WO2017094104A1 - 炭化水素油の増量方法及びその装置 - Google Patents

炭化水素油の増量方法及びその装置 Download PDF

Info

Publication number
WO2017094104A1
WO2017094104A1 PCT/JP2015/083738 JP2015083738W WO2017094104A1 WO 2017094104 A1 WO2017094104 A1 WO 2017094104A1 JP 2015083738 W JP2015083738 W JP 2015083738W WO 2017094104 A1 WO2017094104 A1 WO 2017094104A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
catalyst suspension
active
bubbling
mixing
Prior art date
Application number
PCT/JP2015/083738
Other languages
English (en)
French (fr)
Inventor
馨 中村
Original Assignee
株式会社ロイヤルコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ロイヤルコーポレーション filed Critical 株式会社ロイヤルコーポレーション
Priority to PCT/JP2015/083738 priority Critical patent/WO2017094104A1/ja
Publication of WO2017094104A1 publication Critical patent/WO2017094104A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels

Definitions

  • This invention relates to a method for increasing the amount of hydrocarbon oil and its apparatus.
  • Patent Document 1 As an invention for improving the fuel efficiency of fuel hydrocarbons, there is one described in Patent Document 1 by the present inventor.
  • the invention disclosed in Patent Document 1 provides a fuel production method and apparatus for producing fuel oil by reacting an enzyme water prepared by mixing a natural plant complex enzyme with water with oil.
  • active water prepared by mixing natural plant complex enzyme with water is reacted with oil, and the reacted water also functions as fuel by hydrolysis reaction of the raw material oil by the enzyme.
  • Patent Document 2 active water produced by stirring and mixing water and enzyme by bubbling air is mixed with raw material oil and methanol to produce an emulsion, and the emulsion is brought into contact with carbon dioxide.
  • An invention for increasing the amount of hydrocarbon oil is disclosed.
  • the present invention provides a method and apparatus for increasing the amount of hydrocarbon oil according to the following embodiment.
  • [1] Stirring and mixing zeolite or zeolite-like substance and water by bubbling air to produce a catalyst suspension; Bubbling the catalyst suspension with oxygen to produce active water; A method of increasing the amount of hydrocarbon oil, the method comprising contacting the mixture of active water, alcohol, and hydrocarbon oil with a gas or an aqueous solution containing carbon dioxide.
  • the method for increasing the amount of hydrocarbon oil according to [1] wherein the amount of active oxygen species per unit volume of the active water is greater than the amount of active oxygen species per unit volume of the catalyst suspension.
  • a catalyst mixing tank that stirs and mixes zeolite or a zeolite-like substance and water by bubbling air to form a catalyst suspension;
  • An aeration treatment tank for aeration treatment of the catalyst suspension with oxygen to generate active water;
  • An apparatus for increasing the amount of hydrocarbon oil comprising: an oil mixing tank in which the mixture of the active water, alcohol, and hydrocarbon oil is brought into contact with a gas containing carbon dioxide or an aqueous solution.
  • the amount of hydrocarbon oil can be increased more efficiently using carbon dioxide, which is one of the causes of global warming, as a raw material.
  • a catalyst suspension is prepared by stirring and mixing water and zeolite or a zeolite-like substance, and the catalyst suspension is aerated with oxygen to generate active water.
  • the amount of active oxygen species that contribute to the generation of carbon radical species from carbon dioxide, which is the carbon source of the hydrocarbon oil, is greater in the active water after aeration with oxygen than in the catalyst suspension.
  • hydrocarbon oil is increased by making the mixed solution of activated water, alcohol, and the raw material hydrocarbon oil contact the gas containing carbon dioxide, or aqueous solution (carbonated water).
  • the metal contained in the pores of the zeolite or the zeolite-like substance acts as a catalyst, thereby activating air or oxygen and contributing to generation of reactive oxygen species (ROS) in water.
  • the reactive oxygen species include at least one of superoxide anion radical (O 2 ⁇ ), hydroxy radical, hydrogen peroxide (H 2 O 2 ), and singlet oxygen.
  • a known synthetic zeolite can be used as the zeolite-like substance, such as CDS-1 (cylindrically double saw-edged zeolite) (for example, JP-A Nos. 2004-339044 and 2005-145773), PLS-1 Synthetic zeolite such as (pentagonal-cylinder layered silicate) (for example, JP-A-2008-162878) may be used.
  • any kind of zeolite such as borohydrite, mordenite, clinoptilolite, ZSM-5 may be used, and ferrierites are preferably used.
  • Natural ferrierites are cationic minerals with an orthorhombic structure. When the main cation species are magnesium, sodium or potassium, ferrierite-Mg, ferrierite-Na, ferrierite-K, etc. Is done. Natural ferrierite often contains calcium and other minerals as cations, and any cation can be mounted by substitution.
  • some ferrilites of natural zeolite exhibit CO 2 adsorption ability (for example, sodium-substituted ferrilite) and are used for CO 2 concentration (Reference Document 1 below).
  • the method for increasing the amount of hydrocarbon oil of the present invention comprises (i) a step of stirring and mixing soot zeolite or zeolite-like substance and water by bubbling air to produce a catalyst suspension; (ii) soot catalyst suspension with oxygen. A step of generating aerated water by aeration treatment; and (iii) a step of bringing a mixture of activated water, alcohol and raw material hydrocarbon oil into contact with a gas containing carbon dioxide or an aqueous solution (carbonated water).
  • reaction formulas in the steps (i) to (iii) are represented by the following formulas (1) and (2).
  • the above formulas (1) and (2) involving carbon dioxide are expressed by the following chain reaction.
  • water and zeolite are mixed with air for 24 to 72 hours at room temperature and normal pressure so that the reactions represented by the above formulas (1) and (2) are performed at normal temperature and normal pressure.
  • active water it is preferable to produce active water by stirring and mixing.
  • the stirring and mixing time may be appropriately changed depending on the state of the raw material water.
  • the bubbling of air is to generate a large amount of minute air bubbles having a diameter of several ⁇ m to several hundred ⁇ m and to stir and mix the solution by the bubbles.
  • oxygen may be used instead of air.
  • the hydrocarbon oil is mainly composed of hydrocarbons and is liquid under normal temperature and normal pressure (for example, temperature of 15 degrees and 1 atmosphere), and has the chemical formula C n H 2n + 2 or C n + 1 H 2n + 4 (Chain saturated hydrocarbon).
  • n is 1 to 40, preferably 1 to 20.
  • An apparatus for increasing the amount of hydrocarbon oil includes an active water generating apparatus 1 that generates active water from zeolite or a zeolite-like substance and water, and the active water, alcohol, and raw material hydrocarbon oil. And a fuel oil production apparatus 2 for producing fuel oil.
  • FIG. 1 is a schematic configuration diagram of an active water generator 1 that generates active water used for increasing the amount of hydrocarbon oil according to an embodiment of the present invention.
  • the active water generator 1 sends air to one or more catalyst mixing tanks 11 (11a to 11d), one or more aeration treatment tanks 12 (12a to 12b), a stabilization tank 14, and a catalyst mixing tank 11.
  • a blower pump 15 for sending oxygen to the aeration treatment tank 12, a pump P for moving the liquid between the tanks, and a filter F for removing impurities and the like during the movement of the liquid are provided.
  • the catalyst mixing tanks 11a to 11d are provided in two lines at the top and bottom in the drawing, and both systems are connected by a pump P and a filter F in the order of the catalyst mixing tanks 11a, 11b, 11c, and 11d.
  • the number of the catalyst mixing tanks 11 may be one, or may be two or more.
  • the catalyst mixing tanks 11 may be provided in one system or in two systems or more instead of two systems.
  • the aeration treatment tank 12 may be one common to each system, or may be provided for each system.
  • the blower pump 15 may include a pump for sending air to the catalyst mixing tank 11 and a pump for sending oxygen to the aeration treatment tank 12.
  • water and zeolite or zeolite-like substance are supplied at a predetermined ratio (for example, 1000 liters of water, 500 g of zeolite, etc.), and these are 24 to 72 by bubbling of air supplied from the blower pump 15. Stir and mix for hours.
  • an enzyme powder for example, EP-10) may be further added.
  • tap water may be used as water, soft water, ion exchange water, or pure water is preferably used.
  • the ratio of water to zeolite or zeolite-like substance is 5% (weight ratio) of zeolite or zeolite-like substance to 95% (weight ratio) of water, preferably zeolite or zeolite-like substance to 99% (weight ratio) of water.
  • the zeolite or zeolite-like substance may be 0.05% (weight ratio) with respect to 1% (weight ratio) of the substance, more preferably 99.95% (weight ratio) of water.
  • the enzyme is preferably made of lipase as a main raw material, and is composed of lipase and cellulase, more preferably 98% (weight ratio) of lipase and 2% (weight ratio) of cellulase.
  • the mixed water (catalyst suspension) of water and zeolite or zeolite-like substance in the catalyst mixing tank 11a is moved to the next catalyst mixing tank 11b by the pump P after a predetermined time has elapsed. During this movement, impurities are removed by the filter F. And in the catalyst mixing tank 11b, it stirs and mixes by bubbling of the air supplied from the blower pump 15 again. This is repeated up to the catalyst mixing tank 11d.
  • the total stirring time in the catalyst mixing tanks 11a to 11d is about 24 to 72 hours.
  • the catalyst suspension stirred and mixed in the catalyst mixing tank 11d is sent to the aeration treatment tanks 12a and 12b.
  • the catalyst suspension is aerated by oxygen supplied from the blower pump 15 for several seconds to several minutes, preferably for 10 to 60 seconds.
  • the aeration process is a process of stirring and mixing the catalyst suspension by bubbling oxygen or a process of stirring and mixing with a stirrer while ventilating oxygen into the catalyst suspension.
  • the oxygen concentration used for the aeration treatment exceeds the atmospheric oxygen concentration (about 21%, 210,000 ppm), and is 90% or more, preferably 99% or more, more preferably 99.9% or more.
  • the catalyst suspension aerated with oxygen is referred to as active water.
  • a pump for supplying oxygen to the aeration treatment tanks 12a and 12b may be provided in the active water generator 1.
  • a pipe for supplying oxygen may be provided in the catalyst mixing tank 11d, and the catalyst suspension may be used as it is as the aeration treatment tanks 12a and 12b after being stirred in the catalyst mixing tank 11d.
  • the catalyst suspension that is, activated water
  • the catalyst suspension that is, activated water
  • the alcohol is added to the active water in the stabilization tank 14.
  • the alcohol can be, for example, methanol or ethanol, and methanol is preferably used.
  • the mixing ratio of the alcohol is preferably about 5% to 20% (weight ratio) of methanol with respect to the active water.
  • the role of the alcohol added to the active water is mainly the role of helping to mix water and oil and the role of being consumed in the initial reaction of increasing hydrocarbon oil.
  • the active water to which alcohol has been added in the stabilization tank 14 is taken out from the stabilization tank 14 by the pump P. At that time, one or more filters F further remove impurities, zeolites or zeolite-like substances.
  • the extracted activated water is transferred to an appropriate container or stored in the activated water tank 22 of the fuel oil production apparatus 2 shown in FIG.
  • the water activated by the active water generator 1 undergoes reactions of reaction formulas (1) and (2) when raw material oil (hydrocarbon oil) is added in the reaction step even at room temperature. It has been activated. As will be described in detail later, the amount of active oxygen species in the active water is greatly increased by performing the aeration treatment with oxygen as compared with the case where the aeration treatment is not performed.
  • FIG. 2 shows a configuration diagram of the fuel oil production apparatus 2.
  • the fuel oil production apparatus 2 includes a raw material oil tank 21 as an oil storage unit that stores a raw material hydrocarbon oil, an active water tank 22 as an active water storage unit that stores active water, and one or a plurality of oil mixing tanks 23.
  • the raw material oil tank 21 is a tank for storing oil as a raw material, and the required amount of raw material hydrocarbon oil is poured into the oil mixing tank 23 through the pipe R in a necessary amount.
  • the hydrocarbon oil as the raw material can be, for example, A heavy oil, B heavy oil, C heavy oil, light oil, kerosene and the like.
  • the active water tank 22 is a tank for storing the active water purified by the active water generator 1, and the stored active water is poured into the oil mixing tank 23 through the pipe R in a necessary amount.
  • the carbon dioxide supply unit 31 includes a cylinder or tank filled with gaseous carbon dioxide or water in which carbon dioxide is dissolved (carbonated water), and supplies gaseous carbon dioxide or carbonated water to the oil mixing tank 23.
  • the concentration of carbon dioxide supplied to the oil mixing tank 23 exceeds the atmospheric carbon dioxide concentration (about 0.03 to 0.04%, 300 to 400 ppm). This is good because more carbon dioxide is used.
  • the concentration of gaseous carbon dioxide (or carbonated water) supplied from the carbon dioxide supply unit 31 is 90% or more, preferably 99% or more, and more preferably 99.5% or more.
  • the carbon dioxide supply unit 31 may be a cylinder filled with carbon dioxide, or recovers carbon dioxide from combustion gas generated at a large-scale source of carbon dioxide such as a power plant, a steel mill, or an oil plant.
  • the apparatus itself or an apparatus for supplying carbon dioxide recovered by the apparatus may be used.
  • the oil mixing tank 23 mixes and stirs the raw material hydrocarbon oil supplied from the raw material oil tank 21 and the active water supplied from the active water tank 22, and supplies the mixed liquid to the carbon dioxide supplied from the carbon dioxide supply unit 31.
