WO2017094366A1 - Fin for heat exchanger - Google Patents

Fin for heat exchanger Download PDF

Info

Publication number
WO2017094366A1
WO2017094366A1 PCT/JP2016/080560 JP2016080560W WO2017094366A1 WO 2017094366 A1 WO2017094366 A1 WO 2017094366A1 JP 2016080560 W JP2016080560 W JP 2016080560W WO 2017094366 A1 WO2017094366 A1 WO 2017094366A1
Authority
WO
WIPO (PCT)
Prior art keywords
cut
raised
flow direction
raised portion
fold line
Prior art date
Application number
PCT/JP2016/080560
Other languages
French (fr)
Japanese (ja)
Inventor
圭 久原
Original Assignee
三桜工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三桜工業株式会社 filed Critical 三桜工業株式会社
Publication of WO2017094366A1 publication Critical patent/WO2017094366A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Definitions

  • the present invention relates to a heat exchanger fin having a plurality of gas flow paths.
  • Japanese Patent No. 4683111 describes an EGR (Exhaust Gas Recirculation) gas cooler as a kind of heat exchanger.
  • This EGR gas cooler is mounted on an exhaust gas recirculation system that includes a vehicle engine, an exhaust gas recirculation pipe that circulates exhaust gas from the engine, and an EGR valve provided in the exhaust gas recirculation pipe.
  • the EGR gas cooler is disposed between the exhaust side of the engine and the EGR valve.
  • the EGR gas cooler performs heat exchange between the exhaust gas from the engine and the cooling water to cool the exhaust gas.
  • the EGR gas cooler described in the above-mentioned publication includes a rectangular box-shaped tube constituting an exhaust gas flow path and an inner fin formed in a rectangular wave shape inside the tube.
  • the exhaust gas flow path is formed by the side wall of the inner fin, the upper wall or the bottom wall of the inner fin, and the tube plates positioned above and below the inner fin.
  • a plurality of exhaust gas flow paths are arranged along the juxtaposed direction of the top wall, the side wall, and the bottom wall.
  • the side wall includes one side wall and the other side wall arranged so as to be shifted in the parallel arrangement direction with respect to the one side wall.
  • one side wall and the other side wall are alternately arranged in a rectangular wave shape.
  • a cut-and-raised portion formed by cutting and raising the bottom wall in a triangular shape is arranged. This cut-and-raised portion is provided to generate a vertical vortex inside the inner fin.
  • Japanese Patent No. 3729136 describes an EGR gas cooler.
  • the EGR gas cooler is provided with a tube and an inner fin having the same functions as described above.
  • the inner fin is also formed in a rectangular wave shape by the upper wall, the side wall, and the bottom wall.
  • a hole portion that communicates the inside and the outside is formed in the side wall, and a cut-and-raised portion that is cut and raised in a triangular shape is formed in the bottom wall of the inner fin.
  • the holes and the cut-and-raised portions are alternately arranged along the flow direction of the exhaust gas. Further, the fold line of the cut and raised portion is inclined with respect to the flow direction.
  • One cut and raised portion and the other cut and raised portion adjacent to the one cut and raised portion in the flow direction are inclined to the opposite sides.
  • cut-and-raised portions are arranged on the downstream side in the flow direction of one side wall and the upstream side in the flow direction on the other side wall. Therefore, even if a vertical vortex is generated at the cut-and-raised portion, the vertical vortex is disturbed and disappeared by the side wall on the downstream side of the cut-and-raised portion. Therefore, there is a problem that the pressure loss inside the flow path is large and the generated vortex disappears immediately, so that the vortex cannot be maintained along the flow direction.
  • one cut and raised portion and another cut and raised portion adjacent to the one raised portion in the flow direction are inclined to the opposite sides. Therefore, even if a vertical vortex is generated at one cut-and-raised portion, the vertical vortex is canceled by another cut-and-raised portion located downstream of the one cut-and-raised portion. Therefore, as described above, there is a problem that the pressure loss inside the flow path is large and the generated vortex disappears immediately, and there is a problem that the vortex cannot be maintained along the flow direction.
  • the vortex cannot be maintained along the flow direction, so that the flow velocity in the vicinity of the wall portion of the gas channel cannot be increased. Therefore, there arises a problem that soot is easily deposited on the wall portion of the gas flow path, and there is room for improvement in terms of the heat transfer coefficient for the gas.
  • an object of one aspect of the present invention is to provide a fin for a heat exchanger that can maintain a vortex along a flow direction.
  • a fin for a heat exchanger includes a gas flow path having a rectangular wave shape formed by a continuous upper wall, a side wall, and a bottom wall, and a wall portion including the upper wall, the side wall, and the bottom wall. And a heat exchanger fin including a cut and raised portion cut and raised inside the gas flow path.
  • the cut-and-raised part is a bend line inclined with respect to the gas flow direction at the wall part, and extends from the upstream end part in the flow direction of the bend line to the downstream side in the flow direction and at the downstream end part in the flow direction of the bend line.
  • a score line extending to The cut-and-raised part is formed by folding a region surrounded by the fold line and the cut line to the inside of the gas flow path along the fold line.
  • the cut and raised portions are arranged at a plurality of positions along the flow direction. Each fold line of the plurality of cut and raised portions is inclined to the same side with respect to the flow direction when viewed from the inside of the gas flow path.
  • the cut-and-raised portion includes a fold line inclined with respect to the gas flow direction, and a flow direction from the upstream end portion to the downstream end portion of the fold line. And a cut line extending downstream of the.
  • the cut-and-raised part is formed by folding the region surrounded by the fold line and the cut line inward along the fold line. Therefore, in the cut-and-raised part, the bent region is directed to the upstream side in the flow direction, and the gas flowing into the cut-and-raised part from the upstream side flows obliquely in the inclination direction of the folding line.
  • the gas flow direction is converted into the inclination direction of the fold line, a spiral flow can be generated in the gas flow path by turning the gas in the gas flow path.
  • the cut and raised portions are arranged at a plurality of positions along the flow direction, and the fold lines of the plurality of cut and raised portions are inclined to the same side. Therefore, the generated spiral flow can be maintained along the flow direction. That is, the plurality of cut-and-raised portions function as guides for the generated spiral flow, and can flow gas while maintaining the spiral flow in the flow direction. Therefore, the vortex can be maintained along the flow direction, and the flow velocity in the vicinity of the wall portion of the gas channel can be increased. Therefore, it is possible to suppress soot accumulation in the vicinity of the wall portion of the gas flow path, and to improve the heat transfer coefficient for the gas.
  • the inclination angle of the fold line with respect to the flow direction may be 30 ° or more and 60 ° or less. In this case, since the spiral flow can be generated more efficiently at the cut and raised portion, the vortex can be more reliably maintained along the flow direction.
  • the distance between the downstream end in the flow direction of the fold line and the wall closest to the downstream end is the distance between the upstream end in the flow direction of the fold line and the side wall closest to the upstream end. It may be less than the distance. In this way, by reducing the distance between the downstream end portion and the wall portion of the folding line of the cut and raised portion with respect to the distance between the upstream end portion and the wall portion, the flow path on the downstream side of the cut and raised portion. Can be made narrower. Therefore, since the pressure of the gas flowing on the downstream side of the cut and raised portion can be increased, a stronger spiral flow can be efficiently generated. Therefore, since the helical flow in the gas flow path can be strengthened, soot accumulation can be more reliably suppressed and the heat transfer rate can be further increased.
  • the cut-and-raised part includes a first cut-and-raised part cut and raised from the side wall, and a second cut and raised part cut and raised from the upper wall or the bottom wall.
  • the cut and raised portions are arranged at a plurality of positions along the flow direction, and the distance between the first cut and raised portion and another first cut and raised portion adjacent to the flow direction is L, the first cut and raised portion.
  • the distance between the second cut-and-raised part adjacent in the flow direction may be 0.1L ⁇ e ⁇ 0.4L.
  • the cut-and-raised part includes a first cut-and-raised part cut and raised from the side wall, and a second cut and raised part cut and raised from the upper wall or the bottom wall.
  • the cut and raised portions are arranged at a plurality of positions along the flow direction, and the distance between the first cut and raised portion and another first cut and raised portion adjacent to the flow direction is L, the first cut and raised portion.
  • 0.6L ⁇ e ⁇ 0.9L may be satisfied, where e is the distance from the second cut and raised portion adjacent in the flow direction.
  • the first cut-and-raised part and the second cut-and-raised part can be arranged at positions where they can easily serve as spiral flow guides, the same effects as described above can be obtained.
  • the vortex can be maintained along the flow direction.
  • FIG. 1 It is a schematic diagram which shows an example of the exhaust-gas recirculation system provided with the fin of the EGR cooler which concerns on 1st Embodiment. It is a disassembled perspective view which shows the EGR cooler of FIG. It is a disassembled perspective view which shows the heat exchanger tube and fin in the EGR cooler of FIG. It is a perspective view which shows the fin of the EGR cooler of FIG. (A) is a top view which shows the fin of FIG. (B) is a side view of one gas flow path in the fin of FIG. (A) is a top view which shows the cut and raised part of the fin of FIG. (B) is sectional drawing which shows the state which cut and raised the part by the surface orthogonal to a bottom wall.
  • FIG. 4 It is a figure which shows the cross section when the fin of FIG. 4 is cut
  • FIG. 4 It is a perspective view which shows the fin of the EGR cooler of 2nd Embodiment.
  • (A) is a top view which shows the fin of FIG. (B) is a side view of one gas flow path in the fin of FIG.
  • (A) is a top view which shows the fin of FIG. (B) is a side view of one gas flow path in the fin of FIG.
  • FIG. 1 is a schematic diagram illustrating an exhaust gas recirculation system 1 including fins of an EGR cooler 10 that is a heat exchanger according to the present embodiment.
  • the exhaust gas recirculation system 1 includes an automobile engine 2, an EGR valve 3, an exhaust circulation path 4, and an EGR cooler 10.
  • the exhaust gas recirculation system 1 takes out a part of the exhaust gas G after being burned in the engine 2, and causes the engine 2 to inhale the part of the taken out exhaust gas G again.
  • the exhaust gas recirculation system 1 is intended to reduce nitrogen oxides in the exhaust gas G, for example.
  • the engine 2, the EGR valve 3, and the EGR cooler 10 are connected to each other via the exhaust circuit 4. Exhaust gas G is released from the engine 2, and a part of the exhaust gas G circulates in the exhaust circulation path 4. The exhaust gas G flowing through the exhaust circulation path 4 enters the EGR cooler 10.
  • a method is adopted in which the temperature of the exhaust gas G is lowered and then mixed with the fresh air F, and the EGR cooler 10 is provided to lower the temperature of the exhaust gas G.
  • the EGR valve 3 is provided to adjust the amount of exhaust gas G returned to the engine 2.
  • the EGR cooler 10 includes a gas introduction part 10a for introducing the exhaust gas G, a gas discharge part 10b for discharging the cooled exhaust gas G, a cooling water introduction part 10c for introducing the cooling water W into the EGR cooler 10, and a cooling A cooling water discharge portion 10d for discharging the water W from the EGR cooler 10.
  • the exhaust gas G introduced into the EGR cooler 10 from the gas introduction part 10 a is cooled in the EGR cooler 10.
  • the cooling water W introduced from the cooling water introduction part 10 c cools the exhaust gas G by exchanging heat with the exhaust gas G in the EGR cooler 10. Thereafter, the cooling water W is discharged out of the EGR cooler 10 from the cooling water discharge portion 10d.
  • the EGR cooler 10 includes a plurality of heat transfer tubes 20 through which the exhaust gas G is circulated.
  • the heat transfer tubes 20 have a rectangular flat box shape extending in the flow direction D of the exhaust gas G, and are stacked along the stacking direction S.
  • the heat transfer tube 20 extends in the flow direction D and the width direction H. Further, the stacking direction S, the flow direction D, and the width direction H are, for example, orthogonal to each other. In the example shown in FIG. 2, five heat transfer tubes 20 are stacked.
  • the EGR cooler 10 includes a first diffuser 11 that constitutes a gas introduction part 10a, a second diffuser 12 that constitutes a gas discharge part 10b, and one side in the stacking direction S of the heat transfer pipes 20 A first outer case 13 disposed on the second side, a second outer case 14 positioned on the other side in the stacking direction S of the heat transfer tubes 20, and a first fixing for fixing the first diffuser 11 to the exhaust circuit 4 on the engine 2 side.
  • a tool 15 a second fixing part 16 for fixing the second diffuser 12 to the exhaust gas circulation path 4 on the EGR valve 3 side, a cooling water introduction pipe 17 for introducing the cooling water W into the EGR cooler 10, and the cooling water W And a cooling water outlet pipe 18 for discharging from the EGR cooler 10.
  • the material of the first diffuser 11, the second diffuser 12, the first outer case 13, and the second outer case 14, for example, stainless steel is used as the material of the first diffuser 11, the second diffuser 12, the first outer case 13, and the second outer case 14, for example.
  • the corrosion resistance and heat resistance of the 1st diffuser 11, the 2nd diffuser 12, the 1st outer case 13, and the 2nd outer case 14 are ensured.
  • the 1st diffuser 11, the 2nd diffuser 12, the 1st outer case 13, and the 2nd outer case 14 are joined by nickel brazing or welding, for example.
  • the first diffuser 11 is provided on the upstream side (engine 2 side) in the flow direction D of the stacked heat transfer tubes 20, and distributes the exhaust gas G flowing from the engine 2 through the exhaust circulation path 4 to each heat transfer tube 20. To do.
  • the first diffuser 11 includes a rectangular frame portion 11a that houses one end of the stacked heat transfer tubes 20 in the flow direction D therein, and an annular protrusion 11b that is positioned upstream of the flow direction D of the frame portion 11a. It is equipped with.
  • the frame portion 11a is joined to the first outer case 13 and the second outer case 14 in a state in which one end in the flow direction D of the plurality of stacked heat transfer tubes 20 is accommodated.
  • the annular protrusion 11b is provided to fit the first fixing tool 15 that fixes the EGR cooler 10 to the exhaust circuit 4.
  • the first fixture 15 has a rhombus shape.
  • the first fixture 15 is provided at the center thereof with a circular hole 15a into which the annular protrusion 11b is fitted, a pair of insertion holes 15b provided on both sides of the hole 15a and through which a bolt is inserted, It has.
  • each of the two bolts is inserted into the insertion hole 15b.
  • the EGR cooler 10 is connected to the exhaust circulation path 4 on the engine 2 side by joining the first fixing member 15 to the flange portion of the exhaust circulation path 4 and bolts and nuts by the two bolts.
  • the second diffuser 12 includes a frame portion 12a similar to the frame portion 11a of the first diffuser 11, and an annular protrusion 12b protruding in the direction orthogonal to the flow direction D from the back of the frame portion 12a.
  • the frame portion 12a is joined to the first outer case 13 and the second outer case 14 in a state in which the other end in the flow direction D in the plurality of stacked heat transfer tubes 20 is accommodated.
  • the annular protrusion 12b of the second diffuser 12 is provided to fit the second fixing portion 16 that fixes the EGR cooler 10 to the exhaust circuit 4.
  • the second fixing part 16 has the same shape and function as the first fixing tool 15.
  • fixed part 16 is provided with the hole 16a located in the center of the 2nd fixing
  • each of the two bolts is inserted into the insertion hole 16b in a state where the annular protrusion 12b is fitted in the hole 16a.
  • the EGR cooler 10 is connected to the exhaust circulation path 4 on the EGR valve 3 side by joining the second fixing part 16 to the flange part of the exhaust circulation path 4 and a bolt and nut by the two bolts.
  • the first outer case 13 has a rectangular flat surface 13a extending in the flow direction D and the width direction H.
  • the first outer case 13 covers the heat transfer tube 20 from one side in the stacking direction S and is joined to the first diffuser 11 and the second diffuser 12 in a state of covering the heat transfer tube 20.
  • the first outer case 13 includes a plate-like protrusion 13b that protrudes in the stacking direction S at both ends in the width direction H of the flat surface 13a, and a plurality of protrusions that are located on the flat surface 13a and to which the protrusion 20a of the heat transfer tube 20 is joined. Part 13c and a pair of protrusions 13d for rectifying the cooling water W, which are located downstream in the flow direction D of the plurality of protrusions 13c.
  • the protrusion 20b of the heat transfer tube 20 is also provided to rectify the cooling water W.
  • the first outer case 13 holds the first diffuser 11 and the second diffuser 12 with protrusions 13 b at both ends in the width direction H.
  • the second outer case 14 covers the heat transfer tube 20 from the other side in the stacking direction S (the lower side in FIG. 2) and is joined to the first diffuser 11 and the second diffuser 12 in a state of covering the heat transfer tube 20.
  • the second outer case 14 includes a rectangular flat surface 14a extending in the flow direction D and the width direction H, and a plate-shaped protrusion 14b protruding in the stacking direction S from both ends of the flat surface 14a in the width direction H. .
  • the length (height) of the projecting portion 14b in the stacking direction S is longer than the length of the projecting portion 13b of the first outer case 13, and the projecting portion 14b is provided on one of the two projecting portions 14b.
  • a pair of penetrating through holes 14c are formed.
  • One through hole 14 c is provided at each of two positions along the flow direction D.
  • a cooling water introduction pipe 17 is fitted in the through hole 14 c on the upstream side in the flow direction D, and a cooling water outlet pipe 18 is fitted in the through hole 14 c on the downstream side in the flow direction D.
  • the cooling water introduction pipe 10 and the through hole 14c constitute a cooling water introduction part 10c, and the cooling water outlet pipe 18 and the through hole 14c constitute a cooling water discharge part 10d.
  • the second outer case 14 covers the heat transfer pipe 20 with the cooling water introduction pipe 17 and the cooling water outlet pipe 18 fitted in the through holes 14c, and the first diffuser 11, the second diffuser 12, and the first outer case. 13 and the second outer case 14 are joined. Thereby, the flow path of the cooling water W is formed inside the EGR cooler 10. At this time, the cooling water W is introduced from the cooling water introduction pipe 17 into the second outer case 14 and circulates in the second outer case 14 in the same direction as the flow direction D. 2 The battery is discharged out of the outer case 14.
  • FIG. 3 is an exploded perspective view showing one heat transfer tube 20 in an exploded manner.
  • the heat transfer tube 20 includes a rectangular upper plate 21 and a lower plate 22 joined to the upper plate 21 in the stacking direction S.
  • a fin 30 having a gas flow path R (see FIG. 4) for the exhaust gas G is disposed between the upper plate 21 and the lower plate 22.
  • the fin 30 is a heat exchanger fin according to the present embodiment.
