support member 35, the connecting pipe 34 is allowed to move in the axial direction. Therefore, one end 34b of the connection pipe 34 is a free end.
  • the other end 34c of the connecting pipe 34 is fixed to the fixing member 33 by a fastener 44 such as a screw. Therefore, the end 34c of the connection pipe 34 is a fixed end.
  • the fixing member 33 is, for example, a pipe through which the working fluid discharged through the scoop tube 30 described above flows, or another pipe.
  • the connection pipe 34 constitutes a part of the working fluid circulation line 27 described above.
  • An annular seal 48 is provided on the outer peripheral surface 34 a of the connection pipe 34 to seal a gap between the outer peripheral surface 34 a of the connection pipe 34 and the through hole 35 a of the support member 35.
  • the through hole 35a of the support member 35 has an annular inclined surface 55 that gradually widens toward the end of the through hole 35a.
  • the annular seal 48 is disposed between the outer peripheral surface 34 a of the connection pipe 34 and the annular inclined surface 55.
  • the annular seal 48 is, for example, an O-ring.
  • the outer peripheral surface 34a of the connecting pipe 34 has a tapered surface 56 in which the tip of the connecting pipe 34 is gradually narrowed toward the end 34b.
  • the tapered surface 56 is formed by grinding, for example.
  • the annular seal 48 is guided by the tapered surface 56 and attached to the outer peripheral surface 34 a of the connection pipe 34. As described above, by providing the tapered surface 56, the annular seal 48 can be mounted on the outer peripheral surface 34 a of the connection pipe 34 without damaging the annular seal 48.
  • the annular seal 48 is pressed against the annular inclined surface 55 of the support member 35 by an annular flange member 66.
  • the flange member 66 is connected to the outer flange 61 of the outer tube 60 by a plurality of screws 75.
  • An annular seal member 71 is disposed between the flange member 66 and the outer flange 61.
  • the seal member 71 is, for example, an annular gasket.
  • the screw 75 extends through the external flange 61, the seal member 71, and the flange member 66, and is screwed into a plurality of screw holes 35 c formed in the support member 35.
  • the other end of the external pipe 60 is connected to the fluid cooling device 26 described above, for example.
  • the flange member 66 is in contact with the end surface 35b of the support member 35, and the flange member 66 and the connection pipe 34 are disposed concentrically.
  • the inner diameter of the flange member 66 is larger than the diameter of the outer peripheral surface 34a of the connection pipe 34 and further larger than the diameter of the through hole 35a so that the flange member 66 does not hinder the movement of the connection pipe 34 in the axial direction. Therefore, the flange member 66 is not in contact with the connection pipe 34.
  • the annular seal 48 is in contact with the annular inclined surface 55 of the support member 35, the outer peripheral surface 34 a of the connection pipe 34, and the flange member 66.
  • the connecting pipe 34 is separated from the outer pipe 60. More specifically, a gap 80 is formed between the free end 34 b of the connection pipe 34 and the end 60 a of the outer pipe 60.
  • the gap 80 has such a size that it does not come into contact with the outer pipe 60 even if the connection pipe 34 expands due to the heat of the working fluid.
  • the working fluid flowing through the connection pipe 34 flows into the outer pipe 60 through the gap 80.
  • the annular seal 48 When the screw 75 is tightened, the gap between the flange member 66 and the external flange 61 is sealed by the seal member 71. At the same time, the annular seal 48 is pressed against the annular inclined surface 55 of the support member 35 by the flange member 66, and the annular seal 48 is guided by the annular inclined surface 55 and strongly pressed against the outer peripheral surface 34 a of the connection pipe 34. As a result, the annular seal 48 seals the space between the end surface 35 b of the support member 35 and the flange member 66 and the clearance between the through hole 35 a of the support member 35 and the outer peripheral surface 34 a of the connection pipe 34. Therefore, the annular seal 48 can prevent the working fluid from leaking.
  • connection pipe 34 is gently inserted into the through hole 35a of the support member 35, and the connection pipe 34 is not in contact with the external pipe 60.
  • the annular seal 48 is in close contact with the outer peripheral surface 34a of the connection pipe 34, but does not constrain the position of the connection pipe 34 in the axial direction. Therefore, even if the connection pipe 34 expands in the axial direction due to the heat of the working fluid, no stress is generated in the connection pipe 34, and as a result, the connection pipe 34 can be prevented from being damaged.
  • the working fluid can flow between the outer peripheral surface 34 a of the connection pipe 34 and the through hole 35 a of the support member 35 and / or the end surface 35 b of the support member 35 and the flange member. It is possible to prevent leakage from the space 66.
  • the present invention can be used for a pipe connection structure applied to a pipe through which a working fluid of a fluid coupling flows.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Flanged Joints, Insulating Joints, And Other Joints (AREA)

