WO2017060621A1 - Vehicle heat exchanger, and energy recovery installation and method - Google Patents

Vehicle heat exchanger, and energy recovery installation and method Download PDF

Info

Publication number
WO2017060621A1
WO2017060621A1 PCT/FR2016/052560 FR2016052560W WO2017060621A1 WO 2017060621 A1 WO2017060621 A1 WO 2017060621A1 FR 2016052560 W FR2016052560 W FR 2016052560W WO 2017060621 A1 WO2017060621 A1 WO 2017060621A1
Authority
WO
WIPO (PCT)
Prior art keywords
pass
working fluid
heat exchanger
fluid
exchanger
Prior art date
Application number
PCT/FR2016/052560
Other languages
French (fr)
Inventor
Bertrand Nicolas
Mohamed Yahia
Régine Haller
Jin-ming LIU
Samy Hammi
Abdelmajid Taklanti
Yulia GLAVATSKAYA
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2017060621A1 publication Critical patent/WO2017060621A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the subject of the present invention is a heat exchanger, in particular for a vehicle, and more particularly a heat exchanger allowing a heat exchange between a working fluid and a second fluid, such as exhaust gases. It also relates to an installation and a method of energy recovery using such a heat exchanger.
  • the environmental constraints driven by the new European standards encourage car manufacturers to reduce C0 2 emissions from their vehicles.
  • One possible solution is the recovery of lost energy.
  • the heat of the exhaust gas can be used to heat and then spray a working fluid in the form of high pressure steam that will be expanded in a turbine and converted into energy, including electrical. The fluid is then condensed to regain its liquid form and start the cycle again.
  • the evaporation of the working fluid by the exhaust gas is effected by means of a heat exchanger subject to the very high dynamics of the variation of the flow rate and the temperature of the gas. exhaust.
  • the working fluid is ethanol
  • the problem of degradation thereof arises. Indeed, one of the characteristics of ethanol is to degrade from a temperature of about 250 ' ⁇ .
  • the Rankine cycle must therefore be controlled so that the temperature of the working fluid at the outlet of the heat exchanger is not greater than 250 ° C.
  • the exchanger used in such a system is an exchanger in which the working fluid circulates in countercurrent with respect to the exhaust gas. This type of exchanger is known for its good thermal performance.
  • the time required for the refrigerant to reach the maximum temperature is very short (for example it is 5 seconds to reach 250 ' ⁇ when passing 100 at 120 km / h in the case of ethanol as a working fluid).
  • the exchangers in which the working fluid circulates cocurrently with respect to the exhaust gases have a necessary duration so that the refrigerant reaches the higher maximum temperature (for example it is 14.7 seconds to reach 250 ' ⁇ when passing from 100 to 120 km / h in the case of ethanol as a working fluid) but their thermal performance is low .
  • the invention aims, for this purpose, a heat exchanger comprising a beam for a heat exchange between a first fluid, said working fluid, and a second fluid, said beam being configured so that:
  • said working fluid circulates in at least one upstream pass and in one end pass in which said working fluid is in the vapor phase on at least a part
  • said working fluid circulates in at least one of said countercurrent upstream passes relative to said second fluid
  • said working fluid circulates in said terminal pass co-current with respect to said second fluid.
  • such an exchanger makes it possible to increase the time constant of the system in order to ensure a sufficient time for the acquisition of the temperature of the working fluid at the outlet of the exchanger or in other words so that the working fluid can reach the maximum temperature.
  • the heat exchanger however retains a good thermal performance by working all or parts of the previous passes in countercurrent.
  • the increase in the temperature of the working fluid is slower which limits the risk of damaging the working fluid by too high temperatures.
  • Such an exchanger configuration makes it possible to have at the output a minimum temperature of the exhaust gas lower than the evaporation temperature. It is thus not necessary to use a working fluid resistant to high temperatures.
  • said terminal pass succeeds a first pass so that said working fluid circulates in two passes in the exchanger
  • the exchange surface of the terminal pass represents at most 50% of the total exchange surface of said first pass and terminates
  • said exchange surface of the terminal pass represents between 40 and 10% of the total exchange surface of said first pass and terminates
  • said exchange surface of the terminal pass represents between 30 and 20% of the total exchange surface of said first pass and terminates, said exchange surface of the first pass represents at least 50% of the total exchange surface of said first pass and terminates,
  • said exchange surface of the first pass represents between 60 and 90% of the total exchange surface of said first pass and terminates
  • said exchange surface of the first pass represents between 70 and 80% of the total exchange surface of said first pass and terminates
  • said exchanger is configured so that said working fluid is a coolant
  • said exchanger is configured so that said working fluid is ethanol
  • said exchanger is configured so that said second fluid is exhaust gas from a vehicle engine
  • said exchanger is configured so that said phase change is located at the end of the first pass and / or at the beginning of the terminal pass,
  • said exchanger has an elongated configuration
  • each of said passes has an elongated configuration
  • each of said passes is arranged in parallel with each other.
  • the invention also relates to a plant for recovering energy from the heat of the exhaust gas comprising a circulation loop of a working fluid, said loop comprising a heat exchanger according to any one of the preceding claims for exchanging heat with said exhaust gas.
  • Said loop may in particular be configured to implement a Rankine cycle.
  • said loop further comprises a pump
  • said loop further comprises an expander
  • - Said loop further comprises a condenser, specifically a condenser with subcooler and accumulator.
  • the invention also relates to a method for recovering energy from the heat of the exhaust gases using a circulation loop of a working fluid, said loop comprising a heat exchanger between said working fluid and said exhaust gas, said method comprising a step of separating said exhaust gas, in a first stream and a second stream, downstream of said exchanger so that the working fluid circulates countercurrently with respect to the first flow in at minus one upstream pass and circulates cocurrently with respect to said second flow in a terminal pass in which said working fluid is in vapor phase on at least a portion.
  • said terminal pass succeeds a first pass so that said working fluid circulates in two passes in the exchanger
  • the exchange surface of the terminal pass represents at most 50% of the total exchange surface of said first pass and passes terminal.
  • said exchange surface of the terminal pass represents between 40 and 10% of the total exchange surface of said first pass and terminates
  • said exchange surface of the terminal pass represents between 30 and 20% of the total exchange surface of said first pass and terminates
  • said exchange surface of the first pass represents at least 50% of the total exchange surface of said first pass and terminates
  • said exchange surface of the first pass represents between 60 and 90% of the total exchange surface of said first pass and terminates
  • said exchange surface of the first pass represents between 70 and 80% of the total exchange surface of said first pass and terminates
  • said working fluid is a coolant
  • said working fluid is ethanol
  • phase change is located at the end of the first pass and / or at the beginning of the terminal pass
  • said exchanger has an elongated configuration
  • each of said passes has an elongated configuration
  • each of said passes is arranged in parallel with each other
  • said loop further comprises a pump
  • said loop further comprises an expander
  • said loop further comprises a condenser
  • said loop implements a Rankine cycle.
  • FIG. 1 is a schematic view of a circulation loop of a working fluid according to the Rankine cycle comprising a heat exchanger according to the invention
  • FIG. 2 is a schematic view of the heat exchanger of FIG. 1;
  • FIG. 3 schematically represents the change of state of a working fluid in the heat exchanger of FIG. 2;
  • FIG. 4 illustrates a comparison of the change of state of a working fluid in a heat exchanger of the prior art and in a heat exchanger according to FIG. 2 for a vehicle at a constant speed of 100 km / h .
  • the invention firstly relates to an installation 1 for recovering energy from a heat source 3.
  • Such an installation here implements a Rankine cycle and comprises a circulation loop. 5.
  • a loop comprises a condenser 7, a pump 9, a heat exchanger 11 and an expansion member 13.
  • the working fluid 5 is driven by the pump 9 and will undergo different phase changes.
  • the working fluid is cooled to a pressure and a temperature sufficient by the condenser 7 to be fully liquefied.
