WO2019029163A1 - 一种ofdr中消除偏振衰落的装置和方法 - Google Patents

一种ofdr中消除偏振衰落的装置和方法 Download PDF

Info

Publication number
WO2019029163A1
WO2019029163A1 PCT/CN2018/079404 CN2018079404W WO2019029163A1 WO 2019029163 A1 WO2019029163 A1 WO 2019029163A1 CN 2018079404 W CN2018079404 W CN 2018079404W WO 2019029163 A1 WO2019029163 A1 WO 2019029163A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
maintaining fiber
interferometer
signal
fiber
Prior art date
Application number
PCT/CN2018/079404
Other languages
English (en)
French (fr)
Inventor
王辉文
张晓磊
温永强
Original Assignee
武汉隽龙科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉隽龙科技股份有限公司 filed Critical 武汉隽龙科技股份有限公司
Publication of WO2019029163A1 publication Critical patent/WO2019029163A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre

Definitions

  • the present invention relates to the field of optical fiber sensing technology, and more particularly to an apparatus and method for eliminating polarization fading in OFDR.
  • OFDR technology is a distributed optical fiber measurement and sensing technology widely used in optical communications, aerospace, civil engineering, energy and power.
  • the single-mode fiber in the OFDR system has birefringence, which causes the polarization state of the output light in the fiber link to fluctuate and cause polarization fading.
  • the basic principle of OFDR technology is optical heterodyne detection, which is a beat frequency interference signal obtained by acquiring signal light and reference light.
  • the specific manifestation of the polarization fading phenomenon is that the amplitude of the beat frequency interference signal of the signal light and the reference light randomly fluctuates, and even the case where the beat frequency interference signal cannot be detected may occur.
  • the polarization fading effect can seriously affect the accuracy of the OFDR system measurement.
  • the method of adding a polarization controller refers to adding a polarization controller to a reference optical path or a signal optical path to control the polarization state of the optical path optical signal.
  • the polarization states of the two optical signals are matched to achieve the maximum beat frequency interference signal.
  • This method is simpler than polarization diversity reception techniques.
  • the optical path needs to be adjusted in the early stage, and when the external environment changes, the optimal matching polarization state of the reference light and the signal light may change, so that the polarization fading suppression effect is unstable.
  • the present invention provides an apparatus and method for eliminating polarization fading in OFDR.
  • the basic idea of the invention is that the polarization diversity receiving device is not added before the beat signal receiving end, nor is the polarization controller added to the reference arm or signal (sensing) arm. Instead, a polarization-maintaining fiber or a polarization-maintaining fiber device is used throughout the main optical path, the main interferometer, and the optical fiber to be tested.
  • the conventional OFDR suppression polarization fading method suppresses the polarization fading.
  • the present invention controls the polarization state of the beat frequency interference signal in the main interferometer to the slow axis, thereby fundamentally eliminating the polarization fading phenomenon.
  • the linear swept laser is used for emitting a linearly polarized laser with a periodic linear change of laser wavelength, and the polarization state is a slow axis alignment and a fast axis cutoff;
  • the polarization maintaining fiber splitter is configured to divide the frequency sweeping laser into two paths and enter the auxiliary interferometer and the main interferometer respectively;
  • the main interferometer is configured to cause a beat frequency laser to enter the main interferometer to generate a first beat signal
  • the auxiliary interferometer is configured to cause a beat frequency laser to enter the auxiliary interferometer to generate a second beat frequency signal, and the second beat frequency signal is converted into an external clock of the high speed data acquisition card;
  • the data acquisition card is configured to sample the first beat signal in an equal frequency domain interval under the trigger of the external clock
  • the computer is configured to perform processing analysis on the collected first beat signal.
  • the main interferometer includes a signal arm (ie, a sensing arm) and a reference arm, the sensing arm includes a polarization maintaining fiber circulator and a sensing fiber, and the polarization maintaining fiber circulator is biaxially operated;
  • the polarization-maintaining fiber splitter and the internal fiber device of the main interferometer are polarization-maintaining fiber devices, and the sensing fiber is a polarization-maintaining fiber.
  • the main interferometer further includes a polarization maintaining fiber isolators, a first polarization maintaining fiber coupler and a second polarization maintaining fiber coupler, and one end of the polarization maintaining fiber isolators is connected to the polarization maintaining fiber beam splitter The other end is connected to the input end of the polarization maintaining fiber coupler; the polarization maintaining fiber coupler input end is connected to the polarization maintaining fiber isolator, and the output end is connected to the reference arm and the signal (sensing) arm;
  • the fiber circulator is configured to introduce a reflection signal of the sensing fiber (ie, the fiber to be tested) into the second polarization maintaining fiber coupler; the reflected signal of the sensing arm and the signal of the reference arm occur at the second polarization maintaining fiber coupler Frequency interference.
  • the main interferometer further includes a first photodetector, one end of which is connected to the second polarization maintaining fiber coupler, and the other end is connected to the data acquisition card.
  • the auxiliary interferometer comprises an optical isolator, a fiber coupler, two single-mode fibers and a second photodetector, wherein the ends of the two single-mode fibers are connected with a Faraday rotating mirror, and two paths of light pass through two The Faraday rotating mirror returns along the way, and the beat frequency interference occurs at the fiber coupler, and the generated second beat signal enters the second photodetector.
  • the polarization maintaining fiber splitter specifically divides the frequency sweeping laser into 10:90 two paths, 10% of the light enters the auxiliary interferometer, and 90% of the light enters the main interferometer.
  • the linear swept laser is a narrow linewidth laser, and the output light is a slow axis aligned, fast axis cutoff polarized light, the scanning range is 1520 nm-1630 nm, and the sweep speed is 2 nm/s-100 nm/s.
  • the present invention also provides a method for eliminating polarization fading in OFDR, comprising the following steps:
  • the linear swept laser emitted by the linear swept laser is divided into two paths by the polarization maintaining fiber splitter, one into the main interferometer and one into the auxiliary interferometer;
  • the light is split into two paths through the polarization-maintaining fiber coupler, one for the fiber to be tested, as the signal (sensing) arm; the other for entering the reference arm, the Rayleigh in the signal (sensing) arm
  • the backscattered signal passes through the polarization maintaining fiber circulator and enters the second polarization maintaining fiber coupler, and interferes with the signal in the reference arm in the second polarization maintaining fiber coupler. Since the optical paths of the two return signals are different, the introduction With a delay, the interference signal contains a beat signal;
  • the light is split into two paths through the fiber coupler, and the two paths reflected by the Faraday rotating mirror are subjected to beat frequency interference at the fiber coupler, and the beat signal is used as an external clock of the data acquisition card for triggering. Collecting the beat signal of the main interferometer;
  • the data acquisition card samples the beat signal of the main interferometer in equal frequency interval and processes and analyzes it in the computer to realize the end point and loss detection of the fiber link, and realize distributed temperature and strain sensing.
  • the present invention proposes an apparatus and method for eliminating polarization fading in OFDR.
  • Polarization-maintaining fibers and polarization-maintaining fiber devices are used in both the main optical path and the main interferometer.
  • the sensing fiber ie, the fiber to be tested
  • the polarization maintaining fiber is a polarization maintaining fiber.
  • the invention not only does not need to add additional signal processing in the computer, but also has a polarization state that is not affected by the external environment and thus does not require multiple calibrations, is convenient to use, and has good system measurement stability and high accuracy.
  • the invention can be applied to the end loss detection of the optical communication device, and the distributed temperature and strain sensing function of the invention can also be applied to the fields of aerospace, civil engineering, energy and electric power and the like.
  • Figure 1 is a diagram of the OFDR system device
  • FIG. 2 is a schematic structural view of an OFDR device
  • 3 is a signal curve of an optical fiber to be tested outputted by an OFDR device that does not suppress polarization fading;
  • Figure 5 shows an OFDR system (without polarization-maintaining polarization diversity detection structure) composed of a common single-mode fiber device, Rayleigh scattering spectral cross-correlation diagram;
  • the auxiliary interferometer In the auxiliary interferometer, the light is split into two paths through the fiber coupler, designed as an M-Z interferometer, and the Faraday rotating mirror is placed at the end. The light enters the auxiliary interferometer, and the two paths of light reflected by the Faraday rotating mirror interfere with the beat at the fiber coupler.
  • the beat signal is used as an external clock of the high-speed data acquisition card to trigger the acquisition of the beat signal of the main interferometer.
  • the beat frequency of the auxiliary interferometer determines the maximum measurable distance of the optical frequency domain reflecting device.
  • the reflection point position information can be expressed by the following formula:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