Abstract

The present invention pertains to a pipe connection structure applied to pipes through which a working fluid for a fluid coupling flows. The pipe connection structure comprises: a connection pipe (34) through which the working fluid for the fluid coupling flows; a support member (35) having a through hole (35a) into which the connection pipe (34) is inserted; an annular seal (48) that seals a gap between an outer circumferential surface (34a) of the connection pipe (34) and the through hole (35a); and a flange member (66) that presses the annular seal (48) against the support member (35). The diameter of the outer circumferential surface (34a) of the connection pipe (34) is smaller than the diameter of the through hole (35a).

Description

配管接続構造Piping connection structure
 本発明は、一方の配管を他方の配管に接続するための配管接続構造に関し、特に、流体継手の作動流体が流れる配管に適用される配管接続構造に関するものである。 The present invention relates to a pipe connection structure for connecting one pipe to the other pipe, and more particularly to a pipe connection structure applied to a pipe through which a working fluid of a fluid coupling flows.
 流体継手は、入力側羽根車であるインペラと、出力側羽根車であるランナとの間に存在する作動流体を介して入力軸の回転を出力軸に伝達する装置である。作動流体には、例えば、作動油が使用される。流体継手は、インペラとランナとの間に形成される流体室内にある作動流体の量を増減するスクープチューブ(すくい管)を備えている。流体室内の作動流体の量を増減することにより、入力軸に対する出力軸の回転速度を無段階に変えることができる。 The fluid coupling is a device that transmits the rotation of the input shaft to the output shaft via the working fluid that exists between the impeller that is the input-side impeller and the runner that is the output-side impeller. For example, hydraulic oil is used as the working fluid. The fluid coupling includes a scoop tube (rake pipe) that increases or decreases the amount of working fluid in a fluid chamber formed between the impeller and the runner. By increasing or decreasing the amount of working fluid in the fluid chamber, the rotational speed of the output shaft relative to the input shaft can be changed steplessly.
 作動流体は、インペラにより高速で回転されるため、作動流体の圧力および温度は増加する。例えば、作動流体の温度は100度に達することもある。スクープチューブによってすくい取られた高温の作動流体は、流体冷却装置に送られ、流体冷却装置で冷却された後、流体室に戻される。 Since the working fluid is rotated at high speed by the impeller, the pressure and temperature of the working fluid increase. For example, the working fluid temperature can reach 100 degrees. The hot working fluid scooped up by the scoop tube is sent to the fluid cooling device, cooled by the fluid cooling device, and then returned to the fluid chamber.
特開平10-196686号公報JP-A-10-196686
 作動流体は、配管を通って流体室と流体冷却装置との間を循環する。しかしながら、上述したように、作動流体は高温になるため、配管は作動流体の熱によって膨張し、配管および配管同士の接続部に負荷がかかる。そして、これが原因で配管の破損や接続部の損壊が起こり、作動流体が漏洩するおそれがある。 The working fluid circulates between the fluid chamber and the fluid cooling device through the piping. However, as described above, since the working fluid becomes high temperature, the piping expands due to the heat of the working fluid, and a load is applied to the piping and the connection portion between the pipings. And this causes damage to the piping and damage to the connecting portion, which may cause the working fluid to leak.
 本発明は、上述した問題点に鑑みてなされたもので、配管の熱膨張が発生したときでも、配管の破損、および配管同士の接続部の損壊を防止することができる配管接続構造を提供することを目的とする。 The present invention has been made in view of the above-described problems, and provides a pipe connection structure capable of preventing damage to a pipe and damage to a connection portion between pipes even when thermal expansion of the pipe occurs. For the purpose.
 上述した目的を達成するために、本発明の一態様は、流体継手の作動流体が流れる接続管と、前記接続管が挿入される通孔を有する支持部材と、前記接続管の外周面と前記通孔との間の隙間を封止する環状シールと、前記環状シールを前記支持部材に押し付けるフランジ部材とを備え、前記接続管の外周面の直径は、前記通孔の直径よりも小さいことを特徴とする配管接続構造である。 In order to achieve the above-described object, one aspect of the present invention includes a connection pipe through which a working fluid of a fluid coupling flows, a support member having a through hole into which the connection pipe is inserted, an outer peripheral surface of the connection pipe, and the An annular seal that seals a gap between the through hole and a flange member that presses the annular seal against the support member, and the diameter of the outer peripheral surface of the connection pipe is smaller than the diameter of the through hole This is a characteristic pipe connection structure.
 本発明の好ましい態様は、前記通孔は、該通孔の端部に向かって徐々に広がる環状斜面を有しており、前記環状シールは、前記環状斜面と、前記接続管の外周面と、前記フランジ部材に接触していることを特徴とする。
 本発明の好ましい態様は、前記接続管は金属から構成されていることを特徴とする。
 本発明の好ましい態様は、前記フランジ部材に連結される外部フランジを有する外部管をさらに備えたことを特徴とする。
 本発明の好ましい態様は、前記接続管の端部と前記外部管の端部との間には、隙間が形成されていることを特徴とする。
