WO2017094197A1 - Sterilization device and sterilization method - Google Patents

Sterilization device and sterilization method Download PDF

Info

Publication number
WO2017094197A1
WO2017094197A1 PCT/JP2015/084214 JP2015084214W WO2017094197A1 WO 2017094197 A1 WO2017094197 A1 WO 2017094197A1 JP 2015084214 W JP2015084214 W JP 2015084214W WO 2017094197 A1 WO2017094197 A1 WO 2017094197A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
space
discharge
liquid
axis
Prior art date
Application number
PCT/JP2015/084214
Other languages
French (fr)
Japanese (ja)
Inventor
茂 藤村
岳彦 佐藤
智樹 中嶋
和貴 岡崎
秀人 神山
仁 押谷
道子 岡本
敬 五十嵐
敏勝 長沢
勝之 鈴木
人也 中村
達行 中谷
Original Assignee
国立大学法人東北大学
株式会社平山製作所
茂 藤村
学校法人加計学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 株式会社平山製作所, 茂 藤村, 学校法人加計学園 filed Critical 国立大学法人東北大学
Priority to JP2017553597A priority Critical patent/JP6675538B2/en
Priority to CN201580085054.5A priority patent/CN108367092B/en
Priority to PCT/JP2015/084214 priority patent/WO2017094197A1/en
Publication of WO2017094197A1 publication Critical patent/WO2017094197A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/03Electric current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L12/00Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor
    • A61L12/02Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor using physical phenomena, e.g. electricity, ultrasonics or ultrafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L12/00Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor
    • A61L12/08Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor using chemical substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L12/00Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor
    • A61L12/08Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor using chemical substances
    • A61L12/12Non-macromolecular oxygen-containing compounds, e.g. hydrogen peroxide or ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases

Definitions

  • the present invention relates to a sterilization apparatus and a sterilization method.
  • a sterilization apparatus in which a voltage is applied between electrodes to cause a discharge in a space between the electrodes and sterilize an object with a chemical species generated along with the discharge (for example, Patent Documents). 1).
  • contact lenses are easily damaged when dried. Therefore, when the object is a contact lens, it can be considered that sterilization is performed in a state where the object is immersed in a liquid.
  • the rate at which chemical species diffuse in the liquid is lower than that in gas. For this reason, when the target object immersed in the liquid is sterilized using the sterilization apparatus, it takes a long time for the chemical species generated by the discharge to reach the target object. Therefore, in the said sterilizer, there exists a possibility that the time required in order to sterilize the target object immersed in the liquid may become excessively long.
  • One of the objects of the present invention is to quickly sterilize an object immersed in a liquid.
  • the sterilizer is A container having therein a storage space which is a space for storing the liquid and the object immersed in the liquid; A first electrode and a second electrode; and a dielectric interposed between the first electrode and the second electrode; and a voltage between the first electrode and the second electrode. Is applied to cause a discharge in the space between the first electrode and the second electrode, and in the state where the liquid is stored in the storage space, convection is performed in the liquid. A discharge part that forms a flow that circulates in a space vertically above the liquid in the accommodation space in association with the discharge so as to be formed; And the object is sterilized by the chemical species generated along with the discharge in a state where the liquid and the object are stored in the storage space.
  • the sterilization method is In a housing space that is a space inside the container, a liquid and an object immersed in the liquid are arranged, By applying a voltage between the first electrode and the second electrode interposing the dielectric, a discharge is generated in the space between the first electrode and the second electrode, A flow that circulates in a space vertically above the liquid in the accommodating space so as to form a convection in the liquid is formed along with the discharge, The object is sterilized by the chemical species generated with the discharge.
  • FIG. 3 is a cross-sectional view of the sterilizer along the line AA in FIG. 2. It is a front view of the discharge part of FIG. It is a rear view of the discharge part of FIG. FIG. 3 is a cross-sectional view of the sterilizer along the line AA in FIG. 2. It is a front view of the discharge part of the 1st modification of 1st Embodiment. It is a rear view of the discharge part of the 1st modification of 1st Embodiment. It is sectional drawing of the sterilizer of the 2nd modification of 1st Embodiment.
  • the sterilizer 1 of the first embodiment includes a base 10 and two lids 20-1 and 20-2. As will be described later, in this example, the lid portions 20-1 and 20-2 are detachably fixed to the base portion 10. Hereinafter, the sterilization apparatus 1 in a state where the lid portions 20-1 and 20-2 are fixed to the base portion 10 will be described.
  • the base 10 is a plate having a rounded rectangular shape.
  • the base 10 may have a shape (for example, a square shape, a polygonal shape, an elliptical shape, or a circular shape) different from the rounded rectangular shape.
  • the length of the base 10 in the longitudinal direction is 10 mm to 100 mm.
  • the length of the base 10 in the short direction is 5 mm to 50 mm.
  • the thickness of the base 10 is 5 mm to 50 mm.
  • the thickness direction of the base 10 is a direction extending along the vertical direction. Furthermore, in this example, the longitudinal direction and the short direction of the base 10 are directions extending along a plane parallel to the horizontal plane.
  • the lid 20-1 has a cylindrical shape.
  • the diameter of the lid 20-1 is equal to the length of the base 10 in the short direction.
  • the diameter of the lid 20-1 may be different from the length of the base 10 in the short direction.
  • the lid 20-1 may have a shape (for example, a prismatic shape or the like) different from the cylindrical shape.
  • the central axis of the lid 20-1 extends along the thickness direction of the base 10.
  • the lid 20-2 has the same shape as the lid 20-1.
  • the lid portion 20-1 and the lid portion 20-2 are respectively located at both ends in the longitudinal direction of the base portion 10 on the surface of one of the surfaces in the thickness direction of the base portion 10 (in this example, vertically upward).
  • Vertically upward is the upward direction in the vertical direction (in other words, the direction opposite to the direction of gravity).
  • the vertically downward direction is a downward direction in the vertical direction (in other words, the direction of gravity).
  • the sterilizer 1 will be described using a right-handed orthogonal coordinate system having an X axis, a Y axis, and a Z axis. 8 to 15 to be described later, the same orthogonal coordinate system as in FIGS. 1 to 7 is used.
  • the Z axis extends along the vertical direction (in other words, the thickness direction of the base portion 10 or the central axis direction of the lid portions 20-1 and 20-2).
  • the positive direction of the Z axis is vertically upward.
  • the Y axis extends along the longitudinal direction of the base 10.
  • the positive direction of the Y axis is the direction from the lid 20-2 to the lid 20-1.
  • the X axis extends along the short direction of the base 10.
  • FIG. 4 shows a cross section of the sterilizer 1 along the line AA in FIG.
  • the base 10 has a recess 11 on the surface on the positive direction side of the Z axis.
  • the recess 11 forms a side surface and a bottom surface on the negative direction side of the Z axis of a cylinder extending along the Z axis.
  • the recessed part 11 may form a column body (for example, a prism etc.) different from a cylinder.
  • the central axis of the recess 11 coincides with the central axis of the lid 20-1.
  • a portion (in other words, the bottom surface of the concave portion 11) 12 of the concave portion 11 that forms the bottom surface on the negative direction side of the Z-axis of the cylinder is a plane parallel to the horizontal plane (this example). Then, it has the shape which guide
  • the XY plane is a plane orthogonal to the Z axis.
  • the bottom surface 12 of the recess 11 is positioned closer to the negative direction side of the Z axis as it approaches the central axis of the recess 11.
  • the bottom surface 12 of the recess 11 may be a flat surface.
  • the lid 20-1 has a recess 21 on the surface on the negative direction side of the Z-axis.
  • the recess 21 forms a side surface and a bottom surface on the positive direction side of the Z axis of a cylinder extending along the Z axis.
  • the recessed part 21 may form a column body (for example, a prism etc.) different from a cylinder.
  • the central axis of the recess 21 coincides with the central axis of the lid 20-1.
  • the diameter of the recess 21 is equal to the diameter of the recess 11.
  • a portion (in other words, the bottom surface of the recess 21) 22 that forms the bottom surface of the concave portion 21 on the positive side of the Z axis of the cylinder is a flat surface.
  • the base 10 includes a threaded portion 13 on the surface on the positive side of the Z axis.
  • the threaded portion 13 has a hollow cylindrical shape extending along the Z axis.
  • the inner diameter of the threaded portion 13 is equal to the diameter of the concave portion 11 (in this example, the diameter of the concave portion 11 at the end on the positive direction side of the Z axis).
  • the central axis of the threaded portion 13 coincides with the central axis of the concave portion 11.
  • the outer wall of the screwing part 13 has a screw groove.
  • the screw part 13 may be regarded as a male screw.
  • the lid 20-1 includes a threaded portion 23 on the surface on the negative direction side of the Z-axis.
  • the screw part 23 has a hollow cylindrical shape extending along the Z axis.
  • the inner diameter of the screwing portion 23 is equal to the outer diameter of the screwing portion 13.
  • the outer diameter of the screw portion 23 is equal to the diameter of the lid portion 20-1.
  • the central axis of the screw part 23 coincides with the central axis of the lid part 20-1.
  • the inner wall of the screwing portion 23 has a screw groove to be screwed with the screwing portion 13.
  • the screw part 23 may be regarded as a female screw.
  • the lid portion 20-1 is fixed to the base portion 10 by the screwing portion 23 being screwed to the screwing portion 13.
  • the lid 20-1 being fixed to the base 10 by screwing is an example of the lid 20-1 being detachably fixed to the base 10.
  • the lid 20-1 may be detachably fixed to the base 10 by a mechanism different from screwing.
  • the base portion 10 may constitute a female screw
  • the lid portion 20-1 may constitute a male screw.
  • the base 10 and the lid 20-1 constitute a container, and the concave portion 21, the concave portion 11, and the screwing portion 13 are provided inside the container.
  • a storage space CS which is a space is formed. Therefore, in this example, the shape in the XY plane of the end portion on the positive direction side of the Z axis in the accommodation space CS is a circular shape.
  • the base 10 may be regarded as forming the end of the accommodation space CS in the negative direction of the Z axis. Further, in a state where the lid 20-1 is fixed to the base 10, the lid 20-1 may be regarded as forming the end in the positive direction of the Z axis in the accommodation space CS. In this example, in the state where the lid 20-1 is fixed to the base 10, the accommodation space CS may be regarded as a sealed space.
  • the lid 20-2 has the same shape as the lid 20-1.
  • the base portion 10 includes a concave portion and a screwing portion for the lid portion 20-2 as well as the concave portion 11 and the screwing portion 13 for the lid portion 20-1.
  • the lid 20-1 includes a discharge unit 30.
  • the discharge unit 30 has a flat plate shape parallel to the XY plane.
  • the discharge part 30 contacts the bottom surface 22 of the recess 21 of the lid part 20-1.
  • the discharge part 30 is fixed to the bottom surface 22 of the recess 21 of the lid part 20-1. Accordingly, the discharge part 30 covers the bottom surface 22 of the recess 21 of the lid part 20-1.
  • the discharge unit 30 includes a dielectric 31, a first electrode 32, a second electrode 33, and an insulator 34.
  • the dielectric 31 is made of aluminum oxide (Al 2 O 3 ).
  • Aluminum oxide may be represented as alumina.
  • the dielectric 31 may be made of a material different from aluminum oxide (for example, glass).
  • the dielectric 31 is a flat plate parallel to the XY plane.
  • the thickness of the dielectric 31 is 0.02 mm to 2 mm.
  • the dielectric 31 has a circular shape.
  • FIG. 5 is a diagram of the discharge unit 30 viewed in the positive direction of the Z axis (in other words, a diagram viewed from the front of the discharge unit 30).
  • FIG. 6 is a diagram of the discharge unit 30 viewed in the negative direction of the Z axis (in other words, a diagram viewed from the back of the discharge unit 30).
  • the outer edge of the dielectric 31 matches the shape of the recess 21 in the XY plane.
  • the outer edge of the dielectric 31 may have a shape different from the shape of the recess 21 in the XY plane.
  • the first electrode 32 is made of aluminum (Al). Note that the first electrode 32 may be made of a material different from aluminum (for example, stainless steel, silver, or copper). Stainless steel may be represented as SUS.
  • the first electrode 32 has a flat plate shape parallel to the XY plane.
  • the thickness of the first electrode 32 is 1 ⁇ m to 3 mm.
  • the first electrode 32 is in contact with the surface of the dielectric 31 on the negative side of the Z axis. In this example, the first electrode 32 is fixed to the surface of the dielectric 31 on the negative direction side of the Z axis.
  • the first electrode 32 has a T-shape composed of a portion extending along the X-axis direction and a portion extending along the Y-axis direction.
  • the end side 321 of the first electrode 32 in the negative direction of the Y-axis is a straight line extending along the X-axis direction.
  • the length of the end side 321 is shorter than the diameter of the dielectric 31.
  • the end side 321 passes through the center of the dielectric 31.
  • the negative direction of the Y axis is an example of the first direction.
  • the X-axis direction is an example of the second direction.
  • the end side 321 is an example of a first end side.
  • the second electrode 33 is made of aluminum (Al). Note that the second electrode 33 may be made of a material different from aluminum (for example, stainless steel, silver, or copper). Further, the second electrode 33 may be made of a material different from that of the first electrode 32.
  • the second electrode 33 has a flat plate shape parallel to the XY plane.
  • the thickness of the second electrode 33 is 1 ⁇ m to 3 mm.
  • the second electrode 33 is in contact with the surface of the dielectric 31 on the positive side of the Z axis. In this example, the second electrode 33 is fixed to the surface of the dielectric 31 on the positive side of the Z axis.
  • the second electrode 33 has a T-shape composed of a portion extending along the X-axis direction and a portion extending along the Y-axis direction.
  • the end side 331 of the second electrode 33 in the positive direction of the Y-axis is a straight line extending along the X-axis direction.
  • the length of the end side 331 is equal to the length of the end side 321.
  • the end side 331 passes through the center of the dielectric 31.
  • the end side 331 is an example of a second end side.
  • the position of the end side 331 coincides with the position of the end side 321 in the XY plane. Accordingly, in this example, the position of the portion of the second electrode 33 that is different from the end side 331 in the XY plane is different from the position of the first electrode 32 in the XY plane. In other words, the first electrode 32 and the second electrode 33 do not overlap with each other in the XY plane.
  • the first electrode 32 is in contact with the surface of the dielectric 31 on the negative direction side of the Z-axis, and the second electrode 33 is out of the surface of the dielectric 31. In contact with the surface on the positive side of the Z-axis. In other words, the dielectric 31 is interposed between the first electrode 32 and the second electrode 33.
  • the insulator 34 is made of a synthetic resin such as a vinyl chloride resin.
  • the insulator 34 may be made of a material different from the synthetic resin (for example, silicon dioxide (SiO 2 )).
  • the insulator 34 has a plate shape parallel to the XY plane.
  • the thickness of the insulator 34 is 1 ⁇ m to 5 mm.
  • the insulator 34 includes the surface of the second electrode 33 on the positive side of the Z axis and the surface of the dielectric 31 on the positive side of the Z axis and the second electrode 33. The part which does not touch is covered.
  • the insulator 34 is located over the entire portion of the first electrode 32 and the second electrode 33 extending along the X-axis direction in the XY plane. In other words, the insulator 34 overlaps the entire portion of the first electrode 32 and the second electrode 33 extending along the X-axis direction in the XY plane. In this example, the insulator 34 further extends to the outer periphery of the portion extending along the X-axis direction in the first electrode 32 and the second electrode 33 in the XY plane.
  • a power supply unit (not shown) is connected to the discharge unit 30.
  • the power supply unit is connected to the first electrode 32 and the second electrode 33.
  • the power supply unit applies an alternating voltage between the first electrode 32 and the second electrode 33.
  • the waveform of the AC voltage is a sine wave.
  • the AC voltage has a frequency of 40 kHz and an amplitude of 2.8 kV.
  • the AC voltage may have a frequency of 10 kHz to 100 kHz and an amplitude of 1 kV to 10 kV.
  • the waveform of the AC voltage may be a waveform different from a sine wave (for example, a rectangular wave or a triangular wave).
  • the discharge unit 30 may be regarded as a plasma actuator.
  • the lid 20-2 also includes a discharge unit similar to the discharge unit 30 included in the lid 20-1.
  • the sterilizer 1 is connected to one power supply unit, and the power supply unit is shared between the discharge unit 30 included in the cover unit 20-1 and the discharge unit included in the cover unit 20-2. Is done.
  • the discharge unit 30 included in the lid 20-1 and the discharge unit included in the lid 20-2 may be connected to two power supply units, respectively.
  • the sterilizer 1 may include a power supply unit.
  • the power supply unit may be configured integrally with a part of the sterilization apparatus 1 other than the power supply unit, or may be configured separately from the part.
  • the lid 20-1 is removed from the base 10.
  • the liquid LQ is injected into the recess 11 of the base 10.
  • the liquid LQ is water (for example, tap water).
  • the liquid LQ may be a liquid different from water (for example, an aqueous solution).
  • the object TO is introduced into the liquid LQ injected into the recess 11.
  • the object TO is a contact lens.
  • the object TO may be an object different from the contact lens (for example, a medical device, a medical product, a dental material, or a sanitary product).
  • the target object TO is immersed in the liquid LQ.
  • the entire object TO is immersed in the liquid LQ. Note that only a part of the object TO may be immersed in the liquid LQ.
  • the liquid LQ may be injected into the recess 11 after the object TO is introduced into the recess 11. Further, after the object TO is introduced into the liquid LQ, the liquid LQ containing the object TO may be injected into the recess 11.
  • the lid 20-1 is attached to the base 10.
  • the lid 20-1 is fixed to the base 10 by screwing.
  • the accommodation space CS sealed in the inside of the sterilizer 1 is formed. Therefore, in this example, the portion of the accommodation space CS on the positive side of the Z axis with respect to the liquid LQ is filled with air having atmospheric pressure.
  • the liquid LQ and the object TO immersed in the liquid LQ are arranged in the accommodation space CS.
  • the liquid LQ and the object TO immersed in the liquid LQ are stored in the storage space CS.
  • an AC voltage is applied between the first electrode 32 and the second electrode 33.
  • discharge occurs in the space between the first electrode 32 and the second electrode 33.
  • discharge occurs in the space between the first electrode 32 and the surface of the dielectric 31 on the negative direction side of the Z axis.
  • the discharge may be regarded as a dielectric barrier discharge.
  • Ions are generated with the discharge.
  • An electric field in the Y-axis direction is formed in the vicinity of the discharge unit 30 in the accommodation space CS.
  • an ion flow in the negative direction of the Y axis is formed in the vicinity of the discharge unit 30 in the accommodation space CS.
  • a negative Y-axis air flow is formed in the vicinity of the discharge unit 30 in the accommodation space CS.
  • the circulating flow GF in the liquid LQ, the flow in the positive direction of the Y axis in the vicinity of the surface of the liquid LQ, the flow in the negative direction of the Z axis at the end on the positive direction side of the Y axis, and the concave portion 11 in the vicinity of the bottom surface 12 of the Y axis, and a positive flow in the Z axis at the end of the Y axis on the negative direction side.
  • a convection LF is formed in the liquid LQ along with the discharge.
  • chemical species are generated along with the discharge.
  • the chemical species includes chemically active species.
  • the chemically active species may be represented as a reactive species.
  • the chemically active species includes ozone (O 3 ), ions, or radicals.
  • the chemical species generated along with the discharge is carried to the object TO immersed in the liquid LQ by the circulating flow GF and the convection LF formed in the accommodation space CS. As a result, the object TO immersed in the liquid LQ is sterilized.
  • microorganisms that die by sterilization or microorganisms that are removed by sterilization include pathogenic microorganisms such as spore bacteria, Pseudomonas aeruginosa, Staphylococcus aureus, Acanthamoeba, influenza virus, adenovirus, enterovirus, or herpes virus. Including.
  • the sterilization apparatus 1 has the first electrode 32 and the first electrode 32 applied by applying a voltage between the first electrode 32 and the second electrode 33.
  • the liquid in the accommodation space CS so that the convection LF is formed in the liquid LQ.
  • a flow GF that circulates in a space vertically above LQ is formed along with the discharge.
  • the sterilizer 1 sterilizes the object TO with the chemical species generated along with the discharge in a state where the liquid LQ and the object TO are stored in the storage space CS.
  • the convection LF can be formed with the liquid LQ without using a fluid machine such as a blower or a pump.
  • a fluid machine such as a blower or a pump.
  • the dielectric 31 is a flat plate parallel to the horizontal plane.
  • the first electrode 32 has a flat plate shape parallel to the horizontal plane, and is in contact with the surface of the dielectric 31 on the vertically lower side.
  • the second electrode 33 has a flat plate shape parallel to the horizontal plane, and is in contact with the surface on the vertical upper side of the surface of the dielectric 31.
  • the position of at least a part of the second electrode 33 is different from that of the first electrode 32 in a plane parallel to the horizontal plane.
  • a flow in a direction along a plane parallel to the horizontal plane can be formed in the vicinity of the discharge unit 30 in the accommodation space CS along with the discharge.
  • the region where the electric field is formed can be enlarged while sufficiently shortening the distance between the surface of the liquid LQ and the discharge part 30. Therefore, while reducing the size of the sterilizer 1 in the vertical direction, the amount of chemical species generated along with the discharge can be increased, and the flows GF and LF formed along with the discharge can be made sufficiently strong. it can.
  • the first end 321 in the first direction of the first electrode 32 (in this example, the negative direction of the Y axis) in the plane parallel to the horizontal plane is It is a straight line extending along a second direction (in this example, the X-axis direction) orthogonal to the direction 1.
  • the second end 331 of the second electrode 33 in the direction opposite to the first direction in this example, the positive direction of the Y-axis
  • it is a straight line extending along the X-axis direction).
  • the flow in the first direction in the vicinity of the discharge unit 30 in the space vertically above the liquid LQ in the storage space CS, the flow in the vertical direction at the end on the first direction side, A flow in the direction opposite to the first direction in the vicinity of the surface of the liquid LQ and a flow in the vertically upward direction at the end opposite to the first direction can be formed.
  • the convection LF formed by the liquid LQ circulates around the outer periphery of the target object TO. It is hard to be disturbed by. As a result, the chemical species can quickly reach both the vertically upper surface and the vertically lower surface of the object TO. Therefore, the object TO immersed in the liquid LQ can be quickly sterilized.
  • the shape of the end portion on the vertically upper side of the accommodation space CS in a plane parallel to the horizontal plane is a circular shape.
  • the first end 321 passes through the center of the end portion on the vertically upper side of the accommodation space CS.
  • the length of the first end 321 can be increased, the region where the electric field is formed can be increased. Therefore, the amount of chemical species generated along with the discharge can be increased, and the flows GF and LF formed along with the discharge can be made sufficiently strong.
  • the recess 11 of the base 10 constituting the container has a shape that guides the object TO to the central portion in a plane parallel to the horizontal plane in the accommodation space CS.
  • the target object TO can be located in the center part in the plane parallel to the horizontal plane in the accommodation space CS.
  • the convection LF formed with the liquid LQ circulates around the outer periphery of the target TO, it is difficult to be inhibited by the target TO.
  • the chemical species can quickly reach both the vertically upper surface and the vertically lower surface of the object TO. Therefore, the object TO immersed in the liquid can be quickly sterilized.
  • the discharge unit 30 includes the surface on the vertically upper side of the surface of the second electrode 33 and the surface on the vertically upper side of the surface of the dielectric 31.
  • An insulator 34 is provided to cover the portion not in contact with the second electrode 33.
  • the sterilization apparatus 1 of 1st Embodiment is comprised so that attachment or detachment to the base 10 which forms the edge part of the vertically downward side of the accommodation space CS, and the vertical upper side of the accommodation space CS is possible.
  • lid portions 20-1 and 20-2 that form end portions.
  • the liquid LQ and the object TO can be easily introduced into the accommodation space CS, and the liquid LQ and the object TO can be easily taken out from the accommodation space CS.
  • the position of the lid 20-1 with respect to the base 10 in the rotation in which the rotation axis coincides with the Z-axis may be different from the above-described example.
  • the position of the lid 20-2 with respect to the base 10 in the rotation in which the rotation axis coincides with the Z-axis is a position different from the above-described example. Good.
  • the shape of the sterilization apparatus 1 mentioned above is an example, and may be a vertical type, a portable type of another shape, or a stationary type.
  • the thicknesses of the dielectric 31, the first electrode 32, the second electrode 33, and the insulator 34 described above are merely examples, and are suitable depending on the manufacturing method of the film or the shape to be used. May be set.
  • the frequency and amplitude of an alternating voltage mentioned above are examples, and may be suitably set according to the shape of the sterilizer 1 or the object TO.
  • the sterilizer 1 of the first modification of the first embodiment includes a discharge unit 30 ⁇ / b> A instead of the discharge unit 30 of the first embodiment.
  • the discharge unit 30A includes a first electrode 32A and a second electrode 33A instead of the first electrode 32 and the second electrode 33 of the first embodiment.
  • the first electrode 32A is configured in the same manner as the first electrode 32 except that the shape in the XY plane is different.
  • the first electrode 32A has a T-shape including a portion extending along the X-axis direction and a portion extending along the Y-axis direction.
  • an end side 321A of the first electrode 32A in the negative direction of the Y-axis has a sawtooth shape extending along the X-axis direction.
  • the length of the end side 321 ⁇ / b> A in the X-axis direction is shorter than the diameter of the dielectric 31.
  • a straight line passing through the center of the end 321 ⁇ / b> A in the Y-axis direction passes through the center of the dielectric 31.
  • the negative direction of the Y axis is an example of the first direction.
  • the X-axis direction is an example of the second direction.
  • the end side 321A is an example of a first end side.
  • the second electrode 33A is configured in the same manner as the second electrode 33 except that the shape in the XY plane is different.
  • the second electrode 33A has a T shape including a portion extending along the X-axis direction and a portion extending along the Y-axis direction.
  • the end side 331A of the second electrode 33A in the positive direction of the Y axis is a straight line extending along the X axis direction.
  • the length of the end side 331A is equal to the length of the end side 321A in the X-axis direction.
  • the end side 331A passes through the end on the positive direction side of the Y axis of the end side 321A.
  • the end side 331A is located at a position different from the end of the end side 321A on the positive direction side of the Y axis (for example, the end of the end side 321A on the positive direction side of the Y axis and the end side 321A You may pass through the position between the end of the negative direction side.
  • the end side 331A is an example of a second end side.
  • the position of at least a part of the second electrode 33A in the XY plane is different from that of the first electrode 32A in the XY plane.
  • a part of the first electrode 32A and a part of the second electrode 33A do not overlap each other.
  • the sterilizer 1 of the 1st modification of 1st Embodiment the effect
  • the sterilizer 1 of the first embodiment and the sterilizer 1 of the first modification of the first embodiment By using each of these, an experiment was conducted to measure the time required to sterilize the object TO.
  • the object TO in the experiment is a rectangular piece of paper with a microorganism applied to the surface.
  • the dielectric 31 in the experiment is made of glass and has a thickness of 0.2 mm.
  • sterilization was determined using ATTEST 1291 ("3M" and "Atest" are registered trademarks) manufactured by 3M Healthcare. In other experiments described later, sterilization was determined in the same manner as in this example. In addition, sterilization may be determined according to a sterility assurance level (Sterility Assurance Level).
  • the time required to sterilize the object TO is about 100 minutes, and the power consumed by the power supply unit and the sterilization apparatus 1 is about 1.2 W. And the electric power consumed by the discharge part 30 was about 0.1W. Moreover, when the sterilization apparatus 1 of the first modification of the first embodiment is used, the time required to sterilize the object TO is about 40 minutes, and the power consumed by the power supply unit and the sterilization apparatus 1 is The electric power consumed by the discharge unit 30A was about 0.2W.
  • the sterilizer 1 of the first embodiment and the first modification of the first embodiment are used.
  • an experiment was performed to measure the time required to sterilize the object TO.
  • the object TO in the experiment is a rectangular piece of paper with a microorganism applied to the surface.
  • the dielectric 31 in the experiment is made of glass and has a thickness of 0.15 mm.
  • the time required to sterilize the object TO is about 40 minutes, and the power consumed by the power supply unit and the sterilizer 1 is about 1.5 W. And the electric power consumed by the discharge part 30 was about 0.1W.
  • the time required to sterilize the object TO is about 20 minutes, and the power consumed by the power supply unit and the sterilization apparatus 1 is , About 1.6 W, and the power consumed by the discharge unit 30 ⁇ / b> A was about 0.2 W.
  • the sterilizer 1 of the first embodiment and the first modification of the first embodiment are used.
  • an experiment was performed to measure the time required to sterilize the object TO.
  • the object TO in the experiment is a rectangular piece of paper with a microorganism applied to the surface.
  • the dielectric 31 in the experiment is made of alumina and has a thickness of 0.2 mm.
  • the time required to sterilize the object TO is about 30 minutes, and the power consumed by the power supply unit and the sterilization apparatus 1 is about 1.4 W. And the electric power consumed by the discharge part 30 was about 0.2W. Moreover, when the sterilizer 1 of the first modification of the first embodiment is used, the time required to sterilize the object TO is about 30 minutes, and the power consumed by the power supply unit and the sterilizer 1 is The power consumed by the discharge unit 30A was about 0.3W.
  • the sterilizer 1 of the first embodiment and the first modification of the first embodiment are used.
  • an experiment was performed to measure the time required to sterilize the object TO.
  • the object TO in the experiment is a rectangular piece of paper with a microorganism applied to the surface.
  • the dielectric 31 in the experiment is made of glass and has a thickness of 1 mm.
  • the time required to sterilize the object TO is about 25 minutes, and the power consumed by the power supply unit and the sterilization apparatus 1 is about 2.0 W. And the electric power consumed by the discharge part 30 was about 0.2W.
  • the time required to sterilize the object TO is about 10 minutes, and the power consumed by the power supply unit and the sterilization apparatus 1 is The power consumed by the discharge unit 30A was about 0.5W.
  • the shape of the sterilization apparatus 1 mentioned above is an example, and may be a vertical type, a portable type of another shape, or a stationary type.
  • the thicknesses of the dielectric 31, first electrode 32A, second electrode 33A, and insulator 34 described above are merely examples, and are suitable depending on the manufacturing method of the film or the shape to be used. May be set.
  • the frequency and amplitude of an alternating voltage mentioned above are examples, and may be suitably set according to the shape of the sterilizer 1 or the object TO.
  • the sterilizer 1B of the second modification of the first embodiment includes a base 10B instead of the base 10 of the first embodiment.
  • FIG. 10 shows a cross section of the sterilizer 1B along the line CC in FIG.
  • FIG. 11 shows a cross section of the base 10B taken along line BB in FIG.
  • the base portion 10B includes a plurality of ribs 14B.
  • Each rib 14B has a flat plate shape parallel to a plane orthogonal to the X axis (in other words, a YZ plane). Accordingly, each rib 14B extends along the Y-axis direction.
  • Each rib 14B protrudes from the bottom surface 12 of the recess 11 in the positive direction of the Z-axis.
  • the bottom surface 12 of the concave portion 11 may be regarded as a wall surface of a container that forms an end on the negative direction side of the Z axis in the accommodation space CS.
  • the end surface on the positive side of the Z axis of each rib 14B is positioned closer to the negative side of the Z axis as it approaches the central axis of the recess 11.
  • the plurality of ribs 14B are separated from each other in the X-axis direction.
  • the plurality of ribs 14B are positioned at equal intervals in the X-axis direction.
  • the length of each rib 14B in the Y-axis direction is shorter than the diameter of the recess 11 (in this example, the diameter of the end of the recess 11 on the positive direction side of the Z-axis).
  • the lengths of the plurality of ribs 14B in the Y-axis direction are the same.
  • the plurality of ribs 14B are configured so that the object TO is closer to the positive direction side of the Z axis than the bottom surface 12 of the recess 11 in a state where the liquid LQ and the object TO are accommodated in the accommodation space CS. Support.
  • the sterilizer 1B of the second modification of the first embodiment the same operations and effects as the sterilizer 1 of the first embodiment are exhibited. Furthermore, according to the sterilization apparatus 1B of the second modified example of the first embodiment, the wall surface of the container that forms the object TO and the most vertically lower end of the accommodation space CS (in this example, the concave portion 11). A flow path extending along the first direction (the Y-axis direction in this example) can be formed between the bottom surface 12) and the bottom surface 12). Thereby, the convection LF formed with the liquid LQ becomes easy to pass through the part of the accommodation space CS on the vertically lower side than the object TO. As a result, the chemical species can quickly reach the surface of the object TO on the vertically lower side. Therefore, the surface on the vertically lower side of the object TO can be quickly sterilized.
  • the length in the Y-axis direction of the plurality of ribs 14B may be different from each other.
  • the length of the rib 14B in the Y-axis direction may be shorter as the distance from the straight line extending in the Y-axis direction and passing through the central axis of the recess 11 to the rib 14B is longer.
  • the shape of the sterilizer 1B described above is an example, and may be a vertical type or a portable type of another shape, or a stationary type.
  • the thicknesses of the dielectric 31, the first electrode 32, the second electrode 33, and the insulator 34 described above are merely examples, and are suitable depending on the manufacturing method of the film or the shape to be used. May be set.
  • the frequency and amplitude of an alternating voltage mentioned above are examples, and may be suitably set according to the shape of the sterilizer 1B or the object TO.
  • the sterilization apparatus of 2nd Embodiment differs in the cover part and the discharge part with respect to the sterilization apparatus of 1st Embodiment.
  • the difference will be mainly described.
  • symbol used in 1st Embodiment is the same or substantially the same.
  • the sterilizer 1C of the second embodiment has lid parts 20-1C and 20-2C instead of the lid parts 20-1 and 20-2 of the first embodiment.
  • FIG. 13 shows a cross section of the sterilizer 1C along the line DD in FIG.
  • the sterilizer 1C of the second embodiment includes discharge units 30-1C and 30-2C instead of the discharge unit 30 of the first embodiment.
  • the lid 20-1C has the same configuration as the lid 20-1 except that the lid 20-1C has a through-hole 24C.
  • the through-hole portion 24C forms a hole having a cylindrical shape that extends in the Z-axis direction through the wall of the lid portion 20-1C that forms the bottom surface 22 of the recess 21 in the Z-axis direction.
  • the diameter of the through hole 24 ⁇ / b> C is smaller than the diameter of the recess 21.
  • the central axis of the through hole portion 24 ⁇ / b> C coincides with the central axis of the recess 21.
  • the discharge part 30-1C has a cylindrical shape extending along the Z axis.
  • the diameter of the discharge part 30-1C is equal to the diameter of the through-hole part 24C.
  • the central axis of the discharge part 30-1C coincides with the central axis of the through hole part 24C.
  • the end of the discharge part 30-1C on the negative side of the Z axis is in contact with the through hole part 24C. In this example, the end on the negative direction side of the Z-axis of the discharge part 30-1C is fixed to the through-hole part 24C.
  • the discharge unit 30-1C includes a dielectric 31C, a first electrode 32C, and a second electrode 33C.
  • the dielectric 31C is made of aluminum oxide (Al 2 O 3 ).
  • the dielectric 31C may be made of a material different from aluminum oxide (for example, glass).
  • the dielectric 31C has a hollow cylindrical shape extending along the Z axis.
  • the difference between the inner diameter and the outer diameter of the dielectric 31C is 0.02 mm to 2 mm.
  • the center axis of the dielectric 31C coincides with the center axis of the through hole 24C. Both ends of the dielectric 31C in the Z-axis direction are opened.
  • the outer edge of the dielectric 31 matches the shape of the through hole portion 24C in the XY plane.
  • the space 311C inside the dielectric 31C is connected to the end of the accommodation space CS on the positive direction side of the Z axis.
  • the space 311C inside the dielectric 31C may be expressed as a connected space.
  • the connection space 311C has a cylindrical shape.
  • the first electrode 32C is made of aluminum (Al). Note that the first electrode 32C may be made of a material different from aluminum (for example, stainless steel, silver, or copper).
  • the first electrode 32C is located in the connection space 311C and closes the connection space 311C at the end of the dielectric 31C on the positive side of the Z axis.
  • the first electrode 32C is fixed to the dielectric 31C.
  • the first electrode 32C has a conical shape extending toward the end of the accommodation space CS on the positive direction side of the Z axis (in other words, in the negative direction of the Z axis).
  • the central axis of the first electrode 32C coincides with the central axis of the dielectric 31C.
  • the central axis of the first electrode 32C may be different from the central axis of the dielectric 31C. Further, the first electrode 32C may be cylindrical.
  • the first electrode 32C has a sharp tip 322C that is separated from the dielectric 31C and is pointed on the negative direction side of the Z-axis in the connection space 311C.
  • the first electrode 32C has a spiral rib 323C on the side surface.
  • the first electrode 32C is a screw.
  • the second electrode 33C is made of aluminum (Al).
  • the second electrode 33C may be made of a material different from aluminum (for example, stainless steel, silver, or copper). Further, the second electrode 33C may be made of a material different from that of the first electrode 32C.
  • the second electrode 33C has a plate shape (in this example, a sheet shape).
  • the thickness of the second electrode 33C is 1 ⁇ m to 3 mm.
  • the second electrode 33C is in contact with the outer wall of the dielectric 31C. In this example, the second electrode 33C is fixed to the outer wall of the dielectric 31C.
  • the second electrode 33C covers at least a part of the outer wall of the dielectric 31C.
  • the second electrode 33C has a position on the positive side of the Z-axis with respect to the end on the positive direction side of the Z-axis of the rib 323C in the outer wall of the dielectric 31C, and on the Z-axis with respect to the tip 322C. The portion between the position on the negative direction side is covered.
  • the dielectric 31C is interposed between the first electrode 32C and the second electrode 33C.
  • a power supply unit (not shown) is connected to the discharge unit 30-1C.
  • the power supply unit is connected to the first electrode 32C and the second electrode 33C.
  • the power supply unit applies an AC voltage between the first electrode 32C and the second electrode 33C.
  • the waveform of the AC voltage is a sine wave.
  • the AC voltage has a frequency of 40 kHz and an amplitude of 2.8 kV.
  • the AC voltage may have a frequency of 10 kHz to 100 kHz and an amplitude of 1 kV to 10 kV.
  • the waveform of the AC voltage may be a waveform different from a sine wave (for example, a rectangular wave or a triangular wave).
  • the lid portion 20-2C and the discharge portion 30-2C are configured in the same manner as the lid portion 20-1C and the discharge portion 30-1C, respectively.
  • the sterilizer 1C is connected to one power supply unit, and the power supply unit is shared between the discharge unit 30-1C and the discharge unit 30-2C.
  • the discharge unit 30-1C and the discharge unit 30-2C may be connected to two power supply units, respectively.
  • the sterilization apparatus 1C may include a power supply unit.
  • the power supply unit may be configured integrally with a part of the sterilization apparatus 1C other than the power supply unit, or may be configured separately from the part.
  • the operation of the sterilizer 1C is different from the sterilizer 1 of the first embodiment in the flow formed along with the discharge. Therefore, the description will focus on the flow formed with the discharge.
  • An AC voltage is applied between the first electrode 32C and the second electrode 33C.
  • a discharge occurs in the space between the first electrode 32C and the second electrode 33C.
  • discharge occurs in the space between the first electrode 32C and the inner wall of the dielectric 31C.
  • the discharge may be regarded as a dielectric barrier discharge.
  • Ions are generated with the discharge. Further, an electric field in the Z-axis direction is formed in the vicinity of the tip 322C in the connection space 311C. As a result, an ion flow in the negative direction of the Z axis is formed in the vicinity of the tip 322C in the connection space 311C. By forming the ion flow, a negative Z-axis air flow GF0 is formed in the vicinity of the tip 322C in the connection space 311C.
  • the convection LF1 is formed in the liquid LQ along with the discharge.
  • the chemical species generated by the discharge is an object immersed in the liquid LQ by the flow GF0 formed in the connection space 311C and the circulating flow GF1 and the convection LF1 formed in the accommodation space CS. (Not shown in FIG. 13). As a result, the object immersed in the liquid LQ is sterilized.
  • the sterilization apparatus 1C has the first electrode 32C and the first electrode 32C when the voltage is applied between the first electrode 32C and the second electrode 33C.
  • the liquid in the storage space CS so that the convection LF1 is formed in the liquid LQ.
  • a flow GF1 that circulates in a space vertically above LQ is formed along with the discharge.
  • the sterilizer 1C sterilizes the target object with the chemical species generated along with the discharge in a state where the liquid LQ and the target object are stored in the storage space CS.
  • the convection LF1 can be formed with the liquid LQ without using a fluid machine such as a blower or a pump.
  • a fluid machine such as a blower or a pump.
  • the dielectric 31C has a connection space 311C that is a space connected to an end of the accommodation space CS on the vertically upper side.
  • the first electrode 32 ⁇ / b> C has a conical shape extending toward an end portion on the vertically upper side of the accommodation space CS.
  • the first electrode 32C has a sharp tip 322C that is separated from the dielectric 31C and is pointed at the end of the accommodation space 311C on the vertically upper side of the accommodation space CS.
  • the second electrode 33C covers at least a part of the outer wall of the dielectric 31C.
  • the connecting space 311C has a cylindrical shape.
  • the first electrode 32C has a spiral rib 323C on the side surface.
  • a discharge is generated in the space between the side surface of the first electrode 32C and the dielectric 31C.
  • the amount of chemical species generated along with the discharge can be increased, so that the object immersed in the liquid LQ can be quickly sterilized.
  • the same effects as the sterilization apparatus 1 of the first embodiment can be obtained.
  • the position of the lid 20-1C with respect to the base 10 in the rotation in which the rotation axis coincides with the Z-axis may be different from the above-described example.
  • the position of the lid 20-2C with respect to the base 10 in a rotation in which the rotation axis coincides with the Z axis is a position different from the above-described example. Good.
  • the object TO in the experiment is a rectangular piece of paper with a microorganism applied to the surface.
  • the time required to sterilize the object TO is about 30 minutes, and the power consumed by the power supply unit and the sterilizer 1C is about 3.5W.
  • the power consumed by the discharge units 30-1C and 30-2C was about 1.0W.
  • the shape of 1 C of sterilizers mentioned above is an example, and may be a vertical type, a portable type of another shape, or a stationary type.
  • the thicknesses of the dielectric 31C, the first electrode 32C, the second electrode 33C, and the insulator 34 described above are examples, and are suitable depending on the manufacturing method of the film or the shape to be used. May be set.
  • the frequency and amplitude of the alternating voltage described above are examples, and may be suitably set according to the shape of the sterilizer 1C or the object TO.
  • the sterilization apparatus of 3rd Embodiment differs in the cover part and the discharge part with respect to the sterilization apparatus of 1st Embodiment.
  • the difference will be mainly described.
  • symbol used in 1st Embodiment is the same or substantially the same.
  • the sterilization apparatus 1D of the third embodiment includes a lid 20-1D instead of the lid 20-1 of the first embodiment. Furthermore, the sterilizer 1D includes a lid (not shown) similar to the lid 20-1D, instead of the lid 20-2 of the first embodiment.
  • FIG. 14 shows a cross section of the sterilizer 1D along the line FF in FIG.
  • FIG. 15 shows a cross section of the lid 20-1D taken along line EE in FIG.
  • the lid 20-1D has a cylindrical shape.
  • the diameter of the lid 20-1D is equal to the length of the base 10 in the X-axis direction.
  • the diameter of the lid 20-1D may be different from the length of the base 10 in the X-axis direction.
  • the lid 20-1D may have a shape (for example, a prismatic shape) different from the cylindrical shape.
  • the central axis of the lid 20-1D extends along the Z axis.
  • the lid 20-1D is located at the end of the base 10 on the positive side of the Y axis on the surface of the base 10 on the positive side of the Z axis.
  • the lid 20-1D has a space CS1 inside.
  • the space CS1 may be expressed as a discharge space.
  • the discharge space CS1 has a cylindrical shape extending along the Z axis.
  • the discharge space CS1 may have a shape (for example, a prismatic shape or the like) different from the cylindrical shape.
  • the central axis of the discharge space CS1 coincides with the central axis of the lid 20-1D.
  • the central axis of the discharge space CS1 may be different from the central axis of the lid 20-1D.
  • the diameter of the discharge space CS ⁇ b> 1 is equal to the diameter of the recess 11 of the base 10.
  • the diameter of the discharge space CS ⁇ b> 1 may be different from the diameter of the recess 11 of the base 10.
  • the lid portion 20-1D includes a surface 25D that forms the side surface of the discharge space CS1, a surface 26D that forms the bottom surface of the discharge space CS1 on the negative direction side of the Z axis, and the negative direction side of the Z axis of the lid portion 20-1D. And a bottom surface 27D.
  • the lid 20-1D has a first through hole 28D and a second through hole 29D.
  • Each of the first through-hole portion 28D and the second through-hole portion 29D has a wall that forms the bottom surface of the discharge space CS1 on the negative side of the Z-axis in the lid portion 20-1D in the Z-axis direction.
  • a through-hole is formed.
  • a hole formed by each of the first through-hole portion 28D and the second through-hole portion 29D has a certain width in the XY plane and has an arc shape whose center coincides with the central axis of the discharge space CS1. .
  • first through-hole portion 28D and the second through-hole portion 29D are symmetric with respect to the ZX plane passing through the central axis of the discharge space CS1.
  • the ZX plane is a plane orthogonal to the Y axis.
  • the first through-hole portion 28D and the second through-hole portion 29D may not be plane-symmetric with respect to the ZX plane passing through the central axis of the discharge space CS1.
  • the shape in the XY plane may be different between the first through hole portion 28D and the second through hole portion 29D.
  • the base 10 and the lid 20-1D constitute a container, and a bottom surface 27D on the negative side of the Z-axis of the lid 20-1D, the recess 11, And the screwing part 13 forms the liquid storage space CS2 which stores the liquid LQ and the target object TO.
  • the holes formed by the first through-hole portion 28D and the second through-hole portion 29D are the discharge space CS1, the liquid storage space CS2, and Communicate.
  • the holes formed by the first through-hole portion 28D and the second through-hole portion 29D may be regarded as an inflow channel and an outflow channel.
  • the discharge space CS1, the liquid storage space CS2, the inflow path, and the outflow path constitute a storage space that is a space inside the container.
  • the base 10 may be regarded as forming the end of the accommodation space in the negative direction of the Z axis. Further, in a state where the lid 20-1D is fixed to the base 10, the lid 20-1D may be regarded as forming the end in the positive direction of the Z axis in the accommodation space. In this example, in the state where the lid 20-1D is fixed to the base 10, the accommodation space may be regarded as a sealed space.
  • the lid 20-1D includes a discharge part 30D.
  • the discharge part 30D is plate-shaped.
  • the discharge part 30D is in contact with the surface 25D that forms the side surface of the discharge space CS1 in the surface of the lid part 20-1D.
  • the discharge part 30D is fixed to the surface 25D. Accordingly, the discharge part 30D covers a part of the surface 25D.
  • the discharge part 30D is located over the entire surface 25D in the Z-axis direction. Furthermore, in this example, the discharge part 30D has the rotation angles at both ends of the first through-hole part 28D in the rotation in which the rotation axis coincides with the central axis of the discharge space CS1 in the surface 25D on the XY plane. It is located over a portion sandwiched between two positions. In other words, in the XY plane, the rotation angle at both ends of the first through-hole portion 28D in rotation with the rotation axis coinciding with the central axis of the discharge space CS1, and the rotation angle at both ends of the discharge portion 30D in the rotation, Match.
  • the rotation angle at both ends of the first through-hole portion 28D and the rotation angle at both ends of the discharge portion 30D in the rotation in which the rotation axis coincides with the central axis of the discharge space CS1 are: May be different.
  • the surface on the central axis side of the discharge space CS1 in the surface of the discharge part 30D is an arc on the surface 25D side of the arcs constituting the outer edge of the first through-hole part 28D. (In other words, the arc on the outer diameter side) extends along.
  • the discharge unit 30D includes a dielectric 31D, a first electrode 32D, a second electrode 33D, and an insulator 34D.
  • the dielectric 31D is made of aluminum oxide (Al 2 O 3 ).
  • the dielectric 31D may be made of a material different from aluminum oxide (for example, glass).
  • the dielectric 31D has a plate shape.
  • the thickness of the dielectric 31D is 0.02 mm to 2 mm.
  • the dielectric 31D is located over the entire surface 25D in the Z-axis direction. Furthermore, in this example, the dielectric 31D has the rotation angles at both ends of the first through-hole portion 28D in the rotation in which the rotation axis of the surface 25D coincides with the central axis of the discharge space CS1 in the XY plane. It is located over a portion sandwiched between two positions.
  • the surface on the central axis side of the discharge space CS1 among the surfaces of the dielectric 31D is an arc on the outer diameter side of the arcs constituting the outer edge of the first through-hole portion 28D. Extending along.
  • the first electrode 32D is made of aluminum (Al). Note that the first electrode 32D may be made of a material different from aluminum (for example, stainless steel, silver, or copper). The first electrode 32D has a plate shape. The thickness of the first electrode 32D is 1 ⁇ m to 3 mm.
  • the first electrode 32D is in contact with the surface of the dielectric 31D on the central axis side of the discharge space CS1.
  • the first electrode 32D is fixed to the surface of the dielectric 31D on the central axis side of the discharge space CS1.
  • the first electrode 32D is located across the half of the surface 25D on the positive side of the Z axis in the Z axis direction. Further, in the present example, the first electrode 32D has a rotation angle at both ends of the first through-hole portion 28D in the rotation in which the rotation axis of the surface 25D coincides with the central axis of the discharge space CS1 in the XY plane. It is located over the part pinched
  • the first electrode 32D extends along an arc on the outer diameter side among arcs constituting the outer edge of the first through-hole portion 28D.
  • the second electrode 33D is made of aluminum (Al).
  • the second electrode 33D may be made of a material different from aluminum (for example, stainless steel, silver, or copper).
  • the second electrode 33D may be made of a material different from that of the first electrode 32D.
  • the second electrode 33D has a plate shape.
  • the thickness of the second electrode 33D is 1 ⁇ m to 3 mm.
  • the second electrode 33D is in contact with the surface on the surface 25D side of the surface of the dielectric 31D.
  • the second electrode 33D is fixed to the surface on the surface 25D side of the surface of the dielectric 31D.
  • the second electrode 33D is located across the half of the surface 25D on the negative side of the Z axis in the Z axis direction. Furthermore, in this example, the second electrode 33D is configured such that the rotation angle of both ends of the first through-hole portion 28D in the rotation in which the rotation axis of the surface 25D coincides with the central axis of the discharge space CS1 in the XY plane. It is located over the part pinched
  • the second electrode 33D extends along an arc on the outer diameter side among arcs constituting the outer edge of the first through-hole portion 28D.
  • the first electrode 32D is in contact with the surface of the dielectric 31D on the central axis side of the discharge space CS1, and the second electrode 33D is on the surface of the dielectric 31D. It contacts the surface on the surface 25D side.
  • the dielectric 31D is interposed between the first electrode 32D and the second electrode 33D.
  • the insulator 34D is made of a synthetic resin such as a vinyl chloride resin.
  • the insulator 34D may be made of a material different from the synthetic resin (for example, silicon dioxide (SiO 2 )).
  • the insulator 34D has a plate shape.
  • the thickness of the insulator 34D is 1 ⁇ m to 5 mm.
  • the insulator 34D includes a surface on the surface 25D side of the surface of the second electrode 33D and a portion of the surface of the dielectric 31D on the surface 25D side that is not in contact with the second electrode 33D; Coating.
  • the insulator 34D is located at the center of the surface 25D in the Z-axis direction. Furthermore, in this example, the insulator 34D has the rotation angles at both ends of the first through hole 28D in the rotation in which the rotation axis of the surface 25D coincides with the central axis of the discharge space CS1 in the XY plane. It is located over a portion sandwiched between two positions.
  • the discharge unit 30D includes a power supply unit (not shown).
  • the power supply unit is connected to the first electrode 32D and the second electrode 33D.
  • the power supply unit applies an AC voltage between the first electrode 32D and the second electrode 33D.
  • the waveform of the AC voltage is a sine wave.
  • the AC voltage has a frequency of 40 kHz and an amplitude of 2.8 kV.
  • the AC voltage may have a frequency of 10 kHz to 100 kHz and an amplitude of 1 kV to 10 kV.
  • the waveform of the AC voltage may be a waveform different from a sine wave (for example, a rectangular wave or a triangular wave).
  • the discharge unit 30D may be regarded as a plasma actuator.
  • the sterilization apparatus 1D includes a discharge unit similar to the discharge unit 30D included in the lid 20-1D in the lid provided instead of the lid 20-2 of the first embodiment.
  • the sterilization apparatus 1D includes one power supply unit, a discharge unit 30D included in the lid unit 20-1D, and a lid unit included in the sterilization apparatus 1D instead of the lid unit 20-2 of the first embodiment.
  • the power supply unit is shared with the discharge unit included in the.
  • the sterilizer 1D is used for the discharge unit 30D included in the lid 20-1D, and the discharge unit included in the lid provided in place of the lid 20-2 of the first embodiment of the sterilizer 1D. Two power supply units may be provided.
  • the operation of the sterilizer 1D is different from the sterilizer 1 of the first embodiment in the flow formed along with the discharge. Therefore, the description will focus on the flow formed with the discharge.
  • An AC voltage is applied between the first electrode 32D and the second electrode 33D.
  • discharge occurs in the space between the first electrode 32D and the second electrode 33D.
  • discharge occurs in a space between the first electrode 32D and the surface on the central axis side of the discharge space CS1 in the surface of the dielectric 31D.
  • the discharge may be regarded as a dielectric barrier discharge.
  • Ions are generated with the discharge. Further, an electric field in the Z-axis direction is formed in the vicinity of the discharge part 30D in the discharge space CS1. As a result, an ion flow in the negative direction of the Z axis is formed in the vicinity of the discharge unit 30D in the discharge space CS1. By forming the ion flow, a negative Z-axis air flow is formed in the discharge space CS1 in the vicinity of the discharge unit 30D.
  • a flow from the discharge part 30D to the inflow path is formed in the discharge space CS1. Furthermore, in the space on the positive side of the Z axis with respect to the liquid LQ in the liquid storage space CS2, the flow from the inflow path at the end on the positive direction side of the Y axis to the surface of the liquid LQ, and the surface of the liquid LQ A flow in the negative direction of the Y axis in the vicinity and a flow from the surface of the liquid LQ to the outflow path at the end on the negative direction side of the Y axis are formed. In addition, in the discharge space CS1, a flow from the outflow path to the discharge unit 30D is formed. In this manner, a flow (in other words, a circulating flow) GF that circulates in the space on the positive side of the Z axis with respect to the liquid LQ in the accommodation space is formed along with the discharge.
  • a flow in other words, a circulating flow
  • the circulation flow GF in the liquid LQ, the negative Y-direction flow in the vicinity of the surface of the liquid LQ, the negative Z-axis direction flow at the negative end of the Y-axis, and the concave portion 11 in the vicinity of the bottom surface 12 of the Y axis, and a positive flow in the Z axis at the end on the positive direction side of the Y axis.
  • a convection LF is formed in the liquid LQ along with the discharge.
  • chemical species are generated along with the discharge.
  • the chemical species includes chemically active species.
  • the chemically active species may be represented as a reactive species.
  • the chemically active species includes ozone (O 3 ), ions, or radicals.
  • the chemical species generated along with the discharge is carried to the object TO immersed in the liquid LQ by the circulating flow GF and the convection LF formed in the accommodation space. As a result, the object TO immersed in the liquid LQ is sterilized.
  • the sterilization apparatus 1D of the third embodiment has the first electrode 32D and the first electrode 32D by applying a voltage between the first electrode 32D and the second electrode 33D.
  • the liquid LQ in the storage space forms a convection LF.
  • a flow GF that circulates in the space above the vertical with discharge.
  • the sterilizer 1D sterilizes the object TO with the chemical species generated along with the discharge in a state where the liquid LQ and the object TO are stored in the storage space.
  • the convection LF can be formed with the liquid LQ without using a fluid machine such as a blower or a pump.
  • a fluid machine such as a blower or a pump.
  • the storage space includes a liquid storage space CS2 that stores the liquid LQ and the object TO, a discharge space CS1 that causes the discharge unit 30D to generate a discharge, and a liquid storage space CS2. And an inflow path and an outflow path that communicate with the discharge space CS1. Further, the discharge unit 30D forms a flow in the direction from the space between the first electrode 32D and the second electrode 33D to the inflow path along with the discharge.
  • a flow in the direction from the discharge part 30D to the inflow path is formed in the discharge space CS1.
  • a flow in the direction from the inflow path to the outflow path in the liquid storage space CS2 and a flow in the direction from the outflow path in the discharge space CS1 to the discharge unit 30D can be formed.
  • the convection LF can be formed in the liquid LQ.
  • the sterilization apparatus 1D of the third embodiment the same effect as that of the sterilization apparatus 1 of the first embodiment can be obtained.
  • the position of the lid 20-1D with respect to the base 10 in the rotation in which the rotation axis coincides with the Z-axis may be a position different from the above-described example.
  • the lid provided in place of the lid 20-2 of the first embodiment is fixed to the base 10 in the sterilization apparatus 1D
  • the lid with respect to the base 10 in the rotation whose rotation axis coincides with the Z axis The position of the part may be different from the above-described example.
  • the shape of the sterilization apparatus 1D described above is an example, and may be a vertical type, a portable type having another shape, or a stationary type.
  • the thicknesses of the dielectric 31D, the first electrode 32D, the second electrode 33D, and the insulator 34D described above are examples, and are suitable depending on the manufacturing method of the film or the shape used. May be set.
  • the frequency and amplitude of the AC voltage described above are examples, and may be suitably set according to the shape of the sterilizer 1D or the object TO.

