WO2017093588A1 - Sistema y método de caracterización distribuida de variaciones de índice de refracción de una fibra óptica - Google Patents

Sistema y método de caracterización distribuida de variaciones de índice de refracción de una fibra óptica Download PDF

Info

Publication number
WO2017093588A1
WO2017093588A1 PCT/ES2016/070851 ES2016070851W WO2017093588A1 WO 2017093588 A1 WO2017093588 A1 WO 2017093588A1 ES 2016070851 W ES2016070851 W ES 2016070851W WO 2017093588 A1 WO2017093588 A1 WO 2017093588A1
Authority
WO
WIPO (PCT)
Prior art keywords
profile
refractive index
fiber
pulsed
amplitude
Prior art date
Application number
PCT/ES2016/070851
Other languages
English (en)
French (fr)
Inventor
Andrés GARCÍA RUIZ
Juan PASTOR GRAELLS
Sonia MARTÍN LÓPEZ
Miguel González Herráez
Aitor Villafranca Velasco
Hugo Fidalgo MARTINS
Original Assignee
Universidad De Alcalá
Consejo Superior De Investigaciones Científicas (Csic)
Fiber Optics Consulting Services And Technologies, S.L. (Focus, S.L.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Alcalá, Consejo Superior De Investigaciones Científicas (Csic), Fiber Optics Consulting Services And Technologies, S.L. (Focus, S.L.) filed Critical Universidad De Alcalá
Publication of WO2017093588A1 publication Critical patent/WO2017093588A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre

Definitions

  • the present invention applies to the field of telecommunications and, in particular, to the industrial area of measurement and distributed characterization of optical fibers.
  • phase-sensitive time domain (OTDR , from English 'Optical Time Domain Reflectometry').
  • Phase sensitive OTDR schemes are based on the analysis of the scattered signal (from 'scattered') generated by Rayieigh scattering (from 'Rayieigh scattering') when propagated a light pulsed by a fiber under test.
  • the dispersion profile and / or fiber refractive index profile changes.
  • This information makes it possible to compare two states of the fiber and, therefore, to detect changes in temperature, deformations or vibrations along it, such as those generated by acoustic waves or intruders crossing a perimeter.
  • Each fiber state can be characterized after the analysis of the scattered signal generated by propagating a single pulse of pulsed light. This allows the detection of changes of state in the fiber quite fast, with a temporary resolution of the order of the frequency of sending pulses to the optical fiber. Said pulse sending frequency is in turn limited by the length of the fiber, typically being of the order of ⁇ 1 ms for 100km of fiber.
  • traditional phase-sensitive OTDR schemes do not allow quantifying the detected change, that is, they can detect that a change of temperature, but not measure the extent of such change.
  • phase sensitive OTDR systems described that take into account the phase of the dispersed signal have a higher level of complexity and a higher level of noise associated with errors in the measurement of fiber refractive index variations.
  • Systems based on the analysis in the time domain of the Brillouin dispersion (from English 'Brillouin Optical Time Domain Analysis - BOTDA') are also known in the prior art for the distributed characterization of a fiber refractive index variation.
  • optics typically associated with distributed temperature measurement. This is the case, for example, of the system described in WO 1998/027406 A1.
  • the main advantage of these methods over phase sensitive OTDRs is the possibility of making absolute temperature measurements along the fiber.
  • a discrete sweep is carried out at frequencies that typically requires an average of about 100-1000 signals dispersed by each of the frequencies of the sweep, which represents a significant increase in the sampling time of temperatures .
  • the resolution in temperatures is of the order of the degree Celsius, which may be insufficient in some demanding scenarios.
  • OFDR frequency domain
  • US 6,160,826 A1 OFDR technology
  • OFDR technology has a spatial resolution inversely proportional to the frequency scanning range of the laser, while the fiber length to be monitored is inversely proportional to the minimum frequency variation over which good linearity is guaranteed.
  • a higher spatial resolution implies a smaller range of optical fiber characterization.
  • the coherence length of the light source used must be greater than the order of fiber size. In this case, spatial resolutions of tens of micrometers have been achieved, but the sensing range is limited to a few hundred meters.
  • the present invention solves the problems mentioned by disclosing a system and a distributed measurement method of local variations of the refractive index of optical fibers, the local variations of the refractive index being measured between two states of the optical fiber by comparing two profiles of amplitude of the Rayleigh dispersion generated by pulses of light of instantaneous frequency variable in time and constant between pulses. That is, pulses with chirp, chirp being said constant between pulses.
  • a distributed characterization system of the local refractive index variations of an optical fiber comprising: - Emission means that generate at least two pulsed optical signals with the same instantaneous frequency profile, said instantaneous frequency profile being variable along the same pulse.
  • the variable instantaneous frequency profile comprises a linear increment ramp.
  • each pulsed optical signal comprises at least one pulse of mostly rectangular amplitude profile.
  • the emission means are further adapted to sequentially transmit at least two optical signals pulsed through a first end of the optical fiber, so that each pulsed optical signal characterizes a state of said fiber.
  • the receiving means are connected to the same end of the fiber as the emission means, for example, through an optical circulator.
  • a single intensity photodetector measures the amplitude profile of the backscattered optical signal, while the amplitude and instantaneous frequency profile of the pulsed optical signal are fixed parameters stored in a system memory, and therefore not measured directly.
  • a single coherent detector measures the amplitude profile of the backscattered optical signal and the amplitude and instantaneous frequency profile of the pulsed optical signal.
  • Light guidance means such as combiners, switches and / or optical delays are incorporated into the system to feed the pulsed optical signal and the backscattered optical signal into a coherent detector input without temporal overlap between both signals.
  • a coherent detector measures the amplitude and instantaneous frequency profile of the pulsed optical signal and an intensity photodetector measures the amplitude profile of the backscattered optical signal.
  • -Computer media that calculate the local variations of refractive index between different states of the optical fiber based on the amplitude profiles of the backscattered optical signal corresponding to each state of the fiber and the instantaneous frequency profile of the optical signals pulsed
  • the emission means of the system further comprise frequency stabilization means that reduce the frequency drifts of the pulsed optical signal and minimize the error of the measurement of local fiber refractive index variations.
  • the broadcasting means of the system additionally comprise tuning means that dynamically modify the pulse length and the slope of the instantaneous frequency profile of the pulsed optical signals, allowing the spatial resolution, sensitivity to local refractive index variations to be varied. of the fiber, and the system error.
  • the system further comprises distributed amplification means, such as Raman amplification, which amplifies the pulsed optical signal within the optical fiber. Since the maximum measurement distance is limited by the power of the propagated pulses, this configuration allows to characterize longer fiber lengths.
  • distributed amplification means such as Raman amplification
  • the computing means are adapted to enter in the calculation of the local variations of refractive index of the fiber under test calibration information provided by the local refractive index variations of a calibration optical fiber.
  • This option allows to distinguish between local variations of fiber refractive index and variations and / or noise in the amplitude and instantaneous frequency profiles of the pulsed optical signal, thus reducing measurement errors.
  • the emission means of the system further comprise polarization control means for controlling the polarization state of the pulsed optical signals.
  • the control means of polarization determine the state of polarization of the light (that is, choose if the light is depolarized, linearly polarized and on which axis, etc.) to optimize the system according to the intended measure and the characteristics of the fiber under test, reducing errors .
  • the polarization control means generates pulses with orthogonal polarizations to perform birefringence measurements or local variations of fiber refractive index in different polarization axes.
  • the polarization control means simultaneously generate two pulses of orthogonal polarizations, said pulses being inconsistent with each other, also allowing birefringence measurements or local variations of refractive index of the fiber in different polarization axes.
  • the system may comprise specific optical components to maintain the polarization state of the light, such as polarization maintaining optical circulators. Note that no element of polarization discrimination in reception is necessary.
  • the birefringence measurement is carried out through the comparison of two auxiliary measures for two orthogonal polarization axes, each auxiliary measurement being performed by correlation of intensity profiles of the reflected signals as described for any other measurement of local variations of system refractive index.
  • the computing means perform additional measures of distributed characterization of the optical fiber based on the backscattered light generated by Rayleigh dispersion by propagating high coherence pulses in a fiber under test, such as, for example, the distributed monitoring of vibrations along the fiber for a phase sensitive OTDR.
  • the computing means can also be configured to correct said additional measures using the local variation information of refractive index measured by the system itself. Additional measures may be associated with any state of the art distributed sensing technique that requires the measurement of backscattered light amplitude profiles, and may or may not require instantaneous frequency information of the signals involved.
  • a distributed measurement method of local variations of the refractive index of an optical fiber comprising:
  • each pulsed optical signal can be formed by a single pulse or comprise a plurality of pulses.
  • the measurements made by the method of the invention are relative measurements between at least two states of the fiber, therefore requiring a minimum of two consecutive pulsed optical signals, but may extend to any larger number of pulsed optical signals.
  • the method may comprise either measuring the amplitude and instantaneous frequency profiles of the pulsed optical signal by means of a coherent detector, or using the amplitude and instantaneous frequency profiles of the known pulsed optical signal.
  • the method can be implemented by obtaining the amplitude profile of the backscattered optical signal corresponding to each state of the fiber with a single pulse, the method preferably comprises obtaining the amplitude profile of the backscattered optical signal corresponding to each state of the fiber averaging multiple pulses, to improve the signal to noise ratio.
  • the step of calculating the local variations of fiber refractive index comprises: -Calculating a local correlation between the amplitude profiles of the backscattered optical signals corresponding to different states of the fiber, thus obtaining a local displacement profile between said Profiles
  • the method further comprises storing multiple amplitude profiles of the backscattered optical signals and optimizing a selection of profiles to be compared based on the speed of the local variations of the refractive index and the acquisition speed of the amplitude profiles.
  • a computer program comprising the computer program code necessary to implement the method of the second aspect of the invention, when a specific integrated circuit is executed in a digital signal processor of the application, a microprocessor, a microcontroller or any other form of programmable hardware. Note that any preferred option and particular implementation of the device of the invention can be applied to the method and computer program of the invention, and vice versa.
  • a measure of local variations of refractive index of the fiber of high spatial resolution, high sensitivity and high speed is provided.
  • the resolution and sensitivity are also controllable by changing the pulse length and the slope of the instantaneous frequency profile of the pulsed optical signal.
  • the measuring range that is to say the characteristic fiber optic distances, is limited only by the intensity of the pulsed optical signal, allowing the incorporation of distributed amplification systems.
  • the optical fiber under test is characterized continuously, allowing the measurement of local variations of Refractive index with respect to an initial state of the fiber over time and the results can be provided in real time. Additionally, any known measurement can be made in the state of the art based on backscattering of pulsed optical signals, said measurement being also corrected using the refractive index variation information obtained.
  • Figure 1 shows a diagram showing the main components of a preferred embodiment of the system of the invention, as well as the optical fiber on which said system is applied.
  • Figure 2 shows a diagram showing the amplitude and instantaneous frequency profiles of an example pulsed signal used by a particular implementation of the invention.
  • Figures 3a and 3b exemplify the convolution between a pulse of the pulsed optical signal and two sections of the optical fiber by means of a diagram of the optical fiber and graphics.
  • Figure 4 shows a series of graphs showing the principle of system operation, illustrating a local displacement of the amplitude profile of the backscattered optical signal corresponding to a local variation of the refractive index.
  • Figure 5 shows a diagram in greater detail a particular implementation of the tunable coherent laser continuous source incorporating frequency stabilization.
  • Figure 6 presents a diagram showing an alternative embodiment of the system of the invention incorporating distributed amplification to increase the characterization distance.
  • Figure 7 exemplifies a more alternative embodiment of the system of the invention that includes a fiber section whose local variations of refractive index are known.
  • Figure 8 presents an even more alternative embodiment of the system of the invention incorporating means for controlling the polarization state of the pulsed optical signal.
  • Figure 9 shows an even more alternative embodiment of the system of the invention of the invention incorporating computing means that allow any measurement known in the state of the art to be performed with a phase-sensitive OTDR.
  • Figure 10 represents a particular application of the embodiment in Figure 9, which allows measuring disturbances, such as vibrations, by compensating the noise introduced by the frequency drifts of the pulsed optical signal and / or local variations of refractive index of the fiber.
  • Figure 11 represents a particular implementation of the invention using pulses of variable optical intensity for distributed measurement of nonlinear refractive index.
  • Figure 12 represents a particular embodiment of the system of the invention with a single coherent detector for measuring both the pulsed signal and the backscattered optical signal.
  • Figure 13 represents a particular embodiment of the system of the invention with a coherent detector for measuring the pulsed optical signal and an intensity photodetector for measuring the backscattered optical signal.
  • FIG. 1 shows the main components of a first particular implementation of the system (1) of the invention, which implements the steps of a particular embodiment of the method of the invention.
  • the system (1) comprises emission means (3) that generate high coherence pulsed optical signals (9), each pulsed optical signal (9) comprising one or more pulses (91) with a rectangular amplitude profile and a frequency profile instantaneous (92) linear slope and center frequency v 0 known.
  • the emission means (3) comprise a coherent tunable laser continuous source (31), external modulation means (32) that convert the continuous light into pulsed light, and power control means (33) that adapt the optical output power to the desired measurement range, avoiding nonlinearities.
  • the tunable coherent laser continuous source (31) can be constituted by a laser controlled by a current and temperature controller, which determines its center frequency v 0 , and to which a radiofrequency voltage is also applied, which allows continuous sweeps and repetitive in frequency around v 0 , with controllable slopes.
  • a specific part of the signal emitted by said source can be chosen.
  • the slope of the instantaneous frequency of pulses of pulsed optical signals (9) the sensitivity to local variations of the refractive index of the optical fiber (2) can be adjusted, and by adjusting the pulse length the resolution can be adjusted system space.
  • the power control means (33) may comprise an optical amplifier, such as an amplifier doped with erbium followed by an optical filter centered on the central wavelength of the pulse spectrum, such as a wavelength division multiplexer (WDM) or a Bragg network based filter (FBG, from English 'Fiber Bragg Grating') working on reflection, followed by a variable optical attenuator.
  • the filter transmission band allows the pulse spectrum to pass by filtering the noise introduced by the amplifier and the variable optical attenuator allows the optical output power to be adjusted.
  • WDM wavelength division multiplexer
  • FBG Bragg network based filter
  • Pulsed optical signals (9) comprising at least a first pulsed optical signal and a second pulsed optical signal, generated are introduced at a first end of the optical fiber (2).
  • the backscattered optical signals (10) are received by reception means (5) at the same first end of the optical fiber (2) used for transmission.
  • the reception means (5) comprise a three-port optical circulator (51) such that the pulsed optical signal (9) is received by the transmission means (3) at a first port and transmitted to the fiber optic (2) through a second port.
  • the backscattered optical signal (10) is received at the second port and transmitted to an intensity photodetector (7) through the third port of the optical circulator (51). Said intensity photodetector (7) measures the amplitude profile of the backscattered optical signal (10).
  • the reception means (5) can comprise any stage of signal conditioning and / or amplification (52).
  • the system also comprises computing means (8) that determine the local variations of the refractive index of the optical fiber (2) based on, at least, the instantaneous frequency profile (92) of the generated pulses (91) and the measured amplitude profiles of the backscattered optical signal (10).
  • the optical fiber (2) has a state to which a profile of local refractive index. Over time, the optical fiber (2) may change state due to P1 disturbances, generating the corresponding change in the local refractive index profile.
  • the computing means determine the local variations of the refractive index between the different states. The sensitivity of said determination depends on the slope of the instantaneous frequency of the pulsed optical signals (9), while the spatial resolution is typically of the same order of magnitude as the length of the pulses (91). The sensing range, that is, the distances characterized by the system, is limited only by the intensity of the backscattered optical signal (10).
  • the measurement noise can be reduced by averaging multiple measurements of the same state of the optical fiber (2) obtained under the same conditions (i.e., pulsed pulsed optical signal (9) equal and without altering the state of the optical fiber) .
  • FIG (2) shows in more detail the pulsed optical signals (9) generated by the emission means (3).
  • Each pulsed optical signal (9) comprises one more pulses (91) of length ⁇ ⁇ , separated by a duration ⁇ ⁇ .