  • the working fluid in the form of compressed liquid is then vaporized in the heat exchanger 1 1 by heat exchange with a hot source 3.
  • the working fluid 5 in vapor form is finally expanded at the expander 13.
  • the fluid 5 is then again condensed to resume the same cycle.
  • the cycle also comprises a secondary cooler 15 placed between the condenser 7 and the pump 9. It reduces the temperature of the working fluid 5 before compression and vaporization.
  • the condenser 7 and the secondary cooler 15 are supplied with fluid 17 for cooling the working fluid 5. It may be the same fluid flowing in the two elements, or two different fluids. This circulates preferably first in the secondary cooler 15 and then in the condenser 7.
  • the heat source 3 of the heat exchanger 1 1 is the exhaust gas from a vehicle and the expansion member 13 is a turbine intended to be driven by the expansion of said working fluid 5 in phase gaseous and to produce energy, especially electrical.
  • This cycle thus makes it possible to recover energy from the gases exhaust 3 and transform it into energy to produce, for example, electricity for an element 19 of the vehicle.
  • the invention more particularly relates to the heat exchanger 11 of the working fluid circulation loop mentioned above.
  • Said exchanger 11 comprises a beam allowing a heat exchange between a first fluid 5, said working fluid, and a second fluid 3, said beam being configured so that:
  • said working fluid flows in at least one upstream pass in which said working fluid is in the liquid phase on a first portion and in a liquid / vapor bi-phase state on a second portion and in a terminal pass 23 in which said working fluid 5 is in a two-phase liquid / vapor state on a first part 23a and in a vapor phase on a second part 23b,
  • said working fluid 5 circulates in at least one of said upstream passes 21 counter-current with respect to said second fluid 3,
  • said working fluid 5 circulates in said terminal pass 23 co-current with respect to said second fluid 3.
  • the heat exchanger 1 1 preferably comprises two passes and two passes only, namely a first pass 21 and the terminal pass 23. It may also include at least one pass downstream of the first pass 21 in the or which working fluid 5 will be in the liquid phase. It may also comprise at least one intermediate pass in which said working fluid is in a biphasic liquid / vapor state.
  • a pass corresponds to set of tubes defined in the same plane, for example, in the case where there are two passes, the working fluid 5 flows successively in a first direction for the first pass, or within the first set of tubes, then in a reverse direction in the first direction for the second pass or inside the second set of tubes.
  • the first pass 21 against the current, in which the thermal power exchanged is high, ensures the warming of the working fluid 5 in liquid form and part of the evaporation.
  • the terminal pass 23 co-current ensures the rest of the evaporation and overheating of the working fluid 5. The effect of said overheating will however be limited since it works in co-current.
  • Said second fluid 3 in turn flows in a pass which minimizes the pressure drop.
  • Said heat exchanger 11 may comprise a heat exchange bundle, for example with stacked plates or tubes.
  • Such a heat exchanger 1 1 makes it possible to implement a method of recovering energy from the heat of a second fluid, here exhaust gas 3, using the circulation loop described above.
  • Said method comprises a step of separating said exhaust gas 3, in a first stream 3a and in a second stream 3b, downstream of said exchanger January. This separation is done so that the working fluid 5 circulates countercurrently with respect to the first flow 3a in said first pass 21 in which said working fluid 5 is in the liquid phase on the first portion 21a and in the liquid / vapor bi-phase state on the second portion 21b and circulates cocurrently with respect to said second flow 3b in said terminal pass 23 in which said working fluid 5 is in the bi-phasic liquid state / vapor on a first portion 23a and vapor phase on the second portion 23b.
  • the separation is carried out by means of a separation means which comprises any means making it possible to distribute in two streams 3a, 3b as well as a regulation of the flow rates of said exhaust gas streams 3a, 3b.
  • separation members allow a geometrical separation of the exhaust gas 3 and include for example an internal partition within the pipe which carries the exhaust gas 3, thus separating the exhaust gas 3 into two streams 3a, 3b or alternatively a bifurcation of the pipe carrying the exhaust gas 3 in two sub-pipes, thus separating the exhaust gas 3 into two streams 3a, 3b.
  • the separation means may for example separate the exhaust gases so as to have a higher flow rate for a flow 3a than for the other flow 3b.
  • Said exhaust gas 3 thus exchange heat with said working fluid 5 so that it reaches the liquid / vapor bi-phase state at the outlet of said first pass 21 and that it is in vapor phase but at a temperature limited to the output of said terminal pass 23, that is to say at the outlet of the heat exchange 1 1.
  • the exhaust gas 3 is cooled and the first and the second stream 3a and 3b are mixed to be subsequently evacuated.
  • the exchange surface of the end pass 23 represents at most 50%, preferably between 40 and 10%, and more preferably between 30 and 20% of the surface area. total exchange of said first pass 21 and terminal pass 23. Therefore, said exchange surface of the first pass 21 represents at least 50%, preferably between 60 and 90%, and more preferably between 70 and 80% of the total exchange surface of said first pass 21 and end pass 23. In the case of a 1 1 exchanger with two passes, as shown here, the total exchange surface of said first pass 21 and terminal pass 23 corresponds to the surface of exchange of the exchanger 1 1.
  • the second fluid 3 flows with a different flow rate in each of the passes.
  • the distribution of the second fluid 3 is such that at most 50%, preferably between 40 and 10%, and more preferably between 30 and 20% of the flow rate of the second fluid 3 circulates in the so-called terminal pass 23.
  • the distribution of the second fluid 3 is such that at least 50%, preferably between 60 and 90%, and more preferably between 70 and 80% of the flow of the second fluid 3 circulates in the first pass 21.
  • this pass 23 is in co-current implies that the working fluid 5 at the outlet of the heat exchanger January 1 is in contact with the second fluid 3 at the lowest temperature. This reduces the risks for the working liquid 5 of reaching a temperature too high at the outlet of the exchanger and being damaged.
  • said working fluid 5 is a coolant, and more particularly ethanol
  • said second fluid 3 is the exhaust gas of a vehicle engine.
  • the fluid exchanging heat with the working fluid 5 in the exchangers 7 and 15 may be a coolant.
  • the countercurrent exchanger makes it possible to obtain maximum mechanical power at the level of the expansion element (554 W), but during the passage from 100 to 120 km / h the temperature of 250 ° C is reached in 5 s. This requires the use of a more expensive temperature sensor and actuator system responding in less than 5 seconds to prevent the working fluid from being damaged.
  • the co-current exchanger makes it possible to obtain mechanical power at the level of the lower expander of 25% compared to the countercurrent (443 W). On the other hand, when passing from 100 to 120 km / h the temperature of 250 ° C is reached in 14.7 s.
  • the exchanger 1 1 two countercurrent / co-current passes optimized especially with a fluid distribution of work / second fluid between 80/20 and 70/30 that is to say that the exchange surface of the terminal pass 23 represents between 20% and 30% of the total exchange surface of said first pass 21 and end pass 23, and therefore the exchange surface of the first pass 21 represents between 80 and 70% of the surface area of total exchange of said first pass 21 and terminal pass 23
  • said phase change is located at the end of the first pass 21 and / or at the beginning of the end pass 23.
  • the working fluid 5 is in liquid form in the first portion 21a. of the first pass 21 and in two-phase liquid / vapor form in the second portion 21b of the first pass 21.
  • the working fluid 5 is in the form bi-phasic liquid / vapor in the first portion 23a of the terminal pass 23 and in the vapor state in the second portion 23b of the terminal pass 23.
  • the liquid part occupies a very high surface area in the two heat exchangers (70% of the surface area for the counter-current heat exchanger and 60% for the 1 1 two-pass heat exchanger 80/20 according to the invention). This is the part referenced 21a in FIG.
  • the part allocated to evaporation that is to say the part or the working fluid is in a two-phase liquid / vapor state, is 25% for the countercurrent exchanger and 17.5 % for the exchanger 1 1 with two passes 80/20 according to the invention. These are the parts referenced 21b and 23a in FIG.
  • the heat exchanger 11 has an elongated configuration.
  • each of said passes 21 and 23 has an elongated configuration and is arranged in parallel with each other.
  • Such a configuration facilitates the integration of the heat exchanger in an exhaust line.