  • This is a tank that produces an increased amount of hydrocarbon oil (referred to as “fuel oil”) by being brought into contact with a gas or an aqueous solution containing.
  • Oil in the mixing tank 23 mainly active oxygen species of the active in water (O 2 -., Hydroxy radicals, H 2 O 2, and containing at least one of the singlet oxygen) carbon dioxide (as well as bicarbonate ions , Carbonate ions, and carbon dioxide-derived ions) to generate carbon radical species, and the carbon radical species react with the hydrocarbon oil as a raw material to extend the carbon chain of the hydrocarbon oil.
  • active oxygen species of the active in water O 2 -., Hydroxy radicals, H 2 O 2, and containing at least one of the singlet oxygen
  • carbon dioxide as well as bicarbonate ions , Carbonate ions, and carbon dioxide-derived ions
  • the ratio (weight ratio) of the raw material hydrocarbon oil to the active water in the oil mixing tank 23 may be appropriately adjusted depending on the type of the raw material hydrocarbon oil. For example, A heavy oil 60%, active water 40%, light oil 70% The ratio is preferably 30% and 30% of active water, or 70% of kerosene and 30% of active water, but may be appropriately adjusted depending on the properties of the hydrocarbon oil as a raw material.
  • Carbon dioxide may be supplied to the oil mixing tank 23 after the hydrocarbon oil and the active water are sufficiently stirred and mixed to obtain an emulsified mixed liquid, or the hydrocarbon oil and the active water are stirred. Carbon dioxide may be supplied during mixing so that the reaction with carbon dioxide proceeds faster.
  • the control panel 24 is a control unit that controls each unit of the fuel oil production apparatus 2 and executes various controls such as ON / OFF of power supply.
  • the pulse applying unit 25 vibrates the fuel oil produced in the oil mixing tank 23 to make it easy to remove residues. Residues include water that has not reacted completely, impurities in heavy oil, and the like.
  • the Newton separation tank 26 stores the fuel oil, drops the residue downward by gravity, and extracts the fuel oil remaining above.
  • the separation tank 27 further separates residue from the fuel oil.
  • the precision filter unit 28 removes residue from the fuel oil with a filter.
  • the completed tank 29 stores the completed fuel oil.
  • the drainage tank 30 stores the drainage containing the residue generated in the pulse applying unit 25 and the Newton separation tank 26.
  • FIG. 3 is a configuration diagram showing the configuration of the oil mixing tank 23.
  • the oil mixing tank 23 is provided with a substantially cylindrical stirring space 40, and a stirrer 43 (43L, 43R) and a pump 44 (44L, 44R) are provided in the stirring space 40.
  • a stirrer 43 43L, 43R
  • a pump 44 44L, 44R
  • each stirrer 43 is connected to a pump 44 (44L, 44R), from which raw material hydrocarbon oil and activated water, or a mixture thereof is supplied.
  • a vent pipe (or pump) 45 is connected to each stirrer 43, and carbon dioxide (or carbonated water) is supplied from the carbon dioxide supply unit 31 into the stirrer 43.
  • the pump 44L is connected to a pipe with the suction port 41L disposed above, and the pump 44L sends the raw hydrocarbon oil and active water or a mixture thereof to the stirrer 43L, and the fuel in the stirring space 40 Hydrocarbon oil and activated water, and carbon dioxide (or carbonated water) or a mixture thereof are circulated substantially evenly.
  • the pump 44R is connected to a pipe having a suction port 41R disposed below, and the pump 44L sends the raw hydrocarbon oil and active water or a mixture thereof to the stirrer 43L.
  • the raw material hydrocarbon oil and active water, or a mixture thereof are circulated substantially evenly.
  • the pumps 44L and 44R are preferably 30 to 40 pressure pumps.
  • FIG. 4 is an explanatory diagram for explaining the configuration of the stirrer 43.
  • the stirrer 43 is made of a hollow metal, and is mainly composed of a substantially cylindrical head 51, an inverted conical body 59 that follows the head 51, and a rear end 60 below the head 51. .
  • a cylindrical central shaft 53 is provided at the center of the upper surface of the head 51.
  • the central shaft 53 is provided with an inflow hole 53a (see FIG. 5) penetrating in the vertical direction, and raw material hydrocarbon oil and active water or a mixture thereof flows from the inflow hole 53a.
  • a part of the side surface of the head 51 is provided with an inlet 57 into which raw material hydrocarbon oil and active water or a mixture thereof flows.
  • the inflow port 57 is a hole penetrating from the outside to the inside, and is surrounded by a cylindrical connecting cover 55.
  • a thread groove 56 is provided on the inner surface of the connection cover 55 so that a pipe connected to the pump 44 is attached.
  • the position of the inlet 57 and the direction of the connecting cover 55 are, as shown in the AA cross-sectional view of FIG. 4B, eccentric from the center of the stirrer 43 toward the inner periphery, Active water or a mixture of active water and oil flows in. As a result, the hydrocarbon oil or the like of the raw material that has flowed in from the inlet 57 is efficiently rotated about the cylindrical central shaft 53.
  • a plurality of pins 63 are provided inside the stirrer 43 along the inner periphery. The plurality of pins 63 are arranged with a gap so as not to cross each other. For example, it is preferable to provide 55 to 80 0.03 mm pins with an interval of about 10 mm.
  • a discharge hole 61 is provided in the rear end portion 60 of the stirrer 43.
  • the stirrer 43 configured as described above can efficiently stir oil and active water to cause a decomposition reaction. More specifically, the raw material hydrocarbon oil and active water flowing in from the inlet 57, or a mixture thereof, rotates around the central shaft 53 and gradually decreases in radius of rotation toward the discharge hole 61. Move to. In that case, it agitates with the some pin 63 provided in the inside. Further, by rotating in a tornado shape, a negative pressure is generated in the vicinity of the lower portion of the central shaft 53, whereby the raw material hydrocarbon oil and active water or a mixture thereof flows from the inflow hole 53a. That is, the stirrer 43L shown in FIG.
  • the stirrer 43R mainly takes in active water sucked from the suction port 41R from the inlet 57 by the pump 44R and takes in oil mainly from the inlet hole 53a and stirs. With this stirrer 43, the active water and oil collide with each other in a strong water pressure, and the mixture is stirred to promote the reaction of the reaction formula (1).
  • the oil mixing tank 23 equipped with the stirrer 43 is stirred for a predetermined time (for example, about 15 to 20 minutes)
  • the oil and the enzyme that are moved in a stirrer shape in the stirrer 43 and stirred are 300 to 500 times
  • the contact is repeated, the hydrolysis reaction is promoted, the molecular structure is reduced, and the specific gravity is also reduced.
  • FIG. 6A is a perspective view of the pulse filter 70 provided in the pulse applying unit 25.
  • the pulse filter 70 is provided between the two line mixers, and allows the fuel oil to pass through holes formed between the grid-like partitions 71.
  • the pulse applying unit 25 (particularly the partition 71) is formed of a ceramic fired body.
  • the partition 71 is gently twisted in a screw shape inside, and vibrates the fuel oil that has flowed in, thereby promoting the reaction. As a result, it is possible to easily remove impurities.
  • FIG. 6B is a perspective view of the precision filter 80 provided in the precision filter section 28.
  • This precision filter 80 is provided with a filter 81 extending radially from the center around a cylindrical tube portion 82 formed of a mesh-like material. Impurities can be removed by allowing the fuel oil to pass through the filter 81 from the outer periphery toward the cylindrical portion 82.
  • the filters 81 are provided radially, the fuel oil can pass through the entire plate-like surface 81b from the base side 81a to the tip side 81c, as shown in the partially enlarged plan view of FIG. . For this reason, even if impurities accumulate on the base portion side 81a and become difficult to pass, the fuel oil can be passed through the plate-like surface 81b without any problem and removed.
  • FIG. 7 shows a longitudinal sectional view of a Newton separation tank 26 as a contact tank according to the present invention.
  • the Newton separation tank 26 is mainly composed of an inclined plate 96 provided in the vicinity of the bottom, and a plurality of high-level plates 92 and low-level plates 93 provided alternately above the upper plate, and a liquid inlet 91 is provided at the front stage and the rear stage. Is provided with a liquid discharge port 95.
  • the high plate 92 is provided with a space between the lower end and the inclined plate 96, and is configured so that the fuel oil can move back and forth.
  • the lower plate 93 has an upper end formed lower than the high plate 92 and can overflow the upper portion of the stored fuel oil and move it to the adjacent storage section.
  • the lower plate 93 is provided with a movable plate 94 at the lower end, and is configured such that the lower end of the movable plate 94 contacts the inclined plate 96.
  • the high level plate 92 and the low level plate 93 are alternately arranged in this order, and are configured such that the lower ends are successively shortened in accordance with the inclination of the inclined plate 96.
  • the fuel oil that has flowed into the first reservoir 90a from the liquid inlet 91 is refined with impurities accumulated downward, and the fuel oil is generated according to the reaction formulas (1) and (2). It overflows to the next second reservoir 90b.
  • the fuel oil that has been cleaned by repeating this from the first reservoir 90 a to the fourth reservoir 90 d is discharged from the liquid outlet 95.
  • Impurities precipitated in the reservoirs 90a to 90d move downward along the inclined plate 96.
  • the movable plate 94 is opened to allow impurities to move downward. Since the movable plate 94 does not open in the reverse direction, impurities do not flow backward.
  • Impurities that have moved downward along the inclined plate 96 move from the collection opening 97 to the collection unit 98 via the valve 99a and are collected in the collection unit 98.
  • the valve 99a is opened / closed intermittently, and is opened and collected in the collection unit 98 and closed when a certain amount of residue is accumulated. At this time, the gas is exhausted from an exhaust valve 99c provided near the upper portion of the recovery unit 98.
  • the impurities collected in the collection unit 98 may be taken out from the collection valve 99b and discarded.
  • the stirrer 43 may be a different type of stirrer 43A as shown in FIG.
  • the stirrer 43A is not provided with a discharge hole at the rear end portion 60.
  • a central pipe 54 is provided instead of the central shaft 53 of the above-described embodiment.
  • the center pipe 54 has a cylindrical shape having a hollow portion 67 therein, and its upper end 67a functions as a fuel oil discharge port.
  • the stirrer 43A configured in this manner rotates the active water and oil flowing in from the inlet 57, moves downward in a tornado shape while reducing the rotation radius, and moves from the lower end to the upper end of the center pipe 54. It is discharged from the upper end.
  • This stirrer 43A can also exhibit the same effects as the stirrer 43 of the above-described embodiment.
  • reaction according to the reaction formulas (1) and (2) can be performed to generate fuel oil.
  • O 2 - As a general active oxygen species O 2 - unlikely and only generates, O 2 - derived from hydrogen peroxide (H 2 O 2) and H 2 O 2 derived from - with generation of, O 2 It is considered that other active oxygen species such as hydroxy radicals are also generated. If the amount of O 2 ⁇ produced is large, it is considered that the amount of other active oxygen species produced is also relatively large. Therefore, O 2 - on the basis of the amount of thought and the production of reactive oxygen species generated in the catalyst suspension (or active water) to some extent can be quantitatively evaluated.
  • a catalyst suspension was prepared in which natural zeolite and ion-exchanged water were bubbled with air for 2 days (48 hours) and mixed by stirring.
  • natural zeolite mainly containing ferrierites natural zeolite was used.
  • catalase to remove hydrogen peroxide (CAT) O 2 - superoxide dismutase to remove (SOD), and is the removal reagent 1 O 2 1,4-diazabicyclo [2.2.2]
  • Samples to which octane (1,2-diazabicyclo [2.2.2] octane: DABCO) was added were prepared.
  • the integrated value of CLA chemiluminescence (CLA-CL) integrated time: 3 minutes, unit: rlu was measured for each sample (FIG. 9).
  • “2 day bubbling” represents a sample of a catalyst suspension obtained by mixing natural zeolite and ion exchange water for 2 days
  • “DDW” represents a sample of only ion exchange water
  • “CAT” represents a sample obtained by adding 4 kU / ml of CAT to the catalyst suspension
  • “20 kU / ml CAT” represents a sample obtained by adding 20 kU / ml of CAT to the catalyst suspension
  • “DABCO” represents a sample with DABCO added to the catalyst suspension.
  • the CLA-CL integrated value of the “2-day bubbling” sample was four times or more larger than the value of the “DDW” sample containing only ion-exchanged water. From this, it was found that active oxygen species typified by O 2 ⁇ were produced in the catalyst suspension in which natural zeolite and ion-exchanged water were bubbled for 2 days and mixed.
  • CLA-CL of samples “4 kU / ml CAT” and “20 kU / ml CAT” added with CAT for removing hydrogen peroxide to the catalyst suspension and sample “DABCO” added with DABCO for removing 1 O 2 were added.
  • CLA especially O 2 - show high selectivity for
  • CLA-CL is O 2 - to indicate that it is the specific detection, is effective utilization of 1 O 2 removal reagent such as DABCO
  • the system is long if CLA-CL of 1 O 2 is generated Can be quenched with DABCO (Reference 8 below). Therefore, as shown in FIG. 9, since there was no significant difference between the CLA-CL integrated value of the sample “2 day bubbling” and the CLA-CL integrated value of the sample “DABCO”, the observed CLA-CL is O 2 - has been suggested to be specific for.
  • Example 1 natural zeolite and ion-exchanged water were stirred and mixed for 2 days (48 hours) to prepare a catalyst suspension sample.
  • the stirring and mixing was performed in two patterns: stirring and mixing by air bubbling and stirring and mixing by a stirrer regardless of bubbling.
  • Tyron which is an O 2 ⁇ removal reagent