 本発明の好ましい態様は、前記フランジ部材の内径は、前記接続管の外周面の直径よりも大きいことを特徴とする。
In a preferred aspect of the present invention, the through hole has an annular inclined surface that gradually expands toward an end of the through hole, and the annular seal includes the annular inclined surface, the outer peripheral surface of the connection pipe, It is in contact with the flange member.
In a preferred aspect of the present invention, the connecting pipe is made of metal.
In a preferred aspect of the present invention, an external pipe having an external flange connected to the flange member is further provided.
In a preferred aspect of the present invention, a gap is formed between an end portion of the connection pipe and an end portion of the external pipe.
In a preferred aspect of the present invention, an inner diameter of the flange member is larger than a diameter of an outer peripheral surface of the connection pipe.
 本発明によれば、接続管は支持部材の通孔に緩やかに挿入されているので、接続管が熱膨張したときに接続管はその軸方向に動くことが許容される。したがって、接続管には負荷がかからず、接続管の破損を防止することができる。さらに、環状シールは接続管の外周面と通孔との隙間を封止しているため、作動流体の漏洩を防止することができる。 According to the present invention, since the connecting pipe is gently inserted into the through hole of the support member, the connecting pipe is allowed to move in the axial direction when the connecting pipe is thermally expanded. Therefore, no load is applied to the connecting pipe, and the connecting pipe can be prevented from being damaged. Furthermore, since the annular seal seals the gap between the outer peripheral surface of the connecting pipe and the through hole, the working fluid can be prevented from leaking.
流体継手を模式的に示す平面図である。It is a top view which shows a fluid coupling typically. 配管接続構造の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of piping connection structure.
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、流体継手を模式的に示す平面図である。図1に示すように、流体継手は、互いに向き合って配置されたインペラ1およびランナ2と、インペラ1が固定された駆動軸11と、ランナ2が固定された出力軸12とを備える。インペラ1は入力側羽根車、ランナ2は出力側羽根車とも呼ばれる。インペラ1およびランナ2は、それぞれ内側に複数の放射状翼を有する半球形状を有しており、インペラ1とランナ2との間には流体室5が形成される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a plan view schematically showing a fluid coupling. As shown in FIG. 1, the fluid coupling includes an impeller 1 and a runner 2 arranged to face each other, a drive shaft 11 to which the impeller 1 is fixed, and an output shaft 12 to which the runner 2 is fixed. The impeller 1 is also called an input side impeller, and the runner 2 is also called an output side impeller. The impeller 1 and the runner 2 each have a hemispherical shape having a plurality of radial blades inside, and a fluid chamber 5 is formed between the impeller 1 and the runner 2.
 駆動軸11と平行に、入力軸15が配置されている。この入力軸15は、ラジアル軸受16,17によって支持されている。入力軸15には大歯車21が固定され、駆動軸11には、大歯車21に噛み合う小歯車22が固定されている。入力軸15の端部は、図示しない原動機(電動機やガスタービンなど)に接続されている。原動機の回転は、入力軸15から大歯車21および小歯車22を介して駆動軸11に伝達される。 The input shaft 15 is arranged in parallel with the drive shaft 11. The input shaft 15 is supported by radial bearings 16 and 17. A large gear 21 is fixed to the input shaft 15, and a small gear 22 that meshes with the large gear 21 is fixed to the drive shaft 11. The end of the input shaft 15 is connected to a prime mover (not shown) such as an electric motor or a gas turbine. The rotation of the prime mover is transmitted from the input shaft 15 to the drive shaft 11 via the large gear 21 and the small gear 22.
 流体継手は、インペラ1とランナ2との間に形成される流体室5に作動流体を供給する作動流体循環システム25と、流体室5内にある作動流体の量を増減させるためのスクープチューブ(すくい管)30とをさらに備えている。このスクープチューブ30の先端30aは、インペラケーシング7内に位置している。インペラケーシング7は、インペラ1に固定され、ランナ2を囲む形状を有している。インペラケーシング7は、インペラ1とともに回転する。 The fluid coupling includes a working fluid circulation system 25 that supplies a working fluid to a fluid chamber 5 formed between the impeller 1 and the runner 2, and a scoop tube for increasing or decreasing the amount of the working fluid in the fluid chamber 5 ( Rake pipe) 30. The tip 30 a of the scoop tube 30 is located in the impeller casing 7. The impeller casing 7 is fixed to the impeller 1 and has a shape surrounding the runner 2. The impeller casing 7 rotates together with the impeller 1.
 スクープチューブ30には油圧サーボなどのアクチュエータ31が接続されており、このアクチュエータ31によってスクープチューブ30はインペラ1およびランナ2の半径方向に移動可能となっている。インペラ1およびインペラケーシング7が回転しているとき、作動流体(例えば作動油)は、回転するインペラケーシング7に保持される。このインペラケーシング7内の作動流体は、回転するインペラ1によって流動し、この流動した作動流体がランナ2を回転させる。 An actuator 31 such as a hydraulic servo is connected to the scoop tube 30, and the scoop tube 30 can be moved in the radial direction of the impeller 1 and the runner 2 by the actuator 31. When the impeller 1 and the impeller casing 7 are rotating, the working fluid (for example, hydraulic oil) is held in the rotating impeller casing 7. The working fluid in the impeller casing 7 flows by the rotating impeller 1, and the flowing working fluid rotates the runner 2.