  • Each pulse (91) has a rectangular amplitude profile and an instantaneous frequency profile (92) in the form of a ramp with a constant slope.
  • the center frequency and the slope that define the instantaneous frequency profile (92) are known, being typically stored in a memory accessible by computing means (8). It must be ensured that the coherence length of the tunable coherent light source (31) is greater than the pulse length.
  • the time between pulses ⁇ ⁇ must verify equation 1:
  • n is the average refractive index of the optical fiber (2) at the center frequency v 0 of the light source ( 31).
  • n (z) is typically considered negligible. This ensures that only the signal generated from a pulse is recovered from the fiber at the same time, thus avoiding the superposition of signals from different regions of the optical fiber (2).
  • N (z) is the index of local refraction of the fiber optic (2) in z the center frequency v 0 of the light source (31) Note that, if v 0 is far from the resonant frequencies of the optical fiber (2) and ⁇ is not excessively large, it can be considered negligible the dependence of n (z) on the frequency goes along the spectral content of a pulse of the pulsed optical signal (9).
  • E (f) results from contributions generated by the passage of an entire pulse of the pulsed optical signal (9), despite hardly having an integration along a fiber section of length T p * c / ( 2n).
  • the reception means (5) remain constant between measurements, the development is still valid for the signals measured at the input of the intensity photodetector (7).
  • FIGS 3a and 3b illustrate in detail that the contributions to E (t) reflected at different points of the optical fiber (2), are generated by different parts of a pulse (91), which therefore have different instantaneous frequency v .
  • E (t) is composed of the sum of the convolutions of r (z) of two sections of z ⁇ ⁇ z ' z 1 ⁇ z ' z 1
  • E (t + At) is composed of the sum of the convolutions of r (z) of two sections of different fiber and with p ar tes pulse of the optical signal down (9) with instantaneous frequencies or ⁇ [ ⁇ 4, ⁇ 2], [ ⁇ 2, ⁇ 1] reS p tl ec t e vamen
  • Figure (4) illustrates in detail the principle of measurement of local variations in the index of refraction of the fiber that is derived from the above description.
  • a variation of the local refractive index of the optical fiber (2), ⁇ ( ⁇ ) ⁇ ⁇ ( ⁇ ) + ⁇ ( ⁇ ) results in a temporary shift of the backscattered optical signal profile (10), E (t) ⁇ E (t + At), which is equivalent to a variation of the pulse center frequency of the pulsed optical signal (9), ⁇ 0 ⁇ ⁇ 0 + ⁇ .
  • the measurement error can be reduced using an adjustment function, such as a Gaussian one, to find the weighted maximum of the local correlation.
  • the value of T CO rr is of the order of ⁇ ⁇ , and can be optimized to reduce the measurement error and vary the spatial resolution.
  • the instantaneous frequency profile (92) of the pulse is chosen such that the expected local variations of the refractive index generate small ⁇ frequency variations in relation to the spectral content ⁇ of the pulses (91) (typically ⁇ / ⁇ ⁇ 0.1 ).
  • the system preferably minimizes the frequency drifts v r between pulses (91) so that they are small in relation to the spectral content ⁇ , since said drift v r is added to the calculated ⁇ .
  • An optimization of errors in the calculation of ⁇ ( ⁇ ) is achieved with said drift minimization.
  • the calculation resolution of the local displacement profile, A (f) is related to the bandwidth of the intensity photodetector (7) and the scanning means associated with said photodetector.
  • the sampling of the amplitude profile E (t) should be at least 50-100 times greater than 1 / ⁇ ⁇ .
  • the resolution of calculation of local variations of the refractive index is limited only by the calculation resolution of A (f) and the slope dv / dt, therefore providing great flexibility.
  • the present invention requires a single pulsed optical signal pulse to characterize a state of the fiber, allowing a quasi-continuous measurement: for example, for a fiber of 50km, the time between pulses ⁇ ⁇ (and therefore between measures of local variations of the index of refraction of the fiber ⁇ ), given by the equation. 1, can have a typical value of ⁇ 0.5ms.
  • the calculation of the local variations of the refractive index ⁇ ( ⁇ ) can also include the storage of the measured amplitude profiles.
  • a range of local variations of the fiber refractive index corresponds between amplitude profiles corresponding to sufficiently greater frequency variations that the minimum resolution of the measurement and sufficiently smaller than the spectral content ⁇ , such that the measurement is optimal. If after the comparison between two amplitude profiles it turns out that the refractive index variations are not optimal, the estimation (not optimal) of the refractive index variations obtained can be used to choose another pair of amplitude profiles to be compared. more favorable.
  • the selection of the pairs of profiles compared according to the speed of the local variations of the refractive index and the acquisition speed can be optimized manually or automatically, and the errors and the necessary computational cost can be reduced.
  • the calculation of the local variations of the refractive index can be performed with other profiles of amplitude and instantaneous frequency different from those described in this particular implementation, provided that different instants of the same pulse comprise different frequency components and said distribution is constant between pulses.
  • the pulses can present deviations in their amplitude and instantaneous frequency profile with respect to the ideal design forms due to limitations of the emission means (3).
  • the frequency ramp may have non-linear increments, or the pulse shape may not be perfectly rectangular.
  • the amplitude and instantaneous frequency profiles of the pulsed optical signal (9) are not measured directly. Said profiles are previously stored in the computing means (8) or in A system memory. Note that multiple amplitude and instantaneous frequency profile data from multiple configurations of the broadcast media (3) can be saved and selected. In addition, variations in such data stored with other factors, such as environmental factors, can be stored in memory and applied accordingly. The calculations made by the computing means (8) are the same regardless of whether the amplitude and instantaneous frequency profiles of the pulsed optical signal (9) are measured or simply recovered from memory.
  • FIG. 5 shows an implementation of the emission means (3) of the invention, in which the tunable coherent laser continuous source (31) comprises frequency stabilization means, thus reducing the frequency drifts and the measurement error of local variations of refractive index.
  • the frequency stabilization means sets the center frequency v 0 of a semiconductor laser (31 1) to an absorption line of a gas cell (313), using a divider (312) that divides the emitted signal by (31 1) and introduces a part into the gas cell (313).
  • a lock-in amplifier (314) acts as a feedback system and introduces current injections into the laser controller (31 1), which compensates for laser frequency drifts.
  • Figure 6 shows an alternative embodiment of the system of the invention, in which the sensing range is increased by distributed amplification, such as Raman amplification.
  • the sensing range is limited only by the intensity of the backscattered optical signal (10) and can therefore be extended using this proposal.
  • the system comprises a bidirectional distributed amplifier (1 1).
  • the first output of the distributed amplifier (1 1) is introduced at the first end of the optical fiber (2) with the optical signal pulsed (9) by a combiner (12), and the second output of the distributed amplifier (1 1) is introduced by the second end of the optical fiber (2).
  • any other distributed amplification technique known in the state of the art can be used, such as the combination of Raman and Brillouin amplification. Distances typically exceeding 100 km can be reached with this configuration.
  • Figure 7 shows a more alternative embodiment of the system of the invention, which it uses a first section (21) of the optical fiber (2) whose local variations of refractive index are known. Note that such local variations may be null in particular implementations.
  • the local variations of refractive index of the fiber optic section (21) are introduced or stored in the computing means (8), being used as a calibration reference.
  • the computing means (8) use the measurements of the first section (21) to correct the measurements of a second section (22) whose refractive index variations are unknown.
  • a distinction is thus made between local variations in the index of refraction of the optical fiber (2) and variations and / or noise in the amplitude and instantaneous frequency profiles of the pulses of the pulsed optical signal (9), reducing measurement errors.
  • the computing means (8) can also use an estimate of the average variation of the refractive index of the optical fiber (2) to compensate for errors introduced by the noise of the amplitude profiles and instantaneous frequency of the pulses (91), which typically occur at much smaller time scales.
  • Figure 8 an even more alternative embodiment of the system of the invention, comprising in the emission means (3), polarization control means (34).
  • the polarization control means may comprise a polarizer to generate linearly polarized light, or comprise a polarization switch to generate light in different polarization states.
  • the refractive index difference profile between the axes Orthogonal fiber ⁇ ⁇ ( ⁇ ) is calculated as:
  • the polarization control means (34) simultaneously generate two pulses with orthogonal polarizations and inconsistent with each other, thus generating a depolarized pulsed optical signal (9).
  • the calculation of the maximum of the local autocorrelation of the amplitude profile of the backscattered optical signal (10) will have three peaks, one placed at zero, and two symmetrically placed around zero, which allow to calculate the value of the refractive index difference local ⁇ ⁇ ( ⁇ ) between two orthogonal fiber axes (i.e. local birefringence) with a single pulse of pulsed optical signal (9).
  • the system may include specific optical components to maintain the state of polarization of light, such as an optical circulator maintaining polarization (512).
  • Figure 9 shows an even more alternative embodiment of the system of the invention system of the invention, in which the computing means (8) comprise a first computing module (81) to calculate the local variation of the fiber refractive index optics (2) and a second computing module (82) that performs additional measures of distributed characterization based on backscattered optical signal generated by Rayleigh scattering of high coherence pulsed light.
  • additional measures may comprise, for example, distributed monitoring of P2 vibrations along the optical fiber (2).
  • Said distributed vibration monitoring uses the amplitude profiles of the backscattered optical signal (10) that is already acquired to measure local variations of refractive index, so it does not imply the measurement of any additional signal or parameter.
  • the first module (81) and the second module (82) can act in parallel without interfering with the measurements of local variations of refractive index. Note also that if the additional measurement requires the recovery of the phase profile of the backscattered optical signal, the system may comprise a coherent detector (6) instead of the intensity photodetector (7).
  • Figure 10 shows a possible application of the implementation described in Figure 9, which combines measurement of local variations of refractive index and P2 vibration monitoring. This allows, for example, to minimize noise due to thermal drifts of the fiber or at the center frequency of the light source. That is, the system of the invention allows the following measurements to be made:
  • the fiber undergoes a P2 disturbance, such as a vibration, a fourth amplitude profile 10d is generated, with local variation of amplitude ⁇ . Subsequently, it returns to a state equal to the initial one, with a fifth amplitude profile 10e equal to the first amplitude profile 10a. If there are no variations in the local refractive index of the fiber or drifts of the central frequency of the light source, the local disturbance P2 can be measured by comparing the amplitude profiles corresponding to the different states of the fiber at the same point.
  • the corresponding amplitude profile i.e. the sixth amplitude profile 10f
  • the first disturbance P1 and the second disturbance P2 have different characteristics.
  • the first disturbance P1 translates into a change in the average refractive index profile of the optical fiber (2) along a length of fiber section of the order of the pulses of the pulsed optical signal (9), n ( z), without changing the fiber dispersion profile, described by a complex function, r (z), in equation (2).
  • the second disturbance P2 translates into a random change of the fiber dispersion profile, r (z), and with variations that can occur in lengths much shorter than the pulse length of the pulsed optical signal (9), without changing the refractive index profile of the optical fiber (2), n (z).
  • the seventh amplitude profile 10g will reflect a shape equal to that of the first amplitude profile 10a, but a temporary displacement ⁇ 5 associated with the variation in refractive index between both measures. While in a conventional vibration measurement system, this would be an error in the characterization of the vibration, the present invention allows the temporal displacements ⁇ 4 and ⁇ to be determined by correlation of the amplitude profiles in the first computation module (81). 5 , and use said information to compare equivalent points during the characterization of the vibrations.
  • the first module (81) of the computing means (8) determines the variation of the local refractive index of the first disturbance P1 by correlation of the amplitude profiles. Then, in said amplitude profiles, the temporal displacement associated with said refractive index variation is compensated. Finally, the second module uses the compensated amplitude profiles to characterize the second disturbance P2.
  • FIG. 1 1 exemplifies another possible particular implementation of the system in which the transmission means (3) generate pulses (91) of optical intensity l k and known variable.
  • a first pulse 91 which allows measuring a first amplitude profile 10a, and a second pulse 91b of different optical intensity, the propagation of which results in the measurement of an eighth amplitude profile 10h.
  • the eighth amplitude profile 10h has a delay ⁇ 6 caused by the change in intensity of the second pulse 91 b and by the local nonlinear refractive index of the optical fiber (2).
  • Figure 12 presents another implementation of the system and method of the invention in which the pulses of the pulsed optical signal (9) are not known a priori, but rather a coherent detector (6) is used to measure the amplitude profile and the instantaneous frequency profile (92) of the pulsed optical signal (9) and the amplitude profile of the backscattered optical signal (10).
  • the pulsed optical signal (9) emitted by the emission means (3) is divided by a first splitter (4) into two arms.
  • the first arm is inserted into the optical fiber (2), while the second arm is inserted into an optical combiner (14), which also receives the backscattered optical signal (10) and sends both signals to the coherent detector (6).
  • an optical delay 1 (3) is added between the splitter (4) and the optical circulator (51), which can be implemented, by example, with a single mode fiber.
  • the limitation in the repetition period of the ⁇ ⁇ pulses to ensure that there is no superposition of different signals in the coherent detector (6) will now be given by:
  • D is the delay induced by the optical delay (13). It should be noted that the computing means (8) handle any synchronization and adjustments necessary for the measurement of both signals, alternatively, with the same coherent detector (6).
  • the optical combiner (14) can be replaced by an optical switch, allowing both configurations with or without the optical delay (13).
  • the optical delay (13) can be implemented in other positions of the system reaching a similar effect, such as the path followed by the backscattered optical signal (10) within the system 1.
  • the optical delay (13) can be located between the optical circulator (51) and the optical combiner (14). It must be taken into account that the pulses (91) generated by the emission means (3) must not change during the characterization of the two or more states used to calculate the refractive index variation. Since said pulses (91) do not vary during that time interval, the optical switch can be programmed to transmit the pulsed optical signal (9) to the coherent detector (6) only once during all the time that the pulses (91) remain unchanged. .
  • Figure 13 presents a final implementation of the system of the invention in which the pulses (91) of the pulsed optical signal (9) are not known and a coherent detector (6) and an intensity photodetector (7) are used. to characterize the pulsed optical signal (9) and the backscattered optical signal (10), respectively.
  • the pulsed optical signal emitted by the means (3) is divided by a first splitter (4) into two arms. The first arm is inserted into the optical fiber (2), while the second arm is introduced to a coherent detector (6) that is used to measure the amplitude and instantaneous frequency profile of the pulsed optical signal (9).
  • the backscattered optical signal (10) is input to an intensity photodetector (7) that is used to measure the amplitude profile of the backscattered optical signal (10).
  • any feature or implementation presented for the emission means (3) and the computing means (8) is compatible with any particular implementation of the detection means (a single coherent detector for the pulsed optical signal and the backscattered optical signal, multiple detectors, a single detector combined with previously stored information, etc.).
  • measurements of local variations in refractive index of the fiber recovered by the invention can be used, for example, to implement distributed deformation, vibration, birefringence or temperature sensors. Any other use or applications of the measurement of local variations of fiber refractive index known in the state of the art can also be implemented with the system and method described.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Método y sistema que permiten caracterizar las variaciones locales del índice de refracción entre distintos estados de una fibra óptica por comparación de perfiles de amplitud de una pluralidad de señales ópticas retrodispersadas generadas mediante dispersión Rayleigh por una pluralidad de señales ópticas pulsadas al propagarse por dicha fibra óptica; comprendiendo dichas señales ópticas pulsadas un perfil de frecuencia instantánea variable en el tiempo y constante entre pulsos. La invención proporciona una caracterización de alta resolución espacial, sensibilidad y velocidad, necesitando un único pulso para caracterizar un estado de la fibra óptica en lugar de recurrir a barridos de frecuencia en múltiples pulsos.