Abstract

The invention relates to a heat exchanger (11) comprising a bundle allowing exchange of heat between a first fluid, referred to as working fluid (3), and a second fluid (5), the said bundle being configured so that: - the said working fluid (5) circulates in at least one upstream pass (21) and in a terminal pass (23) in which the said working fluid (5) is in the vapour phase in at least a part (23b), - the said working fluid (5) circulates in at least one of the said upstream passes (21) countercurrentwise with respect to the said second fluid (3), - the said working fluid (5) circulates in the said terminal pass (23) cocurrentwise with respect to the said second fluid (3). The invention also relates to an installation comprising a circuit for the circulation of a working fluid (5) comprising such a heat exchanger (11) and to a method using such a circuit.

Description

ECHANGEUR DE CHALEUR POUR VEHICULE, INSTALLATION ET PROCEDE DE  HEAT EXCHANGER FOR VEHICLE, INSTALLATION AND METHOD FOR
RECUPERATION D'ENERGIE  ENERGY RECOVERY
La présente invention a pour objet un échangeur de chaleur, notamment pour véhicule, et plus particulièrement un échangeur de chaleur permettant un échange de chaleur entre un fluide de travail et un second fluide, tel que des gaz d'échappement. Elle concerne également une installation et un procédé de récupération d'énergie mettant en œuvre un tel échangeur de chaleur. Les contraintes environnementales impulsées par les nouvelles normes européennes incitent les constructeurs automobiles à réduire les émissions de C02 de leurs véhicules. Une solution envisageable est la récupération d'énergie perdue. En particulier, il est possible de récupérer l'énergie perdue à l'échappement via un cycle thermodynamique de Rankine. En effet, la chaleur des gaz d'échappement peut être utilisée pour chauffer puis vaporiser un fluide de travail sous forme de vapeur haute pression qui va être est détendu dans une turbine et transformé en énergie, notamment électrique. Le fluide est ensuite condensé pour retrouver sa forme liquide et recommencer le cycle. Dans de tel système, l'évaporation du fluide de travail par le gaz d'échappement s'effectue par l'intermédiaire d'un échangeur de chaleur soumis à la dynamique très élevée de la variation du débit et de la température du gaz d'échappement. The subject of the present invention is a heat exchanger, in particular for a vehicle, and more particularly a heat exchanger allowing a heat exchange between a working fluid and a second fluid, such as exhaust gases. It also relates to an installation and a method of energy recovery using such a heat exchanger. The environmental constraints driven by the new European standards encourage car manufacturers to reduce C0 2 emissions from their vehicles. One possible solution is the recovery of lost energy. In particular, it is possible to recover the energy lost in the exhaust via a thermodynamic Rankine cycle. Indeed, the heat of the exhaust gas can be used to heat and then spray a working fluid in the form of high pressure steam that will be expanded in a turbine and converted into energy, including electrical. The fluid is then condensed to regain its liquid form and start the cycle again. In such a system, the evaporation of the working fluid by the exhaust gas is effected by means of a heat exchanger subject to the very high dynamics of the variation of the flow rate and the temperature of the gas. exhaust.
Dans le cas où le fluide de travail est l'éthanol, le problème de la dégradation de celui-ci se pose. En effet, l'une des caractéristiques de l'éthanol est de se dégrader à partir d'une température d'environ 250 'Ό. Le cycle de Rankine doit donc être contrôlé de manière à ce que la température du fluide de travail à la sortie de l'échangeur de chaleur ne soit pas supérieure à 250 'Ό. Classiquement, l'échangeur utilisé dans de tel système est un échangeur dans lequel le fluide de travail circule à contre-courant par rapport aux gaz d'échappement. Ce type d'échangeurs est connu pour sa bonne performance thermique. En revanche, la durée nécessaire au réfrigérant pour atteindre la température maximale, autrement dit l'acquisition de la température du fluide de travail en sortie, est très courte (par exemple elle est de 5 secondes pour atteindre 250 'Ό lors du passage de 100 à 120 km/h dans le cas de l'éthanol comme fluide de travail). A contrario, les échangeurs dans lesquels le fluide de travail circule à co-courant par rapport aux gaz d'échappement ont une durée nécessaire pour que le réfrigérant atteigne la température maximale plus élevée (par exemple elle est de 14,7 secondes pour atteindre 250 'Ό lors du passage de 100 à 120 km/h dans le cas de l'éthanol comme fluide de travail) mais leur performance thermique est faible. II existe donc un besoin d'un échangeur de chaleur remédiant aux inconvénients précédents. In the case where the working fluid is ethanol, the problem of degradation thereof arises. Indeed, one of the characteristics of ethanol is to degrade from a temperature of about 250 'Ό. The Rankine cycle must therefore be controlled so that the temperature of the working fluid at the outlet of the heat exchanger is not greater than 250 ° C. Conventionally, the exchanger used in such a system is an exchanger in which the working fluid circulates in countercurrent with respect to the exhaust gas. This type of exchanger is known for its good thermal performance. On the other hand, the time required for the refrigerant to reach the maximum temperature, that is to say the acquisition of the temperature of the working fluid output, is very short (for example it is 5 seconds to reach 250 'Ό when passing 100 at 120 km / h in the case of ethanol as a working fluid). Conversely, the exchangers in which the working fluid circulates cocurrently with respect to the exhaust gases have a necessary duration so that the refrigerant reaches the higher maximum temperature (for example it is 14.7 seconds to reach 250 'Ό when passing from 100 to 120 km / h in the case of ethanol as a working fluid) but their thermal performance is low . There is therefore a need for a heat exchanger overcoming the above disadvantages.
L'invention vise, à cet effet, un échangeur de chaleur comprenant un faisceau permettant un échange de chaleur entre un premier fluide, dit fluide de travail, et un second fluide, ledit faisceau étant configuré pour que : The invention aims, for this purpose, a heat exchanger comprising a beam for a heat exchange between a first fluid, said working fluid, and a second fluid, said beam being configured so that:
- ledit fluide de travail circule en au moins une passe amont et en une passe terminale dans laquelle ledit fluide de travail est en phase vapeur sur au moins une partie, said working fluid circulates in at least one upstream pass and in one end pass in which said working fluid is in the vapor phase on at least a part,
- ledit fluide de travail circule dans au moins une desdites passes amont à contre- courant par rapport audit second fluide, said working fluid circulates in at least one of said countercurrent upstream passes relative to said second fluid,
- ledit fluide de travail circule dans ladite passe terminale à co-courant par rapport audit second fluide.  said working fluid circulates in said terminal pass co-current with respect to said second fluid.
Grâce à la passe terminale qui travaille en co-courant, un tel échangeur permet d'augmenter la constante de temps du système afin d'assurer un temps suffisant pour l'acquisition de la température du fluide de travail à la sortie de l'échangeur, ou en d'autres termes pour que le fluide de travail puisse atteindre la température maximale. L'échangeur de chaleur conserve cependant une bonne performance thermique en faisant travailler tout ou parties des passes précédentes en contre-courant. L'augmentation de la température du fluide de travail est plus lente ce qui limite les risques d'endommager le fluide de travail par de trop hautes températures. Une telle configuration d'échangeur permet d'avoir en sortie une température minimale des gaz d'échappement inférieure à la température d'évaporation. Il n'est ainsi pas nécessaire d'utiliser un fluide de travail résistant aux hautes températures. Thanks to the terminal pass which works in co-current, such an exchanger makes it possible to increase the time constant of the system in order to ensure a sufficient time for the acquisition of the temperature of the working fluid at the outlet of the exchanger or in other words so that the working fluid can reach the maximum temperature. The heat exchanger however retains a good thermal performance by working all or parts of the previous passes in countercurrent. The increase in the temperature of the working fluid is slower which limits the risk of damaging the working fluid by too high temperatures. Such an exchanger configuration makes it possible to have at the output a minimum temperature of the exhaust gas lower than the evaporation temperature. It is thus not necessary to use a working fluid resistant to high temperatures.
Selon différents modes de réalisation de l'invention, qui pourront être pris ensemble ou séparément : According to various embodiments of the invention, which may be taken together or separately:
- ladite passe terminale succède à une première passe de sorte que ledit fluide de travail circule en deux passes dans l'échangeur,  said terminal pass succeeds a first pass so that said working fluid circulates in two passes in the exchanger,