一种OFDR中消除偏振衰落的装置,包括线性扫频激光器(1)、保偏光纤分束器(2)、主干涉仪(3)、辅助干涉仪(4)、数据采集卡(5)和计算机(6),主干涉仪(3)用于使进入该主干涉仪(3)的扫频激光发生拍频干涉,产生第一拍频信号;辅助干涉仪(4)使进入该辅助干涉仪(4)的扫频激光发生拍频干涉,产生第二拍频信号,该第二拍频信号经过转化后作为高速数据采集卡(5)的外部时钟;数据采集卡(5)在外部时钟的触发下等频域间隔采样第一拍频信号。该装置在主光路、主干涉仪(3)、待测光纤均使用保偏光纤和保偏光纤器件,从而在主干涉仪(3)光路中严格控制干涉信号的偏振态为慢轴对准,快轴截止,从根本上消除偏振衰落现象。该装置在断点检测、损耗测量和分布式温度应变传感中稳定性、准确性得到显著提高。还提供一种OFDR中消除偏振衰落的方法。

Description

一种OFDR中消除偏振衰落的装置和方法 技术领域
本发明涉及光纤传感技术领域,更具体而言,涉及一种OFDR中消除偏振衰落的装置和方法。
背景技术
OFDR技术是一种广泛应用于光通信、航空航天、土木工程、能源电力等领域的分布式光纤测量与传感技术。OFDR系统中的单模光纤存在双折射现象,会造成光纤链路中的输出光的偏振态发生波动而产生偏振衰落现象。OFDR技术的基本原理是光外差检测,是通过获取信号光和参考光的拍频干涉信号。偏振衰落现象的具体表现为信号光和参考光的拍频干涉信号幅度随机涨落,甚至会出现无法检测到拍频干涉信号的情况。偏振衰落效应会严重影响OFDR系统测量的准确性。
目前抑制偏振衰落效应的方法主要有两种:偏振分集接收技术和添加偏振控制器。
偏振分集接受技术指的在接收端利用两个或多个成一定夹角的检偏器对拍频干涉信号进行检偏以消除被探测信号的偏振衰落现象。其基本思想是利用两个或多个不同角度的检偏器对拍频干涉信号进行检测。由于完全衰落不会同时发生,因此至少有一个检偏器能检测到干涉信号。偏振分集接收技术最理想的的方法是采用两个检偏器构成的双偏振态分集接收器,并使两个偏振器成90°夹角。对双偏振态分集接收器采集的两路干涉信号在计算机中进行叠加并处理。偏振分集接受技术的主要劣势是需要多路光探测并在计算机中添加额外信号处理。
添加偏振控制器的方法是指在参考光路或者信号光路中添加偏振控制器来控制该光路光信号的偏振态。通过调节该光路信号的偏振态,使得两路光信号的偏振态相匹配从而实现拍频干涉信号最大。相比偏振分集接收技术,该方法简单。但前期需要调节光路,并且当外界环境发生变化时,参考光和信号光的最佳匹配偏振态有可能改变,从而使得抑制偏振衰落效果不稳定。
发明内容
针对现有技术的不足或者改进需求,本发明提供了一种OFDR中消除偏振衰落的装置和方法。本发明的基本思想是:拍频信号接收端之前不添加偏振分集接受装置,也不在参考臂或者信号(传感)臂中添加偏振控制器。而是在整个主光路、主干涉仪、待测光纤均采用保偏光纤或者保偏光纤器件。传统的OFDR抑制偏振衰落方法,是抑制偏振衰落,本发明将主干涉仪中拍频干涉信号的偏振态控制在慢轴,从根本上消除偏振衰落现象。
本发明提供一种OFDR中消除偏振衰落的装置,该装置包括线性扫频激光器、保偏光纤分束器、主干涉仪、辅助干涉仪、数据采集卡和计算机,其中:
所述线性扫频激光器,用于发出激光波长周期性线性变化的线偏振激光,偏振态为慢轴对准、快轴截止;
所述保偏光纤分束器,用于将扫频激光分为两路,分别进入辅助干涉仪和主干涉仪;
所述主干涉仪,用于使进入该主干涉仪的扫频激光发生拍频干涉,产生第一拍频信号;
所述辅助干涉仪,用于使进入该辅助干涉仪的扫频激光发生拍频干涉,产生第二拍频信号,该第二拍频信号经过转化后作为高速数据采集卡的外部时钟;
所述数据采集卡,用于在外部时钟的触发下等频域间隔采样第一拍频信号;
所述计算机,用于对采集的第一拍频信号进行处理分析。
接上述技术方案,所述主干涉仪包括信号臂(即传感臂)和参考臂,传感臂包括保偏光纤环形器和传感光纤,该保偏光纤环形器为双轴工作;所述保偏光纤分束器、主干涉仪内部光纤器件均为保偏光纤器件,传感光纤为保偏光纤。
接上述技术方案,所述主干涉仪还包括保偏光纤隔离器、第一保偏光纤耦合器和第二保偏光纤耦合器,所述保偏光纤隔离器的一端连接保偏光纤分束器,另一端与所述保偏光纤耦合器的输入端连接;所述保偏光纤耦合器输入端与保偏光纤隔离器连接,输出端连接参考臂和信号(传感)臂;所述保偏光纤环形器用于将传感光纤(即待测光纤)的反射信号导入第二保偏光纤耦合器;传感臂的反射信号与参考臂的信号在所述第二保偏光纤耦合器处发生拍频干涉。
接上述技术方案,该主干涉仪还包括第一光电探测器,其一端与第二保偏光纤耦合器连接,另一端与数据采集卡连接。
接上述技术方案,该辅助干涉仪包括光隔离器、光纤耦合器、两路单模光纤和第二光电探测器,该两路单模光纤的末端均连接法拉第旋转镜,两路光经过两个法拉第旋转镜反射沿路返回,在光纤耦合器处发生拍频干涉,产生的第二拍频信号进入第二光电探测器。
