WO2017092719A2 - 自由光瞳照明方法及照明系统 - Google Patents

自由光瞳照明方法及照明系统 Download PDF

Info

Publication number
WO2017092719A2
WO2017092719A2 PCT/CN2017/072424 CN2017072424W WO2017092719A2 WO 2017092719 A2 WO2017092719 A2 WO 2017092719A2 CN 2017072424 W CN2017072424 W CN 2017072424W WO 2017092719 A2 WO2017092719 A2 WO 2017092719A2
Authority
WO
WIPO (PCT)
Prior art keywords
light source
led array
led
variable field
lens group
Prior art date
Application number
PCT/CN2017/072424
Other languages
English (en)
French (fr)
Other versions
WO2017092719A3 (zh
Inventor
田毅强
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Publication of WO2017092719A2 publication Critical patent/WO2017092719A2/zh
Publication of WO2017092719A3 publication Critical patent/WO2017092719A3/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to the field of microlithography in semiconductor manufacturing, and in particular to a free pupil illumination method and illumination system.
  • the microlithography technology in semiconductor manufacturing uses an optical system to accurately project a pattern on a reticle onto a photoresist-coated silicon wafer.
  • off-axis illumination In order to enhance the resolving power of the exposure system, increase the depth of focus, and increase the process window, off-axis illumination (OAI) has been widely adopted in scanning exposure systems.
  • Conventional off-axis illumination includes ring illumination, dipole illumination, and quadrupole illumination, etc., mainly selecting different off-axis illumination pupil distributions according to specific mask patterns.
  • the free aperture illumination mode is a new resolution enhancement technology scheme, which is part of the Source-Mask Optimization (SMO) technology scheme, which calculates the optimal according to the distribution of the mask pattern.
  • SMO Source-Mask Optimization
  • the illumination system illuminates the energy distribution of the pupil and obtains this pupil distribution by modulation to enhance system resolution and enhance depth of focus.
  • the technical solutions of the free diaphragm illumination system include the following:
  • DOE Diffraction Optical Element
  • the LED light source generally includes a substrate having an LED wick on the substrate and an encapsulating resin outside the LED wick.
  • the LED light source has the characteristics of small volume, long life, and easy control of the outgoing light power. In different usage scenarios, the LED light source satisfies the demand by using different energy collecting and shimming devices.
  • the invention provides a free aperture illumination method and an illumination system, which utilizes an LED light source to solve the technical problems of slow switching speed, high cost and complicated calculation method of the existing free aperture illumination system.
  • the present invention provides a free aperture illumination method, comprising the following steps:
  • Step 1 setting an LED array light source, the LED array light source is composed of a plurality of LED light sources, and has a light source main shaft;
  • Step 2 setting a variable field of view pupil on the main axis of the light source
  • Step 3 setting a control unit, wherein the control unit is respectively connected to the LED array light source and the variable field diaphragm;
  • Step 4 According to the required pupil energy distribution and the exposure field of view, the control unit controls the power of the corresponding LED light source and the light blocking range of the variable field diaphragm to achieve corresponding freedom. Light illumination.
  • the method further includes:
  • Step 5 Test whether the optical energy distribution meets the demand within the entire field of view. If not, Correct the outgoing light power of each LED light source.
  • the LED array light source is closely arranged by a plurality of LED light sources of the same type in a circular arrangement, and the plurality of LED light sources are symmetrically distributed with respect to a center of the LED array light source.
  • each of the LED light sources is connected to the control unit.
  • the wavelength of the LED array light source is 365 nm, 248 nm or less.
  • the LED array light source has an exit section of 24 mm.
  • the invention also provides a free pupil illumination system comprising an LED array light source, a first relay lens group, a light homogenizing unit, a variable field stop, a second relay lens group and a control unit, the LED array a light source, a first relay lens group, a light-sharing unit, a variable field stop, and a second relay lens group are sequentially arranged, and the first relay lens group, the light-sharing unit, and the variable field stop are disposed at On the main axis of the LED array light source, the control unit is respectively connected to the LED array light source and the variable field diaphragm for passing the control unit according to a desired pupil energy distribution and an exposure field of view. Controlling the power of the light emitted by the LED array light source and the light blocking range of the variable field diaphragm to achieve corresponding free pupil illumination.
  • the light homogenizing unit comprises a microlens array and a convergence lens group, and an entrance pupil surface of the convergence lens group is located at a rear surface of the microlens array.
  • the front surface of the microlens array is located on the image plane of the first relay lens group.
  • variable field stop is located on the image plane of the convergent lens group.
  • the object plane of the second relay lens group is located on the image plane of the convergent lens group.
  • the microlens array comprises two identical microlenses, each of which is formed by superposing cylindrical mirrors which are perpendicular to each other on the front and rear sides.
  • a quartz rod is further disposed between the converging mirror group and the variable field diaphragm.
  • the light incident end surface of the quartz rod is located on the image surface of the converging mirror group, and the variable field diaphragm is located at the light exit end of the quartz rod.
  • the object surface of the first relay lens group is located at a light exit end of the LED array light source.