  • dimethyl which is a hydroxyl radical removal reagent.
  • Air0.2 represents a sample of the catalyst suspension prepared by stirring and mixing by air bubbling
  • Air0.2 Tiron2.5 mM represents the catalyst suspension prepared by stirring and mixing by air bubbling.
  • Air0.2 Bipy1 mM represents the sample added with 1 mM 2,2′-bipyridine to the catalyst suspension prepared by stirring and mixing by air bubbling
  • Air0.2 Dabco2 .5 mM represents a sample obtained by adding 2.5 mM of DABCO to a catalyst suspension prepared by stirring and mixing by air bubbling
  • Air0.2 to DMTU1 mM represents a catalyst suspension prepared by stirring and mixing by air bubbling.
  • DMTU represents a sample added with 1 mM
  • Air0.2 o-Phe1 mM (1% EtOH) represents a sample obtained by adding orthophenanthroline to a catalyst suspension prepared by stirring and mixing by bubbling air.
  • w / o Air0.2 represents a sample of the catalyst suspension prepared without bubbling
  • w / o Air0.2 Tiron2.5 mM represents the catalyst suspension prepared without bubbling
  • W / o Air0.2 Bipy1 mM represents a sample in which 1 mM of 2,2′-bipyridine was added to a catalyst suspension prepared without bubbling.
  • Air0.2 Dabco2.5mM represents a sample prepared by adding 2.5mM DABCO to a catalyst suspension prepared without bubbling
  • w / o Air0.2 DMTU1mM represents a catalyst suspension prepared without bubbling. Represents a sample added with 1 mM DMTU
  • w / o Air0.2 o-Phe1mM (1% EtOH) represents a sample obtained by adding orthophenanthroline to a catalyst suspension prepared without bubbling.
  • DMTU inhibits the generation of hydroxy radicals.
  • high concentrations of DMTU were used in this example, various intermediates of reactive oxygen species related to the generation of O 2 ⁇ may be removed.
  • CLA-CL integrated values of the samples “Air0.2 DMTU1 mM” and “w / o Air0.2 DMTU1 mM” to which DMTU was added were reduced.
  • Example 1 natural zeolite and ion-exchanged water were stirred and mixed by air bubbling for 2 days (48 hours) to prepare a catalyst suspension, and a sample filtered through a filter having an opening of 0.2 ⁇ m was prepared. Got ready. The filtered sample was aerated with oxygen (O 2 ), carbon dioxide (CO 2 ), and nitrogen (N 2 ) gas for 10 seconds, and then the CLA-CL integrated value (integrated time 3 minutes) for each sample. , Unit: rlu) was measured (FIG. 11). In the aeration treatment, the catalyst suspension filtered through a filter was stirred and mixed by bubbling oxygen, carbon dioxide, and nitrogen, respectively. The purity of oxygen (O 2 ), carbon dioxide (CO 2 ), and nitrogen (N 2 ) gases used for the aeration treatment is 99.9% or more.
  • “2 day bubbling” is a sample not subjected to aeration treatment
  • “2 day bubbling + O 2 10 sec” is a sample aerated with oxygen
  • “2 day bubbling + CO 2 10 sec” is a sample aerated with carbon dioxide
  • “2 day bubbling + N 2 10 sec” represents a sample that has been aerated with nitrogen.
  • the value of the sample “2 day bubbling + O 2 10 sec” aerated with oxygen is more significant (7-8) than the CLA-CL integrated value of the sample “2 day bubbling” that has not been aerated (7-8). Doubled). Therefore, by bubbling treatment of the catalyst suspension with oxygen, oxygen as compared with the case of unvented process, O 2 - generation amount was found that a possible greatly improve. Since it is considered that other active oxygen species are generated along with the generation of O 2 ⁇ , the amount of other active oxygen species produced (the amount of active oxygen species per unit volume) by oxygen aeration treatment is also aerated with oxygen. It is considered that the amount is significantly higher than the amount of the catalyst suspension before treatment (the amount of active oxygen species per unit volume).
  • the CLA-CL integrated value of the sample “2 day bubbling + CO 2 10 sec” aerated with carbon dioxide is small, and the O 2 ⁇ production activity is significantly inhibited by aeration treatment of the catalyst suspension with carbon dioxide. I understood it. This carbon component of the carbon dioxide from that used in the aeration process, O 2 catalyst suspension - believed to be the impact of reacted.
  • the amount of active oxygen species produced can be significantly increased (7 to 8 times) by aeration treatment with oxygen after the catalyst suspension is produced, so that active water rich in active oxygen species can be obtained.
  • active water, alcohol, and raw material hydrocarbon oil are mixed to produce an emulsion, and the emulsion is brought into contact with a gas containing carbon dioxide or an aqueous solution (carbonated water).
  • Carbon radical species are generated from carbon dioxide according to the amount of oxygen species, and the amount of hydrocarbon oil is increased according to the amount of carbon radical species produced. Note that the higher the concentration of carbon dioxide that is brought into contact with the emulsion, the more carbon dioxide molecules are present at the interface between the emulsion and the gas (or aqueous solution) containing carbon dioxide. It is considered that the number of carbon dioxide molecules that react with the active oxygen species increases, and as a result, the amount of carbon radical species generated also increases.
  • Example 1 natural zeolite and ion-exchanged water were stirred and mixed for 2 days (48 hours) to prepare a catalyst suspension, and samples filtered through filters with various openings were prepared.
  • the stirring and mixing was performed in two patterns: stirring and mixing by air bubbling and stirring and mixing by a stirrer regardless of bubbling.
  • the filter used for filtration used what has an opening of 0.2 micrometers, 5 micrometers, 10 micrometers, and 40 micrometers.
  • CLA-CL integrated value integrated time: 3 minutes, unit: rlu
  • the filter used in this example is a filter for syringes (Mirex Mille (registered trademark) for HPLC (Mirex LG / LH)) manufactured by Merck Millipore, with a filter having an opening of 0.2 ⁇ m, and has an opening of 5 ⁇ m, 10 ⁇ m, and 40 ⁇ m.
  • the filter is a nylon mesh (mesh cloth) filter.
  • a catalyst suspension prepared by stirring and mixing natural zeolite and ion-exchanged water for 2 days (48 hours) with air bubbling is used for various aperture filters. Then, the absorbance (turbidity) of light having a wavelength of 600 nm was measured in the air for each sample, and the difference in turbidity was examined (FIG. 13). As in the above, filters having a mesh size of 0.2 ⁇ m, 5 ⁇ m, 10 ⁇ m, and 40 ⁇ m were used.
  • “DDW” is a sample containing only ion-exchanged water
  • “Air0.2” is a sample obtained by filtering a catalyst suspension prepared by stirring and mixing by bubbling air with a filter having an opening of 0.2 ⁇ m
  • “Air5” is a sample obtained by filtering the catalyst suspension prepared by stirring and mixing by air bubbling with a filter having a mesh opening of 5 ⁇ m
  • “Air10” is filtering the catalyst suspension prepared by stirring and mixing by air bubbling through a filter having a mesh of 10 ⁇ m
  • the sample “Air40” represents a sample obtained by filtering a catalyst suspension prepared by stirring and mixing by bubbling air through a filter having an opening of 40 ⁇ m.
  • w / o ⁇ Air0.2 is a sample obtained by filtering a catalyst suspension prepared without bubbling with a filter having a mesh opening of 0.2 ⁇ m
  • “ w / o Air5 ” is prepared without bubbling.
  • “w / o Air10” is a sample obtained by filtering the prepared catalyst suspension through a filter having a mesh opening of 10 ⁇ m without bubbling
  • w / o Air40 Represents a sample obtained by filtering a catalyst suspension prepared without bubbling through a filter having an opening of 40 ⁇ m.
  • the largest integrated value of CLA-CL was the sample “Air0.2” that was stirred and mixed by bubbling air for two days and filtered through a filter with an opening of 0.2 ⁇ m. It was. Further, as shown in FIG. 13, the absorbance (suspension) of the sample filtered with a filter opening of 10 ⁇ m and 40 ⁇ m hardly changed. From this, it can be seen that the size of the natural zeolite used for the sample of this measurement is approximately 10 ⁇ m or less. Then, in FIG.
  • the samples “Air10” and “w / o Air10” filtered through 10 ⁇ m, and the samples “Air40” and “w / o Air40” filtered through a filter with 40 ⁇ m openings are not filtered. It can also be said to be a suspension.
  • the CLA-CL integrated values of the samples “Air0.2” and “Air5” are CLA-CL integrated values of the samples “Air10” and “Air40” which can be regarded as unfiltered catalyst suspensions. Further, the CLA-CL integrated value of the sample “Air0.2” was larger than the CLA-CL integrated value of the sample “Air5”. Similar results were obtained for samples “w / o Air0.2” to “w / o Air40” prepared without bubbling.
  • a filter having a small opening (preferably an opening of 10 ⁇ m or less, more preferably 0.2 ⁇ m or less) is used for a catalyst suspension prepared by stirring and mixing natural zeolite and ion-exchanged water. It has been found that the amount of active oxygen species in the catalyst suspension can be improved as the amount of filtration increases. In other words, the more natural zeolite with a smaller outer diameter (preferably the outer diameter is 10 ⁇ m or less, more preferably the outer diameter is 0.2 ⁇ m or less), the more active oxygen species in the catalyst suspension. It was found that can be improved. The reason for this is thought to be that zeolite or zeolite-like material having a particle size of a certain size (especially a size exceeding 10 ⁇ m) partially inhibits the reaction that generates active oxygen species in the catalyst suspension. It is done.
  • a sample was prepared by filtering a catalyst suspension prepared by stirring and mixing natural zeolite and ion-exchanged water for 2 days (48 hours) in the same manner as in Example 1 with a filter having an opening of 0.2 ⁇ m.
  • the stirring and mixing was performed in two patterns: stirring and mixing by air bubbling and stirring and mixing by a stirrer regardless of bubbling. Further, 50 ⁇ M of divalent iron ions (Fe 2+ ) or 50 ⁇ M of trivalent iron ions (Fe 3+ ) were added to the filtered samples, and the CLA-CL integrated value was measured for each (FIG. 14).
  • Air0.2 represents a sample obtained by filtering a catalyst suspension prepared by stirring and mixing by bubbling
  • Air0.2 (Fe 2+ ) 50 ⁇ M represents a catalyst prepared by stirring and mixing by air bubbling. The suspension is filtered and a sample to which 50 ⁇ M of divalent iron ions (Fe 2+ ) is added is represented.
  • Air0.2 (Fe 3+ ) 50 ⁇ M is a filtered catalyst suspension prepared by stirring and mixing by bubbling air.
  • 3 represents a sample to which 50 ⁇ M of trivalent iron ions (Fe 3+ ) is added.
  • w / o Air0.2 represents a sample obtained by filtering the prepared catalyst suspension without bubbling, and “w / o Air0.2 (Fe 2+ ) 50 ⁇ M” does not bubbling.
  • the sample is obtained by filtering the suspension and adding 50 ⁇ M of trivalent iron ions (Fe 3+ ).
  • an iron content removing section may be provided to remove iron ions from the active water generated in the aeration treatment tanks 12a and 12b.
  • At least one adjacent catalyst mixing tank among the catalyst mixing tanks 11a to 11d (or aeration with the catalyst mixing tank 11d).
  • An iron removal unit may be provided between the treatment tanks 12a and 12b to remove iron ions from the catalyst suspension before being sent to the aeration treatment tanks 12a and 12b.
  • an ion exchange resin or a reverse osmosis (RO) membrane may be used, or a device that is precipitated by a chelating agent or an oxidant and precipitated or filtered may be used.
  • a sample was prepared by filtering a catalyst suspension prepared by stirring and mixing natural zeolite and ion-exchanged water for 2 days (48 hours) with a filter having an opening of 0.2 ⁇ m.
  • the stirring and mixing was performed in two patterns: stirring and mixing by air bubbling and stirring and mixing by a stirrer regardless of bubbling. Further, 50 ⁇ M of monovalent copper ions (Cu + ) or 50 ⁇ M of divalent copper ions (Cu 2+ ) were added to the filtered samples, and CLA-CL integrated values were measured for each (FIG. 15).
  • Air0.2 represents a sample obtained by filtering the catalyst suspension prepared by stirring and mixing by air bubbling
  • Air0.2 (Cu + ) 50 ⁇ M was prepared by stirring and mixing by air bubbling. This represents a sample in which the catalyst suspension was filtered and monovalent copper ions (Cu + ) 50 ⁇ M were added.
  • Air0.2 (Cu 2+ ) 50 ⁇ M represents the catalyst suspension prepared by stirring and mixing by bubbling air. The sample which filtered and added 50 micromol of divalent copper ion (Cu2 + ) is represented.
  • w / o Air0.2 represents a sample obtained by filtering the prepared catalyst suspension without bubbling
  • “w / o Air0.2 (Cu + ) 50 ⁇ M” does not bubbling.
  • the prepared catalyst suspension is filtered and a sample to which 50 ⁇ M monovalent copper ion (Cu + ) is added is represented.
  • “W / o Air0.2 (Cu 2+ ) 50 ⁇ M” is a catalyst suspension prepared without bubbling.
  • the sample which filtered the liquid and added 50 micromol of bivalent copper ion (Cu2 + ) is represented.
  • the CLA-CL integrated values of the samples “Air0.2 (Cu + ) 50 ⁇ M” and “Air0.2 (Cu 2+ ) 50 ⁇ M” added with copper ions were not added with copper ions. There was no significant difference from the value of sample “Air0.2”.
  • the CLA-CL integrated values of the samples “w / o Air0.2 (Cu + ) 50 ⁇ M” and “w / o Air0.2 (Cu 2+ ) 50 ⁇ M” with copper ions added do not contain copper ions.
  • the value of the sample “w / o Air0.2” was not significantly different. Therefore, the effect of O 2 of copper ions - reduction of production activity (i.e.
  • the amount of active oxygen species has little, if adding metal ions to the reaction solution, rather than iron ions, copper ions is desirable I understood.
  • the active water generating device homogeneous mixing device, mixing device, oil mixing tank, stirrer, pulse filter, precision filter, and Newton separation tank shown in FIGS. It is preferable that the portion that comes into contact with the emulsified liquid, which is a mixed solution of active water, alcohol, and raw material hydrocarbon oil, be made of a copper member and not an iron member as much as possible.
  • the present invention can be used for increasing the amount of various hydrocarbon oils.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本発明は、二酸化炭素を用いた炭化水素油の増量方法及びその装置を提供することを目的とする。本発明の一態様は、ゼオライト又はゼオライト様物質と水とを空気のバブリングにより攪拌混合し、触媒懸濁液を生成するステップと、触媒懸濁液を酸素で通気処理し、活性水を生成するステップと、活性水、アルコール、及び炭化水素油の混合液を、二酸化炭素を含む気体又は水溶液に接触させるステップとを含む炭化水素油の増量方法、並びにその装置を提供する。