接上述技术方案,所述保偏光纤分束器具体将扫频激光分为10:90两路,10%的光进入辅助干涉仪,90%的光进入主干涉仪。
接上述技术方案,所述线性扫频激光器为窄线宽激光器,输出光为慢轴对准、快轴截止的偏振光,扫描范围为1520nm-1630nm,扫频速度2nm/s-100nm/s。
本发明还提供了一种OFDR中消除偏振衰落的方法,包括以下步骤:
由线性扫频激光器发出的线性扫频激光经过保偏光纤分束器分为两路,一路进入主干涉仪,一路进入辅助干涉仪;
在主干涉仪中,光经过保偏光纤耦合器分为两路,一路为待测光纤中,作为信号(传感)臂;另一路进入参考臂中,信号(传感)臂中的瑞利后向散射信号经过保偏光纤环形器后进入第二保偏光纤耦合器,并与参考臂中的信号在第二保偏光纤耦合器中发生干涉,由于两路返回信号的光程不同,引入了时延,则干涉信号中含有拍频信号;
在辅助干涉仪中,光经过光纤耦合器分为两路,经法拉第旋转镜反射回来的两路光在光纤耦合器处发生拍频干涉,拍频信号作为数据采集卡的外部时钟,用于触发采集主干涉仪的拍频信号;
数据采集卡对主干涉仪的拍频信号进行等频域间隔采样,在计算机进行处理分析,以实现光纤链路端点与损耗检测,同时实现分布式温度、应变传感。
与现有技术相比,本发明的有益效果为:本发明提出了一种OFDR中消除偏振衰落的装置和方法。在主光路和主干涉仪中均使用保偏光纤和保偏光纤器件。另外,在分布式温度应变传感中,使用的传感光纤(即待测光纤)为保偏光纤。从而在主干涉仪光路中将偏振衰落抑制,从根本上消除偏振衰落现象,系统整体测量稳定性、准确性得到显著提高。本发明相比于传统OFDR技术,不仅无需在计算机中增加额外信号处理,而且其偏振态不受外界环境影响从而无需多次校准,使用操作方便,系统测量稳定性好、准确性高。本发明可应用于光通讯器件的端点损耗检测,本发明的分布式温度、应变传感功能还可以应用于航空航天、土木工程、能源电力等领域。
附图说明
为了完善说明并帮助更好地理解本发明特性的目的,下面通过附图对本发明的具体实施方式作进一步详细的说明。
图1为OFDR系统装置图;
图2为OFDR装置具体结构示意图;
图3为未抑制偏振衰落的OFDR装置输出的待测光纤为的信号曲线;
图4为本发明装置输出的待测光纤为的信号曲线;
图5采用普通单模光纤器件构成的OFDR系统(没有保偏偏振分集探测结构),瑞利散射光谱互相关图;
图6采用保偏光路探测结构的OFDR系统,消除了偏振衰落后瑞利散射光谱互相关图。
图中:1为线性扫描激光器,2为保偏光纤分束器(10:90),3为主干涉仪,4为辅助干涉仪,5为高速数据采集卡,6为计算机,7为保偏光纤隔离器,8为保偏光纤耦合器(1x2),9为参考臂,10为信号(传感)臂,11为环形器,12为第二保偏光纤耦合器(1x2),13为光电探测器,14为光隔离器,15为光纤耦合器(2x2),16为法拉第旋转镜,17为单模光纤,18为法拉第旋转镜,19为光电探测器。
具体实施方式
下面实施例结合附图对本发明作进一步的描述。
本发明采用辅助干涉仪产生的拍频信号作为数据采集卡的外部时钟,对主干涉仪的拍频信号实现等频率间隔采样。
本发明的基本原理是基于光外差干涉技术。具体的,由窄线宽激光器发出的线性扫频激光经过保偏光纤耦合器分为两路,一路进入主干涉仪系统,一路 进入辅助干涉仪系统。
在主干涉仪系统中,光经过保偏光纤耦合器分为两路,一路光为信号光(信号臂中传输),一路为参考光(参考臂中传输)。参考光直接耦合进入第二保偏光纤耦合器(1x2)中的一个输入端。信号光进入光纤环形器a端口并从b端口出射,传输到待测光纤中。信号光在待测光纤(传感光纤)上发生后向散射,后向散射光沿路返回到光纤环形器并由环形器的c口出射进入第二保偏光纤耦合器(1x2)的另一个输入端。两路光在第二保偏光纤耦合器(1x2)处发生干涉。
由于两路返回信号的光程不同,引入了时延,则干涉信号中含有拍频信号。
在辅助干涉仪中,光经过光纤耦合器分为两路,设计成M-Z干涉仪,末端放置法拉第旋转镜。光进入辅助干涉仪,经法拉第旋转镜反射回来的两路光在光纤耦合器处发生拍频干涉。拍频信号作为高速数据采集卡的外部时钟,用于触发采集主干涉仪的拍频信号。根据采样定理,辅助干涉仪的拍频大小决定了光频域反射装置的最大可测量距离。
两路干涉仪系统的拍频信号经光电探测器后,光信号转换为电信号。其中,主干涉仪拍频信号接高速数据采集卡的输入通道,辅助干涉仪的拍频信号接高速数据采集卡的外部时钟通道。
高速数据采集卡采集到的主干涉仪电信号,在计算机中处理分析。
本发明消除OFDR装置中偏振衰落的的关键技术为:相比于传统的OFDR技术,本发明在主光路和主干涉仪中均使用保偏光纤以及保偏光纤器件。另外,在分布式温度应变传感中,使用的传感光纤(待测光纤)为保偏光纤。从而待测拍频信号不会发生偏振衰落,系统整体测量稳定性、准确性得到显著提高。