  • the present invention provides a free aperture illumination method and illumination system having the following advantages:
  • the technical solution provided by the invention controls the LED array light source to be imaged on the pupil plane of the illumination system by using the control unit, and realizes the free pupil illumination mode by modulating the LED array light source, thereby improving the focal depth of the projection objective of the lithography machine.
  • the invention can realize an arbitrary diaphragm illumination mode of arbitrary shape, and the diaphragm switching speed is fast;
  • the invention has low cost compared to the prior art scheme of using a diffractive optical element and a micro mirror array;
  • the invention has simple structure, is convenient for installation and debugging, and has higher security.
  • FIG. 1 is a schematic structural view of a free aperture illumination system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view showing the arrangement of LED array light sources in a free aperture illumination system according to Embodiment 1 of the present invention
  • FIG. 3 is a flow chart of a method for illuminating a free aperture according to an embodiment of the present invention
  • FIGS. 4-7 are schematic diagrams showing different illumination modes of the LED array light source in the present invention.
  • FIG. 8 is a schematic structural diagram of a free aperture illumination system according to Embodiment 2 of the present invention.
  • 10-LED array light source 11-LED light source, 101A-ring illumination mode, 101B-quadrupole illumination mode, 101C-Y to two-pole illumination mode, 101D-X to two-pole illumination mode, 20-first Successive lens group, 30-homogenizing unit, 31-microlens array, 32-converging lens group, 40-variable field stop, 50-second relay lens group, 60-control unit, 70-quartz rod.
  • a free aperture illumination system provided by the present invention includes an LED array light source 10, a first relay lens assembly 20, a light homogenizing unit 30, a variable field stop 40, and a second relay mirror.
  • the group 50 and the control unit 60, the LED array light source 10, the first relay lens group 20, the light homogenizing unit 30, the variable field stop 40 and the second relay lens group 50 are sequentially arranged, in the first middle
  • the mirror group 20, the light-sharing unit 30, and the variable field stop 40 are disposed on the main axis of the LED array light source 10, and the control unit 60 and the LED array light source 10 and the variable field stop 40 are respectively connection.
  • the invention uses the LED array light source 10 to image on the pupil plane of the lithographic illumination system through the first relay lens group 20 and the second relay lens group 50, thereby enhancing the focal depth of the projection objective of the lithography machine, and then By using the homogenizing unit 30 to homogenize to make the beam energy distribution uniform, by modulating the power of the outgoing light of the LED array source 10, a desired energy distribution can be obtained at the pupil plane, that is, a free pupil illumination mode is realized.
  • the optical ⁇ modulation principle and structure of the invention are simple, easy to install, debug and control, high in safety, fast in mode switching, and low in cost.
  • the LED array light source 10 is closely arranged by a plurality of LED light sources 11 of the same type in a circular arrangement, and a plurality of LED light sources 11 are related to the LED array light source. 10
  • the center is symmetrically distributed.
  • the LED light source 11 is a Lambertian distribution.
  • the number of the LED light sources 11 is 307, and the diameter of the exit cross section of the entire LED array light source 10 is 24 mm.
  • the number of the above-mentioned LED light sources and the exit cross-sectional diameter of the entire LED array light source may be changed according to actual needs, and should not be limited thereto.
  • each of the LED light sources 11 is connected to the control unit 60. That is, the control unit 60 can individually control each LED light source 11. Specifically, the control unit 60 controls the LED array light source 10. The power of the light emitted by each of the LED light sources 11 changes the energy distribution of the illumination pupil to form a free pupil illumination. If all of the LED light sources 11 are controlled to emit light at the same power, a conventional circular aperture is formed. In the present invention, The iris mode switches faster.
  • the light emitted by the LED array light source 10 is reflected by the reflective surface of the LED light source substrate, and forms an approximately circular spot at the exit cross section of the light source.
  • the object surface of the first relay lens group 20 is located at the LED array light source 10.
  • the LED array light source 10 is amplified and transmitted to the light-smoothing unit 30, that is, the pupil plane of the illumination system. Since the exiting NA (numerical aperture) of the LED array light source 10 is large, the first relay lens group 20 is passed. The image plane NA of the first relay lens group 20 is reduced, which is more advantageous for the uniformization effect of the subsequent leveling unit 30.
  • the light-sharing unit 30 includes a microlens array 31 and a convergence lens group 32, and the microlens array 31
  • the front surface is located on the image plane of the first relay lens group 20
  • the entrance pupil surface of the convergence lens group 32 is located on the rear surface of the microlens array 31, and the microlens array 31 and the convergence lens group 32 are paired with the light beam.
  • variable field stop 40 is located on the image plane of the convergent mirror group 32, and can be controlled by the control unit 60 during scanning exposure
  • the light blocking range of the variable field stop 40 changes during scanning exposure
  • the object plane of the second relay lens group 50 is located on the image plane of the convergent lens group 32, and the second relay lens group 50 amplifies the uniform field of view and is in the second relay lens group 50.
  • the image plane forms uniformity to meet the required uniform illumination field of view.