Abstract

This sterilization device (1) is provided with a container (10, 20-1) and a discharge unit (30). The container (10, 20-1) comprises therein a container space (CS) which is a space for accommodating a liquid (LQ) and an object (TO) submerged in the liquid. The discharge unit comprises a first electrode (32), a second electrode (33) and a dielectric body (31) interposed between the first electrode and the second electrode. When a voltage is applied between the first electrode and the second electrode, the discharge unit causes electrical discharge in the space between the first electrode and the second electrode and a flow (GF) circulating in a space vertically above the liquid in the container space is formed as a result of electrical discharge so that a convective flow (LF) of the liquid is formed in a state where the container space contains the liquid. The sterilization device sterilizes the object with chemical species generated as a result of electrical discharge in a state where the container space contains the liquid and the object.

Description

殺菌装置、及び、殺菌方法Sterilization apparatus and sterilization method
 本発明は、殺菌装置、及び、殺菌方法に関する。 The present invention relates to a sterilization apparatus and a sterilization method.
 電極間に電圧が印加されることにより、電極間の空間にて放電を生じさせ、当該放電に伴って生成された化学種によって対象物を殺菌する殺菌装置が知られている(例えば、特許文献1等)。 A sterilization apparatus is known in which a voltage is applied between electrodes to cause a discharge in a space between the electrodes and sterilize an object with a chemical species generated along with the discharge (for example, Patent Documents). 1).
特開2012-081215号公報JP 2012-081215 A
 ところで、コンタクトレンズは、乾燥した場合、破損しやすい。従って、対象物がコンタクトレンズである場合、対象物が液体に浸された状態にて殺菌を行なうことが考えられる。 By the way, contact lenses are easily damaged when dried. Therefore, when the object is a contact lens, it can be considered that sterilization is performed in a state where the object is immersed in a liquid.
 しかしながら、液体において化学種が拡散する速度は、気体における速度よりも低い。このため、上記殺菌装置を用いて、液体に浸された対象物を殺菌する場合、放電によって生成された化学種が、対象物に到達するまでの時間が長くなりやすい。従って、上記殺菌装置においては、液体に浸された対象物を殺菌するために要する時間が過度に長くなる虞があった。 However, the rate at which chemical species diffuse in the liquid is lower than that in gas. For this reason, when the target object immersed in the liquid is sterilized using the sterilization apparatus, it takes a long time for the chemical species generated by the discharge to reach the target object. Therefore, in the said sterilizer, there exists a possibility that the time required in order to sterilize the target object immersed in the liquid may become excessively long.
 本発明の目的の一つは、液体に浸された対象物を迅速に殺菌することである。 One of the objects of the present invention is to quickly sterilize an object immersed in a liquid.
 一つの側面では、殺菌装置は、
 液体と、上記液体に浸された対象物と、を収容する空間である収容空間を内部に有する容器と、
 第1の電極及び第2の電極と、上記第1の電極及び上記第2の電極の間に介在する誘電体と、を有するとともに、上記第1の電極及び上記第2の電極の間に電圧が印加されることにより、上記第1の電極及び上記第2の電極の間の空間にて放電を生じさせ、且つ、上記収容空間に上記液体が収容されている状態において、上記液体にて対流が形成されるように上記収容空間のうちの上記液体よりも鉛直上方の空間にて循環する流れを上記放電に伴って形成する放電部と、
 を備えるとともに、上記収容空間に上記液体及び上記対象物が収容されている状態において、上記放電に伴って生成された化学種によって上記対象物を殺菌する。
In one aspect, the sterilizer is
A container having therein a storage space which is a space for storing the liquid and the object immersed in the liquid;
A first electrode and a second electrode; and a dielectric interposed between the first electrode and the second electrode; and a voltage between the first electrode and the second electrode. Is applied to cause a discharge in the space between the first electrode and the second electrode, and in the state where the liquid is stored in the storage space, convection is performed in the liquid. A discharge part that forms a flow that circulates in a space vertically above the liquid in the accommodation space in association with the discharge so as to be formed;
And the object is sterilized by the chemical species generated along with the discharge in a state where the liquid and the object are stored in the storage space.
 一つの側面では、殺菌方法は、
 容器の内部の空間である収容空間に、液体と、上記液体に浸された対象物と、を配置し、
 誘電体が介在する第1の電極及び第2の電極の間に電圧を印加することにより、上記第1の電極及び上記第2の電極の間の空間にて放電を生じさせ、
 上記液体にて対流が形成されるように上記収容空間のうちの上記液体よりも鉛直上方の空間にて循環する流れを上記放電に伴って形成し、
 上記放電に伴って生成された化学種によって上記対象物を殺菌する。
In one aspect, the sterilization method is
In a housing space that is a space inside the container, a liquid and an object immersed in the liquid are arranged,
By applying a voltage between the first electrode and the second electrode interposing the dielectric, a discharge is generated in the space between the first electrode and the second electrode,
A flow that circulates in a space vertically above the liquid in the accommodating space so as to form a convection in the liquid is formed along with the discharge,
The object is sterilized by the chemical species generated with the discharge.
 液体に浸された対象物を迅速に殺菌できる。 ∙ Can quickly sterilize objects immersed in liquid.
第1実施形態の殺菌装置の斜視図である。It is a perspective view of the sterilizer of a 1st embodiment. 図1の殺菌装置の上面図である。It is a top view of the sterilizer of FIG. 図1の殺菌装置の正面図である。It is a front view of the sterilizer of FIG. 図2におけるA-A線による殺菌装置の断面図である。FIG. 3 is a cross-sectional view of the sterilizer along the line AA in FIG. 2. 図4の放電部の正面図である。It is a front view of the discharge part of FIG. 図4の放電部の背面図である。It is a rear view of the discharge part of FIG. 図2におけるA-A線による殺菌装置の断面図である。FIG. 3 is a cross-sectional view of the sterilizer along the line AA in FIG. 2. 第1実施形態の第1変形例の放電部の正面図である。It is a front view of the discharge part of the 1st modification of 1st Embodiment. 第1実施形態の第1変形例の放電部の背面図である。It is a rear view of the discharge part of the 1st modification of 1st Embodiment. 第1実施形態の第2変形例の殺菌装置の断面図である。It is sectional drawing of the sterilizer of the 2nd modification of 1st Embodiment. 図10におけるB-B線による基部の断面図である。It is sectional drawing of the base by the BB line in FIG. 第2実施形態の殺菌装置の上面図である。It is a top view of the sterilizer of 2nd Embodiment. 図12におけるD-D線による殺菌装置の断面図である。It is sectional drawing of the sterilizer by the DD line | wire in FIG. 第3実施形態の殺菌装置の断面図である。It is sectional drawing of the sterilizer of 3rd Embodiment. 図14におけるE-E線による蓋部の断面図である。It is sectional drawing of the cover part by the EE line in FIG.
 以下、本発明の、殺菌装置、及び、殺菌方法、に関する各実施形態について図1乃至図15を参照しながら説明する。 Hereinafter, embodiments of the sterilization apparatus and the sterilization method of the present invention will be described with reference to FIGS. 1 to 15.
<第1実施形態>
(構成)
 図1乃至図3に表されるように、第1実施形態の殺菌装置1は、基部10と、2つの蓋部20-1,20-2と、を備える。後述するように、本例では、蓋部20-1,20-2は、基部10に着脱可能に固定される。以下、蓋部20-1,20-2が基部10に固定された状態における殺菌装置1について説明する。
<First Embodiment>
(Constitution)
As shown in FIGS. 1 to 3, the sterilizer 1 of the first embodiment includes a base 10 and two lids 20-1 and 20-2. As will be described later, in this example, the lid portions 20-1 and 20-2 are detachably fixed to the base portion 10. Hereinafter, the sterilization apparatus 1 in a state where the lid portions 20-1 and 20-2 are fixed to the base portion 10 will be described.
 基部10は、角丸長方形状を有する板状である。なお、基部10は、角丸長方形状と異なる形状(例えば、正方形状、多角形状、楕円形状、又は、円形状等)を有していてもよい。例えば、基部10の長手方向における長さは、10mm乃至100mmの長さである。また、例えば、基部10の短手方向における長さは、5mm乃至50mmの長さである。また、例えば、基部10の厚さは、5mm乃至50mmの厚さである。 The base 10 is a plate having a rounded rectangular shape. In addition, the base 10 may have a shape (for example, a square shape, a polygonal shape, an elliptical shape, or a circular shape) different from the rounded rectangular shape. For example, the length of the base 10 in the longitudinal direction is 10 mm to 100 mm. For example, the length of the base 10 in the short direction is 5 mm to 50 mm. Further, for example, the thickness of the base 10 is 5 mm to 50 mm.
 本例では、基部10の厚さ方向は、鉛直方向に沿って延びる方向である。更に、本例では、基部10の長手方向及び短手方向は、水平面に平行な平面に沿って延びる方向である。 In this example, the thickness direction of the base 10 is a direction extending along the vertical direction. Furthermore, in this example, the longitudinal direction and the short direction of the base 10 are directions extending along a plane parallel to the horizontal plane.
 蓋部20-1は、円柱形状を有する。本例では、蓋部20-1の直径は、基部10の短手方向における長さと等しい。なお、蓋部20-1の直径は、基部10の短手方向における長さと異なっていてもよい。また、蓋部20-1は、円柱形状と異なる形状(例えば、角柱形状等)を有してもよい。 The lid 20-1 has a cylindrical shape. In this example, the diameter of the lid 20-1 is equal to the length of the base 10 in the short direction. Note that the diameter of the lid 20-1 may be different from the length of the base 10 in the short direction. Further, the lid 20-1 may have a shape (for example, a prismatic shape or the like) different from the cylindrical shape.
 蓋部20-1の中心軸は、基部10の厚さ方向に沿って延びる。本例では、蓋部20-2は、蓋部20-1と同じ形状を有する。蓋部20-1及び蓋部20-2は、基部10の厚さ方向における表面のうちの一方(本例では、鉛直上方)の表面において、基部10の長手方向における両端部にそれぞれ位置する。鉛直上方は、鉛直方向における上向きの方向(換言すると、重力の方向の逆方向)である。鉛直下方は、鉛直方向における下向きの方向(換言すると、重力の方向)である。 The central axis of the lid 20-1 extends along the thickness direction of the base 10. In this example, the lid 20-2 has the same shape as the lid 20-1. The lid portion 20-1 and the lid portion 20-2 are respectively located at both ends in the longitudinal direction of the base portion 10 on the surface of one of the surfaces in the thickness direction of the base portion 10 (in this example, vertically upward). Vertically upward is the upward direction in the vertical direction (in other words, the direction opposite to the direction of gravity). The vertically downward direction is a downward direction in the vertical direction (in other words, the direction of gravity).
 図1乃至図7に表されるように、X軸、Y軸及びZ軸を有する右手系の直交座標系を用いて殺菌装置1について説明を加える。なお、後述する図8乃至図15においても、図1乃至図7と同一の直交座標系が用いられる。 As shown in FIGS. 1 to 7, the sterilizer 1 will be described using a right-handed orthogonal coordinate system having an X axis, a Y axis, and a Z axis. 8 to 15 to be described later, the same orthogonal coordinate system as in FIGS. 1 to 7 is used.
 Z軸は、鉛直方向(換言すると、基部10の厚さ方向、又は、蓋部20-1,20-2の中心軸方向)に沿って延びる。Z軸の正方向は、鉛直上方である。Y軸は、基部10の長手方向に沿って延びる。Y軸の正方向は、蓋部20-2から蓋部20-1への方向である。X軸は、基部10の短手方向に沿って延びる。 The Z axis extends along the vertical direction (in other words, the thickness direction of the base portion 10 or the central axis direction of the lid portions 20-1 and 20-2). The positive direction of the Z axis is vertically upward. The Y axis extends along the longitudinal direction of the base 10. The positive direction of the Y axis is the direction from the lid 20-2 to the lid 20-1. The X axis extends along the short direction of the base 10.
 図4は、図2におけるA-A線による殺菌装置1の断面を表す。図4に表されるように、基部10は、Z軸の正方向側の表面に凹部11を有する。凹部11は、Z軸に沿って延びる円柱の、側面及びZ軸の負方向側の底面を形成する。なお、凹部11は、円柱と異なる柱体(例えば、角柱等)を形成してもよい。本例では、凹部11の中心軸は、蓋部20-1の中心軸と一致する。 FIG. 4 shows a cross section of the sterilizer 1 along the line AA in FIG. As shown in FIG. 4, the base 10 has a recess 11 on the surface on the positive direction side of the Z axis. The recess 11 forms a side surface and a bottom surface on the negative direction side of the Z axis of a cylinder extending along the Z axis. In addition, the recessed part 11 may form a column body (for example, a prism etc.) different from a cylinder. In this example, the central axis of the recess 11 coincides with the central axis of the lid 20-1.
 凹部11のうちの、上記円柱のZ軸の負方向側の底面を形成する部分(換言すると、凹部11の底面)12は、凹部11に位置する対象物を、水平面に平行な平面(本例では、XY平面)における中央部に誘導する形状を有する。XY平面は、Z軸に直交する平面である。本例では、凹部11の底面12は、凹部11の中心軸に近づくほどZ軸の負方向側に位置する。なお、凹部11の底面12は、平面であってもよい。 A portion (in other words, the bottom surface of the concave portion 11) 12 of the concave portion 11 that forms the bottom surface on the negative direction side of the Z-axis of the cylinder is a plane parallel to the horizontal plane (this example). Then, it has the shape which guide | induces to the center part in XY plane. The XY plane is a plane orthogonal to the Z axis. In this example, the bottom surface 12 of the recess 11 is positioned closer to the negative direction side of the Z axis as it approaches the central axis of the recess 11. The bottom surface 12 of the recess 11 may be a flat surface.
 蓋部20-1は、Z軸の負方向側の表面に凹部21を有する。凹部21は、Z軸に沿って延びる円柱の、側面及びZ軸の正方向側の底面を形成する。なお、凹部21は、円柱と異なる柱体(例えば、角柱等)を形成してもよい。本例では、凹部21の中心軸は、蓋部20-1の中心軸と一致する。更に、本例では、凹部21の直径は、凹部11の直径と等しい。凹部21のうちの、上記円柱のZ軸の正方向側の底面を形成する部分(換言すると、凹部21の底面)22は、平面である。 The lid 20-1 has a recess 21 on the surface on the negative direction side of the Z-axis. The recess 21 forms a side surface and a bottom surface on the positive direction side of the Z axis of a cylinder extending along the Z axis. In addition, the recessed part 21 may form a column body (for example, a prism etc.) different from a cylinder. In this example, the central axis of the recess 21 coincides with the central axis of the lid 20-1. Furthermore, in this example, the diameter of the recess 21 is equal to the diameter of the recess 11. A portion (in other words, the bottom surface of the recess 21) 22 that forms the bottom surface of the concave portion 21 on the positive side of the Z axis of the cylinder is a flat surface.
 基部10は、Z軸の正方向側の表面に螺合部13を備える。螺合部13は、Z軸に沿って延びる、中空の円筒形状を有する。螺合部13の内径は、凹部11の直径(本例では、凹部11のZ軸の正方向側の端における直径)と等しい。螺合部13の中心軸は、凹部11の中心軸と一致する。螺合部13の外壁は、ネジ溝を有する。螺合部13は、雄ネジと捉えられてよい。 The base 10 includes a threaded portion 13 on the surface on the positive side of the Z axis. The threaded portion 13 has a hollow cylindrical shape extending along the Z axis. The inner diameter of the threaded portion 13 is equal to the diameter of the concave portion 11 (in this example, the diameter of the concave portion 11 at the end on the positive direction side of the Z axis). The central axis of the threaded portion 13 coincides with the central axis of the concave portion 11. The outer wall of the screwing part 13 has a screw groove. The screw part 13 may be regarded as a male screw.
 蓋部20-1は、Z軸の負方向側の表面に螺合部23を備える。螺合部23は、Z軸に沿って延びる、中空の円筒形状を有する。螺合部23の内径は、螺合部13の外径と等しい。螺合部23の外径は、蓋部20-1の直径と等しい。螺合部23の中心軸は、蓋部20-1の中心軸と一致する。螺合部23の内壁は、螺合部13と螺合されるネジ溝を有する。螺合部23は、雌ネジと捉えられてよい。 The lid 20-1 includes a threaded portion 23 on the surface on the negative direction side of the Z-axis. The screw part 23 has a hollow cylindrical shape extending along the Z axis. The inner diameter of the screwing portion 23 is equal to the outer diameter of the screwing portion 13. The outer diameter of the screw portion 23 is equal to the diameter of the lid portion 20-1. The central axis of the screw part 23 coincides with the central axis of the lid part 20-1. The inner wall of the screwing portion 23 has a screw groove to be screwed with the screwing portion 13. The screw part 23 may be regarded as a female screw.
 蓋部20-1は、螺合部23が螺合部13に螺合されることにより、基部10に固定される。蓋部20-1が螺合によって基部10に固定されることは、蓋部20-1が着脱可能に基部10に固定されることの一例である。なお、蓋部20-1は、螺合と異なる機構によって、基部10に着脱可能に固定されてもよい。
 なお、殺菌装置1は、基部10が雌ネジを構成するとともに、蓋部20-1が雄ネジを構成してもよい。
The lid portion 20-1 is fixed to the base portion 10 by the screwing portion 23 being screwed to the screwing portion 13. The lid 20-1 being fixed to the base 10 by screwing is an example of the lid 20-1 being detachably fixed to the base 10. The lid 20-1 may be detachably fixed to the base 10 by a mechanism different from screwing.
In the sterilizer 1, the base portion 10 may constitute a female screw, and the lid portion 20-1 may constitute a male screw.
 蓋部20-1が基部10に固定された状態において、基部10及び蓋部20-1は、容器を構成するとともに、凹部21、凹部11、及び、螺合部13は、当該容器の内部の空間である収容空間CSを形成する。従って、本例では、収容空間CSのうちのZ軸の正方向側の端部の、XY平面における形状は、円形状である。 In a state where the lid 20-1 is fixed to the base 10, the base 10 and the lid 20-1 constitute a container, and the concave portion 21, the concave portion 11, and the screwing portion 13 are provided inside the container. A storage space CS which is a space is formed. Therefore, in this example, the shape in the XY plane of the end portion on the positive direction side of the Z axis in the accommodation space CS is a circular shape.
 また、蓋部20-1が基部10に固定された状態において、基部10は、収容空間CSのうちの、Z軸の負方向の端部を形成する、と捉えられてよい。また、蓋部20-1が基部10に固定された状態において、蓋部20-1は、収容空間CSのうちの、Z軸の正方向の端部を形成する、と捉えられてよい。
 なお、本例では、蓋部20-1が基部10に固定された状態において、収容空間CSは、密閉された空間である、と捉えられてよい。
Further, in a state where the lid 20-1 is fixed to the base 10, the base 10 may be regarded as forming the end of the accommodation space CS in the negative direction of the Z axis. Further, in a state where the lid 20-1 is fixed to the base 10, the lid 20-1 may be regarded as forming the end in the positive direction of the Z axis in the accommodation space CS.
In this example, in the state where the lid 20-1 is fixed to the base 10, the accommodation space CS may be regarded as a sealed space.
 上述したように、本例では、蓋部20-2は、蓋部20-1と同じ形状を有する。基部10は、蓋部20-1に対する凹部11及び螺合部13と同様に、蓋部20-2に対する凹部及び螺合部を備える。 As described above, in this example, the lid 20-2 has the same shape as the lid 20-1. The base portion 10 includes a concave portion and a screwing portion for the lid portion 20-2 as well as the concave portion 11 and the screwing portion 13 for the lid portion 20-1.
 更に、蓋部20-1は、放電部30を備える。放電部30は、XY平面に平行な平板状である。放電部30は、蓋部20-1の凹部21の底面22に接する。本例では、放電部30は、蓋部20-1の凹部21の底面22に固定される。従って、放電部30は、蓋部20-1の凹部21の底面22を被覆する。
 放電部30は、誘電体31と、第1の電極32と、第2の電極33と、絶縁体34と、を備える。
Further, the lid 20-1 includes a discharge unit 30. The discharge unit 30 has a flat plate shape parallel to the XY plane. The discharge part 30 contacts the bottom surface 22 of the recess 21 of the lid part 20-1. In this example, the discharge part 30 is fixed to the bottom surface 22 of the recess 21 of the lid part 20-1. Accordingly, the discharge part 30 covers the bottom surface 22 of the recess 21 of the lid part 20-1.
The discharge unit 30 includes a dielectric 31, a first electrode 32, a second electrode 33, and an insulator 34.
 誘電体31は、酸化アルミニウム(Al)からなる。酸化アルミニウムは、アルミナと表されてもよい。なお、誘電体31は、酸化アルミニウムと異なる材料(例えば、ガラス等)からなっていてもよい。 The dielectric 31 is made of aluminum oxide (Al 2 O 3 ). Aluminum oxide may be represented as alumina. The dielectric 31 may be made of a material different from aluminum oxide (for example, glass).
 誘電体31は、XY平面に平行な平板状である。誘電体31の厚さは、0.02mm乃至2mmの厚さである。図4乃至図6に表されるように、誘電体31は、円形状を有する。図5は、Z軸の正方向へ向かって放電部30を見た図(換言すると、放電部30の正面から見た図)である。図6は、Z軸の負方向へ向かって放電部30を見た図(換言すると、放電部30の背面から見た図)である。本例では、誘電体31の外縁は、凹部21のXY平面における形状と一致する。なお、誘電体31の外縁は、凹部21のXY平面における形状と異なる形状を有してもよい。 The dielectric 31 is a flat plate parallel to the XY plane. The thickness of the dielectric 31 is 0.02 mm to 2 mm. As shown in FIGS. 4 to 6, the dielectric 31 has a circular shape. FIG. 5 is a diagram of the discharge unit 30 viewed in the positive direction of the Z axis (in other words, a diagram viewed from the front of the discharge unit 30). FIG. 6 is a diagram of the discharge unit 30 viewed in the negative direction of the Z axis (in other words, a diagram viewed from the back of the discharge unit 30). In this example, the outer edge of the dielectric 31 matches the shape of the recess 21 in the XY plane. The outer edge of the dielectric 31 may have a shape different from the shape of the recess 21 in the XY plane.
 第1の電極32は、アルミニウム(Al)からなる。なお、第1の電極32は、アルミニウムと異なる材料(例えば、ステンレス鋼、銀、又は、銅等)からなっていてもよい。ステンレス鋼は、SUSと表されてもよい。 The first electrode 32 is made of aluminum (Al). Note that the first electrode 32 may be made of a material different from aluminum (for example, stainless steel, silver, or copper). Stainless steel may be represented as SUS.
 第1の電極32は、XY平面に平行な平板状である。第1の電極32の厚さは、1μm乃至3mmの厚さである。第1の電極32は、誘電体31の表面のうちの、Z軸の負方向側の表面に接する。本例では、第1の電極32は、誘電体31の表面のうちの、Z軸の負方向側の表面に固定される。 The first electrode 32 has a flat plate shape parallel to the XY plane. The thickness of the first electrode 32 is 1 μm to 3 mm. The first electrode 32 is in contact with the surface of the dielectric 31 on the negative side of the Z axis. In this example, the first electrode 32 is fixed to the surface of the dielectric 31 on the negative direction side of the Z axis.
 第1の電極32は、X軸方向に沿って延びる部分と、Y軸方向に沿って延びる部分と、からなるT字状である。XY平面において、第1の電極32の、Y軸の負方向における端辺321は、X軸方向に沿って延びる直線状である。端辺321の長さは、誘電体31の直径よりも短い。XY平面において、端辺321は、誘電体31の中心を通る。Y軸の負方向は、第1の方向の一例である。X軸方向は、第2の方向の一例である。端辺321は、第1の端辺の一例である。 The first electrode 32 has a T-shape composed of a portion extending along the X-axis direction and a portion extending along the Y-axis direction. In the XY plane, the end side 321 of the first electrode 32 in the negative direction of the Y-axis is a straight line extending along the X-axis direction. The length of the end side 321 is shorter than the diameter of the dielectric 31. In the XY plane, the end side 321 passes through the center of the dielectric 31. The negative direction of the Y axis is an example of the first direction. The X-axis direction is an example of the second direction. The end side 321 is an example of a first end side.
 第2の電極33は、アルミニウム(Al)からなる。なお、第2の電極33は、アルミニウムと異なる材料(例えば、ステンレス鋼、銀、又は、銅等)からなっていてもよい。また、第2の電極33は、第1の電極32と異なる材料からなっていてもよい。 The second electrode 33 is made of aluminum (Al). Note that the second electrode 33 may be made of a material different from aluminum (for example, stainless steel, silver, or copper). Further, the second electrode 33 may be made of a material different from that of the first electrode 32.
 第2の電極33は、XY平面に平行な平板状である。第2の電極33の厚さは、1μm乃至3mmの厚さである。第2の電極33は、誘電体31の表面のうちの、Z軸の正方向側の表面に接する。本例では、第2の電極33は、誘電体31の表面のうちの、Z軸の正方向側の表面に固定される。 The second electrode 33 has a flat plate shape parallel to the XY plane. The thickness of the second electrode 33 is 1 μm to 3 mm. The second electrode 33 is in contact with the surface of the dielectric 31 on the positive side of the Z axis. In this example, the second electrode 33 is fixed to the surface of the dielectric 31 on the positive side of the Z axis.
 第2の電極33は、X軸方向に沿って延びる部分と、Y軸方向に沿って延びる部分と、からなるT字状である。XY平面において、第2の電極33の、Y軸の正方向における端辺331は、X軸方向に沿って延びる直線状である。端辺331の長さは、端辺321の長さと等しい。XY平面において、端辺331は、誘電体31の中心を通る。端辺331は、第2の端辺の一例である。 The second electrode 33 has a T-shape composed of a portion extending along the X-axis direction and a portion extending along the Y-axis direction. In the XY plane, the end side 331 of the second electrode 33 in the positive direction of the Y-axis is a straight line extending along the X-axis direction. The length of the end side 331 is equal to the length of the end side 321. In the XY plane, the end side 331 passes through the center of the dielectric 31. The end side 331 is an example of a second end side.
 本例では、XY平面において、端辺331の位置は、端辺321の位置と一致する。従って、本例では、XY平面における、第2の電極33のうちの端辺331と異なる部分の位置は、XY平面における、第1の電極32の位置と異なる。換言すると、XY平面において、第1の電極32と第2の電極33とは、互いに重ならない。 In this example, the position of the end side 331 coincides with the position of the end side 321 in the XY plane. Accordingly, in this example, the position of the portion of the second electrode 33 that is different from the end side 331 in the XY plane is different from the position of the first electrode 32 in the XY plane. In other words, the first electrode 32 and the second electrode 33 do not overlap with each other in the XY plane.
 このように、本例では、第1の電極32は、誘電体31の表面のうちの、Z軸の負方向側の表面に接するとともに、第2の電極33は、誘電体31の表面のうちの、Z軸の正方向側の表面に接する。換言すると、誘電体31は、第1の電極32、及び、第2の電極33の間に介在する。 Thus, in this example, the first electrode 32 is in contact with the surface of the dielectric 31 on the negative direction side of the Z-axis, and the second electrode 33 is out of the surface of the dielectric 31. In contact with the surface on the positive side of the Z-axis. In other words, the dielectric 31 is interposed between the first electrode 32 and the second electrode 33.
 絶縁体34は、塩化ビニル樹脂等の合成樹脂からなる。なお、絶縁体34は、合成樹脂と異なる材料(例えば、二酸化ケイ素(SiO)等)からなっていてもよい。絶縁体34は、XY平面に平行な板状である。絶縁体34の厚さは、1μm乃至5mmの厚さである。絶縁体34は、第2の電極33の表面のうちのZ軸の正方向側の表面と、誘電体31の表面のうちのZ軸の正方向側の表面の中で第2の電極33と接していない部分と、を被覆する。 The insulator 34 is made of a synthetic resin such as a vinyl chloride resin. The insulator 34 may be made of a material different from the synthetic resin (for example, silicon dioxide (SiO 2 )). The insulator 34 has a plate shape parallel to the XY plane. The thickness of the insulator 34 is 1 μm to 5 mm. The insulator 34 includes the surface of the second electrode 33 on the positive side of the Z axis and the surface of the dielectric 31 on the positive side of the Z axis and the second electrode 33. The part which does not touch is covered.
 本例では、絶縁体34は、XY平面において、第1の電極32及び第2の電極33のうちの、X軸方向に沿って延びる部分の全体に亘って位置する。換言すると、絶縁体34は、XY平面において、第1の電極32及び第2の電極33のうちの、X軸方向に沿って延びる部分の全体と重なる。本例では、更に、絶縁体34は、XY平面において、第1の電極32及び第2の電極33のうちの、X軸方向に沿って延びる部分の外周まで延びる。 In this example, the insulator 34 is located over the entire portion of the first electrode 32 and the second electrode 33 extending along the X-axis direction in the XY plane. In other words, the insulator 34 overlaps the entire portion of the first electrode 32 and the second electrode 33 extending along the X-axis direction in the XY plane. In this example, the insulator 34 further extends to the outer periphery of the portion extending along the X-axis direction in the first electrode 32 and the second electrode 33 in the XY plane.
 更に、放電部30には、図示されない電源部が接続される。電源部は、第1の電極32及び第2の電極33に接続される。電源部は、第1の電極32及び第2の電極33の間に、交流電圧を印加する。本例では、交流電圧の波形は、正弦波である。本例では、交流電圧は、周波数が40kHzであり、且つ、振幅が2.8kVである。なお、交流電圧は、周波数が10kHz乃至100kHzの周波数であり、且つ、振幅が1kV乃至10kVの振幅であってもよい。また、交流電圧の波形は、正弦波と異なる波形(例えば、矩形波、又は、三角波等)であってもよい。
 本例では、放電部30は、プラズマアクチュエータと捉えられてよい。
Further, a power supply unit (not shown) is connected to the discharge unit 30. The power supply unit is connected to the first electrode 32 and the second electrode 33. The power supply unit applies an alternating voltage between the first electrode 32 and the second electrode 33. In this example, the waveform of the AC voltage is a sine wave. In this example, the AC voltage has a frequency of 40 kHz and an amplitude of 2.8 kV. Note that the AC voltage may have a frequency of 10 kHz to 100 kHz and an amplitude of 1 kV to 10 kV. The waveform of the AC voltage may be a waveform different from a sine wave (for example, a rectangular wave or a triangular wave).
In this example, the discharge unit 30 may be regarded as a plasma actuator.
 本例では、蓋部20-2も、蓋部20-1が備える放電部30と同様の放電部を備える。本例では、殺菌装置1は、1つの電源部に接続されるとともに、蓋部20-1が備える放電部30と、蓋部20-2が備える放電部と、の間で当該電源部が共用される。なお、蓋部20-1が備える放電部30と、蓋部20-2が備える放電部と、は、2つの電源部にそれぞれ接続されていてもよい。 In this example, the lid 20-2 also includes a discharge unit similar to the discharge unit 30 included in the lid 20-1. In this example, the sterilizer 1 is connected to one power supply unit, and the power supply unit is shared between the discharge unit 30 included in the cover unit 20-1 and the discharge unit included in the cover unit 20-2. Is done. Note that the discharge unit 30 included in the lid 20-1 and the discharge unit included in the lid 20-2 may be connected to two power supply units, respectively.
 また、殺菌装置1は、電源部を備えていてもよい。この場合、電源部は、殺菌装置1のうちの電源部以外の部分と一体に構成されていてもよく、当該部分と別体に構成されていてもよい。 Moreover, the sterilizer 1 may include a power supply unit. In this case, the power supply unit may be configured integrally with a part of the sterilization apparatus 1 other than the power supply unit, or may be configured separately from the part.
(動作)
 次に、殺菌装置1の動作について図7を参照しながら説明する。以下、蓋部20-1と基部10とにより形成される収容空間CSに着目して、殺菌装置1の動作について説明する。なお、蓋部20-2と基部10とにより形成される収容空間に対する殺菌装置1の動作も同様に説明されるので、その説明は省略される。
(Operation)
Next, the operation of the sterilizer 1 will be described with reference to FIG. Hereinafter, the operation of the sterilizer 1 will be described by focusing on the accommodation space CS formed by the lid 20-1 and the base 10. Note that the operation of the sterilizer 1 with respect to the accommodation space formed by the lid 20-2 and the base 10 will be described in the same way, and the description thereof will be omitted.
 先ず、基部10から蓋部20-1が取り外される。基部10から蓋部20-1が取り外された状態において、基部10の凹部11に液体LQが注入される。本例では、液体LQは、水(例えば、水道水)である。なお、液体LQは、水と異なる液体(例えば、水溶液等)であってもよい。 First, the lid 20-1 is removed from the base 10. In a state where the lid 20-1 is removed from the base 10, the liquid LQ is injected into the recess 11 of the base 10. In this example, the liquid LQ is water (for example, tap water). The liquid LQ may be a liquid different from water (for example, an aqueous solution).
 次いで、凹部11に注入された液体LQに、対象物TOが導入される。本例では、対象物TOは、コンタクトレンズである。なお、対象物TOは、コンタクトレンズと異なる物体(例えば、医療機器、医療用品、歯科材料、又は、衛生用品等)であってもよい。これにより、対象物TOは、液体LQに浸される。本例では、対象物TOの全体が、液体LQに浸される。なお、対象物TOの一部のみが、液体LQに浸されてもよい。また、対象物TOが凹部11に導入された後に、液体LQが凹部11に注入されてもよい。また、対象物TOが液体LQに導入された後に、対象物TOを含む液体LQが凹部11に注入されてもよい。 Next, the object TO is introduced into the liquid LQ injected into the recess 11. In this example, the object TO is a contact lens. The object TO may be an object different from the contact lens (for example, a medical device, a medical product, a dental material, or a sanitary product). Thereby, the target object TO is immersed in the liquid LQ. In this example, the entire object TO is immersed in the liquid LQ. Note that only a part of the object TO may be immersed in the liquid LQ. Further, the liquid LQ may be injected into the recess 11 after the object TO is introduced into the recess 11. Further, after the object TO is introduced into the liquid LQ, the liquid LQ containing the object TO may be injected into the recess 11.
 そして、蓋部20-1が基部10に取り付けられる。本例では、蓋部20-1は、螺合によって基部10に固定される。これにより、殺菌装置1の内部に密閉された収容空間CSが形成される。従って、本例では、収容空間CSのうちの、液体LQよりもZ軸の正方向側の部分は、大気圧を有する空気によって満たされる。 Then, the lid 20-1 is attached to the base 10. In this example, the lid 20-1 is fixed to the base 10 by screwing. Thereby, the accommodation space CS sealed in the inside of the sterilizer 1 is formed. Therefore, in this example, the portion of the accommodation space CS on the positive side of the Z axis with respect to the liquid LQ is filled with air having atmospheric pressure.
 このようにして、収容空間CSに、液体LQと、液体LQに浸された対象物TOと、が配置される。換言すると、収容空間CSに、液体LQと、液体LQに浸された対象物TOと、が収容される。 In this way, the liquid LQ and the object TO immersed in the liquid LQ are arranged in the accommodation space CS. In other words, the liquid LQ and the object TO immersed in the liquid LQ are stored in the storage space CS.
 次に、第1の電極32及び第2の電極33の間に交流電圧が印加される。これにより、第1の電極32及び第2の電極33の間の空間にて放電が生じる。本例では、第1の電極32と、誘電体31の表面のうちのZ軸の負方向側の表面と、の間の空間にて放電が生じる。本例では、放電は、誘電体バリア放電と捉えられてよい。 Next, an AC voltage is applied between the first electrode 32 and the second electrode 33. As a result, discharge occurs in the space between the first electrode 32 and the second electrode 33. In this example, discharge occurs in the space between the first electrode 32 and the surface of the dielectric 31 on the negative direction side of the Z axis. In this example, the discharge may be regarded as a dielectric barrier discharge.
 放電に伴ってイオンが生成される。また、収容空間CSのうちの放電部30の近傍において、Y軸方向における電界が形成される。この結果、収容空間CSのうちの放電部30の近傍において、Y軸の負方向のイオンの流れが形成される。イオンの流れが形成されることによって、収容空間CSのうちの放電部30の近傍において、Y軸の負方向の空気の流れが形成される。 Ions are generated with the discharge. An electric field in the Y-axis direction is formed in the vicinity of the discharge unit 30 in the accommodation space CS. As a result, an ion flow in the negative direction of the Y axis is formed in the vicinity of the discharge unit 30 in the accommodation space CS. By forming the ion flow, a negative Y-axis air flow is formed in the vicinity of the discharge unit 30 in the accommodation space CS.
 従って、収容空間CSのうちの液体LQよりもZ軸の正方向側の空間において、放電部30の近傍におけるY軸の負方向の流れと、Y軸の負方向側の端部におけるZ軸の負方向の流れと、液体LQの表面の近傍におけるY軸の正方向の流れと、Y軸の正方向側の端部におけるZ軸の正方向の流れと、が形成される。
 このようにして、収容空間CSのうちの液体LQよりもZ軸の正方向側の空間にて循環する流れ(換言すると、循環流)GFが放電に伴って形成される。
Therefore, in the space on the positive side of the Z axis with respect to the liquid LQ in the storage space CS, the flow in the negative direction of the Y axis in the vicinity of the discharge unit 30 and the Z axis at the end on the negative direction side of the Y axis. A negative flow, a positive flow of the Y axis in the vicinity of the surface of the liquid LQ, and a positive flow of the Z axis at the end on the positive direction side of the Y axis are formed.
In this way, a flow (in other words, a circulating flow) GF that circulates in a space on the positive side of the Z axis with respect to the liquid LQ in the storage space CS is formed along with the discharge.
 循環流GFが形成されることにより、液体LQにおいて、液体LQの表面の近傍におけるY軸の正方向の流れと、Y軸の正方向側の端部におけるZ軸の負方向の流れと、凹部11の底面12の近傍におけるY軸の負方向の流れと、Y軸の負方向側の端部におけるZ軸の正方向の流れと、が形成される。
 このようにして、液体LQにて対流LFが放電に伴って形成される。
By forming the circulating flow GF, in the liquid LQ, the flow in the positive direction of the Y axis in the vicinity of the surface of the liquid LQ, the flow in the negative direction of the Z axis at the end on the positive direction side of the Y axis, and the concave portion 11 in the vicinity of the bottom surface 12 of the Y axis, and a positive flow in the Z axis at the end of the Y axis on the negative direction side.
In this way, a convection LF is formed in the liquid LQ along with the discharge.
 また、放電に伴って化学種が生成される。本例では、化学種は、化学活性種を含む。化学活性種は、反応活性種と表されてもよい。本例では、化学活性種は、オゾン(O)、イオン、又は、ラジカルを含む。
 放電に伴って生成された化学種は、収容空間CSにて形成された、循環流GF及び対流LFによって、液体LQに浸された対象物TOまで運ばれる。この結果、液体LQに浸された対象物TOは、殺菌される。例えば、殺菌によって死滅する微生物、又は、殺菌によって除去される微生物は、芽胞菌、緑膿菌、黄色ブドウ球菌、アカントアメーバ、インフルエンザウイルス、アデノウイルス、エンテロウイルス、又は、ヘルペスウイルス等の病原性微生物を含む。
In addition, chemical species are generated along with the discharge. In this example, the chemical species includes chemically active species. The chemically active species may be represented as a reactive species. In this example, the chemically active species includes ozone (O 3 ), ions, or radicals.
The chemical species generated along with the discharge is carried to the object TO immersed in the liquid LQ by the circulating flow GF and the convection LF formed in the accommodation space CS. As a result, the object TO immersed in the liquid LQ is sterilized. For example, microorganisms that die by sterilization or microorganisms that are removed by sterilization include pathogenic microorganisms such as spore bacteria, Pseudomonas aeruginosa, Staphylococcus aureus, Acanthamoeba, influenza virus, adenovirus, enterovirus, or herpes virus. Including.
 以上、説明したように、第1実施形態の殺菌装置1は、第1の電極32、及び、第2の電極33の間に電圧が印加されることにより、第1の電極32、及び、第2の電極33の間の空間にて放電を生じさせ、且つ、収容空間CSに液体LQが収容されている状態において、液体LQにて対流LFが形成されるように収容空間CSのうちの液体LQよりも鉛直上方の空間にて循環する流れGFを放電に伴って形成する。更に、殺菌装置1は、収容空間CSに液体LQ、及び、対象物TOが収容されている状態において、放電に伴って生成された化学種によって対象物TOを殺菌する。 As described above, the sterilization apparatus 1 according to the first embodiment has the first electrode 32 and the first electrode 32 applied by applying a voltage between the first electrode 32 and the second electrode 33. In the space between the two electrodes 33, and in the state where the liquid LQ is accommodated in the accommodation space CS, the liquid in the accommodation space CS so that the convection LF is formed in the liquid LQ. A flow GF that circulates in a space vertically above LQ is formed along with the discharge. Furthermore, the sterilizer 1 sterilizes the object TO with the chemical species generated along with the discharge in a state where the liquid LQ and the object TO are stored in the storage space CS.
 これによれば、送風機又はポンプ等の流体機械を用いることなく、液体LQにて対流LFを形成できる。これにより、放電に伴って生成された化学種を、液体LQに浸された対象物TOに迅速に到達させることができる。この結果、液体LQに浸された対象物TOを迅速に殺菌できる。 According to this, the convection LF can be formed with the liquid LQ without using a fluid machine such as a blower or a pump. Thereby, the chemical species generated along with the discharge can quickly reach the target TO immersed in the liquid LQ. As a result, the object TO immersed in the liquid LQ can be quickly sterilized.
 更に、第1実施形態の殺菌装置1において、誘電体31は、水平面に平行な平板状である。加えて、第1の電極32は、水平面に平行な平板状であり、且つ、誘電体31の表面のうちの、鉛直下方側の表面に接する。更に、第2の電極33は、水平面に平行な平板状であり、且つ、誘電体31の表面のうちの、鉛直上方側の表面に接する。加えて、水平面に平行な平面において、第2の電極33の少なくとも一部の位置は、第1の電極32と異なる。 Furthermore, in the sterilization apparatus 1 of the first embodiment, the dielectric 31 is a flat plate parallel to the horizontal plane. In addition, the first electrode 32 has a flat plate shape parallel to the horizontal plane, and is in contact with the surface of the dielectric 31 on the vertically lower side. Furthermore, the second electrode 33 has a flat plate shape parallel to the horizontal plane, and is in contact with the surface on the vertical upper side of the surface of the dielectric 31. In addition, the position of at least a part of the second electrode 33 is different from that of the first electrode 32 in a plane parallel to the horizontal plane.
 これによれば、放電に伴って、収容空間CSのうちの放電部30の近傍において、水平面に平行な平面に沿った方向の流れを形成できる。これにより、収容空間CSのうちの液体LQよりも鉛直上方の空間にて循環する流れGFを形成できるので、液体LQにて対流LFを形成できる。 According to this, a flow in a direction along a plane parallel to the horizontal plane can be formed in the vicinity of the discharge unit 30 in the accommodation space CS along with the discharge. Thereby, since the flow GF circulating in the space vertically above the liquid LQ in the accommodation space CS can be formed, the convection LF can be formed in the liquid LQ.
 更に、液体LQの表面と放電部30との間の距離を十分に短くしながら、電界が形成される領域を大きくすることができる。従って、殺菌装置1の鉛直方向における大きさを小さくしながら、放電に伴って生成される化学種の量を増加できるとともに、放電に伴って形成される流れGF,LFを十分に強くすることができる。 Furthermore, the region where the electric field is formed can be enlarged while sufficiently shortening the distance between the surface of the liquid LQ and the discharge part 30. Therefore, while reducing the size of the sterilizer 1 in the vertical direction, the amount of chemical species generated along with the discharge can be increased, and the flows GF and LF formed along with the discharge can be made sufficiently strong. it can.
 更に、第1実施形態の殺菌装置1において、水平面に平行な平面において、第1の電極32の第1の方向(本例では、Y軸の負方向)における第1の端辺321は、第1の方向に直交する第2の方向(本例では、X軸方向)に沿って延びる直線状である。加えて、水平面に平行な平面において、第2の電極33の、第1の方向と逆方向(本例では、Y軸の正方向)における第2の端辺331は、第2の方向(本例では、X軸方向)に沿って延びる直線状である。 Furthermore, in the sterilization apparatus 1 according to the first embodiment, the first end 321 in the first direction of the first electrode 32 (in this example, the negative direction of the Y axis) in the plane parallel to the horizontal plane is It is a straight line extending along a second direction (in this example, the X-axis direction) orthogonal to the direction 1. In addition, in a plane parallel to the horizontal plane, the second end 331 of the second electrode 33 in the direction opposite to the first direction (in this example, the positive direction of the Y-axis) In the example, it is a straight line extending along the X-axis direction).
 これによれば、収容空間CSのうちの液体LQよりも鉛直上方の空間において、放電部30の近傍における第1の方向の流れと、第1の方向側の端部における鉛直下方の流れと、液体LQの表面の近傍における第1の方向と逆方向の流れと、第1の方向と逆方向側の端部における鉛直上方の流れと、を形成できる。 According to this, in the space vertically above the liquid LQ in the storage space CS, the flow in the first direction in the vicinity of the discharge unit 30, the flow in the vertical direction at the end on the first direction side, A flow in the direction opposite to the first direction in the vicinity of the surface of the liquid LQ and a flow in the vertically upward direction at the end opposite to the first direction can be formed.
 この結果、液体LQにおいて、液体LQの表面の近傍における第1の方向と逆方向の流れと、第1の方向と逆方向側の端部における鉛直下方の流れと、液体LQの鉛直下方側の端部における第1の方向の流れと、第1の方向側の端部における鉛直上方の流れと、を形成できる。 As a result, in the liquid LQ, the flow in the direction opposite to the first direction in the vicinity of the surface of the liquid LQ, the flow in the vertically downward direction at the end opposite to the first direction, and the flow in the vertically downward direction of the liquid LQ. A flow in the first direction at the end portion and a vertically upward flow at the end portion on the first direction side can be formed.
 従って、対象物TOが、収容空間CSのうちの水平面に平行な平面における中央部に位置する場合、液体LQにて形成される対流LFは、対象物TOの外周を循環するので、対象物TOによって阻害されにくい。この結果、対象物TOの、鉛直上方側の表面及び鉛直下方側の表面の両方に化学種を迅速に到達させることができる。従って、液体LQに浸された対象物TOを迅速に殺菌できる。 Therefore, when the target object TO is located in the center part in the plane parallel to the horizontal plane in the accommodation space CS, the convection LF formed by the liquid LQ circulates around the outer periphery of the target object TO. It is hard to be disturbed by. As a result, the chemical species can quickly reach both the vertically upper surface and the vertically lower surface of the object TO. Therefore, the object TO immersed in the liquid LQ can be quickly sterilized.
 更に、第1実施形態の殺菌装置1において、収容空間CSのうちの鉛直上方側の端部の、水平面に平行な平面における形状は、円形状である。加えて、水平面に平行な平面において、第1の端辺321は、収容空間CSのうちの鉛直上方側の端部の中心を通る。 Furthermore, in the sterilizer 1 of the first embodiment, the shape of the end portion on the vertically upper side of the accommodation space CS in a plane parallel to the horizontal plane is a circular shape. In addition, in a plane parallel to the horizontal plane, the first end 321 passes through the center of the end portion on the vertically upper side of the accommodation space CS.
 これによれば、第1の端辺321の長さを長くすることができるので、電界が形成される領域を大きくすることができる。従って、放電に伴って生成される化学種の量を増加できるとともに、放電に伴って形成される流れGF,LFを十分に強くすることができる。 According to this, since the length of the first end 321 can be increased, the region where the electric field is formed can be increased. Therefore, the amount of chemical species generated along with the discharge can be increased, and the flows GF and LF formed along with the discharge can be made sufficiently strong.
 更に、第1実施形態の殺菌装置1において、容器を構成する基部10の凹部11は、収容空間CSにて、対象物TOを水平面に平行な平面における中央部に誘導する形状を有する。 Furthermore, in the sterilization apparatus 1 of the first embodiment, the recess 11 of the base 10 constituting the container has a shape that guides the object TO to the central portion in a plane parallel to the horizontal plane in the accommodation space CS.
 これによれば、対象物TOを、収容空間CSのうちの水平面に平行な平面における中央部に位置させることができる。これにより、液体LQにて形成される対流LFは、対象物TOの外周を循環するので、対象物TOによって阻害されにくい。この結果、対象物TOの、鉛直上方側の表面及び鉛直下方側の表面の両方に化学種を迅速に到達させることができる。従って、液体に浸された対象物TOを迅速に殺菌できる。 According to this, the target object TO can be located in the center part in the plane parallel to the horizontal plane in the accommodation space CS. Thereby, since the convection LF formed with the liquid LQ circulates around the outer periphery of the target TO, it is difficult to be inhibited by the target TO. As a result, the chemical species can quickly reach both the vertically upper surface and the vertically lower surface of the object TO. Therefore, the object TO immersed in the liquid can be quickly sterilized.
 更に、第1実施形態の殺菌装置1において、放電部30は、第2の電極33の表面のうちの鉛直上方側の表面と、誘電体31の表面のうちの鉛直上方側の表面の中で第2の電極33と接していない部分と、を被覆する絶縁体34を備える。 Furthermore, in the sterilization apparatus 1 according to the first embodiment, the discharge unit 30 includes the surface on the vertically upper side of the surface of the second electrode 33 and the surface on the vertically upper side of the surface of the dielectric 31. An insulator 34 is provided to cover the portion not in contact with the second electrode 33.
 これによれば、第2の電極33、及び、誘電体31よりも鉛直上方側の空間において放電が生じることを抑制できる。従って、殺菌装置1が消費する電力の量を低減できる。 According to this, it is possible to suppress discharge from occurring in the space vertically above the second electrode 33 and the dielectric 31. Therefore, the amount of power consumed by the sterilizer 1 can be reduced.
 更に、第1実施形態の殺菌装置1は、収容空間CSのうちの鉛直下方側の端部を形成する基部10と、基部10に着脱可能に構成され且つ収容空間CSのうちの鉛直上方側の端部を形成する蓋部20-1,20-2と、を備える。 Furthermore, the sterilization apparatus 1 of 1st Embodiment is comprised so that attachment or detachment to the base 10 which forms the edge part of the vertically downward side of the accommodation space CS, and the vertical upper side of the accommodation space CS is possible. And lid portions 20-1 and 20-2 that form end portions.
 これによれば、液体LQ、及び、対象物TOを収容空間CSに容易に導入できるとともに、液体LQ、及び、対象物TOを収容空間CSから容易に取り出すことができる。 According to this, the liquid LQ and the object TO can be easily introduced into the accommodation space CS, and the liquid LQ and the object TO can be easily taken out from the accommodation space CS.
 なお、蓋部20-1が基部10に固定された状態において、回転軸がZ軸と一致する回転における、基部10に対する蓋部20-1の位置は、上述した例と異なる位置であってよい。同様に、蓋部20-2が基部10に固定された状態において、回転軸がZ軸と一致する回転における、基部10に対する蓋部20-2の位置は、上述した例と異なる位置であってよい。 In the state where the lid 20-1 is fixed to the base 10, the position of the lid 20-1 with respect to the base 10 in the rotation in which the rotation axis coincides with the Z-axis may be different from the above-described example. . Similarly, in the state where the lid 20-2 is fixed to the base 10, the position of the lid 20-2 with respect to the base 10 in the rotation in which the rotation axis coincides with the Z-axis is a position different from the above-described example. Good.
 また、上述した、殺菌装置1の形状は、一例であり、縦型又は他の形状の携帯型、若しくは、据え置き型であってもよい。
 また、上述した、誘電体31、第1の電極32、第2の電極33、及び、絶縁体34のそれぞれの厚さは、一例であり、膜等の製造方法、又は、使用する形状によって好適に設定されてよい。
 また、上述した、交流電圧の周波数及び振幅は、一例であり、殺菌装置1の形状、又は、対象物TOに応じて好適に設定されてよい。
Moreover, the shape of the sterilization apparatus 1 mentioned above is an example, and may be a vertical type, a portable type of another shape, or a stationary type.
The thicknesses of the dielectric 31, the first electrode 32, the second electrode 33, and the insulator 34 described above are merely examples, and are suitable depending on the manufacturing method of the film or the shape to be used. May be set.
Moreover, the frequency and amplitude of an alternating voltage mentioned above are examples, and may be suitably set according to the shape of the sterilizer 1 or the object TO.
<第1実施形態の第1変形例>
 次に、第1実施形態の第1変形例の殺菌装置について説明する。第1実施形態の第1変形例の殺菌装置は、第1実施形態の殺菌装置に対して、第1の電極及び第2の電極の形状が相違している。以下、相違点を中心として説明する。なお、第1実施形態の第1変形例の説明において、第1実施形態にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
<First Modification of First Embodiment>
Next, the sterilizer of the 1st modification of 1st Embodiment is demonstrated. The sterilizer of the first modification of the first embodiment is different from the sterilizer of the first embodiment in the shapes of the first electrode and the second electrode. Hereinafter, the difference will be mainly described. In addition, in description of the 1st modification of 1st Embodiment, what attached | subjected the code | symbol same as the code | symbol used in 1st Embodiment is the same or substantially the same.
 図8及び図9に表されるように、第1実施形態の第1変形例の殺菌装置1は、第1実施形態の放電部30に代えて、放電部30Aを備える。
 放電部30Aは、第1実施形態の第1の電極32及び第2の電極33に代えて、第1の電極32A及び第2の電極33Aを備える。
As shown in FIGS. 8 and 9, the sterilizer 1 of the first modification of the first embodiment includes a discharge unit 30 </ b> A instead of the discharge unit 30 of the first embodiment.
The discharge unit 30A includes a first electrode 32A and a second electrode 33A instead of the first electrode 32 and the second electrode 33 of the first embodiment.
 第1の電極32Aは、XY平面における形状が相違する点を除いて、第1の電極32と同様に構成される。 The first electrode 32A is configured in the same manner as the first electrode 32 except that the shape in the XY plane is different.
 第1の電極32Aは、X軸方向に沿って延びる部分と、Y軸方向に沿って延びる部分と、からなるT字状である。XY平面において、第1の電極32Aの、Y軸の負方向における端辺321Aは、X軸方向に沿って延びる鋸歯状である。端辺321AのX軸方向における長さは、誘電体31の直径よりも短い。XY平面において、端辺321AのY軸方向における中心を通る直線は、誘電体31の中心を通る。Y軸の負方向は、第1の方向の一例である。X軸方向は、第2の方向の一例である。端辺321Aは、第1の端辺の一例である。 The first electrode 32A has a T-shape including a portion extending along the X-axis direction and a portion extending along the Y-axis direction. In the XY plane, an end side 321A of the first electrode 32A in the negative direction of the Y-axis has a sawtooth shape extending along the X-axis direction. The length of the end side 321 </ b> A in the X-axis direction is shorter than the diameter of the dielectric 31. In the XY plane, a straight line passing through the center of the end 321 </ b> A in the Y-axis direction passes through the center of the dielectric 31. The negative direction of the Y axis is an example of the first direction. The X-axis direction is an example of the second direction. The end side 321A is an example of a first end side.
 第2の電極33Aは、XY平面における形状が相違する点を除いて、第2の電極33と同様に構成される。 The second electrode 33A is configured in the same manner as the second electrode 33 except that the shape in the XY plane is different.
 第2の電極33Aは、X軸方向に沿って延びる部分と、Y軸方向に沿って延びる部分と、からなるT字状である。XY平面において、第2の電極33Aの、Y軸の正方向における端辺331Aは、X軸方向に沿って延びる直線状である。端辺331Aの長さは、端辺321AのX軸方向における長さと等しい。XY平面において、端辺331Aは、端辺321AのY軸の正方向側の端を通る。なお、XY平面において、端辺331Aは、端辺321AのY軸の正方向側の端と異なる位置(例えば、端辺321AのY軸の正方向側の端と、端辺321AのY軸の負方向側の端と、の間の位置)を通ってもよい。端辺331Aは、第2の端辺の一例である。 The second electrode 33A has a T shape including a portion extending along the X-axis direction and a portion extending along the Y-axis direction. In the XY plane, the end side 331A of the second electrode 33A in the positive direction of the Y axis is a straight line extending along the X axis direction. The length of the end side 331A is equal to the length of the end side 321A in the X-axis direction. In the XY plane, the end side 331A passes through the end on the positive direction side of the Y axis of the end side 321A. Note that in the XY plane, the end side 331A is located at a position different from the end of the end side 321A on the positive direction side of the Y axis (for example, the end of the end side 321A on the positive direction side of the Y axis and the end side 321A You may pass through the position between the end of the negative direction side. The end side 331A is an example of a second end side.
 本例では、XY平面における、第2の電極33Aの少なくとも一部の位置は、XY平面における、第1の電極32Aと異なる。換言すると、XY平面において、第1の電極32Aの一部と第2の電極33Aの一部とは、互いに重ならない。 In this example, the position of at least a part of the second electrode 33A in the XY plane is different from that of the first electrode 32A in the XY plane. In other words, in the XY plane, a part of the first electrode 32A and a part of the second electrode 33A do not overlap each other.
 第1実施形態の第1変形例の殺菌装置1によっても、第1実施形態の殺菌装置1と同様の作用及び効果が奏される。
 更に、第1実施形態の第1変形例の殺菌装置1によれば、第1の端辺が直線状である場合よりも、形成される電界の強度を大きくすることができる。これにより、放電に伴って生成される化学種の量を増加できるとともに、放電に伴って形成される流れGF,LFを十分に強くすることができる。
Also by the sterilizer 1 of the 1st modification of 1st Embodiment, the effect | action and effect similar to the sterilizer 1 of 1st Embodiment are show | played.
Furthermore, according to the sterilization apparatus 1 of the first modified example of the first embodiment, the strength of the electric field formed can be increased as compared with the case where the first end is linear. Thereby, while the quantity of the chemical species produced | generated with discharge can be increased, the flow GF and LF formed with discharge can fully be strengthened.
 一例として、周波数が40kHzであり、且つ、振幅が2.8kVである交流電圧を用いた場合において、第1実施形態の殺菌装置1と、第1実施形態の第1変形例の殺菌装置1と、のそれぞれを用いることにより、対象物TOを滅菌するまでに要する時間を測定する実験を行なった。なお、実験における対象物TOは、微生物が表面に塗布された長方形の紙片である。また、実験における誘電体31は、ガラスからなり、且つ、厚さが0.2mmである。本例では、滅菌は、3M Healthcare製のATTEST 1291(「3M」及び「アテスト」は、登録商標)を用いて判定された。なお、後述する他の実験においても、滅菌は、本例と同様に判定された。なお、滅菌は、無菌性保証水準(Sterility Assurance Level)に従って判定されてもよい。 As an example, when an AC voltage having a frequency of 40 kHz and an amplitude of 2.8 kV is used, the sterilizer 1 of the first embodiment and the sterilizer 1 of the first modification of the first embodiment By using each of these, an experiment was conducted to measure the time required to sterilize the object TO. Note that the object TO in the experiment is a rectangular piece of paper with a microorganism applied to the surface. The dielectric 31 in the experiment is made of glass and has a thickness of 0.2 mm. In this example, sterilization was determined using ATTEST 1291 ("3M" and "Atest" are registered trademarks) manufactured by 3M Healthcare. In other experiments described later, sterilization was determined in the same manner as in this example. In addition, sterilization may be determined according to a sterility assurance level (Sterility Assurance Level).
 第1実施形態の殺菌装置1を用いた場合、対象物TOを滅菌するまでに要する時間は、約100分であり、電源部及び殺菌装置1によって消費された電力は、約1.2Wであり、且つ、放電部30によって消費された電力は、約0.1Wであった。
 また、第1実施形態の第1変形例の殺菌装置1を用いた場合、対象物TOを滅菌するまでに要する時間は、約40分であり、電源部及び殺菌装置1によって消費された電力は、約1.3Wであり、且つ、放電部30Aによって消費された電力は、約0.2Wであった。
When the sterilization apparatus 1 of the first embodiment is used, the time required to sterilize the object TO is about 100 minutes, and the power consumed by the power supply unit and the sterilization apparatus 1 is about 1.2 W. And the electric power consumed by the discharge part 30 was about 0.1W.
Moreover, when the sterilization apparatus 1 of the first modification of the first embodiment is used, the time required to sterilize the object TO is about 40 minutes, and the power consumed by the power supply unit and the sterilization apparatus 1 is The electric power consumed by the discharge unit 30A was about 0.2W.
 また、他の一例として、周波数が40kHzであり、且つ、振幅が2.8kVである交流電圧を用いた場合において、第1実施形態の殺菌装置1と、第1実施形態の第1変形例の殺菌装置1と、のそれぞれを用いることにより、対象物TOを滅菌するまでに要する時間を測定する実験を行なった。なお、実験における対象物TOは、微生物が表面に塗布された長方形の紙片である。また、実験における誘電体31は、ガラスからなり、且つ、厚さが0.15mmである。 As another example, when an AC voltage having a frequency of 40 kHz and an amplitude of 2.8 kV is used, the sterilizer 1 of the first embodiment and the first modification of the first embodiment are used. By using each of the sterilizers 1, an experiment was performed to measure the time required to sterilize the object TO. Note that the object TO in the experiment is a rectangular piece of paper with a microorganism applied to the surface. The dielectric 31 in the experiment is made of glass and has a thickness of 0.15 mm.
 第1実施形態の殺菌装置1を用いた場合、対象物TOを滅菌するまでに要する時間は、約40分であり、電源部及び殺菌装置1によって消費された電力は、約1.5Wであり、且つ、放電部30によって消費された電力は、約0.1Wであった。
 また、第1実施形態の第1変形例の殺菌装置1を用いた場合、対象物TOを滅菌するまでに要する時間は、約20分であり、電源部及び殺菌装置1によって消費された電力は、約1.6Wであり、且つ、放電部30Aによって消費された電力は、約0.2Wであった。
When the sterilizer 1 of the first embodiment is used, the time required to sterilize the object TO is about 40 minutes, and the power consumed by the power supply unit and the sterilizer 1 is about 1.5 W. And the electric power consumed by the discharge part 30 was about 0.1W.
Moreover, when the sterilization apparatus 1 of the first modification of the first embodiment is used, the time required to sterilize the object TO is about 20 minutes, and the power consumed by the power supply unit and the sterilization apparatus 1 is , About 1.6 W, and the power consumed by the discharge unit 30 </ b> A was about 0.2 W.
 また、他の一例として、周波数が40kHzであり、且つ、振幅が2.8kVである交流電圧を用いた場合において、第1実施形態の殺菌装置1と、第1実施形態の第1変形例の殺菌装置1と、のそれぞれを用いることにより、対象物TOを滅菌するまでに要する時間を測定する実験を行なった。なお、実験における対象物TOは、微生物が表面に塗布された長方形の紙片である。また、実験における誘電体31は、アルミナからなり、且つ、厚さが0.2mmである。 As another example, when an AC voltage having a frequency of 40 kHz and an amplitude of 2.8 kV is used, the sterilizer 1 of the first embodiment and the first modification of the first embodiment are used. By using each of the sterilizers 1, an experiment was performed to measure the time required to sterilize the object TO. Note that the object TO in the experiment is a rectangular piece of paper with a microorganism applied to the surface. The dielectric 31 in the experiment is made of alumina and has a thickness of 0.2 mm.
 第1実施形態の殺菌装置1を用いた場合、対象物TOを滅菌するまでに要する時間は、約30分であり、電源部及び殺菌装置1によって消費された電力は、約1.4Wであり、且つ、放電部30によって消費された電力は、約0.2Wであった。
 また、第1実施形態の第1変形例の殺菌装置1を用いた場合、対象物TOを滅菌するまでに要する時間は、約30分であり、電源部及び殺菌装置1によって消費された電力は、約1.5Wであり、且つ、放電部30Aによって消費された電力は、約0.3Wであった。
When the sterilization apparatus 1 of the first embodiment is used, the time required to sterilize the object TO is about 30 minutes, and the power consumed by the power supply unit and the sterilization apparatus 1 is about 1.4 W. And the electric power consumed by the discharge part 30 was about 0.2W.
Moreover, when the sterilizer 1 of the first modification of the first embodiment is used, the time required to sterilize the object TO is about 30 minutes, and the power consumed by the power supply unit and the sterilizer 1 is The power consumed by the discharge unit 30A was about 0.3W.
 また、他の一例として、周波数が27kHzであり、且つ、振幅が6.2kVである交流電圧を用いた場合において、第1実施形態の殺菌装置1と、第1実施形態の第1変形例の殺菌装置1と、のそれぞれを用いることにより、対象物TOを滅菌するまでに要する時間を測定する実験を行なった。なお、実験における対象物TOは、微生物が表面に塗布された長方形の紙片である。また、実験における誘電体31は、ガラスからなり、且つ、厚さが1mmである。 As another example, when an AC voltage having a frequency of 27 kHz and an amplitude of 6.2 kV is used, the sterilizer 1 of the first embodiment and the first modification of the first embodiment are used. By using each of the sterilizers 1, an experiment was performed to measure the time required to sterilize the object TO. Note that the object TO in the experiment is a rectangular piece of paper with a microorganism applied to the surface. In addition, the dielectric 31 in the experiment is made of glass and has a thickness of 1 mm.
 第1実施形態の殺菌装置1を用いた場合、対象物TOを滅菌するまでに要する時間は、約25分であり、電源部及び殺菌装置1によって消費された電力は、約2.0Wであり、且つ、放電部30によって消費された電力は、約0.2Wであった。
 また、第1実施形態の第1変形例の殺菌装置1を用いた場合、対象物TOを滅菌するまでに要する時間は、約10分であり、電源部及び殺菌装置1によって消費された電力は、約2.3Wであり、且つ、放電部30Aによって消費された電力は、約0.5Wであった。
When the sterilization apparatus 1 of the first embodiment is used, the time required to sterilize the object TO is about 25 minutes, and the power consumed by the power supply unit and the sterilization apparatus 1 is about 2.0 W. And the electric power consumed by the discharge part 30 was about 0.2W.
Moreover, when the sterilization apparatus 1 of the first modification of the first embodiment is used, the time required to sterilize the object TO is about 10 minutes, and the power consumed by the power supply unit and the sterilization apparatus 1 is The power consumed by the discharge unit 30A was about 0.5W.
 また、上述した、殺菌装置1の形状は、一例であり、縦型又は他の形状の携帯型、若しくは、据え置き型であってもよい。
 また、上述した、誘電体31、第1の電極32A、第2の電極33A、及び、絶縁体34のそれぞれの厚さは、一例であり、膜等の製造方法、又は、使用する形状によって好適に設定されてよい。
 また、上述した、交流電圧の周波数及び振幅は、一例であり、殺菌装置1の形状、又は、対象物TOに応じて好適に設定されてよい。
Moreover, the shape of the sterilization apparatus 1 mentioned above is an example, and may be a vertical type, a portable type of another shape, or a stationary type.
Further, the thicknesses of the dielectric 31, first electrode 32A, second electrode 33A, and insulator 34 described above are merely examples, and are suitable depending on the manufacturing method of the film or the shape to be used. May be set.
Moreover, the frequency and amplitude of an alternating voltage mentioned above are examples, and may be suitably set according to the shape of the sterilizer 1 or the object TO.
<第1実施形態の第2変形例>
 次に、第1実施形態の第2変形例の殺菌装置について説明する。第1実施形態の第2変形例の殺菌装置は、第1実施形態の殺菌装置に対して、基部の凹部の底面にリブが設けられる点において相違している。以下、相違点を中心として説明する。なお、第1実施形態の第2変形例の説明において、第1実施形態にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
<Second Modification of First Embodiment>
Next, the sterilizer of the 2nd modification of 1st Embodiment is demonstrated. The sterilizer according to the second modification of the first embodiment is different from the sterilizer according to the first embodiment in that a rib is provided on the bottom surface of the recess of the base. Hereinafter, the difference will be mainly described. In addition, in description of the 2nd modification of 1st Embodiment, what attached | subjected the code | symbol same as the code | symbol used in 1st Embodiment is the same or substantially the same.
 図10及び図11に表されるように、第1実施形態の第2変形例の殺菌装置1Bは、第1実施形態の基部10に代えて、基部10Bを備える。図10は、図11におけるC-C線による殺菌装置1Bの断面を表す。図11は、図10におけるB-B線による基部10Bの断面を表す。 As shown in FIGS. 10 and 11, the sterilizer 1B of the second modification of the first embodiment includes a base 10B instead of the base 10 of the first embodiment. FIG. 10 shows a cross section of the sterilizer 1B along the line CC in FIG. FIG. 11 shows a cross section of the base 10B taken along line BB in FIG.
 基部10Bは、複数のリブ14Bを備える。各リブ14Bは、X軸に直交する平面(換言すると、YZ平面)に平行な平板状である。従って、各リブ14Bは、Y軸方向に沿って延びる。 The base portion 10B includes a plurality of ribs 14B. Each rib 14B has a flat plate shape parallel to a plane orthogonal to the X axis (in other words, a YZ plane). Accordingly, each rib 14B extends along the Y-axis direction.
 各リブ14Bは、凹部11の底面12から、Z軸の正方向へ向かって突出する。本例では、凹部11の底面12は、収容空間CSのうちのZ軸の負方向側の端を形成する容器の壁面であると捉えられてよい。各リブ14BのZ軸の正方向側の端面は、凹部11の中心軸に近づくほどZ軸の負方向側に位置する。 Each rib 14B protrudes from the bottom surface 12 of the recess 11 in the positive direction of the Z-axis. In this example, the bottom surface 12 of the concave portion 11 may be regarded as a wall surface of a container that forms an end on the negative direction side of the Z axis in the accommodation space CS. The end surface on the positive side of the Z axis of each rib 14B is positioned closer to the negative side of the Z axis as it approaches the central axis of the recess 11.
 複数のリブ14Bは、X軸方向において、互いに隔てられている。本例では、複数のリブ14Bは、X軸方向において等間隔に位置する。各リブ14BのY軸方向における長さは、凹部11の直径(本例では、凹部11のZ軸の正方向側の端における直径)よりも短い。複数のリブ14BのY軸方向における長さは、同一である。 The plurality of ribs 14B are separated from each other in the X-axis direction. In this example, the plurality of ribs 14B are positioned at equal intervals in the X-axis direction. The length of each rib 14B in the Y-axis direction is shorter than the diameter of the recess 11 (in this example, the diameter of the end of the recess 11 on the positive direction side of the Z-axis). The lengths of the plurality of ribs 14B in the Y-axis direction are the same.
 このような構成により、複数のリブ14Bは、収容空間CSに液体LQ、及び、対象物TOが収容されている状態において、凹部11の底面12よりもZ軸の正方向側にて対象物TOを支持する。 With such a configuration, the plurality of ribs 14B are configured so that the object TO is closer to the positive direction side of the Z axis than the bottom surface 12 of the recess 11 in a state where the liquid LQ and the object TO are accommodated in the accommodation space CS. Support.
 第1実施形態の第2変形例の殺菌装置1Bによっても、第1実施形態の殺菌装置1と同様の作用及び効果が奏される。
 更に、第1実施形態の第2変形例の殺菌装置1Bによれば、対象物TOと、収容空間CSのうちの最も鉛直下方側の端を形成する容器の壁面(本例では、凹部11の底面12)と、の間にて、第1の方向(本例では、Y軸方向)に沿って延びる流路を形成できる。これにより、液体LQにて形成された対流LFは、収容空間CSのうちの、対象物TOよりも鉛直下方側の部分を通過しやすくなる。この結果、対象物TOの、鉛直下方側の表面に化学種を迅速に到達させることができる。従って、対象物TOの、鉛直下方側の表面を迅速に殺菌できる。
Also by the sterilizer 1B of the second modification of the first embodiment, the same operations and effects as the sterilizer 1 of the first embodiment are exhibited.
Furthermore, according to the sterilization apparatus 1B of the second modified example of the first embodiment, the wall surface of the container that forms the object TO and the most vertically lower end of the accommodation space CS (in this example, the concave portion 11). A flow path extending along the first direction (the Y-axis direction in this example) can be formed between the bottom surface 12) and the bottom surface 12). Thereby, the convection LF formed with the liquid LQ becomes easy to pass through the part of the accommodation space CS on the vertically lower side than the object TO. As a result, the chemical species can quickly reach the surface of the object TO on the vertically lower side. Therefore, the surface on the vertically lower side of the object TO can be quickly sterilized.
 なお、複数のリブ14BのY軸方向における長さは、互いに異なっていてもよい。例えば、Y軸方向に延びるとともに凹部11の中心軸を通る直線からリブ14Bまでの距離が長くなるほど、当該リブ14BのY軸方向における長さは、短くなっていてもよい。 In addition, the length in the Y-axis direction of the plurality of ribs 14B may be different from each other. For example, the length of the rib 14B in the Y-axis direction may be shorter as the distance from the straight line extending in the Y-axis direction and passing through the central axis of the recess 11 to the rib 14B is longer.
 また、上述した、殺菌装置1Bの形状は、一例であり、縦型又は他の形状の携帯型、若しくは、据え置き型であってもよい。
 また、上述した、誘電体31、第1の電極32、第2の電極33、及び、絶縁体34のそれぞれの厚さは、一例であり、膜等の製造方法、又は、使用する形状によって好適に設定されてよい。
 また、上述した、交流電圧の周波数及び振幅は、一例であり、殺菌装置1Bの形状、又は、対象物TOに応じて好適に設定されてよい。
Moreover, the shape of the sterilizer 1B described above is an example, and may be a vertical type or a portable type of another shape, or a stationary type.
The thicknesses of the dielectric 31, the first electrode 32, the second electrode 33, and the insulator 34 described above are merely examples, and are suitable depending on the manufacturing method of the film or the shape to be used. May be set.
Moreover, the frequency and amplitude of an alternating voltage mentioned above are examples, and may be suitably set according to the shape of the sterilizer 1B or the object TO.
<第2実施形態>
 次に、第2実施形態の殺菌装置について説明する。第2実施形態の殺菌装置は、第1実施形態の殺菌装置に対して、蓋部及び放電部が相違している。以下、相違点を中心として説明する。なお、第2実施形態の説明において、第1実施形態にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
Second Embodiment
Next, the sterilizer of 2nd Embodiment is demonstrated. The sterilization apparatus of 2nd Embodiment differs in the cover part and the discharge part with respect to the sterilization apparatus of 1st Embodiment. Hereinafter, the difference will be mainly described. In addition, in description of 2nd Embodiment, what attached | subjected the code | symbol same as the code | symbol used in 1st Embodiment is the same or substantially the same.
(構成)
 図12及び図13に表されるように、第2実施形態の殺菌装置1Cは、第1実施形態の蓋部20-1,20-2に代えて、蓋部20-1C,20-2Cを備える。図13は、図12におけるD-D線による殺菌装置1Cの断面を表す。更に、第2実施形態の殺菌装置1Cは、第1実施形態の放電部30に代えて、放電部30-1C,30-2Cを備える。
(Constitution)
As shown in FIGS. 12 and 13, the sterilizer 1C of the second embodiment has lid parts 20-1C and 20-2C instead of the lid parts 20-1 and 20-2 of the first embodiment. Prepare. FIG. 13 shows a cross section of the sterilizer 1C along the line DD in FIG. Furthermore, the sterilizer 1C of the second embodiment includes discharge units 30-1C and 30-2C instead of the discharge unit 30 of the first embodiment.
 蓋部20-1Cは、貫通孔部24Cを有する点を除いて、蓋部20-1と同じ構成を有する。貫通孔部24Cは、蓋部20-1Cのうちの、凹部21の底面22を形成する壁をZ軸方向にて貫通するとともに、Z軸に沿って延びる円柱形状を有する孔を形成する。貫通孔部24Cの直径は、凹部21の直径よりも小さい。貫通孔部24Cの中心軸は、凹部21の中心軸と一致する。 The lid 20-1C has the same configuration as the lid 20-1 except that the lid 20-1C has a through-hole 24C. The through-hole portion 24C forms a hole having a cylindrical shape that extends in the Z-axis direction through the wall of the lid portion 20-1C that forms the bottom surface 22 of the recess 21 in the Z-axis direction. The diameter of the through hole 24 </ b> C is smaller than the diameter of the recess 21. The central axis of the through hole portion 24 </ b> C coincides with the central axis of the recess 21.
 放電部30-1Cは、Z軸に沿って延びる円柱形状を有する。放電部30-1Cの直径は、貫通孔部24Cの直径と等しい。放電部30-1Cの中心軸は、貫通孔部24Cの中心軸と一致する。放電部30-1CのZ軸の負方向側の端部は、貫通孔部24Cに接する。本例では、放電部30-1CのZ軸の負方向側の端部は、貫通孔部24Cに固定される。 The discharge part 30-1C has a cylindrical shape extending along the Z axis. The diameter of the discharge part 30-1C is equal to the diameter of the through-hole part 24C. The central axis of the discharge part 30-1C coincides with the central axis of the through hole part 24C. The end of the discharge part 30-1C on the negative side of the Z axis is in contact with the through hole part 24C. In this example, the end on the negative direction side of the Z-axis of the discharge part 30-1C is fixed to the through-hole part 24C.
 放電部30-1Cは、誘電体31Cと、第1の電極32Cと、第2の電極33Cと、を備える。 The discharge unit 30-1C includes a dielectric 31C, a first electrode 32C, and a second electrode 33C.
 誘電体31Cは、酸化アルミニウム(Al)からなる。なお、誘電体31Cは、酸化アルミニウムと異なる材料(例えば、ガラス等)からなっていてもよい。 The dielectric 31C is made of aluminum oxide (Al 2 O 3 ). The dielectric 31C may be made of a material different from aluminum oxide (for example, glass).
 誘電体31Cは、Z軸に沿って延びる中空の円筒形状を有する。誘電体31Cの、内径及び外径の差(換言すると、誘電体31Cの厚さ)は、0.02mm乃至2mmの厚さである。本例では、誘電体31Cの中心軸は、貫通孔部24Cの中心軸と一致する。誘電体31CのZ軸方向における両端は、開口する。本例では、XY平面において、誘電体31の外縁は、貫通孔部24CのXY平面における形状と一致する。誘電体31Cの内部の空間311Cは、収容空間CSのうちのZ軸の正方向側の端部と連接する。誘電体31Cの内部の空間311Cは、連接空間と表されてよい。本例では、連接空間311Cは、円柱形状を有する。 The dielectric 31C has a hollow cylindrical shape extending along the Z axis. The difference between the inner diameter and the outer diameter of the dielectric 31C (in other words, the thickness of the dielectric 31C) is 0.02 mm to 2 mm. In this example, the center axis of the dielectric 31C coincides with the center axis of the through hole 24C. Both ends of the dielectric 31C in the Z-axis direction are opened. In this example, on the XY plane, the outer edge of the dielectric 31 matches the shape of the through hole portion 24C in the XY plane. The space 311C inside the dielectric 31C is connected to the end of the accommodation space CS on the positive direction side of the Z axis. The space 311C inside the dielectric 31C may be expressed as a connected space. In this example, the connection space 311C has a cylindrical shape.
 第1の電極32Cは、アルミニウム(Al)からなる。なお、第1の電極32Cは、アルミニウムと異なる材料(例えば、ステンレス鋼、銀、又は、銅等)からなっていてもよい。 The first electrode 32C is made of aluminum (Al). Note that the first electrode 32C may be made of a material different from aluminum (for example, stainless steel, silver, or copper).
 第1の電極32Cは、連接空間311Cに位置するとともに、誘電体31CのZ軸の正方向側の端部にて連接空間311Cを閉塞する。第1の電極32Cは、誘電体31Cに固定される。第1の電極32Cは、収容空間CSのうちのZ軸の正方向側の端部へ向かって(換言すると、Z軸の負方向へ)延びる円錐状である。第1の電極32Cの中心軸は、誘電体31Cの中心軸と一致する。なお、第1の電極32Cの中心軸は、誘電体31Cの中心軸と異なっていてもよい。また、第1の電極32Cは、円柱状であってもよい。 The first electrode 32C is located in the connection space 311C and closes the connection space 311C at the end of the dielectric 31C on the positive side of the Z axis. The first electrode 32C is fixed to the dielectric 31C. The first electrode 32C has a conical shape extending toward the end of the accommodation space CS on the positive direction side of the Z axis (in other words, in the negative direction of the Z axis). The central axis of the first electrode 32C coincides with the central axis of the dielectric 31C. The central axis of the first electrode 32C may be different from the central axis of the dielectric 31C. Further, the first electrode 32C may be cylindrical.
 第1の電極32Cは、連接空間311CにおけるZ軸の負方向側にて、誘電体31Cと隔てられ且つ尖った先端322Cを有する。第1の電極32Cは、螺旋状のリブ323Cを側面に有する。
 本例では、第1の電極32Cは、ネジである。
The first electrode 32C has a sharp tip 322C that is separated from the dielectric 31C and is pointed on the negative direction side of the Z-axis in the connection space 311C. The first electrode 32C has a spiral rib 323C on the side surface.
In this example, the first electrode 32C is a screw.
 第2の電極33Cは、アルミニウム(Al)からなる。なお、第2の電極33Cは、アルミニウムと異なる材料(例えば、ステンレス鋼、銀、又は、銅等)からなっていてもよい。また、第2の電極33Cは、第1の電極32Cと異なる材料からなっていてもよい。 The second electrode 33C is made of aluminum (Al). The second electrode 33C may be made of a material different from aluminum (for example, stainless steel, silver, or copper). Further, the second electrode 33C may be made of a material different from that of the first electrode 32C.
 第2の電極33Cは、板状(本例では、シート状)である。第2の電極33Cの厚さは、1μm乃至3mmの厚さである。第2の電極33Cは、誘電体31Cの外壁に接する。本例では、第2の電極33Cは、誘電体31Cの外壁に固定される。 The second electrode 33C has a plate shape (in this example, a sheet shape). The thickness of the second electrode 33C is 1 μm to 3 mm. The second electrode 33C is in contact with the outer wall of the dielectric 31C. In this example, the second electrode 33C is fixed to the outer wall of the dielectric 31C.
 第2の電極33Cは、誘電体31Cの外壁の少なくとも一部を被覆する。本例では、第2の電極33Cは、誘電体31Cの外壁のうちの、リブ323CのZ軸の正方向側の端よりもZ軸の正方向側の位置と、先端322CよりもZ軸の負方向側の位置と、の間の部分を被覆する。
 このように、誘電体31Cは、第1の電極32C、及び、第2の電極33Cの間に介在する。
The second electrode 33C covers at least a part of the outer wall of the dielectric 31C. In this example, the second electrode 33C has a position on the positive side of the Z-axis with respect to the end on the positive direction side of the Z-axis of the rib 323C in the outer wall of the dielectric 31C, and on the Z-axis with respect to the tip 322C. The portion between the position on the negative direction side is covered.
Thus, the dielectric 31C is interposed between the first electrode 32C and the second electrode 33C.
 更に、放電部30-1Cには、図示されない電源部が接続される。電源部は、第1の電極32C及び第2の電極33Cに接続される。電源部は、第1の電極32C及び第2の電極33Cの間に、交流電圧を印加する。本例では、交流電圧の波形は、正弦波である。本例では、交流電圧は、周波数が40kHzであり、且つ、振幅が2.8kVである。なお、交流電圧は、周波数が10kHz乃至100kHzの周波数であり、且つ、振幅が1kV乃至10kVの振幅であってもよい。また、交流電圧の波形は、正弦波と異なる波形(例えば、矩形波、又は、三角波等)であってもよい。 Furthermore, a power supply unit (not shown) is connected to the discharge unit 30-1C. The power supply unit is connected to the first electrode 32C and the second electrode 33C. The power supply unit applies an AC voltage between the first electrode 32C and the second electrode 33C. In this example, the waveform of the AC voltage is a sine wave. In this example, the AC voltage has a frequency of 40 kHz and an amplitude of 2.8 kV. Note that the AC voltage may have a frequency of 10 kHz to 100 kHz and an amplitude of 1 kV to 10 kV. The waveform of the AC voltage may be a waveform different from a sine wave (for example, a rectangular wave or a triangular wave).
 本例では、蓋部20-2C、及び、放電部30-2Cは、蓋部20-1C、及び、放電部30-1Cとそれぞれ同様に構成される。本例では、殺菌装置1Cは、1つの電源部に接続されるとともに、放電部30-1Cと、放電部30-2Cと、の間で当該電源部が共用される。なお、放電部30-1Cと、放電部30-2Cと、は、2つの電源部にそれぞれ接続されていてもよい。 In this example, the lid portion 20-2C and the discharge portion 30-2C are configured in the same manner as the lid portion 20-1C and the discharge portion 30-1C, respectively. In this example, the sterilizer 1C is connected to one power supply unit, and the power supply unit is shared between the discharge unit 30-1C and the discharge unit 30-2C. The discharge unit 30-1C and the discharge unit 30-2C may be connected to two power supply units, respectively.
 また、殺菌装置1Cは、電源部を備えていてもよい。この場合、電源部は、殺菌装置1Cのうちの電源部以外の部分と一体に構成されていてもよく、当該部分と別体に構成されていてもよい。 Further, the sterilization apparatus 1C may include a power supply unit. In this case, the power supply unit may be configured integrally with a part of the sterilization apparatus 1C other than the power supply unit, or may be configured separately from the part.
(動作)
 次に、殺菌装置1Cの動作について図13を参照しながら説明する。以下、蓋部20-1Cと基部10とにより形成される収容空間CSに着目して、殺菌装置1Cの動作について説明する。なお、蓋部20-2Cと基部10とにより形成される収容空間に対する殺菌装置1Cの動作も同様に説明されるので、その説明は省略される。
(Operation)
Next, the operation of the sterilizer 1C will be described with reference to FIG. Hereinafter, the operation of the sterilizer 1C will be described by focusing on the accommodation space CS formed by the lid 20-1C and the base 10. Since the operation of the sterilizer 1C with respect to the accommodation space formed by the lid 20-2C and the base 10 is also described in the same manner, the description thereof is omitted.
 殺菌装置1Cの動作は、第1実施形態の殺菌装置1に対して、放電に伴って形成される流れが相違する。従って、放電に伴って形成される流れを中心として説明する。 The operation of the sterilizer 1C is different from the sterilizer 1 of the first embodiment in the flow formed along with the discharge. Therefore, the description will focus on the flow formed with the discharge.
 第1の電極32C及び第2の電極33Cの間に交流電圧が印加される。これにより、第1の電極32C及び第2の電極33Cの間の空間にて放電が生じる。本例では、第1の電極32Cと、誘電体31Cの内壁と、の間の空間にて放電が生じる。本例では、放電は、誘電体バリア放電と捉えられてよい。 An AC voltage is applied between the first electrode 32C and the second electrode 33C. As a result, a discharge occurs in the space between the first electrode 32C and the second electrode 33C. In this example, discharge occurs in the space between the first electrode 32C and the inner wall of the dielectric 31C. In this example, the discharge may be regarded as a dielectric barrier discharge.
 放電に伴ってイオンが生成される。また、連接空間311Cのうちの先端322Cの近傍において、Z軸方向における電界が形成される。この結果、連接空間311Cのうちの先端322Cの近傍において、Z軸の負方向のイオンの流れが形成される。イオンの流れが形成されることによって、連接空間311Cのうちの先端322Cの近傍において、Z軸の負方向の空気の流れGF0が形成される。 Ions are generated with the discharge. Further, an electric field in the Z-axis direction is formed in the vicinity of the tip 322C in the connection space 311C. As a result, an ion flow in the negative direction of the Z axis is formed in the vicinity of the tip 322C in the connection space 311C. By forming the ion flow, a negative Z-axis air flow GF0 is formed in the vicinity of the tip 322C in the connection space 311C.
 従って、収容空間CSのうちの液体LQよりもZ軸の正方向側の空間において、中央部におけるZ軸の負方向の流れと、液体LQの表面の近傍における中央部から凹部21の壁面への流れと、凹部21の壁面の近傍におけるZ軸の正方向の流れと、底面22の近傍における凹部21の壁面から中央部への流れと、が形成される。
 このようにして、収容空間CSのうちの液体LQよりもZ軸の正方向側の空間にて循環する流れ(換言すると、循環流)GF1が放電に伴って形成される。
Therefore, in the space on the positive side of the Z-axis with respect to the liquid LQ in the storage space CS, the flow in the negative direction of the Z-axis in the central portion and from the central portion in the vicinity of the surface of the liquid LQ to the wall surface of the recess 21. A flow, a positive Z-axis flow in the vicinity of the wall surface of the recess 21, and a flow from the wall surface to the center of the recess 21 in the vicinity of the bottom surface 22 are formed.
In this way, a flow (in other words, a circulating flow) GF1 that circulates in the space on the positive side of the Z axis with respect to the liquid LQ in the storage space CS is formed along with the discharge.
 循環流GF1が形成されることにより、液体LQにおいて、中央部におけるZ軸の正方向の流れと、液体LQの表面の近傍における中央部から凹部11の壁面への流れと、凹部11の壁面の近傍におけるZ軸の負方向の流れと、凹部11の底面12の近傍における凹部11の壁面から中央部への流れと、が形成される。
 このようにして、液体LQにて対流LF1が放電に伴って形成される。
By forming the circulating flow GF1, in the liquid LQ, the Z-axis positive direction flow in the center, the flow from the center to the wall surface of the recess 11 near the surface of the liquid LQ, and the wall surface of the recess 11 A flow in the negative direction of the Z axis in the vicinity and a flow from the wall surface of the recess 11 to the center near the bottom surface 12 of the recess 11 are formed.
Thus, the convection LF1 is formed in the liquid LQ along with the discharge.
 また、放電に伴って化学種が生成される。放電に伴って生成された化学種は、連接空間311Cにて形成された流れGF0と、収容空間CSにて形成された、循環流GF1及び対流LF1と、によって、液体LQに浸された対象物(図13において図示されない)まで運ばれる。この結果、液体LQに浸された対象物は、殺菌される。 Also, chemical species are generated along with the discharge. The chemical species generated by the discharge is an object immersed in the liquid LQ by the flow GF0 formed in the connection space 311C and the circulating flow GF1 and the convection LF1 formed in the accommodation space CS. (Not shown in FIG. 13). As a result, the object immersed in the liquid LQ is sterilized.
 以上、説明したように、第2実施形態の殺菌装置1Cは、第1の電極32C、及び、第2の電極33Cの間に電圧が印加されることにより、第1の電極32C、及び、第2の電極33Cの間の空間にて放電を生じさせ、且つ、収容空間CSに液体LQが収容されている状態において、液体LQにて対流LF1が形成されるように収容空間CSのうちの液体LQよりも鉛直上方の空間にて循環する流れGF1を放電に伴って形成する。更に、殺菌装置1Cは、収容空間CSに液体LQ、及び、対象物が収容されている状態において、放電に伴って生成された化学種によって対象物を殺菌する。 As described above, the sterilization apparatus 1C according to the second embodiment has the first electrode 32C and the first electrode 32C when the voltage is applied between the first electrode 32C and the second electrode 33C. In the space between the two electrodes 33C, and in the state where the liquid LQ is stored in the storage space CS, the liquid in the storage space CS so that the convection LF1 is formed in the liquid LQ. A flow GF1 that circulates in a space vertically above LQ is formed along with the discharge. Furthermore, the sterilizer 1C sterilizes the target object with the chemical species generated along with the discharge in a state where the liquid LQ and the target object are stored in the storage space CS.
 これによれば、送風機又はポンプ等の流体機械を用いることなく、液体LQにて対流LF1を形成できる。これにより、放電に伴って生成された化学種を、液体LQに浸された対象物に迅速に到達させることができる。この結果、液体LQに浸された対象物を迅速に殺菌できる。 According to this, the convection LF1 can be formed with the liquid LQ without using a fluid machine such as a blower or a pump. Thereby, the chemical species generated along with the discharge can quickly reach the object immersed in the liquid LQ. As a result, the object immersed in the liquid LQ can be quickly sterilized.
 更に、第2実施形態の殺菌装置1Cにおいて、誘電体31Cは、収容空間CSのうちの鉛直上方側の端部と連接する空間である連接空間311Cを内部に有する。加えて、第1の電極32Cは、収容空間CSのうちの鉛直上方側の端部へ向かって延びる円錐状である。更に、第1の電極32Cは、連接空間311Cにおける、収容空間CSのうちの鉛直上方側の端部側にて、誘電体31Cと隔てられ且つ尖った先端322Cを有する。加えて、第2の電極33Cは、誘電体31Cの外壁の少なくとも一部を被覆する。 Furthermore, in the sterilization apparatus 1C of the second embodiment, the dielectric 31C has a connection space 311C that is a space connected to an end of the accommodation space CS on the vertically upper side. In addition, the first electrode 32 </ b> C has a conical shape extending toward an end portion on the vertically upper side of the accommodation space CS. Furthermore, the first electrode 32C has a sharp tip 322C that is separated from the dielectric 31C and is pointed at the end of the accommodation space 311C on the vertically upper side of the accommodation space CS. In addition, the second electrode 33C covers at least a part of the outer wall of the dielectric 31C.
 これによれば、第1の電極32Cの、収容空間CSのうちの鉛直上方側の端部側の先端322Cから液体LQの表面への方向の流れを形成できる。これにより、収容空間CSのうちの液体LQよりも鉛直上方の空間にて循環する流れGF1を形成できるので、液体LQにて対流LF1を形成できる。 According to this, it is possible to form a flow of the first electrode 32C in the direction from the tip 322C on the end portion side on the vertically upper side of the accommodation space CS to the surface of the liquid LQ. Thereby, since the flow GF1 circulating in the space vertically above the liquid LQ in the accommodation space CS can be formed, the convection LF1 can be formed in the liquid LQ.
 更に、第2実施形態の殺菌装置1Cにおいて、連接空間311Cは、円柱形状を有する。加えて、第1の電極32Cは、螺旋状のリブ323Cを側面に有する。 Furthermore, in the sterilizer 1C of the second embodiment, the connecting space 311C has a cylindrical shape. In addition, the first electrode 32C has a spiral rib 323C on the side surface.
 これによれば、第1の電極32Cの側面と、誘電体31Cと、の間の空間において放電が生じる。この結果、放電に伴って生成される化学種の量を増加できるので、液体LQに浸された対象物を迅速に殺菌できる。 According to this, a discharge is generated in the space between the side surface of the first electrode 32C and the dielectric 31C. As a result, the amount of chemical species generated along with the discharge can be increased, so that the object immersed in the liquid LQ can be quickly sterilized.
 更に、第2実施形態の殺菌装置1Cによれば、第1実施形態の殺菌装置1と同様の構成によって奏される効果も同様に奏される。 Furthermore, according to the sterilization apparatus 1C of the second embodiment, the same effects as the sterilization apparatus 1 of the first embodiment can be obtained.
 なお、蓋部20-1Cが基部10に固定された状態において、回転軸がZ軸と一致する回転における、基部10に対する蓋部20-1Cの位置は、上述した例と異なる位置であってよい。同様に、蓋部20-2Cが基部10に固定された状態において、回転軸がZ軸と一致する回転における、基部10に対する蓋部20-2Cの位置は、上述した例と異なる位置であってよい。 Note that, in a state where the lid 20-1C is fixed to the base 10, the position of the lid 20-1C with respect to the base 10 in the rotation in which the rotation axis coincides with the Z-axis may be different from the above-described example. . Similarly, in a state where the lid 20-2C is fixed to the base 10, the position of the lid 20-2C with respect to the base 10 in a rotation in which the rotation axis coincides with the Z axis is a position different from the above-described example. Good.
 また、一例として、周波数が27kHzであり、且つ、振幅が6.2kVである交流電圧を用いた場合において、第2実施形態の殺菌装置1Cを用いることにより、対象物TOを滅菌するまでに要する時間を測定する実験を行なった。なお、実験における対象物TOは、微生物が表面に塗布された長方形の紙片である。 In addition, as an example, when an AC voltage having a frequency of 27 kHz and an amplitude of 6.2 kV is used, it is necessary to sterilize the object TO by using the sterilizer 1C of the second embodiment. An experiment to measure time was conducted. Note that the object TO in the experiment is a rectangular piece of paper with a microorganism applied to the surface.
 第2実施形態の殺菌装置1Cを用いた場合、対象物TOを滅菌するまでに要する時間は、約30分であり、電源部及び殺菌装置1Cによって消費された電力は、約3.5Wであり、且つ、放電部30-1C,30-2Cによって消費された電力は、約1.0Wであった。 When the sterilizer 1C of the second embodiment is used, the time required to sterilize the object TO is about 30 minutes, and the power consumed by the power supply unit and the sterilizer 1C is about 3.5W. The power consumed by the discharge units 30-1C and 30-2C was about 1.0W.
 また、上述した、殺菌装置1Cの形状は、一例であり、縦型又は他の形状の携帯型、若しくは、据え置き型であってもよい。
 また、上述した、誘電体31C、第1の電極32C、第2の電極33C、及び、絶縁体34のそれぞれの厚さは、一例であり、膜等の製造方法、又は、使用する形状によって好適に設定されてよい。
 また、上述した、交流電圧の周波数及び振幅は、一例であり、殺菌装置1Cの形状、又は、対象物TOに応じて好適に設定されてよい。
Moreover, the shape of 1 C of sterilizers mentioned above is an example, and may be a vertical type, a portable type of another shape, or a stationary type.
In addition, the thicknesses of the dielectric 31C, the first electrode 32C, the second electrode 33C, and the insulator 34 described above are examples, and are suitable depending on the manufacturing method of the film or the shape to be used. May be set.
Moreover, the frequency and amplitude of the alternating voltage described above are examples, and may be suitably set according to the shape of the sterilizer 1C or the object TO.
<第3実施形態>
 次に、第3実施形態の殺菌装置について説明する。第3実施形態の殺菌装置は、第1実施形態の殺菌装置に対して、蓋部及び放電部が相違している。以下、相違点を中心として説明する。なお、第3実施形態の説明において、第1実施形態にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
<Third Embodiment>
Next, the sterilizer of 3rd Embodiment is demonstrated. The sterilization apparatus of 3rd Embodiment differs in the cover part and the discharge part with respect to the sterilization apparatus of 1st Embodiment. Hereinafter, the difference will be mainly described. In addition, in description of 3rd Embodiment, what attached | subjected the code | symbol same as the code | symbol used in 1st Embodiment is the same or substantially the same.
(構成)
 図14及び図15に表されるように、第3実施形態の殺菌装置1Dは、第1実施形態の蓋部20-1に代えて、蓋部20-1Dを備える。更に、殺菌装置1Dは、第1実施形態の蓋部20-2に代えて、蓋部20-1Dと同様の蓋部(図示されない)を備える。
(Constitution)
As shown in FIGS. 14 and 15, the sterilization apparatus 1D of the third embodiment includes a lid 20-1D instead of the lid 20-1 of the first embodiment. Furthermore, the sterilizer 1D includes a lid (not shown) similar to the lid 20-1D, instead of the lid 20-2 of the first embodiment.
 図14は、図15におけるF-F線による殺菌装置1Dの断面を表す。図15は、図14におけるE-E線による蓋部20-1Dの断面を表す。 FIG. 14 shows a cross section of the sterilizer 1D along the line FF in FIG. FIG. 15 shows a cross section of the lid 20-1D taken along line EE in FIG.
 蓋部20-1Dは、円柱形状を有する。本例では、蓋部20-1Dの直径は、基部10のX軸方向における長さと等しい。なお、蓋部20-1Dの直径は、基部10のX軸方向における長さと異なっていてもよい。また、蓋部20-1Dは、円柱形状と異なる形状(例えば、角柱形状等)を有してもよい。 The lid 20-1D has a cylindrical shape. In this example, the diameter of the lid 20-1D is equal to the length of the base 10 in the X-axis direction. The diameter of the lid 20-1D may be different from the length of the base 10 in the X-axis direction. Further, the lid 20-1D may have a shape (for example, a prismatic shape) different from the cylindrical shape.
 蓋部20-1Dの中心軸は、Z軸に沿って延びる。蓋部20-1Dは、基部10のZ軸の正方向側の表面において、基部10のY軸の正方向側の端部に位置する。 The central axis of the lid 20-1D extends along the Z axis. The lid 20-1D is located at the end of the base 10 on the positive side of the Y axis on the surface of the base 10 on the positive side of the Z axis.
 蓋部20-1Dは、内部に空間CS1を有する。空間CS1は、放電空間と表されてよい。放電空間CS1は、Z軸に沿って延びる円柱形状を有する。放電空間CS1は、円柱形状と異なる形状(例えば、角柱形状等)を有してもよい。放電空間CS1の中心軸は、蓋部20-1Dの中心軸と一致する。放電空間CS1の中心軸は、蓋部20-1Dの中心軸と異なっていてもよい。本例では、放電空間CS1の直径は、基部10の凹部11の直径と等しい。なお、放電空間CS1の直径は、基部10の凹部11の直径と異なっていてもよい。 The lid 20-1D has a space CS1 inside. The space CS1 may be expressed as a discharge space. The discharge space CS1 has a cylindrical shape extending along the Z axis. The discharge space CS1 may have a shape (for example, a prismatic shape or the like) different from the cylindrical shape. The central axis of the discharge space CS1 coincides with the central axis of the lid 20-1D. The central axis of the discharge space CS1 may be different from the central axis of the lid 20-1D. In this example, the diameter of the discharge space CS <b> 1 is equal to the diameter of the recess 11 of the base 10. The diameter of the discharge space CS <b> 1 may be different from the diameter of the recess 11 of the base 10.
 蓋部20-1Dは、放電空間CS1の側面を形成する表面25Dと、放電空間CS1のZ軸の負方向側の底面を形成する表面26Dと、蓋部20-1DのZ軸の負方向側の底面27Dと、を有する。 The lid portion 20-1D includes a surface 25D that forms the side surface of the discharge space CS1, a surface 26D that forms the bottom surface of the discharge space CS1 on the negative direction side of the Z axis, and the negative direction side of the Z axis of the lid portion 20-1D. And a bottom surface 27D.
 更に、蓋部20-1Dは、第1の貫通孔部28Dと、第2の貫通孔部29Dと、を有する。
 第1の貫通孔部28D及び第2の貫通孔部29Dのそれぞれは、蓋部20-1Dのうちの、放電空間CS1のZ軸の負方向側の底面を形成する壁をZ軸方向にて貫通する孔を形成する。第1の貫通孔部28D及び第2の貫通孔部29Dのそれぞれにより形成される孔は、XY平面において、一定の幅を有するとともに、放電空間CS1の中心軸と中心が一致する円弧状である。
Furthermore, the lid 20-1D has a first through hole 28D and a second through hole 29D.
Each of the first through-hole portion 28D and the second through-hole portion 29D has a wall that forms the bottom surface of the discharge space CS1 on the negative side of the Z-axis in the lid portion 20-1D in the Z-axis direction. A through-hole is formed. A hole formed by each of the first through-hole portion 28D and the second through-hole portion 29D has a certain width in the XY plane and has an arc shape whose center coincides with the central axis of the discharge space CS1. .
 本例では、第1の貫通孔部28Dと第2の貫通孔部29Dとは、放電空間CS1の中心軸を通るZX平面に対して互いに面対称である。ZX平面は、Y軸に直交する平面である。なお、第1の貫通孔部28Dと第2の貫通孔部29Dとは、放電空間CS1の中心軸を通るZX平面に対して互いに面対称でなくてもよい。例えば、XY平面における形状は、第1の貫通孔部28Dと第2の貫通孔部29Dとの間で異なっていてもよい。 In this example, the first through-hole portion 28D and the second through-hole portion 29D are symmetric with respect to the ZX plane passing through the central axis of the discharge space CS1. The ZX plane is a plane orthogonal to the Y axis. Note that the first through-hole portion 28D and the second through-hole portion 29D may not be plane-symmetric with respect to the ZX plane passing through the central axis of the discharge space CS1. For example, the shape in the XY plane may be different between the first through hole portion 28D and the second through hole portion 29D.
 蓋部20-1Dが基部10に固定された状態において、基部10及び蓋部20-1Dは、容器を構成するとともに、蓋部20-1DのZ軸の負方向側の底面27D、凹部11、及び、螺合部13は、液体LQ、及び、対象物TOを収容する液体収容空間CS2を形成する。 In a state where the lid 20-1D is fixed to the base 10, the base 10 and the lid 20-1D constitute a container, and a bottom surface 27D on the negative side of the Z-axis of the lid 20-1D, the recess 11, And the screwing part 13 forms the liquid storage space CS2 which stores the liquid LQ and the target object TO.
 蓋部20-1Dが基部10に固定された状態において、第1の貫通孔部28D及び第2の貫通孔部29Dのそれぞれにより形成される孔は、放電空間CS1と、液体収容空間CS2と、を連通する。本例では、第1の貫通孔部28D及び第2の貫通孔部29Dのそれぞれにより形成される孔は、流入路及び流出路であると捉えられてよい。本例では、放電空間CS1、液体収容空間CS2、流入路、及び、流出路は、容器の内部の空間である収容空間を構成する。 In the state where the lid 20-1D is fixed to the base 10, the holes formed by the first through-hole portion 28D and the second through-hole portion 29D are the discharge space CS1, the liquid storage space CS2, and Communicate. In this example, the holes formed by the first through-hole portion 28D and the second through-hole portion 29D may be regarded as an inflow channel and an outflow channel. In this example, the discharge space CS1, the liquid storage space CS2, the inflow path, and the outflow path constitute a storage space that is a space inside the container.
 また、蓋部20-1Dが基部10に固定された状態において、基部10は、収容空間のうちの、Z軸の負方向の端部を形成する、と捉えられてよい。また、蓋部20-1Dが基部10に固定された状態において、蓋部20-1Dは、収容空間のうちの、Z軸の正方向の端部を形成する、と捉えられてよい。
 なお、本例では、蓋部20-1Dが基部10に固定された状態において、収容空間は、密閉された空間であると捉えられてよい。
Further, in a state where the lid 20-1D is fixed to the base 10, the base 10 may be regarded as forming the end of the accommodation space in the negative direction of the Z axis. Further, in a state where the lid 20-1D is fixed to the base 10, the lid 20-1D may be regarded as forming the end in the positive direction of the Z axis in the accommodation space.
In this example, in the state where the lid 20-1D is fixed to the base 10, the accommodation space may be regarded as a sealed space.
 更に、蓋部20-1Dは、放電部30Dを備える。放電部30Dは、板状である。放電部30Dは、蓋部20-1Dの表面のうちの、放電空間CS1の側面を形成する表面25Dに接する。本例では、放電部30Dは、表面25Dに固定される。従って、放電部30Dは、表面25Dの一部を被覆する。 Furthermore, the lid 20-1D includes a discharge part 30D. The discharge part 30D is plate-shaped. The discharge part 30D is in contact with the surface 25D that forms the side surface of the discharge space CS1 in the surface of the lid part 20-1D. In this example, the discharge part 30D is fixed to the surface 25D. Accordingly, the discharge part 30D covers a part of the surface 25D.
 本例では、放電部30Dは、Z軸方向において、表面25Dの全体に亘って位置する。
 更に、本例では、放電部30Dは、XY平面において、表面25Dの中で、回転軸が放電空間CS1の中心軸と一致する回転における、第1の貫通孔部28Dの両端の回転角をそれぞれ有する2つの位置に挟まれた部分に亘って位置する。換言すると、XY平面において、回転軸が放電空間CS1の中心軸と一致する回転における、第1の貫通孔部28Dの両端の回転角と、当該回転における、放電部30Dの両端の回転角と、は一致する。なお、XY平面において、回転軸が放電空間CS1の中心軸と一致する回転における、第1の貫通孔部28Dの両端の回転角と、当該回転における、放電部30Dの両端の回転角と、は異なっていてもよい。
In this example, the discharge part 30D is located over the entire surface 25D in the Z-axis direction.
Furthermore, in this example, the discharge part 30D has the rotation angles at both ends of the first through-hole part 28D in the rotation in which the rotation axis coincides with the central axis of the discharge space CS1 in the surface 25D on the XY plane. It is located over a portion sandwiched between two positions. In other words, in the XY plane, the rotation angle at both ends of the first through-hole portion 28D in rotation with the rotation axis coinciding with the central axis of the discharge space CS1, and the rotation angle at both ends of the discharge portion 30D in the rotation, Match. In the XY plane, the rotation angle at both ends of the first through-hole portion 28D and the rotation angle at both ends of the discharge portion 30D in the rotation in which the rotation axis coincides with the central axis of the discharge space CS1 are: May be different.
 本例では、XY平面において、放電部30Dの表面のうちの、放電空間CS1の中心軸側の表面は、第1の貫通孔部28Dの外縁を構成する円弧のうちの、表面25D側の円弧(換言すると、外径側の円弧)に沿って延びる。
 放電部30Dは、誘電体31Dと、第1の電極32Dと、第2の電極33Dと、絶縁体34Dと、を備える。
In this example, in the XY plane, the surface on the central axis side of the discharge space CS1 in the surface of the discharge part 30D is an arc on the surface 25D side of the arcs constituting the outer edge of the first through-hole part 28D. (In other words, the arc on the outer diameter side) extends along.
The discharge unit 30D includes a dielectric 31D, a first electrode 32D, a second electrode 33D, and an insulator 34D.
 誘電体31Dは、酸化アルミニウム(Al)からなる。なお、誘電体31Dは、酸化アルミニウムと異なる材料(例えば、ガラス等)からなっていてもよい。誘電体31Dは、板状である。誘電体31Dの厚さは、0.02mm乃至2mmの厚さである。 The dielectric 31D is made of aluminum oxide (Al 2 O 3 ). The dielectric 31D may be made of a material different from aluminum oxide (for example, glass). The dielectric 31D has a plate shape. The thickness of the dielectric 31D is 0.02 mm to 2 mm.
 誘電体31Dは、Z軸方向において、表面25Dの全体に亘って位置する。更に、本例では、誘電体31Dは、XY平面において、表面25Dのうちの、回転軸が放電空間CS1の中心軸と一致する回転における、第1の貫通孔部28Dの両端の回転角をそれぞれ有する2つの位置に挟まれた部分に亘って位置する。 The dielectric 31D is located over the entire surface 25D in the Z-axis direction. Furthermore, in this example, the dielectric 31D has the rotation angles at both ends of the first through-hole portion 28D in the rotation in which the rotation axis of the surface 25D coincides with the central axis of the discharge space CS1 in the XY plane. It is located over a portion sandwiched between two positions.
 本例では、XY平面において、誘電体31Dの表面のうちの、放電空間CS1の中心軸側の表面は、第1の貫通孔部28Dの外縁を構成する円弧のうちの、外径側の円弧に沿って延びる。 In this example, on the XY plane, the surface on the central axis side of the discharge space CS1 among the surfaces of the dielectric 31D is an arc on the outer diameter side of the arcs constituting the outer edge of the first through-hole portion 28D. Extending along.
 第1の電極32Dは、アルミニウム(Al)からなる。なお、第1の電極32Dは、アルミニウムと異なる材料(例えば、ステンレス鋼、銀、又は、銅等)からなっていてもよい。第1の電極32Dは、板状である。第1の電極32Dの厚さは、1μm乃至3mmの厚さである。 The first electrode 32D is made of aluminum (Al). Note that the first electrode 32D may be made of a material different from aluminum (for example, stainless steel, silver, or copper). The first electrode 32D has a plate shape. The thickness of the first electrode 32D is 1 μm to 3 mm.
 第1の電極32Dは、誘電体31Dの表面のうちの、放電空間CS1の中心軸側の表面に接する。本例では、第1の電極32Dは、誘電体31Dの表面のうちの、放電空間CS1の中心軸側の表面に固定される。 The first electrode 32D is in contact with the surface of the dielectric 31D on the central axis side of the discharge space CS1. In this example, the first electrode 32D is fixed to the surface of the dielectric 31D on the central axis side of the discharge space CS1.
 第1の電極32Dは、Z軸方向において、表面25Dのうちの、Z軸の正方向側の半分に亘って位置する。更に、本例では、第1の電極32Dは、XY平面において、表面25Dのうちの、回転軸が放電空間CS1の中心軸と一致する回転における、第1の貫通孔部28Dの両端の回転角をそれぞれ有する2つの位置に挟まれた部分に亘って位置する。 The first electrode 32D is located across the half of the surface 25D on the positive side of the Z axis in the Z axis direction. Further, in the present example, the first electrode 32D has a rotation angle at both ends of the first through-hole portion 28D in the rotation in which the rotation axis of the surface 25D coincides with the central axis of the discharge space CS1 in the XY plane. It is located over the part pinched | interposed into two positions which have each.
 本例では、XY平面において、第1の電極32Dは、第1の貫通孔部28Dの外縁を構成する円弧のうちの、外径側の円弧に沿って延びる。 In the present example, in the XY plane, the first electrode 32D extends along an arc on the outer diameter side among arcs constituting the outer edge of the first through-hole portion 28D.
 第2の電極33Dは、アルミニウム(Al)からなる。なお、第2の電極33Dは、アルミニウムと異なる材料(例えば、ステンレス鋼、銀、又は、銅等)からなっていてもよい。また、第2の電極33Dは、第1の電極32Dと異なる材料からなっていてもよい。第2の電極33Dは、板状である。第2の電極33Dの厚さは、1μm乃至3mmの厚さである。 The second electrode 33D is made of aluminum (Al). The second electrode 33D may be made of a material different from aluminum (for example, stainless steel, silver, or copper). The second electrode 33D may be made of a material different from that of the first electrode 32D. The second electrode 33D has a plate shape. The thickness of the second electrode 33D is 1 μm to 3 mm.
 第2の電極33Dは、誘電体31Dの表面のうちの、表面25D側の表面に接する。本例では、第2の電極33Dは、誘電体31Dの表面のうちの、表面25D側の表面に固定される。 The second electrode 33D is in contact with the surface on the surface 25D side of the surface of the dielectric 31D. In this example, the second electrode 33D is fixed to the surface on the surface 25D side of the surface of the dielectric 31D.
 第2の電極33Dは、Z軸方向において、表面25Dのうちの、Z軸の負方向側の半分に亘って位置する。更に、本例では、第2の電極33Dは、XY平面において、表面25Dのうちの、回転軸が放電空間CS1の中心軸と一致する回転における、第1の貫通孔部28Dの両端の回転角をそれぞれ有する2つの位置に挟まれた部分に亘って位置する。 The second electrode 33D is located across the half of the surface 25D on the negative side of the Z axis in the Z axis direction. Furthermore, in this example, the second electrode 33D is configured such that the rotation angle of both ends of the first through-hole portion 28D in the rotation in which the rotation axis of the surface 25D coincides with the central axis of the discharge space CS1 in the XY plane. It is located over the part pinched | interposed into two positions which have each.
 本例では、XY平面において、第2の電極33Dは、第1の貫通孔部28Dの外縁を構成する円弧のうちの、外径側の円弧に沿って延びる。 In the present example, in the XY plane, the second electrode 33D extends along an arc on the outer diameter side among arcs constituting the outer edge of the first through-hole portion 28D.
 このように、本例では、第1の電極32Dは、誘電体31Dの表面のうちの、放電空間CS1の中心軸側の表面に接するとともに、第2の電極33Dは、誘電体31Dの表面のうちの、表面25D側の表面に接する。換言すると、誘電体31Dは、第1の電極32D、及び、第2の電極33Dの間に介在する。 Thus, in this example, the first electrode 32D is in contact with the surface of the dielectric 31D on the central axis side of the discharge space CS1, and the second electrode 33D is on the surface of the dielectric 31D. It contacts the surface on the surface 25D side. In other words, the dielectric 31D is interposed between the first electrode 32D and the second electrode 33D.
 絶縁体34Dは、塩化ビニル樹脂等の合成樹脂からなる。なお、絶縁体34Dは、合成樹脂と異なる材料(例えば、二酸化ケイ素(SiO)等)からなっていてもよい。絶縁体34Dは、板状である。絶縁体34Dの厚さは、1μm乃至5mmの厚さである。絶縁体34Dは、第2の電極33Dの表面のうちの表面25D側の表面と、誘電体31Dの表面のうちの表面25D側の表面の中で第2の電極33Dと接していない部分と、を被覆する。 The insulator 34D is made of a synthetic resin such as a vinyl chloride resin. The insulator 34D may be made of a material different from the synthetic resin (for example, silicon dioxide (SiO 2 )). The insulator 34D has a plate shape. The thickness of the insulator 34D is 1 μm to 5 mm. The insulator 34D includes a surface on the surface 25D side of the surface of the second electrode 33D and a portion of the surface of the dielectric 31D on the surface 25D side that is not in contact with the second electrode 33D; Coating.
 本例では、絶縁体34Dは、Z軸方向において、表面25Dのうちの中央部に位置する。更に、本例では、絶縁体34Dは、XY平面において、表面25Dのうちの、回転軸が放電空間CS1の中心軸と一致する回転における、第1の貫通孔部28Dの両端の回転角をそれぞれ有する2つの位置に挟まれた部分に亘って位置する。 In this example, the insulator 34D is located at the center of the surface 25D in the Z-axis direction. Furthermore, in this example, the insulator 34D has the rotation angles at both ends of the first through hole 28D in the rotation in which the rotation axis of the surface 25D coincides with the central axis of the discharge space CS1 in the XY plane. It is located over a portion sandwiched between two positions.
 更に、放電部30Dは、図示されない電源部を備える。電源部は、第1の電極32D及び第2の電極33Dに接続される。電源部は、第1の電極32D及び第2の電極33Dの間に、交流電圧を印加する。本例では、交流電圧の波形は、正弦波である。本例では、交流電圧は、周波数が40kHzであり、且つ、振幅が2.8kVである。なお、交流電圧は、周波数が10kHz乃至100kHzの周波数であり、且つ、振幅が1kV乃至10kVの振幅であってもよい。また、交流電圧の波形は、正弦波と異なる波形(例えば、矩形波、又は、三角波等)であってもよい。
 本例では、放電部30Dは、プラズマアクチュエータと捉えられてよい。
Furthermore, the discharge unit 30D includes a power supply unit (not shown). The power supply unit is connected to the first electrode 32D and the second electrode 33D. The power supply unit applies an AC voltage between the first electrode 32D and the second electrode 33D. In this example, the waveform of the AC voltage is a sine wave. In this example, the AC voltage has a frequency of 40 kHz and an amplitude of 2.8 kV. Note that the AC voltage may have a frequency of 10 kHz to 100 kHz and an amplitude of 1 kV to 10 kV. The waveform of the AC voltage may be a waveform different from a sine wave (for example, a rectangular wave or a triangular wave).
In this example, the discharge unit 30D may be regarded as a plasma actuator.
 本例では、殺菌装置1Dが、第1実施形態の蓋部20-2の代わりに備える蓋部も、蓋部20-1Dが備える放電部30Dと同様の放電部を備える。本例では、殺菌装置1Dは、1つの電源部を備えるとともに、蓋部20-1Dが備える放電部30Dと、殺菌装置1Dが、第1実施形態の蓋部20-2の代わりに備える蓋部が備える放電部と、の間で当該電源部が共用される。なお、殺菌装置1Dは、蓋部20-1Dが備える放電部30Dと、殺菌装置1Dが、第1実施形態の蓋部20-2の代わりに備える蓋部が備える放電部と、にそれぞれ用いられる2つの電源部を備えていてもよい。 In this example, the sterilization apparatus 1D includes a discharge unit similar to the discharge unit 30D included in the lid 20-1D in the lid provided instead of the lid 20-2 of the first embodiment. In this example, the sterilization apparatus 1D includes one power supply unit, a discharge unit 30D included in the lid unit 20-1D, and a lid unit included in the sterilization apparatus 1D instead of the lid unit 20-2 of the first embodiment. The power supply unit is shared with the discharge unit included in the. The sterilizer 1D is used for the discharge unit 30D included in the lid 20-1D, and the discharge unit included in the lid provided in place of the lid 20-2 of the first embodiment of the sterilizer 1D. Two power supply units may be provided.
(動作)
 次に、殺菌装置1Dの動作について図14を参照しながら説明する。以下、蓋部20-1Dと基部10とにより形成される収容空間に着目して、殺菌装置1Dの動作について説明する。なお、殺菌装置1Dが、第1実施形態の蓋部20-2の代わりに備える蓋部と基部10とにより形成される収容空間に対する殺菌装置1Dの動作も同様に説明されるので、その説明は省略される。
(Operation)
Next, the operation of the sterilizer 1D will be described with reference to FIG. Hereinafter, the operation of the sterilizer 1D will be described by focusing on the accommodation space formed by the lid 20-1D and the base 10. The operation of the sterilizer 1D with respect to the storage space formed by the lid and the base 10 provided in place of the lid 20-2 of the first embodiment is also explained in the same way. Omitted.
 殺菌装置1Dの動作は、第1実施形態の殺菌装置1に対して、放電に伴って形成される流れが相違する。従って、放電に伴って形成される流れを中心として説明する。 The operation of the sterilizer 1D is different from the sterilizer 1 of the first embodiment in the flow formed along with the discharge. Therefore, the description will focus on the flow formed with the discharge.
 第1の電極32D及び第2の電極33Dの間に交流電圧が印加される。これにより、第1の電極32D及び第2の電極33Dの間の空間にて放電が生じる。本例では、第1の電極32Dと、誘電体31Dの表面のうちの放電空間CS1の中心軸側の表面と、の間の空間にて放電が生じる。本例では、放電は、誘電体バリア放電と捉えられてよい。 An AC voltage is applied between the first electrode 32D and the second electrode 33D. As a result, discharge occurs in the space between the first electrode 32D and the second electrode 33D. In this example, discharge occurs in a space between the first electrode 32D and the surface on the central axis side of the discharge space CS1 in the surface of the dielectric 31D. In this example, the discharge may be regarded as a dielectric barrier discharge.
 放電に伴ってイオンが生成される。また、放電空間CS1のうちの放電部30Dの近傍において、Z軸方向における電界が形成される。この結果、放電空間CS1のうちの放電部30Dの近傍において、Z軸の負方向のイオンの流れが形成される。イオンの流れが形成されることによって、放電空間CS1のうちの放電部30Dの近傍において、Z軸の負方向の空気の流れが形成される。 Ions are generated with the discharge. Further, an electric field in the Z-axis direction is formed in the vicinity of the discharge part 30D in the discharge space CS1. As a result, an ion flow in the negative direction of the Z axis is formed in the vicinity of the discharge unit 30D in the discharge space CS1. By forming the ion flow, a negative Z-axis air flow is formed in the discharge space CS1 in the vicinity of the discharge unit 30D.
 従って、放電空間CS1において、放電部30Dから流入路への流れが形成される。更に、液体収容空間CS2のうちの液体LQよりもZ軸の正方向側の空間において、Y軸の正方向側の端部における流入路から液体LQの表面への流れと、液体LQの表面の近傍におけるY軸の負方向の流れと、Y軸の負方向側の端部における液体LQの表面から流出路への流れと、が形成される。加えて、放電空間CS1において、流出路から放電部30Dへの流れが形成される。
 このようにして、収容空間のうちの液体LQよりもZ軸の正方向側の空間にて循環する流れ(換言すると、循環流)GFが放電に伴って形成される。
Accordingly, a flow from the discharge part 30D to the inflow path is formed in the discharge space CS1. Furthermore, in the space on the positive side of the Z axis with respect to the liquid LQ in the liquid storage space CS2, the flow from the inflow path at the end on the positive direction side of the Y axis to the surface of the liquid LQ, and the surface of the liquid LQ A flow in the negative direction of the Y axis in the vicinity and a flow from the surface of the liquid LQ to the outflow path at the end on the negative direction side of the Y axis are formed. In addition, in the discharge space CS1, a flow from the outflow path to the discharge unit 30D is formed.
In this manner, a flow (in other words, a circulating flow) GF that circulates in the space on the positive side of the Z axis with respect to the liquid LQ in the accommodation space is formed along with the discharge.
 循環流GFが形成されることにより、液体LQにおいて、液体LQの表面の近傍におけるY軸の負方向の流れと、Y軸の負方向側の端部におけるZ軸の負方向の流れと、凹部11の底面12の近傍におけるY軸の正方向の流れと、Y軸の正方向側の端部におけるZ軸の正方向の流れと、が形成される。
 このようにして、液体LQにて対流LFが放電に伴って形成される。
By forming the circulation flow GF, in the liquid LQ, the negative Y-direction flow in the vicinity of the surface of the liquid LQ, the negative Z-axis direction flow at the negative end of the Y-axis, and the concave portion 11 in the vicinity of the bottom surface 12 of the Y axis, and a positive flow in the Z axis at the end on the positive direction side of the Y axis.
In this way, a convection LF is formed in the liquid LQ along with the discharge.
 また、放電に伴って化学種が生成される。本例では、化学種は、化学活性種を含む。化学活性種は、反応活性種と表されてもよい。本例では、化学活性種は、オゾン(O)、イオン、又は、ラジカルを含む。
 放電に伴って生成された化学種は、収容空間にて形成された、循環流GF及び対流LFによって、液体LQに浸された対象物TOまで運ばれる。この結果、液体LQに浸された対象物TOは、殺菌される。
In addition, chemical species are generated along with the discharge. In this example, the chemical species includes chemically active species. The chemically active species may be represented as a reactive species. In this example, the chemically active species includes ozone (O 3 ), ions, or radicals.
The chemical species generated along with the discharge is carried to the object TO immersed in the liquid LQ by the circulating flow GF and the convection LF formed in the accommodation space. As a result, the object TO immersed in the liquid LQ is sterilized.
 以上、説明したように、第3実施形態の殺菌装置1Dは、第1の電極32D、及び、第2の電極33Dの間に電圧が印加されることにより、第1の電極32D、及び、第2の電極33Dの間の空間にて放電を生じさせ、且つ、収容空間に液体LQが収容されている状態において、液体LQにて対流LFが形成されるように収容空間のうちの液体LQよりも鉛直上方の空間にて循環する流れGFを放電に伴って形成する。更に、殺菌装置1Dは、収容空間に液体LQ、及び、対象物TOが収容されている状態において、放電に伴って生成された化学種によって対象物TOを殺菌する。 As described above, the sterilization apparatus 1D of the third embodiment has the first electrode 32D and the first electrode 32D by applying a voltage between the first electrode 32D and the second electrode 33D. In the space between the two electrodes 33D and in the state where the liquid LQ is stored in the storage space, the liquid LQ in the storage space forms a convection LF. Also forms a flow GF that circulates in the space above the vertical with discharge. Furthermore, the sterilizer 1D sterilizes the object TO with the chemical species generated along with the discharge in a state where the liquid LQ and the object TO are stored in the storage space.
 これによれば、送風機又はポンプ等の流体機械を用いることなく、液体LQにて対流LFを形成できる。これにより、放電に伴って生成された化学種を、液体LQに浸された対象物TOに迅速に到達させることができる。この結果、液体LQに浸された対象物TOを迅速に殺菌できる。 According to this, the convection LF can be formed with the liquid LQ without using a fluid machine such as a blower or a pump. Thereby, the chemical species generated along with the discharge can quickly reach the target TO immersed in the liquid LQ. As a result, the object TO immersed in the liquid LQ can be quickly sterilized.
 更に、第3実施形態の殺菌装置1Dにおいて、収容空間は、液体LQ、及び、対象物TOを収容する液体収容空間CS2と、放電部30Dが放電を生じさせる放電空間CS1と、液体収容空間CS2と放電空間CS1とを連通する、流入路及び流出路と、を含む。更に、放電部30Dは、第1の電極32D、及び、第2の電極33Dの間の空間から流入路への方向の流れを放電に伴って形成する。 Furthermore, in the sterilization apparatus 1D of the third embodiment, the storage space includes a liquid storage space CS2 that stores the liquid LQ and the object TO, a discharge space CS1 that causes the discharge unit 30D to generate a discharge, and a liquid storage space CS2. And an inflow path and an outflow path that communicate with the discharge space CS1. Further, the discharge unit 30D forms a flow in the direction from the space between the first electrode 32D and the second electrode 33D to the inflow path along with the discharge.
 これによれば、放電空間CS1において、放電部30Dから流入路への方向の流れが形成される。これにより、液体収容空間CS2における流入路から流出路への方向の流れと、放電空間CS1における流出路から放電部30Dへの方向の流れと、を形成できる。これにより、収容空間のうちの液体LQよりも鉛直上方の空間にて循環する流れGFを形成できるので、液体LQにて対流LFを形成できる。 According to this, in the discharge space CS1, a flow in the direction from the discharge part 30D to the inflow path is formed. Thereby, a flow in the direction from the inflow path to the outflow path in the liquid storage space CS2 and a flow in the direction from the outflow path in the discharge space CS1 to the discharge unit 30D can be formed. Thereby, since the flow GF circulating in the space vertically above the liquid LQ in the accommodation space can be formed, the convection LF can be formed in the liquid LQ.
 更に、第3実施形態の殺菌装置1Dによれば、第1実施形態の殺菌装置1と同様の構成によって奏される効果も同様に奏される。 Furthermore, according to the sterilization apparatus 1D of the third embodiment, the same effect as that of the sterilization apparatus 1 of the first embodiment can be obtained.
 なお、蓋部20-1Dが基部10に固定された状態において、回転軸がZ軸と一致する回転における、基部10に対する蓋部20-1Dの位置は、上述した例と異なる位置であってよい。同様に、殺菌装置1Dが、第1実施形態の蓋部20-2の代わりに備える蓋部が基部10に固定された状態において、回転軸がZ軸と一致する回転における、基部10に対する当該蓋部の位置は、上述した例と異なる位置であってよい。 Note that, in a state where the lid 20-1D is fixed to the base 10, the position of the lid 20-1D with respect to the base 10 in the rotation in which the rotation axis coincides with the Z-axis may be a position different from the above-described example. . Similarly, in the state where the lid provided in place of the lid 20-2 of the first embodiment is fixed to the base 10 in the sterilization apparatus 1D, the lid with respect to the base 10 in the rotation whose rotation axis coincides with the Z axis The position of the part may be different from the above-described example.
 また、上述した、殺菌装置1Dの形状は、一例であり、縦型又は他の形状の携帯型、若しくは、据え置き型であってもよい。
 また、上述した、誘電体31D、第1の電極32D、第2の電極33D、及び、絶縁体34Dのそれぞれの厚さは、一例であり、膜等の製造方法、又は、使用する形状によって好適に設定されてよい。
 また、上述した、交流電圧の周波数及び振幅は、一例であり、殺菌装置1Dの形状、又は、対象物TOに応じて好適に設定されてよい。
In addition, the shape of the sterilization apparatus 1D described above is an example, and may be a vertical type, a portable type having another shape, or a stationary type.
Further, the thicknesses of the dielectric 31D, the first electrode 32D, the second electrode 33D, and the insulator 34D described above are examples, and are suitable depending on the manufacturing method of the film or the shape used. May be set.
Moreover, the frequency and amplitude of the AC voltage described above are examples, and may be suitably set according to the shape of the sterilizer 1D or the object TO.
 なお、本発明は、上述した実施形態に限定されない。例えば、上述した実施形態に、本発明の趣旨を逸脱しない範囲内において当業者が理解し得る様々な変更が加えられてよい。例えば、本発明の趣旨を逸脱しない範囲内において、上述した実施形態の他の変形例として、上述した実施形態及び変形例の任意の組み合わせが採用されてもよい。 Note that the present invention is not limited to the above-described embodiment. For example, various modifications that can be understood by those skilled in the art may be added to the above-described embodiments without departing from the spirit of the present invention. For example, any combination of the above-described embodiment and modification may be adopted as another modification of the above-described embodiment without departing from the spirit of the present invention.
1,1B,1C,1D 殺菌装置
10,10B 基部
11  凹部
12  底面
13  螺合部
14B リブ
20-1,20-1,20-1C,20-2C,20-1D 蓋部
21  凹部
22  底面
23  螺合部
24C 貫通孔部
25D 表面
26D 表面
27D 底面
28D 第1の貫通孔部
29D 第2の貫通孔部
30,30A,30-1C,30-2C,30D 放電部
31,31C,31D 誘電体
311C 連接空間
32,32A,32C,32D 第1の電極
321,321A 端辺
322C 先端
323C リブ
33,33A,33C,33D 第2の電極
331,331A 端辺
34,34D 絶縁体
CS  収容空間
CS1 放電空間
CS2 液体収容空間
LQ  液体
TO  対象物
1, 1B, 1C, 1D Sterilizer 10, 10B Base 11 Recess 12 Bottom surface 13 Threaded portion 14B Ribs 20-1, 20-1, 20-1C, 20-2C, 20-1D Lid 21 Recess 22 Bottom surface 23 Screw Joint portion 24C Through-hole portion 25D Surface 26D Surface 27D Bottom surface 28D First through-hole portion 29D Second through- hole portions 30, 30A, 30-1C, 30-2C, 30D Discharge portions 31, 31C, 31D Dielectric 311C Connection Space 32, 32A, 32C, 32D First electrode 321, 321A End side 322C End 323C Rib 33, 33A, 33C, 33D Second electrode 331, 331A End side 34, 34D Insulator CS Housing space CS1 Discharge space CS2 Liquid Storage space LQ Liquid TO Object

Claims (13)

  1.  液体と、前記液体に浸された対象物と、を収容する空間である収容空間を内部に有する容器と、
     第1の電極及び第2の電極と、前記第1の電極及び前記第2の電極の間に介在する誘電体と、を有するとともに、前記第1の電極及び前記第2の電極の間に電圧が印加されることにより、前記第1の電極及び前記第2の電極の間の空間にて放電を生じさせ、且つ、前記収容空間に前記液体が収容されている状態において、前記液体にて対流が形成されるように前記収容空間のうちの前記液体よりも鉛直上方の空間にて循環する流れを前記放電に伴って形成する放電部と、
     を備えるとともに、前記収容空間に前記液体及び前記対象物が収容されている状態において、前記放電に伴って生成された化学種によって前記対象物を殺菌する、殺菌装置。
    A container having therein a storage space which is a space for storing a liquid and an object immersed in the liquid;
    A first electrode and a second electrode; and a dielectric interposed between the first electrode and the second electrode; and a voltage between the first electrode and the second electrode. Is applied to cause a discharge in the space between the first electrode and the second electrode, and in a state where the liquid is stored in the storage space, convection is performed in the liquid. A discharge part that forms a flow that circulates in a space vertically above the liquid in the accommodating space so as to form the discharge.
    And a sterilizer that sterilizes the object with chemical species generated along with the discharge in a state where the liquid and the object are stored in the storage space.
  2.  請求項1に記載の殺菌装置であって、
     前記誘電体は、水平面に平行な平板状であり、
     前記第1の電極は、前記水平面に平行な平板状であり、且つ、前記誘電体の表面のうちの、鉛直下方側の表面に接し、
     前記第2の電極は、前記水平面に平行な平板状であり、且つ、前記誘電体の表面のうちの、鉛直上方側の表面に接し、
     前記水平面に平行な平面において、前記第2の電極の少なくとも一部の位置は、前記第1の電極と異なる、殺菌装置。
    The sterilizer according to claim 1,
    The dielectric is a flat plate parallel to a horizontal plane,
    The first electrode has a flat plate shape parallel to the horizontal plane, and is in contact with the surface on the vertically lower side of the surface of the dielectric,
    The second electrode has a flat plate shape parallel to the horizontal plane, and is in contact with the surface on the vertical upper side of the surface of the dielectric,
    The sterilization apparatus, wherein a position of at least a part of the second electrode is different from that of the first electrode in a plane parallel to the horizontal plane.
  3.  請求項2に記載の殺菌装置であって、
     前記水平面に平行な平面において、前記第1の電極の第1の方向における第1の端辺は、前記第1の方向に直交する第2の方向に沿って延びる直線状であり、
     前記水平面に平行な平面において、前記第2の電極の、前記第1の方向と逆方向における第2の端辺は、前記第2の方向に沿って延びる直線状である、殺菌装置。
    The sterilizer according to claim 2, wherein
    In a plane parallel to the horizontal plane, the first edge in the first direction of the first electrode is a straight line extending along a second direction orthogonal to the first direction;
    In the plane parallel to the horizontal plane, the second end of the second electrode in the direction opposite to the first direction is a straight line extending along the second direction.
  4.  請求項3に記載の殺菌装置であって、
     前記収容空間のうちの鉛直上方側の端部の、前記水平面に平行な平面における形状は、円形状であり、
     前記水平面に平行な平面において、前記第1の端辺は、前記収容空間のうちの鉛直上方側の端部の中心を通る、殺菌装置。
    The sterilizer according to claim 3, wherein
    The shape of the end portion on the vertically upper side of the accommodation space in a plane parallel to the horizontal plane is a circular shape,
    In a plane parallel to the horizontal plane, the first end side passes through the center of the end portion on the vertically upper side of the accommodation space.
  5.  請求項2に記載の殺菌装置であって、
     前記水平面に平行な平面において、前記第1の電極の第1の方向における第1の端辺は、前記第1の方向に直交する第2の方向に沿って延びる鋸歯状であり、
     前記水平面に平行な平面において、前記第2の電極の、前記第1の方向と逆方向における第2の端辺は、前記第2の方向に沿って延びる直線状である、殺菌装置。
    The sterilizer according to claim 2, wherein
    In a plane parallel to the horizontal plane, the first end in the first direction of the first electrode is a sawtooth extending along a second direction orthogonal to the first direction;
    In the plane parallel to the horizontal plane, the second end of the second electrode in the direction opposite to the first direction is a straight line extending along the second direction.
  6.  請求項3乃至請求項5のいずれか一項に記載の殺菌装置であって、
     前記容器は、前記収容空間にて、前記対象物を前記水平面に平行な平面における中央部に誘導する形状を有する、殺菌装置。
    The sterilizer according to any one of claims 3 to 5,
    The said container has a shape which guide | induces the said target object to the center part in the plane parallel to the said horizontal surface in the said accommodation space.
  7.  請求項3乃至請求項6のいずれか一項に記載の殺菌装置であって、
     前記容器は、前記収容空間のうちの最も鉛直下方側の端を形成する前記容器の壁面よりも鉛直上方にて前記対象物を支持するとともに前記第1の方向に沿って延びる複数のリブを有する、殺菌装置。
    The sterilizer according to any one of claims 3 to 6,
    The container has a plurality of ribs that support the object vertically above a wall surface of the container that forms the most vertically lower end of the accommodation space and extend along the first direction. , Sterilization equipment.
  8.  請求項2乃至請求項7のいずれか一項に記載の殺菌装置であって、
     前記放電部は、前記第2の電極の表面のうちの鉛直上方側の表面と、前記誘電体の表面のうちの鉛直上方側の表面の中で前記第2の電極と接していない部分と、を被覆する絶縁体を備える、殺菌装置。
    The sterilizer according to any one of claims 2 to 7,
    The discharge portion is a vertically upper surface of the surface of the second electrode and a portion of the surface of the dielectric that is not in contact with the second electrode in the vertically upper surface; A sterilizer comprising an insulator covering the surface.
  9.  請求項1乃至請求項8のいずれか一項に記載の殺菌装置であって、
     前記容器は、前記収容空間のうちの鉛直下方側の端部を形成する基部と、前記基部に着脱可能に構成され且つ前記収容空間のうちの鉛直上方側の端部を形成する蓋部と、を備える、殺菌装置。
    It is a sterilizer as described in any one of Claims 1 thru | or 8, Comprising:
    The container includes a base portion that forms an end portion on the vertically lower side of the housing space, a lid portion that is configured to be detachable from the base portion and that forms an end portion on the vertically upper side of the housing space, and A sterilizer comprising:
  10.  請求項1に記載の殺菌装置であって、
     前記誘電体は、前記収容空間のうちの鉛直上方側の端部と連接する空間である連接空間を内部に有し、
     前記第1の電極は、前記収容空間のうちの鉛直上方側の前記端部へ向かって延びる円柱状又は円錐状であるとともに、前記連接空間における前記端部側にて、前記誘電体と隔てられ且つ尖った先端を有し、
     前記第2の電極は、前記誘電体の外壁の少なくとも一部を被覆する、殺菌装置。
    The sterilizer according to claim 1,
    The dielectric body has a connection space inside which is a space connected to an end portion on the vertically upper side of the accommodation space,
    The first electrode has a columnar shape or a conical shape extending toward the end portion on the vertically upper side of the accommodation space, and is separated from the dielectric on the end portion side in the connection space. And has a pointed tip,
    The sterilization apparatus, wherein the second electrode covers at least a part of the outer wall of the dielectric.
  11.  請求項10に記載の殺菌装置であって、
     前記連接空間は、円柱形状を有し、
     前記第1の電極は、螺旋状のリブを側面に有する、殺菌装置。
    The sterilizer according to claim 10, wherein
    The connecting space has a cylindrical shape,
    The first electrode has a spiral rib on a side surface.
  12.  請求項1に記載の殺菌装置であって、
     前記収容空間は、前記液体及び前記対象物を収容する液体収容空間と、前記放電部が前記放電を生じさせる放電空間と、前記液体収容空間と前記放電空間とを連通する、流入路及び流出路と、を含み、
     前記放電部は、前記第1の電極及び前記第2の電極の間の前記空間から前記流入路への方向の流れを前記放電に伴って形成する、殺菌装置。
    The sterilizer according to claim 1,
    The storage space includes a liquid storage space that stores the liquid and the object, a discharge space in which the discharge section generates the discharge, and an inflow path and an outflow path that connect the liquid storage space and the discharge space. And including
    The said discharge part is a sterilizer which forms the flow of the direction from the said space between the said 1st electrode and the said 2nd electrode to the said inflow path with the said discharge.
  13.  容器の内部の空間である収容空間に、液体と、前記液体に浸された対象物と、を配置し、
     誘電体が介在する第1の電極及び第2の電極の間に電圧を印加することにより、前記第1の電極及び前記第2の電極の間の空間にて放電を生じさせ、
     前記液体にて対流が形成されるように前記収容空間のうちの前記液体よりも鉛直上方の空間にて循環する流れを前記放電に伴って形成し、
     前記放電に伴って生成された化学種によって前記対象物を殺菌する、殺菌方法。
    In a storage space that is a space inside the container, a liquid and an object immersed in the liquid are arranged,
    By applying a voltage between the first electrode and the second electrode intervening a dielectric, a discharge is generated in the space between the first electrode and the second electrode,
    A flow that circulates in a space vertically above the liquid in the accommodating space so that convection is formed in the liquid is formed along with the discharge,
    A sterilization method for sterilizing the object by a chemical species generated along with the discharge.
PCT/JP2015/084214 2015-12-04 2015-12-04 Sterilization device and sterilization method WO2017094197A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017553597A JP6675538B2 (en) 2015-12-04 2015-12-04 Sterilizer and sterilization method
CN201580085054.5A CN108367092B (en) 2015-12-04 2015-12-04 Sterilization apparatus and sterilization method
PCT/JP2015/084214 WO2017094197A1 (en) 2015-12-04 2015-12-04 Sterilization device and sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084214 WO2017094197A1 (en) 2015-12-04 2015-12-04 Sterilization device and sterilization method

