WO2017092550A1 - 一种域间路由方法、装置及网络侧设备 - Google Patents

一种域间路由方法、装置及网络侧设备 Download PDF

Info

Publication number
WO2017092550A1
WO2017092550A1 PCT/CN2016/105097 CN2016105097W WO2017092550A1 WO 2017092550 A1 WO2017092550 A1 WO 2017092550A1 CN 2016105097 W CN2016105097 W CN 2016105097W WO 2017092550 A1 WO2017092550 A1 WO 2017092550A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
destination
ixp
routing
routing information
Prior art date
Application number
PCT/CN2016/105097
Other languages
English (en)
French (fr)
Inventor
林栋�
张弓
范重言
邓榤生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017092550A1 publication Critical patent/WO2017092550A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks

Definitions

  • the present invention relates to the field of Internet technologies, and in particular, to an inter-domain routing method, apparatus, and network side device.
  • the Internet is called a network network. After rapid development, the Internet is currently composed of about 50,000 Autonomous Systems (AS).
  • AS Autonomous Systems
  • the internal routing of the AS uses an intra-domain routing protocol, such as an Intermediate System to Intermediate System (ISIS) or an Open Shortest Path First (OSPF).
  • ISIS Intermediate System to Intermediate System
  • OSPF Open Shortest Path First
  • Inter-domain route propagation is implemented between ASs, that is, the inter-domain border gateway protocol (English: Boarder Gateway Protocol, BGP for short).
  • BGP-based routing scheme BGP connections are established between adjacent ASs, and BGP updates are used to exchange routing reachability information, thereby updating its own routing table and forwarding table.
  • the BGP update is based on the destination network protocol (English: Internet Protocol, IP address) address prefix and contains many attributes to reflect the control strategy of each AS for routing.
  • the basic form of BGP update is AS two-two negotiation, multiple iterations. For example, AS3 exchanges route reachability information with its neighbor AS2 and obtains a one-hop route from AS3 to AS2. AS1 indirectly obtains the routing information of AS2 through direct negotiation with its neighbor AS3, and finally forms the route that AS1 reaches AS2 through AS3.
  • the embodiments of the present invention provide an inter-domain routing method, a device, and a network side device, which are used to solve the technical problem of low efficiency of the inter-AS inter-domain routing mode in the prior art.
  • an embodiment of the present invention provides an inter-domain routing method, including: a source autonomous domain AS generates a routing request from the source AS to a destination AS; and the source AS sends N to the M internet switching nodes IXP.
  • the IXP sends the routing request; M, N is a positive integer and N is less than or equal to M; the source AS receives the second routing information between the N IXPs sent by the N IXPs to the destination AS. Determining, by the source AS, the third route between the source AS and the destination AS according to the first routing information between the source AS and the N IXPs and the second routing information. information.
  • the routing of the source AS to the destination AS in the prior art is truncated based on the IXP, so that the routing process from the source AS to the destination AS is decomposed into the source AS.
  • the sending, by the source AS, the routing request to the N IXPs of the M IXPs includes: the source AS to the M The N IXPs in the IXP that are closest to and equal to the source AS send the routing request.
  • the path from the source AS to the IXP is the shortest path, so the path from the source AS to the destination AS can be shortened as a whole.
  • an embodiment of the present invention provides an inter-domain routing method, including: determining, by a source autonomous domain AS, a transit Internet switching node IXP set, where the set includes one or more IXPs; and the source AS and the intermediate AS generating a pointing point a route discovery request for each IXP in the IXP set; the source AS and the intermediate AS send the route discovery request to an AS that is smaller than each of the IXP distances; the source AS receives the each The source AS of the IXP feedback feeds the routing information of each of the IXPs.
  • an embodiment of the present invention provides an inter-domain routing method, including: an Internet switching section.
  • the point IXP receives the routing request from the source autonomous domain AS to the destination AS; the IXP acquires the second routing information of the IXP to the destination AS; the IXP sends the second routing information to the source AS, The second routing information is used by the source AS to determine third routing information between the source AS and the destination AS.
  • the routing information between the IXP and the destination AS is obtained by the IXP and fed back to the source AS, so that the source AS can combine the path of the source AS to the IXP and the path of the IXP to the destination AS to obtain the source AS. The full path to the destination AS.
  • the acquiring, by the IXP, the second routing information of the IXP to the destination AS includes: sending, by the IXP, a broadcast to a directly reachable neighbor thereof a message to query the destination AS; the IXP receives a response message sent by the destination AS along the opposite path of the forwarding path of the broadcast message, where the response message records the query forwarding path,
  • the query forwarding path is the second routing information.
  • the acquiring, by the IXP, the second routing information of the IXP to the destination AS includes: the Corresponding relationship of the routing information acquires the second routing information of the destination AS of the IXP.
  • the method for obtaining the second route in the implementation manner is simple, fast, shortens response time, and improves routing efficiency.
  • the method further includes: saving, by the IXP, the correspondence between the destination AS and the second routing information relationship.
  • the embodiment of the present invention provides a network side device, where the network side device represents a source autonomous domain AS, and includes: a processor, configured to generate a routing request from the source AS to the destination AS; an interface; a sender, For transmitting, by the interface, the routing request to N IXPs in the M internet switching nodes IXP; M, N are positive integers and N is less than or equal to M; and a receiver is configured to receive the N through the interface Second routing information between the N IXPs sent by the IXPs to the destination AS; The processor is further configured to: determine, according to the pre-established first routing information between the source AS and the N IXPs, and the second routing information, the first between the source AS and the destination AS Three routing information.
  • the transmitter is configured to: send, by the interface, N IXPs that are the closest and equal to the source AS among the M IXPs The routing request.
  • the network side device is an Internet service provider ISP, an Internet content provider ICP, and data.
  • ISP Internet service provider
  • ICP Internet content provider
  • data One or more of a center, a border gateway, and a router.
  • the fifth aspect of the present invention provides a network side device, where the network side device is an Internet switching node IXP, and includes: an interface, and the receiver is configured to receive, by using the interface, a route sent by the source autonomous domain AS to the destination AS. a request, a processor, configured to acquire second routing information of the IXP to the destination AS, and a sender, configured to send, by using the interface, the second routing information, the second routing information, to the source AS Used by the source AS to determine third routing information between the source AS and the destination AS.
  • the network side device is an Internet switching node IXP
  • the receiver is configured to receive, by using the interface, a route sent by the source autonomous domain AS to the destination AS. a request, a processor, configured to acquire second routing information of the IXP to the destination AS, and a sender, configured to send, by using the interface, the second routing information, the second routing information, to the source AS Used by the source AS to determine third routing information between the source AS and the destination AS.
  • the processor is configured to: send, by the sender, a broadcast message to the directly reachable neighbor of the IXP to query the destination AS; Receiving, by the receiver, a response message that is sent by the destination AS along the reverse path of the forwarding path of the broadcast message, where the query message records the query forwarding path, where the query forwarding path is the Two routing information.
  • the processor is configured to: acquire, by querying a preset correspondence between the destination AS and the routing information, a second of the destination AS of the IXP Routing information.
  • the processor is further configured to save a correspondence between the destination AS and the second routing information.
  • the network side device is a switch or a router.
  • an embodiment of the present invention provides an inter-domain routing device, including: a processing unit, configured to generate a routing request from a source autonomous domain AS to a destination AS; and a sending unit, configured to send N to the M Internet switching nodes IXP The IXP sends the routing request; M, N is a positive integer and N is less than or equal to M; and a receiving unit is configured to receive a second between the N IXPs sent by the N IXPs to the destination AS Routing information; the processing unit is further configured to: determine, according to the pre-established first routing information between the source AS and the N IXPs, and the second routing information, the source AS to the destination AS The third routing information between.
  • the sending unit is configured to: send the route to the N IXPs that are the closest and equal to the source AS in the M IXPs request.
  • an embodiment of the present invention provides an inter-domain routing device, including: a receiving unit, configured to receive a routing request from a source autonomous domain AS to a destination AS, and a processing unit, configured to acquire an Internet switching node IXP to the The second routing information of the destination AS, the sending unit, configured to send the second routing information to the source AS, where the second routing information is used by the source AS to determine the source AS to the destination AS The third routing information between.
  • the processing unit is configured to: send, by the sending unit, a broadcast message to the directly reachable neighbor of the IXP to query the destination AS; Receiving, by the receiving unit, a response message that is sent by the destination AS along the reverse path of the forwarding path of the broadcast message, where the query forwarding path is recorded in the response message, where the query forwarding path is Second routing information.
  • the processing unit is configured to: obtain, by querying a preset correspondence between the destination AS and the routing information, the first destination AS of the IXP Two routing information.