  • the microlens array 31 comprises two identical microlenses, each of which is formed by superposing cylindrical mirrors which are perpendicular to each other on the front and rear sides, and can decompose the light beam irradiated on the front surface of the microlens array 31 into A plurality of sub-illumination fields of view are used to image the sub-illumination fields of view on the image plane of the convergent mirror group 32 by the converging mirror group 32, and a uniform illumination field of view with a certain field of view size and a certain NA is formed on the image plane of the convergent mirror group 32. .
  • the wavelength of the LED array light source 10 is 365 nm, 248 nm or shorter.
  • the present invention also provides a free aperture illumination method, comprising the following steps:
  • Step 1 Set an LED array light source 10, the LED array light source 10 is composed of a plurality of LED light sources 11 and has a light source main shaft;
  • Step 2 setting a variable field stop 40 on the main axis of the light source
  • Step 3 a control unit 60 is provided, and the control unit 60 is respectively connected to the LED array light source 10 and the variable field stop 40;
  • Step 4 according to the required pupil energy distribution and the exposure field of view range, the control unit 60 controls the power of the corresponding LED light source 11 to emit light, and the light blocking range of the variable field diaphragm 40 is completed. Corresponding free aperture illumination.
  • the method further includes:
  • Step 5 Test whether the optical energy distribution meets the demand in the entire field of view, and if not, correct the power of the light emitted by each LED light source 11.
  • the output light power of the LED array light source 10 is controlled so that the LED light source 11 in the middle portion does not emit light, and an annular diaphragm is formed, that is, the ring illumination mode 101A is obtained.
  • the range of the illuminating LED light source 11 and the non-illuminating LED light source 11 the size of the circular illumination diaphragm can be adjusted.
  • the output light power of the LED array light source 10 is controlled so that the LED light source 11 of the quadrupole portion emits light, and the other LED light sources 11 do not emit light, thereby forming a quadrupole illumination diaphragm, that is, the quadrupole illumination mode 101B is obtained.
  • the range of the illuminating LED light source 11 and the non-illuminating LED light source 11 the size of the quadrupole illumination pupil and the position of the quadrupole can be adjusted.
  • the output light power of the LED array light source 10 is controlled so that the LED light source 11 of the vertical two-pole portion emits light, and the other LED light sources 11 do not emit light, thereby forming a Y-direction dipole illumination pupil, that is, obtaining a Y-direction.
  • Two-pole lighting mode 101C By controlling the range of the illuminating LED light source 11 and the non-illuminating LED light source 11, the size of the Y-direction dipole illumination pupil and the position of the two poles can be adjusted.
  • the LED array light source 10 can quickly form a photo commonly used in an exposure system.
  • the distribution of bright pupils including but not limited to traditional circular illumination, ring illumination, quadrupole illumination, and dipole illumination, can also form an arbitrarily distributed distribution of illumination pupils.
  • the difference between this embodiment and the first embodiment is that a quartz bar 70 is further disposed between the convergence lens group 32 and the variable field stop 40.
  • the quartz The light incident end face of the rod 70 is located on the image plane of the converging mirror group 32, and the variable field stop 40 is located at the light exit end of the quartz rod 70.
  • the quartz rod 70 is added.
  • the microlens array 32 and the converging mirror group 32 perform level 1 uniform light, and the light incident end surface of the quartz rod 70 is located on the image plane of the converging mirror group 32, and the incident light is performed.
  • the level of uniform light forms a more uniform illumination field of view at the light exit end of the quartz rod 70.
  • the variable field stop 40 is located at the light exit end of the quartz rod 70. During the scanning exposure, the variable field stop 40 can change the field of view of the uniform illumination field of view.
  • the object surface of the second relay lens group 50 is also located at the light exit end of the quartz rod 70, and the uniform illumination field of view after the change of the variable field stop 40 is amplified and transmitted to the image surface of the second relay lens group 50 to form a certain surface.
  • the present invention provides a free aperture illumination method and illumination system.
  • the method includes the following steps: Step 1. Setting an LED array light source 10, the LED array light source 10 is composed of a plurality of LED light sources 11 combined. Having a light source spindle; step 2, setting a variable field stop 40 on the light source spindle; step 3, setting a control unit 60, the control unit 60 and the LED array light source 10 and the variable field stop 40 Connected separately; Step 4, according to the required pupil energy distribution requirement, and the exposure field of view range, the control unit 60 controls the power of the corresponding LED light source 11 to emit light, and the variable field stop 40 The range of light, complete the corresponding free pupil illumination.
  • the present invention can obtain the desired energy distribution on the pupil plane.
  • the optical ⁇ modulation principle and structure of the invention are simple, easy to install and debug, high in safety, fast in mode switching, and low in cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本发明涉及一种自由光瞳照明方法及照明系统,该方法包括如下步骤:步骤1、设置LED阵列光源,所述LED阵列光源由若干LED光源组合而成,具有光源主轴;步骤2、设置可变视场光阑在所述光源主轴上;步骤3、设置控制单元,所述控制单元与所述LED阵列光源和可变视场光阑分别连接;步骤4、根据所需的光瞳能量分布及曝光视场范围,通过所述控制单元控制相应的LED光源出射光的功率,及所述可变视场光阑的拦光范围,实现相应的自由光瞳照明。本发明通过调制LED阵列光源中各个LED光源出射光的功率,即可在光瞳面得到所需的能量分布。本发明光瞳调制原理与结构简单,便于安装调试,安全性高,模式切换速度快,成本低廉。