 インペラ1が回転しているとき、作動流体には遠心力が発生し、作動流体の圧力が高まる。スクープチューブ30の先端30aは、インペラケーシング7内の作動流体をすくい取り、作動流体はスクープチューブ30内を通ってインペラケーシング7から排出される。作動流体循環システム25は、作動流体を冷却するための流体冷却装置26と、この流体冷却装置26を貫通して延びる作動流体循環ライン27とを備えている。作動流体循環ライン27の入口は、スクープチューブ30に接続されており、作動流体循環ライン27の出口は、インペラ1とランナ2との間の流体室5に連通している。 When the impeller 1 is rotating, centrifugal force is generated in the working fluid, and the pressure of the working fluid increases. The tip 30 a of the scoop tube 30 scoops the working fluid in the impeller casing 7, and the working fluid passes through the scoop tube 30 and is discharged from the impeller casing 7. The working fluid circulation system 25 includes a fluid cooling device 26 for cooling the working fluid, and a working fluid circulation line 27 extending through the fluid cooling device 26. The inlet of the working fluid circulation line 27 is connected to the scoop tube 30, and the outlet of the working fluid circulation line 27 communicates with the fluid chamber 5 between the impeller 1 and the runner 2.
 インペラケーシング7からスクープチューブ30を通って排出された作動流体は、作動流体循環ライン27を流れて流体冷却装置26に送られる。作動流体は、冷却水との熱交換によって冷却された後、さらに作動流体循環ライン27を通って流体室5に戻される。このように、作動流体は、回転するインペラ1によって上昇された自身の圧力によって、流体室5と流体冷却装置26との間を循環する。 The working fluid discharged from the impeller casing 7 through the scoop tube 30 flows through the working fluid circulation line 27 and is sent to the fluid cooling device 26. The working fluid is cooled by heat exchange with the cooling water, and then returned to the fluid chamber 5 through the working fluid circulation line 27. In this way, the working fluid circulates between the fluid chamber 5 and the fluid cooling device 26 by its own pressure raised by the rotating impeller 1.
 インペラ1は駆動軸11に固定されており、ランナ2は出力軸12に固定されている。駆動軸11の回転は、インペラ1から作動流体を介してランナ2に伝えられ、出力軸12が回転する。ランナ2の回転速度は、インペラ1とランナ2との間に形成された流体室5内の作動流体の量によって変化する。具体的には、作動流体の量が多いほど、ランナ2の回転速度は高くなる。 The impeller 1 is fixed to the drive shaft 11 and the runner 2 is fixed to the output shaft 12. The rotation of the drive shaft 11 is transmitted from the impeller 1 to the runner 2 via the working fluid, and the output shaft 12 rotates. The rotational speed of the runner 2 varies depending on the amount of working fluid in the fluid chamber 5 formed between the impeller 1 and the runner 2. Specifically, the rotation speed of the runner 2 increases as the amount of working fluid increases.
 流体室5内の作動流体の量は、スクープチューブ30の位置に依存して変わる。すなわち、スクープチューブ30の先端30aが半径方向外側に移動すると、作動流体の量が減り、スクープチューブ30の先端30aが半径方向内側に移動すると、作動流体の量が増える。このように、アクチュエータ31でスクープチューブ30を操作することによって、流体室5内の作動流体の量、すなわち、出力軸12の回転速度を変えることができる。 The amount of working fluid in the fluid chamber 5 varies depending on the position of the scoop tube 30. That is, when the tip 30a of the scoop tube 30 moves radially outward, the amount of working fluid decreases, and when the tip 30a of the scoop tube 30 moves radially inward, the amount of working fluid increases. Thus, by operating the scoop tube 30 with the actuator 31, the amount of working fluid in the fluid chamber 5, that is, the rotational speed of the output shaft 12 can be changed.
 図2は配管接続構造の一実施形態を示す断面図である。図2に示すように、配管接続構造は、流体継手の作動流体が流れる接続管34と、接続管34が挿入される通孔35aを有する支持部材35とを備えている。支持部材35は、例えば、上述したインペラ1およびランナ2などの構成要素を収容するケーシングである。 FIG. 2 is a cross-sectional view showing an embodiment of the pipe connection structure. As shown in FIG. 2, the pipe connection structure includes a connection pipe 34 through which a working fluid of a fluid coupling flows, and a support member 35 having a through hole 35 a into which the connection pipe 34 is inserted. The support member 35 is a casing that houses components such as the impeller 1 and the runner 2 described above.
 接続管34は、金属から構成されている。接続管34の外周面34aの直径(すなわち、接続管34の外径)は、通孔35aの直径よりも僅かに小さく、接続管34は支持部材35に支持されている。接続管34は、支持部材35の通孔35aに緩やかに挿入されているので、接続管34はその軸方向に動くことが許容される。したがって、接続管34の一方の端部34bは自由端である。 The connecting pipe 34 is made of metal. The diameter of the outer peripheral surface 34 a of the connection pipe 34 (that is, the outer diameter of the connection pipe 34) is slightly smaller than the diameter of the through hole 35 a, and the connection pipe 34 is supported by the support member 35. Since the connecting pipe 34 is gently inserted into the through hole 35a of the support member 35, the connecting pipe 34 is allowed to move in the axial direction. Therefore, one end 34b of the connection pipe 34 is a free end.