  • the processing unit is further configured to save a correspondence between the destination AS and the second routing information.
  • FIG. 1 is a structural diagram of an interconnection network according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a network side device according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for inter-domain routing on a source AS side according to an embodiment of the present disclosure
  • FIG. 4 is a structural diagram of an example of an internetwork according to an embodiment of the present invention.
  • 5a to 5c are schematic diagrams of route discovery of a source AS to an IXP according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of an inter-domain routing method on an IXP side according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of route discovery from an IXP to a destination AS according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a route merge result according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a routing loop according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of interaction between network elements according to an embodiment of the present invention.
  • FIG. 11 is a functional block diagram of an inter-domain routing device according to an embodiment of the present invention.
  • FIG. 12 is a functional block diagram of another inter-domain routing device according to an embodiment of the present invention.
  • the embodiments of the present invention provide an inter-domain routing method, a device, and a network side device, which are used to solve the technical problem of low efficiency of the inter-AS inter-domain routing mode in the prior art.
  • FIG. 1 is a structural diagram of a possible interconnection network according to an embodiment of the present invention.
  • the internetwork structure includes an AS and an Internet switching node (English: Internet Exchange Point, referred to as: IXP).
  • the IXP is connected to some ASs, and the remaining ASs are connected to each other. IXPs may or may not be connected to each other.
  • FIG. 1 only the possible Internet structure is illustrated. In practical applications, the connection relationship between the AS and the IXP, the AS, and the AS, the IXP, and the IXP may be other situations, which are specifically related to the actual network deployment.
  • the bearer entity can be an Internet service provider (English: Internet Service Provider (ISP), Internet Content Provider (English: Internet Content Provider, ICP), data center and other border gateways or routers.
  • ISP Internet Service Provider
  • ICP Internet Content Provider
  • data center data center
  • border gateways or routers other border gateways or routers.
  • IXP is a physical facility node that involves the connection of multiple ASs and the exchange of inter-domain routes. For example, the “market” for inter-domain routing transactions between ASs. If only two ASs are involved, they are generally referred to as Point of Presence (PoP).
  • PoP Point of Presence
  • the physical location for more than two ASs to implement inter-domain routing on a physical facility is IXP. In this article, it is collectively called IXP.
  • the final entity of IXP is still a switch, a router, and so on.
  • FIG. 2 is a schematic structural diagram of a network side device according to an embodiment of the present invention.
  • the network side device is, for example, the aforementioned AS or IXP.
  • the network side device includes a processor 10, a transmitter 20, a receiver 30, a memory 40, and an interface 50.
  • the memory 40, the transmitter 20 and the receiver 30 and the processor 10 can be connected via a bus.
  • the memory 40, the transmitter 20, and the receiver 30 and the processor 10 may not be a bus structure, but may be other structures, such as a star structure, which is not specifically limited herein.
  • the processor 10 may be a central processing unit, an application specific integrated circuit (ASIC), and may be one or more integrated circuits for controlling program execution, and may be used on site.
  • a hardware circuit developed by a Field Programmable Gate Array (FPGA) can be a baseband processor.
  • processor 10 may include at least one processing core.
  • the memory 40 may include a read only memory (English: Read Only Memory, ROM for short), a random access memory (English: Random Access Memory, RAM for short), and a disk storage.
  • the memory 40 is used to store data required by the processor 10 to operate.
  • the number of memories 40 is one or more.
  • the number of the interfaces 50 is one or more for connecting with an adjacent AS or an IXP.
  • transmitter 20 and the receiver 30 may be physically independent of each other or integrated.
  • Transmitter 20 can send data to an adjacent AS or IXP over interface 50.
  • Receiver 30 can receive data transmitted by an adjacent AS or IXP over interface 50.
  • FIG. 3 is a flowchart of an inter-domain routing method on the AS side according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • Step 101 The source AS generates a routing request from the source AS to the destination AS.
  • Step 102 The source AS sends the routing request to N IXPs of the M IXPs according to the pre-established first routing information between the source AS and the M IXPs; M and N are positive integers and N is less than or equal to M. ;
  • Step 103 The source AS receives the second routing information between the N IXPs sent by the N IXPs to the destination AS.
  • Step 104 The source AS determines the third routing information between the source AS and the destination AS according to the first routing information and the second routing information between the source AS and the N.
  • the routing request in step 101 may be generated based on the operation of the source AS to refresh the local routing information, or may be generated based on the source AS and the destination AS establishing a connection through the source routing mechanism.
  • the generation mechanism and causes of the routing request can be various, depending on actual needs.
  • the routing request is generated by the processor 10 of the source AS.
  • the first routing information between the source AS and the M IXPs may be pre-established in the following manner. Specifically, each AS and IXP bootstrap during cold start, that is, each AS and IXP searches for and establishes a route between the AS and the IXP through direct or indirect communication with the neighboring AS and the IXP. The following will be explained by way of example.
  • the direct one-hop distance between AS-ASs is defined as 1, the direct one-hop distance between AS-IXPs is 0.5, and the one-hop distance between IXP-IXPs is zero.
  • All ASs maintain their own and IXP distance lists that are directly reachable to neighboring ASs.
  • the IXP distance list stores a table of distance information between an AS and all IXPs in the network.
  • the IXP distance list stores a table of the shortest distance information of an AS and all IXPs in the network.
  • a simple flooding query mechanism may be used to form an IXP distance list, or an intra-domain routing protocol such as Open Shortest Path First (OSPF) may be used.
  • OSPF Open Shortest Path First
  • the IXP distance list is formed by dynamic convergence. For example, it is known that AS i reaches IXP a distance is m, AS j reaches IXP a distance is n, and AS i reaches AS j distance is 1. If (m+1) ⁇ n, the update AS j reaches the IXP a distance is (m + 1); if m > (n + 1), the update AS i reaches the IXP a distance is (n + 1). Repeatedly, the contents of the IXP distance list of all ASs will eventually converge to the stable state with the smallest IXP distance value.
  • OSPF Open Shortest Path First
  • all ASs can exchange IXP distance lists with their neighbor ASs that are directly reachable.
  • the average size of the IXP distance list is less than 3.7Kbytes, and the maximum is less than 3.3Mbytes.
  • the average size of the IXP distance list is at least three orders of magnitude smaller than existing BGP tables.
  • IXPs are IXP1 and IXP2, respectively.
  • the three IXP distance lists to be maintained by AS7 are Tables 1 to 3.
  • Table 1 lists the IXP distances of AS7 directly reachable neighbor AS2.
  • Table 2 lists the IXP distances of AS7 directly reachable neighbor AS3.
  • Table 3 shows the list of IXP distances for AS7.
  • the source AS determines a transitive IXP set that includes one or more IXPs. Specifically, the selection may be based on the IXP distance list, for example, selecting a set of IXPs that are equal in distance from the source AS.
  • the source AS and the intermediate AS then generate a route discovery request directed to each of the IXPs in the set of IXPs.
  • the intermediate AS is an AS on the path from the source AS to each of the IXPs.
  • the source AS and the intermediate AS send the route discovery request towards the AS of a smaller distance from each of the IXPs.
  • the route discovery request is sent, for example, by the source 20 and the transmitter 20 of the intermediate AS.
  • the intermediate AS may perform all forwarding or select partial AS forwarding.
  • the source AS receives the routing information of the source AS of each of the IXP feedbacks to each of the IXPs.
  • the first routing information of the source AS to the M IXPs can be obtained.
  • the first routing information includes path information, and further, distance information may also be included.
  • the arrows indicate the forwarding routes of the routing requests from the source AS to the N IXPs, simultaneously. These forwarding paths are also potential paths from source AS to N IXPs.
  • Figure 5a shows a single IXP in an IXP with the same distance selected for forwarding, such as IXP1, and the intermediate AS performs all forwarding to ASs of equal distance from the IXP.
  • the source AS selects the IXP1 to send the route request route request to the AS8 first, and the AS8 has the same distance from the IXP1.
  • the AS has AS5 and AS3, so AS8 continues to send the route request to AS3 and AS5.
  • the next hop AS with the shortest distance from AS3 to AS5 is AS2, so AS5 and AS3 forward the routing request to AS2.
  • AS2 is then adjacent to IXP1, so AS2 forwards the routing request directly to IXP1.
  • Figure 5b shows that a single IXP in an IXP with the same distance is selected for forwarding, such as IXP1, and the intermediate AS selects only one AS for forwarding to ASs of equal distance from the IXP.
  • AS8 forwards only routing requests to AS5 without forwarding to AS3.
  • Figure 5b shows that multiple IXPs in an IXP with the same distance are selected for forwarding, such as IXP1 and IXP3, and the intermediate AS performs all forwarding to ASs of equal distance from the IXP.
  • AS3 forwards the routing request to AS4, and AS4 forwards the routing request to IXP3.
  • step 102 is executed to send the routing request generated in step 101 to N IXPs in the M IXPs.
  • the routing request is sent by the sender 20 of the source AS through the interface 50 of the source AS.
  • the source AS sends the routing request to the N IXs of the M IXPs that are closest to and equal to the source AS. If there are multiple IXPs of equal distance, all transmissions or partial IXP transmissions may be performed depending on the situation.
  • the method includes:
  • Step 201 The IXP receives a routing request sent by the source AS to the destination AS.
  • Step 202 The IXP acquires second routing information of the IXP to the destination AS.
  • Step 203 The IXP sends the second routing information to the source AS.
  • the corresponding IXP side performs step 201.
  • the IXP can receive the routing request through its own receiver 30.
  • step 202 includes: the IXP sends a broadcast message to its directly reachable neighbor (including the AS and the IXP) to query the destination AS; and the IXP receives the broadcast along the broadcast sent by the destination AS.
  • the IXP can send the broadcast message through its own transmitter 20 and receive the response message through its own receiver 30.
  • the AS and the IXP of the non-destination AS in the query forwarding path propagate the query toward the AS and the IXP remote from the IXP based on the foregoing IXP distance list, and so on, until there is no further distance from the IXP. AS or IXP so far.
  • FIG. 7 is a schematic diagram of a process of an IXP discovery destination AS according to an embodiment of the present invention.
  • AS1 to AS8 are both non-destination ASs.
  • the IXP1 sends a broadcast message to the directly reachable neighbors AS1, AS2, and AS3.
  • AS1 to AS3 propagate the broadcast message away from IXP1.
  • AS1 sends the broadcast message to AS8 and AS7.
  • AS2 sends the broadcast message to AS7 and AS6.
  • AS3 sends the broadcast message to AS5 and IXP3.
  • AS8 AS7, AS6, and AS5 have not connected AS or IXP farther from the IXP, the broadcast message is not forwarded.
  • the IXP3 needs to continue to send the broadcast message to AS5 and AS4.
  • AS4 has no neighbor AS or IXP farther from IXP1, so the broadcast message is no longer forwarded.
  • the destination AS does not forward the broadcast message. Instead, the reverse path of the forwarding path of the broadcast message is fed back to the response message, and the forwarding path of the broadcast message is recorded in the response message.
  • the step 202 includes: acquiring, by the IXP, the second routing information of the destination AS of the IXP by querying a preset correspondence between the destination AS and the routing information.
  • This step may in particular be performed by the processor 10 of the IXP.
  • the correspondence between the preset destination AS and the routing information may be stored in the memory 40 of the IXP.
  • Table 4 is a correspondence table between a possible destination AS and routing information according to an embodiment of the present invention.
  • the routing information may not include the shortest distance information, that is, the shortest distance item is not included in Table 4.
  • the IXP can obtain the path information of the IXP to the destination AS, that is, the second routing information, by querying, for example, the correspondence table shown in Table 4. For example, if the destination AS is AS2, the second routing information includes IXP1, AS2, and AS3.
  • the manner in which the fourth table is established may adopt the foregoing first possible implementation manner. Therefore, after obtaining the second routing information by using the first possible implementation manner, the IXP also saves the destination. Correspondence between the AS and the second routing information. For example, save it in the form of Table 4.
  • the corresponding relationship between the destination AS and the routing information may be established in other manners, which is not specifically limited by the present invention.
  • the IXP can also periodically update the correspondence.
  • step 203 is next performed, that is, the second routing information is sent to the source AS.
  • the IXP can send the second routing information to the source AS through its own transmitter 20.
  • the source AS performs step 103, that is, receives the second routing information between the N IXPs sent by the N IXPs to the destination AS. Specifically, the source AS can receive N second routing information.
  • step 104 is performed, that is, the source AS determines the third routing information between the source AS and the destination AS according to the first routing information and the second routing information between the source AS and the N IXPs.
  • the first routing information may be specifically established in the foregoing manner, or may be established in other manners, and details are not described herein again.
  • the first routing information and the second routing information may be simply combined, and a total of N third routing information may be obtained. Therefore, the source AS may store routing information of multiple source ASs to the destination AS, or may only select one routing information for storage. If multiple packets are saved, multipath routing can be performed when the data packets are subsequently sent to improve the reliability of data transmission.
  • the third routing information includes path information, and further includes distance information.
  • FIG. 8 is the third routing information finally obtained by the example shown in FIG. 5 c , where the third routing information is only used to represent the path information.
  • the third path information is: source AS, AS8, AS3, AS4, IXP3, and destination AS.
  • the routing loop may occur. As shown in Figure 9, after AS2 to IXP1, it will return to AS2 and then to the destination AS. There may also be a phenomenon in which the IXP access is detoured, for example, the source AS and the destination AS are neighbors. To this end, the source AS can also optimize the third routing information, such as removing the loop and matching the source routing technology, thereby further improving routing efficiency.
  • the IXP-based routing mechanism is on the average route length and back.
  • the optimal algorithm in the scene technology is only 0.4%, and the gap in the specific length path distribution is also small.
  • the actual routing effect of the IXP-based inter-domain routing mechanism is basically the same as the routing effect of the method in the background art, but the IXP-based routing mechanism greatly simplifies the routing process compared to the method in the background art. The routing overhead is reduced. Further, the AS does not need to maintain a large routing table.
  • FIG. 10 it is a schematic diagram of interaction between the network elements.
  • the source AS discovers the route of the source AS-IXP1 to the IXPm, where m is a positive integer.
  • IXP1 to IXPm find their own routes to the destination AS.
  • the source AS requests a route to the destination AS, and the request can be sent to one or more of IXP1 to IXPm.
  • the one or more IXPs feed back their own route to the destination AS.
  • the source AS then merges the source AS to the one or more IXP routes and the one or more IXP to destination AS routes to form a complete route from the source AS to the destination AS.
  • IXP1 an IXP, such as IXP1 as the routing agent, to implement the routing policy.
  • the routing of the original source AS to the destination AS is truncated based on the IXP, so that the routing process from the source AS to the destination AS is decomposed into the source AS to the IXP and the IXP.
  • the two routing processes of the destination AS utilize the existing network topology features to simplify the routing.
  • FIG. 11 is a functional block diagram of an inter-domain routing device according to an embodiment of the present invention.
  • the inter-domain routing device is used to implement the inter-domain routing method as shown in FIG.
  • the inter-domain routing device includes: a processing unit 301, configured to generate a routing request from the source autonomous domain AS to the destination AS; and a sending unit 302, configured to send the routing request to the N IXPs in the M Internet switching nodes IXP; N is a positive integer and N is less than or equal to M.
  • the receiving unit 303 is configured to receive second routing information between the N IXPs sent by the N IXPs to the destination AS.
  • the processing unit 301 further uses The third routing information between the source AS and the destination AS is determined according to the first routing information between the source AS and the N IXPs and the second routing information.
  • the sending unit 302 is configured to: send the routing request to the N IXPs that are the closest and equal to the source AS among the M IXPs.
  • inter-domain routing method in the foregoing embodiment of FIG. 3 are also applicable to the inter-domain routing device in this embodiment.
  • the foregoing detailed description of the inter-domain routing method can be clearly understood by those skilled in the art.
  • the implementation method of the inter-domain routing device in this embodiment is known, so for the sake of brevity of the description, it will not be described in detail herein.
  • FIG. 12 is a functional block diagram of an inter-domain routing device according to an embodiment of the present invention.
  • the inter-domain routing device is used to implement the inter-domain routing method as shown in FIG. 6.
  • the inter-domain routing device includes: a receiving unit 401, configured to receive a routing request sent by the source autonomous domain AS to the destination AS; and a processing unit 402, configured to acquire second routing information of the Internet switching node IXP to the destination AS;
  • the unit 403 is configured to send the second routing information to the source AS, where the second routing information is used by the source AS to determine third routing information between the source AS and the destination AS.
  • the processing unit 402 is configured to: send, by the sending unit 403, a broadcast message to the directly reachable neighbor of the IXP to query the destination AS; and receive, by the receiving unit 401, the broadcast along the broadcast sent by the destination AS.
  • the processing unit 402 is configured to: obtain the second routing information of the destination AS of the IXP by querying a preset correspondence between the destination AS and the routing information.
  • the processing unit 402 is further configured to save a correspondence between the destination AS and the second routing information.
  • inter-domain routing method in the foregoing embodiment of FIG. 6 is also applicable to the inter-domain routing device in this embodiment.
  • the foregoing detailed description of the inter-domain routing method can be clearly understood by those skilled in the art.
  • the implementation method of the inter-domain routing device in this embodiment is known, so for the sake of brevity of the description, it will not be described in detail herein.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention may be employed in one or more A computer program product embodied on a computer usable storage medium (including but not limited to disk storage and optical storage, etc.) containing computer usable program code.
  • a computer usable storage medium including but not limited to disk storage and optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本发明提供一种域间路由方法、装置及网络侧设备,该方法包括:源自治域AS生成所述源AS至目的AS的路由请求;根据预先建立的所述源AS至M个互联网交换节点IXP之间的第一路由信息,所述源AS向所述M个IXP中的N个IXP发送所述路由请求;M、N为正整数且N小于或等于M;所述源AS接收所述N个IXP发送的所述N个IXP各自到所述目的AS之间的第二路由信息;所述源AS根据所述源AS至所述N个IXP之间的所述第一路由信息与所述第二路由信息,确定所述源AS至所述目的AS之间的第三路由信息。通过该方法可以简化路由,而且不需要维护庞大的路由表。