所述的OFDR装置的工作原理为:线性扫描激光器1发出激光波长周期性线性变化的激光,激光进入保偏光纤分束器(10:90)2分为两路光。一路光进入主干涉仪3(90%输出端),一路光进入辅助干涉仪4。主干涉仪3中,在保偏光纤耦合器(1x2)8中的1端口光路放置保偏光纤隔离器7防止1端口反射光进入线性扫描激光器1。光在保偏光纤耦合器(1x2)8的1端口入射,在2端口和3端口出射,两路光分别进入参考臂9和传感臂10。参考臂9中的光直接进入第二保偏光纤耦合器(1x2)12。传感臂10中信号光进入保偏光纤环形器11a端口进入b端口出射,出射光进入待测光纤中,待测光纤的后向瑞利散射沿路返回进入保偏光纤环形器11b端口,并从c端口出射进入第二保偏光纤耦合器(1x2)12。待测光纤反射光与参考臂中的直接进入第二保偏光纤耦合器12的光的光程不同,因此从参考臂9和传感臂10返回的两路光信号在第二保偏光纤耦合器(1x2)12上发生拍频干涉,干涉光信号进入光电探测器13。
辅助干涉仪4中,在光纤耦合器(2x2)15的1端口光路放置光隔离器14防止1端口反射光进入线性扫描激光器1。光由1端口入射进入3端口和4端口,在辅助干涉仪4的其中一个臂接入一卷单模光纤16作为延迟光纤用。两路光经过法拉第旋转镜17和18反射沿路返回在光纤耦合器(2x2)15处发生拍频干涉并在2端口出射进入光电探测器19。
辅助干涉仪4的拍频信号经光电探测器19转化为电信号后作为高速数据采集卡5的外部时钟,触发采集主干涉仪3中的拍频信号,实现等频域间隔采样。采集到的拍频信号导入计算机6分析处理。
分析处理分为两个部分。即:分布式光纤链路断点检测与损耗测量和分布式温度应变传感。
在光纤链路断点检测与损耗测量中:将等频域间隔采样采集的拍频信号经过傅里叶变换。变换后得到的频谱中,拍频信号频率可映射为物理距离,而拍频信号功率则反应了其相应反射点的反射率。
根据光频域反射技术定位原理可将反射点位置信息由以下公式表示:
Figure PCTCN2018079404-appb-000001
(其中z为该反射点位置处与参考臂法拉第旋转镜位置处距离差,f b为拍频信号拍频大小,γ为线性光源扫频速率,c为光速,n为光纤折射率。)
具体表现为:测得的拍频信号频率大小和传感臂中该反射点位置处与参考臂进入第二保偏光纤耦合器(1x2)12处距离差成线性关系。而拍频信号功率则反应了其相应反射点的反射率。
偏振衰落会严重影响测量性能。具体表现为:断点检测时,当端面反射特别是一些熔接点反射过弱时,反射信号会淹没在偏振衰落中,无法监测反射信号对应的位置。损耗特性测量时,由于偏振衰落使得整个频谱信息不平,每个位置的拍频信号大小不能反应出该点的反射率。因此不能准确测量光纤的损耗特性。
相比于传统的OFDR技术,本发明在主光路、主干涉仪、待测光纤中均使用保偏光纤以及保偏光纤器件。不仅无需在计算机中增加额外信号处理,而且其偏振态不受外界环境影响从而无需多次校准,待测拍频信号不会发生偏振衰落,系统整体测量稳定性、准确性得到显著提高。
如图3为未抑制偏振衰落的OFDR装置输出的待测光纤为的信号曲线,整个拍频信号谱收到随机偏振衰落影响起伏不平,严重影响了光纤断点检测与损 耗特性测量。当熔接点或者断点反射信号太弱时,菲涅尔反射峰值较低,可能淹没在偏振衰落中。
图4为本发明采用全保偏装置输出的待测光纤的信号曲线,对比于图3,有着明显的改善。消除偏振后的拍频谱每一段都是渐变过渡,准确的反应了整个待测光纤的损耗特性。可以检测到例如光纤熔接点的弱反射信号,测量损耗特性准确性显著提高。
在分布式温度和应变传感中:选取待测位置处附近区间(待测位置前后区间大小选取是根据测量空间分辨率和测量精度的来判定)所有反射点所映射的拍频信号进行分析。待测位置处温度、应变发生变化时,该选取区间所映射的拍频信号的频率大小整体发生平移,平移量跟温度和应变的变化量成线性相关。对温度、应变变化前后的两组数据进行互相关运算可以算出该选取区间所映射的拍频信号的频率大小的整体平移量。进而实现对该位置处的温度、应变测量。当对整个待测光纤沿线逐一采用上述运算方式时,即可实现分布式温度、应变传感。
在实验中发现偏振在瑞利散射光谱互相关中运算中会影响互相关峰值的判断,进而影响传感重复精度。
图5是采用普通单模器件构成的OFDR系统瑞利散射光谱互相关图,该装置没有在参考臂或信号臂中添加偏振控制器,也没有采用偏振分集接收结构。通过本地测量瑞利散射光谱(施加温度或应变)与本地参考光谱(未施加温度或应变)互相关运算得到的运算结果。由于偏振衰落影响,参考光和信号光的相关性会受到影响。互相关峰可能找不到或者出现多个,漂移量不易判别。
图6采用保偏光路探测结构的OFDR系统,消除了偏振衰落后互相关峰移 动图。可以明显准确的找到互相关峰。
本领域的技术人员容易理解,此处所说明的附图及实施例仅用以说明本发明技术方案而非对其限制,凡不脱离本发明方案的精神和原则之内所作的任何修改、等同替换和改进等,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (8)