Description

自由光瞳照明方法及照明系统 技术领域
本发明涉及半导体制造中的微光刻技术领域,尤其涉及一种自由光瞳照明方法及照明系统。
背景技术
半导体制造中的微光刻技术就是利用光学系统把掩模版上的图形精确地投影曝光到涂有光刻胶的硅片上。
为了增强曝光系统的分辨能力,提高焦深,增大工艺窗口,在扫描曝光系统中已广泛采取了离轴照明技术(off-axis illumination,OAI)。传统的离轴照明包括环形照明、二极照明和四极照明等,主要是根据具体的掩模图形来选择不同的离轴照明光瞳分布。
自由光瞳照明模式,是一种新的分辨率增强技术方案,属于光瞳-掩模优化(Source-Mask Optimization,SMO)技术方案中的一部分,即根据掩模图形的分布,计算出最优的照明系统光瞳面的能量分布,并通过调制得到这种光瞳分布,以增强系统分辨率并增强焦深。
目前,自由光瞳照明系统的技术方案包括以下几种:
1、在光瞳面设置挡板,或者设置透过率分布变化的玻璃平板,直接改变光瞳面的能量分布。该方案最为简单,而且可以应用在任意的光学系统中,但只能得到预设的光瞳分布,且光瞳切换速度较慢。
2、使用衍射光学元件(Diffraction Optical Element,DOE),通过选择不同远场分布的DOE,在光瞳面得到相应的能量分布。该方案常用于激光器作为光源的曝光系统中,能量利用率有所提高,但同样只能得到预设的光瞳分布,光瞳切换速度较慢,而且DOE的价格较高。
3、使用微反射镜阵列元件(Minute Mirror Array,MMA),改变MMA中 任意反射镜的反射角度,在光瞳面得到相应的能量分布。该方案常用于激光器作为光源的曝光系统中,能量利用率高,可以形成任意的光瞳分布,且光瞳切换速度较快,是目前最有前景的应用方案。但本方案研发制作成本较高,形成相应光瞳能量分布的计算方法非常复杂。
随着LED光源技术的发展,LED光源的功率越来越接近现代半导体工业大功率高强度的需求,LED光源有很大的应用前景。LED光源一般包括基板,基板上有LED灯芯,LED灯芯外是封装树脂。LED光源具有体积小、寿命长、出射光功率易于控制等特点,在不同使用场景下,LED光源通过使用不同的能量收集和匀光器件来满足需求。
发明内容
本发明提供一种自由光瞳照明方法及照明系统,利用LED光源,解决现有的自由光瞳照明系统切换速度慢、成本高、计算方法复杂等技术问题。
为解决上述技术问题,本发明提供一种自由光瞳照明方法,包括如下步骤:
步骤1、设置LED阵列光源,所述LED阵列光源由若干LED光源组合而成,具有光源主轴;
步骤2、设置可变视场光阑在所述光源主轴上;
步骤3、设置控制单元,所述控制单元与所述LED阵列光源和可变视场光阑分别连接;
步骤4、根据所需的光瞳能量分布及曝光视场范围,通过所述控制单元控制相应的LED光源出射光的功率,及所述可变视场光阑的拦光范围,实现相应的自由光瞳照明。
较佳地,还包括:
步骤5、测试整个视场范围内,光瞳能量分布是否符合需求,如果不符合, 修正各LED光源的出射光功率。
较佳地,所述LED阵列光源由若干个同一类型的LED光源按照圆形的排列方式紧密排布组合而成,且所述若干个LED光源关于所述LED阵列光源的中心对称分布。
较佳地,每个所述LED光源均与所述控制单元相连。
较佳地,所述LED阵列光源的波长为365nm、248nm或以下。
较佳地,所述LED阵列光源的出射截面为24mm。
本发明还提供了一种自由光瞳照明系统,包括LED阵列光源、第一中继镜组、匀光单元、可变视场光阑、第二中继镜组以及控制单元,所述LED阵列光源、第一中继镜组、匀光单元、可变视场光阑以及第二中继镜组依次排列,所述第一中继镜组、匀光单元以及可变视场光阑设置在所述LED阵列光源的主轴上,所述控制单元与所述LED阵列光源和可变视场光阑分别连接,用于根据所需的光瞳能量分布及曝光视场范围,通过所述控制单元控制所述LED阵列光源出射光的功率,及所述可变视场光阑的拦光范围,实现相应的自由光瞳照明。
较佳地,所述匀光单元包括微透镜阵列和汇聚镜组,所述汇聚镜组的入瞳面位于所述微透镜阵列的后表面。
较佳地,所述微透镜阵列的前表面位于所述第一中继镜组的像面。
较佳地,所述可变视场光阑位于所述汇聚镜组的像面。
较佳地,所述第二中继镜组的物面位于所述汇聚镜组的像面。
较佳地,所述微透镜阵列包括两块相同的微透镜,每块微透镜由前后两面分别相互垂直的柱面镜叠加而成。