 接続管34の他方の端部34cは、ねじなどの締結具44によって固定部材33に固定されている。したがって、接続管34の端部34cは固定端である。固定部材33は、例えば、上述したスクープチューブ30を通って排出された作動流体が流れる配管、または他の配管である。接続管34は、上述した作動流体循環ライン27の一部を構成している。 The other end 34c of the connecting pipe 34 is fixed to the fixing member 33 by a fastener 44 such as a screw. Therefore, the end 34c of the connection pipe 34 is a fixed end. The fixing member 33 is, for example, a pipe through which the working fluid discharged through the scoop tube 30 described above flows, or another pipe. The connection pipe 34 constitutes a part of the working fluid circulation line 27 described above.
 接続管34の外周面34aには、接続管34の外周面34aと支持部材35の通孔35aとの間の隙間を封止する環状シール48が設けられている。支持部材35の通孔35aは、通孔35aの端部に向かって徐々に広がる環状斜面55を有している。環状シール48は、接続管34の外周面34aと環状斜面55との間に配置されている。環状シール48は、例えばOリングである。 An annular seal 48 is provided on the outer peripheral surface 34 a of the connection pipe 34 to seal a gap between the outer peripheral surface 34 a of the connection pipe 34 and the through hole 35 a of the support member 35. The through hole 35a of the support member 35 has an annular inclined surface 55 that gradually widens toward the end of the through hole 35a. The annular seal 48 is disposed between the outer peripheral surface 34 a of the connection pipe 34 and the annular inclined surface 55. The annular seal 48 is, for example, an O-ring.
 接続管34の外周面34aは、接続管34の先端が端部34bに向かって徐々に細くなるテーパー面56を有している。このテーパー面56は、例えば、研削加工によって形成される。接続管34が支持部材35に支持された状態で、環状シール48はテーパー面56に案内されて接続管34の外周面34aに装着される。このように、テーパー面56を設けることにより、環状シール48を傷付けずに環状シール48を接続管34の外周面34aに装着することができる。 The outer peripheral surface 34a of the connecting pipe 34 has a tapered surface 56 in which the tip of the connecting pipe 34 is gradually narrowed toward the end 34b. The tapered surface 56 is formed by grinding, for example. In a state where the connection pipe 34 is supported by the support member 35, the annular seal 48 is guided by the tapered surface 56 and attached to the outer peripheral surface 34 a of the connection pipe 34. As described above, by providing the tapered surface 56, the annular seal 48 can be mounted on the outer peripheral surface 34 a of the connection pipe 34 without damaging the annular seal 48.
 環状シール48は、環状のフランジ部材66によって支持部材35の環状斜面55に押し付けられている。このフランジ部材66は、複数のねじ75によって外部管60の外部フランジ61に連結されている。フランジ部材66と外部フランジ61との間には環状のシール部材71が配置されている。シール部材71は、例えば環状のガスケットである。ねじ75は、外部フランジ61、シール部材71、およびフランジ部材66を貫通して延び、支持部材35に形成された複数のねじ穴35cに螺合している。外部管60の他端は、例えば、上述した流体冷却装置26に接続されている。 The annular seal 48 is pressed against the annular inclined surface 55 of the support member 35 by an annular flange member 66. The flange member 66 is connected to the outer flange 61 of the outer tube 60 by a plurality of screws 75. An annular seal member 71 is disposed between the flange member 66 and the outer flange 61. The seal member 71 is, for example, an annular gasket. The screw 75 extends through the external flange 61, the seal member 71, and the flange member 66, and is screwed into a plurality of screw holes 35 c formed in the support member 35. The other end of the external pipe 60 is connected to the fluid cooling device 26 described above, for example.
 フランジ部材66は、支持部材35の端面35bに接触しており、フランジ部材66と接続管34とは同心状に配置されている。フランジ部材66が接続管34の軸方向への移動を阻害しないように、フランジ部材66の内径は、接続管34の外周面34aの直径よりも大きく、さらに通孔35aの直径よりも大きい。したがって、フランジ部材66は接続管34に非接触である。環状シール48は、支持部材35の環状斜面55と、接続管34の外周面34aと、フランジ部材66に接触している。 The flange member 66 is in contact with the end surface 35b of the support member 35, and the flange member 66 and the connection pipe 34 are disposed concentrically. The inner diameter of the flange member 66 is larger than the diameter of the outer peripheral surface 34a of the connection pipe 34 and further larger than the diameter of the through hole 35a so that the flange member 66 does not hinder the movement of the connection pipe 34 in the axial direction. Therefore, the flange member 66 is not in contact with the connection pipe 34. The annular seal 48 is in contact with the annular inclined surface 55 of the support member 35, the outer peripheral surface 34 a of the connection pipe 34, and the flange member 66.