  1. 一种OFDR中消除偏振衰落的装置,其特征在于,该装置包括线性扫频激光器、保偏光纤分束器、主干涉仪、辅助干涉仪、数据采集卡和计算机,其中:
    所述线性扫频激光器,用于发出激光波长周期性线性变化的线偏振激光,偏振态为慢轴对准、快轴截止;
    所述保偏光纤分束器,用于将扫频激光分为两路,分别进入辅助干涉仪和主干涉仪;
    所述主干涉仪,用于使进入该主干涉仪的扫频激光发生拍频干涉,产生第一拍频信号;
    所述辅助干涉仪,用于使进入该辅助干涉仪的扫频激光发生拍频干涉,产生第二拍频信号,该第二拍频信号经过转化后作为高速数据采集卡的外部时钟;
    所述数据采集卡,用于在外部时钟的触发下等频域间隔采样第一拍频信号;
    所述计算机,用于对采集的第一拍频信号进行处理分析。
  2. 如权利要求1所述的装置,其特征在于,所述主干涉仪包括传感臂和参考臂,传感臂包括保偏光纤环形器和传感光纤,该保偏光纤环形器为双轴工作;所述保偏光纤分束器、主干涉仪内部光纤器件均为保偏光纤器件,传感光纤为保偏光纤。
  3. 如权利要求2所述的装置,其特征在于,所述主干涉仪还包括保偏光纤隔离器、第一保偏光纤耦合器和第二保偏光纤耦合器,所述保偏光纤隔离器的一端连接保偏光纤分束器,另一端与所述保偏光 纤耦合器的输入端连接;所述第一保偏光纤耦合器输入端与保偏光纤隔离器连接,输出端连接参考臂和传感臂;所述保偏光纤环形器用于将传感光纤的反射信号导入第二保偏光纤耦合器;传感臂的反射信号与参考臂的信号在所述第二保偏光纤耦合器处发生拍频干涉。
  4. 如权利要求3所述的装置,其特征在于,该主干涉仪还包括第一光电探测器,其一端与第二保偏光纤耦合器连接,另一端与数据采集卡连接。
  5. 如权利要求1-4中任一项所述的装置,其特征在于,该辅助干涉仪包括光隔离器、光纤耦合器、两路单模光纤和第二光电探测器,该两路单模光纤的末端均连接法拉第旋转镜,两路光经过两个法拉第旋转镜反射沿路返回,在光纤耦合器处发生拍频干涉,产生的第二拍频信号进入第二光电探测器。
  6. 根据权利要求5所述的装置,其特征在于,所述保偏光纤分束器具体将扫频激光分为10:90两路,10%的光进入辅助干涉仪,90%的光进入主干涉仪。
  7. 根据权利要求5所述的装置,其特征在于,所述线性扫频激光器为窄线宽激光器,输出光为慢轴对准、快轴截止的偏振光,扫描范围为1520nm-1630nm,扫频速度2nm/s-100nm/s。
  8. 一种OFDR中消除偏振衰落的方法,其特征在于,包括以下步骤:
    由线性扫频激光器发出的线性扫频激光经过保偏光纤分束器分为两路,一路进入主干涉仪,一路进入辅助干涉仪;
    在主干涉仪中,光经过第一保偏光纤耦合器分为两路,一路进入待测光纤中,作为传感臂;另一路进入参考臂中,传感臂中的瑞利后向散射信号经过保偏光纤环形器后进入第二保偏光纤耦合器,并与参考臂中的信号在第二保偏光纤耦合器中发生干涉,由于两路返回信号的光程不同,引入了时延,则干涉信号中含有拍频信号;
    在辅助干涉仪中,光经过光纤耦合器分为两路,经法拉第旋转镜反射回来的两路光在光纤耦合器处发生拍频干涉,拍频信号作为数据采集卡的外部时钟,用于触发采集主干涉仪的拍频信号;
    数据采集卡对主干涉仪的拍频信号进行等频域间隔采样,在计算机进行处理分析,以实现光纤链路端点与损耗检测,同时实现分布式温度、应变传感。
PCT/CN2018/079404 2017-08-09 2018-03-19 一种ofdr中消除偏振衰落的装置和方法 WO2019029163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710673659.7 2017-08-09
CN201710673659.7A CN107576341B (zh) 2017-08-09 2017-08-09 Ofdr中消除偏振衰落的装置和方法