Publications (1)

Publication Number Publication Date
WO2017094197A1 true WO2017094197A1 (en) 2017-06-08

Family

ID=58796793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084214 WO2017094197A1 (en) 2015-12-04 2015-12-04 Sterilization device and sterilization method

Country Status (3)

Country Link
JP (1) JP6675538B2 (en)
CN (1) CN108367092B (en)
WO (1) WO2017094197A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102462436B1 (en) * 2020-07-06 2022-11-01 김철 Washing and sterilizing apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135916A (en) * 1981-02-14 1982-08-21 Tanika Denki Kk Electrode material for disinfecting contact lens and its production
JPS6471935A (en) * 1987-09-08 1989-03-16 Inax Corp Self-purifying toilet stool
JPH02286163A (en) * 1989-04-27 1990-11-26 Tome Sangyo Kk Cleaning method and cleaning and sterilizing method for contact lens
JPH03114590A (en) * 1989-09-29 1991-05-15 Senichi Masuda Apparatus for making ozone water
JPH04234724A (en) * 1990-10-04 1992-08-24 Allergan Inc Device and method of disinfecting lens
JPH05139702A (en) * 1991-11-22 1993-06-08 Asahi Glass Co Ltd Ozonizer
JPH06178989A (en) * 1992-12-14 1994-06-28 Ngk Spark Plug Co Ltd Water purifying device
JP2009022391A (en) * 2007-07-17 2009-02-05 Hirayama Seisakusho:Kk Plasma sterilizer and plasma sterilization method
JP2012081215A (en) * 2010-10-06 2012-04-26 Shanteii:Kk Low temperature plasma/ultraviolet ray compound sterilizer
JP2012193099A (en) * 2011-03-17 2012-10-11 Mie Konetsu Kk Dielectric for generating ozone and generator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137324A (en) * 1996-11-06 1998-05-26 Sangi Co Ltd Sterilizing device for contact lens
KR100406855B1 (en) * 2000-06-21 2003-11-21 가부시키가이샤 고베 세이코쇼 High voltage treatment equipment and method for liquid
AU2000274484A1 (en) * 2000-06-30 2002-01-14 Sanyo Electric Co., Ltd. Sterilizer using high voltage and method for sterilizing object to be sterilizedsuch as grain or seed by using the same
CN1194765C (en) * 2002-12-06 2005-03-30 华南理工大学 Processor of pulse electric field sterilizing equipment
JP4214213B1 (en) * 2007-08-03 2009-01-28 国立大学法人佐賀大学 Plasma sterilization apparatus and method
JP5305274B2 (en) * 2009-09-03 2013-10-02 国立大学法人大阪大学 Method and apparatus for supplying ions to liquid and sterilization method and apparatus
KR20110072445A (en) * 2009-12-23 2011-06-29 한국돌기 주식회사 Method of sterilizing and cleaning medical device satisfying high level disinfection and apparatus using same
JP2012077439A (en) * 2010-09-30 2012-04-19 Daikin Ind Ltd Washing water purification device and toilet
JP5450355B2 (en) * 2010-11-10 2014-03-26 株式会社メニコン Contact lens sterilization case

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135916A (en) * 1981-02-14 1982-08-21 Tanika Denki Kk Electrode material for disinfecting contact lens and its production
JPS6471935A (en) * 1987-09-08 1989-03-16 Inax Corp Self-purifying toilet stool
JPH02286163A (en) * 1989-04-27 1990-11-26 Tome Sangyo Kk Cleaning method and cleaning and sterilizing method for contact lens
JPH03114590A (en) * 1989-09-29 1991-05-15 Senichi Masuda Apparatus for making ozone water
JPH04234724A (en) * 1990-10-04 1992-08-24 Allergan Inc Device and method of disinfecting lens
JPH05139702A (en) * 1991-11-22 1993-06-08 Asahi Glass Co Ltd Ozonizer
JPH06178989A (en) * 1992-12-14 1994-06-28 Ngk Spark Plug Co Ltd Water purifying device
JP2009022391A (en) * 2007-07-17 2009-02-05 Hirayama Seisakusho:Kk Plasma sterilizer and plasma sterilization method
JP2012081215A (en) * 2010-10-06 2012-04-26 Shanteii:Kk Low temperature plasma/ultraviolet ray compound sterilizer
JP2012193099A (en) * 2011-03-17 2012-10-11 Mie Konetsu Kk Dielectric for generating ozone and generator

Also Published As

Publication number Publication date
CN108367092A (en) 2018-08-03
JPWO2017094197A1 (en) 2018-09-20
JP6675538B2 (en) 2020-04-01
CN108367092B (en) 2020-08-11

Similar Documents

Publication Publication Date Title
JPH11253538A (en) Sterilization container, tool holder used for sterilization container and method for sterilization
JP2018516657A (en) Apparatus for treating skin using non-thermal plasma
JP2016083658A (en) Plasma generation apparatus
JP6097942B2 (en) Liquid processing apparatus and liquid processing method
WO2017094197A1 (en) Sterilization device and sterilization method
JP6871038B2 (en) Discharge lamp, ozone generator and ozone generation method
KR101850505B1 (en) keeping apparatus for dental implant
KR101540901B1 (en) Portable apparatus for sterilizing baby bottel
CN107089704B (en) Liquid treatment device
WO2019163389A1 (en) Electrostatic spraying apparatus
JP2020149953A (en) Plasma device
JP2014107202A (en) Ion generator, and electric apparatus
US11602561B2 (en) Treatment method and system for epidemic keratoconjunctivitis
WO2021074877A1 (en) Sterilization device
WO2019093388A1 (en) Plasma therapy apparatus
KR101667286B1 (en) Mobile terminal
JP2019051457A (en) Purified water generator
RU2016114310A (en) PLASMA TREATMENT SYSTEM FOR RIGID CONTAINERS
JP5879530B2 (en) Liquid processing equipment
JP7000523B1 (en) Plasma equipment
JP2004359307A (en) Sterilization method and apparatus for container, and processing tank for sterilization used for the same
CN109925066A (en) A kind of portable medical operation instrument box
KR102453334B1 (en) Sterilizing device
JPWO2019093375A1 (en) Plasma treatment device
KR200242029Y1 (en) The spoon stand of sterilization using an anion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553597

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909827

Country of ref document: EP

Kind code of ref document: A1