Description

炭化水素油の増量方法及びその装置
 この発明は、炭化水素油の増量方法及びその装置に関する。
 近年、二酸化炭素排出による地球温暖化問題が深刻化し、化石燃料の使用の増加は二酸化炭素の排出に拍車をかけることになる。
 燃料炭化水素の燃料効率を改善させる発明として、本発明者による特許文献1に記載されたものがある。特許文献1に開示された発明は、天然植物性複合酵素を水に混合して作成された酵素水を油と反応させて燃料油を製造する燃料製造方法及びその装置を提供する。特許文献1の発明において、天然植物性複合酵素を水に混合して作成された活性水を油と反応させ、酵素による原料油の加水分解反応により、反応した水も燃料として機能させている。このため、特許文献1の発明によって、燃料効率を向上させることができ、有害物質の発生を抑制することが容易であり、しかも安定している燃料油を製造することが可能となる。
 特許文献2には、水及び酵素を空気のバブリングにより攪拌混合して生成された活性水を、原料油及びメタノールと混合して乳化液を生成し、該乳化液を二酸化炭素に接触させることにより炭化水素油を増量する発明が開示されている。
特開2012-72199号公報 国際公開第2015/147322号公報
 高温高圧の条件や水素の添加を必要とすることなく二酸化炭素を含む気体又は液体を原料として常温常圧下で炭化水素油を増量する技術において、炭化水素油の炭素源の二酸化炭素の取り込みに寄与する活性酸素種を増加させ、炭化水素油をより効率よく増量する技術が求められている。
 本発明は、以下の態様の炭化水素油の増量方法及びその装置を提供する。
[1]ゼオライト又はゼオライト様物質と水とを空気のバブリングにより攪拌混合し、触媒懸濁液を生成するステップと、
 前記触媒懸濁液を酸素で通気処理し、活性水を生成するステップと、
 前記活性水、アルコール、及び炭化水素油の混合液を、二酸化炭素を含む気体又は水溶液に接触させるステップと
を含む炭化水素油の増量方法。
[2]前記活性水の単位体積あたりの活性酸素種の量は、前記触媒懸濁液の単位体積あたりの活性酸素種の量よりも多い、[1]に記載の炭化水素油の増量方法。
[3]ゼオライト又はゼオライト様物質と水とを空気のバブリングにより攪拌混合し、触媒懸濁液を生成する触媒混合槽と、
 前記触媒懸濁液を酸素で通気処理し、活性水を生成する通気処理槽と、
 前記活性水、アルコール、及び炭化水素油の混合液を、二酸化炭素を含む気体又は水溶液に接触させる油混合槽と
を備える炭化水素油の増量装置。
[4]前記活性水の単位体積あたりの活性酸素種の量は、前記触媒懸濁液の単位体積あたりの活性酸素種の量よりも多い、[3]に記載の炭化水素油の増量装置。
 本発明により、温暖化の原因の一つとされている二酸化炭素を原料として炭化水素油を一層効率よく増量することができる。
活性水を生成する活性水生成装置の構成図である。 均質混合装置の構成図である。 油混合槽の構成を示す構成図である。 攪拌器の構成を説明する説明図である。 攪拌器の内部を示す縦断面図である。 パルスフィルタと精密フィルタの構成を説明する説明図である。 ニュートン分離槽の縦断面図である。 別の実施例の攪拌器を示す縦断面図である。 一実施例のCLA-CLの測定結果を示すグラフである。 一実施例のCLA-CLの測定結果を示すグラフである。 一実施例のCLA-CLの測定結果を示すグラフである。 一実施例のCLA-CLの測定結果を示すグラフである。 一実施例の吸光度の測定結果を示すグラフである。 一実施例のCLA-CLの測定結果を示すグラフである。 一実施例のCLA-CLの測定結果を示すグラフである。
 本発明においては、まず、水とゼオライト又はゼオライト様物質とを攪拌混合して触媒懸濁液を準備し、該触媒懸濁液を酸素で通気処理して活性水を生成する。炭化水素油の炭素源である二酸化炭素から炭素ラジカル種の生成に寄与する活性酸素種の量は、触媒懸濁液中よりも酸素で通気処理後の活性水中の方が多い。そして、活性水、アルコール、及び原料の炭化水素油の混合溶液を二酸化炭素を含む気体又は水溶液(炭酸水)に接触させることにより、炭化水素油を増量する。
 ここで、ゼオライト又はゼオライト様物質の細孔内に含まれる金属は、触媒として働くことにより、空気又は酸素を活性化させ、水中に活性酸素種(ROS)を生成するのに寄与すると考えられる。活性酸素種には、スーパーオキシドアニオンラジカル(O )、ヒドロキシラジカル、過酸化水素(H)、及び一重項酸素のうちの少なくとも1種が含まれる。また、ゼオライト様物質として公知の合成ゼオライトを用いることができ、CDS-1(cylindrically double saw-edged zeolite)(例えば特開2004-339044号公報、特開2005-145773号公報)や、PLS-1(pentagonal-cylinder layered silicate)(例えば特開2008-162878号公報)等の合成ゼオライトを用いてもよい。
 また、天然ゼオライトとしては、ホウ沸石、モルデナイト、クリノプチロライト、ZSM-5等どのような種類のものを用いてもよく、好ましくはフェリエライト類(ferrierites)を用いるとよい。天然のフェリエライト類は、斜方晶系(Orthorhombic)な構造を有するカチオン性の鉱物であり、主要カチオン種がマグネシウム、ナトリウム、カリウムの場合、ferrierite-Mg, ferrierite-Na, ferrierite-Kなど称される。天然のフェリエライト類には、カルシウムやその他のミネラルがカチオンとして含まれる場合も多く、置換により任意のカチオンを実装することもできる。ここで、天然ゼオライトのフェリエライト類にはCO吸着能を示すものがあり(例えば、ナトリウム置換フェリライト)、CO濃縮に用いられている(下記参考文献1)。このようなCOの濃縮能を併せ持つ素材を上記のCO由来炭素ラジカル種の生成反応に利用することでより大きな効果が期待できる。
 (参考文献1)Pulido, A., Nachtigall, P., Zukal, A., Dominguez, I., and Cejka, J. (2009) Adsorption of CO2 on Sodium-Exchanged Ferrierites: The Bridged CO2Complexes Formed between Two Extraframework Cations. J. Phys. Chem. C, 2009, 113 (7), pp 2928-2935
 本発明の炭化水素油の増量方法は、(i) ゼオライト又はゼオライト様物質と水とを空気のバブリングにより攪拌混合し、触媒懸濁液を生成する工程;(ii) 触媒懸濁液を酸素で通気処理し、活性水を生成する工程;並びに(iii) 活性水、アルコール、及び原料の炭化水素油の混合液を二酸化炭素を含む気体又は水溶液(炭酸水)に接触させる工程を含む。
  本発明において、上記(i)から(iii)までの工程における反応式は、次式(1)及び(2)によって示される。
 CO2 + H2O + CnH2n+2 → Cn+1H2n+4+ 3/2O2  (1)
 CH3OH + CnH2n+2→ Cn+1H2n+4 + H2O   (2)
二酸化炭素が関与する上記式(1)及び(2)は、以下の連鎖反応で表現する。
 CO2 + 2H2O → CH3OH + 3/2O2  (3)
 例えば、上記(1)及び(2)に示す式の反応が常温常圧化でなされるようにするために、常温常圧下で24~72時間程度、水及びゼオライト(又はゼオライト様物質)を空気のバブリングにより攪拌混合して活性水を生成することが好ましい。ただし、原料の水の状態等により攪拌混合の時間を適宜変更しても構わない。ここで、空気のバブリングは、直径が数μm~数百μm程度の微小な空気の気泡を多量に発生させ、気泡により溶液を攪拌混合することである。なお、空気の代わりに、酸素を用いてもよい。
 本発明において、炭化水素油とは、炭化水素を主成分とし、常温常圧下(例えば温度15度及び1気圧)において液状を呈し、化学式CnH2n+2 又はCn+1H2n+4で示される物質である(鎖式飽和炭化水素)。nは、1~40であり、好ましくは1~20である。このような炭化水素油としては、重油、軽油(例えばn=10~20)、ガソリン(例えばn=4~10)、ナフサ、ケロシン(例えばn=10~15)、灯油(例えばn=9~15)などが挙げられるが、これらに限定されるものではない。
 本発明の一実施形態に係る炭化水素油の増量装置は、ゼオライト又はゼオライト様物質と水とから活性水を生成する活性水生成装置1と、該活性水、アルコール、及び原料の炭化水素油から燃料油を製造する燃料油製造装置2とを含む。
 図1は、本発明の一実施形態にかかる炭化水素油の増量に用いる活性水を生成する活性水生成装置1の概略構成図である。活性水生成装置1は、1つ又は複数の触媒混合槽11(11a~11d)、1つ又は複数の通気処理槽12(12a~12b)、安定化槽14、触媒混合槽11に空気を送り通気処理槽12に酸素を送り込むブロワーポンプ15、各槽間で液体を移動させるポンプP、及び液体の移動の際に不純物等を除去するフィルタFを備える。
 触媒混合槽11a~11dは、図示上下に2系統設けられており、両系統とも、触媒混合槽11a,11b,11c,11dの順にポンプPとフィルタFとで接続されている。なお、触媒混合槽11は、その数が1つであっても2つ以上であってもよいし、2系統ではなく1系統であっても2系統以上に分けて設けてもよい。また、通気処理槽12は、各系統で共通の1つであってもよいし、各系統ごとに設けてもよい。また、ブロワーポンプ15は、触媒混合槽11に空気を送り込むポンプと、通気処理槽12に酸素を送り込むポンプを別に備えていてもよい。
 触媒混合槽11では、水とゼオライト又はゼオライト様物質とが、所定の割合(例えば水1000リットル、ゼオライト500g等)で供給され、これらがブロワーポンプ15から供給される空気のバブリングによって、24~72時間攪拌混合される。また、触媒混合槽11において、酵素粉末(例えばEP-10)をさらに追加してもよい。水としては水道水を用いてもよいが、好ましくは軟水、イオン交換水、又は純水を用いる。
 水とゼオライト又はゼオライト様物質との比率は、水95%(重量比)に対してゼオライト又はゼオライト様物質5%(重量比)、好ましくは水99%(重量比)に対してゼオライト又はゼオライト様物質1%(重量比)、さらに好ましくは水99.95%(重量比)に対してゼオライト又はゼオライト様物質0.05%(重量比)とするとよい。
 また、触媒混合槽11に酵素を加える場合には、酵素は、動物由来であると植物由来であると微生物由来であるとを問わない。酵素は、リパーゼを主原料とすることが好ましく、リパーゼとセルラーゼで構成し、リパーゼを98%(重量比)、セルラーゼを2%(重量比)とすることがより好ましい。
 触媒混合槽11aにおける水とゼオライト又はゼオライト様物質との混合水(触媒懸濁液)は、一定時間経過後にポンプPによって次の触媒混合槽11bへ移動される。この移動の際、フィルタFで不純物が取り除かれる。そして、触媒混合槽11bでは、再度ブロワーポンプ15から供給される空気のバブリングによって攪拌混合される。これを触媒混合槽11dまで繰り返す。触媒混合槽11a~11dにおける攪拌時間の合計は24~72時間程度である。
 触媒混合槽11dで攪拌混合された触媒懸濁液は、通気処理槽12a、12bに送られる。通気処理槽12a、12bで触媒懸濁液は、ブロワーポンプ15から供給された酸素により数秒~数分間、好ましくは10~60秒間通気処理される。通気処理は、触媒懸濁液を酸素のバブリングにより攪拌混合する処理、又は酸素を触媒懸濁液中に通気しつつスターラーで攪拌混合する処理である。通気処理に用いる酸素濃度は、大気中の酸素濃度(約21%、210,000ppm)を超える濃度であって、90%以上、好ましくは99%以上、さらに好ましくは99.9%以上の濃度である。ここで、酸素で通気処理した触媒懸濁液を活性水と称する。
 なお、ブロワーポンプ15とは別に、通気処理槽12a、12bへ酸素を供給するポンプを活性水生成装置1に設けてもよい。また、触媒混合槽11dに酸素を供給する管を設け、触媒混合槽11dで触媒懸濁液を攪拌後に、そのまま通気処理槽12a、12bとして使用するようにしてもよい。
 通気処理槽12a、12bにおいて酸素で通気処理された触媒懸濁液(即ち、活性水)は安定化槽14に移され、安定化槽14にて活性水にアルコールが添加される。このアルコールは、例えばメタノールやエタノールとすることができ、メタノールを用いることが好ましい。このアルコールの配合率は、例えば活性水に対してメタノール5%~20%(重量比)程度とすることが好ましい。活性水に添加するアルコールの役目は、主に、水と油の混和を助ける役目と、炭化水素油増量の初期反応において消費される役目である。
 安定化槽14にてアルコールが添加された活性水は、安定化槽14からポンプPにより取り出される。その際、1つ又は複数のフィルタFによりさらに不純物やゼオライト又はゼオライト様物質が取り除かれる。取り出された活性水は、適宜の容器に移すか、あるいは、次の図2に示す燃料油製造装置2の活性水タンク22に貯留する。
 活性水生成装置1によって活性化された水(活性水)は、常温においても、反応工程において、原料油(炭化水素油)を加えたときに反応式(1)及び(2)の反応がなされるように活性化されている。また、詳細には後述するが、活性水中の活性酸素種の量は、酸素で通気処理を行うことにより、通気処理を行わない場合に比べて大きく増加する。