  • plate-like protrusions 21 a that protrude in the stacking direction S are provided, and at both ends in the width direction H of the lower plate 22, plate-like protrusions 22 a are provided. It has been.
  • the upper plate 21 and the lower plate 22 are joined by joining the projecting portions 21a and 22a together.
  • one end and the other end of the heat transfer tube 20 in the flow direction D are open.
  • the exhaust gas G flows into and out of the fin 30 from the opened portion.
  • FIG. 4 is a perspective view in which a part of the fin 30 is cut out.
  • the fin 30 has a rectangular wave shape in which unevenness is continuous in a direction (width direction H) orthogonal to the flow direction D and the stacking direction S.
  • the fin 30 is manufactured, for example, by bending a single stainless steel plate.
  • one side in the stacking direction S (upper side of the sheet of FIG. 4) is up, and the other side of the stacking direction S (lower side of the page of FIG. 4) is down.
  • these directions are merely for convenience of explanation and do not limit the scope of the present invention.
  • the fin 30 includes an upper wall 31 extending in the flow direction D, a side wall 32 bent at a right angle from the upper wall 31, and a bottom wall 33 bent at a right angle from the side wall 32 and extending parallel to the upper wall 31.
  • the fin 30 has a plurality of gas flow paths R that are formed in a rectangular wave shape by the cross-sectional shape of the upper wall 31, the side wall 32, and the bottom wall 33 being continuous.
  • the upper plate 21 is in contact with the upper surface of the upper wall 31 and the lower plate 22 is in contact with the lower surface of the bottom wall 33.
  • Two types of gas flow paths R exist inside the fin 30.
  • the gas flow path R includes a gas flow path R1 formed by the pair of side walls 32, the bottom wall 33, and the upper plate 21, and a gas flow path R2 formed by the pair of side walls 32, the upper wall 31, and the lower plate 22.
  • the gas flow paths R1 are provided by the number of the bottom walls 33 arranged in the width direction H
  • the gas flow paths R2 are provided by the number of the upper walls 31 arranged in the width direction H.
  • the gas flow path R1 and the gas flow path R2 each extend linearly in the flow direction D.
  • the width direction H coincides with the juxtaposed direction of the gas flow path R1 and the gas flow path R2, that is, the juxtaposed direction of the top wall 31, the side wall 32, and the bottom wall 33.
  • FIG. 5 (a) is a plan view of the gas flow path R
  • FIG. 5 (b) is a side view of one gas flow path R.
  • the fin 30 has a plurality of cut-and-raised portions 40 cut and raised from the wall portion 35 including the upper wall 31, the side wall 32, and the bottom wall 33 to the inside of the gas flow path R.
  • the cut and raised portion 40 includes a first cut and raised portion 41 cut and raised from the side wall 32, and a second cut and raised portion 42 cut and raised from the upper wall 31 or the bottom wall 33.
  • the first cut-and-raised part 41 and the second cut-and-raised part 42 have a rectangular shape, for example, and are arranged at equal intervals in the flow direction D.
  • the first cut-and-raised part 41 faces and intersects with the first cut-and-raised part 41 cut and raised from the other side wall 32 adjacent in the width direction H.
  • the first cut and raised portion 41 and the second cut and raised portion 42 are inclined to the same side with respect to the flow direction D when viewed from the inside of the gas flow path R.
  • the second cut and raised portion 42 is inclined counterclockwise with respect to the flow direction D when viewed from the inside of the gas flow path R1.
  • the first cut and raised portion 41 is also inclined counterclockwise with respect to the flow direction D.
  • the second cut and raised portion 42 is inclined clockwise with respect to the flow direction D when viewed from the inside of the gas flow path R2.
  • the first cut and raised portion 41 is also inclined clockwise with respect to the flow direction D.
  • first cut-and-raised parts 41 There are two types of first cut-and-raised parts 41, one cut and raised on the gas flow path R2 side and one cut and raised on the gas flow path R1 side. Further, the first cut and raised portions 41 cut and raised on the gas flow path R2 side and the first cut and raised portions 41 cut and raised on the gas flow path R1 side are alternately arranged along the flow direction D. Yes.
  • the second cut-and-raised part 42 cut and raised from the upper wall 31 is cut and raised in a direction (downward) away from the upper plate 21 located above it.
  • the second cut-and-raised portion 42 cut and raised from the bottom wall 33 is cut and raised in a direction (upward) away from the lower plate 22 located below the second cut-and-raised portion 42.
  • the second cut and raised portions 42 cut and raised from the upper wall 31 and the second cut and raised portions 42 cut and raised from the bottom wall 33 are alternately arranged along the flow direction D.
  • the number of the first cut-and-raised portions 41 and the second cut-and-raised portions 42 arranged in one gas flow path R is the same in the plurality of gas flow paths R.
  • the gas channel R1 and the other gas channel R1 adjacent in the width direction H have the same arrangement mode of the first cut-and-raised portion 41 and the second cut-and-raised portion 42.
  • the first cut-and-raised portion 41 and the second cut-and-raised portion 42 are arranged so as to be aligned in the width direction H. That is, the positions of the first cut-and-raised part 41 and the second cut-and-raised part 42 in the flow direction D coincide with each other among the plurality of gas flow paths R1. The same applies to the gas flow path R2.
  • the distance between the first cut and raised portion 41 cut and raised from the side wall 32 and the first cut and raised portion 41 adjacent to the flow direction D is L
  • the distance between the first cut and raised portion 41 and the second cut and raised portion 42 (second cut and raised portion 42 cut and raised from the bottom wall 33) adjacent to the flow direction D is e
  • it is more preferable to satisfy 0.2L ⁇ e ⁇ 0.3L, and it is more preferable that e 0.25L.
  • FIG. 6A is a plan view of the second cut and raised portion 42 cut and raised from the bottom wall 33.
  • FIG. 6B is a cross-sectional view of the second cut and raised portion 42 cut in the direction perpendicular to the bottom wall 33.
  • the second cut and raised portion 42 cut and raised from the bottom wall 33 will be described as an example.
  • the structure of the 2nd cut and raised part 42 cut and raised from the upper wall 31, and the 1st cut and raised part 41 cut and raised from the side wall 32 it is 2nd of FIG. 6 (a) and FIG.6 (b). Since it is the same as the structure of the cut-and-raised part 42, detailed description is abbreviate
  • the second cut-and-raised part 42 includes a fold line 43 that is inclined with respect to the flow direction D, and an upstream end 43a in the flow direction D of the fold line 43 in the flow direction D. And a cut line 44 extending to the downstream side and extending to the downstream end 43b.
  • the fold line 43 extends linearly in a direction inclined with respect to the flow direction D.
  • the cut line 44 includes a first straight line portion 44a extending from the upstream end 43a of the fold line 43 at a right angle to the fold line 43, and a fold line 43 extending from the downstream end in the flow direction D of the first straight line 44a.
  • a second straight portion 44b extending in parallel and the same length as the fold line 43, and a third straight portion 44c extending from the downstream end in the flow direction D of the second straight portion 44b toward the downstream end 43b.
  • the cut line 44 has a rectangular shape including the first straight portion 44a, the second straight portion 44b, and the third straight portion 44c. Therefore, the second cut-and-raised part 42 is formed by bending a rectangular region 42 a surrounded by the fold line 43 and the cut line 44 inside the gas flow path R ⁇ b> 1 along the fold line 43.
  • ⁇ that is the inclination angle has the same value in the plurality of first cut-and-raised portions 41 and the second cut-and-raised portions 42.
  • FIG. 6A shows an example in which the fold line 43 of the second cut-and-raised part 42 is inclined counterclockwise (left side) with respect to the flow direction D, but the fold line 43 is in the flow direction. It may be inclined clockwise (right side) with respect to D. In this case, the fold line 43 of the other second cut and raised portion 42 and the fold line 43 of the first cut and raised portion 41 are also tilted clockwise.
  • the distance between the downstream end 43b in the flow direction D of the fold line 43 and the side wall 32 facing the downstream end 43b is a, the upstream end 43a in the flow direction D of the fold line 43, and the upstream end.
  • a ⁇ b is satisfied.
  • the relationship between a, b and B is, for example, 0.05B ⁇ a ⁇ 0.25B and 0.25B.
  • ⁇ b ⁇ 0.50B, 0.05B ⁇ a ⁇ 0.20B, and 0.25B ⁇ b ⁇ 0.45B are preferably satisfied, 0.05B ⁇ a ⁇ 0.15B, and 0. More preferably, 25B ⁇ b ⁇ 0.40B is satisfied.
  • the distance between the downstream end 43b of the fold line 43 and the side wall 32 is preferably equal to or less than the distance between the upstream end 43a of the fold line 43 and the side wall 32 (a ⁇ b).
  • the bending angle of the second raised portion 42 with respect to the bottom wall 33 is ⁇ (°)
  • the second cut-and-raised part 42 has a fold line 43 inclined with respect to the flow direction D of the exhaust gas G, and a flow direction D from the upstream end 43 a to the downstream end 43 b of the fold line 43. , And a cut line 44 extending downstream.
  • the second cut-and-raised part 42 is formed by bending an area 42 a surrounded by the fold line 43 and the cut line 44 inward along the fold line 43. The same applies to the first cut and raised portion 41.
  • the bent region 42 a faces the upstream side in the flow direction D.
  • the exhaust gas G that has flowed into the second cut-and-raised part 42 from the upstream side flows in the direction away from the bottom wall 33 (upward) and in the direction of inclination of the fold line 43.
  • the exhaust gas G flows in the direction away from the upper wall 31 (downward) and in the direction of inclination of the fold line 43.
  • the exhaust gas G flows in the direction away from the side wall 32 and in the inclination direction of the fold line 43.
  • the first cut-and-raised part 41 and the second cut-and-raised part 42 are arranged at a plurality of positions along the flow direction D, and the plurality of first cut-and-raised parts 41 and the second cut and raised parts 42 are bent.
  • Line 43 is inclined to the same side. Therefore, the generated spiral flow can be maintained along the flow direction D.
  • the plurality of first cut-and-raised portions 41 and second cut-and-raised portions 42 function as guides for the generated spiral flow, and can flow the exhaust gas G while maintaining the spiral flow in the flow direction D. Therefore, the vortex of the exhaust gas G can be maintained along the flow direction D, and the flow velocity in the vicinity of the wall portion 35 of the gas flow path R can be increased. Therefore, it is possible to suppress soot accumulation in the vicinity of the wall portion 35 of the gas flow path R, and to improve the heat transfer coefficient with respect to the exhaust gas G.
  • the inclination angle of the fold line 43 with respect to the flow direction D is preferably 30 ° or more and 60 ° or less.
  • the spiral flow can be more efficiently generated by the first cut and raised portion 41 and the second cut and raised portion 42. Therefore, the vortex can be more reliably maintained along the flow direction D.
  • the first cut-and-raised portion 41 and the second cut-and-raised portion are obtained by shortening the distance between the downstream end portion 43b and the wall portion 35 with respect to the distance between the upstream end portion 43a and the wall portion 35.
  • the flow path on the downstream side of 42 can be made narrower.
  • the first cut and raised portion 41 and the second cut and raised portion 42 are arranged at a plurality of positions along the flow direction D.
  • the distance between the first cut and raised portion 41 and the other first cut and raised portion 41 adjacent to the flow direction D is L, and the first cut and raised portion 41 and the second cut and raised portion 42 adjacent to the flow direction D are When the distance is e, 0.1L ⁇ e ⁇ 0.4L is satisfied. Therefore, the first cut-and-raised part 41 and the second cut-and-raised part 42 can be arranged at positions that easily function as guides for the spiral flow, so that the spiral flow can be further strengthened. Therefore, since the flow rate can be further increased, soot accumulation can be more reliably suppressed and the heat transfer rate can be further increased.
  • the fin 50 of the second embodiment is different from the first embodiment in the arrangement of the first cut-and-raised part 51 and the arrangement of the second cut-and-raised part 52 formed therein.
  • the configurations of the first cut and raised portion 51 and the second cut and raised portion 52 themselves are the same as the configurations of the first cut and raised portion 41 and the second cut and raised portion 42 of the first embodiment.
  • the description which overlaps with 1st Embodiment is abbreviate
  • the first cut-and-raised portion 51 and the second cut-and-raised portion 52 are arranged at equal intervals in the flow direction D, for example.
  • the first cut and raised portions 51 cut and raised from the side wall 32 to the gas flow path R1 and the first cut and raised portions 51 cut and raised from the side wall 32 to the gas flow path R2 are alternately arranged along the flow direction D. Arranged at intervals.
  • the direction in which the exhaust gas G flows is converted by the fin 50 into the inclination direction of the fold line 43 as in the first embodiment, so that the spiral is formed in the gas flow paths R1 and R2.
  • a flow can be generated.
  • the first cut-and-raised portion 51 and the second cut-and-raised portion 52 are arranged at a plurality of positions along the flow direction D, and the plurality of first cut-and-raised portions 51 and the second cut and raised portion 52 are the same. Inclined to the side.
  • the generated spiral flow can be maintained along the flow direction D.
  • the distance between the first cut-and-raised portion 51 and the other first cut-and-raised portion 51 adjacent to the flow direction D is L, and the first cut-and-raised portion 51 is adjacent to the flow direction D.
  • the distance from the second cut and raised portion 52 is e, 0.6L ⁇ e ⁇ 0.9L is satisfied. Therefore, the first cut-and-raised part 51 and the second cut-and-raised part 52 can be arranged at positions where they can easily function as a spiral flow guide, so that the same effect as in the first embodiment can be obtained.
  • the fin 60 according to the third embodiment is different from the first embodiment and the second embodiment in the arrangement of the first cut-and-raised portion 61 and the arrangement of the second cut-and-raised portion 62 therein.
  • the number of second raised portions 62 arranged in each of the gas flow path R1 and the gas flow path R2 is the same as that of the first embodiment. More than in the second embodiment.
  • the number of the second cut and raised portions 62 is twice the number of the second cut and raised portions 42 and the second cut and raised portions 52. Accordingly, the interval between the second cut and raised portions 62 arranged along the flow direction D is 1 ⁇ 2 of the interval between the second cut and raised portions 42 and the second cut and raised portions 52.
  • the first cut and raised portions 61 cut and raised from the side wall 32 to the gas flow path R1 side and the first cut and raised portions 61 cut and raised from the side wall 32 to the gas flow path R2 side are alternately arranged along the flow direction D. Is arranged.
  • the first cut-and-raised portion 61 is disposed between one second cut-and-raised portion 62 and another second cut-and-raised portion 62 adjacent to the second cut and raised portion 62 in the flow direction D. .
  • a first cut and raised portion 61 cut and raised from the side wall 32 to the gas flow path R1 side, and a first cut and raised from the side wall 32 to the gas flow path R2 side.
  • the raising portions 61 are inclined to the opposite sides with respect to the flow direction D.
  • the first cut-and-raised portion 61 and the second cut-and-raised portion 62 cut and raised inside the gas flow paths R1 and R2 are on the same side with respect to the flow direction D when viewed from the inside of the gas flow path R. Inclined.
  • the fin 60 according to the third embodiment since the direction in which the exhaust gas G flows is converted into the inclined direction as described above, a spiral flow can be generated in the gas flow paths R1 and R2.
  • the plurality of first cut-and-raised parts 61 and second cut-and-raised parts 62 cut and raised inside the gas flow paths R1 and R2 are in the flow direction D when viewed from the inside of the gas flow paths R1 and R2. Are inclined to the same side.
  • the distance between the first cut and raised portion 61A and the other first cut and raised portion 61B adjacent to the flow direction D is L, and the first cut and raised portion 61A is adjacent to the flow direction D.
  • the distance from the second cut and raised portion 62A is e2, 0.1L ⁇ e2 ⁇ 0.4L is satisfied.
  • the first cut-and-raised portion 61 and the second cut-and-raised portion 62 are arranged at positions that easily function as a guide for the spiral flow, and the first cut-and-raised portion 61 and the first cut-and-raised portion 61 and the second Since the number of the two cut-and-raised portions 62 is large, the spiral flow can be further strengthened. Therefore, the flow rate can be further increased to increase the heat transfer rate, and soot accumulation can be further reliably suppressed.
  • the example in which the first cut-and-raised portion 41 and the second cut-and-raised portion 42 are arranged at equal intervals in the flow direction D has been described.
  • the cut-and-raised portions are not arranged at equal intervals. Also good. For example, as it goes to the downstream side in the flow direction D, the arrangement interval of the cut and raised portions may be gradually narrowed or widened.
  • the example in which the first cut-and-raised portion 41 and the second cut-and-raised portion 42 have a rectangular shape has been described.
  • the curved shape such as an ellipse can be appropriately changed. That is, the cut line 44 shown in FIG. 6A only needs to extend from the upstream end 43a to the downstream side in the flow direction D and to the downstream end 43b, and the shape of the cut line 44 is appropriately set. It can be changed.
  • the value of ⁇ which is the inclination angle of the first cut-and-raised portion 41 and the second cut-and-raised portion 42 with respect to the flow direction D, is the plurality of first cut-and-raised portions 41 and the second cut and raised portions 42.
  • the value of ⁇ may not be the same value in the plurality of first cut and raised portions.
  • the value of ⁇ can be gradually increased or decreased toward the downstream side in the flow direction D.
  • the value of ⁇ which is the bending angle of the cut and raised portion.
  • the values of ⁇ and ⁇ , and further the values of a, b, and B described above can be changed as appropriate depending on the product specifications and required ability.
  • the fin 30 having the gas flow path R of the exhaust gas G is disposed between the upper plate 21 and the lower plate 22 in the heat transfer tube 20.
  • the type and number of fins arranged in the heat transfer tube 20 can be changed as appropriate.
  • a plurality of fins having different numbers of cut-and-raised portions and different arrangement forms may be arranged along the flow direction D.
  • the configuration of the EGR cooler is not limited to the above example, and can be changed as appropriate.
  • the configuration of the exhaust gas recirculation system is not limited to the configuration of the exhaust gas recirculation system 1 and can be changed as appropriate.
  • the heat exchanger is an EGR cooler
  • the present invention can also be applied to other automotive heat exchangers such as exhaust system parts other than EGR coolers, exhaust heat recovery devices, exhaust heat exchangers, superchargers, or oil coolers.
  • Projection, 14c ... Through hole, 15 ... First fixture, 15a ... Hole, 15b ... Insertion hole, 16 ... Second fixing part, 16a ... Hole part, 16b ... Insertion hole, 17 ... Cooling water introduction pipe, 18 ... Cooling water outlet pipe, 20 ... Heat transfer pipe, 20a, 20b ... Projection, 21 ... Upper plate , 21a ... protruding portion 22 ... Lower plate, 22a ... Projection part, 30, 50, 60 ... Fin (heat exchanger fin), 31 ... Upper wall, 32 ... Side wall, 33 ... Bottom wall, 35 ... Wall part, 40 ... Cut-and-raised part, 41 , 51, 61, 61A, 61B ...