Publications (1)

Publication Number Publication Date
WO2019029163A1 true WO2019029163A1 (zh) 2019-02-14

Family

ID=61034617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079404 WO2019029163A1 (zh) 2017-08-09 2018-03-19 一种ofdr中消除偏振衰落的装置和方法

Country Status (2)

Country Link
CN (1) CN107576341B (zh)
WO (1) WO2019029163A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107576341B (zh) * 2017-08-09 2021-06-04 武汉昊衡科技有限公司 Ofdr中消除偏振衰落的装置和方法
CN108507981B (zh) * 2018-04-11 2020-09-22 南京大学 基于ofdr的硅基波导背反射传感装置及其测量方法
CN108645601B (zh) * 2018-05-11 2019-11-15 南京大学 一种光学微腔的光频域反射装置及其测量方法
CN108931498B (zh) * 2018-05-23 2021-09-07 哈尔滨工业大学 多通池内气体吸收光谱和吸收光程同步测量的装置和方法
CN110207734A (zh) * 2019-04-30 2019-09-06 武汉隽龙科技股份有限公司 光纤传感中消除温度应变交叉敏感的测量方法
CN110375781B (zh) * 2019-07-29 2021-12-21 武汉昊衡科技有限公司 一种ofdr中可变测量范围的自适应数据采集系统
CN110375782B (zh) * 2019-07-29 2021-09-03 武汉昊衡科技有限公司 提高ofdr单次扫描解调速度的装置及方法
CN110375779B (zh) * 2019-07-29 2021-06-04 武汉昊衡科技有限公司 提高ofdr频域采样率的装置和方法
CN110702263B (zh) * 2019-10-24 2024-03-29 国家电网有限公司 一种大芯径多模光纤的测温装置及方法
CN110823411B (zh) * 2019-11-25 2021-04-27 国家电网有限公司 基于光谱傅里叶变换解调的高精度光纤温度测量装置及方法
CN111510209B (zh) * 2020-04-10 2021-08-06 中国信息通信研究院 一种光纤震动监测方法和装置
CN111756436B (zh) * 2020-07-13 2021-05-04 武汉昊衡科技有限公司 光纤通信中分布式插损回损测量装置及方法
CN112461276B (zh) * 2020-11-10 2022-08-12 电子科技大学 一种减小ofdr光源非线性相位影响的系统及方法
CN112401814B (zh) * 2020-11-13 2022-11-11 太原理工大学 一种医用内窥镜形状光纤实时传感系统及一种医用内窥镜
CN112923960B (zh) * 2021-02-01 2023-06-13 南京大学 用于校正非线性调谐效应的光纤参数测量装置
CN113804300B (zh) * 2021-07-20 2023-12-26 广东工业大学 一种基于光频域最优移频干涉的分布式偏振串音测量装置
CN113804302A (zh) * 2021-07-20 2021-12-17 广东工业大学 一种基于光频域干涉的光纤分布式偏振串音快速测量装置
CN113804301A (zh) * 2021-07-20 2021-12-17 广东工业大学 一种基于光频域移频干涉的分布式偏振串音快速测量装置
CN113804299A (zh) * 2021-07-20 2021-12-17 广东工业大学 基于光频域干涉的光纤器件分布式双向偏振测量装置
CN113804303B (zh) * 2021-08-16 2023-12-26 广东工业大学 一种基于双拍频单辅助干涉仪的分布式双向偏振测量装置
CN113503901B (zh) * 2021-09-08 2022-05-10 武汉昊衡科技有限公司 消除白光干涉仪测量信号抖动的装置及方法
CN114323242B (zh) * 2021-11-19 2024-04-12 中国科学院上海光学精密机械研究所 基于偏振分解光纤干涉仪的全频段激光频率噪声的测量装置与方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007149230A2 (en) * 2006-06-16 2007-12-27 Luna Innovations Incorporated Distributed strain and temperature discrimination in polarization maintaining fiber
CN101718557A (zh) * 2009-11-06 2010-06-02 北京大学 一种双偏振干涉式光纤陀螺的联合信号处理方法
CN102322880A (zh) * 2011-08-18 2012-01-18 天津大学 偏振敏感的分布式光频域反射扰动传感装置和解调方法
CN102840909A (zh) * 2012-08-21 2012-12-26 天津大学 光频域反射分布式振动频率传感与定位装置和解调方法
CN103090813A (zh) * 2013-01-15 2013-05-08 电子科技大学 一种基于ofdr系统测量保偏光纤拍长及应变的高分辨率传感系统
WO2014072845A1 (en) * 2012-11-09 2014-05-15 Koninklijke Philips N.V. Optical frequency domain reflectometry system with multiple fibers per detection chain
CN104155619A (zh) * 2014-08-20 2014-11-19 天津大学 基于磁致伸缩分布式光频域反射磁场传感装置和解调方法
CN104782063A (zh) * 2012-10-15 2015-07-15 皇家飞利浦有限公司 光学频域反射计(ofdr)系统
CN107576341A (zh) * 2017-08-09 2018-01-12 武汉隽龙科技股份有限公司 Ofdr中消除偏振衰落的装置和方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224182A (en) * 1991-08-29 1993-06-29 Virginia Polytechnic Institute And State University Spatially-weighted two-mode optical fiber sensors