Description

SISTEMA Y MÉTODO DE CARACTERIZACIÓN DISTRIBUIDA DE VARIACIONES DE ÍNDICE DE REFRACCIÓN DE UNA FIBRA ÓPTICA
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se aplica al campo de las telecomunicaciones y, en particular, al área industrial de la medición y caracterización distribuida de fibras ópticas.
ANTECEDENTES DE LA INVENCIÓN
La medida de variaciones locales del índice de refracción de una fibra óptica proporciona información útil para la caracterización distribuida de cambios en el estado en la fibra, así como para esquemas de sensado distribuido como la reflectometría en el dominio del tiempo sensible a la fase (OTDR, del inglés 'Optical Time Domain Reflectometry'). Los esquemas OTDR sensibles a la fase, como por ejemplo el que se describe en US 5,194,847 A, se basan en el análisis de la señal dispersada (del inglés 'scattered') generada por dispersión Rayieigh (del inglés 'Rayieigh scattering') al propagarse una luz pulsada por una fibra bajo test. Cuando se produce una perturbación en la fibra, el perfil de dispersión y/o perfil de índice de refracción de la fibra cambia. Esto afecta a las fases relativas de los campos reflejados por cada centro de dispersión y, por lo tanto, al perfil de la fase y la intensidad de la señal dispersada medida se ve modificado. Esta información permite comparar dos estados de la fibra y, por lo tanto, detectar cambios de temperatura, deformaciones o vibraciones a lo largo de ella, tales como los generados por ondas acústicas o intrusos traspasando un perímetro.
Cada estado de la fibra puede ser caracterizado tras el análisis de la señal dispersada generada al propagarse un único pulso de luz pulsada. Esto permite la detección de cambios de estado en la fibra bastante rápidos, con una resolución temporal del orden de la frecuencia de envío de pulsos a la fibra óptica. Dicha frecuencia de envío de pulsos está a su vez limitada por la longitud de la fibra, siendo típicamente del orden de ~1 ms para 100km de fibra. Sin embargo, los esquemas OTDR sensibles a la fase tradicionales no permiten cuantificar el cambio detectado, es decir, pueden detectar que se produce un cambio de temperatura, pero no medir la amplitud de dicho cambio.
Aunque los sistemas OTDR sensibles a la fase tradicionales están basados exclusivamente en la utilización de luz pulsada a una única frecuencia, existen técnicas recientes que permiten enviar pulsos de luz pulsada con frecuencias distintas. Es el caso del dispositivo de medición de variaciones de temperatura, índice de refracción y birrefringencia que se describe en US 2014/0185037 A1 , el cual incorpora una unidad de desplazamiento de frecuencia que permite hacer barrido discreto de frecuencias de los pulsos de la luz pulsada en un rango frecuencial y con un paso previamente definidos. Esto permite la cuantificación con alta resolución de cambios en la fibra, alcanzando una resolución en la medida de cambios de temperatura de hasta 0.01°C. La resolución de la medida está asociada al paso del barrido discreto de frecuencias, mientras el rango de la medida, es decir, la longitud de fibra caracterizada, está asociado al rango frecuencial del barrido discreto de frecuencias. Por lo tanto, una medida de alta resolución en un rango de medida largo requiere un barrido de numerosas frecuencias, con el consiguiente aumento del tiempo de medida. En consecuencia, cualquier cambio que ocurra en la fibra durante el tiempo necesario para realizar el barrido implicará un ruido añadido a la medida final. Además, las medidas de alta resolución necesitan típicamente promediar la señal dispersada correspondiente a cada frecuencia de pulso, lo cual también aumenta el tiempo de medida. Así pues, estos esquemas necesitan un tiempo de medida bastante superior a los esquemas que utilizan pulsos con una sola frecuencia y, por lo tanto, están más adaptados a medidas cuasi-estáticas, típicamente del orden de ~1 minuto. Adicionalmente, la incorporación de una unidad de desplazamiento de frecuencia aumenta también a complejidad del sistema. Los sistemas OTDR sensibles a la fase tradicionales se basan en la recuperación de exclusivamente la intensidad de la señal dispersada. Sin embargo, esquemas recientes consideran también la fase de la señal dispersada, permitiendo cuantificar la amplitud de los cambios en la fibra. Es el caso, por ejemplo, del dispositivo de detección de ondas acústicas que se describe en US 2014/0255023 A1 , que incorpora unidades de detección coherente para caracterizar la fase y la amplitud de la señal dispersada. No obstante, los métodos ya conocidos de recuperación de la fase de la señal dispersada, tales como separación l/Q (separación en fase y cuadratura), proporcionan una resolución temporal limitada. Dichos métodos se basan en la división de la señal de interés en varios componentes y la introducción de una diferencia de camino óptico (τ) entre dichas componentes divididas antes de volver a recombinarse. La resolución temporal del perfil de variación de fase recuperado queda determinada por la diferencia de camino óptico introducido entre las componentes divididas de la señal. En consecuencia, esta técnica es únicamente adecuada para una predeterminada forma de pulso y resolución espacial. Además, cualquier variación en la diferencia de camino óptico inducida se añade a la fase recuperada, introduciendo así un error. Por esta razón, la diferencia de camino óptico debe de ser controlada con una precisión inferior a la longitud de onda de la frecuencia óptica usada (típicamente alrededor de 1 micrómetro). Estos métodos de recuperación de fase son por lo tanto sensibles a cambios ambientales.
A este problema se suma que los métodos interferométricos de medida de fase y amplitud desarrollados para la medida de perfiles de señal arbitrarios requieren el uso de un oscilador local con una sincronización muy precisa. Esto implica una mayor complejidad de diseño y control, así como un ruido añadido como resultado del ruido de fase del oscilador local. Así pues, los sistemas OTDR sensibles a la fase descritos que tienen en cuenta la fase de la señal dispersada llevan asociados un mayor nivel de complejidad y un mayor nivel de ruido que introduce errores en la medida de variaciones de índice de refracción de la fibra. Son también conocidos en el estado de la técnica sistemas basados en el análisis en el dominio del tiempo de la dispersión de Brillouin (del inglés 'Brillouin Optical Time Domain Analysis — BOTDA') para la caracterización distribuida de variación de índice de refracción de una fibra óptica, típicamente asociados a la medición distribuida de temperatura. Es el caso, por ejemplo, del sistema descrito en WO 1998/027406 A1. La principal ventaja de estos métodos frente a los OTDR sensibles a fase es la posibilidad de realizar medidas absolutas de temperatura a lo largo de la fibra. Por otro lado, en este caso, se realiza un barrido discreto en frecuencias que requiere típicamente un promediado de unas 100-1000 señales dispersadas por cada una de las frecuencias del barrido, lo cual supone un importante incremento en el tiempo de muestreo de las temperaturas. Además, la resolución en temperaturas es del orden del grado centígrado, que puede resultar insuficiente en algunos escenarios exigentes.
Recientemente, se han desarrollado técnicas BOTDA que permiten la caracterización distribuida de deformaciones en una fibra óptica sin barridos discretos en frecuencia. Es el caso del dispositivo de medición de deformaciones dinámicas que se describe en US 2013/0308682 A1. Sin embargo, estos sistemas permiten la caracterización de un rango de deformaciones específico y limitado. Además el promedio de la señal dispersada de la fibra sigue siendo necesario, lo cual limita la resolución temporal del sistema.
Finalmente, existen sistemas basados en reflectometría óptica en el dominio de la frecuencia (OFDR, del inglés 'Optical Frequency Domain Reflectometry') que permiten la recuperación de información de la fibra con alta resolución espacial. Tal es el caso, por ejemplo, del dispositivo de obtención de información espacial de una fibra descrito en US 6,160,826 A1. La tecnología OFDR presenta una resolución espacial inversamente proporcional al rango de barrido de frecuencias del láser, mientras que la longitud de fibra a monitorizar es inversamente proporcional a la variación mínima de frecuencia sobre la cual se garantiza buena linealidad. Dada la dificultad de mantener una buena linealidad para variaciones pequeñas de frecuencia en un amplio rango de barrido de frecuencias, una mayor resolución espacial implica una caracterización de fibra óptica de menor alcance. Además, dada la necesidad de batir la señal recibida de la fibra con un oscilador local, la longitud de coherencia de la fuente de luz utilizada tiene que ser mayor que el orden del tamaño de la fibra. En este caso, han sido alcanzadas resoluciones espaciales de decenas de micrómetros, pero el rango de sensado está limitado a unos pocos centenares de metros.
Por lo tanto, todavía existe la necesidad en el estado del arte de una técnica de caracterización distribuida de fibra óptica capaz de medir variaciones del índice de refracción en un rango de medida largo y con alta resolución temporal. Adicionalmente, se requiere flexibilidad de resolución espacial, flexibilidad en el rango de amplitud de las variaciones del índice de refracción, baja complejidad, alta sensibilidad y reducido impacto de los cambios ambientales.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención soluciona los problemas mencionados al divulgar un sistema y un método de medición distribuida de variaciones locales del índice de refracción de fibras ópticas, siendo las variaciones locales del índice de refracción medidas entre dos estados de la fibra óptica mediante comparación de dos perfiles de amplitud de la dispersión Rayleigh generados por pulsos de luz de frecuencia instantánea variable en el tiempo y constante entre pulsos. Es decir, pulsos con chirp, siendo dicho chirp constante entre pulsos.
En un primer aspecto de la invención, se presenta un sistema de caracterización distribuida de las variaciones locales de índice de refracción de una fibra óptica que comprende: -Medios de emisión que generan al menos dos señales ópticas pulsadas con un mismo perfil de frecuencia instantánea, siendo dicho perfil de frecuencia instantánea variable a lo largo de un mismo pulso. Preferentemente, el perfil de frecuencia instantánea variable comprende una rampa de incremento lineal. También preferentemente, cada señal óptica pulsada comprende al menos un pulso de perfil de amplitud mayormente rectangular. Los medios de emisión están además adaptados para transmitir secuencialmente al menos dos señales ópticas pulsadas a través de un primer extremo de la fibra óptica, de modo que cada señal óptica pulsada caracteriza un estado de dicha fibra.
-Medios de recepción que reciben las señales ópticas retrodispersadas generadas por dispersión Rayleigh al propagarse las señales ópticas pulsadas por la fibra óptica. Los medios de recepción están conectados al mismo extremo de la fibra que los medios de emisión, por ejemplo, a través de un circulador óptico.
-Medios de detección que miden, al menos, el perfil de amplitud de las señales ópticas retrodispersadas. En una primera opción preferente, un único fotodetector de intensidad mide el perfil de amplitud de la señal óptica retrodispersada, mientras que el perfil de amplitud y frecuencia instantánea de la señal óptica pulsada son parámetros fijos almacenados en una memoria del sistema, y por lo tanto no medidos directamente. En una segunda opción preferente, un único detector coherente mide el perfil de amplitud de la señal óptica retrodispersada y el perfil de amplitud y frecuencia instantánea de la señal óptica pulsada. Medios de guiado de luz, tales como combinadores, conmutadores y/o retardos ópticos son incorporados al sistema para alimentar la señal óptica pulsada y la señal óptica retrodispersada en una entrada del detector coherente sin superposición temporal entre ambas señales. En una tercera opción preferente, un detector coherente mide el perfil de amplitud y frecuencia instantánea de la señal óptica pulsada y un fotodetector de intensidad mide el perfil de amplitud de la señal óptica retrodispersada. -Medios de computación que calculan las variaciones locales de índice de refracción ocurridas entre distintos estados de la fibra óptica en función de los perfiles de amplitud de la señal óptica retrodispersada correspondientes a cada estado de la fibra y el perfil de frecuencia instantánea de las señales ópticas pulsadas.
Preferentemente, los medios de emisión del sistema comprenden además medios de estabilización en frecuencia que reducen las derivas de frecuencia de la señal óptica pulsada y minimizan el error de la medida de las variaciones locales de índice de refracción de la fibra.
Preferentemente, los medios de emisión del sistema comprenden adicionalmente medios de sintonización que modifican dinámicamente la longitud de pulso y la pendiente del perfil de frecuencia instantánea de las señales ópticas pulsadas, permitiendo variar la resolución espacial, la sensibilidad a las variaciones locales de índice de refracción de la fibra, y el error del sistema.
Preferentemente, el sistema comprende además medios de amplificación distribuida, tales como amplificación Raman, que amplifica la señal óptica pulsada dentro de la fibra óptica. Puesto que la distancia máxima de medida está limitada por la potencia de los pulsos propagados, esta configuración permite caracterizar mayores longitudes de fibra.
Preferentemente, los medios de computación están adaptados para introducir en el cálculo de las variaciones locales de índice de refracción de la fibra bajo test información de calibración proporcionada por las variaciones locales de índice de refracción de una fibra óptica de calibración. Esta opción permite distinguir entre variaciones locales de índice de refracción de la fibra y variaciones y/o ruidos en los perfiles de amplitud y frecuencia instantánea de la señal óptica pulsada, logrando así reducir los errores de la medición.