较佳地,所述汇聚镜组和可变视场光阑之间还设有石英棒。
较佳地,所述石英棒的入光端面位于所述汇聚镜组的像面,所述可变视场光阑位于所述石英棒的出光端。
较佳地,所述第一中继镜组的物面位于所述LED阵列光源的出光端。
与现有技术相比,本发明提供的一种自由光瞳照明方法及照明系统具有如下优点:
1、本发明所提供的技术方案,利用控制单元控制LED阵列光源成像在照明系统的光瞳面上,通过调制LED阵列光源,实现自由光瞳照明模式,起到提升光刻机投影物镜焦深的作用;
2、本发明可实现任意形状的自由光瞳照明模式,且光瞳切换速度较快;
3、本发明相较于现有技术中使用衍射光学元件和微反射镜阵列的方案,成本低廉;
4、本发明结构简单,便于安装调试,且安全性更高。
附图说明
图1为本发明实施例一的自由光瞳照明系统的结构示意图;
图2为本发明实施例一的自由光瞳照明系统中LED阵列光源的排布示意图;
图3为本发明一具体实施方式的自由光瞳照明方法的流程图;
图4-7分别为本发明中LED阵列光源的不同照明模式示意图;
图8为本发明实施例二的自由光瞳照明系统的结构示意图。
图中:10-LED阵列光源、11-LED光源、101A-环形照明模式、101B-四极照明模式、101C-Y向二极照明模式、101D-X向二极照明模式、20-第一中继镜组、30-匀光单元、31-微透镜阵列、32-汇聚镜组、40-可变视场光阑、50-第二中继镜组、60-控制单元、70-石英棒。
具体实施方式
为了更详尽的表述上述发明的技术方案,以下列举出具体的实施例来证明技术效果;需要强调的是,这些实施例用于说明本发明而不限于限制本发明的范围。
实施例一
本发明提供的一种自由光瞳照明系统,如图1所示,包括LED阵列光源10、第一中继镜组20、匀光单元30、可变视场光阑40、第二中继镜组50以及控制单元60,所述LED阵列光源10、第一中继镜组20、匀光单元30、可变视场光阑40以及第二中继镜组50依次排列,所述第一中继镜组20、匀光单元30以及可变视场光阑40设置在所述LED阵列光源10的主轴上,所述控制单元60与所述LED阵列光源10和可变视场光阑40分别连接。本发明使用LED阵列光源10,通过第一中继镜组20和第二中继镜组50成像在光刻照明系统的光瞳面上,起到提升光刻机投影物镜焦深的作用,再通过使用匀光单元30匀光,以使光束能量分布均匀,通过调制LED阵列光源10的出射光的功率,即可在光瞳面得到所需的能量分布,即实现了自由光瞳照明模式。本发明光瞳调制原理与结构简单,便于安装调试与控制,安全性高,模式切换速度快,且成本低廉。
较佳地,请重点参考图2,所述LED阵列光源10由若干个同一类型的LED光源11按照圆形的排列方式紧密排布组合而成,且若干个LED光源11关于所述LED阵列光源10中心对称分布,换句话说,所述LED光源11为朗伯分布,本实施例中,所述LED光源11的数量为307个,整个所述LED阵列光源10的出射截面的直径为24mm。上述LED光源的数量以及整个所述LED阵列光源的出射截面直径可以根据实际需要而改变,不应以此为限制。
较佳地,每个所述LED光源11均与所述控制单元60相连,也就是说,控制单元60可对每个LED光源11进行单独控制,具体地,控制单元60控制LED阵列光源10中各个LED光源11出射光的功率,改变照明光瞳的能量分布,形成自由光瞳照明,如果控制所有LED光源11全部以同样的功率发光,则会形成传统的圆形光瞳,本发明中,光瞳模式切换速度较快。
较佳地,LED阵列光源10发出的光经过LED光源基底反射面反射,在光源出射截面形成近似圆形的光斑,所述第一中继镜组20的物面位于所述LED阵列光源10的出光端,将LED阵列光源10放大传递到匀光单元30,即照明系统的光瞳面上,由于LED阵列光源10的出射NA(数值孔径)较大,所以通过第一中继镜组20后,第一中继镜组20像面NA减小,更利于后续匀光单元30的匀光效果;所述匀光单元30包括微透镜阵列31和汇聚镜组32,所述微透镜阵列31的前表面位于所述第一中继镜组20的像面,所述汇聚镜组32的入瞳面位于所述微透镜阵列31的后表面,所述微透镜阵列31和汇聚镜组32对光束进行匀光,在汇聚镜组32的像面形成均匀照明视场;所述可变视场光阑40位于所述汇聚镜组32的像面,在扫描曝光过程中,可通过控制单元60控制所述可变视场光阑40的拦光范围,改变扫描曝光过程中的视场大小;所述第二中继镜组50的物面位于所述汇聚镜组32的像面,第二中继镜组50把均匀视场放大,并在第二中继镜组50的像面形成均匀性满足要求的均匀性照明视场。