- la surface d'échange de la passe terminale représente au plus 50% de la surface d'échange totale desdites première passe et passe terminale,  the exchange surface of the terminal pass represents at most 50% of the total exchange surface of said first pass and terminates,
- ladite surface d'échange de la passe terminale représente entre 40 et 10% de la surface d'échange totale desdites première passe et passe terminale,  said exchange surface of the terminal pass represents between 40 and 10% of the total exchange surface of said first pass and terminates,
- ladite surface d'échange de la passe terminale représente entre 30 et 20% de la surface d'échange totale desdites première passe et passe terminale, - ladite surface d'échange de la première passe représente au moins 50% de la surface d'échange totale desdites première passe et passe terminale, said exchange surface of the terminal pass represents between 30 and 20% of the total exchange surface of said first pass and terminates, said exchange surface of the first pass represents at least 50% of the total exchange surface of said first pass and terminates,
- ladite surface d'échange de la première passe représente entre 60 et 90% de la surface d'échange totale desdites première passe et passe terminale,  said exchange surface of the first pass represents between 60 and 90% of the total exchange surface of said first pass and terminates,
- ladite surface d'échange de la première passe représente entre 70 et 80% de la surface d'échange totale desdites première passe et passe terminale,  said exchange surface of the first pass represents between 70 and 80% of the total exchange surface of said first pass and terminates,
- ledit échangeur est configuré pour que ledit fluide de travail soit un liquide réfrigérant,  said exchanger is configured so that said working fluid is a coolant,
- ledit échangeur est configuré pour que ledit fluide de travail soit de l'éthanol, said exchanger is configured so that said working fluid is ethanol,
- ledit échangeur est configuré pour que ledit second fluide soit des gaz d'échappement d'un moteur de véhicule, said exchanger is configured so that said second fluid is exhaust gas from a vehicle engine,
- ledit échangeur est configuré pour que ledit changement de phase soit localisé en fin de première passe et/ou en début de passe terminale,  said exchanger is configured so that said phase change is located at the end of the first pass and / or at the beginning of the terminal pass,
- ledit échangeur présente une configuration allongée,  said exchanger has an elongated configuration,
- chacune desdites passes présente une configuration allongée,  each of said passes has an elongated configuration,
- chacune desdites passes sont disposées en parallèle l'une à l'autre.  each of said passes is arranged in parallel with each other.
L'invention concerne aussi une installation de récupération d'énergie à partir de la chaleur des gaz d'échappement comprenant une boucle de circulation d'un fluide de travail, ladite boucle comprenant un échangeur de chaleur selon l'une quelconque des revendications précédentes pour échanger de la chaleur avec lesdits gaz d'échappement. Ladite boucle pourra en particulier être configurée pour mettre en œuvre un cycle de Rankine. The invention also relates to a plant for recovering energy from the heat of the exhaust gas comprising a circulation loop of a working fluid, said loop comprising a heat exchanger according to any one of the preceding claims for exchanging heat with said exhaust gas. Said loop may in particular be configured to implement a Rankine cycle.
Selon différents modes de réalisation de l'invention, qui pourront être pris ensemble ou séparément : According to various embodiments of the invention, which may be taken together or separately:
- ladite boucle comprend en outre une pompe,  said loop further comprises a pump,
- ladite boucle comprend en outre un détendeur,  said loop further comprises an expander,
- ladite boucle comprend en outre un condenseur, plus précisément un condenseur avec subcooler et accumulateur.  - Said loop further comprises a condenser, specifically a condenser with subcooler and accumulator.
L'invention concerne encore un procédé de récupération d'énergie à partir de la chaleur des gaz d'échappement mettant en œuvre une boucle de circulation d'un fluide de travail, ladite boucle comprenant un échangeur de chaleur entre ledit fluide de travail et lesdits gaz d'échappement, ledit procédé comprenant une étape de séparation desdits gaz d'échappement, en un premier flux et en un second flux, en aval dudit échangeur de manière à ce que le fluide de travail circule à contre-courant par rapport au premier flux dans au moins une passe amont et circule à co-courant par rapport audit second flux dans une passe terminale dans laquelle ledit fluide de travail est en phase vapeur sur au moins une partie. The invention also relates to a method for recovering energy from the heat of the exhaust gases using a circulation loop of a working fluid, said loop comprising a heat exchanger between said working fluid and said exhaust gas, said method comprising a step of separating said exhaust gas, in a first stream and a second stream, downstream of said exchanger so that the working fluid circulates countercurrently with respect to the first flow in at minus one upstream pass and circulates cocurrently with respect to said second flow in a terminal pass in which said working fluid is in vapor phase on at least a portion.
Selon différents modes de réalisation de l'invention, qui pourront être pris ensemble ou séparément : According to various embodiments of the invention, which may be taken together or separately:
- ladite passe terminale succède à une première passe de sorte que ledit fluide de travail circule en deux passes dans l'échangeur,  said terminal pass succeeds a first pass so that said working fluid circulates in two passes in the exchanger,
- la surface d'échange de la passe terminale représente au plus 50% de la surface d'échange totale desdites première passe et passe terminale.  - The exchange surface of the terminal pass represents at most 50% of the total exchange surface of said first pass and passes terminal.
- ladite surface d'échange de la passe terminale représente entre 40 et 10% de la surface d'échange totale desdites première passe et passe terminale,  said exchange surface of the terminal pass represents between 40 and 10% of the total exchange surface of said first pass and terminates,
- ladite surface d'échange de la passe terminale représente entre 30 et 20% de la surface d'échange totale desdites première passe et passe terminale,  said exchange surface of the terminal pass represents between 30 and 20% of the total exchange surface of said first pass and terminates,
- ladite surface d'échange de la première passe représente au moins 50% de la surface d'échange totale desdites première passe et passe terminale,  said exchange surface of the first pass represents at least 50% of the total exchange surface of said first pass and terminates,
- ladite surface d'échange de la première passe représente entre 60 et 90% de la surface d'échange totale desdites première passe et passe terminale,  said exchange surface of the first pass represents between 60 and 90% of the total exchange surface of said first pass and terminates,
- ladite surface d'échange de la première passe représente entre 70 et 80% de la surface d'échange totale desdites première passe et passe terminale,  said exchange surface of the first pass represents between 70 and 80% of the total exchange surface of said first pass and terminates,
- ledit fluide de travail est un liquide réfrigérant,  said working fluid is a coolant,
- ledit fluide de travail est de l'éthanol,  said working fluid is ethanol,
- ledit changement de phase est localisé en fin de première passe et/ou en début de passe terminale,  said phase change is located at the end of the first pass and / or at the beginning of the terminal pass,
- ledit échangeur présente une configuration allongée,  said exchanger has an elongated configuration,
- chacune desdites passes présente une configuration allongée,  each of said passes has an elongated configuration,
- chacune desdites passes sont disposées en parallèle l'une à l'autre,  each of said passes is arranged in parallel with each other,
- ladite boucle comprend en outre une pompe,  said loop further comprises a pump,
- ladite boucle comprend en outre un détendeur,  said loop further comprises an expander,
- ladite boucle comprend en outre un condenseur,  said loop further comprises a condenser,
- ladite boucle met en œuvre un cycle de Rankine.  said loop implements a Rankine cycle.
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre, d'au moins un mode de réalisation de l'invention donné à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématique annexés. Sur ces dessins : The invention will be better understood, and other objects, details, features and advantages thereof will become more clearly apparent in the following detailed explanatory description of at least one embodiment of the invention given to As a purely illustrative and non-limiting example, with reference to the attached schematic drawings. On these drawings:
- la figure 1 est une vue schématique d'une boucle de circulation d'un fluide de travail selon le cycle de Rankine comprenant un échangeur de chaleur selon l'invention,  FIG. 1 is a schematic view of a circulation loop of a working fluid according to the Rankine cycle comprising a heat exchanger according to the invention,
- la figure 2 est une vue schématique de l'échangeur de chaleur de la figure 1 , - la figure 3 représente schématiquement le changement d'état d'un fluide de travail dans l'échangeur de chaleur de la figure 2,  FIG. 2 is a schematic view of the heat exchanger of FIG. 1; FIG. 3 schematically represents the change of state of a working fluid in the heat exchanger of FIG. 2;
- la figure 4 illustre une comparaison du changement d'état d'un fluide de travail dans un échangeur de chaleur de l'art antérieur et dans un échangeur de chaleur selon la figure 2 pour un véhicule à une vitesse constante de 100 km/h.  FIG. 4 illustrates a comparison of the change of state of a working fluid in a heat exchanger of the prior art and in a heat exchanger according to FIG. 2 for a vehicle at a constant speed of 100 km / h .
Comme illustré dans la figure 1 , l'invention concerne tout d'abord une installation 1 de récupération d'énergie à partir d'une source de chaleur 3. Une telle installation met ici en œuvre un cycle de Rankine et comprend une boucle de circulation d'un fluide de travail 5. De manière classique, une telle boucle comprend un condenseur 7, une pompe 9, un échangeur de chaleur 1 1 et un organe de détente13. Dans un cycle de Rankine, le fluide de travail 5 est entraîné par la pompe 9 et va subir différents changements de phase. Dans un premier temps, le fluide de travail est refroidi à une pression et une température suffisantes par le condenseur 7 pour qu'il soit entièrement liquéfié. Le fluide de travail sous forme de liquide comprimé est ensuite vaporisé dans l'échangeur de chaleur 1 1 par échange thermique avec une source chaude 3. Le fluide de travail 5 sous forme vapeur est enfin détendu au niveau du détendeur 13. Le fluide 5 est alors à nouveau condensé pour reprendre le même cycle. Dans l'exemple illustré à la figure 1 , le cycle comprend également un refroidisseur secondaire 15 placé entre le condenseur 7 et la pompe 9. Il permet de diminuer la température du fluide de travail 5 avant sa compression et sa vaporisation. As illustrated in FIG. 1, the invention firstly relates to an installation 1 for recovering energy from a heat source 3. Such an installation here implements a Rankine cycle and comprises a circulation loop. 5. In a conventional manner, such a loop comprises a condenser 7, a pump 9, a heat exchanger 11 and an expansion member 13. In a Rankine cycle, the working fluid 5 is driven by the pump 9 and will undergo different phase changes. At first, the working fluid is cooled to a pressure and a temperature sufficient by the condenser 7 to be fully liquefied. The working fluid in the form of compressed liquid is then vaporized in the heat exchanger 1 1 by heat exchange with a hot source 3. The working fluid 5 in vapor form is finally expanded at the expander 13. The fluid 5 is then again condensed to resume the same cycle. In the example illustrated in Figure 1, the cycle also comprises a secondary cooler 15 placed between the condenser 7 and the pump 9. It reduces the temperature of the working fluid 5 before compression and vaporization.
Le condenseur 7 et le refroidisseur secondaire 15 sont alimentés en fluide 17 permettant de refroidir le fluide de travail 5. Il peut s'agir d'un même fluide circulant dans les deux éléments, ou de deux fluides différents. Celui-ci circule de préférence d'abord dans le refroidisseur secondaire 15 puis dans le condenseur 7. The condenser 7 and the secondary cooler 15 are supplied with fluid 17 for cooling the working fluid 5. It may be the same fluid flowing in the two elements, or two different fluids. This circulates preferably first in the secondary cooler 15 and then in the condenser 7.
Ici, la source de chaleur 3 de l'échangeur de chaleur 1 1 est les gaz d'échappement provenant d'un véhicule et l'organe de détente 13 est une turbine destinée à être entraînée par la détente dudit fluide de travail 5 en phase gazeuse et à produire de l'énergie, notamment électrique. Ce cycle permet ainsi de récupérer de l'énergie à partir des gaz d'échappement 3 et de la transformer en énergie pour produire, par exemple, de l'électricité pour un élément 19 du véhicule. Here, the heat source 3 of the heat exchanger 1 1 is the exhaust gas from a vehicle and the expansion member 13 is a turbine intended to be driven by the expansion of said working fluid 5 in phase gaseous and to produce energy, especially electrical. This cycle thus makes it possible to recover energy from the gases exhaust 3 and transform it into energy to produce, for example, electricity for an element 19 of the vehicle.
Comme illustré à la figure 2, l'invention concerne plus particulièrement l'échangeur de chaleur 1 1 de la boucle de circulation du fluide de travail 5 mentionné précédemment. Ledit échangeur 1 1 comprend un faisceau permettant un échange de chaleur entre un premier fluide 5, dit fluide de travail, et un second fluide 3, ledit faisceau étant configuré pour que : As illustrated in FIG. 2, the invention more particularly relates to the heat exchanger 11 of the working fluid circulation loop mentioned above. Said exchanger 11 comprises a beam allowing a heat exchange between a first fluid 5, said working fluid, and a second fluid 3, said beam being configured so that:
- ledit fluide de travail 5 circule en au moins une passe amont 21 dans laquelle ou lesquelles ledit fluide de travail 5 est en phase liquide sur une première partie 21 a et dans un état bi-phasique liquide/vapeur sur une seconde partie 21 b et en une passe terminale 23 dans laquelle ledit fluide de travail 5 est dans un état bi-phasique liquide/vapeur sur une première partie 23a et en phase vapeur sur une seconde partie 23b,  said working fluid flows in at least one upstream pass in which said working fluid is in the liquid phase on a first portion and in a liquid / vapor bi-phase state on a second portion and in a terminal pass 23 in which said working fluid 5 is in a two-phase liquid / vapor state on a first part 23a and in a vapor phase on a second part 23b,
- ledit fluide de travail 5 circule dans au moins une desdites passes amont 21 à contre- courant par rapport audit second fluide 3,  said working fluid 5 circulates in at least one of said upstream passes 21 counter-current with respect to said second fluid 3,
- ledit fluide de travail 5 circule dans ladite passe terminale 23 à co-courant par rapport audit second fluide 3.  said working fluid 5 circulates in said terminal pass 23 co-current with respect to said second fluid 3.
L'échangeur de chaleur 1 1 selon l'invention comprend préférentiellement deux passes et deux passes seulement, à savoir une première passe 21 et la passe terminale 23. Il peut aussi comprendre au moins une passe en aval de la première passe 21 dans la ou lesquelles le fluide de travail 5 sera en phase liquide. Il peut également comprendre au moins une passe intermédiaire dans la ou lesquelles ledit fluide de travail 5 est dans un état bi-phasique liquide/vapeur. Une passe correspond à ensemble de tubes définis dans un même plan, par exemple, dans le cas où il y a deux passes, le fluide de travail 5 circule successivement dans un premier sens pour la première passe, ou à l'intérieur du premier ensemble de tubes, puis dans un sens inverse au premier sens pour la deuxième passe ou à l'intérieur du deuxième ensemble de tubes. The heat exchanger 1 1 according to the invention preferably comprises two passes and two passes only, namely a first pass 21 and the terminal pass 23. It may also include at least one pass downstream of the first pass 21 in the or which working fluid 5 will be in the liquid phase. It may also comprise at least one intermediate pass in which said working fluid is in a biphasic liquid / vapor state. A pass corresponds to set of tubes defined in the same plane, for example, in the case where there are two passes, the working fluid 5 flows successively in a first direction for the first pass, or within the first set of tubes, then in a reverse direction in the first direction for the second pass or inside the second set of tubes.
La première passe 21 en contre-courant, dans laquelle la puissance thermique échangée est élevée, assure le réchauffement du fluide de travail 5 sous forme liquide et une partie de l'évaporation. La passe terminale 23 en co-courant assure le reste de l'évaporation et la surchauffe du fluide de travail 5. L'effet de ladite surchauffe sera cependant limité puisque l'on travaille en co-courant. Ledit second fluide 3 quant à lui circule en une passe ce qui minimise la perte de charge. Ledit échangeur de chaleur 1 1 pourra comprendre un faisceau d'échange de chaleur, par exemple, à plaques empilées ou à tubes. The first pass 21 against the current, in which the thermal power exchanged is high, ensures the warming of the working fluid 5 in liquid form and part of the evaporation. The terminal pass 23 co-current ensures the rest of the evaporation and overheating of the working fluid 5. The effect of said overheating will however be limited since it works in co-current. Said second fluid 3 in turn flows in a pass which minimizes the pressure drop. Said heat exchanger 11 may comprise a heat exchange bundle, for example with stacked plates or tubes.