Preferentemente, los medios de emisión del sistema comprenden además medios de control de polarización para controlar el estado de polarización de las señales ópticas pulsadas. De acuerdo con una primera opción preferente, los medios de control de polarización determinan el estado de polarización de la luz (es decir, elegir si la luz está despolarizada, polarizada linealmente y en qué eje, etc.) para optimizar el sistema según la medida pretendida y las características de la fibra bajo test, reduciendo los errores. De acuerdo con una segunda opción preferente, los medios de control de polarización generan pulsos con polarizaciones ortogonales para realizar medidas de birrefringencia o variaciones locales de índice de refracción de la fibra en distintos ejes de polarización. De acuerdo con una tercera opción preferente, los medios de control de polarización generan simultáneamente dos pulsos de polarizaciones ortogonales, siendo dichos pulsos incoherentes entre sí, permitiendo igualmente realizar medidas de birrefringencia o variaciones locales de índice de refracción de la fibra en distintos ejes de polarización. El sistema puede comprender componentes ópticos específicos para mantener el estado de polarización de la luz, tales como circuladores ópticos mantenedores de polarización. Nótese que no es necesario ningún elemento de discriminación de polarización en recepción. La medida de birrefringencia se realiza a través de la comparación de dos medidas auxiliares para dos ejes de polarización ortogonales, siendo cada medida auxiliar realizada mediante correlación de perfiles de intensidad de las señales reflejadas tal y como se describe para cualquier otra medida de variaciones locales de índice de refracción del sistema. Preferentemente, los medios de computación realizan medidas adicionales de caracterización distribuida de la fibra óptica basadas en la luz retrodispersada generada por dispersión Rayleigh al propagarse pulsos de alta coherencia en una fibra bajo test, como, por ejemplo la monitorización distribuida de vibraciones a lo largo de la fibra por un OTDR sensible a la fase. Los medios de computación pueden estar asimismo configurados para corregir dichas medidas adicionales utilizando la información de variación local de índice de refracción medida por el propio sistema. Las medidas adicionales pueden estar asociadas a cualquier técnica de sensado distribuido del estado del arte que requiera la medida de perfiles de amplitud de luz retrodispersada, pudiendo requerir o no información de frecuencia instantánea de las señales involucradas. Dichas medidas adicionales utilizan los perfiles de amplitud (y, si es necesario, frecuencia instantánea) de la luz retrodispersada ya adquiridos para medir las variaciones locales de índice de refracción de la fibra, y por lo tanto no implican la medición de ninguna señal o parámetro adicionales, pudiendo ejecutarse de modo paralelo y sin interferir con las medidas de variaciones locales de índice de refracción de la fibra. En un segundo aspecto de la invención, se presenta un método de medición distribuida de variaciones locales del índice de refracción de una fibra óptica que comprende:
-Generar y transmitir señales ópticas pulsadas de alta coherencia con un perfil de amplitud preferentemente rectangular y un mismo perfil de frecuencia instantánea variable en el tiempo a través de una fibra bajo test. El perfil de frecuencia instantánea presenta preferentemente una variación lineal a lo largo del pulso. Nótese que cada señal óptica pulsada puede estar formada por un único pulso o comprender una pluralidad de pulsos. Asimismo, nótese que las medidas realizadas por el método de la invención son medidas relativas entre al menos dos estados de la fibra, requiriéndose por lo tanto un mínimo de dos señales ópticas pulsadas consecutivas, pero pudiendo extenderse a cualquier número mayor de señales ópticas pulsadas.
-Recibir las señales ópticas retrodispersadas generadas mediante dispersión Rayleigh en la fibra óptica. La transmisión y la recepción se realizan en un mismo extremo de la fibra.
-Medir los perfiles de amplitud de las señales ópticas retrodispersadas utilizando un fotodetector de intensidad o detector coherente, cuya salida sirve de entrada a un medio de digitalización, tal como un osciloscopio.
-Dependiendo de la opción preferente escogida, el método puede comprender o bien medir los perfiles de amplitud y frecuencia instantánea de la señal óptica pulsada mediante un detector coherente, o bien utilizar los perfiles de amplitud y frecuencia instantánea de la señal óptica pulsada conocidos.
-Calcular las variaciones locales de índice de refracción de la fibra ocurridas entre distintos estados de la fibra, utilizando al menos información de los perfiles de amplitud de las señales ópticas retrodispersadas correspondientes a cada estado de la fibra y del perfil de frecuencia instantánea común a las señales ópticas pulsadas. A pesar de que el método puede implementarse obteniendo el perfil de amplitud de la señal óptica retrodispersada correspondiente a cada estado de la fibra con un único pulso, el método preferentemente comprende obtener el perfil de amplitud de la señal óptica retrodispersada correspondiente a cada estado de la fibra promediando múltiples pulsos, para mejorar la relación señal a ruido. Preferentemente, el paso de calcular las variaciones locales de índice de refracción de la fibra comprende: -Calcular una correlación local entre los perfiles de amplitud de las señales ópticas retrodispersadas correspondientes a distintos estados de la fibra, obteniendo así un perfil de desplazamiento local entre dichos perfiles.
-Calcular las variaciones locales de índice de refracción de la fibra multiplicando el perfil de desplazamiento local por un factor derivado del perfil de frecuencia instantánea. Más preferentemente, dicho factor depende de la pendiente y frecuencia central del perfil de frecuencia instantánea de los pulsos y del valor medio del índice de refracción de la fibra.
Preferentemente, el método adicionalmente comprende almacenar múltiples perfiles de amplitud de las señales ópticas retrodispersadas y optimizar una selección de perfiles a comparar en función de la velocidad de las variaciones locales del índice de refracción y la velocidad de adquisición de los perfiles de amplitud.
Finalmente, en un tercer aspecto de la invención, se presenta un programa de ordenador que comprende el código de programa de ordenador necesario para implementar el método del segundo aspecto de la invención, al ejecutarse en un procesador digital de la señal, un circuito integrado específico de la aplicación, un microprocesador, un microcontrolador o cualquier otra forma de hardware programable. Nótese que cualquier opción preferente e implementación particular del dispositivo de la invención puede ser aplicado al método y al programa de ordenador de la invención, y viceversa.
Con el sistema, método y programa de ordenador de la invención, se proporciona una medida de variaciones locales de índice de refracción de la fibra de alta resolución espacial, alta sensibilidad y alta velocidad. La resolución y sensibilidad son además controlables cambiando la longitud de pulso y la pendiente del perfil de frecuencia instantánea de la señal óptica pulsada. El rango de medida, es decir las distancias de fibra óptica caracterizables, está limitado únicamente por la intensidad de la señal óptica pulsada, permitiendo incorporar sistemas de amplificación distribuida. La fibra óptica bajo test se caracteriza de manera continua, permitiendo la medida de variaciones locales de índice de refracción con respecto a un estado inicial de la fibra a lo largo del tiempo y los resultados se pueden proporcionar en tiempo real. Adicionalmente, se puede realizar cualquier medida conocida en el estado del arte basada en retrodispersión de señales ópticas pulsadas, pudiendo ser además dicha medida corregida utilizando la información de variación de índice de refracción obtenida. Estas y otras ventajas resultarán aparentes a la luz de la descripción detallada de la invención.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1 muestra un esquema donde se aprecian los componentes principales de una realización preferente del sistema de la invención, así como la fibra óptica sobre la que se aplica dicho sistema.
La figura 2 muestra un esquema donde se aprecian de los perfiles de amplitud y frecuencia instantánea de una señal pulsada de ejemplo empleada por una implementación particular de la invención. La figuras 3a y 3b ejemplifican la convolución entre un pulso de la señal óptica pulsada y dos secciones de la fibra óptica mediante un diagrama de la fibra óptica y unas gráficas.
La figura 4 muestra una serie de gráficas donde se aprecia el principio de funcionamiento del sistema, ilustrando un desplazamiento local del perfil de amplitud de la señal óptica retrodispersada correspondiente a una variación local del índice de refracción.
La figura 5 muestra un diagrama con mayor detalle una implementación particular de la fuente continua láser coherente sintonizable que incorpora estabilización en frecuencia. La figura 6 presenta un diagrama que muestra una realización alternativa del sistema de la invención que incorpora amplificación distribuida para aumentar la distancia de caracterización.
La figura 7 ejemplifica una realización más alternativa del sistema de la invención que incluye una sección de fibra cuyas variaciones locales de índice de refracción son conocidas.
La figura 8 presenta una realización aún más alternativa del sistema de la invención que incorpora medios para controlar el estado de polarización de la señal óptica pulsada.
La figura 9 representa muestra una realización todavía más alternativa del sistema de la invención de la invención que incorpora medios de computación que permiten realizar cualquier medida conocida en el estado del arte con un OTDR sensible a la fase. La figura 10 representa una aplicación particular de la realización en la figura 9, que permite medir perturbaciones, como por ejemplo vibraciones, compensando el ruido introducido por las derivas de frecuencia de la señal óptica pulsada y/o variaciones locales de índice de refracción de la fibra. La figura 11 representa una implementación particular de la invención que utiliza pulsos de intensidad óptica variable para medida distribuida de índice de refracción no lineal.
La figura 12 representa una realización particular del sistema de la invención con un único detector coherente para medir tanto la señal pulsada como la señal óptica retrodispersada.
La figura 13 representa una realización particular del sistema de la invención con un detector coherente para medir la señal óptica pulsada y un fotodetector de intensidad para medir la señal óptica retrodispersada.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
En este texto, el término "comprende" y sus derivaciones (como "comprendiendo", etc.) no deben entenderse en un sentido excluyente, es decir, estos términos no deben interpretarse como excluyentes de la posibilidad de que lo que se describe y define pueda incluir más elementos, etapas, etc.
A la vista de esta descripción y figuras, el experto en la materia podrá entender que la invención ha sido descrita según algunas realizaciones preferentes de la misma, pero que múltiples variaciones pueden ser introducidas en dichas realizaciones preferentes, sin salir del objeto de la invención tal y como ha sido reivindicada. Asimismo, las descripciones de funciones y elementos perfectamente conocidos en el estado del arte pueden haber sido omitidos por claridad y concisión.
La Figura 1 muestra los componentes principales de una primera implementación particular del sistema (1) de la invención, el cual implementa los pasos de una realización particular del método de la invención. Se presenta también una fibra óptica (2) que ejemplifica un posible escenario de operación. El sistema (1) comprende medios de emisión (3) que generan señales ópticas pulsadas (9) de alta coherencia, comprendiendo cada señal óptica pulsada (9) uno o más pulsos (91) con un perfil de amplitud rectangular y un perfil de frecuencia instantánea (92) lineal de pendiente y frecuencia central v0 conocidas. Los medios de emisión (3) comprenden una fuente continua láser coherente sintonizable (31), medios de modulación externos (32) que convierten la luz continua en luz pulsada, y medios de control de potencia (33) que adaptan la potencia óptica de salida al rango de medida deseado, evitando no linealidades. La fuente continua láser coherente sintonizable (31) puede ser constituida por un láser controlado por un controlador de corriente y temperatura, la cual determina su frecuencia central v0, y al cual se aplica además un voltaje de radiofrecuencia, el cual permite hacer barridos continuos y repetitivos en frecuencia alrededor de v0, con pendientes controlables. Sincronizando los medios de modulación externos (32) con la fuente continua láser coherente sintonizable (31), se puede elegir una parte específica de la señal emitida por dicha fuente. Ajusfando la pendiente de la frecuencia instantánea de los pulsos de señales ópticas pulsadas (9), se puede ajusfar la sensibilidad a variaciones locales del índice de refracción de la fibra óptica (2), y ajusfando la longitud de los pulsos se puede ajusfar la resolución espacial del sistema. Los medios de control de potencia (33) pueden comprender un amplificador óptico, tal como un amplificador dopado con erbio; seguido por un filtro óptico centrado en la longitud de onda central del espectro de los pulsos, tal como un multiplexor por división en longitud de onda (WDM, del inglés 'Wavelength División Multiplexer') o un filtro basado en red de Bragg (FBG, del inglés 'Fibre Bragg Grating') trabajando en reflexión, seguido de un atenuador óptico variable. La banda de transmisión del filtro permite el paso del espectro de los pulsos filtrando el ruido introducido por el amplificador y el atenuador óptico variable permite ajusfar la potencia óptica de salida. Obsérvese que pueden ser aplicados otros medios de emisión alternativos conocidos en el estado del arte para la generación de la señal óptica pulsada de la presente invención dentro del alcance reivindicado.
Las señales ópticas pulsadas (9) que comprenden al menos una primera señal óptica pulsada y una segunda señal óptica pulsada, generadas se introducen en un primer extremo de la fibra óptica (2). Cada señal óptica pulsada (9), es decir la primera señal óptica pulsada y la segunda señal óptica pulsada, genera respectivamente una señal óptica retrodispersada (10) al propagarse dentro de la fibra óptica 2 mediante efecto Rayleigh. Las señales ópticas retrodispersadas (10) son recibidas por unos medios de recepción (5) en el mismo primer extremo de la fibra óptica (2) usado para la transmisión. Para este propósito, los medios de recepción (5) comprenden un circulador óptico (51) de tres puertos de tal manera que la señal óptica pulsada (9) es recibida por los medios de emisión (3) en un primer puerto y transmitida a la fibra óptica (2) a través de un segundo puerto. La señal óptica retrodispersada (10) es recibida en el segundo puerto y transmitida a un fotodetector de intensidad (7) a través del tercer puerto del circulador óptico (51). Dicho fotodetector de intensidad (7) mide el perfil de amplitud de la señal óptica retrodispersada (10). Nótese que cualquier técnica de guiado de luz conocida en el estado del arte, que logre una distribución equivalente de las señales, podría ser utilizada de forma alternativa. Además, los medios de recepción (5) pueden comprender cualquier etapa de acondicionamiento de señal y/o de amplificación (52). El sistema comprende también medios de computación (8) que determinan las variaciones locales del índice de refracción de la fibra óptica (2) en función de, al menos, el perfil de frecuencia instantánea (92) de los pulsos (91) generados y de los perfiles de amplitud medidos de la señal óptica retrodispersada (10). En cada instante de tiempo, la fibra óptica (2) presenta un estado al cual corresponde un perfil de índice de refracción local. A lo largo del tiempo, la fibra óptica (2) puede cambiar de estado debido a perturbaciones P1 , generando el correspondiente cambio en el perfil de índice de refracción local. Determinando y comparando los perfiles de amplitud de la señal óptica retrodispersada (10) generados durante cada estado por señales ópticas pulsadas (9) iguales, los medios de computación determinan las variaciones locales del índice de refracción entre los distintos estados. La sensibilidad de dicha determinación depende de la pendiente de la frecuencia instantánea de las señales ópticas pulsadas (9), mientras que la resolución espacial es típicamente del mismo orden de magnitud que la longitud de los pulsos (91 ). El rango de sensado, es decir, las distancias caracterizables por el sistema, está limitado únicamente por la intensidad de la señal óptica retrodispersada (10). El ruido de la medida puede ser reducido promediando múltiples medidas de un mismo estado de la fibra óptica (2) obtenidas bajo las mismas condiciones (esto es, pulsos de señal óptica pulsada (9) iguales y sin alterar el estado de la fibra óptica).