较佳地,所述微透镜阵列31包括两块相同的微透镜,每块微透镜由前后两面分别相互垂直的柱面镜叠加而成,可以将照射在微透镜阵列31前表面的光束分解成多个子照明视场,利用汇聚镜组32将这些子照明视场都成像在汇聚镜组32的像面,则在汇聚镜组32的像面形成一定视场大小和一定NA的均匀照明视场。
较佳地,所述LED阵列光源10的波长为365nm、248nm或更短波长。
请重点参考图3,并结合图1,本发明还提供了一种自由光瞳照明方法,包括如下步骤:
步骤1、设置LED阵列光源10,所述LED阵列光源10由若干LED光源11组合而成,具有光源主轴;
步骤2、设置可变视场光阑40在所述光源主轴上;
步骤3、设置控制单元60,所述控制单元60与所述LED阵列光源10和可变视场光阑40分别连接;
步骤4、根据所需的光瞳能量分布及曝光视场范围,通过所述控制单元60控制相应的LED光源11出射光的功率,及所述可变视场光阑40的拦光范围,完成相应的自由光瞳照明。
较佳地,还包括:
步骤5、测试整个视场范围内,光瞳能量分布是否符合需求,如果不符合,修正各LED光源11出射光的功率。
具体地,请重点参考图4,控制LED阵列光源10的出射光功率,令中间部分的LED光源11不发光,则会形成环形光瞳,即得到环形照明模式101A。控制发光LED光源11和不发光LED光源11的范围,即可调节环形照明光瞳的大小。
请重点参考图5,控制LED阵列光源10的出射光功率,令四极部分的LED光源11发光,其他LED光源11不发光,则会形成四极照明光瞳,即得到四极照明模式101B。控制发光LED光源11和不发光LED光源11的范围,即可调节四极照明光瞳的大小和四极的位置。
请重点参考图6,控制LED阵列光源10的出射光功率,令垂向二极部分的LED光源11发光,其他LED光源11不发光,则会形成Y向二极照明光瞳,即得到Y向二极照明模式101C。控制发光LED光源11和不发光LED光源11的范围,即可调节Y向二极照明光瞳的大小和二极的位置。
请重点参考图7,控制LED阵列光源10的出射光功率,令横向二极部分的LED光源11发光,其他LED光源11不发光,则会形成X向二极照明光瞳,即得到X向二极照明模式101D。控制发光LED光源11和不发光LED光源11的范围,即可调节X向二极照明光瞳的大小和二极的位置。
需要说明的是,所述LED阵列光源10可以快速形成曝光系统常用的照 明光瞳分布,包括但不限于传统圆形照明、环形照明、四极照明和二极照明,也可以形成任意分布的照明光瞳分布。
实施例二
较佳地,请重点参考图8,本实施例与实施例一的区别在于:所述汇聚镜组32和可变视场光阑40之间还设有石英棒70,具体地,所述石英棒70的入光端面位于所述汇聚镜组32的像面,所述可变视场光阑40位于所述石英棒70的出光端。本实施例中,增加了石英棒70,具体地,微透镜阵列32和汇聚镜组32进行一级匀光,石英棒70的入光端面位于汇聚镜组32的像面,对入射光进行二级匀光,则在石英棒70的出光端形成更加均匀的照明视场。可变视场光阑40位于石英棒70的出光端,在扫描曝光过程中,可变视场光阑40可以改变均匀照明视场的视场大小。第二中继镜组50的物面同样位于石英棒70的出光端,将可变视场光阑40改变后的均匀照明视场放大传递到第二中继镜组50的像面,形成一定视场大小和一定NA的均匀照明视场。
综上所述,本发明提供的一种自由光瞳照明方法及照明系统,该方法包括如下步骤:步骤1、设置LED阵列光源10,所述LED阵列光源10由若干LED光源11组合而成,具有光源主轴;步骤2、设置可变视场光阑40在所述光源主轴上;步骤3、设置控制单元60,所述控制单元60与所述LED阵列光源10和可变视场光阑40分别连接;步骤4、根据所需光瞳能量分布需求,及曝光视场范围,通过所述控制单元60控制相应的LED光源11出射光的功率,及所述可变视场光阑40的拦光范围,完成相应的自由光瞳照明。本发明通过调制LED阵列光源10中各个LED光源11出射光的功率,即可在光瞳面得到所需的能量分布。本发明光瞳调制原理与结构简单,便于安装调试,安全性高,模式切换速度快,成本低廉。
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (15)