Description

一种域间路由方法、装置及网络侧设备
本申请要求在2015年12月03日提交中国专利局、申请号为201510885244.7、发明名称为“一种域间路由方法、装置及网络侧设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及互联网技术领域,尤其涉及一种域间路由方法、装置及网络侧设备。
背景技术
互联网被称为网络的网络,经过快速发展,目前互联网是由约五万个大小自治域(英文:Autonomous System,简称:AS)组成。AS内部的路由使用域内路由协议,例如中间系统到中间系统(英文:Intermediate System to Intermediate System,简称:ISIS)或开放式最短路径优先(英文:Open Shortest Path First,简称:OSPF)。AS之间,即域间使用边界网关协议(英文:Boarder Gateway Protocol,简称:BGP)实现域间路由传播。
基于BGP的路由方案:相邻的AS之间建立BGP连接,通过BGP更新交换路由可达信息,从而更新自己的路由表和转发表。BGP更新基于目的网络协议(英文:Internet Protocol,简称:IP)地址前缀,并包含诸多属性以体现各AS对于路由的控制策略。BGP更新的基本形式是AS两两协商,多次迭代。举例来说,AS3与其邻居AS2交换路由可达信息,获得AS3针对AS2的一跳路由。AS1通过和其邻居AS3的直接协商,间接得到AS2的路由信息,最终形成AS1通过AS3到达AS2的路由。
上述路由方案中,需要AS两两协商,如果有N个AS的话,那么协商的规模就为N2,所以效率较低,而且AS需要维护庞大的BGP路由表。
发明内容
本发明实施例提供一种域间路由方法、装置及网络侧设备,用以解决现有技术中AS域间路由方式效率较低的技术问题。
第一方面,本发明实施例提供了一种域间路由方法,包括:源自治域AS生成所述源AS至目的AS的路由请求;所述源AS向M个互联网交换节点IXP中的N个IXP发送所述路由请求;M、N为正整数且N小于或等于M;所述源AS接收所述N个IXP发送的所述N个IXP各自到所述目的AS之间的第二路由信息;所述源AS根据预先建立的所述源AS至所述N个IXP之间的第一路由信息与所述第二路由信息,确定所述源AS至所述目的AS之间的第三路由信息。
因此,在第一方面中的实施例中,将现有技术中的源AS至目的AS的路由,以IXP为中心进行了截断处理,使得源AS至目的AS的路由过程被分解成了源AS至IXP、IXP至目的AS的两个路由过程,以此利用现有网络拓扑特性,达到简化路由的目的。
结合第一方面,在第一方面的第一种可能的实现方式中,所述源AS向所述M个IXP中的N个IXP发送所述路由请求包括:所述源AS向所述M个IXP中与所述源AS距离最近且相等的N个IXP发送所述路由请求。通过该方法,源AS至IXP的路径为最短路径,所以可以整体上缩短源AS至目的AS的路径。
第二方面,本发明实施例提供一种域间路由方法,包括:源自治域AS确定中转互联网交换节点IXP集合,所述集合包括一个或多个IXP;所述源AS以及中间AS生成指向所述IXP集合中每一个IXP的路由发现请求;所述源AS以及所述中间AS将所述路由发现请求朝着与所述每一个IXP距离更小的AS发送;所述源AS接收所述每一个IXP反馈的所述源AS至所述每一个IXP的路由信息。
通过第二方面中的方法,可以得到源AS至IXP集合中每一个IXP的较短路径。
第三方面,本发明实施例提供一种域间路由方法,包括:互联网交换节 点IXP接收源自治域AS发送的至目的AS的路由请求;所述IXP获取所述IXP至所述目的AS的第二路由信息;所述IXP向所述源AS发送所述第二路由信息,所述第二路由信息被所述源AS用于确定所述源AS至所述目的AS之间的第三路由信息。通过第三方面中的方法,由IXP获取IXP至目的AS之间的路由信息并反馈给源AS,以使源AS能够将源AS至IXP的路径和IXP至目的AS的路径合并以得到源AS至目的AS的完整路径。
结合第三方面,在第三方面的第一种可能的实现方式中,所述IXP获取所述IXP至所述目的AS的第二路由信息,包括:所述IXP向其直接可达邻居发送广播消息,以查询所述目的AS;所述IXP接收所述目的AS发送的沿所述广播消息的转发路径的相反路径反馈的响应消息,所述响应消息中记录有所述查询转发路径,所述查询转发路径即为所述第二路由信息。通过该方法,实时进行IXP至目的AS的路径发现,所以得到的第二路由信息较新,所以得到的源AS至目的AS之间的路径是最新路径。
结合第三方面,在第三方面的第二种可能的实现方式中,所述IXP获取所述IXP至所述目的AS的第二路由信息,包括:所述IXP通过查询预设的目的AS与路由信息的对应关系获取所述IXP之所述目的AS的第二路由信息。该实现方式中获取第二路由的方式较简单,快捷,缩短响应时间,提高路由效率。
结合第三方面的第一种可能的实现方式,在第三方面的第三种可能的实现方式中,所述方法还包括:所述IXP保存所述目的AS和所述第二路由信息的对应关系。通过将获取的最新的目的AS的第二路由信息,一方面可以便于下次快捷的获取到第二路由信息,而不用再次获取;另一方面可以将原有的第二路由信息替换为最新的路由信息。
第四方面,本发明实施例提供一种网络侧设备,所述网络侧设备代表源自治域AS,包括:处理器,用于生成所述源AS至目的AS的路由请求;接口;发送器,用于通过所述接口向M个互联网交换节点IXP中的N个IXP发送所述路由请求;M、N为正整数且N小于或等于M;接收器,用于通过所述接口接收所述N个IXP发送的所述N个IXP各自到所述目的AS之间的第二路由信息;所 述处理器还用于:根据预先建立的所述源AS至所述N个IXP之间的第一路由信息与所述第二路由信息,确定所述源AS至所述目的AS之间的第三路由信息。
结合第四方面,在第四方面的第一种可能的实现方式中,所述发送器用于:通过所述接口向所述M个IXP中与所述源AS距离最近且相等的N个IXP发送所述路由请求。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述网络侧设备为互联网服务提供商ISP、互联网内容提供商ICP、数据中心、边界网关、路由器中的一种或多种。
第五方面,本发明实施提供一种网络侧设备,所述网络侧设备为互联网交换节点IXP,包括:接口;接收器,用于通过所述接口接收源自治域AS发送的至目的AS的路由请求;处理器,用于获取所述IXP至所述目的AS的第二路由信息;发送器,用于通过所述接口向所述源AS发送所述第二路由信息,所述第二路由信息被所述源AS用于确定所述源AS至所述目的AS之间的第三路由信息。
结合第五方面,在第五方面的第一种可能的实现方式中,所述处理器用于:通过所述发送器向所述IXP直接可达邻居发送广播消息,以查询所述目的AS;通过所述接收器接收所述目的AS发送的沿所述广播消息的转发路径的相反路径反馈的响应消息,所述响应消息中记录有所述查询转发路径,所述查询转发路径即为所述第二路由信息。
结合第五方面,在第五方面的第二种可能的实现方式中,所述处理器用于:通过查询预设的目的AS与路由信息的对应关系获取所述IXP之所述目的AS的第二路由信息。
结合第五方面的第一种可能的实现方式,在第五方面的第三种可能的实现方式中,所述处理器还用于保存所述目的AS和所述第二路由信息的对应关系。
结合第五方面,在第五方面的第四种可能的实现方式中,所述网络侧设备为交换机或路由器。
第六方面,本发明实施例提供一种域间路由装置,包括:处理单元,用于生成源自治域AS至目的AS的路由请求;发送单元,用于向M个互联网交换节点IXP中的N个IXP发送所述路由请求;M、N为正整数且N小于或等于M;接收单元,用于接收所述N个IXP发送的所述N个IXP各自到所述目的AS之间的第二路由信息;所述处理单元还用于:根据预先建立的所述源AS至所述N个IXP之间的第一路由信息与所述第二路由信息,确定所述源AS至所述目的AS之间的第三路由信息。
结合第六方面,在第六方面的第一种可能的实现方式中,所述发送单元用于:向所述M个IXP中与所述源AS距离最近且相等的N个IXP发送所述路由请求。
第七方面,本发明实施例提供一种域间路由装置,包括:接收单元,用于接收源自治域AS发送的至目的AS的路由请求;处理单元,用于获取互联网交换节点IXP至所述目的AS的第二路由信息;发送单元,用于向所述源AS发送所述第二路由信息,所述第二路由信息被所述源AS用于确定所述源AS至所述目的AS之间的第三路由信息。
结合第七方面,在第七方面的第一种可能的实现方式中,所述处理单元用于:通过所述发送单元向所述IXP直接可达邻居发送广播消息,以查询所述目的AS;通过所述接收单元接收所述目的AS发送的沿所述广播消息的转发路径的相反路径反馈的响应消息,所述响应消息中记录有所述查询转发路径,所述查询转发路径即为所述第二路由信息。
结合第七方面,在第七方面的第二种可能的实现方式中,所述处理单元用于:通过查询预设的目的AS与路由信息的对应关系获取所述IXP之所述目的AS的第二路由信息。
结合第七方面的第一种可能的实现方式,在第七方面的第三种可能的实现方式中,所述处理单元还用于保存所述目的AS和所述第二路由信息的对应关系。
附图说明
图1为本发明实施例提供的一种互联网络结构图;
图2为本发明实施例提供的一种网络侧设备的结构图;