La figura (2) presenta con mayor detalle la señales ópticas pulsadas (9) generadas por los medios de emisión (3). Cada señal óptica pulsada (9) comprende uno más pulsos (91) de longitud τρ, separados por una duración ττ. Cada pulso (91) presenta un perfil de amplitud rectangular y un perfil de frecuencia instantánea (92) en forma de rampa con una pendiente constante. En este caso, la frecuencia central y la pendiente que definen el perfil de frecuencia instantánea (92) son conocidos, estando típicamente almacenados en una memoria accesible por unos medios de computación (8). Debe garantizarse que la longitud de coherencia de la fuente de luz coherente sintonizable (31) sea mayor que la longitud del pulso. Además, el tiempo entre los pulsos ττ debe verificar la ecuación 1 :
2nL/c≤rT 1 ~ Ecuac .ió, n„ 1
donde c es la velocidad de la luz en el vacío, L es la longitud de la fibra óptica (2), y n es el índice medio de refracción de la fibra óptica (2) a la frecuencia central v0 de la fuente de luz (31). Se considera típicamente despreciable la dependencia de n(z) en la frecuencia a lo largo del contenido espectral de un pulso (91). Esto asegura que únicamente la señal generada a partir de un pulso se recupera de la fibra en un mismo instante, evitando así la superposición de señales de diferentes regiones de la fibra óptica (2). La propagación, a lo largo de fibra óptica (2) de un pulso P(t,z) de la señal óptica pulsada (9) con un perfil de intensidad rectangular, de amplitud E0 y longitud τρ, y un perfil de frecuencia instantánea lineal, υ® υ0 +(Δυ/2 Δυ [ί/τρ]) ^ eg ^ec^ CQn contenido espectral Δν alrededor de una frecuencia central v0, y pendiente de frecuencia instantánea Δν/τ puede ser descrita por la ecuación 2:
n(z)dzlc)
Figure imgf000017_0001
Ecuación 2 donde t es el tiempo, z es la posición a lo largo de la fibra óptica (2) (z=0 en la entrada de la fibra conectada a los medios de recepción (5) y rect(x)=1 cuando 0≤x≤1 y cero en otro caso. Se considera que t=0 cuando la parte frontal del pulso entra en la fibra óptica (2) (en z=0). n(z) es el índice de refracción local de la fibra óptica (2) en z a la frecuencia central v0 de la fuente de luz (31). Nótese que, si v0 está lejos de frecuencias de resonancia de la fibra óptica (2) y Δν no es excesivamente grande, se puede considerar despreciable la dependencia de n(z) en la frecuencia v a lo largo del contenido espectral de un pulso de la señal óptica pulsada (9).
La señal óptica retrodispersada (10) recibida en z=0 en un instante de tiempo t, puede ser descrita por un campo eléctrico complejo, E(t), que está dado por la convolución entre un pulso (91) y el perfil de dispersión de la fibra, descrito por una función com leja, r(z), en una sección dada de fibra óptica (2)
Figure imgf000017_0002
z=tcl2n- clin
Ecuación 3
Nótese que E(f) resulta de contribuciones generadas por el paso de todo un pulso de la señal óptica pulsada (9), a pesar de apenas contar con una integración a lo largo de una sección de fibra de longitud Tp*c/(2n). Nótese además que las consideraciones del perfil de amplitud de E(t) recibido se establecen para z=0, correspondiente a la unión del circulador (51) y la fibra (2), mientras que dicha señal se mide en el fotodetector de intensidad. No obstante, dado que los medios de recepción (5) permanecen constantes entre medidas, el desarrollo sigue siendo válido para las señales medidas a la entrada del fotodetector de intensidad (7).
Las figuras 3a y 3b ilustran en detalle que las contribuciones a E(t) reflejadas en distintos puntos de la fibra óptica (2), son generadas por distintas partes de un pulso (91), las cuales tienen por lo tanto distinta frecuencia instantánea v. En la figura 3a, E(t) está compuesto por la suma de las convoluciones de r(z) de dos secciones de z ε \z ' z 1 \z ' z 1
fibra distintas L 2J'L 2' 3 J con partes de un pulso de la señal óptica pulsada (9) con frecuencias instantáneas ^[^^ ^ ^i] respectivamente. En un momento posterior, reflejado en la figura (3)b, E(t+At) está compuesto por la suma de la convoluciones de r(z) de dos secciones de fibra distintas e con partes del pulso de la señal óptica pulsada (9) con frecuencias instantáneas o ε [υ42],[υ21] reSpecvamente
Si Δί es suficientemente pequeño para que L ^ 2J'L 3' 4 J L 2' 3 J (es decir, si el desplazamiento del pulso es pequeño en relación a su longitud), las contribuciones a
\ z ' z 1 \ z ' z 1
E(t) y E(t+At) generadas en L ^ 2 J'L 3' 4J son despreciables, resultando E(t) y
\z z 1
E(t+At) de reflexiones de una misma sección de la fibra L 2' 3 J generadas por dos pulsos con un frecuencias υ ε [υ3 > υι] y ^ £ [υ42] - [υ3,ΐ ]+(5ΐ> reSpecVamente, es decir, dos pulsos iguales con un desplazamiento en frecuencia δν entre ellos. Dicho desplazamiento en frecuencia es proporcional a At y a la pendiente (dv/dt=Av/Tp) del perfil de frecuencia instantánea (92) de los pulsos (91).
Nótese, por último, como se puede deducir de la ecuación (2), que una pequeña variación local de índice de refracción de la fibra óptica (2), δη(ζ), siendo δη(ζ)«η(ζ), puede ser aproximadamente compensada con una variación correspondiente de v0, δν=-ν0*δη(ζ)/η(ζ). Es decir, se obtiene aproximadamente el mismo E(t) con un índice de refracción local n(z) y pulso de frecuencia central v0, que con un índice de refracción local η(ζ)+δη(ζ) y pulso de frecuencia central ν0+δν.
La figura (4), ilustra en detalle el principio de medida de las variaciones locales del índice de refracción de la fibra que se deriva de la descripción anterior. Una variación del índice de refracción local de la fibra óptica (2), η(ζ)→η(ζ)+δη(ζ), resulta en un desplazamiento temporal del perfil de señal óptica retrodispersada (10), E(t)→E(t+At), la cual es equivalente a una variación de la frecuencia central del pulso de la señal óptica pulsada (9), ν0→ν0+δν. En particular, se muestran un primer perfil de amplitud 10a de una primera señal óptica retrodispersada (10) que sirve como referencia, un segundo perfil de amplitud (10b) correspondiente a un primer incremento
Figure imgf000019_0001
que genera un desplazamiento temporal Δ^ , y un tercer perfil de amplitud (10c) correspondiente a un segundo incremento δη2(ζ) que genera un nuevo desplazamiento temporal Δί2 respecto al segundo perfil de amplitud.
Para el cálculo de la variación local del índice de refracción entre dos estados de la fibra óptica (2), las medidas de dos perfiles de amplitud de la señal óptica retrodispersada (10) correspondientes a los dos estados de la fibra, Ei (t), E2(t), proporcionadas por el fotodetector de intensidad (7), y la frecuencia central v0 y pendiente de frecuencia instantánea dv/dt=Av/Tp de los pulsos la señal óptica pulsada (9) son transmitidos a los medios de computación (8), que calculan primeramente el perfil de desplazamiento local, A(f), entre Ei (t) y E2(t) a través del máximo de su correlación local:
Figure imgf000019_0002
E2(t-Tcorr,t+Tcorr)]) ecuación 4
Nótese que el error de la medida puede ser reducido utilizando una función de ajuste, como por ejemplo una gaussiana, para encontrar el máximo ponderado de la correlación local. El valor de TCOrr es del orden de τρ, pudiendo ser optimizado para reducir el error de la medición y variar la resolución espacial.
A continuación, la variación local del índice de refracción entre los dos estados de la fibra óptica (2), 5n(t)= 5n(2nz/c), es calculada aplicando la siguiente relación: 6n(t)= 5n(2nz/c)= -(n/v0)*(dv/dt) * A(f) ecuación 5
Preferiblemente, el perfil de frecuencia instantánea (92) del pulso se elige de forma que las variaciones locales del índice de refracción esperadas generan variaciones de frecuencia δν pequeñas en relación al contenido espectral Δν de los pulsos (91 ) (típicamente δν/Δν<0.1 ). Además, el sistema minimiza preferentemente las derivas de frecuencia vr ocurridas entre pulsos (91 ) de forma que sean pequeñas en relación al contenido espectral Δν, puesto que dicha deriva vr es añadida al δν calculado. Se consigue con dicha minimización de la deriva una optimización de errores en el cálculo de δη(ζ). En cualquier caso, nótese que para un tiempo rápido de adquisición de perfiles de amplitud de las señales ópticas retrodispersadas (10), típicamente del orden de TT~0.5ms, las variaciones locales del índice de refracción y las derivas de frecuencia vr entre pulsos (91) son típicamente reducidas.
La resolución de cálculo del perfil de desplazamiento local, A(f) está relacionada con la anchura de banda del fotodetector de intensidad (7) y los medios de digitalización asociados a dicho fotodetector. Típicamente, el muestreo del perfil de amplitud E(t) debe de ser por lo menos 50-100 veces superior a 1/τρ. Suponiendo un pulso de la señal óptica pulsada (9) con buena linealidad del perfil de frecuencia instantánea y bajo ruido, la resolución de cálculo de variaciones locales del índice de refracción está limitada únicamente por la resolución de cálculo de A(f) y la pendiente dv/dt, proporcionando por lo tanto una gran flexibilidad.
Como ejemplo típico de operación de la presente invención, un pulso (91 ) de 100ns, con un contenido espectral Δν=1 ΘΗζ centrado a 193THz, con un fotodetector de intensidad (7) y respectivos medios de digitalización con una anchura de banda de ~10GHz, permite medir variaciones de índice de refracción de la fibra δη~10"8-10"6. Esto equivaldría, por ejemplo, a cambios de temperatura en la fibra de ~1 -100mK y desplazamientos de frecuencia δν~1 -100MHz. Respecto a la velocidad de medida de variaciones locales del índice de refracción de la fibra δη, la presente invención necesita de un único pulso de señal óptica pulsada para caracterizar un estado de la fibra, permitiendo una medida cuasi continua: por ejemplo, para una fibra de 50km, el tiempo entre los pulsos ττ (y por lo tanto entre medidas de variaciones locales del índice de refracción de la fibra δη), dado por la ecuación. 1 , puede tener un valor típico de ~0.5ms. El cálculo de las variaciones locales del índice de refracción δη(ζ) puede además comprender el almacenamiento de los perfiles de amplitud medidos. Para unos determinados parámetros de medida (es decir, contenido espectral Δν, pendiente dv/dt y anchura de banda de detección fijos) corresponde un intervalo de variaciones locales del índice de refracción de la fibra entre perfiles de amplitud correspondientes a variaciones de frecuencia suficientemente mayores que la resolución mínima de la medida y suficientemente menores que el contenido espectral Δν, tal que la medida es óptima. Si tras la comparación entre dos perfiles de amplitud resulta que las variaciones del índice de refracción no son óptimas, se puede utilizar la estimación (no óptima) de las variaciones del índice de refracción obtenidas para elegir otro par de perfiles de amplitud a comparar que sea más favorable. Así, se puede optimizar de modo manual o automático la selección de los pares de perfiles comparados en función de la velocidad de las variaciones locales del índice de refracción y la velocidad de adquisición, y se pueden reducir los errores y el coste computacional necesario. Asimismo, se pueden realizar medidas cumulativas de variaciones locales del índice de refracción de la fibra correspondientes a variaciones de frecuencia de valor arbitrario (5vtotai(t)»Av), mientras la variación entre dos perfiles consecutivos i,j, sea pequeña (δνΗ(ί)«Δν).
Nótese que el cálculo de las variaciones locales del índice de refracción se puede realizar con otros perfiles de amplitud y frecuencia instantánea distintos a los descritos en la presente implementación particular, siempre y cuando distintos instantes de un mismo pulso comprendan distintos componentes frecuenciales y dicha distribución sea constante entre pulsos. En particular, el experto en la materia comprenderá que los pulsos pueden presentar desviaciones en su perfil de amplitud y frecuencia instantánea respecto a las formas ideales de diseño por limitaciones de los medios de emisión (3). Por ejemplo, la rampa de frecuencias puede presentar incrementos no lineales, o la forma del pulso puede no ser perfectamente rectangular.
Nótese asimismo que, en implementación particular descrita, los perfiles de amplitud y frecuencia instantánea la de la señal óptica pulsada (9) no se miden directamente. Dichos perfiles son previamente almacenados en los medios de computación (8) o en una memoria del sistema. Obsérvese que múltiples datos de perfiles de amplitud y frecuencia instantánea de múltiples configuraciones de los medios de emisión (3) pueden ser guardados y seleccionados. Además, las variaciones en dichos datos almacenados con otros factores, tales como los factores ambientales, pueden ser almacenadas en memoria y aplicadas en consecuencia. Los cálculos realizados por los medios de computación (8) son los mismos indistintamente de si los perfiles de amplitud y frecuencia instantánea de la señal óptica pulsada (9) son medidos o simplemente recuperados de la memoria. La Figura 5 muestra una implementación de los medios de emisión (3) de la invención, en la cual la fuente continua láser coherente sintonizable (31) comprende medios de estabilización en frecuencia, reduciendo así las derivas de frecuencia y el error de la medida de las variaciones locales de índice de refracción. Los medios de estabilización en frecuencia fijan la frecuencia central v0 de un láser semiconductor (31 1) a una línea de absorción de una célula de gas (313), utilizando un divisor (312) que divide la señal emitida por (31 1) e introduce una parte en la célula de gas (313). Un amplificador lock-in (del inglés 'lock-in amplifier) (314) actúa como sistema de retroalimentación e introduce inyecciones de corriente en el controlador del láser (31 1), que compensan las derivas de frecuencia del láser.
La Figura 6 muestra una realización alternativa del sistema de la invención, en el cual el rango de sensado es incrementado mediante amplificación distribuida, tal como la amplificación Raman. El rango de sensado está limitado únicamente por la intensidad de la señal óptica retrodispersada (10) y puede ser por lo tanto extendido empleando esta propuesta. En este caso particular, el sistema comprende un amplificador distribuido (1 1) bidireccional. La primera salida del amplificador distribuido (1 1) se introduce en el primer extremo de la fibra óptica (2) con la señal óptica pulsada (9) mediante un combinador (12), y la segunda salida del amplificador distribuido (1 1) se introduce por el segundo extremo de la fibra óptica (2). Nótese que cualquier otra técnica de amplificación distribuida conocida en el estado del arte puede ser usada, como por ejemplo la combinación de amplificación Raman y Brillouin. Se pueden alcanzar distancias típicamente superiores a 100 km con esta configuración.