 接続管34は外部管60から離間している。より具体的には、接続管34の自由端34bと外部管60の端部60aとの間には隙間80が形成されている。隙間80は、接続管34が作動流体の熱によって膨張しても外部管60に接触しない程度の大きさである。接続管34を流れる作動流体は、この隙間80を通って外部管60に流入する。 The connecting pipe 34 is separated from the outer pipe 60. More specifically, a gap 80 is formed between the free end 34 b of the connection pipe 34 and the end 60 a of the outer pipe 60. The gap 80 has such a size that it does not come into contact with the outer pipe 60 even if the connection pipe 34 expands due to the heat of the working fluid. The working fluid flowing through the connection pipe 34 flows into the outer pipe 60 through the gap 80.
 ねじ75を締め付けると、フランジ部材66と外部フランジ61との間の隙間がシール部材71によって封止される。同時に、環状シール48はフランジ部材66によって支持部材35の環状斜面55に押し付けられ、環状シール48は環状斜面55に案内されて接続管34の外周面34aに強く押し付けられる。結果として、環状シール48は、支持部材35の端面35bとフランジ部材66とが接する面、および支持部材35の通孔35aと接続管34の外周面34aとの間の隙間を封止する。したがって、環状シール48は作動流体の漏洩することを防止することができる。 When the screw 75 is tightened, the gap between the flange member 66 and the external flange 61 is sealed by the seal member 71. At the same time, the annular seal 48 is pressed against the annular inclined surface 55 of the support member 35 by the flange member 66, and the annular seal 48 is guided by the annular inclined surface 55 and strongly pressed against the outer peripheral surface 34 a of the connection pipe 34. As a result, the annular seal 48 seals the space between the end surface 35 b of the support member 35 and the flange member 66 and the clearance between the through hole 35 a of the support member 35 and the outer peripheral surface 34 a of the connection pipe 34. Therefore, the annular seal 48 can prevent the working fluid from leaking.
 本実施形態によれば、接続管34は支持部材35の通孔35aに緩やかに挿入されており、接続管34は外部管60に接触していない。環状シール48は接続管34の外周面34aに密接しているが、接続管34の軸方向の位置を拘束していない。したがって、作動流体の熱によって接続管34がその軸方向に膨張しても、接続管34には応力が発生せず、結果として、接続管34の破損を防止することができる。 According to this embodiment, the connection pipe 34 is gently inserted into the through hole 35a of the support member 35, and the connection pipe 34 is not in contact with the external pipe 60. The annular seal 48 is in close contact with the outer peripheral surface 34a of the connection pipe 34, but does not constrain the position of the connection pipe 34 in the axial direction. Therefore, even if the connection pipe 34 expands in the axial direction due to the heat of the working fluid, no stress is generated in the connection pipe 34, and as a result, the connection pipe 34 can be prevented from being damaged.
 さらに、本実施形態によれば、環状シール48を設けることにより、作動流体が接続管34の外周面34aと支持部材35の通孔35aとの間および/または支持部材35の端面35bとフランジ部材66との間から漏洩することを防止することができる。 Furthermore, according to the present embodiment, by providing the annular seal 48, the working fluid can flow between the outer peripheral surface 34 a of the connection pipe 34 and the through hole 35 a of the support member 35 and / or the end surface 35 b of the support member 35 and the flange member. It is possible to prevent leakage from the space 66.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうることである。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。 The above-described embodiments are described for the purpose of enabling the person having ordinary knowledge in the technical field to which the present invention belongs to implement the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Accordingly, the present invention is not limited to the described embodiments, but is to be construed in the widest scope according to the technical idea defined by the claims.
 本発明は、流体継手の作動流体が流れる配管に適用される配管接続構造に利用可能である。 The present invention can be used for a pipe connection structure applied to a pipe through which a working fluid of a fluid coupling flows.
 1   インペラ
 2   ランナ
 5   流体室
 7   インペラケーシング
11   駆動軸
12   出力軸
15   入力軸
16,17   ラジアル軸受
21   大歯車
22   小歯車
25   作動流体循環システム
26   流体冷却装置
27   作動流体循環ライン
30   スクープチューブ
30a  先端
31   アクチュエータ
33   固定部材
34   接続管
34a  外周面
34b  自由端
34c  固定端
35   支持部材
35a  通孔
35b  端面
35c  ねじ穴
44   締結具
48   環状シール
55   環状斜面
56   テーパー面
60   外部管
60a  端部
61   外部フランジ
66   フランジ部材
71   シール部材
75   ねじ
80   隙間
DESCRIPTION OF SYMBOLS 1 Impeller 2 Runner 5 Fluid chamber 7 Impeller casing 11 Drive shaft 12 Output shaft 15 Input shaft 16, 17 Radial bearing 21 Large gear 22 Small gear 25 Working fluid circulation system 26 Fluid cooling device 27 Working fluid circulation line 30 Scoop tube 30a Tip 31 Actuator 33 Fixed member 34 Connecting pipe 34a Outer peripheral surface 34b Free end 34c Fixed end 35 Support member 35a Through hole 35b End surface 35c Screw hole 44 Fastener 48 Annular seal 55 Annular slope 56 Tapered surface 60 External tube 60a End 61 External flange 66 Flange Member 71 Seal member 75 Screw 80 Clearance