图3为本发明实施例提供的一种源AS侧的域间路由方法的流程图;
图4为本发明实施例提供的一种互联网络实例结构图;
图5a至图5c为本发明实施例提供的源AS至IXP的路由发现示意图;
图6为本发明实施例提供的一种IXP侧的域间路由方法的流程图;
图7为本发明实施例提供的一种IXP至目的AS得路由发现示意图;
图8为本发明实施例提供的一种路由合并结果示意图;
图9为本发明实施例提供的一种路由环路示意图;
图10为本发明实施例提供的一种网元之间的交互示意图;
图11为本发明实施例提供的一种域间路由装置的功能框图;
图12为本发明实施例提供的另一种域间路由装置的功能框图。
具体实施方式
本发明实施例提供一种域间路由方法、装置及网络侧设备,用以解决现有技术中AS域间路由方式效率较低的技术问题。
以下将详细描述本发明实施例中方案的实施过程、目的。
本发明实施例提供的一种域间路由方法,该方法可以应用于互联网络中。请参考图1,为本发明实施例提供的一种可能的互联网络结构图。该互联网络结构包括AS和互联网交换节点(英文:Internet Exchange Point,简称:IXP)。IXP与部分AS相连接,其余AS相互连接。IXP之间可能也相互连接,也可以不连接。图1中仅是用于举例说明可能的互联网结构,在实际运用中,AS和IXP、AS和AS、IXP和IXP之间的连接关系还可以是其它情形,具体与实际的网络部署相关。
AS是个逻辑上的标识概念。其承载实体可以是互联网服务提供商(英文: Internet Service Provider,简称:ISP)、互联网内容提供商(英文:Internet Content Provider,简称:ICP)、数据中心等边界网关或路由器。
IXP是涉及多个AS的连接与域间路由交换的物理设施节点。好比AS间形成域间路由交易的“集市”。如果只涉及两个AS,一般称为网络服务提供点(英文:Point of Presence,简称:PoP)。多于2个以上AS,在一个物理设施上实现域间路由这一行为的物理场所就是IXP。在本文中,统一称为IXP。当然IXP最终的实体还是交换机、路由器等。
接下来请参考图2,图2为本发明实施例提供的网络侧设备的可能的结构图。该网络侧设备例如为前述AS或IXP。如图2所示,该网络侧设备包括:处理器10、发送器20、接收器30、存储器40和接口50。存储器40、发送器20和接收器30和处理器10可以通过总线进行连接。当然,在实际运用中,存储器40、发送器20和接收器30和处理器10之间可以不是总线结构,而可以是其它结构,例如星型结构,本申请不作具体限定。
可选的,处理器10具体可以是中央处理器、特定应用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC),可以是一个或多个用于控制程序执行的集成电路,可以是使用现场可编程门阵列(英文:Field Programmable Gate Array,简称:FPGA)开发的硬件电路,可以是基带处理器。
可选的,处理器10可以包括至少一个处理核心。
可选的,存储器40可以包括只读存储器(英文:Read Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)和磁盘存储器。存储器40用于存储处理器10运行时所需的数据。存储器40的数量为一个或多个。
可选的,接口50的数量为一个或多个,用于与相邻的AS或IXP连接。
可选的,发送器20和接收器30在物理上可以相互独立也可以集成在一起。发送器20可以通过接口50将数据发送给相邻的AS或IXP。接收器30可以通过接口50接收相邻的AS或IXP发送的数据。
接下来请参考如图3所示,为本发明实施例中AS侧的域间路由方法的流程图。如图3所示,该方法包括:
步骤101:源AS生成源AS至目的AS的路由请求;
步骤102:根据预先建立的源AS至M个IXP之间的第一路由信息,源AS向M个IXP中的N个IXP发送所述路由请求;M、N为正整数且N小于或等于M;
步骤103:源AS接收N个IXP发送的N个IXP各自到目的AS之间的第二路由信息;
步骤104:源AS根据源AS至N个IXP之间的第一路由信息与第二路由信息,确定源AS至目的AS之间的第三路由信息。
步骤101中的路由请求可以是基于源AS刷新本地路由信息的操作生成的,也可以基于源AS与目的AS通过源路由机制建立连接生成的。该路由请求的产生机理与原因可以有多种,根据实际需求而定。
可选的,该路由请求由源AS的处理器10生成。
可选的,源AS至M个IXP之间的第一路由信息可以通过以下方式预先建立。具体的,各AS、IXP冷启动时自举,即各AS、IXP通过与邻居AS、IXP的直接或间接通信,搜索并建立AS与IXP之间的路由。以下将通过举例进行说明。
举例来说,假设定义AS-AS之间的直接一跳距离为1,AS-IXP之间的直接一跳距离为0.5,IXP-IXP之间的一跳距离为0。所有AS都维护自身以及直接可达邻居AS的IXP距离列表。IXP距离列表存储了某个AS与网络中全部IXP的距离信息的表格。可选的,IXP距离列表存储了某个AS与网络中全部IXP的最短距离信息的表格。
可选的,在实际部署过程中,既可以采用简单的洪泛查询机制形成IXP距离列表,也可以采用类似开放式最短路径优先(英文:Open Shortest Path First,简称:OSPF)等域内路由协议的方式,通过动态收敛形成IXP距离列表。举例来说,已知ASi到达IXPa距离为m,ASj到达IXPa距离为n,ASi到达ASj距离为1。如果(m+1)<n,则更新ASj到达IXPa距离为(m+1);如果m>(n+1)则更新ASi到达IXPa距离为(n+1)。如此反复,最终所有AS的IXP距离列表的内容都会收 敛到IXP距离值最小的稳定状态。
可选的,所有AS可以与其直接可达的邻居AS交换IXP距离列表。
因此,假设整个网络共有M个IXP,那么所有AS都维护(1+X)个包含M行记录的IXP距离列表,其中,X为某个AS直接可达邻居AS的数量。
由于现有互联网中IXP数量极少(2014年活跃的IXP数量不足400),AS平均邻居较少(2014年数据显示AS平均邻居数量8.1,最大值7619);可以预估某个AS所需维护的IXP距离列表平均大小不足3.7Kbytes,最大不足3.3Mbytes。IXP距离列表的平均大小较现有BGP表格有至少三个数量级的减少。
请参考图4所示的互联网络结构图,在该网络中,假设IXP的数量为2,分别为IXP1和IXP2。AS7所要维护的三个IXP距离列表为表一至表三。表一为AS7的直接可达邻居AS2的IXP距离列表。表二为AS7的直接可达邻居AS3的IXP距离列表。表三为AS7的IXP距离列表。
Figure PCTCN2016105097-appb-000001
接下来,源AS确定中转IXP集合,该集合包括一个或多个IXP。具体的,可以基于IXP距离列表进行选择,例如选择与源AS距离相等的IXP的集合。
然后源AS以及中间AS生成指向所述IXP集合中每一个IXP的路由发现请求。其中,中间AS为源AS至所述每一个IXP的路径上的AS。
源AS及中间AS将所述路由发现请求朝着与所述每一个IXP距离更小的AS的发送。例如通过源AS和中间AS的发送器20发送所述路由发现请求。
可选的,当基于IXP距离列表发现与所述每一个IXP距离相等的AS有多个时,中间AS可以执行全部转发或选择部分AS转发。
然后,源AS接收所述每一个IXP反馈的源AS至所述每一个IXP的路由信息。
重复上述过程,即可获得源AS至M个IXP的第一路由信息。
可选的,第一路由信息包括路径信息,进一步,还可以包括距离信息。
以下将具体举例说明不同的IXP选择以及AS转发策略。
如图5a至图5c所示,箭头表示从源AS至N个IXP的路由请求的转发路由,同时。这些转发路径也是源AS至N个IXP的潜在路径。图5a表示的是选择距离相等的IXP中的单一IXP进行转发,例如IXP1,并且中间AS向距离IXP距离相等的AS执行全部转发。具体的,源AS选择IXP1发送路由请求路由请求首先到达AS8,AS8距离IXP1距离相等的邻居AS有AS5和AS3,所以AS8将路由请求继续向AS3和AS5发送。AS3和AS5距离IXP距离最短的下一跳AS为AS2,所以AS5和AS3又将路由请求转发至AS2。然后AS2与IXP1相邻,所以AS2直接转发路由请求给IXP1。
图5b表示的是选择距离相等的IXP中的单一IXP进行转发,例如IXP1,并且中间AS向距离IXP距离相等的AS只选择一个AS转发。具体的,与图5a相比,AS8仅将路由请求转发至AS5,而没有转发至AS3。
图5b表示的是选择距离相等的IXP中的多个IXP进行转发,例如IXP1和IXP3,并且中间AS向距离IXP距离相等的AS执行全部转发。具体的,与图5a相比,AS3除了向AS2转发路由请求之外,还向AS4转发路由请求,进而AS4将路由请求转发至IXP3。
针对2014年互联网数据的实验显示,即使采用如图5c所示的IXP选择和AS转发策略,即同时选择距离最近的一组IXP、IXP距离相同下的AS全部转发的策略,源AS选择最近一组IXP,该组IXP的数量平均为9.19。而前往该组IXP只包含12.41条链路路径。该数据显示,在现有网络拓扑特性下,AS可以用较低的代价,例如平均较短的路径长度,小范围少量链路,与较多数量的IXP建立直接的路由关系。IXP作为网络局部星型化的中心这一特征极大的简化了AS-IXP的路由。
接下来执行步骤102,即向M个IXP中的N个IXP发送步骤101中生成的路由请求。
可选的,该路由请求由源AS的发送器20通过源AS的接口50发送。
可选的,源AS向M个IXP中与源AS距离最近且相等的N个IXP发送所述路由请求。如果存在多个距离相等的IXP,可以依据情况执行全部发送或选择部分IXP发送。
接下来将描述N个IXP侧的域间路由方法,请参考图6所示,该方法包括:
步骤201:IXP接收源AS发送的至目的AS的路由请求;
步骤202:IXP获取所述IXP至目的AS的第二路由信息;
步骤203:IXP向源AS发送第二路由信息。
当源AS执行步骤102之后,对应的,IXP侧执行步骤201。具体的,IXP可以通过自身的接收器30接收所述路由请求。
在第一种可能的实现方式中,步骤202包括:IXP向其直接可达邻居(包括AS和IXP)发送广播消息,以查询所述目的AS;IXP接收所述目的AS发送的沿所述广播消息的转发路径的相反路径反馈的响应消息,所述响应消息中记录有所述查询转发路径,所述查询转发路径即为所述第二路由信息。具体的,IXP可以通过自身的发送器20发送所述广播消息,并通过自身的接收器30接收所述响应消息。
可选的,在查询转发路径中的非目的AS的AS与IXP,基于前述的IXP距离列表将该查询朝着远离所述IXP的AS与IXP传播,如此反复,直至没有距离所述IXP更远的AS或IXP为止。
请参考图7所示,为本发明实施例中IXP发现目的AS的过程示意图。在本实施例中,AS1至AS8均非目的AS。如图7所示,IXP1接收到源AS的路由请求消息之后,向其直接可达邻居AS1、AS2和AS3发送广播消息。AS1至AS3接收到广播消息之后,朝着远离IXP1的方向传播广播消息。例如,AS1向AS8和AS7发送该广播消息。AS2向AS7和AS6发送该广播消息。AS3向AS5和IXP3发送该广播消息。进一步,因为AS8、AS7、AS6、AS5已经没有连接距离IXP更远的AS或IXP了,所以就不再转发该广播消息。而IXP3需要继续向AS5和AS4发送该广播消息,AS4已经没有距离IXP1更远的邻居AS或IXP了,所以就不再转发该广播消息。
在上述转发广播消息期间,当广播消息到达目的AS时,目的AS不再转发广播消息,而是将广播消息的转发路径的相反路径反馈响应消息,响应消息中记录有广播消息的转发路径。
由以上描述可以看出,第一种可能的实现方式,可以发现多条等距最短路径,并且可以避免广播环路、绕路的形成,还可以降低探测最短路径路由的开销。针对2014年的数据,318个活跃的IXP的实验显示,每个IXP平均只需要77354个查询报即可获得各IXP对全网近五万个AS的最短路径路由。
可选的,在第二种可能的实现方式中,步骤202包括:IXP通过查询预设的目的AS与路由信息的对应关系获取所述IXP之所述目的AS的第二路由信息。该步骤具体可以由所述IXP的处理器10执行。预设的目的AS与路由信息的对应关系可以存储在所述IXP的存储器40上。
可选的,请参考表四所示,为本发明实施例的一种可能的目的AS与路由信息的对应关系表。
目的AS 最短距离 路径
AS1 2.5 IXP1,AS3,AS2,AS1
AS2 1.5 IXP1,AS3,AS2
AS3 0.5 IXP1,AS3
表四
在实际运用中,路由信息可以不包括最短距离信息,即表四中不包含最短距离项。
因此,IXP可以通过查询例如表四所示的对应关系表,即可获得IXP至目的AS的路径信息,即第二路由信息。例如目的AS为AS2,那么第二路由信息包括IXP1,AS2,AS3。
可选的,表四的建立方式可以采用前述第一种可能的实现方式,因此,在通过第一种可能的实现方式获得第二路由信息之后,IXP还保存所述目的 AS和所述第二路由信息的对应关系。例如以表四的形式进行保存。
当然,在实际运用中,还可以采用其它方式建立目的AS与路由信息的对应关系,本发明不作具体限定。
可选的,IXP还可以定期更新所述对应关系。
当在步骤202中获取到第二路由信息之后,接下来执行步骤203,即将第二路由信息发送给源AS。具体的,IXP可以通过自身的发送器20发送第二路由信息给源AS。
对应的,源AS执行步骤103,即接收N个IXP发送的所述N个IXP各自到所述目的AS之间的第二路由信息。具体的,源AS可以接收到N个第二路由信息。
接下来执行步骤104,即源AS根据源AS至N个IXP之间的第一路由信息与第二路由信息,确定源AS至目的AS之间的第三路由信息。其中,第一路由信息具体可以是通过前述所描述的方式建立的,也可以是通过其它方式建立的,在此不再赘述。
在实际运用中,可以简单的合并第一路由信息和第二路由信息,总共可以获得N个第三路由信息。因此,源AS可以存储多条源AS至所述目的AS的路由信息,也可以仅选择一条路由信息进行保存。如果保存多条时,在后续发送数据包的时,可以进行多路径路由,以提高数据传输的可靠性。
可选的,第三路由信息包括路径信息,进一步还可以包括距离信息。
请参考图8所示,为图5c所示的实例最终获得的第三路由信息,这里第三路由信息仅用来表示路径信息。第三路径信息为:源AS、AS8、AS3、AS4、IXP3、目的AS。
在实际的路由合并中,可能因此出现路由环路的现象,如图9所示,AS2到IXP1之后,又会回到AS2,再到目的AS。还可能出现IXP访问绕路的现象,例如源AS和目的AS为邻居。为此,源AS还可以对第三路由信息进行优化,例如去除环路、配合源路由技术,进一步提升路由效率。
基于2014年互联网的数据,基于IXP的路由机制在平均路由长度上与背 景技术中的最优算法只有0.4%的差距,在具体长度路径分布上的差距也很小。换言之,基于IXP的域间路由机制的实际路由效果基本上能与背景技术中的方法的路由效果持平,但是相较于背景技术中的方法,基于IXP的路由机制极大的简化了路由过程并降低了路由开销,进一步,AS不需要维护庞大的路由表。
接下来将描述各个网元之间的交互过程,请参考图10所示,为各个网元之间的交互示意图。
具体的,源AS发现源AS-IXP1至IXPm的路由,m为正整数。IXP1至IXPm分别发现自身至目的AS的路由。可选的,可以按照实际情况,选择更新IXP至目的AS的路由。接下来,源AS请求往目的AS的路由,该请求可以发给IXP1至IXPm中的一个或多个。该一个或多个IXP反馈自身至目的AS的路由。然后源AS合并源AS至该一个或多个IXP的路由以及该一个或多个IXP至目的AS的路由,形成源AS至目的AS的完整路由。
然后,当有数据包需要发送时,可以选择一个IXP,例如IXP1作为路由中介,实施路由策略。
由以上描述可以看出,本发明实施例将原先源AS至目的AS的路由,以IXP为中心进行了截断处理,使得源AS至目的AS的路由过程被分解成了源AS至IXP、IXP至目的AS的两个路由过程,以此利用现有网络拓扑特性,达到简化路由的目的。
接下来请参考图11所示,为本发明实施例提供的一种域间路由装置的功能框图。该域间路由装置用于实现如图3所示的域间路由方法。该域间路由装置包括:处理单元301,用于生成源自治域AS至目的AS的路由请求;发送单元302,用于向M个互联网交换节点IXP中的N个IXP发送所述路由请求;M、N为正整数且N小于或等于M;接收单元303,用于接收所述N个IXP发送的所述N个IXP各自到所述目的AS之间的第二路由信息;处理单元301还用于:根据预先建立的所述源AS至所述N个IXP之间的第一路由信息与所述第二路由信息,确定所述源AS至所述目的AS之间的第三路由信息。
可选的,发送单元302用于:向所述M个IXP中与所述源AS距离最近且相等的N个IXP发送所述路由请求。
前述图3实施例中的域间路由方法中的各种变化方式和具体实例同样适用于本实施例的域间路由装置,通过前述对域间路由方法的详细描述,本领域技术人员可以清楚的知道本实施例中域间路由装置的实施方法,所以为了说明书的简洁,在此不再详述。
接下来请参考图12所示,为本发明实施例提供的一种域间路由装置的功能框图。该域间路由装置用于实现如图6所示的域间路由方法。该域间路由装置包括:接收单元401,用于接收源自治域AS发送的至目的AS的路由请求;处理单元402,用于获取互联网交换节点IXP至所述目的AS的第二路由信息;发送单元403,用于向所述源AS发送所述第二路由信息,所述第二路由信息被所述源AS用于确定所述源AS至所述目的AS之间的第三路由信息。
可选的,处理单元402用于:通过所述发送单元403向所述IXP直接可达邻居发送广播消息,以查询所述目的AS;通过接收单元401接收所述目的AS发送的沿所述广播消息的转发路径的相反路径反馈的响应消息,所述响应消息中记录有所述查询转发路径,所述查询转发路径即为所述第二路由信息。
可选的,处理单元402用于:通过查询预设的目的AS与路由信息的对应关系获取所述IXP之所述目的AS的第二路由信息。
可选的,处理单元402还用于保存所述目的AS和所述第二路由信息的对应关系。
前述图6实施例中的域间路由方法中的各种变化方式和具体实例同样适用于本实施例的域间路由装置,通过前述对域间路由方法的详细描述,本领域技术人员可以清楚的知道本实施例中域间路由装置的实施方法,所以为了说明书的简洁,在此不再详述。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (19)

  1. 一种域间路由方法,其特征在于,包括:
    源自治域AS生成所述源AS至目的AS的路由请求;
    所述源AS向M个互联网交换节点IXP中的N个IXP发送所述路由请求;M、N为正整数且N小于或等于M;
    所述源AS接收所述N个IXP发送的所述N个IXP各自到所述目的AS之间的第二路由信息;
    所述源AS根据预先建立的所述源AS至所述N个IXP之间的第一路由信息与所述第二路由信息,确定所述源AS至所述目的AS之间的第三路由信息。
  2. 如权利要求1所述的方法,其特征在于,所述源AS向所述M个IXP中的N个IXP发送所述路由请求包括:
    所述源AS向所述M个IXP中与所述源AS距离最近且相等的N个IXP发送所述路由请求。
  3. 一种域间路由方法,其特征在于,包括:
    源自治域AS确定中转互联网交换节点IXP集合,所述集合包括一个或多个IXP;
    所述源AS以及中间AS生成指向所述IXP集合中每一个IXP的路由发现请求;
    所述源AS以及所述中间AS将所述路由发现请求朝着与所述每一个IXP距离更小的AS发送;
    所述源AS接收所述每一个IXP反馈的所述源AS至所述每一个IXP的路由信息。
  4. 一种域间路由方法,其特征在于,包括:
    互联网交换节点IXP接收源自治域AS发送的至目的AS的路由请求;
    所述IXP获取所述IXP至所述目的AS的第二路由信息;
    所述IXP向所述源AS发送所述第二路由信息,所述第二路由信息被所述源 AS用于确定所述源AS至所述目的AS之间的第三路由信息。
  5. 如权利要求4所述的方法,其特征在于,所述IXP获取所述IXP至所述目的AS的第二路由信息,包括:
    所述IXP向其直接可达邻居发送广播消息,以查询所述目的AS;
    所述IXP接收所述目的AS发送的沿所述广播消息的转发路径的相反路径反馈的响应消息,所述响应消息中记录有所述查询转发路径,所述查询转发路径即为所述第二路由信息。
  6. 如权利要求4所述的方法,其特征在于,所述IXP获取所述IXP至所述目的AS的第二路由信息,包括:
    所述IXP通过查询预设的目的AS与路由信息的对应关系获取所述IXP之所述目的AS的第二路由信息。
  7. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    所述IXP保存所述目的AS和所述第二路由信息的对应关系。
  8. 一种网络侧设备,所述网络侧设备代表源自治域AS,其特征在于,包括:
    处理器,用于生成所述源AS至目的AS的路由请求;
    接口;
    发送器,用于通过所述接口向M个互联网交换节点IXP中的N个IXP发送所述路由请求;M、N为正整数且N小于或等于M;
    接收器,用于通过所述接口接收所述N个IXP发送的所述N个IXP各自到所述目的AS之间的第二路由信息;
    所述处理器还用于:根据预先建立的所述源AS至所述N个IXP之间的第一路由信息与所述第二路由信息,确定所述源AS至所述目的AS之间的第三路由信息。
  9. 如权利要求8所述的网络侧设备,其特征在于,所述发送器用于:通过所述接口向所述M个IXP中与所述源AS距离最近且相等的N个IXP发送所述路由请求。
  10. 一种网络侧设备,所述网络侧设备为互联网交换节点IXP,其特征在于,包括:
    接口;
    接收器,用于通过所述接口接收源自治域AS发送的至目的AS的路由请求;
    处理器,用于获取所述IXP至所述目的AS的第二路由信息;
    发送器,用于通过所述接口向所述源AS发送所述第二路由信息,所述第二路由信息被所述源AS用于确定所述源AS至所述目的AS之间的第三路由信息。
  11. 如权利要求10所述的网络侧设备,其特征在于,所述处理器用于:通过所述发送器向所述IXP直接可达邻居发送广播消息,以查询所述目的AS;通过所述接收器接收所述目的AS发送的沿所述广播消息的转发路径的相反路径反馈的响应消息,所述响应消息中记录有所述查询转发路径,所述查询转发路径即为所述第二路由信息。
  12. 如权利要求10所述的网络侧设备,其特征在于,所述处理器用于:通过查询预设的目的AS与路由信息的对应关系获取所述IXP之所述目的AS的第二路由信息。
  13. 如权利要求11所述的网络侧设备,其特征在于,所述处理器还用于保存所述目的AS和所述第二路由信息的对应关系。
  14. 一种域间路由装置,其特征在于,包括:
    处理单元,用于生成源自治域AS至目的AS的路由请求;
    发送单元,用于向M个互联网交换节点IXP中的N个IXP发送所述路由请求;M、N为正整数且N小于或等于M;
    接收单元,用于接收所述N个IXP发送的所述N个IXP各自到所述目的AS之间的第二路由信息;
    所述处理单元还用于:根据预先建立的所述源AS至所述N个IXP之间的第一路由信息与所述第二路由信息,确定所述源AS至所述目的AS之间的第三路 由信息。
  15. 如权利要求14所述的域间路由装置,其特征在于,所述发送单元用于:向所述M个IXP中与所述源AS距离最近且相等的N个IXP发送所述路由请求。
  16. 一种域间路由装置,其特征在于,包括:
    接收单元,用于接收源自治域AS发送的至目的AS的路由请求;
    处理单元,用于获取互联网交换节点IXP至所述目的AS的第二路由信息;
    发送单元,用于向所述源AS发送所述第二路由信息,所述第二路由信息被所述源AS用于确定所述源AS至所述目的AS之间的第三路由信息。
  17. 如权利要求16所述的域间路由装置,其特征在于,所述处理单元用于:通过所述发送单元向所述IXP直接可达邻居发送广播消息,以查询所述目的AS;通过所述接收单元接收所述目的AS发送的沿所述广播消息的转发路径的相反路径反馈的响应消息,所述响应消息中记录有所述查询转发路径,所述查询转发路径即为所述第二路由信息。
  18. 如权利要求16所述的域间路由装置,其特征在于,所述处理单元用于:通过查询预设的目的AS与路由信息的对应关系获取所述IXP之所述目的AS的第二路由信息。
  19. 如权利要求17所述的域间路由装置,其特征在于,所述处理单元还用于保存所述目的AS和所述第二路由信息的对应关系。
PCT/CN2016/105097 2015-12-03 2016-11-08 一种域间路由方法、装置及网络侧设备 WO2017092550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510885244.7A CN106850430A (zh) 2015-12-03 2015-12-03 一种域间路由方法、装置及网络侧设备
CN201510885244.7 2015-12-03

Publications (1)

Publication Number Publication Date
WO2017092550A1 true WO2017092550A1 (zh) 2017-06-08

Family

ID=58796237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105097 WO2017092550A1 (zh) 2015-12-03 2016-11-08 一种域间路由方法、装置及网络侧设备

Country Status (2)

Country Link
CN (1) CN106850430A (zh)
WO (1) WO2017092550A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113014493B (zh) * 2019-12-20 2022-05-17 中盈优创资讯科技有限公司 路由播发方法及装置
CN113872861B (zh) * 2020-06-30 2023-07-18 华为技术有限公司 一种生成表项的方法、发送报文的方法及设备
CN113285879B (zh) * 2021-05-19 2022-11-25 郑州埃文计算机科技有限公司 一种绕过指定地理区域进行网络安全传输的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151027A (ja) * 2003-11-13 2005-06-09 Nippon Telegr & Teleph Corp <Ntt> 最適経路設定方法、装置及びプログラム
CN101471853A (zh) * 2007-12-29 2009-07-01 华为技术有限公司 一种路由计算方法、单元及系统
CN103051540A (zh) * 2012-12-17 2013-04-17 中兴通讯股份有限公司 一种跨域建立保密路径的方法和系统
CN105024844A (zh) * 2014-04-30 2015-11-04 中国电信股份有限公司 一种计算跨域路由的方法、服务器以及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151027A (ja) * 2003-11-13 2005-06-09 Nippon Telegr & Teleph Corp <Ntt> 最適経路設定方法、装置及びプログラム
CN101471853A (zh) * 2007-12-29 2009-07-01 华为技术有限公司 一种路由计算方法、单元及系统
CN103051540A (zh) * 2012-12-17 2013-04-17 中兴通讯股份有限公司 一种跨域建立保密路径的方法和系统
CN105024844A (zh) * 2014-04-30 2015-11-04 中国电信股份有限公司 一种计算跨域路由的方法、服务器以及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HE, PENG: "OSN-IX: A Novel Internet eXchange (IX) Architecture based on Overlaid-Star Networks", NEXT GENERATION INTERNET NETWORKS, vol. 2008, 30 April 2008 (2008-04-30), XP031248134 *

Also Published As

Publication number Publication date
CN106850430A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
EP2619951B1 (en) Relayed cspf computation for multiple areas and multiple autonomous systems
CN111147373B (zh) 实现非灵活算法路由器参与灵活算法路由协议
US7366099B2 (en) Method and apparatus for synchronizing a data communications network
JP5722455B2 (ja) ネットワークにおけるメッセージおよび計算オーバーヘッドの軽減
US7035202B2 (en) Network routing using link failure information
US8179801B2 (en) Routing-based proximity for communication networks
CN107409092A (zh) 针对最优路由反射的优化边界网关协议最佳路径选择
JP5625121B2 (ja) ルーティング情報更新の優先順位付け
US8667174B2 (en) Method and system for survival of data plane through a total control plane failure
WO2017092550A1 (zh) 一种域间路由方法、装置及网络侧设备
US8018953B1 (en) Adaptive, deterministic ant routing approach for updating network routing information
US8014318B2 (en) Routing-based proximity for communication networks to routing-based proximity for overlay networks
US11777844B2 (en) Distributing information in communication networks
WO2018090852A1 (zh) 链路状态数据包的传输方法及路由节点
WO2021004213A1 (zh) 融合网络的路径标签确定方法及装置、存储介质及电子装置
Asher Comprehensive analysis of dynamic routing protocols in computer networks
Khayou et al. A hybrid distance vector link state algorithm: distributed sequence number
JP5180977B2 (ja) ノード、パケット転送方法およびそのプログラム
CN114050993B (zh) 基于接入侧的安全可信路径主动选择方法和装置
US7957377B1 (en) Reducing and load balancing link-state requests in OSPF
WO2016095356A1 (zh) 删除链路状态通告的方法及装置
Babu et al. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY
CN105721320B (zh) 链路状态通告信息同步实现方法、装置及系统
Ragha et al. Multiple route selector BGP (MRS-BGP)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869860

Country of ref document: EP

Kind code of ref document: A1