La Figura 7 muestra una realización más alternativa del sistema de la invención, que utiliza una primera sección (21) de la fibra óptica (2) cuyas variaciones locales de índice de refracción son conocidas. Nótese que dichas variaciones locales pueden ser nulas en implementaciones particulares. Las variaciones locales de índice de refracción de la sección de fibra óptica (21) son introducidas o almacenadas en los medios de computación (8), utilizándose como referencia de calibración. Los medios de computación (8) utilizan las medidas de la primera sección (21) para corregir las medidas de una segunda sección (22) cuyas variaciones de índice de refracción son desconocidas. Se distingue así entre variaciones locales de índice de refracción de la fibra óptica (2) y variaciones y/o ruidos en los perfiles de amplitud y frecuencia instantánea de los pulsos de la señal óptica pulsada (9), reduciéndose los errores de la medición. Nótese que, incluso en implementaciones alternativas sin una primera sección (21) de referencia, los medios de computación (8) pueden igualmente utilizar una estimación de la variación media del índice de refracción de la fibra óptica (2) para compensar errores introducidos por el ruido de los perfiles de amplitud y frecuencia instantánea de los pulsos (91), que típicamente ocurren en escalas de tiempo bastante más pequeñas.
La Figura 8 una realización aún más alternativa del sistema de la invención, que comprende en los medios de emisión (3), medios de control de polarización (34). Dependiendo de la implementación particular, los medios de control de polarización pueden comprender un polarizador para generar luz linealmente polarizada, o bien comprender un conmutador de polarización para generar luz en estados distintos de polarización. Al generar pulsos (91) en estados ortogonales de polarización, se permite medir el índice de refracción local en ejes ortogonales de la fibra y la diferencia entre ellos (es decir, la birrefringencia local, si los ejes de la polarización de la señal óptica pulsada están alineados con los ejes de índice de refracción de la fibra). Si la diferencia de índice de refracción local entre dos ejes ortogonales de la fibra δη± es equivalente a una variación de frecuencia, δνι=-ν0*δηι/η más larga que el contenido espectral Δν del pulso (91), se pueden utilizar medios de emisión (3) que permite realizar además un barrido de frecuencia con un paso constante <Δν, hasta encontrar un pico en la función de correlación entre dos perfiles de amplitud adquiridos en ejes ortogonales de polarización, con una frecuencia central v0' de los pulsos (91). Después de calcular el perfil de desplazamiento local, /\±(f), como se ha descrito previamente, el perfil de diferencia de índice de refracción entre los ejes ortogonales de la fibra δη±(ζ) se calcula como:
6n±(t)= 5n±(2nz/c)= -(n/v0)*[(dv/dt) * AL(t) + (v0'-v0)] Ecuación 6
En otra implementación, los medios de control de polarización (34) generan simultáneamente dos pulsos con polarizaciones ortogonales e incoherentes entre sí, generando así una señal óptica pulsada (9) despolarizada. El cálculo de los máximos de la autocorrelación local del perfil de amplitud de la señal óptica retrodispersada (10) presentará tres picos, uno colocado en cero, y dos simétricamente colocados alrededor de cero, que permiten calcular el valor de la diferencia de índice de refracción local δη±(ζ) entre dos ejes ortogonales de la fibra (es decir, birrefringencia local) con un solo pulso de señal óptica pulsada (9). De ser necesario, el sistema puede incluir componentes ópticos específicos para mantener el estado de polarización de la luz, tales como un circulador óptico mantenedor de polarización (512).
La Figura 9 muestra una realización todavía más alternativa del sistema de la invención sistema de la invención, en la que los medios de computación (8) comprenden un primer módulo (81 ) de computación para calcular la variación local del índice de refracción de la fibra óptica (2) y un segundo módulo (82) de computación que realiza medidas adicionales de caracterización distribuida basadas en señal óptica retrodispersada generada por dispersión Rayleigh de luz pulsada de alta coherencia. Dichas medidas adicionales pueden comprender, por ejemplo, la monitorización distribuida de vibraciones P2 a lo largo de la fibra óptica (2). Dicha monitorización distribuida de vibraciones utiliza los perfiles amplitud de la señal óptica retrodispersada (10) que ya se adquieren para medir variaciones locales de índice de refracción, por lo que no implica la medición de ninguna señal o parámetro adicional. El primer módulo (81 ) y el segundo módulo (82) pueden actuar en paralelo sin interferir en las medidas de variaciones locales de índice de refracción. Nótese además que si la medida adicional necesita la recuperación del perfil de fase de la señal óptica retrodispersada, el sistema puede comprender un detector coherente (6) en lugar del fotodetector de intensidad (7).
La Figura 10 muestra una posible aplicación de la implementación descrita en la figura 9, que combina medición de variaciones locales de índice de refracción y monitorización de vibraciones P2. Esto permite, por ejemplo, minimizar el ruido debido a derivas térmicas de la fibra o en la frecuencia central de la fuente de luz. Es decir, el sistema de la invención permite realizar las siguientes medidas:
• medir únicamente la temperatura.
· medir únicamente la vibración.
• medir conjuntamente la temperatura y la vibración, siendo cada medida directa e independiente.
• medir conjuntamente la temperatura y la vibración, de modo que una de las medidas se utiliza para corregir los resultados de la otra.
Supongamos un estado inicial con su consiguiente primer perfil de amplitud 10a de la señal óptica retrodispersada (10). Cuando la fibra sufre una perturbación P2, como por ejemplo una vibración, se genera un cuarto perfil de amplitud 10d, con variación local de amplitud ΔΑ. Posteriormente, se regresa a un estado igual al inicial, con un quinto perfil de amplitud 10e igual al primer perfil de amplitud 10a. Si no hay variaciones del índice de refracción local de la fibra ni derivas de la frecuencia central de la fuente de luz, la perturbación local P2 se puede medir al comparar los perfiles de amplitud correspondientes a los distintos estados de la fibra en un mismo punto. Por el contrario, si al estado inicial de la fibra se le aplica simultáneamente una primera perturbación P1 asociada a una variación de índice de refracción y una segunda perturbación P2, como por ejemplo una vibración, el perfil de amplitud correspondiente (es decir, el sexto perfil de amplitud 10f) registrará un cambio local de amplitud ΔΑ y además un desplazamiento temporal Δί4. Nótese que la primera perturbación P1 y la segunda perturbación P2 tienen características distintas. La primera perturbación P1 se traduce en un cambio del perfil de índice de refracción medio de la fibra óptica (2) a lo largo de una sección de fibra longitud del orden de la de los pulsos de la señal óptica pulsada (9), n(z), sin cambiar el perfil de dispersión de la fibra, descrito por una función compleja, r(z), en la ecuación (2). La segunda perturbación P2 se traduce en un cambio aleatorio del perfil de dispersión de la fibra, r(z), y con variaciones que pueden ocurrir en longitudes mucho menores que la longitud del pulso de la señal óptica pulsada (9), sin cambiar el perfil de índice de refracción de la fibra óptica (2), n(z). Al terminar la perturbación P2, el séptimo perfil de amplitud 10g reflejará una forma igual a la del primer perfil de amplitud 10a, pero un desplazamiento temporal Δί5 asociado a la variación de índice de refracción entre ambas medidas. Mientras que en un sistema convencional de medida de vibraciones, esto supondría un error en la caracterización de la vibración, la presente invención permite determinar mediante correlación de los perfiles de amplitud en el primer módulo (81) de computación los desplazamientos temporales Δί4 y Δί5, y utilizar dicha información para comparar puntos equivalentes durante la caracterización de las vibraciones.
Es decir, en primer lugar, el primer módulo (81) de los medios de computación (8) determina la variación de índice de refracción local de la primera perturbación P1 mediante correlación de los perfiles de amplitud. A continuación, se compensa en dichos perfiles de amplitud el desplazamiento temporal asociado a dicha variación de índice de refracción. Finalmente, el segundo módulo utiliza los perfiles de amplitud compensados para caracterizar la segunda perturbación P2.
Alternativamente, se puede utilizar un Δν elevado en comparación con las derivas esperadas en el láser y las variaciones esperadas de Δη. De esta manera, los desplazamientos temporales de la traza resultante serán muy reducidos, mientras que mantendrá su sensibilidad a vibraciones. Esta configuración puede ser utilizada para realizar medidas de vibraciones reduciendo el ruido asociado a derivas de láser y a variaciones de índice de refracción. A mayor contenido espectral de los pulsos transmitidos, mayor será la reducción de ruido asociado a dichos factores. Nótese que en este caso no resulta necesario el uso del primer módulo (81) de computación . La Figura 1 1 ejemplifica otra posible implementación particular del sistema en la cual los medios de emisión (3) generan pulsos (91) de intensidad óptica lk conocida y variable. En particular, se presenta un primer pulso 91 a que permite medir un primer perfil de amplitud 10a, y un segundo pulso 91 b de diferente intensidad óptica, cuya propagación resulta en la medición de un octavo perfil de amplitud 10h. El octavo perfil de amplitud 10h presenta un retardo Δί6 provocado por el cambio de intensidad del segundo pulso 91 b y por el índice de refracción no lineal local de la fibra óptica (2). Dicho índice de refracción no lineal local, n2(z), es medido por el sistema a través de las variaciones de índice de refractivo local 5nk(t) obtenidas para distintas intensidades ópticas lk de los pulsos para un mismo estado de la fibra, utilizando: 5nk(t)=n + * n2(z) Ecuación 7
Para distancias largas de fibra, es necesario tener en cuenta las deformaciones de los pulsos al propagarse en la fibra debido a los efectos no lineales. Nótese que si la fibra es homogénea, es posible caracterizar el índice de refracción no lineal local para distancias cortas de fibra y asumir que se mantiene constante a lo largo del resto de la fibra. La Figura 12 presenta otra implementación del sistema y método de la invención en la cual los pulsos de la señal óptica pulsada (9) no son conocidos a priori, sino que se utiliza un detector coherente (6) para medir el perfil de amplitud y el perfil de frecuencia instantánea (92) de la señal óptica pulsada (9) y el perfil de amplitud de la señal óptica retrodispersada (10). La señal óptica pulsada (9) emitida por los medios de emisión (3) se divide mediante un primer divisor (4) en dos brazos. El primer brazo se introduce en la fibra óptica (2), mientras que el segundo brazo se introduce en un combinador óptico (14), que recibe además la señal óptica retrodispersada (10) y envía ambas señales al detector coherente (6). Para evitar cualquier solapamiento entre la señal óptica pulsada (9) y la señal óptica retrodispersada (10), un retardo óptico 1 (3) se añade entre el divisor (4) y el circulador óptico (51), que puede ser implementado, por ejemplo, con una fibra monomodo. Además, la limitación en el periodo de repetición de los pulsos ττ para asegurar que no se produce la superposición de distintas señales en el detector coherente (6), estará dada ahora por:
2nL+Dlc≤T, T Ecuación 8
donde D es el retardo inducido por el retardo óptico (13). Hay que destacar que los medios de computación (8) manejan cualquier sincronización y ajustes necesarios para la medida de ambas señales, alternativamente, con el mismo detector coherente (6).
Cualquier implementación alternativa que permita enviar ambas señales al mismo detector coherente (6) sin superposición puede ser empleada alternativamente. Por ejemplo, el combinador óptico (14) puede ser reemplazado por un conmutador óptico, permitiendo ambas configuraciones con o sin el retardo óptico (13). Además, el retardo óptico (13) puede ser implementado en otras posiciones del sistema alcanzando un efecto similar, tal y como el camino seguido por la señal óptica retrodispersada (10) dentro del sistema 1. Por ejemplo, el retardo óptico (13) puede estar situado entre el circulador óptico (51) y el combinador óptico (14). Hay que tener en cuenta que los pulsos (91) generados por los medios de emisión (3) no deben cambiar durante la caracterización de los dos o más estados utilizados para calcular la variación de índice de refracción. Como dichos pulsos (91) no varían durante ese intervalo de tiempo, el conmutador óptico puede ser programado para transmitir la señal óptica pulsada (9) al detector coherente (6) una única vez durante todo el tiempo que los pulsos (91) permanecen inalterados.
Finalmente, la Figura 13 presenta una última implementación del sistema de la invención en la cual los pulsos (91) de la señal óptica pulsada (9) no son conocidos y un detector coherente (6) y un fotodetector de intensidad (7) se usan para caracterizar la señal óptica pulsada (9) y la señal óptica retrodispersada (10), respectivamente. La señal óptica pulsada emitida por los medios (3) se divide mediante un primer divisor (4) en dos brazos. El primer brazo se introduce en la fibra óptica (2), mientras que el segundo brazo se introduce a un detector coherente (6) que se usa para medir el perfil de la amplitud y frecuencia instantánea de la señal óptica pulsada (9). La señal óptica retrodispersada (10) se introduce a un fotodetector de intensidad (7) que se usa para medir el perfil de la amplitud la señal óptica retrodispersada (10). Cabe destacar que cualquier característica o implementación presentada para los medios de emisión (3) y los medios de computación (8) (por ejemplo control de polarización, uso de distintas intensidades de pulso, cálculos adicionales, etc.) es compatible con cualquier implementación particular de los medios de detección (un único detector coherente para la señal óptica pulsada y la señal óptica retrodispersada, múltiples detectores, un único detector combinado con información previamente almacenada, etc.).
Nótese también que las medidas de variaciones locales de índice de refracción de la fibra recuperado por la invención pueden ser usadas, por ejemplo, para implementar sensores distribuidos de deformación, vibración, birrefringencia o temperatura. Cualquier otro uso o aplicaciones de la medida de variaciones locales de índice de refracción de la fibra conocidas en el estado del arte pueden también ser implementadas con el sistema y método descritos.
El trabajo que ha dado lugar a esta invención ha recibido financiación del programa 'People Programme (Marie Curie Actions), European Union's Seventh Framework Programme (FP7/2007-2013)' bajo el acuerdo de beca REA n° [608099]; y de EURAMET a través del proyecto 14IND13 JRP-Í22.