 図2は、燃料油製造装置2の構成図を示す。燃料油製造装置2は、原料の炭化水素油を貯留する油貯留部としての原料油タンク21、活性水を貯留する活性水貯留部としての活性水タンク22、1つ又は複数の油混合槽23、制御盤24、パルス付与部25、ニュートン分離槽26、分離タンク27、精密フィルタ部28、完成タンク29、および排液タンク30により構成されている。
 原料油タンク21は、原料となる油を貯留するタンクであり、貯留している原料の炭化水素油を必要量ずつ油混合槽23へパイプRを通じて注ぎ込む。原料の炭化水素油は、例えばA重油、B重油、C重油、軽油、灯油等とすることができる。
 活性水タンク22は、活性水生成装置1で精製した活性水を貯留するタンクであり、貯留している活性水を必要量ずつ油混合槽23へパイプRを通じて注ぎ込む。
 二酸化炭素供給部31は、気体の二酸化炭素又は二酸化炭素が溶けた水(炭酸水)を充填するボンベ又はタンクを備え、気体の二酸化炭素又は炭酸水を油混合槽23へ供給する。油混合槽23に供給される二酸化炭素の濃度は、大気中の二酸化炭素濃度(約0.03~0.04%、300~400ppm)を超える濃度であって、濃度が高ければ高いほど反応に使用される二酸化炭素が増えるためよい。例えば、二酸化炭素供給部31から供給される気体の二酸化炭素(又は炭酸水)の濃度は、90%以上であり、好ましくは99%以上、さらに好ましくは99.5%以上の濃度である。なお、二酸化炭素供給部31は、二酸化炭素を充填したボンベであってもよいし、発電所や製鉄所、石油プラント等の二酸化炭素の大規模発生源等で生じる燃焼ガスから二酸化炭素を回収する装置そのもの、又は当該装置で回収された二酸化炭素を供給する装置等であってもよい。
 油混合槽23は、原料油タンク21から供給された原料の炭化水素油及び活性水タンク22から供給された活性水を混合攪拌し、その混合液を二酸化炭素供給部31から供給された二酸化炭素を含む気体又は水溶液に接触させて、増量した炭化水素油(「燃料油」という。)を生成するタンクである。油混合槽23内では、主に活性水中の活性酸素種(O 、ヒドロキシラジカル、H、及び一重項酸素のうちの少なくとも1種を含む。)が二酸化炭素(並びに重炭酸イオン、炭酸イオン等、及び二酸化炭素由来イオン)と反応し炭素ラジカル種を生じさせ、炭素ラジカル種が原料の炭化水素油と反応し、炭化水素油の炭素鎖を伸長させると考えられる。
 油混合槽23に原料の炭化水素油と活性水との比率(重量比)は、原料の炭化水素油の種類によって適宜調整するとよく、例えば、A重油60%と活性水40%、軽油70%と活性水30%、あるいは、灯油70%と活性水30%といった比率にすることが好ましいが、原料の炭化水素油の性状により適意調整して構わない。また、油混合槽23への二酸化炭素の供給は、炭化水素油と活性水とが十分に攪拌混合され乳化した混合液となった後に行ってもよいし、炭化水素油と活性水とを攪拌混合中に二酸化炭素を供給し、二酸化炭素との反応がより早く進むようにしてもよい。
 制御盤24は、燃料油製造装置2の各部を制御する制御部であり、電力供給のON/OFFなどの各種制御を実行する。パルス付与部25は、油混合槽23で製造された燃料油に振動を与えて残渣物を取りやすくする。残渣物には、反応し切れなかった水や重油中の不純物等が含まれる。
 ニュートン分離槽26は、燃料油を貯留して重力によって残渣物を下方へ落とし、上方に残る燃料油を抽出する。
 分離タンク27は、燃料油からさらに残渣物を分離する。精密フィルタ部28は、燃料油からフィルタによって残渣物を取り除く。完成タンク29は、完成した燃料油を貯留する。排液タンク30は、パルス付与部25およびニュートン分離槽26で発生した残渣物を含む排液を貯留する。
 図3は、油混合槽23の構成を示す構成図である。油混合槽23は、略円筒形の攪拌空間40が設けられ、この攪拌空間40内に、攪拌器43(43L,43R)、及びポンプ44(44L,44R)が設けられている。攪拌器43では、図示左方の攪拌器43Lが攪拌空間40内の下方に設けられ、図示右方の攪拌器43Rが攪拌空間40内の上方に設けられており、それぞれが上下左右に分散配置されている。各攪拌器43は、ポンプ44(44L,44R)が接続されており、このポンプ44から原料の炭化水素油及び活性水、又はこれらの混合物が供給される。また、各撹拌器43には、通気管(又はポンプ)45が接続され、二酸化炭素供給部31から二酸化炭素(又は炭酸水)が撹拌器43内に供給される。
 ポンプ44Lは、吸入口41Lが上方に配置されたパイプが接続されており、ポンプ44Lが原料の炭化水素油及び活性水、又はこれらの混合物を攪拌器43Lへ送り出し、攪拌空間40内の燃の炭化水素油及び活性水、及び二酸化炭素(若しくは炭酸水)、又はこれらの混合物を略均等に循環させている。
 ポンプ44Rは、吸入口41Rが下方に配置されたパイプが接続されており、ポンプ44Lが原料の炭化水素油及び活性水、又はこれらの混合物を攪拌器43Lへ送り出すことによって、攪拌空間40内の原料の炭化水素油及び活性水、又はこれらの混合物などを略均等に循環させている。このポンプ44L,44Rは、いずれも30圧~40圧のポンプを用いることが好ましい。
 図4は、攪拌器43の構成を説明する説明図である。攪拌器43は、内部中空の金属製であり、略円筒形の頭部51と、その下に続く逆円錐形の胴部59と、その下の後端部60とで主に構成されている。頭部51の上面中央には、円筒形の中心軸53が設けられている。この中心軸53は、上下方向に貫通する流入孔53a(図5参照)が設けられており、この流入孔53aから原料の炭化水素油及び活性水、又はこれらの混合物が流入する。
 頭部51の側面の一部には、原料の炭化水素油及び活性水、又はこれらの混合物が流入する流入口57が設けられている。この流入口57は、外から内へ貫通する孔であり、円筒形の連結カバー55で周囲が囲繞されている。連結カバー55の内面にはネジ溝56が設けられており、ポンプ44と連結するパイプが取り付けられる構成になっている。
 また、流入口57の位置および連結カバー55の向きは、図4(B)のA-A断面図に示すように、攪拌器43の中心より偏心して内周へ向かって原料の炭化水素油、活性水、あるいは活性水と油の混合物が流入するように構成されている。これにより、流入口57のから流入した原料の炭化水素油等が、円筒形の中心軸53を軸にして効率よく回転する。
図5のB-B断面図に示すように、攪拌器43の内部には、内周に沿って複数のピン63が立設されている。この複数のピン63は、それぞれが交差しないように隙間を空けて配置されている。例えば、0.03mmのピンを、10mm程度の間隔を開けて55~80本設けるとよい。
 攪拌器43の後端部60には、排出孔61が設けられている。このように構成された攪拌器43は、油と活性水を効率よく攪拌して分解反応させることができる。詳述すると、流入口57から流入した原料の炭化水素油及び活性水、又はこれらの混合物は、中心軸53の周囲を回転しつ、排出孔61へ向かって回転半径が徐々に小さくなる竜巻状に移動する。その際、内部に設けられた複数のピン63によって攪拌される。また、竜巻状に回転することによって、中心軸53の下方付近に負圧が発生し、これによって流入孔53aから原料の炭化水素油及び活性水、又はこれらの混合物が流入する。すなわち、図3に示した攪拌器43Lは、吸入口41Lから吸入する主に油をポンプ44Lによって流入口57から取り込み、流入孔53aから主に活性水を取り込んで攪拌する。これと逆に攪拌器43Rは、吸入口41Rから吸入する主に活性水をポンプ44Rによって流入口57から取り込み、流入孔53aから主に油を取り込んで攪拌する。この攪拌器43により、強力な水圧の中で活性水と油を激突させて攪拌し、反応式(1)の反応を促進させることができる。 
 この攪拌器43を備えた油混合槽23にて所定時間(例えば15分~20分程度)攪拌すると、攪拌器43内で竜巻状に移動して攪拌されている油と酵素が300回から500回接触し、加水分解反応が促進されて分子構造が小さくなり、比重も軽くなる。
 図6(A)は、パルス付与部25に設けられるパルスフィルタ70の斜視図である。このパルスフィルタ70は、2つのラインミキサーの間に設けられ、格子状の間仕切り71の間に形成される孔に燃料油を通過させる。このパルス付与部25(特に間仕切り71)は、セラミック焼成体で形成されている。
 間仕切り71は、内部でスクリュー状に緩やかにねじれており、流入してきた燃料油を振動させ、反応を促進させる。これにより、不純物を取り除きやすい状態にすることができる。
 図6(B)は、精密フィルタ部28に設けられる精密フィルタ80の斜視図を示す。この精密フィルタ80は、メッシュ状の素材で形成された円筒形の筒部82の周囲に、中心から放射状に広がるフィルタ81が設けられている。このフィルタ81に対して外周から筒部82内へ向けて燃料油を通過させることで不純物を取り除くことができる。
 フィルタ81は放射状に設けられているため、図6(C)の一部拡大平面図に示すように、基部側81aから先端側81cまでの板状面81b全体で燃料油を通過させることができる。このため、基部側81aに不純物が蓄積してきて通過しづらくなっても、板状面81bで燃料油を問題なく通過させて不純物を取り除くことができる。
 図7は、本発明にかかる接触槽としてのニュートン分離槽26の縦断面図を示す。ニュートン分離槽26は、底部付近に設けられた傾斜板96と、その上方位置に交互に複数設けられた高位板92と低位板93とで主に構成され、前段に液体流入口91が、後段に液体排出口95が設けられている。高位板92は、下端と傾斜板96の間に空間が設けられており、燃料油が前後へ移動できるように構成されている。低位板93は、上端が高位板92より低く形成されており、貯留している燃料油の上部を溢れさせて隣の貯留部に移動させることができる。この低位板93は、下端部に可動板94が設けられており、この可動板94の下端が傾斜板96に接触するように構成されている。高位板92と低位板93は、この順で交互に並べて構成されており、傾斜板96の傾斜に合わせて下端が次々に短くなるように構成されている。
 この構成により、液体流入口91から第1貯留部90aに流入した燃料油は、不純物が下方へ蓄積して精製されるとともに、反応式(1)及び(2)により燃料油が生成されて、次の第2貯留部90bへあふれ出る。これを第1貯留部90aから第4貯留部位90dまで繰り返して綺麗になった燃料油は、液体排出口95から排出される。
 各貯留部90a~90dで沈殿した不純物は、傾斜板96に沿って下方へ移動する。この際、可動板94が開いて不純物が下方へ移動することを許容する。なお、この可動板94は、逆方向には開かないため、不純物が逆流することはない。
 傾斜板96に沿って下方へ移動した不純物は、回収開口部97からバルブ99aを介して回収部98へ移動し、この回収部98内に回収される。バルブ99aは、間欠的に開閉動作し、ある程度残渣が溜まれば開放して回収部98に回収し、閉鎖する。このとき、回収部98の上部付近に設けられた排気バルブ99cより排気される。回収部98に回収した不純物は、回収バルブ99bから取り出して廃棄等するとよい。
 なお、攪拌器43は、図8に示すように異なるタイプの攪拌器43Aを用いてもよい。この攪拌器43Aは、後端部60に排出孔が設けられていない。また、上述した実施例の中心軸53の代わりに中心パイプ54が設けられている。この中心パイプ54は、内部に中空部67を有する円筒形状を有しており、その上端67aが燃料油の排出口として機能する。このように構成された攪拌器43Aは、流入口57から流入した活性水と油を回転させ、回転半径を小さくしながら竜巻状に下方へ移動させ、中心パイプ54の下端から上端へ移動して上端から排出される。この攪拌器43Aも、上述した実施例の攪拌器43と同一の作用効果を奏することができる。
 以上に説明した活性水生成装置1、燃料油製造装置2及びニュートン分離槽26等を通じて、反応式(1)及び(2)による反応をなさしめ、燃料油を生成することができる。
 以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれら実施例に限定されるものではない。
[1]活性酸素種の定量的評価の方法
 ゼオライト又はゼオライト様物質と水とを空気のバブリングにより攪拌混合した触媒懸濁液を触媒として利用することで、原料の炭化水素油及びアルコールと混合した溶液中で活性酸素種の生成が継続的に起こり、該活性酸素種が二酸化炭素から炭素ラジカル種の生成を促し、該炭素ラジカル種が炭化水素油の増加に寄与していると考えられる。即ち、活性酸素種の生成が反応の律速段階の一つである。そこで、本実施例では、触媒懸濁液中で連続的に生成する活性酸素種を定量的に調べた。
 酵素水が触媒として働くことにより生成される活性酸素種の定量的評価には、一般的に植物由来酵素(下記参考文献2)や動物由来ペプチド(下記参考文献3)が触媒するスーパーオキシドアニオンラジカル(O )の生成反応や光触媒により生成するO (下記参考文献4及び5)を観察する方法である、ウミホタル由来ルシフェリンアナログ(CLA)の化学発光(CL)を利用する方法を採用した。CLA-CLの積算値は、O の生成量と相関(比例)しており、CLA-CLの積算値が大きいほど、O の生成量も多いと考えられる。
 (参考文献2)Kawano, T., Kawano, N., Hosoya, H. and Lapeyrie, F. (2001) Fungal auxin antagonist hypaphorine competitively inhibits indole-3-acetic acid-dependent superoxide generation by horseradish peroxidase. Biochemical and Biophysical Research Communications 288 (3): 546-551.