  1. 一种自由光瞳照明方法,其特征在于,包括如下步骤:
    步骤1、设置LED阵列光源,所述LED阵列光源由若干LED光源组合而成,具有光源主轴;
    步骤2、设置可变视场光阑在所述光源主轴上;
    步骤3、设置控制单元,所述控制单元与所述LED阵列光源和可变视场光阑分别连接;
    步骤4、根据所需的光瞳能量分布及曝光视场范围,通过所述控制单元控制相应的LED光源出射光的功率,及所述可变视场光阑的拦光范围,实现相应的自由光瞳照明。
  2. 如权利要求1所述的自由光瞳照明方法,其特征在于,还包括:
    步骤5、测试整个视场范围内,光瞳能量分布是否符合需求,如果不符合,修正各LED光源的出射光功率。
  3. 如权利要求1所述的自由光瞳照明方法,其特征在于,所述LED阵列光源由若干个同一类型的LED光源按照圆形的排列方式紧密排布组合而成,且所述若干个LED光源关于所述LED阵列光源的中心对称分布。
  4. 如权利要求3所述的自由光瞳照明方法,其特征在于,每个所述LED光源均与所述控制单元相连。
  5. 如权利要求1所述的自由光瞳照明方法,其特征在于,所述LED阵列光源的波长为365nm、248nm或以下。
  6. 如权利要求1所述的自由光瞳照明方法,其特征在于,所述LED阵列光源的出射截面为24mm。
  7. 一种自由光瞳照明系统,其特征在于,包括LED阵列光源、第一中继镜组、匀光单元、可变视场光阑、第二中继镜组以及控制单元,所述LED阵 列光源、第一中继镜组、匀光单元、可变视场光阑以及第二中继镜组依次排列,所述第一中继镜组、匀光单元以及可变视场光阑设置在所述LED阵列光源的主轴上,所述控制单元与所述LED阵列光源和可变视场光阑分别连接,用于根据所需的光瞳能量分布及曝光视场范围,通过所述控制单元控制所述LED阵列光源出射光的功率,及所述可变视场光阑的拦光范围,实现相应的自由光瞳照明。
  8. 如权利要求7所述的自由光瞳照明系统,其特征在于,所述匀光单元包括微透镜阵列和汇聚镜组,所述汇聚镜组的入瞳面位于所述微透镜阵列的后表面。
  9. 如权利要求8所述的自由光瞳照明系统,其特征在于,所述微透镜阵列的前表面位于所述第一中继镜组的像面。
  10. 如权利要求8所述的自由光瞳照明系统,其特征在于,所述可变视场光阑位于所述汇聚镜组的像面。
  11. 如权利要求8所述的自由光瞳照明系统,其特征在于,所述第二中继镜组的物面位于所述汇聚镜组的像面。
  12. 如权利要求8所述的自由光瞳照明系统,其特征在于,所述微透镜阵列包括两块相同的微透镜,每块微透镜由前后两面分别相互垂直的柱面镜叠加而成。
  13. 如权利要求8所述的自由光瞳照明系统,其特征在于,所述汇聚镜组和可变视场光阑之间还设有石英棒。
  14. 如权利要求13所述的自由光瞳照明系统,其特征在于,所述石英棒的入光端面位于所述汇聚镜组的像面,所述可变视场光阑位于所述石英棒的出光端。
  15. 如权利要求7所述的自由光瞳照明系统,其特征在于,所述第一中继镜组的物面位于所述LED阵列光源的出光端。
PCT/CN2017/072424 2015-11-30 2017-01-24 自由光瞳照明方法及照明系统 WO2017092719A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510856658.7A CN106814548A (zh) 2015-11-30 2015-11-30 自由光瞳照明方法及照明系统
CN201510856658.7 2015-11-30