Abstract

A fin according to an embodiment of the invention is provided with: a gas flow passage R having a rectangular wave-shaped cross-section; and cut and raised sections 42 formed by cutting and raising a wall section into the gas flow passage R, the wall section including an upper wall, side walls, and a bottom wall. The cut and raised sections 42 each include: a bend line 43 tilted relative to the flow direction D of exhaust gas; and linear cuts 44 extending downstream in the flow direction D from the upstream end 43a of the bend line 43 in the flow direction D and reaching the downstream end 43b. The cut and raised sections 42 are each formed by bending a region 42a inward along the bend line 43, the region 42a being surrounded by the bend line 43 and the linear cuts 44. The cut and raised sections 42 are arranged at a plurality of positions located along the flow direction D. The bend lines 43 of the cut and raised sections 42 are tilted to the same side relative to the flow direction D when viewed from the inside of the gas flow passage R.

Description

熱交換器用フィンHeat exchanger fins
 本発明は、複数のガス流路を備えた熱交換器用フィンに関する。 The present invention relates to a heat exchanger fin having a plurality of gas flow paths.
 特許第4683111号公報には、熱交換器の一種としてEGR(Exhaust Gas Recirculation)ガスクーラが記載されている。このEGRガスクーラは、車両のエンジンと、エンジンからの排気ガスを流通させる排気再循環管と、排気再循環管に設けられたEGRバルブとを備えた排気ガス再循環システムに搭載されている。EGRガスクーラは、エンジンの排気側と、EGRバルブとの間に配置されている。EGRガスクーラは、エンジンからの排気ガスと冷却水との間で熱交換を行い、排気ガスを冷却させる。 Japanese Patent No. 4683111 describes an EGR (Exhaust Gas Recirculation) gas cooler as a kind of heat exchanger. This EGR gas cooler is mounted on an exhaust gas recirculation system that includes a vehicle engine, an exhaust gas recirculation pipe that circulates exhaust gas from the engine, and an EGR valve provided in the exhaust gas recirculation pipe. The EGR gas cooler is disposed between the exhaust side of the engine and the EGR valve. The EGR gas cooler performs heat exchange between the exhaust gas from the engine and the cooling water to cool the exhaust gas.
 前述の公報に記載されたEGRガスクーラは、排気ガスの流路を構成する矩形箱状のチューブと、チューブの内側で矩形波状に形成されたインナーフィンとを備えている。排気ガスの流路は、インナーフィンの側壁と、インナーフィンの上壁又は底壁と、インナーフィンの上下に位置するチューブプレートと、によって形成されている。この排気ガスの流路は、上壁、側壁及び底壁の並設方向に沿って複数配置されている。 The EGR gas cooler described in the above-mentioned publication includes a rectangular box-shaped tube constituting an exhaust gas flow path and an inner fin formed in a rectangular wave shape inside the tube. The exhaust gas flow path is formed by the side wall of the inner fin, the upper wall or the bottom wall of the inner fin, and the tube plates positioned above and below the inner fin. A plurality of exhaust gas flow paths are arranged along the juxtaposed direction of the top wall, the side wall, and the bottom wall.
 前述のインナーフィンにおいて、その側壁は、一の側壁と、当該一の側壁に対して上記並設方向にずれて配置された他の側壁と、を含んでいる。上面側からインナーフィンの内部を見たときに、一の側壁と他の側壁とは、交互に矩形波状に配置されている。また、一の側壁の流れ方向下流側、及び他の側壁の流れ方向上流側、には、底壁を三角状に切り起こして形成した切り起こし部が配置されている。この切り起こし部は、インナーフィンの内部において縦渦を発生させるために設けられる。 In the above-described inner fin, the side wall includes one side wall and the other side wall arranged so as to be shifted in the parallel arrangement direction with respect to the one side wall. When the inside of the inner fin is viewed from the upper surface side, one side wall and the other side wall are alternately arranged in a rectangular wave shape. Further, on the downstream side in the flow direction of one side wall and the upstream side in the flow direction on the other side wall, a cut-and-raised portion formed by cutting and raising the bottom wall in a triangular shape is arranged. This cut-and-raised portion is provided to generate a vertical vortex inside the inner fin.
 特許第3729136号公報には、EGRガスクーラが記載されている。このEGRガスクーラには、上記と同様の機能を有するチューブとインナーフィンとが設けられている。このインナーフィンも上壁、側壁及び底壁によって矩形波状に形成されている。このインナーフィンにおいて、その側壁には内外を連通する穴部が形成されており、インナーフィンの底壁には三角状に切り起こされた切り起こし部が形成されている。穴部と切り起こし部は、排気ガスの流れ方向に沿って交互に配置されている。また、切り起こし部の折り曲げ線は当該流れ方向に対して傾斜している。一の切り起こし部と、当該一の切り起こし部に流れ方向に隣接する他の切り起こし部と、は互いに反対側に傾いている。 Japanese Patent No. 3729136 describes an EGR gas cooler. The EGR gas cooler is provided with a tube and an inner fin having the same functions as described above. The inner fin is also formed in a rectangular wave shape by the upper wall, the side wall, and the bottom wall. In the inner fin, a hole portion that communicates the inside and the outside is formed in the side wall, and a cut-and-raised portion that is cut and raised in a triangular shape is formed in the bottom wall of the inner fin. The holes and the cut-and-raised portions are alternately arranged along the flow direction of the exhaust gas. Further, the fold line of the cut and raised portion is inclined with respect to the flow direction. One cut and raised portion and the other cut and raised portion adjacent to the one cut and raised portion in the flow direction are inclined to the opposite sides.
特許第4683111号公報Japanese Patent No. 4683111 特許第3729136号公報Japanese Patent No. 3729136
 特許第4683111号公報に記載されたインナーフィンでは、一の側壁の流れ方向下流側と、他の側壁の流れ方向上流側とに切り起こし部が配置されている。従って、切り起こし部で縦渦を発生させたとしても、この縦渦は、当該切り起こし部の下流側の側壁によって乱され消失してしまう。従って、流路内部の圧力損失が大きく、発生した渦が直ぐに消失してしまうため、渦を流れ方向に沿って維持できないという問題がある。 In the inner fin described in Japanese Patent No. 4683111, cut-and-raised portions are arranged on the downstream side in the flow direction of one side wall and the upstream side in the flow direction on the other side wall. Therefore, even if a vertical vortex is generated at the cut-and-raised portion, the vertical vortex is disturbed and disappeared by the side wall on the downstream side of the cut-and-raised portion. Therefore, there is a problem that the pressure loss inside the flow path is large and the generated vortex disappears immediately, so that the vortex cannot be maintained along the flow direction.
 特許第3729136号公報に記載されたインナーフィンでは、一の切り起こし部と、当該一の切り起こし部に流れ方向に隣接する他の切り起こし部と、は互いに反対側に傾いている。従って、一の切り起こし部で縦渦を発生させても、この縦渦は、一の切り起こし部の下流側に位置する他の切り起こし部によって相殺されてしまう。従って、前述したように流路内部の圧力損失が大きく且つ発生した渦が直ぐに消失してしまうという問題があり、渦を流れ方向に沿って維持することができないという問題が生じる。 In the inner fin described in Japanese Patent No. 3729136, one cut and raised portion and another cut and raised portion adjacent to the one raised portion in the flow direction are inclined to the opposite sides. Therefore, even if a vertical vortex is generated at one cut-and-raised portion, the vertical vortex is canceled by another cut-and-raised portion located downstream of the one cut-and-raised portion. Therefore, as described above, there is a problem that the pressure loss inside the flow path is large and the generated vortex disappears immediately, and there is a problem that the vortex cannot be maintained along the flow direction.
 以上のように、前述の各公報に記載されたインナーフィンでは、渦を流れ方向に沿って維持できないため、ガス流路の壁部近傍における流速を高めることができない。従って、ガス流路の壁部にすすが堆積しやすいという問題が生じると共に、ガスに対する熱伝達率の点でも改善の余地がある。 As described above, in the inner fin described in each of the above-mentioned publications, the vortex cannot be maintained along the flow direction, so that the flow velocity in the vicinity of the wall portion of the gas channel cannot be increased. Therefore, there arises a problem that soot is easily deposited on the wall portion of the gas flow path, and there is room for improvement in terms of the heat transfer coefficient for the gas.
 そこで、本発明の一側面は、渦を流れ方向に沿って維持することができる熱交換器用フィンを提供することを目的とする。 Accordingly, an object of one aspect of the present invention is to provide a fin for a heat exchanger that can maintain a vortex along a flow direction.
 本発明の一側面に係る熱交換器用フィンは、上壁、側壁及び底壁が連続することによって断面が矩形波状に形成されたガス流路と、上壁、側壁及び底壁を含む壁部からガス流路の内側に切り起こされた切り起こし部と、を備えた熱交換器用フィンである。切り起こし部は、壁部でガスの流れ方向に対して傾斜する折り曲げ線と、折り曲げ線の流れ方向の上流側端部から流れ方向の下流側に延びると共に折り曲げ線の流れ方向の下流側端部まで延びる切り込み線と、を含んでいる。切り起こし部は、折り曲げ線と、切り込み線とで囲まれた領域が折り曲げ線に沿ってガス流路の内側に折り曲げられることによって形成される。切り起こし部は、流れ方向に沿った複数の位置に配置されている。複数の切り起こし部の各折り曲げ線は、ガス流路の内側から見たときに流れ方向に対して同じ側に傾斜している。 A fin for a heat exchanger according to one aspect of the present invention includes a gas flow path having a rectangular wave shape formed by a continuous upper wall, a side wall, and a bottom wall, and a wall portion including the upper wall, the side wall, and the bottom wall. And a heat exchanger fin including a cut and raised portion cut and raised inside the gas flow path. The cut-and-raised part is a bend line inclined with respect to the gas flow direction at the wall part, and extends from the upstream end part in the flow direction of the bend line to the downstream side in the flow direction and at the downstream end part in the flow direction of the bend line. A score line extending to The cut-and-raised part is formed by folding a region surrounded by the fold line and the cut line to the inside of the gas flow path along the fold line. The cut and raised portions are arranged at a plurality of positions along the flow direction. Each fold line of the plurality of cut and raised portions is inclined to the same side with respect to the flow direction when viewed from the inside of the gas flow path.
 本発明の一側面に係る熱交換器用フィンによれば、切り起こし部は、ガスの流れ方向に対して傾斜する折り曲げ線と、折り曲げ線の上流側端部から下流側端部に向かって流れ方向の下流側に延びる切り込み線と、を含む。そして、切り起こし部は、折り曲げ線及び切り込み線で囲まれた領域が折り曲げ線に沿って内側に折り曲げられることによって形成される。従って、切り起こし部では、折り曲げられた領域が流れ方向の上流側に向くこととなり、上流側から切り起こし部に流れ込んだガスは、折り曲げ線の傾斜方向に斜めに流れる。よって、ガスの流れる方向が折り曲げ線の傾斜方向に変換されるので、ガスがガス流路内で旋回することによりガス流路内で螺旋流を発生させることができる。また、この切り起こし部は、流れ方向に沿った複数の位置に配置されており、且つ複数の切り起こし部の折り曲げ線は同じ側に傾斜している。よって、発生させた螺旋流を流れ方向に沿って維持することができる。すなわち、複数の切り起こし部は、発生させた螺旋流のガイドとして機能し、螺旋流を流れ方向に維持させながらガスを流すことができる。従って、渦を流れ方向に沿って維持することができ、ガス流路の壁部近傍における流速を高めることができる。よって、ガス流路の壁部近傍にすすが堆積するのを抑制することができ、ガスに対する熱伝達率を向上させることもできる。 According to the heat exchanger fin according to one aspect of the present invention, the cut-and-raised portion includes a fold line inclined with respect to the gas flow direction, and a flow direction from the upstream end portion to the downstream end portion of the fold line. And a cut line extending downstream of the. The cut-and-raised part is formed by folding the region surrounded by the fold line and the cut line inward along the fold line. Therefore, in the cut-and-raised part, the bent region is directed to the upstream side in the flow direction, and the gas flowing into the cut-and-raised part from the upstream side flows obliquely in the inclination direction of the folding line. Therefore, since the gas flow direction is converted into the inclination direction of the fold line, a spiral flow can be generated in the gas flow path by turning the gas in the gas flow path. The cut and raised portions are arranged at a plurality of positions along the flow direction, and the fold lines of the plurality of cut and raised portions are inclined to the same side. Therefore, the generated spiral flow can be maintained along the flow direction. That is, the plurality of cut-and-raised portions function as guides for the generated spiral flow, and can flow gas while maintaining the spiral flow in the flow direction. Therefore, the vortex can be maintained along the flow direction, and the flow velocity in the vicinity of the wall portion of the gas channel can be increased. Therefore, it is possible to suppress soot accumulation in the vicinity of the wall portion of the gas flow path, and to improve the heat transfer coefficient for the gas.
 また、流れ方向に対する折り曲げ線の傾斜角度は、30°以上且つ60°以下であってもよい。この場合、切り起こし部で螺旋流をより効率よく発生させることができるので、渦を流れ方向に沿ってより確実に維持することができる。 Further, the inclination angle of the fold line with respect to the flow direction may be 30 ° or more and 60 ° or less. In this case, since the spiral flow can be generated more efficiently at the cut and raised portion, the vortex can be more reliably maintained along the flow direction.
 また、折り曲げ線の流れ方向の下流側端部と、下流側端部に最も近い壁部との距離は、折り曲げ線の流れ方向の上流側端部と、上流側端部に最も近い側壁との距離以下であってもよい。このように、切り起こし部の折り曲げ線の下流側端部と壁部との距離を、上流側端部と壁部との距離に対して短くすることにより、切り起こし部の下流側の流路をより狭くすることができる。従って、切り起こし部の下流側で流れるガスの圧力を高めることができるので、より強力な螺旋流を効率よく発生させることができる。よって、ガス流路における螺旋流を強めることができるので、すすの堆積をより確実に抑制すると共に熱伝達率をより高めることができる。 The distance between the downstream end in the flow direction of the fold line and the wall closest to the downstream end is the distance between the upstream end in the flow direction of the fold line and the side wall closest to the upstream end. It may be less than the distance. In this way, by reducing the distance between the downstream end portion and the wall portion of the folding line of the cut and raised portion with respect to the distance between the upstream end portion and the wall portion, the flow path on the downstream side of the cut and raised portion. Can be made narrower. Therefore, since the pressure of the gas flowing on the downstream side of the cut and raised portion can be increased, a stronger spiral flow can be efficiently generated. Therefore, since the helical flow in the gas flow path can be strengthened, soot accumulation can be more reliably suppressed and the heat transfer rate can be further increased.
 また、切り起こし部は、側壁から切り起こされた第1切り起こし部と、上壁又は底壁から切り起こされた第2切り起こし部と、を含んでおり、第1切り起こし部と第2切り起こし部とは、流れ方向に沿った複数の位置に配置されており、第1切り起こし部と、流れ方向に隣接する他の第1切り起こし部との距離をL、第1切り起こし部と、流れ方向に隣接する第2切り起こし部との距離をe、としたときに、0.1L≦e≦0.4L、を満たしてもよい。この場合、第1切り起こし部と第2切り起こし部とを螺旋流のガイドとして機能しやすい位置に配置できるので、螺旋流をより強めることができる。従って、流速を一層高めることができるので、すすの堆積を一層確実に抑制すると共に熱伝達率をより高めることができる。 The cut-and-raised part includes a first cut-and-raised part cut and raised from the side wall, and a second cut and raised part cut and raised from the upper wall or the bottom wall. The cut and raised portions are arranged at a plurality of positions along the flow direction, and the distance between the first cut and raised portion and another first cut and raised portion adjacent to the flow direction is L, the first cut and raised portion. And the distance between the second cut-and-raised part adjacent in the flow direction may be 0.1L ≦ e ≦ 0.4L. In this case, since the first cut-and-raised portion and the second cut-and-raised portion can be arranged at positions that easily function as a guide for the spiral flow, the spiral flow can be further strengthened. Therefore, since the flow rate can be further increased, soot accumulation can be more reliably suppressed and the heat transfer rate can be further increased.
 また、切り起こし部は、側壁から切り起こされた第1切り起こし部と、上壁又は底壁から切り起こされた第2切り起こし部と、を含んでおり、第1切り起こし部と第2切り起こし部とは、流れ方向に沿った複数の位置に配置されており、第1切り起こし部と、流れ方向に隣接する他の第1切り起こし部との距離をL、第1切り起こし部と、流れ方向に隣接する第2切り起こし部との距離をe、としたときに、0.6L≦e≦0.9L、を満たしてもよい。この場合も、第1切り起こし部と第2切り起こし部とを螺旋流のガイドになりやすい位置に配置できるので、前述と同様の効果が得られる。 The cut-and-raised part includes a first cut-and-raised part cut and raised from the side wall, and a second cut and raised part cut and raised from the upper wall or the bottom wall. The cut and raised portions are arranged at a plurality of positions along the flow direction, and the distance between the first cut and raised portion and another first cut and raised portion adjacent to the flow direction is L, the first cut and raised portion. And 0.6L ≦ e ≦ 0.9L may be satisfied, where e is the distance from the second cut and raised portion adjacent in the flow direction. Also in this case, since the first cut-and-raised part and the second cut-and-raised part can be arranged at positions where they can easily serve as spiral flow guides, the same effects as described above can be obtained.
 本発明の一側面によれば、渦を流れ方向に沿って維持することができる。 According to one aspect of the present invention, the vortex can be maintained along the flow direction.
第1実施形態に係るEGRクーラーのフィンを備えた排気ガス再循環システムの一例を示す模式図である。It is a schematic diagram which shows an example of the exhaust-gas recirculation system provided with the fin of the EGR cooler which concerns on 1st Embodiment. 図1のEGRクーラーを示す分解斜視図である。It is a disassembled perspective view which shows the EGR cooler of FIG. 図1のEGRクーラーにおける伝熱管とフィンを示す分解斜視図である。It is a disassembled perspective view which shows the heat exchanger tube and fin in the EGR cooler of FIG. 図1のEGRクーラーのフィンを示す斜視図である。It is a perspective view which shows the fin of the EGR cooler of FIG. (a)は図4のフィンを示す平面図である。(b)は図4のフィンにおける一つのガス流路の側面図である。(A) is a top view which shows the fin of FIG. (B) is a side view of one gas flow path in the fin of FIG. (a)は図4のフィンの切り起こし部を示す平面図である。(b)は底壁に直交する面で切り起こし部を切断した状態を示す断面図である。(A) is a top view which shows the cut and raised part of the fin of FIG. (B) is sectional drawing which shows the state which cut and raised the part by the surface orthogonal to a bottom wall. 図4のフィンを流れ方向に直交する面で切断したときの断面と、ガスの流れを示す図である。It is a figure which shows the cross section when the fin of FIG. 4 is cut | disconnected by the surface orthogonal to a flow direction, and the flow of gas. 第2実施形態のEGRクーラーのフィンを示す斜視図である。It is a perspective view which shows the fin of the EGR cooler of 2nd Embodiment. (a)は図8のフィンを示す平面図である。(b)は図8のフィンにおける一つのガス流路の側面図である。(A) is a top view which shows the fin of FIG. (B) is a side view of one gas flow path in the fin of FIG. 第3実施形態のEGRクーラーのフィンを示す斜視図である。It is a perspective view which shows the fin of the EGR cooler of 3rd Embodiment. (a)は図10のフィンを示す平面図である。(b)は図10のフィンにおける一つのガス流路の側面図である。(A) is a top view which shows the fin of FIG. (B) is a side view of one gas flow path in the fin of FIG.
 以下、図面を参照しながら本発明の一側面に係る熱交換器用フィンの実施形態について説明する。各図において、同一又は相当する要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, an embodiment of a heat exchanger fin according to one aspect of the present invention will be described with reference to the drawings. In each figure, the same code | symbol is attached | subjected to the element which is the same or it corresponds, and the overlapping description is abbreviate | omitted.
(第1実施形態)