Un tel échangeur 1 1 permet de mettre en œuvre un procédé de récupération d'énergie à partir de la chaleur d'un second fluide, ici des gaz d'échappement 3, utilisant la boucle de circulation décrite précédemment. Such a heat exchanger 1 1 makes it possible to implement a method of recovering energy from the heat of a second fluid, here exhaust gas 3, using the circulation loop described above.
Ledit procédé comprend une étape de séparation desdits gaz d'échappement 3, en un premier flux 3a et en un second flux 3b, en aval dudit échangeur 1 1 . Cette séparation se fait de manière à ce que le fluide de travail 5 circule à contre-courant par rapport au premier flux 3a dans ladite première passe 21 dans laquelle ou lesquelles ledit fluide de travail 5 est en phase liquide sur la première partie 21 a et dans l'état bi-phasique liquide/vapeur sur la seconde partie 21 b et circule à co-courant par rapport audit second flux 3b dans ladite passe terminale 23 dans laquelle ledit fluide de travail 5 est dans l'état bi-phasique liquide/vapeur sur une première partie 23a et en phase vapeur sur la seconde partie 23b. La séparation est réalisée par l'intermédiaire d'un moyen de séparation qui comprend tout moyen permettant de faire une répartition en deux flux 3a,3b ainsi qu'une régulation des débits desdits flux 3a,3b des gaz d'échappement 3. Les moyens de séparation permettent une séparation géométrique des gaz d'échappement 3 et comprennent à titre d'exemple une cloison interne au sein de la canalisation qui véhicule les gaz d'échappement 3, séparant ainsi les gaz d'échappement 3 en deux flux 3a,3b, ou encore une bifurcation de la canalisation véhiculant les gaz d'échappement 3 en deux sous-canalisation, séparant ainsi les gaz d'échappement 3 en deux flux 3a,3b. Les moyens de séparation peuvent par exemple séparer les gaz d'échappement de manière à avoir un débit plus important pour un flux 3a que pour l'autre flux 3b. Said method comprises a step of separating said exhaust gas 3, in a first stream 3a and in a second stream 3b, downstream of said exchanger January. This separation is done so that the working fluid 5 circulates countercurrently with respect to the first flow 3a in said first pass 21 in which said working fluid 5 is in the liquid phase on the first portion 21a and in the liquid / vapor bi-phase state on the second portion 21b and circulates cocurrently with respect to said second flow 3b in said terminal pass 23 in which said working fluid 5 is in the bi-phasic liquid state / vapor on a first portion 23a and vapor phase on the second portion 23b. The separation is carried out by means of a separation means which comprises any means making it possible to distribute in two streams 3a, 3b as well as a regulation of the flow rates of said exhaust gas streams 3a, 3b. separation members allow a geometrical separation of the exhaust gas 3 and include for example an internal partition within the pipe which carries the exhaust gas 3, thus separating the exhaust gas 3 into two streams 3a, 3b or alternatively a bifurcation of the pipe carrying the exhaust gas 3 in two sub-pipes, thus separating the exhaust gas 3 into two streams 3a, 3b. The separation means may for example separate the exhaust gases so as to have a higher flow rate for a flow 3a than for the other flow 3b.
Lesdits gaz d'échappement 3 échangent ainsi de la chaleur avec ledit fluide de travail 5 de sorte que celui-ci atteigne l'état bi-phasique liquide/vapeur en sortie de ladite première passe 21 et qu'il soit en phase vapeur mais à une température limitée à la sortie de ladite passe terminale 23, c'est-à-dire à la sortie de l'échanger de chaleur 1 1 . Il s'agit des parties 21 b et 23b, respectivement. Said exhaust gas 3 thus exchange heat with said working fluid 5 so that it reaches the liquid / vapor bi-phase state at the outlet of said first pass 21 and that it is in vapor phase but at a temperature limited to the output of said terminal pass 23, that is to say at the outlet of the heat exchange 1 1. These are parts 21b and 23b, respectively.
A la sortie de l'échangeur de chaleur 1 1 , les gaz d'échappement 3 sont refroidis et le premier et le second flux 3a et 3b sont mélangés pour être par la suite évacués. At the outlet of the heat exchanger January 1, the exhaust gas 3 is cooled and the first and the second stream 3a and 3b are mixed to be subsequently evacuated.
De façon avantageuse, la surface d'échange de la passe terminale 23 représente au plus 50%, de préférence entre 40 et 10%, et plus préférentiellement entre 30 et 20% de la surface d'échange totale desdites première passe 21 et passe terminale 23. Par conséquent, ladite surface d'échange de la première passe 21 représente au moins 50%, de préférence entre 60 et 90%, et plus préférentiellement entre 70 et 80% de la surface d'échange totale desdites première passe 21 et passe terminale 23. Dans le cas d'un échangeur 1 1 à deux passes, comme représenté ici, la surface d'échange totale desdites première passe 21 et passe terminale 23 correspond à la surface d'échange de l'échangeur 1 1 . Advantageously, the exchange surface of the end pass 23 represents at most 50%, preferably between 40 and 10%, and more preferably between 30 and 20% of the surface area. total exchange of said first pass 21 and terminal pass 23. Therefore, said exchange surface of the first pass 21 represents at least 50%, preferably between 60 and 90%, and more preferably between 70 and 80% of the total exchange surface of said first pass 21 and end pass 23. In the case of a 1 1 exchanger with two passes, as shown here, the total exchange surface of said first pass 21 and terminal pass 23 corresponds to the surface of exchange of the exchanger 1 1.
Autrement dit, le second fluide 3 circule avec un débit différent dans chacune des passes. La répartition du seconde fluide 3 se fait de manière à ce qu'au plus 50%, de préférence entre 40 et 10%, et plus préférentiellement entre 30 et 20% du débit du second fluide 3 circule dans la passe dite terminale 23. Par conséquent, la répartition du seconde fluide 3 se fait de manière à ce qu'au moins 50%, de préférence entre 60 et 90%, et plus préférentiellement entre 70 et 80% du débit du second fluide 3 circule dans la première passe 21 . Le fait d'avoir une faible partie du débit du second fluide 3 qui traverse la passe terminale 23 permet d'avoir une forte diminution de la température du second fluide 3 lors de son passage dans cette passe. De plus, le fait que cette passe 23 soit en co-courant implique que le fluide de travail 5 en sortie de l'échangeur de chaleur 1 1 soit en contact avec le second fluide 3 à la température la plus basse. Cela diminue les risques pour le liquide de travail 5 d'atteindre une température trop élevée en sortie d'échangeur et d'être détérioré. In other words, the second fluid 3 flows with a different flow rate in each of the passes. The distribution of the second fluid 3 is such that at most 50%, preferably between 40 and 10%, and more preferably between 30 and 20% of the flow rate of the second fluid 3 circulates in the so-called terminal pass 23. By Therefore, the distribution of the second fluid 3 is such that at least 50%, preferably between 60 and 90%, and more preferably between 70 and 80% of the flow of the second fluid 3 circulates in the first pass 21. The fact of having a small portion of the flow of the second fluid 3 which passes through the terminal pass 23 allows to have a sharp decrease in the temperature of the second fluid 3 during its passage in this pass. In addition, the fact that this pass 23 is in co-current implies that the working fluid 5 at the outlet of the heat exchanger January 1 is in contact with the second fluid 3 at the lowest temperature. This reduces the risks for the working liquid 5 of reaching a temperature too high at the outlet of the exchanger and being damaged.
De manière avantageuse, ledit fluide de travail 5 est un liquide réfrigérant, et plus particulièrement de l'éthanol, et ledit second fluide 3 est les gaz d'échappement d'un moteur de véhicule. Le fluide échangeant de la chaleur avec le fluide de travail 5 dans les échangeurs 7 et 15 pourra être un liquide de refroidissement. Advantageously, said working fluid 5 is a coolant, and more particularly ethanol, and said second fluid 3 is the exhaust gas of a vehicle engine. The fluid exchanging heat with the working fluid 5 in the exchangers 7 and 15 may be a coolant.
TEST TEST
Tout d'abord la puissance mécanique de l'organe de détente 13 a été mesurée lorsqu'un véhicule est à une vitesse statique de 100 km/h. Puis le temps mis par le fluide de travail 5 pour atteindre 250 °C a été mesuré lorsqu'un véhicule passe d'une vitesse de 100 km/h à une vitesse de 120 km/h. Ces tests ont été réalisés dans le cas d'un échangeur de chaleur 1 1 selon l'invention dans lequel le ledit fluide de travail 5 est de l'éthanol circulant en deux passes 21 et 23 et ledit second fluide 3 est les gaz d'échappement d'un moteur du véhicule. Ces mêmes tests ont été réalisés dans le cas d'un échangeur à une passe à contre-courant et dans le cas d'un échangeur à une passe à co-courant. 1 passe 2 passes 1 passe contre- co-Firstly the mechanical power of the detent 13 has been measured when a vehicle is at a static speed of 100 km / h. Then the time taken by the working fluid 5 to reach 250 ° C was measured when a vehicle went from a speed of 100 km / h to a speed of 120 km / h. These tests were carried out in the case of a heat exchanger 1 1 according to the invention wherein said working fluid 5 is ethanol flowing in two passes 21 and 23 and said second fluid 3 is the gases of exhaust of a vehicle engine. These same tests were carried out in the case of a heat exchanger with a countercurrent flow and in the case of a heat exchanger with a co-current pass. 1 pass 2 passes 1 pass counter-co-