Publications (2)

Publication Number Publication Date
WO2017092719A2 true WO2017092719A2 (zh) 2017-06-08
WO2017092719A3 WO2017092719A3 (zh) 2017-07-20

Family

ID=58796318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072424 WO2017092719A2 (zh) 2015-11-30 2017-01-24 自由光瞳照明方法及照明系统

Country Status (2)

Country Link
CN (1) CN106814548A (zh)
WO (1) WO2017092719A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116414010A (zh) * 2023-04-06 2023-07-11 上海镭望光学科技有限公司 一种自由光瞳产生装置及其产生自由光瞳照明的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018201457A1 (de) * 2018-01-31 2019-08-01 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithographie

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10230652A1 (de) * 2002-07-08 2004-01-29 Carl Zeiss Smt Ag Optische Vorrichtung mit einer Beleuchtungslichtquelle
CN100559277C (zh) * 2006-11-03 2009-11-11 上海微电子装备有限公司 一种光刻照明系统
US8451427B2 (en) * 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
DE102008011501A1 (de) * 2008-02-25 2009-08-27 Carl Zeiss Smt Ag Verfahren zum Betreiben eines Beleuchtungssystems einer mikrolithographischen Projektionsbelichtungsanlage
CN101685258A (zh) * 2008-09-25 2010-03-31 上海华虹Nec电子有限公司 基于激光发生器阵列的可编程式光源及使用方法和用途
CN102063014A (zh) * 2009-11-13 2011-05-18 上海微电子装备有限公司 一种用于微光刻的照明光学系统
CN103105737B (zh) * 2011-11-10 2016-06-01 上海微电子装备有限公司 使用拼接的多光源的光刻装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116414010A (zh) * 2023-04-06 2023-07-11 上海镭望光学科技有限公司 一种自由光瞳产生装置及其产生自由光瞳照明的方法
CN116414010B (zh) * 2023-04-06 2024-04-26 上海镭望光学科技有限公司 一种自由光瞳产生装置及其产生自由光瞳照明的方法

Also Published As

Publication number Publication date
WO2017092719A3 (zh) 2017-07-20
CN106814548A (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
JP5026788B2 (ja) マイクロリソグラフィの照明システム
CN108803244B (zh) 照明装置及照明方法和一种光刻机
US8004658B2 (en) Lighting optical device, exposure system, and exposure method
CN111503533B (zh) 光源设备、照明装置、曝光装置和用于制造物品的方法
US8330938B2 (en) Solid-state array for lithography illumination
US20110205519A1 (en) Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
TW201316132A (zh) 用於光蝕刻系統的可程式控制照射器
WO2017092719A2 (zh) 自由光瞳照明方法及照明系统
TW201115279A (en) Laser exposure apparatus
TW201506548A (zh) 光源裝置、曝光裝置
KR20160110113A (ko) 조명 광학계, 노광 장치, 및 물품 제조 방법
JP2008210814A (ja) 変調器
CN103105737B (zh) 使用拼接的多光源的光刻装置
TW201827933A (zh) 自由光瞳照明方法及照明系统
US10459343B2 (en) Illumination device
JP2014146660A (ja) 照明光学装置、露光装置、およびデバイス製造方法
US10394129B2 (en) Microlithographic illumination unit
JP2003015314A (ja) 照明光学装置および該照明光学装置を備えた露光装置
US9122170B2 (en) Transmission optical system, illumination optical system, exposure apparatus, and device manufacturing method
CN108020994B (zh) 一种照明装置
CN109856915B (zh) 光刻投影物镜、边缘曝光系统和边缘曝光装置
US9405202B2 (en) Optical system of a microlithographic projection exposure apparatus
KR20160034806A (ko) 조명 광학장치, 노광장치, 및 물품의 제조방법
JP2014146718A (ja) 照明光学装置、露光装置、およびデバイス製造方法
JP2014157890A (ja) 照明光学装置、露光装置、およびデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17727072

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17727072

Country of ref document: EP

Kind code of ref document: A2