 図1は、本実施形態に係る熱交換器であるEGRクーラー10のフィンを備えた排気ガス再循環システム1を示す模式図である。排気ガス再循環システム1は、自動車のエンジン2、EGRバルブ3、排気循環路4、及びEGRクーラー10を含んで構成されている。排気ガス再循環システム1は、エンジン2において燃焼された後の排気ガスGの一部を取り出し、取り出した排気ガスGの一部を再度エンジン2に吸気させる。排気ガス再循環システム1は、例えば、排気ガスG中の窒素酸化物の低減を目的としている。
(First embodiment)
FIG. 1 is a schematic diagram illustrating an exhaust gas recirculation system 1 including fins of an EGR cooler 10 that is a heat exchanger according to the present embodiment. The exhaust gas recirculation system 1 includes an automobile engine 2, an EGR valve 3, an exhaust circulation path 4, and an EGR cooler 10. The exhaust gas recirculation system 1 takes out a part of the exhaust gas G after being burned in the engine 2, and causes the engine 2 to inhale the part of the taken out exhaust gas G again. The exhaust gas recirculation system 1 is intended to reduce nitrogen oxides in the exhaust gas G, for example.
 エンジン2、EGRバルブ3及びEGRクーラー10は、排気循環路4を介して互いに接続されている。エンジン2からは排気ガスGが放出され、この排気ガスGの一部は排気循環路4の内部を流通する。排気循環路4内を流通する排気ガスGは、EGRクーラー10に入り込む。排気ガス再循環システム1では、例えば、排気ガスGの温度を下げてから新気Fと混合させる方式を採用しており、EGRクーラー10は排気ガスGの温度を下げるために設けられる。EGRバルブ3は、エンジン2に戻す排気ガスGの量を調整するために設けられる。 The engine 2, the EGR valve 3, and the EGR cooler 10 are connected to each other via the exhaust circuit 4. Exhaust gas G is released from the engine 2, and a part of the exhaust gas G circulates in the exhaust circulation path 4. The exhaust gas G flowing through the exhaust circulation path 4 enters the EGR cooler 10. In the exhaust gas recirculation system 1, for example, a method is adopted in which the temperature of the exhaust gas G is lowered and then mixed with the fresh air F, and the EGR cooler 10 is provided to lower the temperature of the exhaust gas G. The EGR valve 3 is provided to adjust the amount of exhaust gas G returned to the engine 2.
 EGRクーラー10は、排気ガスGを導入するガス導入部10aと、冷却した排気ガスGを排出するガス排出部10bと、冷却水WをEGRクーラー10内に導入する冷却水導入部10cと、冷却水WをEGRクーラー10から排出する冷却水排出部10dと、を備えている。ガス導入部10aからEGRクーラー10内に導入された排気ガスGは、EGRクーラー10内において冷却される。一方、冷却水導入部10cから導入された冷却水Wは、EGRクーラー10内において排気ガスGと熱交換を行って排気ガスGを冷却する。その後、冷却水Wは、冷却水排出部10dからEGRクーラー10外に排出される。 The EGR cooler 10 includes a gas introduction part 10a for introducing the exhaust gas G, a gas discharge part 10b for discharging the cooled exhaust gas G, a cooling water introduction part 10c for introducing the cooling water W into the EGR cooler 10, and a cooling A cooling water discharge portion 10d for discharging the water W from the EGR cooler 10. The exhaust gas G introduced into the EGR cooler 10 from the gas introduction part 10 a is cooled in the EGR cooler 10. On the other hand, the cooling water W introduced from the cooling water introduction part 10 c cools the exhaust gas G by exchanging heat with the exhaust gas G in the EGR cooler 10. Thereafter, the cooling water W is discharged out of the EGR cooler 10 from the cooling water discharge portion 10d.
 図2に示されるように、EGRクーラー10は、排気ガスGを流通させる複数の伝熱管20を備えている。伝熱管20は排気ガスGの流れ方向Dに延びる矩形の扁平な箱形形状を成しており、積層方向Sに沿って積層される。伝熱管20は流れ方向D及び幅方向Hに延在する。また、積層方向S、流れ方向D及び幅方向Hは、例えば互いに直交している。図2に示される例では、5本の伝熱管20が積層されている。 2, the EGR cooler 10 includes a plurality of heat transfer tubes 20 through which the exhaust gas G is circulated. The heat transfer tubes 20 have a rectangular flat box shape extending in the flow direction D of the exhaust gas G, and are stacked along the stacking direction S. The heat transfer tube 20 extends in the flow direction D and the width direction H. Further, the stacking direction S, the flow direction D, and the width direction H are, for example, orthogonal to each other. In the example shown in FIG. 2, five heat transfer tubes 20 are stacked.
 EGRクーラー10は、前述した伝熱管20の他に、ガス導入部10aを構成する第1ディフューザー11と、ガス排出部10bを構成する第2ディフューザー12と、伝熱管20の積層方向Sの一方側に配置される第1アウターケース13と、伝熱管20の積層方向Sの他方側に位置する第2アウターケース14と、第1ディフューザー11をエンジン2側の排気循環路4に固定させる第1固定具15と、第2ディフューザー12をEGRバルブ3側の排気循環路4に固定させる第2固定部16と、冷却水WをEGRクーラー10内に導入する冷却水導入管17と、冷却水WをEGRクーラー10から排出する冷却水導出管18と、を備えている。 In addition to the heat transfer tube 20 described above, the EGR cooler 10 includes a first diffuser 11 that constitutes a gas introduction part 10a, a second diffuser 12 that constitutes a gas discharge part 10b, and one side in the stacking direction S of the heat transfer pipes 20 A first outer case 13 disposed on the second side, a second outer case 14 positioned on the other side in the stacking direction S of the heat transfer tubes 20, and a first fixing for fixing the first diffuser 11 to the exhaust circuit 4 on the engine 2 side. A tool 15, a second fixing part 16 for fixing the second diffuser 12 to the exhaust gas circulation path 4 on the EGR valve 3 side, a cooling water introduction pipe 17 for introducing the cooling water W into the EGR cooler 10, and the cooling water W And a cooling water outlet pipe 18 for discharging from the EGR cooler 10.
 第1ディフューザー11、第2ディフューザー12、第1アウターケース13及び第2アウターケース14の材料としては、例えば、ステンレスが用いられる。これにより、第1ディフューザー11、第2ディフューザー12、第1アウターケース13及び第2アウターケース14の耐食性と耐熱性とが確保される。また、第1ディフューザー11、第2ディフューザー12、第1アウターケース13及び第2アウターケース14は、例えば、ニッケルろう又は溶接によって接合される。 As the material of the first diffuser 11, the second diffuser 12, the first outer case 13, and the second outer case 14, for example, stainless steel is used. Thereby, the corrosion resistance and heat resistance of the 1st diffuser 11, the 2nd diffuser 12, the 1st outer case 13, and the 2nd outer case 14 are ensured. Moreover, the 1st diffuser 11, the 2nd diffuser 12, the 1st outer case 13, and the 2nd outer case 14 are joined by nickel brazing or welding, for example.
 第1ディフューザー11は、積層された伝熱管20の流れ方向Dの上流側(エンジン2側)に設けられ、エンジン2から排気循環路4を介して流通する排気ガスGを各伝熱管20に分配する。第1ディフューザー11は、積層された各伝熱管20の流れ方向Dの一端を内部に収容する矩形状の枠部11aと、枠部11aの流れ方向Dの上流側に位置する環状突部11bと、を備えている。枠部11aは、積層された複数の伝熱管20における流れ方向Dの一端を収容した状態で第1アウターケース13及び第2アウターケース14に接合される。 The first diffuser 11 is provided on the upstream side (engine 2 side) in the flow direction D of the stacked heat transfer tubes 20, and distributes the exhaust gas G flowing from the engine 2 through the exhaust circulation path 4 to each heat transfer tube 20. To do. The first diffuser 11 includes a rectangular frame portion 11a that houses one end of the stacked heat transfer tubes 20 in the flow direction D therein, and an annular protrusion 11b that is positioned upstream of the flow direction D of the frame portion 11a. It is equipped with. The frame portion 11a is joined to the first outer case 13 and the second outer case 14 in a state in which one end in the flow direction D of the plurality of stacked heat transfer tubes 20 is accommodated.
 また、環状突部11bは、EGRクーラー10を排気循環路4に固定させる第1固定具15に嵌合させるために設けられる。第1固定具15は、菱形状を呈する。第1固定具15は、その中央に設けられて環状突部11bが嵌合される円形の孔部15aと、孔部15aの両側に設けられてボルトが挿通される一対の挿通孔15bと、を備えている。 Also, the annular protrusion 11b is provided to fit the first fixing tool 15 that fixes the EGR cooler 10 to the exhaust circuit 4. The first fixture 15 has a rhombus shape. The first fixture 15 is provided at the center thereof with a circular hole 15a into which the annular protrusion 11b is fitted, a pair of insertion holes 15b provided on both sides of the hole 15a and through which a bolt is inserted, It has.
 EGRクーラー10では、例えば、環状突部11bが第1固定具15の孔部15aに嵌合された状態において、2本のボルトのそれぞれが挿通孔15bに挿通される。そして、EGRクーラー10は、上記2本のボルトによって第1固定具15が排気循環路4のフランジ部とボルトナット接合されることにより、エンジン2側の排気循環路4と接続される。 In the EGR cooler 10, for example, in a state where the annular protrusion 11b is fitted in the hole 15a of the first fixture 15, each of the two bolts is inserted into the insertion hole 15b. The EGR cooler 10 is connected to the exhaust circulation path 4 on the engine 2 side by joining the first fixing member 15 to the flange portion of the exhaust circulation path 4 and bolts and nuts by the two bolts.
 第2ディフューザー12は、第1ディフューザー11の枠部11aと同様の枠部12aと、枠部12aの奥から流れ方向Dの直交方向に突出する環状突部12bと、を備えている。枠部12aは、積層された複数の伝熱管20における流れ方向Dの他端を収容した状態で第1アウターケース13及び第2アウターケース14に接合される。 The second diffuser 12 includes a frame portion 12a similar to the frame portion 11a of the first diffuser 11, and an annular protrusion 12b protruding in the direction orthogonal to the flow direction D from the back of the frame portion 12a. The frame portion 12a is joined to the first outer case 13 and the second outer case 14 in a state in which the other end in the flow direction D in the plurality of stacked heat transfer tubes 20 is accommodated.
 第2ディフューザー12の環状突部12bは、EGRクーラー10を排気循環路4に固定させる第2固定部16に嵌合させるために設けられる。第2固定部16は、第1固定具15と同様の形状及び機能を有する。第2固定部16は、第2固定部16の中央に位置する孔部16aと、孔部16aの両側に位置する挿通孔16bと、を備えている。また、EGRクーラー10では、環状突部12bが孔部16aに嵌合された状態において、2本のボルトのそれぞれが挿通孔16bに挿通される。そして、EGRクーラー10は、上記2本のボルトによって第2固定部16が排気循環路4のフランジ部とボルトナット接合されることにより、EGRバルブ3側の排気循環路4と接続される。 The annular protrusion 12b of the second diffuser 12 is provided to fit the second fixing portion 16 that fixes the EGR cooler 10 to the exhaust circuit 4. The second fixing part 16 has the same shape and function as the first fixing tool 15. The 2nd fixing | fixed part 16 is provided with the hole 16a located in the center of the 2nd fixing | fixed part 16, and the insertion hole 16b located in the both sides of the hole 16a. In the EGR cooler 10, each of the two bolts is inserted into the insertion hole 16b in a state where the annular protrusion 12b is fitted in the hole 16a. The EGR cooler 10 is connected to the exhaust circulation path 4 on the EGR valve 3 side by joining the second fixing part 16 to the flange part of the exhaust circulation path 4 and a bolt and nut by the two bolts.
 第1アウターケース13は、流れ方向D及び幅方向Hに延在する矩形状の平面13aを有する。第1アウターケース13は、伝熱管20を積層方向Sの一方側から覆うと共に、伝熱管20を覆った状態で第1ディフューザー11及び第2ディフューザー12に接合される。 The first outer case 13 has a rectangular flat surface 13a extending in the flow direction D and the width direction H. The first outer case 13 covers the heat transfer tube 20 from one side in the stacking direction S and is joined to the first diffuser 11 and the second diffuser 12 in a state of covering the heat transfer tube 20.
 第1アウターケース13は、平面13aの幅方向Hの両端で積層方向Sに突出する板状の突出部13bと、平面13aに位置しており伝熱管20の突起20aが接合される複数の突出部13cと、複数の突出部13cの流れ方向D下流側に位置し冷却水Wを整流するための一対の突出部13dと、を有する。伝熱管20の突起20bも冷却水Wを整流するために設けられる。第1アウターケース13は、幅方向Hの両端の突出部13bで第1ディフューザー11及び第2ディフューザー12を保持する。 The first outer case 13 includes a plate-like protrusion 13b that protrudes in the stacking direction S at both ends in the width direction H of the flat surface 13a, and a plurality of protrusions that are located on the flat surface 13a and to which the protrusion 20a of the heat transfer tube 20 is joined. Part 13c and a pair of protrusions 13d for rectifying the cooling water W, which are located downstream in the flow direction D of the plurality of protrusions 13c. The protrusion 20b of the heat transfer tube 20 is also provided to rectify the cooling water W. The first outer case 13 holds the first diffuser 11 and the second diffuser 12 with protrusions 13 b at both ends in the width direction H.
 第2アウターケース14は、伝熱管20を積層方向Sの他方側(図2の下側)から覆うと共に、伝熱管20を覆った状態で第1ディフューザー11及び第2ディフューザー12に接合される。第2アウターケース14は、流れ方向D及び幅方向Hに延在する矩形状の平面14aと、平面14aの幅方向Hの両端から積層方向Sに突出する板状の突出部14bと、を有する。 The second outer case 14 covers the heat transfer tube 20 from the other side in the stacking direction S (the lower side in FIG. 2) and is joined to the first diffuser 11 and the second diffuser 12 in a state of covering the heat transfer tube 20. The second outer case 14 includes a rectangular flat surface 14a extending in the flow direction D and the width direction H, and a plate-shaped protrusion 14b protruding in the stacking direction S from both ends of the flat surface 14a in the width direction H. .
 突出部14bの積層方向Sの長さ(高さ)は、第1アウターケース13の突出部13bの長さよりも長くなっており、2枚の突出部14bのうちの一方には突出部14bを貫通する一対の貫通孔14cが形成されている。貫通孔14cは、流れ方向Dに沿った2つの位置に一つずつ設けられている。流れ方向Dの上流側の貫通孔14cには冷却水導入管17が嵌合され、流れ方向Dの下流側の貫通孔14cには冷却水導出管18が嵌合される。上記の冷却水導入管17と貫通孔14cとで冷却水導入部10cが構成されると共に、冷却水導出管18と貫通孔14cとで冷却水排出部10dが構成される。 The length (height) of the projecting portion 14b in the stacking direction S is longer than the length of the projecting portion 13b of the first outer case 13, and the projecting portion 14b is provided on one of the two projecting portions 14b. A pair of penetrating through holes 14c are formed. One through hole 14 c is provided at each of two positions along the flow direction D. A cooling water introduction pipe 17 is fitted in the through hole 14 c on the upstream side in the flow direction D, and a cooling water outlet pipe 18 is fitted in the through hole 14 c on the downstream side in the flow direction D. The cooling water introduction pipe 10 and the through hole 14c constitute a cooling water introduction part 10c, and the cooling water outlet pipe 18 and the through hole 14c constitute a cooling water discharge part 10d.
 冷却水導入管17及び冷却水導出管18を各貫通孔14cに嵌合させた状態で第2アウターケース14が伝熱管20を覆うと共に、第1ディフューザー11、第2ディフューザー12、第1アウターケース13及び第2アウターケース14が接合される。これにより、EGRクーラー10の内部には、冷却水Wの流路が形成される。このとき、冷却水Wは、冷却水導入管17から第2アウターケース14内に導入されて第2アウターケース14内を流れ方向Dと同方向に流通し、その後、冷却水導出管18から第2アウターケース14外に排出される。 The second outer case 14 covers the heat transfer pipe 20 with the cooling water introduction pipe 17 and the cooling water outlet pipe 18 fitted in the through holes 14c, and the first diffuser 11, the second diffuser 12, and the first outer case. 13 and the second outer case 14 are joined. Thereby, the flow path of the cooling water W is formed inside the EGR cooler 10. At this time, the cooling water W is introduced from the cooling water introduction pipe 17 into the second outer case 14 and circulates in the second outer case 14 in the same direction as the flow direction D. 2 The battery is discharged out of the outer case 14.
 図3は、一つの伝熱管20を分解して示した分解斜視図である。図3に示されるように、伝熱管20は、矩形状の上プレート21と、上プレート21に積層方向Sに接合される下プレート22と、を備えている。上プレート21と下プレート22の間には、排気ガスGのガス流路R(図4参照)を有するフィン30が配置される。このフィン30は、本実施形態に係る熱交換器用フィンである。 FIG. 3 is an exploded perspective view showing one heat transfer tube 20 in an exploded manner. As shown in FIG. 3, the heat transfer tube 20 includes a rectangular upper plate 21 and a lower plate 22 joined to the upper plate 21 in the stacking direction S. A fin 30 having a gas flow path R (see FIG. 4) for the exhaust gas G is disposed between the upper plate 21 and the lower plate 22. The fin 30 is a heat exchanger fin according to the present embodiment.
 上プレート21の幅方向Hの両端には、積層方向Sに突出する板状の突出部21aが設けられており、下プレート22の幅方向Hの両端にも、板状の突出部22aが設けられている。これらの突出部21a,22aが合わされて接合されることにより、上プレート21と下プレート22とは接合される。上プレート21と下プレート22とが接合された状態において、伝熱管20の流れ方向Dの一端及び他端は開放されている。この開放された部分からフィン30に対して排気ガスGの流入及び流出が行われる。 At both ends in the width direction H of the upper plate 21, plate-like protrusions 21 a that protrude in the stacking direction S are provided, and at both ends in the width direction H of the lower plate 22, plate-like protrusions 22 a are provided. It has been. The upper plate 21 and the lower plate 22 are joined by joining the projecting portions 21a and 22a together. In the state where the upper plate 21 and the lower plate 22 are joined, one end and the other end of the heat transfer tube 20 in the flow direction D are open. The exhaust gas G flows into and out of the fin 30 from the opened portion.
 図4は、フィン30の一部を切り出した斜視図である。図4に示されるように、フィン30は、流れ方向D及び積層方向Sに直交する方向(幅方向H)に凹凸が連続する矩形波状を呈する。フィン30は、例えば、一枚のステンレス鋼板を折り曲げ加工して製造される。以下では、積層方向Sの一方側(図4の紙面の上側)を上、積層方向Sの他方側(図4の紙面の下側)を下、として説明する。ただし、これらの方向は単に説明の便宜上のものであって、本発明の範囲を限定するものではない。 FIG. 4 is a perspective view in which a part of the fin 30 is cut out. As shown in FIG. 4, the fin 30 has a rectangular wave shape in which unevenness is continuous in a direction (width direction H) orthogonal to the flow direction D and the stacking direction S. The fin 30 is manufactured, for example, by bending a single stainless steel plate. In the following description, one side in the stacking direction S (upper side of the sheet of FIG. 4) is up, and the other side of the stacking direction S (lower side of the page of FIG. 4) is down. However, these directions are merely for convenience of explanation and do not limit the scope of the present invention.
 フィン30は、流れ方向Dに延びる上壁31と、上壁31から直角に折り曲げられた側壁32と、側壁32から直角に折り曲げられて上壁31と平行に延びる底壁33と、を備える。フィン30は、その断面形状が上壁31、側壁32及び底壁33が連続することにより矩形波状に形成された複数のガス流路Rを有する。 The fin 30 includes an upper wall 31 extending in the flow direction D, a side wall 32 bent at a right angle from the upper wall 31, and a bottom wall 33 bent at a right angle from the side wall 32 and extending parallel to the upper wall 31. The fin 30 has a plurality of gas flow paths R that are formed in a rectangular wave shape by the cross-sectional shape of the upper wall 31, the side wall 32, and the bottom wall 33 being continuous.
 フィン30には、上壁31の上面に上プレート21が接触すると共に、底壁33の下面に下プレート22が接触する。また、フィン30の内部において、ガス流路Rは2種類存在している。ガス流路Rは、一対の側壁32と底壁33と上プレート21とによって形成されるガス流路R1と、一対の側壁32と上壁31と下プレート22とによって形成されるガス流路R2と、を含んでいる。ガス流路R1は幅方向Hに並ぶ底壁33の数だけ設けられ、ガス流路R2は幅方向Hに並ぶ上壁31の数だけ設けられる。ガス流路R1及びガス流路R2は、それぞれ流れ方向Dに直線状に延在する。ここで、本実施形態において、幅方向Hは、ガス流路R1及びガス流路R2の並設方向、すなわち、上壁31、側壁32及び底壁33の並設方向と一致する。 The upper plate 21 is in contact with the upper surface of the upper wall 31 and the lower plate 22 is in contact with the lower surface of the bottom wall 33. Two types of gas flow paths R exist inside the fin 30. The gas flow path R includes a gas flow path R1 formed by the pair of side walls 32, the bottom wall 33, and the upper plate 21, and a gas flow path R2 formed by the pair of side walls 32, the upper wall 31, and the lower plate 22. And. The gas flow paths R1 are provided by the number of the bottom walls 33 arranged in the width direction H, and the gas flow paths R2 are provided by the number of the upper walls 31 arranged in the width direction H. The gas flow path R1 and the gas flow path R2 each extend linearly in the flow direction D. Here, in the present embodiment, the width direction H coincides with the juxtaposed direction of the gas flow path R1 and the gas flow path R2, that is, the juxtaposed direction of the top wall 31, the side wall 32, and the bottom wall 33.
 図5(a)はガス流路Rの平面図であり、図5(b)は一つのガス流路Rの側面図である。図4及び図5に示されるように、フィン30は、上壁31、側壁32及び底壁33を含む壁部35からガス流路Rの内側に切り起こされた複数の切り起こし部40を有する。切り起こし部40は、側壁32から切り起こされた第1切り起こし部41と、上壁31又は底壁33から切り起こされた第2切り起こし部42と、を含んでいる。 5 (a) is a plan view of the gas flow path R, and FIG. 5 (b) is a side view of one gas flow path R. As shown in FIGS. 4 and 5, the fin 30 has a plurality of cut-and-raised portions 40 cut and raised from the wall portion 35 including the upper wall 31, the side wall 32, and the bottom wall 33 to the inside of the gas flow path R. . The cut and raised portion 40 includes a first cut and raised portion 41 cut and raised from the side wall 32, and a second cut and raised portion 42 cut and raised from the upper wall 31 or the bottom wall 33.
 第1切り起こし部41及び第2切り起こし部42は、例えば矩形状となっており、流れ方向Dに等間隔に配置されている。第1切り起こし部41は、幅方向Hに隣接する他の側壁32から切り起こされた第1切り起こし部41と対向し、且つ交差している。 The first cut-and-raised part 41 and the second cut-and-raised part 42 have a rectangular shape, for example, and are arranged at equal intervals in the flow direction D. The first cut-and-raised part 41 faces and intersects with the first cut-and-raised part 41 cut and raised from the other side wall 32 adjacent in the width direction H.
 第1切り起こし部41及び第2切り起こし部42は、ガス流路Rの内側から見たときに流れ方向Dに対して同じ側に傾斜している。具体的には、ガス流路R1の内側から見たときに、第2切り起こし部42は、流れ方向Dに対して反時計回りに傾いている。第1切り起こし部41も流れ方向Dに対して反時計回りに傾いている。また、ガス流路R2の内側から見たときに、第2切り起こし部42は流れ方向Dに対して時計回りに傾いている。第1切り起こし部41も流れ方向Dに対して時計回りに傾いている。 The first cut and raised portion 41 and the second cut and raised portion 42 are inclined to the same side with respect to the flow direction D when viewed from the inside of the gas flow path R. Specifically, the second cut and raised portion 42 is inclined counterclockwise with respect to the flow direction D when viewed from the inside of the gas flow path R1. The first cut and raised portion 41 is also inclined counterclockwise with respect to the flow direction D. Further, the second cut and raised portion 42 is inclined clockwise with respect to the flow direction D when viewed from the inside of the gas flow path R2. The first cut and raised portion 41 is also inclined clockwise with respect to the flow direction D.
 第1切り起こし部41としては、ガス流路R2側に切り起こされたものと、ガス流路R1側に切り起こされたものとの2種類がある。また、ガス流路R2側に切り起こされた第1切り起こし部41と、ガス流路R1側に切り起こされた第1切り起こし部41と、は流れ方向Dに沿って交互に配置されている。 There are two types of first cut-and-raised parts 41, one cut and raised on the gas flow path R2 side and one cut and raised on the gas flow path R1 side. Further, the first cut and raised portions 41 cut and raised on the gas flow path R2 side and the first cut and raised portions 41 cut and raised on the gas flow path R1 side are alternately arranged along the flow direction D. Yes.
 上壁31から切り起こされた第2切り起こし部42は、その上に位置する上プレート21から離れる方向(下方向)に切り起こされている。底壁33から切り起こされた第2切り起こし部42は、その下に位置する下プレート22から離れる方向(上方向)に切り起こされている。上壁31から切り起こされた第2切り起こし部42と、底壁33から切り起こされた第2切り起こし部42と、は流れ方向Dに沿って交互に配置されている。 The second cut-and-raised part 42 cut and raised from the upper wall 31 is cut and raised in a direction (downward) away from the upper plate 21 located above it. The second cut-and-raised portion 42 cut and raised from the bottom wall 33 is cut and raised in a direction (upward) away from the lower plate 22 located below the second cut-and-raised portion 42. The second cut and raised portions 42 cut and raised from the upper wall 31 and the second cut and raised portions 42 cut and raised from the bottom wall 33 are alternately arranged along the flow direction D.
 本実施形態では、一つのガス流路Rに配置される第1切り起こし部41及び第2切り起こし部42の数は、複数のガス流路Rにおいて互いに同一となっている。また、ガス流路R1と幅方向Hに隣接する他のガス流路R1とは、第1切り起こし部41及び第2切り起こし部42の配置態様が同一となっている。また、第1切り起こし部41及び第2切り起こし部42は、幅方向Hに並ぶように配置されている。すなわち、流れ方向Dにおける第1切り起こし部41及び第2切り起こし部42の位置は、複数のガス流路R1間で互いに一致している。ガス流路R2についても同様である。 In the present embodiment, the number of the first cut-and-raised portions 41 and the second cut-and-raised portions 42 arranged in one gas flow path R is the same in the plurality of gas flow paths R. The gas channel R1 and the other gas channel R1 adjacent in the width direction H have the same arrangement mode of the first cut-and-raised portion 41 and the second cut-and-raised portion 42. Further, the first cut-and-raised portion 41 and the second cut-and-raised portion 42 are arranged so as to be aligned in the width direction H. That is, the positions of the first cut-and-raised part 41 and the second cut-and-raised part 42 in the flow direction D coincide with each other among the plurality of gas flow paths R1. The same applies to the gas flow path R2.
 図5(a)に示されるように、ガス流路R1において、側壁32から切り起こされた第1切り起こし部41と、流れ方向Dに隣接する第1切り起こし部41との距離をL、また、第1切り起こし部41と、流れ方向Dに隣接する第2切り起こし部42(底壁33から切り起こされた第2切り起こし部42)との距離をe、とすると、0.1L≦e≦0.4Lを満たしている。また、0.2L≦e≦0.3Lを満たすことがより好ましく、e=0.25Lであることが一層好ましい。ガス流路R2についても同様である。 As shown in FIG. 5A, in the gas flow path R1, the distance between the first cut and raised portion 41 cut and raised from the side wall 32 and the first cut and raised portion 41 adjacent to the flow direction D is L, Further, if the distance between the first cut and raised portion 41 and the second cut and raised portion 42 (second cut and raised portion 42 cut and raised from the bottom wall 33) adjacent to the flow direction D is e, 0.1 L <= E <= 0.4L is satisfy | filled. Further, it is more preferable to satisfy 0.2L ≦ e ≦ 0.3L, and it is more preferable that e = 0.25L. The same applies to the gas flow path R2.
 次に、第2切り起こし部42の詳細な構成について図6(a)及び図6(b)を参照しながら説明する。図6(a)は、底壁33から切り起こされた第2切り起こし部42の平面図である。図6(b)は、当該第2切り起こし部42を底壁33の直交方向に切断した断面図である。 Next, the detailed configuration of the second cut-and-raised part 42 will be described with reference to FIGS. 6 (a) and 6 (b). FIG. 6A is a plan view of the second cut and raised portion 42 cut and raised from the bottom wall 33. FIG. 6B is a cross-sectional view of the second cut and raised portion 42 cut in the direction perpendicular to the bottom wall 33.
 以下では、底壁33から切り起こされた第2切り起こし部42を例示して説明する。なお、上壁31から切り起こされた第2切り起こし部42、及び側壁32から切り起こされた第1切り起こし部41の構成については、図6(a)及び図6(b)の第2切り起こし部42の構成と同一であるため、詳細な説明を省略する。 Hereinafter, the second cut and raised portion 42 cut and raised from the bottom wall 33 will be described as an example. In addition, about the structure of the 2nd cut and raised part 42 cut and raised from the upper wall 31, and the 1st cut and raised part 41 cut and raised from the side wall 32, it is 2nd of FIG. 6 (a) and FIG.6 (b). Since it is the same as the structure of the cut-and-raised part 42, detailed description is abbreviate | omitted.
 図6(a)に示されるように、第2切り起こし部42は、流れ方向Dに対して傾斜する折り曲げ線43と、折り曲げ線43の流れ方向Dの上流側端部43aから流れ方向Dの下流側に延びると共に下流側端部43bまで延びる切り込み線44とを含んでいる。折り曲げ線43は、流れ方向Dに対して傾斜する方向に直線状に延びている。 As shown in FIG. 6A, the second cut-and-raised part 42 includes a fold line 43 that is inclined with respect to the flow direction D, and an upstream end 43a in the flow direction D of the fold line 43 in the flow direction D. And a cut line 44 extending to the downstream side and extending to the downstream end 43b. The fold line 43 extends linearly in a direction inclined with respect to the flow direction D.
 切り込み線44は、折り曲げ線43の上流側端部43aから折り曲げ線43に対して直角に延びる第1直線部44aと、第1直線部44aの流れ方向Dの下流側端部から折り曲げ線43と平行且つ折り曲げ線43と同一の長さで延びる第2直線部44bと、第2直線部44bの流れ方向Dの下流側端部から下流側端部43bに向かって延びる第3直線部44cとを含んでいる。 The cut line 44 includes a first straight line portion 44a extending from the upstream end 43a of the fold line 43 at a right angle to the fold line 43, and a fold line 43 extending from the downstream end in the flow direction D of the first straight line 44a. A second straight portion 44b extending in parallel and the same length as the fold line 43, and a third straight portion 44c extending from the downstream end in the flow direction D of the second straight portion 44b toward the downstream end 43b. Contains.
 このように、切り込み線44は、第1直線部44a、第2直線部44b及び第3直線部44cを含む矩形状となっている。従って、折り曲げ線43と切り込み線44とによって囲まれた矩形状の領域42aを、折り曲げ線43に沿ってガス流路R1の内側に折り曲げることによって、第2切り起こし部42は形成される。 Thus, the cut line 44 has a rectangular shape including the first straight portion 44a, the second straight portion 44b, and the third straight portion 44c. Therefore, the second cut-and-raised part 42 is formed by bending a rectangular region 42 a surrounded by the fold line 43 and the cut line 44 inside the gas flow path R <b> 1 along the fold line 43.
 ここで、流れ方向Dに対する折り曲げ線43の傾斜角度をα(°)としたときに、αは、30≦α≦60を満たすことが好ましく、40≦α≦50を満たすことがより好ましく、α=45であることが更に好ましい。なお、本実施形態において、傾斜角度であるαは、複数の第1切り起こし部41及び第2切り起こし部42において互いに同一の値となっている。 Here, when the inclination angle of the fold line 43 with respect to the flow direction D is α (°), α preferably satisfies 30 ≦ α ≦ 60, more preferably satisfies 40 ≦ α ≦ 50, and α More preferably, = 45. In the present embodiment, α that is the inclination angle has the same value in the plurality of first cut-and-raised portions 41 and the second cut-and-raised portions 42.
 なお、図6(a)では、第2切り起こし部42の折り曲げ線43が流れ方向Dに対して反時計回り側(左側)に傾いている例を示しているが、折り曲げ線43は流れ方向Dに対して時計回り側(右側)に傾いていてもよい。この場合、他の第2切り起こし部42の折り曲げ線43、及び第1切り起こし部41の折り曲げ線43も、時計回り側に傾くことになる。 6A shows an example in which the fold line 43 of the second cut-and-raised part 42 is inclined counterclockwise (left side) with respect to the flow direction D, but the fold line 43 is in the flow direction. It may be inclined clockwise (right side) with respect to D. In this case, the fold line 43 of the other second cut and raised portion 42 and the fold line 43 of the first cut and raised portion 41 are also tilted clockwise.
 折り曲げ線43の流れ方向Dの下流側端部43bと、下流側端部43bに対向する側壁32との距離をa、折り曲げ線43の流れ方向Dの上流側端部43aと、上流側端部43aに対向する側壁32との距離をb、としたときに、a≦bを満たしている。また、側壁32と幅方向Hに隣接する他の側壁32との距離をB、とすると、a、b及びBの関係については、例えば、0.05B≦a≦0.25B、且つ0.25B≦b≦0.50Bを満たしており、0.05B≦a≦0.20B、且つ0.25B≦b≦0.45Bを満たすことが好ましく、0.05B≦a≦0.15B、且つ0.25B≦b≦0.40Bを満たすことが一層好ましい。なお、本実施形態の図6(a)で示される例では、a=0.10B、且つb=0.36B、を満たしている。 The distance between the downstream end 43b in the flow direction D of the fold line 43 and the side wall 32 facing the downstream end 43b is a, the upstream end 43a in the flow direction D of the fold line 43, and the upstream end. When the distance from the side wall 32 facing 43a is b, a ≦ b is satisfied. Further, assuming that the distance between the side wall 32 and another side wall 32 adjacent in the width direction H is B, the relationship between a, b and B is, for example, 0.05B ≦ a ≦ 0.25B and 0.25B. ≦ b ≦ 0.50B, 0.05B ≦ a ≦ 0.20B, and 0.25B ≦ b ≦ 0.45B are preferably satisfied, 0.05B ≦ a ≦ 0.15B, and 0. More preferably, 25B ≦ b ≦ 0.40B is satisfied. In the example shown in FIG. 6A of this embodiment, a = 0.10B and b = 0.36B are satisfied.
 このように、折り曲げ線43の下流側端部43bと側壁32との距離は、折り曲げ線43の上流側端部43aと側壁32との距離以下(a≦b)であることが好ましい。また、図6(b)に示されるように、底壁33に対する第2切り起こし部42の折り曲げ角度をβ(°)とすると、30≦β≦150を満たすことが好ましく、30≦β≦90であることがより好ましい。 Thus, the distance between the downstream end 43b of the fold line 43 and the side wall 32 is preferably equal to or less than the distance between the upstream end 43a of the fold line 43 and the side wall 32 (a ≦ b). Further, as shown in FIG. 6B, when the bending angle of the second raised portion 42 with respect to the bottom wall 33 is β (°), it is preferable that 30 ≦ β ≦ 150 is satisfied, and 30 ≦ β ≦ 90. It is more preferable that
 以上のように構成されるフィン30の作用効果について説明する。フィン30において、第2切り起こし部42は、排気ガスGの流れ方向Dに対して傾斜する折り曲げ線43と、折り曲げ線43の上流側端部43aから下流側端部43bに向かって流れ方向Dの下流側に延びる切り込み線44とを含む。そして、第2切り起こし部42は、折り曲げ線43及び切り込み線44で囲まれた領域42aが、折り曲げ線43に沿って内側に折り曲げられることによって形成される。第1切り起こし部41についても同様である。 The function and effect of the fin 30 configured as described above will be described. In the fin 30, the second cut-and-raised part 42 has a fold line 43 inclined with respect to the flow direction D of the exhaust gas G, and a flow direction D from the upstream end 43 a to the downstream end 43 b of the fold line 43. , And a cut line 44 extending downstream. The second cut-and-raised part 42 is formed by bending an area 42 a surrounded by the fold line 43 and the cut line 44 inward along the fold line 43. The same applies to the first cut and raised portion 41.
 従って、図7に示されるように、底壁33から切り起こされた第2切り起こし部42では、折り曲げられた領域42aが流れ方向Dの上流側に向くこととなる。上流側から第2切り起こし部42に流れ込んだ排気ガスGは、底壁33から離れる方向(上方)且つ折り曲げ線43の傾斜方向に流れる。一方、上壁31から切り起こされた第2切り起こし部42では、排気ガスGは上壁31から離れる方向(下方)且つ折り曲げ線43の傾斜方向に流れる。側壁32から切り起こされた第1切り起こし部41では、排気ガスGは当該側壁32から離れる方向且つ折り曲げ線43の傾斜方向に流れる。 Therefore, as shown in FIG. 7, in the second cut and raised portion 42 cut and raised from the bottom wall 33, the bent region 42 a faces the upstream side in the flow direction D. The exhaust gas G that has flowed into the second cut-and-raised part 42 from the upstream side flows in the direction away from the bottom wall 33 (upward) and in the direction of inclination of the fold line 43. On the other hand, in the second cut-and-raised portion 42 cut and raised from the upper wall 31, the exhaust gas G flows in the direction away from the upper wall 31 (downward) and in the direction of inclination of the fold line 43. In the first cut-and-raised portion 41 cut and raised from the side wall 32, the exhaust gas G flows in the direction away from the side wall 32 and in the inclination direction of the fold line 43.
 よって、排気ガスGが流れる方向が折り曲げ線43の傾斜方向に変換されるので、ガス流路R内で螺旋流を発生させることができる。また、第1切り起こし部41及び第2切り起こし部42は、流れ方向Dに沿った複数の位置に配置されており、且つ複数の第1切り起こし部41及び第2切り起こし部42の折り曲げ線43は同じ側に傾斜している。よって、発生させた螺旋流を流れ方向Dに沿って維持することができる。 Therefore, since the direction in which the exhaust gas G flows is converted into the inclination direction of the fold line 43, a spiral flow can be generated in the gas flow path R. The first cut-and-raised part 41 and the second cut-and-raised part 42 are arranged at a plurality of positions along the flow direction D, and the plurality of first cut-and-raised parts 41 and the second cut and raised parts 42 are bent. Line 43 is inclined to the same side. Therefore, the generated spiral flow can be maintained along the flow direction D.
 すなわち、複数の第1切り起こし部41及び第2切り起こし部42は、発生させた螺旋流のガイドとして機能し、螺旋流を流れ方向Dに維持させながら排気ガスGを流すことができる。従って、排気ガスGの渦を流れ方向Dに沿って維持することができ、ガス流路Rの壁部35近傍における流速を高めることができる。よって、ガス流路Rの壁部35近傍にすすが堆積するのを抑制することができ、排気ガスGに対する熱伝達率を向上させることもできる。 That is, the plurality of first cut-and-raised portions 41 and second cut-and-raised portions 42 function as guides for the generated spiral flow, and can flow the exhaust gas G while maintaining the spiral flow in the flow direction D. Therefore, the vortex of the exhaust gas G can be maintained along the flow direction D, and the flow velocity in the vicinity of the wall portion 35 of the gas flow path R can be increased. Therefore, it is possible to suppress soot accumulation in the vicinity of the wall portion 35 of the gas flow path R, and to improve the heat transfer coefficient with respect to the exhaust gas G.
 また、図6(a)に示されるように、流れ方向Dに対する折り曲げ線43の傾斜角度は、30°以上且つ60°以下であることが好ましい。この場合、第1切り起こし部41及び第2切り起こし部42で螺旋流をより効率よく発生させることができる。よって、渦を流れ方向Dに沿ってより確実に維持することができる。 Further, as shown in FIG. 6A, the inclination angle of the fold line 43 with respect to the flow direction D is preferably 30 ° or more and 60 ° or less. In this case, the spiral flow can be more efficiently generated by the first cut and raised portion 41 and the second cut and raised portion 42. Therefore, the vortex can be more reliably maintained along the flow direction D.
 また、折り曲げ線43の流れ方向Dの下流側端部43bと、下流側端部43bに最も近い壁部35との距離は、折り曲げ線43の流れ方向Dの上流側端部43aと、上流側端部43aに最も近い壁部35との距離以下である(a≦b)。このように、下流側端部43bと壁部35との距離を、上流側端部43aと壁部35との距離に対して短くすることにより、第1切り起こし部41及び第2切り起こし部42の下流側の流路をより狭くすることができる。 Further, the distance between the downstream end 43b in the flow direction D of the fold line 43 and the wall 35 closest to the downstream end 43b is equal to the upstream end 43a in the flow direction D of the fold line 43 and the upstream side. It is below the distance with the wall part 35 nearest to the edge part 43a (a <= b). Thus, the first cut-and-raised portion 41 and the second cut-and-raised portion are obtained by shortening the distance between the downstream end portion 43b and the wall portion 35 with respect to the distance between the upstream end portion 43a and the wall portion 35. The flow path on the downstream side of 42 can be made narrower.
 従って、第1切り起こし部41及び第2切り起こし部42の下流側で流れる排気ガスGの圧力を高めることができるので、より強力な螺旋流を効率よく発生させることができる。よって、ガス流路Rにおける螺旋流を強めることができるので、すすの堆積をより確実に抑制すると共に熱伝達率をより高めることができる。 Therefore, since the pressure of the exhaust gas G flowing on the downstream side of the first cut and raised portion 41 and the second cut and raised portion 42 can be increased, a more powerful spiral flow can be efficiently generated. Therefore, since the spiral flow in the gas flow path R can be strengthened, soot accumulation can be more reliably suppressed and the heat transfer rate can be further increased.
 また、図5(a)に示されるように、第1切り起こし部41と第2切り起こし部42とは、流れ方向Dに沿った複数の位置に配置されている。第1切り起こし部41と、流れ方向Dに隣接する他の第1切り起こし部41との距離をL、第1切り起こし部41と、流れ方向Dに隣接する第2切り起こし部42との距離をe、としたときに、0.1L≦e≦0.4L、を満たしている。よって、第1切り起こし部41と第2切り起こし部42とを螺旋流のガイドとして機能しやすい位置に配置できるので、螺旋流をより強めることができる。従って、流速を一層高めることができるので、すすの堆積を一層確実に抑制すると共に熱伝達率をより高めることができる。 Further, as shown in FIG. 5A, the first cut and raised portion 41 and the second cut and raised portion 42 are arranged at a plurality of positions along the flow direction D. The distance between the first cut and raised portion 41 and the other first cut and raised portion 41 adjacent to the flow direction D is L, and the first cut and raised portion 41 and the second cut and raised portion 42 adjacent to the flow direction D are When the distance is e, 0.1L ≦ e ≦ 0.4L is satisfied. Therefore, the first cut-and-raised part 41 and the second cut-and-raised part 42 can be arranged at positions that easily function as guides for the spiral flow, so that the spiral flow can be further strengthened. Therefore, since the flow rate can be further increased, soot accumulation can be more reliably suppressed and the heat transfer rate can be further increased.