 (参考文献3)Kawano, T.  (2007) Prion-derived copper-binding peptide fragments catalyze the generation of superoxide anion in the presence of aromatic monoamines. International Journal of Biological Science 3 (1): 57-63.
 (参考文献4)Kagenishi, T., Yokawa, K., Lin, C., Tanaka, K., Tanaka, L. and Kawano, T. (2008) Chemiluminescent and bioluminescent analysis of plant cell responses to reactive oxygen species produced by newly developped water conditioning apparatus equipped with titania-coated photocatalystic fibers. In: Bioluminescence and Chemiluminescence, 2008 (Eds, Kricka, L.J., Stanley, P.E.), World Scientific Publishing Co. Pte. Ltd., Singapore. pp. 27-30.
 (参考文献5)Lin, C., Tanaka, K., Tanaka, L. and Kawano, T. (2008) Chemiluminescent and electron spin resonance spectroscopic measurements of reactive oxygen species generated in water treated with titania-coated photocatalytic fibers. In: Bioluminescence and Chemiluminescence, 2008 (Eds, Kricka, L.J., Stanley, P.E.), World Scientific Publishing Co. Pte. Ltd., Singapore. pp. 225-228.
 ここで、一般的に活性酸素種としてO のみが生成するとは考えにくく、O の生成とともに、O から派生する過酸化水素(H)やHから派生するヒドロキシラジカル等の他の活性酸素種も生成していると考えられる。そして、O の生成量が多ければ、他の活性酸素種の生成量も相関的に多く生成していると考えられる。そのため、O の生成量を基に、触媒懸濁液(又は活性水)中に生じる活性酸素種の生成量をある程度定量的に評価することができると考えられる。
 CLAの化学発光を利用する方法の具体的は、下記参考文献6に記載されている。当該方法におけるCLの検出には、ルミノメーターを利用した。なお、CLAは、O に特異的な化学発光プローブとされるが、わずかに一重項酸素()とも反応することが知られている。
 (参考文献6)Kawano, T., et al., (1998) Salicylic acid induces extracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco suspension culture: The earliest events in salicylic acid signal transduction. Plant and Cell Physiology 39 (7): 721-730.
 そこで、本実施例では天然ゼオライトとイオン交換水とを2日間(48時間)空気でバブリングして攪拌混合した触媒懸濁液を準備した。実施例1~5では、天然ゼオライトとして、フェリエライト類(ferrierites)の天然ゼオライトを主に含むものを用いた。該触媒懸濁液に、過酸化水素を除去するカタラーゼ(CAT)、O を除去するスーパーオキシドジスムターゼ(SOD)、およびの除去試薬である1,4-ジアザビシクロ[2.2.2]オクタン(1,2-diazabicyclo[2.2.2]octane:DABCO)を添加した試料をそれぞれ準備した。各試料についてCLAの化学発光(CLA-CL)の積算値(積算時間3分間、単位:rlu)を測定した(図9)。
 図9中、「2dayバブリング」は天然ゼオライトとイオン交換水とを2日間バブリングさせて混合した触媒懸濁液の試料を表し、「DDW」はイオン交換水のみの試料を表し、「4kU/ml CAT」は該触媒懸濁液にCATを4kU/ml添加した試料を表し、「20kU/ml CAT」は該触媒懸濁液にCATを20kU/ml添加した試料を表し、「5kU/ml SOD」は該触媒懸濁液にSODを5kU/ml添加した試料を表し、そして、「DABCO」は該触媒懸濁液にDABCOを添加した試料を表す。
 図9に示すように、「2dayバブリング」の試料のCLA-CL積算値は、イオン交換水のみの「DDW」の試料の値よりも4倍以上大きい値であった。このことから、天然ゼオライトとイオン交換水とを2日間バブリングさせて混合した触媒懸濁液中にO に代表される活性酸素種が生成していることがわかった。また、触媒懸濁液に過酸化水素を除去するCATを添加した試料「4kU/ml CAT」及び「20kU/ml CAT」並びにを除去するDABCOを添加した試料「DABCO」のCLA-CL積算値に比べ、O を除去するSODを添加した試料「5kU/ml SOD」のCLA-CL積算値が大きく減少したことから、当該方法が、O の定量的な評価に適していることがわかる。
 ここで、CLAは特にO に対して高い選択性を示すが、にたいしても反応することが知られている(下記参考文献7)。CLA-CLがO を特異的に検出していることを示すために、DABCOなどの除去試薬の利用が有効であり、が発生する系であればCLA-CLをDABCOを用いてクエンチすることができる(下記参考文献8)。したがって、図9に示すように、試料「2dayバブリング」のCLA-CL積算値と試料「DABCO」のCLA-CL積算値との間に大きな違いがなかったことから、観察されたCLA-CLはO に特異的であることが示唆されている。また、O の除去酵素SODを添加した試料「SOD」のCLA-CL積算値の結果からも、観察されたCLA-CLはO に特異的であることがわかる。また、過酸化水素(H)を除去するCATを添加した試料「4kU/ml CAT」及び「20kU/ml CAT」のCLA-CL積算値は、試料「2dayバブリング」のCLA-CL積算値とそれほど大きくは違わなかった。ただし、酵素濃度を高めた試料「20kU/ml CAT」の値の方が、試料「4kU/ml CAT」の値よりも小さかった。これらの結果から、O 生成の上流にHが必要ではないと考えられる。
 参考として、実際に植物の酵素(ペルオキシダーゼ)によるO 生成の場合には、HをO の前駆物質として(上流に)必要とするため、CATの添加によりCLA-CLが阻害されることが知られている(下記参考文献9)。しかし、このことは、O から派生してHおよびその下流のヒドロキシラジカルが生成することを否定しているものではない。
 (参考文献7)Nakano M, Sugioka K, Ushijima Y, Goto T. Chemiluminescence probe with Cypridina luciferin analog, 2-methyl-6-phenyl-3,7-dihydroimidazo [1,2-a] pyrazin-3-one, for estimating the ability of human granulocytes to generate O2-. Anal Biochem 1986; 159:363-9.
 (参考文献8)Yokawa K, Suzuki N, Kawano T. Ethanol-enhanced singlet oxygen-dependent chemiluminescence interferes with the monitoring of biochemical superoxide generation with a chemiluminescence probe, Cypridina luciferin analog. ITE Lett Batter New Technol Medic 2004; 5:49-52.
 (参考文献9)Kawano, T. and Muto, S. (2000) Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco suspension culture. Journal of Experimental Botany 51 (345): 685-693.
 そして、活性酸素種としてO の生成とともに他の活性酸素種も生成していると考えられるので、該他の活性酸素種も、O の生成量に相関的に生成していると考えられる。
[2]活性酸素種の生成に対するバブリングの影響
 本実施例では、触媒懸濁液を攪拌混合して生成する際の空気のバブリングの有無が、活性酸素種の生成に対してどのように影響するのかを調べた。
 まず、実施例1と同様に天然ゼオライトとイオン交換水とを2日間(48時間)攪拌混合させて触媒懸濁液の試料を準備した。該攪拌混合は、空気のバブリングによる攪拌混合と、バブリングによらずスターラーによる攪拌混合の二種類のパターンで行った。また、空気のバブリングにより準備した触媒懸濁液及びバブリングをせずに準備した触媒懸濁液それぞれに対して、O の除去試薬であるタイロン(Tiron)、ヒドロキシラジカルの除去試薬であるジメチルシオウレア(DMTU)、一重項酸素()の除去剤であるDABCO(1,2-diazabicyclo[2.2.2]octane)並びに金属イオンのキレート剤である2,2'-ビピリジン(Bipy)及びオルトフェナントロリン(o-Phe)をそれぞれ添加した。各試料は、目開き(孔径)0.2μmのフィルタを用いて濾過した。そして、実施例1と同様に、各試料に対してCLAの化学発光の積算値(測定時間3分間、単位:rlu)を測定した(図10)。ここで、Bipy及びO-Pheは金属イオンのキレート剤であり、鉄イオン(とくにBipyは主に2価鉄イオン)や銅イオンを除去する。
 図10中、「Air0.2」は空気のバブリングによる攪拌混合で準備した触媒懸濁液の試料を表し、「Air0.2 Tiron2.5mM」は空気のバブリングによる攪拌混合で準備した触媒懸濁液にタイロン2.5mM添加した試料を表し、「Air0.2 Bipy1mM」は空気のバブリングによる攪拌混合で準備した触媒懸濁液に2,2'-ビピリジン1mM添加した試料を表し、「Air0.2 Dabco2.5mM」は空気のバブリングによる攪拌混合で準備した触媒懸濁液にDABCOを2.5mM添加した試料を表し、「Air0.2 DMTU1mM」は空気のバブリングによる攪拌混合で準備した触媒懸濁液にDMTUを1mM添加した試料を表し、そして「Air0.2 o-Phe1mM(1%EtOH)」は空気のバブリングによる攪拌混合で準備した触媒懸濁液にオルトフェナントロリンを添加した試料を表す。また、図10中、「w/o Air0.2」はバブリングせずに準備した触媒懸濁液の試料を表し、「w/o Air0.2 Tiron2.5mM」はバブリングせずに準備した触媒懸濁液にタイロン2.5mM添加した試料を表し、「w/o Air0.2 Bipy1mM」はバブリングせずに準備した触媒懸濁液に2,2'-ビピリジン1mM添加した試料を表し、「w/o Air0.2 Dabco2.5mM」はバブリングせずに準備した触媒懸濁液にDABCOを2.5mM添加した試料を表し、「w/o Air0.2 DMTU1mM」はバブリングせずに準備した触媒懸濁液にDMTUを1mM添加した試料を表し、そして、「w/o Air0.2 o-Phe1mM(1%EtOH)」はバブリングせずに準備した触媒懸濁液にオルトフェナントロリンを添加した試料を表す。
 図10に示すように、試料「Air0.2」のCLA-CL積算値が試料「w/o Air0.2」の値よりも大きいことから、空気のバブリングによる攪拌混合がO の生成を向上させることがわかった。同時に、空気のバブリングの攪拌混合によって、O の生成が向上するとともに、他の活性酸素種の生成も向上させると考えられるので、空気のバブリングによりに、O に加えてヒドロキシラジカル等の他の活性酸素種の生成量も向上する。
 また、図10に示すように、実施例1のSODとは異なるO の除去試薬であるタイロンを添加した試料「Air0.2 Tiron2.5mM」及び「w/o Air0.2 Tiron2.5mM」とヒドロキシラジカルの除去試薬であるDMTUを添加した試料「Air0.2 DMTU1mM」及び「w/o Air0.2 DMTU1mM」のCLA-CL積算値が比較的低いことがわかった。この結果から、実施例7と同様に触媒懸濁液中にO が生成されることについて更なる確証が得られるとともに、O 生成に至る触媒懸濁液が触媒する反応中でヒドロキシラジカルの生成が生じている可能性があることがわかった。なお、DMTUはヒドロキシラジカルの生成を阻害するものであるが、本実施例では高濃度のDMTUを用いたため、O の生成に関わる活性酸素種の様々な中間体が除去された可能性があり、その結果、DMTUを添加した試料「Air0.2 DMTU1mM」及び「w/o Air0.2 DMTU1mM」のCLA-CL積算値の値が小さくなったと考えられる。
[3]触媒懸濁液に対する酸素による通気処理の影響
 本実施例では、触媒懸濁液に対する酸素による通気処理の影響について調べた。
 まず、実施例1と同様に天然ゼオライトとイオン交換水とを2日間(48時間)空気のバブリングにより攪拌混合させて触媒懸濁液を準備し、目開き0.2μmのフィルタで濾過した試料を準備した。そして、該濾過した試料に酸素(O)、二酸化炭素(CO)、及び窒素(N)の気体をそれぞれ10秒間通気処理した後、各試料についてCLA-CL積算値(積算時間3分間、単位:rlu)を測定した(図11)。該通気処理は、フィルタで濾過した触媒懸濁液に対して、それぞれ酸素、二酸化炭素、及び窒素のバブリングによる攪拌混合を行った。通気処理に用いた酸素(O)、二酸化炭素(CO)、及び窒素(N)の気体の純度はいずれも99.9%以上のものである。
 図11中、「2dayバブリング」は通気処理を行っていない試料、「2dayバブリング+O10sec」は酸素で通気処理した試料、「2dayバブリング+CO10sec」は二酸化炭素で通気処理した試料、「2dayバブリング+N10sec」は窒素で通気処理した試料を表す。
 図11に示すように、通気処理を行っていない試料「2dayバブリング」のCLA-CL積算値に比べて、酸素で通気処理した試料「2dayバブリング+O10sec」の値が顕著(7~8倍程度)に向上した。このことから、触媒懸濁液を酸素で通気処理することで、酸素で通気処理しない場合に比べて、O の生成量を大幅に向上できることがわかった。O の生成とともに他の活性酸素種も生成していると考えられるので、酸素の通気処理により他の活性酸素種の生成量(単位体積あたりの活性酸素種の量)も、酸素で通気処理する前の触媒懸濁液における生成量(単位体積あたりの活性酸素種の量)よりも大幅に向上すると考えられる。
 なお、二酸化炭素で通気処理した試料「2dayバブリング+CO10sec」のCLA-CL積算値が小さく、触媒懸濁液を二酸化炭素で通気処理することでO 生成活性を大幅に阻害されることがわかった。これは、通気処理に用いた二酸化炭素由来の炭素成分が、触媒懸濁液中のO と反応したことによる影響であると考えられる。
 このように、触媒懸濁液を生成後に酸素で通気処理することによって、活性酸素種の生成量を顕著に(7~8倍に)増加させることができるため、活性酸素種の豊富な活性水を炭化水素油の増量のための触媒として用いることができる。
 そして、活性水、アルコール、及び原料の炭化水素油を混合して乳化液を生成し、該乳化液を二酸化炭素を含む気体又は水溶液(炭酸水)に接触させることで、該乳化液中の活性酸素種の量に応じて二酸化炭素から炭素ラジカル種が生成され、該炭素ラジカル種の生成量に応じて炭化水素油の増量が生じる。なお、該乳化液に接触させる二酸化炭素の濃度が高ければ高いほど、乳化液と二酸化炭素を含む気体(又は水溶液)との界面に存在する二酸化炭素分子の量が増えるため、該乳化液中の活性酸素種と反応する二酸化炭素分子の数が増え、その結果、炭素ラジカル種の生成量も増えると考えられる。
[4]触媒懸濁液に対する濾過の影響
 本実施例では、触媒懸濁液をフィルタで濾過する処理に用いるフィルタの目開きの大きさの影響について調べた。
 まず、実施例1と同様に天然ゼオライトとイオン交換水とを2日間(48時間)攪拌混合させて触媒懸濁液を準備し、様々な目開きのフィルタで濾過した試料を準備した。該攪拌混合は、空気のバブリングによる攪拌混合と、バブリングによらずスターラーによる攪拌混合の二種類のパターンで行った。また、濾過に用いたフィルタは、目開きが0.2μm、5μm、10μm、及び40μmであるものを用いた。そして、各濾過した触媒懸濁液の試料についてCLA-CL積算値(積算時間3分間、単位:rlu)の測定を行った(図12)。本実施例で用いたフィルタは、目開き0.2μmのフィルタがメルクミリポア製のシリンジ用フィルタ(HPLC用マイレクス(登録商標)(マイレクス LG/LH))であり、目開き5μm、10μm、及び40μmのフィルタは、ナイロンメッシュ(網状のクロス)フィルタである。
 また、最適な目開きのフィルタを決定するために、天然ゼオライトとイオン交換水とを2日間(48時間)空気のバブリングにより攪拌混合させて準備した触媒懸濁液を、様々な目開きのフィルタで濾過した後、各試料について空気中で波長600nmの光の吸光度(濁度)を測定し、濁度の違いを調べた(図13)。フィルタは、上記と同様、目開きが0.2μm、5μm、10μm、及び40μmのものを用いた。
 図12中、「DDW」はイオン交換水のみの試料、「Air0.2」は空気のバブリングによる攪拌混合で準備した触媒懸濁液を目開き0.2μmのフィルタで濾過した試料、「Air5」は空気のバブリングによる攪拌混合で準備した触媒懸濁液を目開き5μmのフィルタで濾過した試料、「Air10」は空気のバブリングによる攪拌混合で準備した触媒懸濁液を目開き10μmのフィルタで濾過した試料、「Air40」は空気のバブリングによる攪拌混合で準備した触媒懸濁液を目開き40μmのフィルタで濾過した試料を表す。また、図11中、「w/o Air0.2」はバブリングせずに準備した触媒懸濁液を目開き0.2μmのフィルタで濾過した試料、「w/o Air5」はバブリングせずに準備した触媒懸濁液を目開き5μmのフィルタで濾過した試料、「w/o Air10」はバブリングせずに準備した触媒懸濁液を目開き10μmのフィルタで濾過した試料、「w/o Air40」はバブリングせずに準備した触媒懸濁液を目開き40μmのフィルタで濾過した試料を表す。
 図12に示すように、最も大きいCLA-CL積算値を示したのは、二日間空気のバブリングによる攪拌混合処理を行い、目開き0.2μmのフィルタで濾過した試料「Air0.2」であった。また、図13に示すように、フィルタの目開きが10μm及び40μmで濾過した試料の吸光度(懸濁度)はほとんど変化しなかった。このことから、本測定の試料に用いた天然ゼオライトの大きさが概ね10μm以下であることがわかる。そうすると、図12において、10μmで濾過した試料「Air10」、「w/o Air10」、及び40μmの目開きのフィルタで濾過した試料「Air40」、「w/o Air40」は、濾過していない触媒懸濁液ともいえる。
 図12の説明に戻り、試料「Air0.2」及び「Air5」のCLA-CL積算値が、濾過していない触媒懸濁液とみなせる試料「Air10」、「Air40」のCLA-CL積算値よりも大きく、さらに、試料「Air0.2」のCLA-CL積算値が試料「Air5」のCLA-CL積算値よりも大きかった。バブリングを行わずに準備した試料「w/o Air0.2」~「w/o Air40」についても同様の結果であった。
 このことから、天然ゼオライトとイオン交換水とを攪拌混合して準備した触媒懸濁液に対して小さい目開きの(好ましくは目開きが10μm以下、さらに好ましくは0.2μm以下の)フィルタを用いて濾過するほど、触媒懸濁液中の活性酸素種の量を向上させることができることがわかった。さらに言い換えると、外径のより小さい(好ましくは外径が10μm以下、さらに好ましくは外径が0.2μm以下の)天然ゼオライトを使用すればするほど、触媒懸濁液中の活性酸素種の量を向上させることができることがわかった。この理由としては、あるサイズ(とりわけ10μmを超えるサイズ)の粒径を有するゼオライト又はゼオライト様物質が、触媒懸濁液中での活性酸素種を発生させる反応を一部阻害するためであると考えられる。
[5]触媒懸濁液中の金属イオンの影響
 本実施例では、触媒懸濁液が触媒する活性酸素種の生成反応に対する金属イオンの影響を調べた。
 まず、実施例1と同様に天然ゼオライトとイオン交換水とを2日間(48時間)攪拌混合させて準備した触媒懸濁液を、目開き0.2μmのフィルタで濾過した試料を準備した。該攪拌混合は、空気のバブリングによる攪拌混合と、バブリングによらずスターラーによる攪拌混合の二種類のパターンで行った。また、濾過した試料に、二価の鉄イオン(Fe2+)50μM又は三価の鉄イオン(Fe3+)50μMを添加し、それぞれについてCLA-CL積算値を測定した(図14)。
 図14中、「Air0.2」はバブリングによる攪拌混合で準備した触媒懸濁液を濾過した試料を表し、「Air0.2 (Fe2+)50μM」は空気のバブリングによる攪拌混合で準備した触媒懸濁液を濾過し二価の鉄イオン(Fe2+)50μMを添加した試料を表し、「Air0.2 (Fe3+)50μM」は空気のバブリングによる攪拌混合で準備した触媒懸濁液を濾過し三価の鉄イオン(Fe3+)50μMを添加した試料を表す。また、図13中、「w/o Air0.2」はバブリングせずに準備した触媒懸濁液を濾過した試料を表し、「w/o Air0.2 (Fe2+)50μM」はバブリングせずに準備した触媒懸濁液を濾過し二価の鉄イオン(Fe2+)50μMを添加した試料を表し、「w/o Air0.2 (Fe3+)50μM」はバブリングせずに準備した触媒懸濁液を濾過し三価の鉄イオン(Fe3+)50μMを添加した試料を表す。
 図14に示すように、鉄イオンを添加した試料「Air0.2 (Fe2+)50μM」、「Air0.2 (Fe3+)50μM」、「w/o Air0.2 (Fe2+)50μM」、及び「w/o Air0.2 (Fe3+)50μM」のCLA-CL積算値は、鉄イオンを添加しない試料「Air0.2」及び「w/o Air0.2」の値よりもいずれも小さかった。このことから、O 生成活性の低下を防ぐ又は低減するために、触媒懸濁液中から鉄成分を除去することにより、活性酸素種の量が低減するのを防ぐことができることがわかった。
 即ち、最終的に炭化水素油の増量に用いる活性水中に鉄イオンが含まれないようにしておくことにより、鉄イオンの存在による活性酸素種の量の低減を防ぐことができる。生成する活性水中の鉄イオンを除去するために、水としてイオン交換水や純水を用いてもよい。また、活性水中の鉄イオンを除去するために、活性水生成装置1中の通気処理槽12a、12bと安定化槽14との間に(又は安定化槽14と燃料油製造装置2との間の流路中に)鉄分除去部を設け、通気処理槽12a、12bで生成された活性水中から鉄イオンを除去するようにしてもよい。また、酸素で通気処理する前の触媒懸濁液中の鉄イオンを除去するために、触媒混合槽11a~11dのうち少なくとも1つの隣接する触媒混合槽の間に(又は触媒混合槽11dと通気処理槽12a、12bとの間に)、鉄分除去部を設け、通気処理槽12a、12bへ送られる前の触媒懸濁液中から鉄イオンを除去するようにしてもよい。鉄分除去部として、イオン交換樹脂若しくは逆浸透(RO)膜を用いてもよいし、又は、キレート剤や酸化剤で析出させて沈殿させ若しくは濾過することにより除去する装置を用いてもよい。
 次に、天然ゼオライトとイオン交換水とを2日間(48時間)攪拌混合して準備した触媒懸濁液を、目開き0.2μmのフィルタで濾過した試料を準備した。該攪拌混合は、空気のバブリングによる攪拌混合と、バブリングによらずスターラーによる攪拌混合の二種類のパターンで行った。また、濾過した試料に、一価の銅イオン(Cu)50μM又は二価の銅イオン(Cu2+)50μMを添加し、それぞれについてCLA-CL積算値を測定した(図15)。
 図15中、「Air0.2」は空気のバブリングによる攪拌混合で準備した触媒懸濁液を濾過した試料を表し、「Air0.2 (Cu+)50μM」は空気のバブリングによる攪拌混合で準備した触媒懸濁液を濾過し一価の銅イオン(Cu)50μMを添加した試料を表し、「Air0.2 (Cu2+)50μM」は空気のバブリングによる攪拌混合で準備した触媒懸濁液を濾過し二価の銅イオン(Cu2+)50μMを添加した試料を表す。また、図15中、「w/o Air0.2」はバブリングせずに準備した触媒懸濁液を濾過した試料を表し、「w/o Air0.2 (Cu+)50μM」はバブリングせずに準備した触媒懸濁液を濾過し一価の銅イオン(Cu)50μMを添加した試料を表し、「w/o Air0.2 (Cu2+)50μM」はバブリングせずに準備した触媒懸濁液を濾過し二価の銅イオン(Cu2+)50μMを添加した試料を表す。
 図15に示すように、銅イオンを添加した試料「Air0.2 (Cu+)50μM」及び「Air0.2 (Cu2+)50μM」のCLA-CL積算値は、銅イオンを添加しなかった試料「Air0.2」の値と大きな違いはなかった。また、銅イオンを添加した試料「w/o Air0.2 (Cu+)50μM」及び「w/o Air0.2 (Cu2+)50μM」のCLA-CL積算値は、銅イオンを添加しなかった試料「w/o Air0.2」の値と大きな違いはなかった。このことから、銅イオンの影響によるO 生成活性(即ち活性酸素種の量)の低減はほとんど無く、反応液に金属イオンを添加する場合には、鉄イオンではなく、銅イオンが望ましいことがわかった。また、図1~8に示す活性水生成装置、均質混合装置、混合装置、油混合槽、撹拌器、パルスフィルタ、精密フィルタ、及びニュートン分離槽等のうち、触媒懸濁液、活性水、並びに活性水、アルコール、及び原料炭化水素油との混合液である乳化液が触れる部分には、鉄製の部材をできるだけ使用せずに、もっぱら銅製の部材を使用して構成するようにするとよい。
 本発明は、様々な炭化水素油の増量に利用することができる。