Claims (6)

  1.  流体継手の作動流体が流れる接続管と、
     前記接続管が挿入される通孔を有する支持部材と、
     前記接続管の外周面と前記通孔との間の隙間を封止する環状シールと、
     前記環状シールを前記支持部材に押し付けるフランジ部材とを備え、
     前記接続管の外周面の直径は、前記通孔の直径よりも小さいことを特徴とする配管接続構造。
    A connecting pipe through which the working fluid of the fluid coupling flows;
    A support member having a through hole into which the connection pipe is inserted;
    An annular seal that seals the gap between the outer peripheral surface of the connecting pipe and the through hole;
    A flange member that presses the annular seal against the support member;
    A pipe connection structure, wherein a diameter of an outer peripheral surface of the connection pipe is smaller than a diameter of the through hole.
  2.  前記通孔は、該通孔の端部に向かって徐々に広がる環状斜面を有しており、
     前記環状シールは、前記環状斜面と、前記接続管の外周面と、前記フランジ部材に接触していることを特徴とする請求項1に記載の配管接続構造。
    The through hole has an annular slope that gradually spreads toward the end of the through hole;
    The pipe connection structure according to claim 1, wherein the annular seal is in contact with the annular inclined surface, an outer peripheral surface of the connection pipe, and the flange member.
  3.  前記接続管は金属から構成されていることを特徴とする請求項1または2に記載の配管接続構造。 The pipe connection structure according to claim 1 or 2, wherein the connection pipe is made of metal.
  4.  前記フランジ部材に連結される外部フランジを有する外部管をさらに備えたことを特徴とする請求項1乃至3のいずれか一項に記載の配管接続構造。 The pipe connection structure according to any one of claims 1 to 3, further comprising an outer pipe having an outer flange coupled to the flange member.
  5.  前記接続管の端部と前記外部管の端部との間には、隙間が形成されていることを特徴とする請求項4に記載の配管接続構造。 The pipe connection structure according to claim 4, wherein a gap is formed between an end of the connection pipe and an end of the external pipe.
  6.  前記フランジ部材の内径は、前記接続管の外周面の直径よりも大きいことを特徴とする請求項1乃至5のいずれか一項に記載の配管接続構造。 The pipe connection structure according to any one of claims 1 to 5, wherein an inner diameter of the flange member is larger than a diameter of an outer peripheral surface of the connection pipe.
PCT/JP2016/080789 2015-12-01 2016-10-18 Pipe connection structure WO2017094375A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015234583A JP2017101725A (en) 2015-12-01 2015-12-01 Pipeline connection structure
JP2015-234583 2015-12-01

Publications (1)

Publication Number Publication Date
WO2017094375A1 true WO2017094375A1 (en) 2017-06-08

Family

ID=58797017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080789 WO2017094375A1 (en) 2015-12-01 2016-10-18 Pipe connection structure

Country Status (2)

Country Link
JP (1) JP2017101725A (en)
WO (1) WO2017094375A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3348850A (en) * 1967-01-27 1967-10-24 Michael J Scales Pipe joint and seal
JPS53112820U (en) * 1977-02-17 1978-09-08
JPS5563485U (en) * 1978-10-25 1980-04-30
JPS61101180U (en) * 1984-12-10 1986-06-27
EP0259765A1 (en) * 1986-09-11 1988-03-16 Dyckerhoff & Widmann Aktiengesellschaft Prefabricated part made of concrete or concrete steel
JPH02124390U (en) * 1989-03-24 1990-10-12
JP2002048489A (en) * 2000-08-02 2002-02-15 Inax Corp Seal structure of pipe and tube plate
JP2010210056A (en) * 2009-03-12 2010-09-24 Ebara Corp Loose short pipe type pipe connector, and pump mechanism
US20140265157A1 (en) * 2013-03-14 2014-09-18 S. Bravo Systems, Inc. Sump wall penetration fitting for flexible piping

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3348850A (en) * 1967-01-27 1967-10-24 Michael J Scales Pipe joint and seal
JPS53112820U (en) * 1977-02-17 1978-09-08
JPS5563485U (en) * 1978-10-25 1980-04-30
JPS61101180U (en) * 1984-12-10 1986-06-27
EP0259765A1 (en) * 1986-09-11 1988-03-16 Dyckerhoff & Widmann Aktiengesellschaft Prefabricated part made of concrete or concrete steel
JPH02124390U (en) * 1989-03-24 1990-10-12
JP2002048489A (en) * 2000-08-02 2002-02-15 Inax Corp Seal structure of pipe and tube plate
JP2010210056A (en) * 2009-03-12 2010-09-24 Ebara Corp Loose short pipe type pipe connector, and pump mechanism
US20140265157A1 (en) * 2013-03-14 2014-09-18 S. Bravo Systems, Inc. Sump wall penetration fitting for flexible piping

Also Published As

Publication number Publication date
JP2017101725A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6563637B2 (en) Hydrodynamic face seal ring
JP5586525B2 (en) Shutdown seal for mechanical seal
JP5543029B2 (en) Internal cooling system for turbomachine
US20140212269A1 (en) Cooling for a fluid flow machine
RU2534253C1 (en) Sealing device for pump
TWI752121B (en) Hydrostatic mechanical face seal
CN104481620A (en) Organic working medium radial inflow turbine power generation device
US9228588B2 (en) Turbomachine component temperature control
JP2017519156A (en) Radial flow turbomachine
US6695575B1 (en) Turbine method for discharging leakage fluid
WO2017094375A1 (en) Pipe connection structure
JP5756886B2 (en) Steam turbine with thrust balance piston
US9671001B2 (en) Re-enforces iTC pump
RU2550123C2 (en) Expanding turbine
US9964213B2 (en) Pump sealing device
JP6389657B2 (en) Slide bearing device
JPWO2017081810A1 (en) Centrifugal compressor
EP3023643B1 (en) A coupling and a method of using the same
JP2016524082A (en) Rotor for turbine
FR2981397A1 (en) ROTOR SUPPORT THERMAL CONTROL SYSTEM
JP5285788B2 (en) Coupling cover
WO2017094395A1 (en) Fluid coupling
CN209875475U (en) Self-operated heat-insulation high-temperature pump
JP6910427B2 (en) Steam turbine outflow housing
JP6249927B2 (en) Steam turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870315

Country of ref document: EP

Kind code of ref document: A1