(第2実施形態)
 次に、第2実施形態のフィン50について図8、図9(a)及び図9(b)を参照しながら説明する。第2実施形態のフィン50は、その内部に形成された第1切り起こし部51の配置と第2切り起こし部52の配置とが第1実施形態と異なっている。第1切り起こし部51及び第2切り起こし部52自体の構成は、第1実施形態の第1切り起こし部41及び第2切り起こし部42の構成と同一である。以降の説明では、第1実施形態と重複する説明を省略する。
(Second Embodiment)
Next, the fin 50 of 2nd Embodiment is demonstrated, referring FIG.8, FIG.9 (a) and FIG.9 (b). The fin 50 of the second embodiment is different from the first embodiment in the arrangement of the first cut-and-raised part 51 and the arrangement of the second cut-and-raised part 52 formed therein. The configurations of the first cut and raised portion 51 and the second cut and raised portion 52 themselves are the same as the configurations of the first cut and raised portion 41 and the second cut and raised portion 42 of the first embodiment. In the following description, the description which overlaps with 1st Embodiment is abbreviate | omitted.
 図8、図9(a)及び図9(b)に示されるように、第1切り起こし部51及び第2切り起こし部52は、例えば、流れ方向Dに等間隔に配置されている。側壁32からガス流路R1に切り起こされた第1切り起こし部51と、側壁32からガス流路R2に切り起こされた第1切り起こし部51と、は流れ方向Dに沿って交互に等間隔に配置されている。 As shown in FIG. 8, FIG. 9A and FIG. 9B, the first cut-and-raised portion 51 and the second cut-and-raised portion 52 are arranged at equal intervals in the flow direction D, for example. The first cut and raised portions 51 cut and raised from the side wall 32 to the gas flow path R1 and the first cut and raised portions 51 cut and raised from the side wall 32 to the gas flow path R2 are alternately arranged along the flow direction D. Arranged at intervals.
 また、ガス流路R1において、側壁32から切り起こされた第1切り起こし部51と、流れ方向Dに隣接する第1切り起こし部51との距離をL、また、第1切り起こし部51と、流れ方向Dに隣接する第2切り起こし部52との距離をe、とすると、0.6L≦e≦0.9Lを満たしている。また、0.7L≦e≦0.8Lであることがより好ましく、e=0.75Lであることが一層好ましい。ガス流路R2についても同様である。 Further, in the gas flow path R1, the distance between the first cut and raised portion 51 cut and raised from the side wall 32 and the first cut and raised portion 51 adjacent in the flow direction D is L, and the first cut and raised portion 51 is If the distance from the second cut and raised portion 52 adjacent to the flow direction D is e, 0.6L ≦ e ≦ 0.9L is satisfied. Further, 0.7L ≦ e ≦ 0.8L is more preferable, and e = 0.75L is even more preferable. The same applies to the gas flow path R2.
 以上、第2実施形態に係るフィン50では、第1実施形態と同様、フィン50により排気ガスGが流れる方向が折り曲げ線43の傾斜方向に変換されるので、ガス流路R1,R2内で螺旋流を発生させることができる。また、第1切り起こし部51及び第2切り起こし部52は、流れ方向Dに沿った複数の位置に配置されており、且つ複数の第1切り起こし部51及び第2切り起こし部52は同じ側に傾斜している。 As described above, in the fin 50 according to the second embodiment, the direction in which the exhaust gas G flows is converted by the fin 50 into the inclination direction of the fold line 43 as in the first embodiment, so that the spiral is formed in the gas flow paths R1 and R2. A flow can be generated. Further, the first cut-and-raised portion 51 and the second cut-and-raised portion 52 are arranged at a plurality of positions along the flow direction D, and the plurality of first cut-and-raised portions 51 and the second cut and raised portion 52 are the same. Inclined to the side.
 従って、発生させた螺旋流を流れ方向Dに沿って維持することができる。更に、第2実施形態では、第1切り起こし部51と、流れ方向Dに隣接する他の第1切り起こし部51との距離をL、第1切り起こし部51と、流れ方向Dに隣接する第2切り起こし部52との距離をe、としたときに、0.6L≦e≦0.9Lを満たしている。よって、第1切り起こし部51と第2切り起こし部52とを螺旋流のガイドとして機能しやすい位置に配置できるので、第1実施形態と同様の効果が得られる。 Therefore, the generated spiral flow can be maintained along the flow direction D. Furthermore, in the second embodiment, the distance between the first cut-and-raised portion 51 and the other first cut-and-raised portion 51 adjacent to the flow direction D is L, and the first cut-and-raised portion 51 is adjacent to the flow direction D. When the distance from the second cut and raised portion 52 is e, 0.6L ≦ e ≦ 0.9L is satisfied. Therefore, the first cut-and-raised part 51 and the second cut-and-raised part 52 can be arranged at positions where they can easily function as a spiral flow guide, so that the same effect as in the first embodiment can be obtained.
(第3実施形態)
 続いて、第3実施形態に係るフィン60について図10、図11(a)及び図11(b)を参照しながら説明する。第3実施形態のフィン60は、その内部の第1切り起こし部61の配置と第2切り起こし部62の配置とが第1実施形態及び第2実施形態と異なっている。
(Third embodiment)
Next, the fin 60 according to the third embodiment will be described with reference to FIGS. 10, 11 (a), and 11 (b). The fin 60 of the third embodiment is different from the first embodiment and the second embodiment in the arrangement of the first cut-and-raised portion 61 and the arrangement of the second cut-and-raised portion 62 therein.
 図10、図11(a)及び図11(b)に示されるように、ガス流路R1及びガス流路R2のそれぞれに配置される第2切り起こし部62の数は、第1実施形態及び第2実施形態よりも多くなっている。第2切り起こし部62の数は、第2切り起こし部42及び第2切り起こし部52の数の2倍である。よって、流れ方向Dに沿って配置される第2切り起こし部62の間隔は、第2切り起こし部42及び第2切り起こし部52の当該間隔の1/2である。 As shown in FIG. 10, FIG. 11 (a), and FIG. 11 (b), the number of second raised portions 62 arranged in each of the gas flow path R1 and the gas flow path R2 is the same as that of the first embodiment. More than in the second embodiment. The number of the second cut and raised portions 62 is twice the number of the second cut and raised portions 42 and the second cut and raised portions 52. Accordingly, the interval between the second cut and raised portions 62 arranged along the flow direction D is ½ of the interval between the second cut and raised portions 42 and the second cut and raised portions 52.
 側壁32からガス流路R1側に切り起こされた第1切り起こし部61と、側壁32からガス流路R2側に切り起こされた第1切り起こし部61とは、流れ方向Dに沿って交互に配置されている。第1切り起こし部61は、一の第2切り起こし部62と、一の第2切り起こし部62に流れ方向Dに隣接する他の第2切り起こし部62と、の中間に配置されている。 The first cut and raised portions 61 cut and raised from the side wall 32 to the gas flow path R1 side and the first cut and raised portions 61 cut and raised from the side wall 32 to the gas flow path R2 side are alternately arranged along the flow direction D. Is arranged. The first cut-and-raised portion 61 is disposed between one second cut-and-raised portion 62 and another second cut-and-raised portion 62 adjacent to the second cut and raised portion 62 in the flow direction D. .
 また、図11(b)に示されるように、側壁32からガス流路R1側に切り起こされた第1切り起こし部61と、側壁32からガス流路R2側に切り起こされた第1切り起こし部61とは、流れ方向Dに対して互いに反対側に傾斜している。しかしながら、一つのガス流路R1,R2の内側に切り起こされた第1切り起こし部61及び第2切り起こし部62は、ガス流路Rの内側から見て流れ方向Dに対して同じ側に傾斜している。 Further, as shown in FIG. 11B, a first cut and raised portion 61 cut and raised from the side wall 32 to the gas flow path R1 side, and a first cut and raised from the side wall 32 to the gas flow path R2 side. The raising portions 61 are inclined to the opposite sides with respect to the flow direction D. However, the first cut-and-raised portion 61 and the second cut-and-raised portion 62 cut and raised inside the gas flow paths R1 and R2 are on the same side with respect to the flow direction D when viewed from the inside of the gas flow path R. Inclined.
 図11(b)に示されるように、ガス流路R1において、側壁32から切り起こされた一の第1切り起こし部61Aと、流れ方向Dに隣接する第1切り起こし部61Bとの距離をL、また、第1切り起こし部61Aと、流れ方向Dに隣接する第2切り起こし部62Aとの距離をe2、とすると、0.1L≦e2≦0.4Lを満たしている。また、0.2L≦e2≦0.3Lであることがより好ましく、e2=0.25Lであることが一層好ましい。一方、第1切り起こし部61Aと、第2切り起こし部62Aの下流側に隣接する第2切り起こし部62Bとの距離をe1、とすると、0.6L≦e1≦0.9Lを満たしている。また、0.7L≦e1≦0.8Lであることがより好ましく、e1=0.75Lであることが一層好ましい。ガス流路R2についても同様である。 As shown in FIG. 11 (b), in the gas flow path R1, the distance between one first cut and raised portion 61A cut and raised from the side wall 32 and the first cut and raised portion 61B adjacent in the flow direction D is set as follows. If the distance between the first cut-and-raised part 61A and the second cut-and-raised part 62A adjacent to the flow direction D is e2, then 0.1L ≦ e2 ≦ 0.4L is satisfied. Further, 0.2L ≦ e2 ≦ 0.3L is more preferable, and e2 = 0.25L is more preferable. On the other hand, when the distance between the first cut and raised portion 61A and the second cut and raised portion 62B adjacent to the downstream side of the second cut and raised portion 62A is e1, 0.6L ≦ e1 ≦ 0.9L is satisfied. . Further, 0.7L ≦ e1 ≦ 0.8L is more preferable, and e1 = 0.75L is even more preferable. The same applies to the gas flow path R2.
 以上、第3実施形態に係るフィン60では、前述と同様、排気ガスGが流れる方向が傾斜方向に変換されるので、ガス流路R1,R2内で螺旋流を発生させることができる。また、ガス流路R1、R2の内側に切り起こされた複数の第1切り起こし部61及び第2切り起こし部62は、ガス流路R1,R2の内側から見たときに流れ方向Dに対して同じ側に傾斜している。 As described above, in the fin 60 according to the third embodiment, since the direction in which the exhaust gas G flows is converted into the inclined direction as described above, a spiral flow can be generated in the gas flow paths R1 and R2. The plurality of first cut-and-raised parts 61 and second cut-and-raised parts 62 cut and raised inside the gas flow paths R1 and R2 are in the flow direction D when viewed from the inside of the gas flow paths R1 and R2. Are inclined to the same side.
 従って、発生させた螺旋流を流れ方向Dに沿って維持することができるので、前述の各実施形態と同様の効果が得られる。更に、第3実施形態では、第1切り起こし部61Aと、流れ方向Dに隣接する他の第1切り起こし部61Bとの距離をL、第1切り起こし部61Aと、流れ方向Dに隣接する第2切り起こし部62Aとの距離をe2、としたときに、0.1L≦e2≦0.4Lを満たしている。 Therefore, since the generated spiral flow can be maintained along the flow direction D, the same effects as those of the above-described embodiments can be obtained. Further, in the third embodiment, the distance between the first cut and raised portion 61A and the other first cut and raised portion 61B adjacent to the flow direction D is L, and the first cut and raised portion 61A is adjacent to the flow direction D. When the distance from the second cut and raised portion 62A is e2, 0.1L ≦ e2 ≦ 0.4L is satisfied.
 また、第1切り起こし部61Aと、第2切り起こし部62Aの下流側に隣接する第2切り起こし部62Bとの距離をe1、としたときに、0.6L≦e1≦0.9Lを満たしている。従って、第1切り起こし部61と第2切り起こし部62とを螺旋流のガイドとして機能しやすい位置に配置すると共に、第1実施形態及び第2実施形態よりも第1切り起こし部61及び第2切り起こし部62の数が多いので、螺旋流を一層強めることができる。従って、流速を更に高めて熱伝達率を高めると共に、すすの堆積を更に確実に抑制できる。 In addition, when the distance between the first cut and raised portion 61A and the second cut and raised portion 62B adjacent to the downstream side of the second cut and raised portion 62A is e1, 0.6L ≦ e1 ≦ 0.9L is satisfied. ing. Therefore, the first cut-and-raised portion 61 and the second cut-and-raised portion 62 are arranged at positions that easily function as a guide for the spiral flow, and the first cut-and-raised portion 61 and the first cut-and-raised portion 61 and the second Since the number of the two cut-and-raised portions 62 is large, the spiral flow can be further strengthened. Therefore, the flow rate can be further increased to increase the heat transfer rate, and soot accumulation can be further reliably suppressed.
 以上、本発明の各実施形態について説明したが、本発明は、前述の各実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。すなわち、EGRクーラー用のフィンを構成する各部については上記の要旨を変更しない範囲で適宜変更可能である。 The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and can be modified without departing from the gist described in each claim or applied to other embodiments. It may be what you did. That is, each part constituting the fin for the EGR cooler can be appropriately changed without changing the gist.
 前述の実施形態では、第1切り起こし部41及び第2切り起こし部42が流れ方向Dに等間隔に配置されている例について説明したが、各切り起こし部は等間隔に配置されていなくてもよい。例えば、流れ方向Dの下流側に向かうに従って、各切り起こし部の配置間隔を徐々に狭くしてもよいし、広くしてもよい。 In the above-described embodiment, the example in which the first cut-and-raised portion 41 and the second cut-and-raised portion 42 are arranged at equal intervals in the flow direction D has been described. However, the cut-and-raised portions are not arranged at equal intervals. Also good. For example, as it goes to the downstream side in the flow direction D, the arrangement interval of the cut and raised portions may be gradually narrowed or widened.
 また、前述の実施形態では、第1切り起こし部41及び第2切り起こし部42が矩形状となっている例について説明したが、切り起こし部の形状は、台形等の多角形状、又は、楕円及び長円等の曲線形状等、適宜変更することが可能である。すなわち、図6(a)に示される切り込み線44は、上流側端部43aから流れ方向Dの下流側に延びると共に下流側端部43bまで延びていればよく、切り込み線44の形状は、適宜変更可能である。 In the above-described embodiment, the example in which the first cut-and-raised portion 41 and the second cut-and-raised portion 42 have a rectangular shape has been described. The curved shape such as an ellipse can be appropriately changed. That is, the cut line 44 shown in FIG. 6A only needs to extend from the upstream end 43a to the downstream side in the flow direction D and to the downstream end 43b, and the shape of the cut line 44 is appropriately set. It can be changed.
 また、前述の実施形態では、流れ方向Dに対する第1切り起こし部41及び第2切り起こし部42の傾斜角度であるαの値が、複数の第1切り起こし部41及び第2切り起こし部42において互いに同一の値となっている例について説明した。しかしながら、αの値は、複数の第1切り起こし部及び第2切り起こし部において互いに同一の値となっていなくてもよい。例えば、流れ方向Dの下流側に向かうにつれて、αの値を徐々に大きくしたり、又は小さくしたりすることも可能である。切り起こし部の折り曲げ角度であるβの値についても同様である。このようにα及びβの値、更に前述のa,b及びBの値については、製品の仕様及び求める能力等によって適宜変更することが可能である。 Further, in the above-described embodiment, the value of α, which is the inclination angle of the first cut-and-raised portion 41 and the second cut-and-raised portion 42 with respect to the flow direction D, is the plurality of first cut-and-raised portions 41 and the second cut and raised portions 42. The example in which the values are the same as each other has been described. However, the value of α may not be the same value in the plurality of first cut and raised portions. For example, the value of α can be gradually increased or decreased toward the downstream side in the flow direction D. The same applies to the value of β which is the bending angle of the cut and raised portion. As described above, the values of α and β, and further the values of a, b, and B described above can be changed as appropriate depending on the product specifications and required ability.
 また、前述の実施形態では、図3に示されるように、伝熱管20において、上プレート21と下プレート22の間に排気ガスGのガス流路Rを有するフィン30が配置される例について説明した。ここで、伝熱管20に配置されるフィンの種類及び個数については適宜変更可能である。例えば、切り起こし部の数及び配置態様が互いに異なる(前述のα及びβの値等が互いに異なる)フィンを流れ方向Dに沿って複数配置してもよい。 In the above-described embodiment, as shown in FIG. 3, an example is described in which the fin 30 having the gas flow path R of the exhaust gas G is disposed between the upper plate 21 and the lower plate 22 in the heat transfer tube 20. did. Here, the type and number of fins arranged in the heat transfer tube 20 can be changed as appropriate. For example, a plurality of fins having different numbers of cut-and-raised portions and different arrangement forms (the values of α and β described above are different) may be arranged along the flow direction D.
 また、前述の実施形態では、EGRクーラー10が排気ガス再循環システム1に配置される例について説明した。しかしながら、本発明において、EGRクーラーの構成は、前述の例に限られず適宜変更可能である。更に、排気ガス再循環システムの構成についても、排気ガス再循環システム1の構成に限られず適宜変更可能である。 In the above-described embodiment, the example in which the EGR cooler 10 is arranged in the exhaust gas recirculation system 1 has been described. However, in the present invention, the configuration of the EGR cooler is not limited to the above example, and can be changed as appropriate. Furthermore, the configuration of the exhaust gas recirculation system is not limited to the configuration of the exhaust gas recirculation system 1 and can be changed as appropriate.
 また、前述の実施形態では、熱交換器がEGRクーラーである例について説明した。しかしながら、本発明は、EGRクーラー以外の排気系部品、排熱回収器、排熱交換器、過給器、又はオイルクーラー等、他の自動車用熱交換器にも適用可能である。 In the above-described embodiment, the example in which the heat exchanger is an EGR cooler has been described. However, the present invention can also be applied to other automotive heat exchangers such as exhaust system parts other than EGR coolers, exhaust heat recovery devices, exhaust heat exchangers, superchargers, or oil coolers.
1…排気ガス再循環システム、2…エンジン、3…EGRバルブ、4…排気循環路、10…EGRクーラー(熱交換器)、10a…ガス導入部、10b…ガス排出部、10c…冷却水導入部、10d…冷却水排出部、11…第1ディフューザー、11a…枠部、11b…環状突部、12…第2ディフューザー、12a…枠部、12b…環状突部、13…第1アウターケース、13a…平面、13b…突出部、13c,13d…突出部、14…第2アウターケース、14a…平面、14b…突出部、14c…貫通孔、15…第1固定具、15a…孔部、15b…挿通孔、16…第2固定部、16a…孔部、16b…挿通孔、17…冷却水導入管、18…冷却水導出管、20…伝熱管、20a,20b…突起、21…上プレート、21a…突出部、22…下プレート、22a…突出部、30,50,60…フィン(熱交換器用フィン)、31…上壁、32…側壁、33…底壁、35…壁部、40…切り起こし部、41,51,61,61A,61B…第1切り起こし部、42,52,62,62A,62B…第2切り起こし部、42a…領域、43…折り曲げ線、43a…上流側端部、43b…下流側端部、44…切り込み線、44a…第1直線部、44b…第2直線部、44c…第3直線部、D…流れ方向、F…新気、G…排気ガス、H…幅方向、R,R1,R2…ガス流路、S…積層方向、W…冷却水。 DESCRIPTION OF SYMBOLS 1 ... Exhaust gas recirculation system, 2 ... Engine, 3 ... EGR valve, 4 ... Exhaust circulation path, 10 ... EGR cooler (heat exchanger), 10a ... Gas introduction part, 10b ... Gas discharge part, 10c ... Cooling water introduction Part, 10d ... cooling water discharge part, 11 ... first diffuser, 11a ... frame part, 11b ... annular protrusion, 12 ... second diffuser, 12a ... frame part, 12b ... annular protrusion, 13 ... first outer case, 13a ... Plane, 13b ... Projection, 13c, 13d ... Projection, 14 ... Second outer case, 14a ... Plane, 14b ... Projection, 14c ... Through hole, 15 ... First fixture, 15a ... Hole, 15b ... Insertion hole, 16 ... Second fixing part, 16a ... Hole part, 16b ... Insertion hole, 17 ... Cooling water introduction pipe, 18 ... Cooling water outlet pipe, 20 ... Heat transfer pipe, 20a, 20b ... Projection, 21 ... Upper plate , 21a ... protruding portion 22 ... Lower plate, 22a ... Projection part, 30, 50, 60 ... Fin (heat exchanger fin), 31 ... Upper wall, 32 ... Side wall, 33 ... Bottom wall, 35 ... Wall part, 40 ... Cut-and-raised part, 41 , 51, 61, 61A, 61B ... first cut and raised portion, 42, 52, 62, 62A, 62B ... second cut and raised portion, 42a ... region, 43 ... fold line, 43a ... upstream end, 43b ... downstream Side end portion 44 ... cut line, 44a ... first straight portion 44b ... second straight portion 44c ... third straight portion D ... flow direction, F ... fresh air, G ... exhaust gas, H ... width direction, R, R1, R2 ... gas flow path, S ... stacking direction, W ... cooling water.

Claims (5)

  1.  上壁、側壁及び底壁が連続することによって断面が矩形波状に形成されたガス流路と、
     前記上壁、前記側壁及び前記底壁を含む壁部から前記ガス流路の内側に切り起こされた切り起こし部と、を備えた熱交換器用フィンであって、
     前記切り起こし部は、前記壁部でガスの流れ方向に対して傾斜する折り曲げ線と、前記折り曲げ線の前記流れ方向の上流側端部から前記流れ方向の下流側に延びると共に前記折り曲げ線の前記流れ方向の下流側端部まで延びる切り込み線と、を含んでおり、
     前記切り起こし部は、前記折り曲げ線と、前記切り込み線とで囲まれた領域が前記折り曲げ線に沿って前記ガス流路の内側に折り曲げられることによって形成され、
     前記切り起こし部は、前記流れ方向に沿った複数の位置に配置されており、
     複数の前記切り起こし部の各前記折り曲げ線は、前記ガス流路の内側から見たときに前記流れ方向に対して同じ側に傾斜している、
    熱交換器用フィン。
    A gas flow path whose cross section is formed in a rectangular wave shape by continuous upper wall, side wall and bottom wall;
    A heat exchanger fin comprising a cut and raised portion cut and raised from the wall portion including the upper wall, the side wall, and the bottom wall to the inside of the gas flow path,
    The cut-and-raised portion extends from the upstream end of the fold line in the flow direction to the downstream side of the flow direction and the fold line of the fold line. A score line extending to the downstream end in the flow direction,
    The cut-and-raised part is formed by folding a region surrounded by the fold line and the cut line to the inside of the gas flow path along the fold line,
    The cut and raised parts are arranged at a plurality of positions along the flow direction,
    Each fold line of the plurality of cut and raised portions is inclined to the same side with respect to the flow direction when viewed from the inside of the gas flow path.
    Heat exchanger fins.
  2.  前記流れ方向に対する前記折り曲げ線の傾斜角度は、30°以上且つ60°以下である、
    請求項1に記載の熱交換器用フィン。
    The inclination angle of the fold line with respect to the flow direction is not less than 30 ° and not more than 60 °.
    The heat exchanger fin according to claim 1.
  3.  前記折り曲げ線の前記流れ方向の下流側端部と、前記下流側端部から最も近い前記壁部との距離は、前記折り曲げ線の前記流れ方向の上流側端部と、前記上流側端部から最も近い前記側壁との距離以下である、
    請求項1又は2に記載の熱交換器用フィン。
    The distance between the downstream end of the fold line in the flow direction and the wall portion closest to the downstream end is from the upstream end and the upstream end of the fold line in the flow direction. Less than or equal to the distance to the nearest side wall,
    The heat exchanger fin according to claim 1 or 2.
  4.  前記切り起こし部は、前記側壁から切り起こされた第1切り起こし部と、前記上壁又は前記底壁から切り起こされた第2切り起こし部と、を含んでおり、
     前記第1切り起こし部と前記第2切り起こし部とは、前記流れ方向に沿った複数の位置に配置されており、
     前記第1切り起こし部と、前記流れ方向に隣接する他の前記第1切り起こし部との距離をL、
     前記第1切り起こし部と、前記流れ方向に隣接する前記第2切り起こし部との距離をe、としたときに、
     0.1L≦e≦0.4L、
    を満たす請求項1~3のいずれか一項に記載の熱交換器用フィン。
    The cut and raised portion includes a first cut and raised portion cut and raised from the side wall, and a second cut and raised portion cut and raised from the upper wall or the bottom wall.
    The first cut-and-raised part and the second cut-and-raised part are arranged at a plurality of positions along the flow direction,
    The distance between the first cut-and-raised portion and the other first cut-and-raised portion adjacent to the flow direction is L,
    When the distance between the first cut and raised portion and the second cut and raised portion adjacent to the flow direction is e,
    0.1L ≦ e ≦ 0.4L,
    The heat exchanger fin according to any one of claims 1 to 3, wherein:
  5.  前記切り起こし部は、前記側壁から切り起こされた第1切り起こし部と、前記上壁又は前記底壁から切り起こされた第2切り起こし部と、を含んでおり、
     前記第1切り起こし部と前記第2切り起こし部とは、前記流れ方向に沿った複数の位置に配置されており、
     前記第1切り起こし部と、前記流れ方向に隣接する他の前記第1切り起こし部との距離をL、
     前記第1切り起こし部と、前記流れ方向に隣接する前記第2切り起こし部との距離をe、としたときに、
     0.6L≦e≦0.9L、
    を満たす請求項1~4のいずれか一項に記載の熱交換器用フィン。
    The cut and raised portion includes a first cut and raised portion cut and raised from the side wall, and a second cut and raised portion cut and raised from the upper wall or the bottom wall.
    The first cut-and-raised part and the second cut-and-raised part are arranged at a plurality of positions along the flow direction,
    The distance between the first cut-and-raised portion and the other first cut-and-raised portion adjacent to the flow direction is L,
    When the distance between the first cut and raised portion and the second cut and raised portion adjacent to the flow direction is e,
    0.6L ≦ e ≦ 0.9L,
    The heat exchanger fin according to any one of claims 1 to 4, wherein:
PCT/JP2016/080560 2015-12-04 2016-10-14 Fin for heat exchanger WO2017094366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-237752 2015-12-04
JP2015237752A JP2017101904A (en) 2015-12-04 2015-12-04 Fin for heat exchanger