Claims

R E I V I N D I C A C I O N E S
1. Sistema (1) de caracterización distribuida de variaciones locales de índice de refracción de una fibra óptica (2) que comprende:
· medios de emisión (3) adaptados para generar al menos dos señales ópticas pulsadas (9) y transmitir dichas señales ópticas pulsadas (9) a través de un primer extremo de la fibra óptica (2);
• medios de recepción (5) adaptados para recibir en el primer extremo de la fibra óptica (2) al menos una primera señal óptica retrodispersada (10) generada mediante dispersión Rayleigh por una primera señal óptica pulsada de las señales ópticas pulsadas (9) al propagarse por la fibra óptica (2), y una segunda señal óptica retrodispersada (10) generada mediante dispersión Rayleigh por una segunda señal óptica pulsada de las señales ópticas pulsadas (9) al propagarse por la fibra óptica (2); y
· medios de detección adaptados para medir al menos un primer perfil de amplitud de la al menos una primera señal óptica retrodispersada (10) y un segundo perfil de amplitud de la al menos una segunda señal óptica retrodispersada (10);
estando el sistema (1) caracterizado por que:
• los medios de emisión (3) están adaptados para generar las señales ópticas pulsadas (9) con un mismo perfil de frecuencia instantánea (92), siendo dicho perfil de frecuencia instantánea (92) variable en el tiempo; y
• comprende medios de computación (8) configurados para calcular las variaciones locales del índice de refracción de la fibra óptica (2) en función de, al menos, el perfil de frecuencia instantánea (92), el primer perfil de amplitud y el segundo perfil de amplitud.
2. Sistema de acuerdo con la reivindicación 1 caracterizado por que el perfil de frecuencia instantánea (92) comprende al menos una rampa lineal.
3. Sistema de acuerdo con una cualquiera de las reivindicaciones anteriores, caracterizado por que la primera las señales ópticas pulsadas (9) comprenden al menos un pulso (91) rectangular.
4. Sistema de acuerdo con una cualquiera de las reivindicaciones anteriores, caracterizado por que comprende una memoria accesible por los medios de computación (8), estando almacenado en dicha memoria el perfil de frecuencia instantánea (92).
5. Sistema de acuerdo con una cualquiera de las reivindicaciones 1 a 3 caracterizado por que los medios de detección comprenden al menos un detector coherente (6) adaptado para medir el perfil de frecuencia instantánea (92).
6. Sistema de acuerdo con la reivindicación 5 caracterizado por que los medios de detección comprenden un único detector coherente (6) conectado a los medios de emisión (3) y los medios de recepción (5), estando el detector coherente (6) adaptado para medir, además del perfil de frecuencia instantánea (92), el primer perfil de amplitud y el segundo perfil de amplitud;
7. Sistema de acuerdo con la reivindicación 5 caracterizado por que los medios de detección comprenden:
• un detector coherente (6) conectado a los medios de emisión (3), estando el detector coherente (6) adaptado para medir el perfil de frecuencia instantánea (92); y
• un fotodetector de intensidad (7) conectado a los medios de recepción (5), estando el fotodetector de intensidad (7) adaptado para medir el primer perfil de amplitud y el segundo perfil de amplitud.
8. Sistema de acuerdo con una cualquiera de las reivindicaciones anteriores caracterizado por que los medios de emisión (3) adicionalmente comprenden medios de estabilización de frecuencia.
9. Sistema de acuerdo con una cualquiera de las reivindicaciones anteriores caracterizado por que el sistema adicionalmente comprende amplificador distribuido (11) bidireccional adaptado para amplificar las señales ópticas pulsadas (9), el primer perfil de amplitud y el segundo perfil de amplitud en la fibra óptica (2).
10. Sistema de acuerdo con una cualquiera de las reivindicaciones anteriores caracterizado por que el sistema adicionalmente comprende medios de sintonización adaptados para modificar dinámicamente una longitud de pulso y una pendiente del perfil de frecuencia instantánea (92) de las señales ópticas pulsadas (9).
11. Sistema de acuerdo con una cualquiera de las reivindicaciones anteriores caracterizado por que los medios de computación (8) están adaptados para calcular las variaciones locales del índice de refracción de la fibra óptica (2) en función de, además, unas variaciones locales de índice de refracción conocidas de una fibra de calibración (21).
12. Sistema de acuerdo con una cualquiera de las reivindicaciones anteriores caracterizado por que los medios de emisión (3) comprenden medios de control de polarización (34) adaptados para controlar un estado de polarización de al menos una de las señales ópticas pulsadas (9).
13. Sistema de acuerdo con la reivindicación 12 caracterizado por que los medios de emisión (3) están adaptados para generar al menos dos señales ópticas pulsadas (9) con polarizaciones ortogonales y porque los medios de computación (8) están adaptados para medir la variación de índice de refracción local para cada una de las polarizaciones ortogonales.
14. Sistema de acuerdo con la reivindicación 12 caracterizado por que los medios de emisión (3) están adaptados para generar simultáneamente dos pulsos (91) incoherentes entre sí, presentando dichos dos pulsos (91) polarizaciones ortogonales; y porque los medios de computación (8) están adaptados para medir la variación de índice de refracción local para cada una de las polarizaciones ortogonales.
15. Sistema de acuerdo con una cualquiera de las reivindicaciones anteriores caracterizado porque los medios de computación (8) están adaptados además para realizar medidas adicionales de caracterización distribuida de la fibra óptica (2) a partir de, al menos, las señales ópticas retrodispersadas (10), y realizándose dichas medidas adicionales en paralelo al cálculo de variaciones locales de índice de refracción.
16. Sistema de acuerdo con cualquiera de las reivindicaciones 1 a 14, caracterizado por que:
• los medios de emisión (3) están adaptados además para generar las señales ópticas pulsadas (9) con un contenido espectral mayor que unas derivas esperadas de un láser de emisión y que un rango espectral necesario para medir las variaciones locales de índice de refracción, y
• los medios de computación (8) están configurados para realizar una medida distribuida de vibraciones insensible a dichas derivas y dichas variaciones locales de índice de refracción.
17. Sistema de acuerdo con cualquiera de las reivindicaciones anteriores caracterizado por que los medios de emisión (3) están adaptados para generar pulsos (91) de distintas intensidades ópticas y porque los medios de computación (8) están adaptados para calcular un índice de refracción no lineal local de la fibra óptica (2) a partir de variaciones locales de índice de refracción de una fibra óptica (2) para pulsos (91) de distintas intensidades ópticas.
18. Método de caracterización distribuida de variaciones locales del índice de refracción de una fibra óptica (2) que comprende:
• generar al menos una primera señal óptica pulsada (9) de las señales ópticas pulsadas (9) y una segunda señal óptica pulsada de las señales ópticas pulsadas
(9);
• transmitir dichas señales ópticas pulsadas (9)) a través de un primer extremo de la fibra óptica (2);
• recibir en el primer extremo de la fibra óptica (2) al menos una primera señal óptica retrodispersada (10) generada mediante dispersión Rayleigh por la primera señal óptica pulsada (9) de las señales ópticas pulsadas (9) al propagarse por la fibra óptica (2), y una segunda señal óptica retrodispersada (10) generada mediante dispersión Rayleigh por segunda señal óptica pulsada de las señales ópticas pulsadas (9) al propagarse por la fibra óptica (2); y
• medir al menos un primer perfil de amplitud de la al menos una primera señal óptica retrodispersada (10) y un segundo perfil de amplitud de la al menos una segunda señal óptica retrodispersada (10);
estando el método caracterizado por que comprende:
• generar las señales ópticas pulsadas (9) con un mismo perfil de frecuencia instantánea (92), siendo dicho perfil de frecuencia instantánea (92) variable en el tiempo; y
• calcular las variaciones locales del índice de refracción de la fibra óptica (2) en función de, al menos, el perfil de frecuencia instantánea (92), el primer perfil de amplitud y el segundo perfil de amplitud.
19. Método de acuerdo con la reivindicación 18 caracterizado por que el paso de calcular las variaciones locales del índice de refracción comprende a su vez:
• calcular un perfil de desplazamiento local basado en una correlación local entre el primer perfil de amplitud y el segundo perfil de amplitud; y
• multiplicar el perfil de desplazamiento local por un factor derivado del perfil de frecuencia instantánea (92).
20. Método de acuerdo con una cualquiera de las reivindicaciones 18 y 19 caracterizado por que comprende además almacenar múltiples perfiles de amplitud de las señales ópticas retrodispersadas (10) y optimizar una selección de perfiles a comparar en función de una velocidad de las variaciones locales del índice de refracción y una velocidad de adquisición de los perfiles de amplitud.
21. Programa de ordenador que comprende código de programa de ordenador necesario para realizar las etapas del método de una cualquiera de las reivindicaciones 18 a 20, cuando el mencionado programa se ejecuta en un procesador digital de la señal, un circuito integrado específico de la aplicación, un microprocesador, un microcontrolador o una forma de hardware programable.
PCT/ES2016/070851 2015-11-30 2016-11-30 Sistema y método de caracterización distribuida de variaciones de índice de refracción de una fibra óptica WO2017093588A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201531736 2015-11-30
ES201531736A ES2622354B1 (es) 2015-11-30 2015-11-30 Sistema y método de caracterización distribuida de variaciones de índice de refracción de una fibra óptica

Publications (1)

Publication Number Publication Date
WO2017093588A1 true WO2017093588A1 (es) 2017-06-08

Family

ID=58796373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070851 WO2017093588A1 (es) 2015-11-30 2016-11-30 Sistema y método de caracterización distribuida de variaciones de índice de refracción de una fibra óptica

Country Status (2)

Country Link
ES (1) ES2622354B1 (es)
WO (1) WO2017093588A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3680638A1 (en) * 2019-01-11 2020-07-15 AiQ Dienstleistungen UG (haftungsbeschränkt) Distributed acoustic sensing and sensor integrity monitoring
WO2023067562A1 (en) 2021-10-22 2023-04-27 Inphotech Spolka Z Ograniczona Odpowiedzialnoscia Method of measuring a parameter and optical measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113527A1 (en) * 2006-04-03 2007-10-11 British Telecommunications Public Limited Company Evaluating the position of a disturbance
WO2010055293A1 (en) * 2008-11-12 2010-05-20 Fotech Solutions Limited Distributed fibre optic sensing for event detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113527A1 (en) * 2006-04-03 2007-10-11 British Telecommunications Public Limited Company Evaluating the position of a disturbance
WO2010055293A1 (en) * 2008-11-12 2010-05-20 Fotech Solutions Limited Distributed fibre optic sensing for event detection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3680638A1 (en) * 2019-01-11 2020-07-15 AiQ Dienstleistungen UG (haftungsbeschränkt) Distributed acoustic sensing and sensor integrity monitoring
US11193817B2 (en) 2019-01-11 2021-12-07 Aiq Dienstleistungen Ug (Haftungsbeschränkt) Distributed acoustic sensing and sensor integrity monitoring
WO2023067562A1 (en) 2021-10-22 2023-04-27 Inphotech Spolka Z Ograniczona Odpowiedzialnoscia Method of measuring a parameter and optical measurement system
EP4180775A1 (en) 2021-10-22 2023-05-17 Inphotech Spolka Z ograniczona Odpowiedzialnoscia Method of measuring a parameter and optical measurement system

Also Published As

Publication number Publication date
ES2622354B1 (es) 2018-04-10
ES2622354A1 (es) 2017-07-06

Similar Documents

Publication Publication Date Title
US8392138B2 (en) System and method for correcting sampling errors associated with radiation source tuning rate fluctuations in swept-wavelength interferometry
ES2730766T3 (es) Dispositivo y procedimiento para la medición resuelta localmente de temperatura y/o dilatación mediante dispersión de Brillouin
US10539476B2 (en) Temperature or strain distribution sensor comprising a coherent receiver to determine a temperature or a strain associated with a device under test
Song et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry
ES2354287T3 (es) Aparato y método para realizar una desmodulación en cuadratura por polarización en tomografía de coherencia óptica.
JP5829784B1 (ja) Ofdrシステム
EP2373956A1 (en) Distributed optical fibre sensor
US20170276470A1 (en) Optical frequency domain reflectometer and optical frequency domain reflectometry
WO2019029163A1 (zh) 一种ofdr中消除偏振衰落的装置和方法
US20170307474A1 (en) Method and Apparatus for Measuring the Local Birefringence along an Optical Waveguide
KR101866691B1 (ko) 펄스 레이저의 광 펄스열에 대한 비행시간 검출을 이용하는 변형률 센싱 시스템
US10634525B2 (en) Detection of local property changes in an optical sensing fiber
US20230228616A1 (en) Distributed optical fibre sensor
JP6537972B2 (ja) 光システムにおいて周波数歪および偏光誘因効果を補償するシステムおよび方法
ES2596260B1 (es) Sistema y método de caracterización distribuida de perfil de dispersión de una fibra óptica
ES2622354B1 (es) Sistema y método de caracterización distribuida de variaciones de índice de refracción de una fibra óptica
CN105021310A (zh) 高精度光纤光栅温度传感系统
RU2532562C1 (ru) Распределенный датчик акустических и вибрационных воздействий
ES2914698T3 (es) Procedimiento para la determinación de una variación de un parámetro físico con el signo correcto y dispositivo con una fibra óptica
WO2020022921A1 (ru) Способ и устройство распределенного измерения двулучепреломления в волокнах с сохранением поляризации (варианты)
Zhao et al. Nonlinear correction in the frequency scanning interferometry system by a fiber resonator
RU2539849C2 (ru) Способ и устройство распределенного измерения двулучепреломления в волокнах с сохранением поляризации (варианты)
US11994376B2 (en) Distributed vibration measuring device and method
KR20190042218A (ko) 편광유지광섬유를 이용한 광온도 측정 장치
Zhang et al. Chaos Brillouin Distributed Optical Fiber Sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870039

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870039

Country of ref document: EP

Kind code of ref document: A1