90/10 80/20 70/30 50/50 40/60 30/70 90/10 80/20 70/30 50/50 40/60 30/70
courant courant current
Puissance Power
mécanique (W) 554 530 528 518,7 498 489 476 443 du détendeur  mechanical (W) 554 530 528 518.7 498 489 476 443 of the regulator
Temps (s) pour  Time (s) for
5 10,1 10,25 10,4 10,7 1 1 ,3 12 14,7 atteindre 250 °C  5 10.1 10.25 10.4 10.7 1 1, 3 12 14.7 reach 250 ° C
Tableau 1  Table 1
L'échangeur à contre-courant permet d'obtenir une puissance mécanique maximale au niveau de l'organe de détente (554 W) mais lors du passage de 100 à 120 km/h la température de 250 °C est atteinte en 5 s. Cela nécessite l'utilisation d'un système plus onéreux de capteur de température et d'actionneur répondant en moins de 5 s pour éviter au fluide de travail d'être détérioré. The countercurrent exchanger makes it possible to obtain maximum mechanical power at the level of the expansion element (554 W), but during the passage from 100 to 120 km / h the temperature of 250 ° C is reached in 5 s. This requires the use of a more expensive temperature sensor and actuator system responding in less than 5 seconds to prevent the working fluid from being damaged.
L'échangeur à co-courant permet d'obtenir une puissance mécanique au niveau du détendeur inférieure de 25% par rapport au contre-courant (443 W). En revanche, lors du passage de 100 à 120 km/h la température de 250 °C est atteinte en 14,7 s. The co-current exchanger makes it possible to obtain mechanical power at the level of the lower expander of 25% compared to the countercurrent (443 W). On the other hand, when passing from 100 to 120 km / h the temperature of 250 ° C is reached in 14.7 s.
L'échangeur 1 1 deux passes contre-courant/co-courant optimisé notamment avec une répartition fluide de travail/second fluide comprise entre 80/20 et 70/30 (c'est-à-dire que la surface d'échange de la passe terminale 23 représente entre 20% et 30 % de la surface d'échange totale desdites première passe 21 et passe terminale 23, et par conséquent la surface d'échange de la première passe 21 représente entre 80 et 70% de la surface d'échange totale desdites première passe 21 et passe terminale 23) permet une diminution modérée de 4% de la puissance de l'organe de détente 13 par rapport à un échangeur à contre-courant, tout en garantissant une constante de temps d'environ 10 s deux fois plus élevée. On obtient ainsi un échangeur 1 1 avec une très bonne performance thermique sans devoir utilisé un système onéreux de capteur de température et d'actionneur. The exchanger 1 1 two countercurrent / co-current passes optimized especially with a fluid distribution of work / second fluid between 80/20 and 70/30 (that is to say that the exchange surface of the terminal pass 23 represents between 20% and 30% of the total exchange surface of said first pass 21 and end pass 23, and therefore the exchange surface of the first pass 21 represents between 80 and 70% of the surface area of total exchange of said first pass 21 and terminal pass 23) allows a moderate reduction of 4% of the power of the expansion member 13 relative to a countercurrent exchanger, while ensuring a time constant of about 10 s twice as high. This gives a heat exchanger 1 1 with a very good thermal performance without having to use an expensive system of temperature sensor and actuator.
De manière avantageuse ledit changement de phase est localisé en fin de première passe 21 et/ou en début de passe terminale 23. Dans l'exemple illustré figures 2 et 3, le fluide de travail 5 est sous forme liquide dans la première partie 21 a de la première passe 21 et sous forme bi-phasique liquide/vapeur dans la deuxième partie 21 b de la première passe 21 . Dans la seconde passe qui est ladite passe terminale 23, le fluide de travail 5 est sous forme bi-phasique liquide/vapeur dans la première partie 23a de la passe terminale 23 et à l'état vapeur dans la deuxième partie 23b de la passe terminale 23. Advantageously, said phase change is located at the end of the first pass 21 and / or at the beginning of the end pass 23. In the example illustrated in FIGS. 2 and 3, the working fluid 5 is in liquid form in the first portion 21a. of the first pass 21 and in two-phase liquid / vapor form in the second portion 21b of the first pass 21. In the second pass which is said terminal pass 23, the working fluid 5 is in the form bi-phasic liquid / vapor in the first portion 23a of the terminal pass 23 and in the vapor state in the second portion 23b of the terminal pass 23.
Le changement d'état d'un fluide de travail a été observé dans un échangeur de chaleur à contre-courant de l'art antérieur et dans un échangeur de chaleur 1 1 selon la figure 2 avec une répartition fluide de travail/second fluide de 80/20 pour un véhicule à une vitesse constante de 100 km/h. Ces mesures figurent dans le graphe de la figure 4. The change of state of a working fluid has been observed in a countercurrent heat exchanger of the prior art and in a heat exchanger January 1 according to Figure 2 with a fluid distribution of work / second fluid of 80/20 for a vehicle at a constant speed of 100 km / h. These measurements appear in the graph of Figure 4.
Ainsi, la partie liquide occupe une surface très élevée dans les deux échangeurs (70% de la surface pour l'échangeur à contre-courant et 60% pour l'échangeur 1 1 à deux passes 80/20 selon l'invention). Il s'agit de la partie référencée 21 a dans la figure 2. Thus, the liquid part occupies a very high surface area in the two heat exchangers (70% of the surface area for the counter-current heat exchanger and 60% for the 1 1 two-pass heat exchanger 80/20 according to the invention). This is the part referenced 21a in FIG.
La partie allouée à l'évaporation, c'est-à-dire la partie ou le fluide de travail est dans un état bi-phasique liquide/vapeur, est de 25% pour l'échangeur à contre-courant et de 17,5% pour l'échangeur 1 1 à deux passes 80/20 selon l'invention. Il s'agit des parties référencées 21 b et 23a dans la figure 2. The part allocated to evaporation, that is to say the part or the working fluid is in a two-phase liquid / vapor state, is 25% for the countercurrent exchanger and 17.5 % for the exchanger 1 1 with two passes 80/20 according to the invention. These are the parts referenced 21b and 23a in FIG.
La différence essentielle entre l'échangeur de l'état de l'art et l'échangeur 1 1 selon l'invention réside dans la surface allouée pour la surchauffe, c'est-à-dire la partie où le fluide de travail est sous forme de vapeur. Il s'agit de la partie référencée 23b dans la figure 2. Ainsi, 5% de l'échangeur à contre-courant est en phase vapeur. Cet échangeur de l'art antérieur est par conséquent très sensible à une faible variation de débit du fluide de travail (éthanol) dû à la faible surface de l'échangeur nécessaire pour réaliser la surchauffe. En revanche, 22,5% de l'échangeur 1 1 à deux passes 80/20 selon l'invention est en phase vapeur. Il nécessite donc une surface d'échange quatre fois plus importante et est donc plus stable en termes de contrôle qu'un échangeur à contre-courant. The essential difference between the exchanger of the state of the art and the exchanger 1 1 according to the invention lies in the area allocated for overheating, that is to say the part where the working fluid is under form of steam. This is the portion referenced 23b in Figure 2. Thus, 5% of the countercurrent heat exchanger is in the vapor phase. This exchanger of the prior art is therefore very sensitive to a small variation in the flow rate of the working fluid (ethanol) due to the small surface of the exchanger necessary to achieve the superheating. On the other hand, 22.5% of the exchanger 1 1 with two passes 80/20 according to the invention is in the vapor phase. It therefore requires an exchange area four times larger and is therefore more stable in terms of control than a countercurrent heat exchanger.
De manière avantageuse, l'échangeur de chaleur 1 1 présente une configuration allongée. Notamment chacune desdites passes 21 et 23 présente une configuration allongée et sont disposées en parallèle l'une à l'autre. Une telle configuration facilite l'intégration de l'échangeur de chaleur dans une ligne d'échappement. Advantageously, the heat exchanger 11 has an elongated configuration. In particular each of said passes 21 and 23 has an elongated configuration and is arranged in parallel with each other. Such a configuration facilitates the integration of the heat exchanger in an exhaust line.
Il est à noter que des variantes de réalisation sont bien sûr possibles et que la présente invention ne se limite pas à une récupération d'énergie seulement à partir de la chaleur des gaz d'échappement. Il est envisageable, par exemple, de récupérer la chaleur de tout autre fluide ayant la température adéquat. De même, il est possible d'envisager un autre fluide de travail que l'éthanol. It should be noted that alternative embodiments are of course possible and that the present invention is not limited to energy recovery only from the heat of the exhaust gas. It is conceivable, for example, to recover the heat of any other fluid having the appropriate temperature. Likewise, it is possible to envisage another working fluid than ethanol.

Claims

Revendications  claims
Echangeur de chaleur (1 1 ) comprenant un faisceau permettant un échange de chaleur entre un premier fluide, dit fluide de travail (3), et un second fluide (5), ledit faisceau étant configuré pour que : Heat exchanger (1 1) comprising a beam for exchanging heat between a first fluid, said working fluid (3), and a second fluid (5), said beam being configured so that:
- ledit fluide de travail (5) circule en au moins une passe amont (21 ) et en une passe terminale (23) dans laquelle ledit fluide de travail (5) est en phase vapeur sur au moins partie (23b),  said working fluid (5) circulates in at least one upstream passage (21) and in one end pass (23) in which said working fluid (5) is in the vapor phase on at least part (23b),
- ledit fluide de travail (5) circule dans au moins une desdites passes amonts (21 ) à contre-courant par rapport audit second fluide (3),  said working fluid (5) circulates in at least one of said upstream passes (21) against the current with respect to said second fluid (3),
- ledit fluide de travail (5) circule dans ladite passe terminale (23) à co-courant par rapport audit second fluide (3).  said working fluid (5) circulates in said terminal pass (23) co-current with respect to said second fluid (3).
Echangeur de chaleur (1 1 ) selon la revendication précédente, dans lequel ladite passe terminale (23) succède à une première passe (21 ) de sorte que ledit fluide de travail circule en deux passes dans l'échangeur. Heat exchanger (1 1) according to the preceding claim, wherein said terminal pass (23) succeeds a first pass (21) so that said working fluid flows in two passes in the exchanger.
Echangeur de chaleur (1 1 ) selon la revendication précédente, dans lequel la surface d'échange de la passe terminale (23) représente au plus 50% de la surface d'échange totale desdites première passe (21 ) et passe terminale (23). Heat exchanger (1 1) according to the preceding claim, wherein the exchange surface of the terminal pass (23) represents at most 50% of the total exchange surface of said first pass (21) and passes terminal (23) .
Echangeur de chaleur (1 1 ) selon l'une quelconque des revendications 2 ou 3, dans lequel ledit échangeur (1 1 ) est configuré pour qu'un changement de phase soit localisé en fin de première passe (21 ) et/ou en début de passe terminale (23). Heat exchanger (1 1) according to any one of claims 2 or 3, wherein said exchanger (1 1) is configured so that a phase change is located at the end of the first pass (21) and / or early terminal password (23).
Echangeur de chaleur (1 1 ) selon l'une quelconque des revendications précédentes, dans lequel ledit échangeur (1 1 ) est configuré pour que ledit fluide de travail (5) soit un liquide réfrigérant et/ou de l'éthanol. Heat exchanger (1 1) according to any one of the preceding claims, wherein said exchanger (1 1) is configured so that said working fluid (5) is a coolant and / or ethanol.
Echangeur de chaleur (1 1 ) selon l'une quelconque des revendications précédentes, dans lequel ledit échangeur (1 1 ) est configuré pour que ledit second fluide (3) soit des gaz d'échappement d'un moteur de véhicule. Heat exchanger (1 1) according to any one of the preceding claims, wherein said exchanger (1 1) is configured so that said second fluid (3) is exhaust gas from a vehicle engine.
Echangeur de chaleur (1 1 ) selon l'une quelconque des revendications précédentes, dans lequel ledit échangeur (1 1 ) présente une configuration allongée. Heat exchanger (1 1) according to any one of the preceding claims, wherein said exchanger (1 1) has an elongated configuration.
8. Echangeur de chaleur (1 1 ) selon l'une quelconque des revendications précédentes, dans lequel chacune desdites passes (21 et 23) présente une configuration allongée et sont disposées en parallèle l'une à l'autre. 9. Installation de récupération d'énergie à partir de la chaleur des gaz d'échappement comprenant une boucle de circulation d'un fluide de travail (5), ladite boucle comprenant un échangeur de chaleur (1 1 ) selon l'une quelconque des revendications précédentes. 10. Installation de récupération d'énergie selon la revendication 9, dans lequel ladite boucle comprend en outre une pompe (9), un détendeur (13) et un condenseur (7). 8. heat exchanger (1 1) according to any one of the preceding claims, wherein each of said passes (21 and 23) has an elongated configuration and are arranged in parallel with each other. 9. Installation for recovering energy from the heat of the exhaust gas comprising a circulating loop of a working fluid (5), said loop comprising a heat exchanger (1 1) according to any one of preceding claims. 10. Energy recovery plant according to claim 9, wherein said loop further comprises a pump (9), an expander (13) and a condenser (7).
1 1 . Procédé de récupération d'énergie à partir de la chaleur des gaz d'échappement (3) mettant en œuvre une boucle de circulation d'un fluide de travail (5), ladite boucle comprenant un échangeur de chaleur (1 1 ) entre ledit fluide de travail (5) et lesdits gaz d'échappement (3), ledit procédé comprenant une étape de séparation desdits gaz d'échappement (3), en un premier flux (3a) et en un second flux (3b), en aval dudit échangeur (1 1 ) de manière à ce que le fluide de travail (5) circule à contre- courant par rapport au premier flux (3a) dans au moins une passe amont (21 ) et circule à co-courant par rapport audit second flux (3b) dans une passe terminale (23) dans laquelle ledit fluide de travail (5) est en phase vapeur sur au moins une partie (23b). 1 1. A method of recovering energy from the heat of the exhaust gas (3) using a circulation loop of a working fluid (5), said loop comprising a heat exchanger (1 1) between said fluid working piece (5) and said exhaust gas (3), said method comprising a step of separating said exhaust gas (3), in a first stream (3a) and in a second stream (3b), downstream of said exchanger (1 1) so that the working fluid (5) circulates countercurrently with respect to the first flow (3a) in at least one upstream passage (21) and flows cocurrently with respect to said second flow (3b) in an end pass (23) wherein said working fluid (5) is in the vapor phase on at least a portion (23b).
12. Procédé de récupération d'énergie selon la revendication précédente, dans lequel ladite passe terminale (23) succède à une première passe (21 ) de sorte que ledit fluide de travail circule en deux passes dans l'échangeur de chaleur (1 1 ). 12. A method of energy recovery according to the preceding claim, wherein said terminal pass (23) succeeds a first pass (21) so that said working fluid flows in two passes in the heat exchanger (1 1). .
13. Procédé de récupération d'énergie selon la revendication précédente, dans lequel la surface d'échange de la passe terminale (23) représente au plus 50% de la surface d'échange totale desdites première passe (21 ) et passe terminale (23). 13. Energy recovery method according to the preceding claim, wherein the exchange surface of the terminal pass (23) represents at most 50% of the total exchange surface of said first pass (21) and passes terminal (23). ).
14. Procédé de récupération d'énergie selon l'une quelconque des revendications 12 ou14. Energy recovery method according to any one of claims 12 or
13, dans lequel ledit changement de phase est localisé en fin de première passe (21 ) et/ou en début de passe terminale (23). 13, wherein said phase change is located at the end of the first pass (21) and / or at the beginning of the end pass (23).
15. Procédé de récupération d'énergie selon l'une quelconque des revendications 1 1 à15. Energy recovery method according to any one of claims 1 1 to
14, dans lequel ledit fluide de travail est un liquide réfrigérant et/ou de l'éthanol. 14, wherein said working fluid is a coolant and / or ethanol.
PCT/FR2016/052560 2015-10-08 2016-10-05 Vehicle heat exchanger, and energy recovery installation and method WO2017060621A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1559572A FR3042261A1 (en) 2015-10-08 2015-10-08 HEAT EXCHANGER FOR VEHICLE, INSTALLATION AND METHOD FOR RECOVERING ENERGY
FR1559572 2015-10-08

Publications (1)

Publication Number Publication Date
WO2017060621A1 true WO2017060621A1 (en) 2017-04-13

Family

ID=56411680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052560 WO2017060621A1 (en) 2015-10-08 2016-10-05 Vehicle heat exchanger, and energy recovery installation and method

Country Status (2)

Country Link
FR (1) FR3042261A1 (en)
WO (1) WO2017060621A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027068A1 (en) * 2010-07-13 2012-01-19 Behr Gmbh & Co. Kg System for using waste heat from an internal combustion engine
WO2012145262A1 (en) * 2011-04-19 2012-10-26 Modine Manufacturing Company Heat exchanger
DE102012100082A1 (en) * 2011-12-22 2013-06-27 Benteler Automobiltechnik Gmbh Waste-gas heat exchanger arrangement for internal combustion engine in motor car, has working medium channel carrying working medium, that is utilized for thermodynamic cyclic process, and compressor integrated in heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027068A1 (en) * 2010-07-13 2012-01-19 Behr Gmbh & Co. Kg System for using waste heat from an internal combustion engine
WO2012145262A1 (en) * 2011-04-19 2012-10-26 Modine Manufacturing Company Heat exchanger
DE102012100082A1 (en) * 2011-12-22 2013-06-27 Benteler Automobiltechnik Gmbh Waste-gas heat exchanger arrangement for internal combustion engine in motor car, has working medium channel carrying working medium, that is utilized for thermodynamic cyclic process, and compressor integrated in heat exchanger

Also Published As

Publication number Publication date
FR3042261A1 (en) 2017-04-14

Similar Documents

Publication Publication Date Title
CA2763419C (en) Temperature adjustment in a heat regenerator used in equipment for storing energy by adiabatic air compression
EP2381072B1 (en) Closed circuit operating according to a Rankine cycle and method using such a circuit
EP2365192B1 (en) Device and method for control of a working fluid in a closed Rankine cycle
FR2852678A1 (en) Cooling system for motor vehicle equipment e.g. fuel heater, has heat exchange surface divided between two heat exchange sections traversed by respective flow of coolant, where one flow of coolant is higher than another
WO2005103453A1 (en) System for recovering heat energy from a heat engine vehicle
FR2966877A1 (en) ELECTRIC POWER PLANT WITH COMBINED CYCLE WITH HEAT EXCHANGER
FR3016025A1 (en) COMBINATION OF A COMPRESSED AIR ENERGY STORAGE UNIT AND A THERMAL POWER PLANT
WO2013050666A1 (en) Method and improved system for converting marine heat energy
EP3500734B1 (en) Closed circuit functioning according to a rankine cycle with a device for the emergency stopping of the circuit and method using such a circuit
FR3056641A1 (en) SYSTEM FOR COOLING A CIRCUIT OF A FIRST FLUID OF A TURBOMACHINE
WO2017060621A1 (en) Vehicle heat exchanger, and energy recovery installation and method
FR3042216B1 (en) DEVICE FOR LUBRICATING A BEARING RECEIVING A ROTARY SHAFT OF AN ELEMENT OF A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE, AND METHOD USING SUCH A DEVICE.
EP3026246B1 (en) Energy recovery device with rankine cycle having a controlled cold source and vehicle provided with such a device, corresponding method for energy recovery
EP2288841B1 (en) System and method for vaporising a co2 containing cryogenic fluid, in particular liquefied natural gas
FR3082608A1 (en) SYSTEM COMPRISING AN ABSORPTION MACHINE FOR THE PRODUCTION OF COLD FROM THE FATAL HEAT OF EXHAUST GAS OF A VEHICLE COMPRISING A THERMAL ENERGY STORAGE MODULE
EP3584517B1 (en) System comprising an absorption machine for refrigeration from the free heat of exhaust gases of a vehicle comprising a module for storing thermal energy, a method of using the system and a use the system
FR3115589A1 (en) Heat treatment system for an electrical and/or electronic element.
EP3384136A1 (en) Thermodynamic system
FR3043759A1 (en) THERMAL CONDITIONING CIRCUIT AND METHOD OF USING SAID THERMAL CONDITIONING CIRCUIT
FR3086039A1 (en) SYSTEM FOR THE PRODUCTION AND MANAGEMENT OF COLD BY AN ABSORPTION MACHINE FROM FATAL ENERGY OF A COMBUSTION ENGINE
WO2015173075A1 (en) Refrigerant circuit for the recovery of energy from the thermal losses of an internal combustion engine
FR3012584A1 (en) THERMAL CONDITIONING CIRCUIT, IN PARTICULAR FOR A MOTOR VEHICLE
FR3104494A1 (en) HEAT TREATMENT SYSTEM INTENDED FOR A MOTOR VEHICLE
FR3004486A1 (en) DEVICE FOR TRANSFORMING THERMAL ENERGY INTO MECHANICAL ENERGY BY MEANS OF A RANKINE ORGANIC RANKINE CYCLE WITH REGULATORY FRACTION
FR3028929A1 (en) ABSORPTION MACHINE WITH OPTIMIZED PERFORMANCE COEFFICIENT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16787504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16787504

Country of ref document: EP

Kind code of ref document: A1