Publications (1)

Publication Number Publication Date
WO2017094366A1 true WO2017094366A1 (en) 2017-06-08

Family

ID=58796970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080560 WO2017094366A1 (en) 2015-12-04 2016-10-14 Fin for heat exchanger

Country Status (2)

Country Link
JP (1) JP2017101904A (en)
WO (1) WO2017094366A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198368A1 (en) * 2018-04-09 2019-10-17 株式会社デンソー Heat exchanger
JP2019216177A (en) * 2018-06-12 2019-12-19 株式会社Soken Component cooler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019052300A1 (en) * 2017-09-18 2019-03-21 美的集团股份有限公司 Warmer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350081A (en) * 2001-05-25 2002-12-04 Maruyasu Industries Co Ltd Multitubular heat-exchanger
JP2007005673A (en) * 2005-06-27 2007-01-11 Toyota Industries Corp Heat sink for power module
JP2013100978A (en) * 2011-10-18 2013-05-23 Calsonic Kansei Corp Exhaust gas heat exchanger
JP2014224669A (en) * 2013-04-23 2014-12-04 カルソニックカンセイ株式会社 Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350081A (en) * 2001-05-25 2002-12-04 Maruyasu Industries Co Ltd Multitubular heat-exchanger
JP2007005673A (en) * 2005-06-27 2007-01-11 Toyota Industries Corp Heat sink for power module
JP2013100978A (en) * 2011-10-18 2013-05-23 Calsonic Kansei Corp Exhaust gas heat exchanger
JP2014224669A (en) * 2013-04-23 2014-12-04 カルソニックカンセイ株式会社 Heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198368A1 (en) * 2018-04-09 2019-10-17 株式会社デンソー Heat exchanger
JP2019216177A (en) * 2018-06-12 2019-12-19 株式会社Soken Component cooler
JP7002410B2 (en) 2018-06-12 2022-02-04 株式会社Soken Parts cooling device

Also Published As

Publication number Publication date
JP2017101904A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
US9909812B2 (en) Heat exchanger
EP3270085B1 (en) Heat exchanger for an egr system
EP2787315B1 (en) Inner fin
JP2006322698A (en) Heat exchanger
JP2006105577A (en) Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein
EP3436761B1 (en) Heat exchanger utilized as an egr cooler in a gas recirculation system
JP2006207948A (en) Air-cooled oil cooler
WO2015162897A1 (en) Exhaust heat exchanger
WO2017094366A1 (en) Fin for heat exchanger
US20210247102A1 (en) Heat-exchange pipe, heat-exchanger unit using same, and condensing boiler using same
WO2020017176A1 (en) Heat exchanger
JP5100379B2 (en) Turbulent insert
JP2013122368A (en) Vehicle heat exchanger
JP5324169B2 (en) Heat exchanger tubes and heat exchangers
JP6463993B2 (en) Tube for heat exchanger
WO2020184315A1 (en) Heat exchanger
JP5221329B2 (en) Waveby fin
JP5574737B2 (en) Heat exchanger
JP2007017061A (en) Gas cooler for carbon dioxide air conditioner
JP7452672B2 (en) fin tube heat exchanger
JP2011158130A (en) Heat exchanger
JP2008185307A (en) Fin for heat exchanger
WO2020149107A1 (en) Heat exchanger
JP2013142486A (en) Heat exchanger
JP2011158127A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870306

Country of ref document: EP

Kind code of ref document: A1