GB9318104D0 (en) * 1993-09-01 1993-10-20 Furukawa Research & Engineerin Method and apparatus for measuring a characteristic of an optical fibre
ITRM20060279A1 (it) * 2006-05-26 2007-11-27 Cnr Consiglio Naz Delle Ricerche Metodo di aggancio in frequenza di un laser ad un risonatore ottico in fibra a birifrangenza indotta metodo di interrogazione di un sensore di deformazione statica e o dinamica facente uso di tale aggancio e relativi apparati
CA2695587C (en) * 2008-02-29 2013-07-30 Fujikura Ltd. Physical quantity measuring apparatus utilizing optical frequency domain reflectometry and method for temperature and strain measurement using the apparatus
US9417103B2 (en) * 2011-09-20 2016-08-16 Schlumberger Technology Corporation Multiple spectrum channel, multiple sensor fiber optic monitoring system
CN102928199B (zh) * 2012-10-09 2014-12-03 哈尔滨工程大学 一种提高光学器件偏振串扰测量性能的装置及方法
EP2735849A1 (en) * 2012-11-23 2014-05-28 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO An absolute position measuring device and a method of performing an absolute position measurement
WO2014201057A2 (en) * 2013-06-10 2014-12-18 General Photonics Corporation Devices and methods for characterization of distributed fiber bend and stress
CN103940452B (zh) * 2014-03-21 2016-08-17 哈尔滨工程大学 白光干涉传感阵列的偏振衰落抑制装置及抑制方法
JP6306922B2 (ja) * 2014-03-28 2018-04-04 アンリツ株式会社 光周波数領域反射測定方法、光周波数領域反射測定装置およびそれを用いた位置または形状を測定する装置
CN103900798B (zh) * 2014-03-28 2016-06-29 哈尔滨工程大学 一种带有光程扫描在线校正的光学相干域偏振测量装置
CN105021216A (zh) * 2014-04-28 2015-11-04 中国计量学院 一种实现抗偏振衰落的光纤周界传感装置
US9726573B2 (en) * 2015-08-19 2017-08-08 Anritsu Corporation Optical frequency domain reflectometry, optical frequency domain reflectometer, and device for measuring position or shape using the same
CN105823624B (zh) * 2016-03-18 2018-08-31 哈尔滨工程大学 一种用于光学相干偏振测量的标定装置及其动态范围标定方法
CN105698871B (zh) * 2016-03-29 2018-08-21 天津大学 基于光频域反射的分布式应变温度同时测量装置及方法
CN206132085U (zh) * 2016-06-08 2017-04-26 江苏骏龙光电科技股份有限公司 一种光频扫描非线性校正系统
CN105953825B (zh) * 2016-06-29 2018-01-02 上海交通大学 用于温度与应变同时测量的光纤光栅式传感系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007149230A2 (en) * 2006-06-16 2007-12-27 Luna Innovations Incorporated Distributed strain and temperature discrimination in polarization maintaining fiber
CN101718557A (zh) * 2009-11-06 2010-06-02 北京大学 一种双偏振干涉式光纤陀螺的联合信号处理方法
CN102322880A (zh) * 2011-08-18 2012-01-18 天津大学 偏振敏感的分布式光频域反射扰动传感装置和解调方法
CN102840909A (zh) * 2012-08-21 2012-12-26 天津大学 光频域反射分布式振动频率传感与定位装置和解调方法
CN104782063A (zh) * 2012-10-15 2015-07-15 皇家飞利浦有限公司 光学频域反射计(ofdr)系统
WO2014072845A1 (en) * 2012-11-09 2014-05-15 Koninklijke Philips N.V. Optical frequency domain reflectometry system with multiple fibers per detection chain
CN103090813A (zh) * 2013-01-15 2013-05-08 电子科技大学 一种基于ofdr系统测量保偏光纤拍长及应变的高分辨率传感系统
CN104155619A (zh) * 2014-08-20 2014-11-19 天津大学 基于磁致伸缩分布式光频域反射磁场传感装置和解调方法
CN107576341A (zh) * 2017-08-09 2018-01-12 武汉隽龙科技股份有限公司 Ofdr中消除偏振衰落的装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, Y. ET. AL.: "Interference Fiber-optic sensor eliminating ploarization- Induced fading", CHINESE JOURNAL OF SCIENTIFC INSTRUMENT, vol. 35, no. 4, 30 April 2014 (2014-04-30), pages 890, ISSN: 0254-3087 *

Also Published As

Publication number Publication date
CN107576341A (zh) 2018-01-12
CN107576341B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2019029163A1 (zh) 一种ofdr中消除偏振衰落的装置和方法
CN107328429B (zh) 光频域反射技术中可提高近距离传感稳定性的装置及方法
CN102279095B (zh) 一种减小双折射色散对保偏光纤偏振耦合测量影响的装置
CN102288388B (zh) 提高保偏光纤偏振耦合测量精度和对称性的装置与方法
CN102645172B (zh) 共路oct超大量程间距测量系统和方法
US9041935B2 (en) Measuring polarization crosstalk in optical birefringent materials and devices based on reduction of line broadening caused by birefringent dispersion
CN103900680B (zh) 一种利用光源抑制偏振串音测量噪声的装置及检测方法
US7227645B2 (en) Method and apparatus for measuring polarization mode dispersion
CN105784336B (zh) 一种光纤器件的透射和反射性能测试装置及方法
CN103196584A (zh) 测量光纤中温度和应力的方法、以及布里渊光时域反射仪
CN108287056B (zh) 光纤敏感环偏振模耦合特性测评系统及测评方法
CN101634571A (zh) 光纤脉栅分布传感装置
CN106989904B (zh) 一种保偏光纤消光比的测量方法
WO2011022829A1 (en) System and method for brillouin analysis
CN113503901B (zh) 消除白光干涉仪测量信号抖动的装置及方法
WO2023001158A1 (zh) 基于光频域干涉的光纤器件分布式双向偏振测量装置
AU2020103312A4 (en) A sensitivity enhanced type optical time domain reflection distributed Michelson interferometer based on a dual-core optical fiber
CN113960631B (zh) 一种雷达系统
Takada et al. High sensitivity and submillimeter resolution optical time-domain reflectometry based on low-coherence interference
Wang et al. Temporal depolarization suppressed POTDR system for quasi-distributed instantaneous intrusion sensing and vibration frequency measurement
CN113804298B (zh) 一种基于匹配校正光频域干涉的分布式双向偏振测量装置
CN115452015A (zh) 一种双标度参考干涉的相噪精确校正光频域反射计
CN115711633A (zh) 一种环路结构参考干涉仪的相位噪声精确校正光频域反射计
CN203224310U (zh) 布里渊光时域反射仪
Braunfelds et al. Demonstration of polarization optical-time-domain reflectometer for monitoring of optical fiber lines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844861

Country of ref document: EP

Kind code of ref document: A1