Claims (4)

  1.  ゼオライト又はゼオライト様物質と水とを空気のバブリングにより攪拌混合し、触媒懸濁液を生成するステップと、
     前記触媒懸濁液を酸素で通気処理し、活性水を生成するステップと、
     前記活性水、アルコール、及び炭化水素油の混合液を、二酸化炭素を含む気体又は水溶液に接触させるステップと
    を含む炭化水素油の増量方法。
  2.  前記活性水の単位体積あたりの活性酸素種の量は、前記触媒懸濁液の単位体積あたりの活性酸素種の量よりも多い、請求項1に記載の方法。
  3.  ゼオライト又はゼオライト様物質と水とを空気のバブリングにより攪拌混合し、触媒懸濁液を生成する触媒混合槽と、
     前記触媒懸濁液を酸素で通気処理し、活性水を生成する通気処理槽と、
     前記活性水、アルコール、及び炭化水素油の混合液を、二酸化炭素を含む気体又は水溶液に接触させる油混合槽と
    を備える炭化水素油の増量装置。
  4.  前記活性水の単位体積あたりの活性酸素種の量は、前記触媒懸濁液の単位体積あたりの活性酸素種の量よりも多い、請求項3に記載の装置。
     
PCT/JP2015/083738 2015-12-01 2015-12-01 炭化水素油の増量方法及びその装置 WO2017094104A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083738 WO2017094104A1 (ja) 2015-12-01 2015-12-01 炭化水素油の増量方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083738 WO2017094104A1 (ja) 2015-12-01 2015-12-01 炭化水素油の増量方法及びその装置

Publications (1)

Publication Number Publication Date
WO2017094104A1 true WO2017094104A1 (ja) 2017-06-08

Family

ID=58796537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083738 WO2017094104A1 (ja) 2015-12-01 2015-12-01 炭化水素油の増量方法及びその装置

Country Status (1)

Country Link
WO (1) WO2017094104A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179708A (ja) * 1997-09-02 1999-03-23 Touin Gakuen 活性酸素発生装置
JP2008142647A (ja) * 2006-12-11 2008-06-26 K2R:Kk 機能水生成方法および機能水生成装置
WO2015014322A1 (zh) * 2013-08-02 2015-02-05 腾讯科技(深圳)有限公司 一种实现旋转浮窗的方法、装置和终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179708A (ja) * 1997-09-02 1999-03-23 Touin Gakuen 活性酸素発生装置
JP2008142647A (ja) * 2006-12-11 2008-06-26 K2R:Kk 機能水生成方法および機能水生成装置
WO2015014322A1 (zh) * 2013-08-02 2015-02-05 腾讯科技(深圳)有限公司 一种实现旋转浮窗的方法、装置和终端

Similar Documents

Publication Publication Date Title
JP5261124B2 (ja) ナノバブル含有液体製造装置及びナノバブル含有液体製造方法
TWI312339B (ja)
CN104529001B (zh) 高效去除废水中CODcr的催化臭氧氧化流化床反应器
CN102674641B (zh) 一种紫外光臭氧反应工艺及其装置
CN108557985A (zh) 一种臭氧催化氧化搅拌式反应器及污水处理方法
SG176420A1 (en) Photocatalytic reactor
CN107986379B (zh) 一种降解污水中全氟辛酸的处理方法及装置
CN101987764A (zh) 一种净化微污染水源水质的方法及处理装置
CN104787924A (zh) 一种应用臭氧催化氧化进行己内酰胺污水深度处理的方法
CN103979735B (zh) 一种难降解工业废水的处理工艺及装置
KR101120645B1 (ko) 기능성 복합 필터
JP6466918B2 (ja) 燃料炭化水素油の製造方法及び装置
CN109879505A (zh) 一种含次氯酸钠废水处理工艺
WO2017094104A1 (ja) 炭化水素油の増量方法及びその装置
WO2017094105A1 (ja) 炭化水素油の増量方法及びその装置
CN204607640U (zh) 一种臭氧-光波催化氧化反应器
WO2017094106A1 (ja) 炭化水素油の増量方法及びその装置
WO2017179656A1 (ja) 炭化水素油の増量方法、炭化水素油の製造方法、炭化水素油の増加量を推算する方法、炭化水素油の増加量を推算する方法を実行させるプログラム、及び、炭化水素油の増加量を推算する装置
CN107522362B (zh) 一种去除废水中矿物油的深度处理方法
CN205740486U (zh) 强力混合搅拌器及水净化系统
RU2453582C1 (ru) Комплексный реагент для очистки жидких и газообразных сред от сероводорода и меркаптанов со свойствами дезинфицирующего средства
CN103086575A (zh) 大蒜加工废水深度处理系统及方法
CN105541037A (zh) 一种去除工业废水中矿物油的深度处理系统
CN100450583C (zh) 具有分开的洗涤液槽的烟道气净化装置
CN203807275U (zh) 一种撬装不曝氧污水处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP