WO2017092922A1 - Thermodynamic system - Google Patents

Thermodynamic system Download PDF

Info

Publication number
WO2017092922A1
WO2017092922A1 PCT/EP2016/074921 EP2016074921W WO2017092922A1 WO 2017092922 A1 WO2017092922 A1 WO 2017092922A1 EP 2016074921 W EP2016074921 W EP 2016074921W WO 2017092922 A1 WO2017092922 A1 WO 2017092922A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
pump
regenerator
condenser
heat exchanger
Prior art date
Application number
PCT/EP2016/074921
Other languages
French (fr)
Inventor
Pierre CONVERT
Original Assignee
Aqylon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aqylon filed Critical Aqylon
Priority to EP16782071.1A priority Critical patent/EP3384136A1/en
Publication of WO2017092922A1 publication Critical patent/WO2017092922A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours

Definitions

  • the invention relates to a thermodynamic system, in particular a system implementing a thermodynamic Rankine cycle.
  • Said pump has the function of creating a pressure difference within the system, and to ensure the circulation of a working fluid within said system.
  • Said condenser has the function of liquefying the working fluid before it enters into communication with said pump.
  • Such pumps are likely to be deteriorated, in particular by cavitation. Therefore, a protection of said pump is to be expected.
  • the NPSH - net positive suction head in English - measures the difference between the pressure of the liquid at a point in the thermodynamic system and the saturation vapor pressure at the temperature of the working fluid. Cavitation in a pump appears if the fluid pressure passes locally below the vaporization pressure of said fluid, so if the NPSH is too low.
  • One of the objectives of the invention is to avoid the phenomenon of cavitation of a pump intended to be integrated in a thermodynamic system, in particular with the aid of a simplified solution.
  • thermodynamic system in particular a system implementing a Rankine thermodynamic cycle, comprising a circulation loop of a working fluid, said loop comprising a pump intended to increase the pressure of said working fluid when it is in the liquid phase and a condenser for condensing said working fluid upstream of said pump when said working fluid is in the gas phase.
  • said loop further comprises a regenerator, said regenerator being positioned in a part of the loop configured for the circulation of the fluid in the liquid phase, said regenerator being configured to exchange thermal energy between said working fluid in downstream of said condenser and said working fluid downstream of said pump, said regenerator being adapted to lower the temperature of said working fluid upstream of said pump, said loop further comprising a heat exchanger for lowering the temperature of said working fluid downstream of said regenerator, said heat exchanger being connected in series between said regenerator and said pump.
  • the invention consists in cooling the working fluid after it has been condensed, in particular to ensure the absence of any traces of fluid in the gaseous state before it enters the pump and n causes it to deteriorate.
  • regenerator is mounted on the one hand, between said condenser and said heat exchanger and on the other hand, between said pump and an evaporator, said evaporator being configured to evaporate the working fluid when it is in the liquid phase,
  • the system of the invention comprises a circulation loop for a cooling fluid, the condenser and the heat exchanger being traversed by said cooling fluid,
  • said loop for circulating a cooling fluid is configured on the one hand for liquefying the working fluid through said condenser and, on the other hand, for cooling said working fluid through said heat exchanger,
  • the system of the invention comprises two circulation loops for two cooling fluids, the condenser being traversed by one of said two cooling fluids and the heat exchanger being traversed by the other of said two cooling fluids,
  • said circulation loops of said two cooling fluids are configured on the one hand to liquefy the working fluid through said condenser and on the other hand for cooling said working fluid through said heat exchanger.
  • FIG. 1 is a schematic representation of an embodiment of a system according to the invention
  • FIG. 2 is a diagram illustrating an example of fluid temperatures in a system according to the invention, in particular that illustrated in FIG.
  • thermodynamic system 10 in particular a system 10 implementing a thermodynamic Rankine cycle.
  • This system 10 comprises a circulation loop 21 -26 of a working fluid.
  • Said loop will advantageously comprise a power generation means (not shown here).
  • Said energy production means will advantageously comprise a turbine.
  • Said turbine is intended to be driven by the expansion of said working fluid in the gas phase.
  • said power generation means may advantageously comprise an electric energy generator coupled to said turbine.
  • said loop 21 -26 will comprise a first section (not shown here), in which circulates the working fluid in the vapor state, high temperature and high pressure.
  • This first section drives the working fluid to the turbine, through which it relaxes, while driving the turbine in a rotational movement, movement advantageously transmitted to the generator via a transmission shaft.
  • said working fluid flows from the condenser 30 to a pump 40, in particular via a first succession of sections 23, 24, 25. Said working fluid is then in the liquid state, low temperature and low pressure. After passing through said pump 40, the working fluid is still in the state of liquid, low temperature but at high pressure.
  • said loop 21 -26 advantageously comprises a heat exchanger 50 intended to lower the temperature of said working fluid downstream of said condenser 30, said heat exchanger 50 being connected in series between said condenser 30 and said pump 40.
  • said heat exchanger 50 is positioned at the first succession of sections 23, 24, 25, wherein said working fluid is in the liquid state, low temperature and low pressure. More specifically, said heat exchanger 50 is positioned between sections 24 and 25; it makes it possible to reduce the temperature of said working fluid, downstream of the condenser 30 and upstream of the pump 40, for example by a few degrees Celsius.
  • the term "a few degrees Celsius” means a number less than 25 ° C, for example a figure substantially of the order of 5 ° C.
  • said fluid first passes through a regenerator 60 before being driven, via the intermediate section 24, to said pump 40.
  • said loop 21 -26 advantageously comprises a regenerator 60 positioned in a part of the loop configured for the circulation of the fluid in the liquid phase, between the sections 23 and 24, but also between the sections 26 and 21.
  • Said regenerator 60 is configured to exchange thermal energy between said working fluid upstream of said heat exchanger 50 and said working fluid downstream of said pump 40.
  • the objective of using said regenerator 60 is the lowering the temperature of said working fluid upstream of the pump 40, in particular upstream of said heat exchanger 50, so as to increase the NPSH mentioned in the preamble.
  • said regenerator 60 is mounted between the condenser 30 and the heat exchanger 50, thus between the sections 23 and 24.
  • the exchanger 50 is connected in series between the regenerator 60 and the pump 40.
  • Said regenerator 60 is also mounted between said pump 40 and an evaporator (shown above but not shown here), thus between sections 26 and 21 of FIG.
  • Said regenerator 60 therefore makes it possible to exchange thermal energy between said working fluid when it is in the liquid phase upstream of the pump 40, more precisely upstream of the heat exchanger 50, and said working fluid when it is in the liquid phase, downstream of said pump 40.
  • regenerator 60 can advantageously be described as an internal exchanger.
  • the lowering of the temperature in said heat exchanger 50 makes it possible to ensure a temperature difference between the two sides of the regenerator 60 to allow heat exchange and thus lower the temperature of the working fluid between the outlet of the condenser 30 and the inlet of the pump 40.
  • the regenerator 60 makes it possible to reduce the temperature of the working fluid between the condenser 30 and the pump 40. This reduction will advantageously be of the order of a few degrees Celsius, preferably of the order of a few tens of degrees Celsius.
  • the term "a few tens of degrees Celsius” means a number between 10 ° C and 50 ° C.
  • regenerator 60 thus participates in the protection of the pump by avoiding all the more the risk of cavitation of the latter.
  • said regenerator 60 makes it possible to increase said NPSH by further decreasing the temperature of said working fluid at its inlet.
  • An advantage of the system according to the invention therefore lies in the fact that the working fluid is cooled before entering the pump 40 so as to avoid any deterioration thereof, in particular by cavitation.
  • the working fluid will have to be reheated after passing through the pump to be evaporated. It would be counterproductive to cool it unduly before it passes into the pump 40 and then have to heat it up to evaporation, which is not the case of subcooling obtained here through said regenerator 60.
  • the system 10 of the invention will advantageously be configured so that:
  • said toluene is cooled through the regenerator 60 to be measured at its outlet at around 29 ° C., in particular in section 24 of FIG. 1, and in such a way that
  • said toluene is cooled through the heat exchanger 50 to be measured at its outlet at around 26 ° C., in particular in section 25 of FIG.
  • the pump 40 will then compress said toluene, for example to 15bar, and the regenerator 60 will then heat up to about 63.4 ° C.
  • the condenser 30 is connected to a first cooling circuit 71 -73 which comprises at least one cold source (not shown here); said cooling circuit 71 -73 is advantageously a circuit external to the loop 21 -26.
  • heat exchanger 50 is also in connection with a cooling circuit, which circuit may be independent of said first cooling circuit 71 -73 (case not shown here).
  • the condenser 30 and the heat exchanger 50 are traversed by the same cooling fluid.
  • the condenser 30 and the heat exchanger 50 are advantageously connected to the same cooling circuit 71 -73.
  • Said circulation loop 71 -73 of a cooling fluid is here configured, on the one hand for liquefying the working fluid through said condenser 30 and, on the other hand for cooling said working fluid through said heat exchanger. 50.
  • Said single 71 -73 circulation loop simplifies the integration of the system 10 of the invention, for example on site.
  • FIG. 2 illustrates an example of temperatures measured, in the context of the example of the system of FIG. 1, for the working fluid on the one hand, and for the cooling fluid on the other hand, especially in the case where the condenser 30 and the heat exchanger 50 are traversed by the same cooling fluid.
  • This FIG. 2 comprises a first curve C1 which represents the evolution of the temperature of the working fluid within the thermodynamic system of the invention.
  • This curve C1 shows the effects on the temperature of the working fluid:
  • regenerator 60 upstream of the pump 40 namely a drop of approximately 30 degrees Celsius
  • the heat exchanger 50 also upstream of the pump 40, namely a drop of a few degrees Celsius
  • FIG. 2 also includes a second curve C2 which represents the evolution of the temperature of a said cooling fluid within the cooling loop 71 -73 illustrated in FIG.
  • This curve C2 shows the variations in the temperature of said cooling fluid:
  • the system 10 of the invention therefore makes it possible to favor a thermal height rather than a geometrical height of pressure, in particular to increase the NPSH of the pump 40.
  • the system 10 of the invention therefore proposes an easy solution to implement, on site for example.
  • favoring a geometric pressure height to increase the NPSH of the pump 40 entails strong integration constraints; for example burial constraints of the pump over several meters, or constraints of elevation of the condenser relative to the pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The invention relates to a thermodynamic system (10) comprising a loop (21 – 26) for the circulation of a working fluid, said loop (21 – 26) comprising a pump (40) intended to increase the pressure of the said working fluid when it is in the liquid phase and a condenser (30) intended to condense the said working fluid upstream of the said pump (40) when the said working fluid is in the gaseous phase, the said loop (21 – 26) further comprising a regenerator (60), the said regenerator (60) being positioned in a part of the loop (23 – 24; 26 – 21) that is configured for the circulation of the fluid in the liquid phase, the said regenerator (60) being configured to exchange heat energy between the said working fluid downstream of the said condenser (30) and the said working fluid downstream of the said pump (40), the said regenerator (60) being intended to lower the temperature of the said working fluid upstream of the said pump (40).

Description

Système thermodynamique  Thermodynamic system
L'invention concerne un système thermodynamique, notamment un système mettant en œuvre un cycle thermodynamique de Rankine. The invention relates to a thermodynamic system, in particular a system implementing a thermodynamic Rankine cycle.
II est connu, dans les systèmes mettant en œuvre un cycle thermodynamique de Rankine, de prévoir une pompe et un condenseur. Ladite pompe a pour fonction de créer une différence de pression au sein du système, et d'assurer la circulation d'un fluide de travail au sein dudit système. Ledit condenseur a, lui, pour fonction de liquéfier le fluide de travail avant qu'il entre en communication avec ladite pompe.  It is known, in systems implementing a Rankine thermodynamic cycle, to provide a pump and a condenser. Said pump has the function of creating a pressure difference within the system, and to ensure the circulation of a working fluid within said system. Said condenser has the function of liquefying the working fluid before it enters into communication with said pump.
De telles pompes sont susceptibles d'être détériorées, notamment par cavitation. Dès lors, une protection de ladite pompe est à prévoir.  Such pumps are likely to be deteriorated, in particular by cavitation. Therefore, a protection of said pump is to be expected.
Le NPSH - net positive suction head en langue anglaise - mesure la différence entre la pression du liquide en un point du système thermodynamique et la pression de vapeur saturante à la température du fluide de travail. La cavitation dans une pompe apparaît si la pression du fluide passe localement en-dessous de la pression de vaporisation dudit fluide, donc si le NPSH est trop faible.  The NPSH - net positive suction head in English - measures the difference between the pressure of the liquid at a point in the thermodynamic system and the saturation vapor pressure at the temperature of the working fluid. Cavitation in a pump appears if the fluid pressure passes locally below the vaporization pressure of said fluid, so if the NPSH is too low.
Pour éviter ce phénomène, il existe des solutions complexes à mettre en œuvre. Par exemple, il est possible d'augmenter la pression statique (en posant le condenseur à une certaine hauteur par rapport à la pompe) ou de diminuer la vitesse du fluide de travail (qui a une influence sur la pression totale).  To avoid this phenomenon, there are complex solutions to implement. For example, it is possible to increase the static pressure (by placing the condenser at a certain height relative to the pump) or to decrease the speed of the working fluid (which has an influence on the total pressure).
Un des objectifs de l'invention est d'éviter le phénomène de cavitation d'une pompe destinée à être intégrée dans un système thermodynamique, notamment à l'aide d'une solution simplifiée.  One of the objectives of the invention is to avoid the phenomenon of cavitation of a pump intended to be integrated in a thermodynamic system, in particular with the aid of a simplified solution.
Ainsi, l'invention concerne un système thermodynamique, notamment un système mettant en œuvre un cycle thermodynamique de Rankine, comprenant une boucle de circulation d'un fluide de travail, ladite boucle comprenant une pompe destinée à augmenter la pression dudit fluide de travail lorsqu'il est en phase liquide et un condenseur destiné à condenser ledit fluide de travail en amont de ladite pompe lorsque ledit fluide de travail est en phase gazeuse.  Thus, the invention relates to a thermodynamic system, in particular a system implementing a Rankine thermodynamic cycle, comprising a circulation loop of a working fluid, said loop comprising a pump intended to increase the pressure of said working fluid when it is in the liquid phase and a condenser for condensing said working fluid upstream of said pump when said working fluid is in the gas phase.
Selon l'invention, ladite boucle comprend en outre un régénérateur, ledit régénérateur étant positionné dans une partie de la boucle configurée pour la circulation du fluide en phase liquide, ledit régénérateur étant configuré pour échanger de l'énergie thermique entre ledit fluide de travail en aval dudit condenseur et ledit fluide de travail en aval de ladite pompe, ledit régénérateur étant destiné à abaisser la température dudit fluide de travail en amont de ladite pompe, ladite boucle comprenant en outre un échangeur de chaleur destiné à abaisser la température dudit fluide de travail en aval dudit régénérateur, ledit échangeur de chaleur étant monté en série entre ledit régénérateur et ladite pompe. According to the invention, said loop further comprises a regenerator, said regenerator being positioned in a part of the loop configured for the circulation of the fluid in the liquid phase, said regenerator being configured to exchange thermal energy between said working fluid in downstream of said condenser and said working fluid downstream of said pump, said regenerator being adapted to lower the temperature of said working fluid upstream of said pump, said loop further comprising a heat exchanger for lowering the temperature of said working fluid downstream of said regenerator, said heat exchanger being connected in series between said regenerator and said pump.
L'invention consiste à refroidir le fluide de travail après que celui-ci ait été condensé, notamment pour s'assurer de l'absence de toutes traces de fluide à l'état gazeux avant que celui-ci ne pénètre dans la pompe et n'entraine sa détérioration.  The invention consists in cooling the working fluid after it has been condensed, in particular to ensure the absence of any traces of fluid in the gaseous state before it enters the pump and n causes it to deteriorate.
L'avantage d'agir sur la température du fluide de travail par sous- refroidissement de celui-ci, en sortie du condenseur, permet de décaler sa pression de vaporisation et donc, de s'affranchir de solutions complexes connues de l'art antérieur, telle que celle de décaler physiquement le condenseur en hauteur par rapport à la pompe afin d'augmenter la pression statique dans le calcul du NPSH de la pompe.  The advantage of acting on the temperature of the working fluid by subcooling thereof, at the outlet of the condenser, makes it possible to shift its vaporization pressure and thus to overcome complex solutions known from the prior art. , such as that of physically shifting the condenser in height relative to the pump in order to increase the static pressure in the calculation of the NPSH of the pump.
Selon différents modes de réalisation de l'invention, qui pourront être pris ensemble ou séparément :  According to various embodiments of the invention, which may be taken together or separately:
- ledit régénérateur est monté d'une part, entre ledit condenseur et ledit échangeur thermique et d'autre part, entre ladite pompe et un évaporateur, ledit évaporateur étant configuré pour évaporer le fluide de travail lorsqu'il est en phase liquide,  said regenerator is mounted on the one hand, between said condenser and said heat exchanger and on the other hand, between said pump and an evaporator, said evaporator being configured to evaporate the working fluid when it is in the liquid phase,
- le système de l'invention comprend une boucle de circulation d'un fluide de refroidissement, le condenseur et l'échangeur de chaleur étant parcourus par ledit fluide de refroidissement,  the system of the invention comprises a circulation loop for a cooling fluid, the condenser and the heat exchanger being traversed by said cooling fluid,
- ladite boucle de circulation d'un fluide de refroidissement est configurée, d'une part pour liquéfier le fluide de travail à travers ledit condenseur et, d'autre part pour refroidir ledit fluide de travail à travers ledit échangeur de chaleur,  said loop for circulating a cooling fluid is configured on the one hand for liquefying the working fluid through said condenser and, on the other hand, for cooling said working fluid through said heat exchanger,
- le système de l'invention comprend deux boucles de circulation de deux fluides de refroidissement, le condenseur étant parcouru par un desdits deux fluides de refroidissement et l'échangeur de chaleur étant parcouru par l'autre desdits deux fluides de refroidissement,  the system of the invention comprises two circulation loops for two cooling fluids, the condenser being traversed by one of said two cooling fluids and the heat exchanger being traversed by the other of said two cooling fluids,
- lesdites boucles de circulation desdits deux fluides de refroidissement sont configurées d'une part pour liquéfier le fluide de travail à travers ledit condenseur et, d'autre part pour refroidir ledit fluide de travail à travers ledit échangeur de chaleur. said circulation loops of said two cooling fluids are configured on the one hand to liquefy the working fluid through said condenser and on the other hand for cooling said working fluid through said heat exchanger.
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre, d'au moins un mode de réalisation de l'invention donné à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés suivant :  The invention will be better understood, and other objects, details, features and advantages thereof will become more clearly apparent in the following detailed explanatory description of at least one embodiment of the invention given to As a purely illustrative and non-limiting example, with reference to the attached schematic drawings according to:
- la figure 1 est une représentation schématique d'un mode de réalisation d'un système selon l'invention,  FIG. 1 is a schematic representation of an embodiment of a system according to the invention,
- la figure 2 est un diagramme illustrant un exemple de températures des fluides au sein d'un système selon l'invention, notamment celui illustré à la figure 1 .  FIG. 2 is a diagram illustrating an example of fluid temperatures in a system according to the invention, in particular that illustrated in FIG.
L'invention concerne un système thermodynamique 10, notamment un système 10 mettant en œuvre un cycle thermodynamique de Rankine. Ce système 10 comprend une boucle de circulation 21 -26 d'un fluide de travail.  The invention relates to a thermodynamic system 10, in particular a system 10 implementing a thermodynamic Rankine cycle. This system 10 comprises a circulation loop 21 -26 of a working fluid.
Ladite boucle comprendra avantageusement un moyen de production d'énergie (non illustré ici). Ledit moyen de production d'énergie comprendra, lui, avantageusement, une turbine. Ladite turbine est destinée à être entraînée par la détente dudit fluide de travail en phase gazeuse.  Said loop will advantageously comprise a power generation means (not shown here). Said energy production means will advantageously comprise a turbine. Said turbine is intended to be driven by the expansion of said working fluid in the gas phase.
II est à noter que ledit moyen de production d'énergie pourra avantageusement comprendre un générateur d'énergie électrique couplé à ladite turbine.  It should be noted that said power generation means may advantageously comprise an electric energy generator coupled to said turbine.
Sur la figure 1 , ces éléments non illustrés se situent entre les sections 21 et 22 de ladite boucle 21 -26.  In Figure 1, these elements not shown are between sections 21 and 22 of said loop 21 -26.
Entre lesdites sections 21 et 22, ladite boucle 21 -26 comprendra une première section (non illustré ici), dans laquelle circule le fluide de travail à l'état de vapeur, haute température et haute pression. Cette première section conduit le fluide de travail vers la turbine, à travers laquelle il se détend, tout en entraînant la turbine dans un mouvement de rotation, mouvement avantageusement transmis au générateur via un arbre de transmission.  Between said sections 21 and 22, said loop 21 -26 will comprise a first section (not shown here), in which circulates the working fluid in the vapor state, high temperature and high pressure. This first section drives the working fluid to the turbine, through which it relaxes, while driving the turbine in a rotational movement, movement advantageously transmitted to the generator via a transmission shaft.
D'autre part, il est prévu que le fluide de travail quitte ladite turbine et circule dans une seconde section à l'état de vapeur, haute température et basse pression. Cette seconde section est celle qui est repérée 22 sur la figure 1 . Ladite seconde section 22 conduit le fluide vers un condenseur 30 qui a pour fonction de condenser ledit fluide. On the other hand, it is expected that the working fluid leaves said turbine and circulates in a second section in the vapor state, high temperature and low pressure. This second section is that which is marked 22 in FIG. Said second section 22 conducts the fluid to a condenser 30 whose function is to condense said fluid.
Une fois condensé, ledit fluide de travail circule du condenseur 30, vers une pompe 40, notamment via une première succession de sections 23, 24, 25. Ledit fluide de travail est alors à l'état liquide, basse température et basse pression. Après son passage à travers ladite pompe 40, le fluide de travail est encore à l'état de liquide, basse température mais à haute pression.  Once condensed, said working fluid flows from the condenser 30 to a pump 40, in particular via a first succession of sections 23, 24, 25. Said working fluid is then in the liquid state, low temperature and low pressure. After passing through said pump 40, the working fluid is still in the state of liquid, low temperature but at high pressure.
Il est circulé via une seconde succession de sections 26, 21 en direction d'un évaporateur (non illustré ici) duquel il sort sous forme de vapeur, haute température et haute pression, pour ensuite être dirigé vers la turbine, notamment via la première section non illustrée ici et déjà évoquée ci-dessus.  It is circulated via a second succession of sections 26, 21 in the direction of an evaporator (not shown here) from which it leaves in the form of steam, high temperature and high pressure, to then be directed to the turbine, in particular via the first section not illustrated here and already mentioned above.
Selon l'invention, ladite boucle 21 -26 comprend avantageusement un échangeur de chaleur 50 destiné à abaisser la température dudit fluide de travail en aval dudit condenseur 30, ledit échangeur de chaleur 50 étant monté en série entre ledit condenseur 30 et ladite pompe 40.  According to the invention, said loop 21 -26 advantageously comprises a heat exchanger 50 intended to lower the temperature of said working fluid downstream of said condenser 30, said heat exchanger 50 being connected in series between said condenser 30 and said pump 40.
Comme illustré sur la figure 1 , ledit échangeur de chaleur 50 est positionné au niveau de la première succession de sections 23, 24, 25, dans lesquelles ledit fluide de travail est à l'état liquide, basse température et basse pression. Plus précisément, ledit échangeur de chaleur 50 est positionné entre les sections 24 et 25 ; il permet de diminuer la température dudit fluide de travail, en aval du condenseur 30 et en amont de la pompe 40, par exemple de quelques degrés Celsius. On entend par « quelques degrés Celsius » un chiffre inférieur à 25°C, par exemple un chiffre sensiblement de l'ordre de 5°C.  As illustrated in Figure 1, said heat exchanger 50 is positioned at the first succession of sections 23, 24, 25, wherein said working fluid is in the liquid state, low temperature and low pressure. More specifically, said heat exchanger 50 is positioned between sections 24 and 25; it makes it possible to reduce the temperature of said working fluid, downstream of the condenser 30 and upstream of the pump 40, for example by a few degrees Celsius. The term "a few degrees Celsius" means a number less than 25 ° C, for example a figure substantially of the order of 5 ° C.
Avantageusement, ledit fluide passe d'abord à travers un régénérateur 60 avant d'être conduit, via la section intermédiaire 24, vers ladite pompe 40.  Advantageously, said fluid first passes through a regenerator 60 before being driven, via the intermediate section 24, to said pump 40.
Ainsi, selon l'invention, ladite boucle 21 -26 comprend avantageusement un régénérateur 60 positionné dans une partie de la boucle configurée pour la circulation du fluide en phase liquide, entre les sections 23 et 24, mais aussi entre les sections 26 et 21 . Ledit régénérateur 60 est configuré pour échanger de l'énergie thermique entre ledit fluide de travail en amont dudit échangeur de chaleur 50 et ledit fluide de travail en aval de ladite pompe 40. L'objectif visé par l'utilisation dudit régénérateur 60 est l'abaissement de la température dudit fluide de travail en amont de la pompe 40, notamment en amont dudit échangeur de chaleur 50, de manière à augmenter le NPSH évoqué en préambule. Dans l'exemple illustré ici, ledit régénérateur 60 est monté entre le condenseur 30 et l'échangeur thermique 50, donc entre les sections 23 et 24. Ainsi, l'échangeur 50 est monté en série entre le régénérateur 60 et la pompe 40. Thus, according to the invention, said loop 21 -26 advantageously comprises a regenerator 60 positioned in a part of the loop configured for the circulation of the fluid in the liquid phase, between the sections 23 and 24, but also between the sections 26 and 21. Said regenerator 60 is configured to exchange thermal energy between said working fluid upstream of said heat exchanger 50 and said working fluid downstream of said pump 40. The objective of using said regenerator 60 is the lowering the temperature of said working fluid upstream of the pump 40, in particular upstream of said heat exchanger 50, so as to increase the NPSH mentioned in the preamble. In the example illustrated here, said regenerator 60 is mounted between the condenser 30 and the heat exchanger 50, thus between the sections 23 and 24. Thus, the exchanger 50 is connected in series between the regenerator 60 and the pump 40.
Ledit régénérateur 60 est aussi monté entre ladite pompe 40 et un évaporateur (présenté ci-dessus mais non illustré ici), donc entre les sections 26 et 21 de la figure 1 .  Said regenerator 60 is also mounted between said pump 40 and an evaporator (shown above but not shown here), thus between sections 26 and 21 of FIG.
Ledit régénérateur 60, permet donc d'échanger de l'énergie thermique entre ledit fluide de travail lorsqu'il est en phase liquide en amont de la pompe 40, plus précisément en amont de l'échangeur thermique 50, et ledit fluide de travail lorsqu'il est en phase liquide, en aval de ladite pompe 40.  Said regenerator 60 therefore makes it possible to exchange thermal energy between said working fluid when it is in the liquid phase upstream of the pump 40, more precisely upstream of the heat exchanger 50, and said working fluid when it is in the liquid phase, downstream of said pump 40.
C'est pourquoi ledit régénérateur 60 peut avantageusement être qualifié d'échangeur interne.  This is why said regenerator 60 can advantageously be described as an internal exchanger.
L'abaissement de la température dans ledit échangeur de chaleur 50 permet d'assurer une différence de température entre les deux côtés du régénérateur 60 pour permettre un échange de chaleur et ainsi abaisser la température du fluide de travail entre la sortie du condenseur 30 et l'entrée de la pompe 40.  The lowering of the temperature in said heat exchanger 50 makes it possible to ensure a temperature difference between the two sides of the regenerator 60 to allow heat exchange and thus lower the temperature of the working fluid between the outlet of the condenser 30 and the inlet of the pump 40.
Le régénérateur 60 permet de diminuer la température du fluide de travail entre le condenseur 30 et la pompe 40. Cette diminution sera, avantageusement, de l'ordre de quelques degrés Celsius, de préférence de l'ordre de quelques dizaines de degrés Celsius. On entend par « quelques dizaines de degrés Celsius » un nombre compris entre 10°C et 50°C.  The regenerator 60 makes it possible to reduce the temperature of the working fluid between the condenser 30 and the pump 40. This reduction will advantageously be of the order of a few degrees Celsius, preferably of the order of a few tens of degrees Celsius. The term "a few tens of degrees Celsius" means a number between 10 ° C and 50 ° C.
Ledit régénérateur 60 participe donc à la protection de la pompe en évitant d'autant plus le risque de cavitation de cette dernière. Autrement dit, ledit régénérateur 60 permet d'augmenter ledit NPSH en diminuant encore la température dudit fluide de travail à son entrée.  Said regenerator 60 thus participates in the protection of the pump by avoiding all the more the risk of cavitation of the latter. In other words, said regenerator 60 makes it possible to increase said NPSH by further decreasing the temperature of said working fluid at its inlet.
Un avantage du système selon l'invention réside donc dans le fait que le fluide de travail est refroidi avant son entrée dans la pompe 40 de manière à éviter toutes détériorations de celle-ci, notamment par cavitation.  An advantage of the system according to the invention therefore lies in the fact that the working fluid is cooled before entering the pump 40 so as to avoid any deterioration thereof, in particular by cavitation.
D'autre part, le fluide de travail devra être réchauffé après son passage à travers la pompe pour être évaporé. Cela serait contre-productif de le refroidir outre mesure avant son passage dans la pompe 40 pour ensuite devoir le réchauffer jusqu'à évaporation, ce qui n'est pas le cas du sous-refroidissement obtenu, ici, à travers ledit régénérateur 60. A titre d'exemple, dans le cas où le fluide de travail est du Toluène et que sa température est de l'ordre de 65°C en sortie du condenseur 30, notamment dans la section 23 de la figure 1 , le système 10 de l'invention sera avantageusement configuré de manière à ce que : On the other hand, the working fluid will have to be reheated after passing through the pump to be evaporated. It would be counterproductive to cool it unduly before it passes into the pump 40 and then have to heat it up to evaporation, which is not the case of subcooling obtained here through said regenerator 60. By way of example, in the case where the working fluid is Toluene and its temperature is of the order of 65 ° C. at the outlet of the condenser 30, in particular in section 23 of FIG. 1, the system 10 of the invention will advantageously be configured so that:
- ledit Toluène soit refroidit à travers le régénérateur 60 pour être mesuré à sa sortie aux environs de 29°C, notamment dans la section 24 de la figure 1 , et de manière à ce que  said toluene is cooled through the regenerator 60 to be measured at its outlet at around 29 ° C., in particular in section 24 of FIG. 1, and in such a way that
- ledit Toluène soit refroidit à travers l'échangeur thermique 50 pour être mesuré à sa sortie aux environs de 26°C, notamment dans la section 25 de la figure 1 .  said toluene is cooled through the heat exchanger 50 to be measured at its outlet at around 26 ° C., in particular in section 25 of FIG.
La pompe 40 permettra ensuite de comprimer ledit Toluène, par exemple à 15bar, et le régénérateur 60 permettra ensuite de le réchauffer jusqu'à environ 63,4°C.  The pump 40 will then compress said toluene, for example to 15bar, and the regenerator 60 will then heat up to about 63.4 ° C.
Il est à noter, d'autre part, que le condenseur 30 est en lien avec un premier circuit de refroidissement 71 -73 qui comprend au moins une source froide (non illustrée ici) ; ledit circuit de refroidissement 71 -73 est avantageusement un circuit externe à la boucle 21 -26.  It should be noted, on the other hand, that the condenser 30 is connected to a first cooling circuit 71 -73 which comprises at least one cold source (not shown here); said cooling circuit 71 -73 is advantageously a circuit external to the loop 21 -26.
Il est à noter, également, que l'échangeur de chaleur 50 est aussi en lien avec un circuit de refroidissement, circuit qui pourra être indépendant dudit premier circuit de refroidissement 71 -73 (cas de figure non illustré ici).  It should be noted, also, that the heat exchanger 50 is also in connection with a cooling circuit, which circuit may be independent of said first cooling circuit 71 -73 (case not shown here).
Ici, le condenseur 30 et l'échangeur de chaleur 50 sont parcourus par un même fluide de refroidissement. Autrement dit, le condenseur 30 et l'échangeur de chaleur 50 sont avantageusement en lien avec un même circuit de refroidissement 71 -73.  Here, the condenser 30 and the heat exchanger 50 are traversed by the same cooling fluid. In other words, the condenser 30 and the heat exchanger 50 are advantageously connected to the same cooling circuit 71 -73.
Ladite boucle de circulation 71 -73 d'un fluide de refroidissement est donc ici configurée, d'une part pour liquéfier le fluide de travail à travers ledit condenseur 30 et, d'autre part pour refroidir ledit fluide de travail à travers ledit échangeur de chaleur 50. Ladite boucle de circulation 71 -73, unique, permet de simplifier l'intégration du système 10 de l'invention, par exemple sur site.  Said circulation loop 71 -73 of a cooling fluid is here configured, on the one hand for liquefying the working fluid through said condenser 30 and, on the other hand for cooling said working fluid through said heat exchanger. 50. Said single 71 -73 circulation loop, simplifies the integration of the system 10 of the invention, for example on site.
La figure 2 illustre un exemple de températures mesurées, dans le cadre de l'exemple du système de la figure 1 , pour le fluide de travail d'une part, et pour le fluide de refroidissement d'autre part, notamment dans le cas où le condenseur 30 et l'échangeur de chaleur 50 sont parcourus par un même fluide de refroidissement. Cette figure 2 comporte une première courbe C1 qui représente l'évolution de la température du fluide de travail au sein du système thermodynamique de l'invention. On constate, sur cette courbe C1 , les effets sur la température du fluide de travail : FIG. 2 illustrates an example of temperatures measured, in the context of the example of the system of FIG. 1, for the working fluid on the one hand, and for the cooling fluid on the other hand, especially in the case where the condenser 30 and the heat exchanger 50 are traversed by the same cooling fluid. This FIG. 2 comprises a first curve C1 which represents the evolution of the temperature of the working fluid within the thermodynamic system of the invention. This curve C1 shows the effects on the temperature of the working fluid:
- du condenseur 30, à savoir une chute de quelques degrés Celsius, condenser 30, namely a drop of a few degrees Celsius,
- du régénérateur 60 en amont de la pompe 40, à savoir une chute d'environ 30 degrés Celsius, regenerator 60 upstream of the pump 40, namely a drop of approximately 30 degrees Celsius,
- de l'échangeur de chaleur 50, aussi en amont de la pompe 40, à savoir une chute de quelques degrés Celsius,  - The heat exchanger 50, also upstream of the pump 40, namely a drop of a few degrees Celsius,
- du régénérateur 60 en aval de la pompe 40, à savoir une augmentation d'environ 30 degrés Celsius.  - Regenerator 60 downstream of the pump 40, an increase of about 30 degrees Celsius.
La figure 2 comporte aussi une seconde courbe C2 qui représente l'évolution de la température d'un dit fluide de refroidissement au sein de la boucle de refroidissement 71 -73 illustré à la figure 1 . On constate, sur cette courbe C2, les variations de la température dudit fluide de refroidissement :  FIG. 2 also includes a second curve C2 which represents the evolution of the temperature of a said cooling fluid within the cooling loop 71 -73 illustrated in FIG. This curve C2 shows the variations in the temperature of said cooling fluid:
- à travers le condenseur 30, à savoir une augmentation d'environ 20 degrés Celsius, qui correspond à l'énergie thermique concédée par le fluide de travail, et  through the condenser 30, namely an increase of about 20 degrees Celsius, which corresponds to the thermal energy conceded by the working fluid, and
- à travers l'échangeur de chaleur 50, à savoir une augmentation de quelques degrés Celsius, qui correspond aussi à l'énergie thermique concédée par le fluide de travail.  - Through the heat exchanger 50, namely an increase of a few degrees Celsius, which also corresponds to the thermal energy conceded by the working fluid.
Le système 10 de l'invention permet donc de privilégier une hauteur thermique plutôt qu'une hauteur géométrique de pression, notamment pour faire augmenter le NPSH de la pompe 40.  The system 10 of the invention therefore makes it possible to favor a thermal height rather than a geometrical height of pressure, in particular to increase the NPSH of the pump 40.
Le système 10 de l'invention propose donc une solution aisée à mettre en place, sur site par exemple. A contrario, privilégier une hauteur géométrique de pression pour faire augmenter le NPSH de la pompe 40 entraine des fortes contraintes d'intégration ; par exemple des contraintes d'enterrement de la pompe sur plusieurs mètre, voire des contraintes de surélévation du condenseur par rapport à la pompe.  The system 10 of the invention therefore proposes an easy solution to implement, on site for example. On the other hand, favoring a geometric pressure height to increase the NPSH of the pump 40 entails strong integration constraints; for example burial constraints of the pump over several meters, or constraints of elevation of the condenser relative to the pump.

Claims

Revendications claims
1 . Système thermodynamique (10), notamment système mettant en œuvre un cycle thermodynamique de Rankine, comprenant une boucle de circulation (21 -26) d'un fluide de travail, ladite boucle (21 -26) comprenant une pompe (40) destinée à augmenter la pression dudit fluide de travail lorsqu'il est en phase liquide et un condenseur (30) destiné à condenser ledit fluide de travail en amont de ladite pompe (40) lorsque ledit fluide de travail est en phase gazeuse, ladite boucle (21 -26) comprenant en outre un régénérateur (60), ledit régénérateur (60) étant positionné dans une partie de la boucle (23-24 ; 26-21 ) configurée pour la circulation du fluide en phase liquide, ledit régénérateur (60) étant configuré pour échanger de l'énergie thermique entre ledit fluide de travail en aval dudit condenseur (30) et ledit fluide de travail en aval de ladite pompe (40), ledit régénérateur (60) étant destiné à abaisser la température dudit fluide de travail en amont de ladite pompe (40), ladite boucle (21 -26) comprenant en outre un échangeur de chaleur (50) destiné à abaisser la température dudit fluide de travail en aval dudit régénérateur (60), ledit échangeur de chaleur (50) étant monté en série entre ledit régénérateur (60) et ladite pompe (40). 1. Thermodynamic system (10), in particular a system using a Rankine thermodynamic cycle, comprising a circulation loop (21 -26) of a working fluid, said loop (21 -26) comprising a pump (40) intended to increase the pressure of said working fluid when in the liquid phase and a condenser (30) for condensing said working fluid upstream of said pump (40) when said working fluid is in the gas phase, said loop (21 -26 ) further comprising a regenerator (60), said regenerator (60) being positioned in a portion of the loop (23-24; 26-21) configured for liquid phase fluid flow, said regenerator (60) being configured to exchanging thermal energy between said working fluid downstream of said condenser (30) and said working fluid downstream of said pump (40), said regenerator (60) being adapted to lower the temperature of said working fluid upstream of said said pump (40), said loop (21-26) further comprising a heat exchanger (50) for lowering the temperature of said working fluid downstream of said regenerator (60), said heat exchanger (50) being mounted in series between said regenerator (60) and said pump (40).
2. Système (10) selon la revendication précédente, dans lequel ledit régénérateur (60) est monté d'une part, entre ledit condenseur (30) et ledit échangeur thermique (50) et d'autre part, entre ladite pompe (40) et un évaporateur, ledit évaporateur étant configuré pour évaporer le fluide de travail lorsqu'il est en phase liquide. 2. System (10) according to the preceding claim, wherein said regenerator (60) is mounted on the one hand, between said condenser (30) and said heat exchanger (50) and on the other hand, between said pump (40) and an evaporator, said evaporator being configured to evaporate the working fluid when in the liquid phase.
3. Système (10) selon l'une quelconque des revendications précédentes, comprenant une boucle de circulation d'un fluide de refroidissement (71 -73), le condenseur (30) et l'échangeur de chaleur (50) étant parcouru par ledit fluide de refroidissement. 3. System (10) according to any one of the preceding claims, comprising a circulation loop of a cooling fluid (71 -73), the condenser (30) and the heat exchanger (50) being traversed by said cooling fluid.
4. Système (10) selon la revendication précédente, dans lequel ladite boucle de circulation dudit fluide de refroidissement (71 -73) est configurée d'une part pour liquéfier le fluide de travail à travers ledit condenseur (30) et, d'autre part pour refroidir ledit fluide de travail à travers ledit échangeur de chaleur (50). 4. System (10) according to the preceding claim, wherein said circulation loop of said cooling fluid (71 -73) is configured on the one hand for liquefying the working fluid through said condenser (30) and, on the other hand for cooling said working fluid through said heat exchanger (50).
Système (10) selon l'une quelconque des revendications 1 ou 2, comprenant deux boucles de circulation de deux fluides de refroidissement, le condenseur (30) étant parcouru par un desdits deux fluides de refroidissement et l'échangeur de chaleur (50) étant parcouru par l'autre desdits deux fluides de refroidissement. System (10) according to any one of claims 1 or 2, comprising two circulation loops of two cooling fluids, the condenser (30) being traversed by one of said two cooling fluids and the heat exchanger (50) being traveled by the other of said two cooling fluids.
Système (10) selon la revendication précédente, dans lequel lesdites boucles de circulation desdits deux fluides de refroidissement sont configurées d'une part pour liquéfier le fluide de travail à travers ledit condenseur (30) et, d'autre part pour refroidir ledit fluide de travail à travers ledit échangeur de chaleur (50). System (10) according to the preceding claim, wherein said circulation loops of said two cooling fluids are configured on the one hand for liquefying the working fluid through said condenser (30) and, on the other hand for cooling said fluid of working through said heat exchanger (50).
PCT/EP2016/074921 2015-12-01 2016-10-18 Thermodynamic system WO2017092922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16782071.1A EP3384136A1 (en) 2015-12-01 2016-10-18 Thermodynamic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1561694A FR3044351B1 (en) 2015-12-01 2015-12-01 THERMODYNAMIC SYSTEM
FR1561694 2015-12-01

Publications (1)

Publication Number Publication Date
WO2017092922A1 true WO2017092922A1 (en) 2017-06-08

Family

ID=55346022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/074921 WO2017092922A1 (en) 2015-12-01 2016-10-18 Thermodynamic system

Country Status (3)

Country Link
EP (1) EP3384136A1 (en)
FR (1) FR3044351B1 (en)
WO (1) WO2017092922A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038567A (en) * 1989-06-12 1991-08-13 Ormat Turbines, Ltd. Method of and means for using a two-phase fluid for generating power in a rankine cycle power plant
US20110115445A1 (en) * 2009-11-19 2011-05-19 Ormat Technologies, Inc. Power system
US20130188939A1 (en) * 2012-01-19 2013-07-25 Alstom Technology Ltd Heating system for a thermal electric power station water circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038567A (en) * 1989-06-12 1991-08-13 Ormat Turbines, Ltd. Method of and means for using a two-phase fluid for generating power in a rankine cycle power plant
US20110115445A1 (en) * 2009-11-19 2011-05-19 Ormat Technologies, Inc. Power system
US20130188939A1 (en) * 2012-01-19 2013-07-25 Alstom Technology Ltd Heating system for a thermal electric power station water circuit

Also Published As

Publication number Publication date
FR3044351B1 (en) 2017-12-22
FR3044351A1 (en) 2017-06-02
EP3384136A1 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
US9732637B2 (en) Waste heat recovery system and waste heat recovery method
EP2805032B1 (en) Device for controlling a working fluid in a closed circuit operating according to the rankine cycle, and method using said device
EP2365192B1 (en) Device and method for control of a working fluid in a closed Rankine cycle
FR3042857B1 (en) THERMODYNAMIC BOILER WITH THERMAL COMPRESSOR
JP2023052373A (en) Device for lubricating bearing accepting rotary shaft of element of closed circuit operating on rankine cycle and method using such device
CA2966584A1 (en) Method for recuperation of thermal energy from a motorized heat pump
EP3172499B1 (en) Cold production apparatus, including means for condensation by air and water simultaneously, and the method for implementing said facility
FR3004487A1 (en) METHOD FOR CONTROLLING THE OPERATION OF A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND CIRCUIT USING SUCH A METHOD.
EP3500734B1 (en) Closed circuit functioning according to a rankine cycle with a device for the emergency stopping of the circuit and method using such a circuit
EP3748137B1 (en) System for co-producing electrical energy and cold thermal energy and associated method
EP3384136A1 (en) Thermodynamic system
EP2739918B1 (en) System and method for optimising the operation of a heat pump system
WO2016129451A1 (en) Heat exchanger, energy recovery device, and ship
FR3090734A1 (en) System of cogeneration of electrical energy and thermal energy by a Rankine cycle module
EP3256701A1 (en) Thermodynamic system
EP3627074A1 (en) Air conditioning system comprising an absorption machine and a mechanical compression machine
WO2013050516A1 (en) Cooling and heating facility for air conditioning systems
FR3001794A1 (en) Active subcooler device for air-conditioning system for producing cold and/or heat in cold store, has evaporator including primary circuit connected to system fluid circulation circuits, and secondary circuit connected to device circuit
EP3724459B1 (en) Electrically powered turbopump assembly for a closed circuit, particularly of the rankine cycle type, comprising integrated cooling
EP4350129A1 (en) Integrated organic rankine cycle and absorption cycle power generation system
FR3032520A1 (en) THERMODYNAMIC SYSTEM
WO2017060621A1 (en) Vehicle heat exchanger, and energy recovery installation and method
WO2023118730A1 (en) System for cooling a liquid for lubricating an aircraft turbomachine
EP3610149A1 (en) Turbopump assembly for a closed circuit, particularly of the rankine cycle type, associated with an internal combustion engine, in particular for a motor vehicle
WO2015173075A1 (en) Refrigerant circuit for the recovery of energy from the thermal losses of an internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782071

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12018501088

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE