WO2017092479A1 - 一种用于水质监测的混合推进滑翔机 - Google Patents

一种用于水质监测的混合推进滑翔机 Download PDF

Info

Publication number
WO2017092479A1
WO2017092479A1 PCT/CN2016/098839 CN2016098839W WO2017092479A1 WO 2017092479 A1 WO2017092479 A1 WO 2017092479A1 CN 2016098839 W CN2016098839 W CN 2016098839W WO 2017092479 A1 WO2017092479 A1 WO 2017092479A1
Authority
WO
WIPO (PCT)
Prior art keywords
glider
water quality
quality monitoring
hybrid propulsion
oil
Prior art date
Application number
PCT/CN2016/098839
Other languages
English (en)
French (fr)
Inventor
王树新
王延辉
张宏伟
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2017092479A1 publication Critical patent/WO2017092479A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Definitions

  • the invention relates to the field of water area monitoring such as oceans and lakes, and more particularly to a hybrid propulsion glider for water quality monitoring.
  • the object of the present invention is to overcome the deficiencies in the prior art and provide a hybrid propulsion glider for water quality monitoring.
  • the invention is compatible with the advantages of small underwater flow, high mobility and autonomous water glider. With long working hours and high work efficiency, it has better environmental adaptability and wider application range, and can provide fast, long-term real-time online water quality monitoring data under sudden water pollution accidents.
  • a hybrid propulsion glider for water quality monitoring comprising a pressure chamber housing, the interior of the pressure chamber housing being provided with buoyancy for changing the buoyancy of the glider and driving the glider in the vertical direction from front to back a driving unit, an attitude adjusting unit that adjusts the attitude of the glider, and a control unit that controls the buoyancy driving unit and the attitude adjusting unit, the tail portion of the pressure tank housing is provided with a propulsion unit for pushing the glider forward.
  • Resistance A water quality monitor for measuring water quality monitoring is provided on the abdomen of the ballast housing.
  • the abdomen of the pressure chamber housing is provided with a fixing frame, and the water quality monitor is detachably coupled to the fixing frame by a clamp.
  • the water quality monitor integrates a sensor for measuring one or more of temperature, conductivity, pH, ammonia nitrogen, dissolved oxygen, chlorophyll, and turbidity, based on the above-described hybrid propulsion glider. .
  • the buoyancy driving unit comprises a plunger pump, a pump motor, a solenoid valve, an oil passage, an inner oil tank and an outer oil bladder, and the inner oil tank is placed in the pressure tank housing.
  • the outer oil bladder is mounted on the outside of the pressure tank housing to be in contact with the external environment; the pump motor drives the plunger pump to discharge the oil in the inner tank to the outside through the oil passage
  • the oil bladder is provided with a displacement sensor for detecting a volume change of the oil, and the oil is flowed from the outer oil bladder into the inner tank through the opening of the electromagnetic valve.
  • the attitude adjustment unit includes a battery pack, a pitch motion mechanism, and a roll motion mechanism
  • the pitch motion mechanism includes a pitch motion motor, a lead screw, a guide rail, and a displacement sensor, a pitching motion motor drives the lead screw to realize movement of the battery pack on the guide rail
  • the displacement sensor is configured to detect a moving distance
  • movement of the battery pack on the guide rail causes a center of gravity of the glider on the central axis Moving to achieve a change in the pitch angle of the glider in the longitudinal plane
  • the roll motion mechanism includes a roll motion motor, a meshing gear, a support rail, and a rotary displacement sensor, and the meshing gear is driven by the motion of the roll motion motor
  • the movement of the battery around the support rail in the circumferential direction, the rotation of the battery pack in the circumferential direction causes the center of gravity of the glider to rotate in the circumferential direction, caused by the joint action of the center of gravity and the center of gravity and the wing of the glider Steering movement of the
  • control unit is internally integrated with a storage module and a wireless transmission module, and the storage module is configured to store the water quality data measured by the water quality monitor in real time and pass the wireless transmission module. Measurement data is passed to the shore-based control center.
  • the water quality monitor and the glider Electrical connection via watertight cable preferably: the water quality monitor and the glider Electrical connection via watertight cable.
  • the water pressure monitor of the pressure chamber of the glider of the invention is equipped with a water quality monitor capable of monitoring temperature, conductivity, pH value, ammonia nitrogen, dissolved oxygen, chlorophyll, turbidity and seven parameters water quality data, and real-time recording of the monitored data.
  • a water quality monitor capable of monitoring temperature, conductivity, pH value, ammonia nitrogen, dissolved oxygen, chlorophyll, turbidity and seven parameters water quality data, and real-time recording of the monitored data.
  • the storage module inside the glider control unit it is transmitted back to the shore base through the wireless transmission module, and has remote online monitoring capability.
  • the detachable connection between the water quality detector and the glider of the invention enables the glider to be equipped with other water quality monitoring sensors to complete other water quality monitoring tasks and achieve the effect of multi-purpose water quality monitoring; therefore, it can realize long time series, large range, and flexible operation. Online water quality monitoring.
  • the invention patent installs the water quality monitor on the abdomen of the hybrid propulsion glider, which greatly reduces the movement inertia of the glider, and makes the glider's heading control performance and attitude adjustment ability superior to other carrying modes, and improves the glider's sports performance;
  • the overall structure is compact and the layout is reasonable, which improves the stability and economy of the glider and reduces the measurement error caused by the water quality monitor during the movement.
  • the invention realizes the electrical connection between the water quality detector and the glider through the watertight cable, and is not only suitable for monitoring the water quality of the water surface, but also has the water quality monitoring capability within a range of less than 10 m under water.
  • Figure 1 is a schematic view showing the structure of a hybrid propulsion glider for water quality monitoring of the present invention.
  • 1-pressure chamber housing 2-buoyancy drive unit, 3-attitude adjustment unit, 4-water quality monitor 5-control unit, 6-propulsion unit.
  • the hybrid propulsion glider for water quality monitoring of the present invention comprises a pressure tank housing 1 in which the interior of the pressure tank housing 1 is arranged from front to back to change the buoyancy of the glider and drive the glider vertically.
  • a buoyancy driving unit 2 moving in the direction an attitude adjusting unit 3 for adjusting the attitude of the glider, and a control unit 5 for controlling the buoyancy driving unit and the attitude adjusting unit, the tail portion of the pressure tank housing 1 is provided for pushing the glider forward
  • the propulsion unit 6 ensures that the axis of the propulsion unit 6 is in line with the axis of the glider, so that the glider has a straight sailing capability;
  • the abdomen of the pressure tank housing 1 is provided with a fixing frame, and the fixing frame can be detachably connected by the clamp
  • the buoyancy driving unit 2 includes a plunger pump, a pump motor, a solenoid valve, an oil passage, an inner oil tank and an outer oil bladder.
  • the inner oil tank is placed inside the pressure tank housing, and the outer oil bladder is installed and exposed directly outside the pressure tank housing.
  • the pump motor drives the plunger pump to discharge the oil in the inner tank to the outer oil bladder through an oil passage, and a displacement sensor (for example, a wire displacement sensor) is installed inside the inner tank to detect the oil.
  • a displacement sensor for example, a wire displacement sensor
  • the attitude adjustment unit 3 includes a battery pack, a pitch motion mechanism, and a roll motion mechanism;
  • the pitch motion mechanism includes a pitch motion motor, a lead screw, a guide rail, and a displacement sensor (for example, a wire type displacement sensor), and the lead screw is driven by the pitch motion motor Realize the battery pack on the rail Moving, the wire-type displacement sensor can detect the moving distance, the movement of the battery pack on the guide rail causes the movement of the center of gravity of the glider on the central axis, and the change of the glider in the vertical plane pitch attitude angle;
  • the roll motion mechanism includes the roll motion The motor, the meshing gear, the support rail and the rotary displacement sensor drive the movement of the meshing gear by the movement of the rolling motion motor to cause the battery to wrap around the support rail in the circumferential direction, and the rotation of the battery pack in the circumferential direction causes the center of gravity of the glider to be in the circumference.
  • the rotation of the direction causes the steering movement of the glider in the horizontal plane by the combined action of the
  • the control unit 5 is internally integrated with a storage module and a wireless transmission module, and the storage module is configured to store the water quality data measured by the water quality monitor in real time, and transmit the measurement data to the shore-based control center through the wireless transmission module.
  • Long-distance control and water quality monitoring, wireless transmission methods can be GPRS or wireless network or other means.
  • the water quality monitor 4 and the glider are electrically connected by using a watertight cable.
  • the control unit of the glider can provide the working power of the water quality detector 4, and the water quality data detected by the water quality detector 4 is transmitted to the control unit of the glider in real time. Within 5, reliable storage of data is achieved.

Abstract

一种用于水质监测的混合推进滑翔机,所述滑翔机包括耐压舱壳体(1),所述耐压舱壳体(1)的内部从前到后依次设置有改变滑翔机的浮力而驱动滑翔机在垂直方向上运动的浮力驱动单元(2)、调节滑翔机的姿态的姿态调节单元(3)和对所述浮力驱动单元(2)、所述姿态调节单元(3)进行控制的控制单元(5),所述耐压舱壳体(1)的尾部设置有用于推动滑翔机前进的推进单元(6),所述耐压舱壳体(1)的腹部设置有对水质监测进行测量的水质监测仪(4)。兼容了水下自主航行器受流影响小、机动性高的优点以及自主水下滑翔机在位工作时间长、工作效率高等优势,具有更好的环境适应性和更广的应用范围,能够满足在突发水质污染事故下,提供快速的、长期的实时在线水质监测数据。

Description

一种用于水质监测的混合推进滑翔机 技术领域
本发明涉及海洋、湖泊等水域监测领域,更具体的说,是涉及一种用于水质监测的混合推进滑翔机。
背景技术
近年来,随着工农业生产的迅速发展和湖泊资源开发,水域环境监测等方面需求不断增加,对水源水质的监测技术得到了快速发展。目前,大部分水域水质监测采用固定监测站监测方式,然而随着水域环境保护开发利用不断深入,水域水质监测任务日趋复杂,传统固定监测站监测方式需要设立监测站,难以满足在突发、恶性水质污染事故的预报及快速反应能力要求,难以满足任务多样化的需求。水下航行器具有高效、灵活等特点,在水质监测领域获得越来越多的关注。
发明内容
本发明的目的是为了克服现有技术中的不足,提供一种用于水质监测的混合推进滑翔机,本发明兼容了水下自主航行器受流影响小、机动性高的优点以及自主水下滑翔机在位工作时间长、工作效率高等优势,具有更好的环境适应性和更广的应用范围,能够满足在突发水质污染事故下,提供快速的、长期的实时在线水质监测数据。
本发明的目的是通过以下技术方案实现的:
一种用于水质监测的混合推进滑翔机,所述滑翔机包括耐压舱壳体,所述耐压舱壳体的内部从前到后依次设置有改变滑翔机的浮力而驱动滑翔机在垂直方向上运动的浮力驱动单元、调节滑翔机的姿态的姿态调节单元和对所述浮力驱动单元、所述姿态调节单元进行控制的控制单元,所述耐压舱壳体的尾部设置有用于推动滑翔机前进的推进单元,所述耐 压舱壳体的腹部设置有对水质监测进行测量的水质监测仪。
在上述混合推进滑翔机的基础上,优选:所述耐压舱壳体的腹部设置有固定架,所述水质监测仪通过卡箍能够拆卸地连接在所述固定架上。
在上述混合推进滑翔机的基础上,优选:所述水质监测仪集成有用于对温度、电导率、PH值、氨氮、溶解氧、叶绿素、和浊度中的一种或多种参数进行测量的传感器。
在上述混合推进滑翔机的基础上,优选:所述浮力驱动单元包括柱塞泵、泵电机、电磁阀、油路、内油箱和外油囊,所述内油箱放置于所述耐压舱壳体的内部,所述外油囊安装于所述耐压舱壳体的外部而与外部环境接触;所述泵电机驱动柱塞泵通过油路将所述内油箱中的油液排出到所述外油囊,所述内油箱内安装有用于检测油液变化体积的位移传感器,通过所述电磁阀的开启将油液从所述外油囊流入所述内油箱。
在上述混合推进滑翔机的基础上,优选:所述姿态调节单元包括电池包、俯仰运动机构和横滚运动机构;所述俯仰运动机构包括俯仰运动电机、丝杠、导轨和位移传感器,通过所述俯仰运动电机带动所述丝杠实现所述电池包在所述导轨上的移动,所述位移传感器用于检测运动距离,所述电池包在所述导轨上的移动引起滑翔机重心在中心轴上的移动,实现滑翔机在纵平面俯仰姿态角的变化;所述横滚运动机构包括横滚运动电机、啮合齿轮、支撑导轨和旋转式位移传感器,通过所述横滚运动电机的运动带动所述啮合齿轮的运动使所述电池包绕所述支撑导轨在圆周方向的旋转运动,所述电池包在圆周方向的旋转引起滑翔机重心在圆周方向的转动,通过浮心与重心以及滑翔机机翼的联合作用引起滑翔机在水平面内的转向运动。
在上述混合推进滑翔机的基础上,优选:所述控制单元内部集成有存储模块和无线传输模块,所述存储模块用于将水质监测仪测量得到的水质数据进行实时存储,并通过无线传输模块将测量数据传到岸基控制中心。
在上述混合推进滑翔机的基础上,优选:所述水质监测仪与滑翔机 通过水密电缆实现电气连接。
与现有技术相比,本发明的技术方案所带来的有益效果是:
1.本发明滑翔机的耐压舱壳体腹部安装有水质监测仪,能够监测温度、电导率、PH值、氨氮、溶解氧、叶绿素、浊度七参数水质数据,并将监测到的数据实时记录在滑翔机控制单元内部的存储模块内,通过无线传输模块传回到岸基,具备远程在线监测能力。
2.本发明水质检测仪和滑翔机可拆卸的连接,使得滑翔机可以搭载其他水质监测用传感器,完成其他水质监测任务,达到多用途水质监测的效果;因此可以实现长时序,大范围,机动灵活的在线水质监测。
3.本发明专利将水质监测仪安装在混合推进滑翔机的腹部,大大降低了滑翔机的运动惯性,使滑翔机的航向控制性能以及姿态调节能力优于其他搭载方式,提高了滑翔机的运动性能;是滑翔机的整体结构紧凑,布局合理,提高了滑翔机的稳定性与经济性,降低了水质监测仪在运动过程中引起的测量误差。
4.本发明通过水密电缆实现水质检测仪与滑翔机的电气连接,不仅适用于监测水面的水体质量,而且具备水下10m以内范围的水质监测能力。
附图说明
图1是本发明的用于水质监测的混合推进滑翔机的结构示意图。
附图标记说明:
1-耐压舱壳体,2-浮力驱动单元,3-姿态调节单元,4-水质监测仪5-控制单元,6-推进单元。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
如图1所示,本发明的用于水质监测的混合推进滑翔机包括耐压舱壳体1,所述耐压舱壳体1的内部从前到后依次设置有改变滑翔机的浮力而驱动滑翔机在垂直方向上运动的浮力驱动单元2、调节滑翔机的姿态的姿态调节单元3和对浮力驱动单元、姿态调节单元进行控制的控制单元5,所述耐压舱壳体1的尾部设置有用于推动滑翔机前进的推进单元6,确保推进单元6的轴线与滑翔机的轴线在一条直线上,使滑翔机具备直线航行能力;耐压舱壳体1的腹部设置有固定架,固定架可以通过卡箍可拆卸地连接有对水质监测进行测量的水质监测仪4;水质监测仪4可以集成对温度、电导率、PH值、氨氮、溶解氧、叶绿素、浊度等中一种或多种参数进行测量的传感器,以实现水质对应参数的测量,本发明水质监测仪4与耐压舱壳体1的制作例如可以是完全分开的,两者分别制作好后通过金属卡箍固定在耐压舱壳体1的固定架上,实现二者之间的有效连接,二者均采用耐压结构设计,不仅适用于水表的水质监测,而且适用于水下10m范围内的水质监测;此外,较其他搭载方式,水质监测仪4在运动过程中始终与水体接触,降低了水质监测过程中引起的系统测量误差。
浮力驱动单元2包括柱塞泵、泵电机、电磁阀、油路、内油箱和外油囊,内油箱放置于耐压舱壳体内部,外油囊安装并暴露在耐压舱壳体外部直接与外部环境接触,所述泵电机驱动柱塞泵通过油路将所述内油箱中的油液排出到外油囊,内油箱内部安装有位移传感器(例如,拉线式位移传感器),可以检测油液变化体积;通过电磁阀的开启可以将油液从外油囊流入内油箱。
所述姿态调节单元3包括电池包、俯仰运动机构和横滚运动机构;俯仰运动机构包括俯仰运动电机、丝杠、导轨和位移传感器(例如,拉线式位移传感器),通过俯仰运动电机带动丝杠实现电池包在导轨上的 移动,拉线式位移传感器可以检测到运动距离,所述电池包在导轨上的移动引起滑翔机重心在中心轴上的移动,实现滑翔机在纵平面俯仰姿态角的变化;横滚运动机构包括横滚运动电机、啮合齿轮、支撑导轨和旋转式位移传感器,通过横滚运动电机的运动带动啮合齿轮的运动使电池包绕支撑导轨在圆周方向的旋转运动,电池包在圆周方向的旋转引起滑翔机重心在圆周方向的转动,通过浮心与重心以及滑翔机机翼的联合作用引起滑翔机在水平面内的转向运动。
所述控制单元5内部集成有存储模块和无线传输模块,所述存储模块用于将水质监测仪测量得到的水质数据进行实时存储,并通过无线传输模块将测量数据传到岸基控制中心,实现远距离的控制及水质监测,无线传输方式可采用GPRS或无线网络或其他方式。
水质监测仪4与滑翔机使用水密电缆实现电气连接,通过滑翔机自带的控制单元可提供水质检测仪4的工作电源,同时,将水质检测仪4检测的水质数据实时传输至滑翔机自带的控制单元5内,实现数据的可靠存储。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种用于水质监测的混合推进滑翔机,其特征在于,所述滑翔机包括耐压舱壳体,所述耐压舱壳体的内部从前到后依次设置有改变滑翔机的浮力而驱动滑翔机在垂直方向上运动的浮力驱动单元、调节滑翔机的姿态的姿态调节单元和对所述浮力驱动单元、所述姿态调节单元进行控制的控制单元,所述耐压舱壳体的尾部设置有用于推动滑翔机前进的推进单元,所述耐压舱壳体的腹部设置有对水质监测进行测量的水质监测仪。
  2. 根据权利要求1所述的用于水质监测的混合推进滑翔机,其特征在于,所述耐压舱壳体的腹部设置有固定架,所述水质监测仪通过卡箍能够拆卸地连接在所述固定架上。
  3. 根据权利要求1或2所述的用于水质监测的混合推进滑翔机,其特征在于,所述水质监测仪集成有用于对温度、电导率、PH值、氨氮、溶解氧、叶绿素、和浊度中一种或多种参数进行测量的传感器。
  4. 根据权利要求1或2所述的用于水质监测的混合推进滑翔机,其特征在于,所述浮力驱动单元包括柱塞泵、泵电机、电磁阀、油路、内油箱和外油囊,所述内油箱放置于所述耐压舱壳体的内部,所述外油囊安装于所述耐压舱壳体的外部而与外部环境接触;所述泵电机驱动柱塞泵通过油路将所述内油箱中的油液排出到所述外油囊,所述内油箱内安装有用于检测油液变化体积的位移传感器,通过所述电磁阀的开启将油液从所述外油囊流入所述内油箱。
  5. 根据权利要求1或2所述的用于水质监测的混合推进滑翔机,其特征在于,所述姿态调节单元包括电池包、俯仰运动机构和横滚运动机构;
    所述俯仰运动机构包括俯仰运动电机、丝杠、导轨和位移传感器,通过所述俯仰运动电机带动所述丝杠实现所述电池包在所述导轨上的移动,所述位移传感器用于检测运动距离,所述电池包在所述导轨上的 移动引起滑翔机重心在中心轴上的移动,实现滑翔机在纵平面俯仰姿态角的变化;
    所述横滚运动机构包括横滚运动电机、啮合齿轮、支撑导轨和旋转式位移传感器,通过所述横滚运动电机的运动带动所述啮合齿轮的运动使所述电池包绕所述支撑导轨在圆周方向的旋转运动,所述电池包在圆周方向的旋转引起滑翔机重心在圆周方向的转动,通过浮心与重心以及滑翔机机翼的联合作用引起滑翔机在水平面内的转向运动。
  6. 根据权利要求1或2所述的用于水质监测的混合推进滑翔机,其特征在于,所述控制单元内部集成有存储模块和无线传输模块,所述存储模块用于将水质监测仪测量得到的水质数据进行实时存储,并通过无线传输模块将测量数据传到岸基控制中心。
  7. 根据权利要求1或2所述的用于水质监测的混合推进滑翔机,其特征在于,所述水质监测仪与滑翔机通过水密电缆实现电气连接。
PCT/CN2016/098839 2015-11-30 2016-09-13 一种用于水质监测的混合推进滑翔机 WO2017092479A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510853763.5A CN105445430A (zh) 2015-11-30 2015-11-30 一种用于水质监测的混合推进滑翔机
CN201510853763.5 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017092479A1 true WO2017092479A1 (zh) 2017-06-08

Family

ID=55555868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098839 WO2017092479A1 (zh) 2015-11-30 2016-09-13 一种用于水质监测的混合推进滑翔机

Country Status (2)

Country Link
CN (1) CN105445430A (zh)
WO (1) WO2017092479A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107310701A (zh) * 2017-06-19 2017-11-03 浙江大学 一种水下滑翔机纵横姿态综合调节装置
CN110297268A (zh) * 2019-07-19 2019-10-01 自然资源部第二海洋研究所 自动升沉的深海地震信号采集装置
CN110576954A (zh) * 2019-08-29 2019-12-17 自然资源部第二海洋研究所 一种用于水体横纵剖面化学参数观测的拖曳式系统
CN111579747A (zh) * 2020-07-05 2020-08-25 北部湾大学 一种用于水质检测的水下机器人
CN111579746A (zh) * 2020-07-05 2020-08-25 北部湾大学 一种用于河道区域水质检测的水下机器人
CN111762304A (zh) * 2019-04-01 2020-10-13 北海燕航慧程智能科技有限公司 近海养殖区环境监测水下滑翔机
CN112578094A (zh) * 2020-11-26 2021-03-30 澜途集思生态科技集团有限公司 一种具有精准检测与检修功能的水质检测机器人
CN113788132A (zh) * 2021-10-14 2021-12-14 中北大学 一种矢量推进的混合驱动水下机器人
CN114441726A (zh) * 2022-01-25 2022-05-06 生态环境部土壤与农业农村生态环境监管技术中心 工业园区土壤地下水实时连续监测系统
CN117129040A (zh) * 2023-10-23 2023-11-28 西安绿环林业技术服务有限责任公司 一种自然保护区生态环境监测装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445430A (zh) * 2015-11-30 2016-03-30 天津大学 一种用于水质监测的混合推进滑翔机
CN106184663A (zh) * 2016-07-20 2016-12-07 张学衡 一种水下巡逻战斗机器人
CN207020164U (zh) * 2017-07-05 2018-02-16 刘胜利 泳池水质检测仪
CN108254519A (zh) * 2018-01-02 2018-07-06 上海海洋大学 水下传感器的保护装置
CN109823497A (zh) * 2019-01-12 2019-05-31 天津大学 一种近中性浮力的软体充液水下滑翔机
CN110641662B (zh) * 2019-09-21 2021-08-24 天津大学 一种可水下预置大型载荷的水下滑翔机
CN113844628B (zh) * 2021-08-23 2024-02-20 杭州电子科技大学 一种适用于低密度拖曳体的重心调节方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030179652A1 (en) * 2002-03-25 2003-09-25 Desa Elgar Stephen Controlled thruster driven profiler for coastal waters
CN1709766A (zh) * 2005-06-16 2005-12-21 上海交通大学 浮力和推进器双驱动方式远程自治水下机器人
CN1974318A (zh) * 2006-12-19 2007-06-06 天津大学 混合型水下航行器
CN102963514A (zh) * 2012-11-26 2013-03-13 上海交通大学 便携式水下海洋环境监测滑翔机
WO2013052747A2 (en) * 2011-10-07 2013-04-11 Teledyne Instruments, Inc. Methods and systems for configuring sensor acquisition based on pressure steps
CN203502405U (zh) * 2013-09-22 2014-03-26 山东省科学院海洋仪器仪表研究所 一种遥控式水质监测水下机器人系统
CN104569333A (zh) * 2015-01-06 2015-04-29 安徽科微智能科技有限公司 自主导航地表水水质采样与实时监测水面机器人
CN105445430A (zh) * 2015-11-30 2016-03-30 天津大学 一种用于水质监测的混合推进滑翔机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411944C (zh) * 2006-12-21 2008-08-20 天津大学 复合能源的水下滑翔器及其驱动方法
CN102050218B (zh) * 2009-11-04 2013-06-12 中国科学院沈阳自动化研究所 一种水下滑翔机用姿态调节装置
CN102501955A (zh) * 2011-08-24 2012-06-20 天津大学 深海水下滑翔机浮力驱动装置
CN104401474A (zh) * 2014-09-18 2015-03-11 青岛远创机器人自动化有限公司 水下滑翔机运动姿态控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030179652A1 (en) * 2002-03-25 2003-09-25 Desa Elgar Stephen Controlled thruster driven profiler for coastal waters
CN1709766A (zh) * 2005-06-16 2005-12-21 上海交通大学 浮力和推进器双驱动方式远程自治水下机器人
CN1974318A (zh) * 2006-12-19 2007-06-06 天津大学 混合型水下航行器
WO2013052747A2 (en) * 2011-10-07 2013-04-11 Teledyne Instruments, Inc. Methods and systems for configuring sensor acquisition based on pressure steps
CN102963514A (zh) * 2012-11-26 2013-03-13 上海交通大学 便携式水下海洋环境监测滑翔机
CN203502405U (zh) * 2013-09-22 2014-03-26 山东省科学院海洋仪器仪表研究所 一种遥控式水质监测水下机器人系统
CN104569333A (zh) * 2015-01-06 2015-04-29 安徽科微智能科技有限公司 自主导航地表水水质采样与实时监测水面机器人
CN105445430A (zh) * 2015-11-30 2016-03-30 天津大学 一种用于水质监测的混合推进滑翔机

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107310701A (zh) * 2017-06-19 2017-11-03 浙江大学 一种水下滑翔机纵横姿态综合调节装置
CN111762304A (zh) * 2019-04-01 2020-10-13 北海燕航慧程智能科技有限公司 近海养殖区环境监测水下滑翔机
CN110297268A (zh) * 2019-07-19 2019-10-01 自然资源部第二海洋研究所 自动升沉的深海地震信号采集装置
CN110297268B (zh) * 2019-07-19 2024-02-23 自然资源部第二海洋研究所 自动升沉的深海地震信号采集装置
CN110576954A (zh) * 2019-08-29 2019-12-17 自然资源部第二海洋研究所 一种用于水体横纵剖面化学参数观测的拖曳式系统
CN110576954B (zh) * 2019-08-29 2024-04-02 自然资源部第二海洋研究所 一种用于水体横纵剖面化学参数观测的拖曳式系统
CN111579747B (zh) * 2020-07-05 2022-03-01 北部湾大学 一种用于水质检测的水下机器人
CN111579746B (zh) * 2020-07-05 2022-03-01 北部湾大学 一种用于河道区域水质检测的水下机器人
CN111579746A (zh) * 2020-07-05 2020-08-25 北部湾大学 一种用于河道区域水质检测的水下机器人
CN111579747A (zh) * 2020-07-05 2020-08-25 北部湾大学 一种用于水质检测的水下机器人
CN112578094A (zh) * 2020-11-26 2021-03-30 澜途集思生态科技集团有限公司 一种具有精准检测与检修功能的水质检测机器人
CN112578094B (zh) * 2020-11-26 2022-11-01 澜途集思生态科技集团有限公司 一种具有精准检测与检修功能的水质检测机器人
CN113788132A (zh) * 2021-10-14 2021-12-14 中北大学 一种矢量推进的混合驱动水下机器人
CN114441726A (zh) * 2022-01-25 2022-05-06 生态环境部土壤与农业农村生态环境监管技术中心 工业园区土壤地下水实时连续监测系统
CN117129040A (zh) * 2023-10-23 2023-11-28 西安绿环林业技术服务有限责任公司 一种自然保护区生态环境监测装置
CN117129040B (zh) * 2023-10-23 2024-02-02 西安绿环林业技术服务有限责任公司 一种自然保护区生态环境监测装置

Also Published As

Publication number Publication date
CN105445430A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2017092479A1 (zh) 一种用于水质监测的混合推进滑翔机
CN106628076B (zh) 旋转翼水下滑翔机
CN102963514B (zh) 便携式水下海洋环境监测滑翔机
CN103358305B (zh) 可闭环控制的多功能水中蛇形机器人
CN109524756B (zh) 水下自主折叠天线
CN107878712B (zh) 冰下探测机器人
CN103612723A (zh) 一种深远海全自主海洋环境监测浮标
CN111912950A (zh) 一种水质检测装置及其使用方法
CN109268621A (zh) 基于电致动材料驱动的管道检测机器人、管道检测系统
CN209043886U (zh) 一种便携式多功能立体水质探测装置
CN110576954A (zh) 一种用于水体横纵剖面化学参数观测的拖曳式系统
CN108945346B (zh) 一种水中救援机器人
CN111579747B (zh) 一种用于水质检测的水下机器人
CN210437365U (zh) 一种水上智能救援机器人的动力驱动装置
CN104671015B (zh) 自驱动式水下绕缆器
CN113697078B (zh) 一种水下机器人
CN106697233B (zh) 水下搜救机器人以及发电装置
CN209446769U (zh) 一种基于双体无人船的航道水下勘测装置
CN207992190U (zh) 一种用于地理科学的湖泊探测装置
CN217307795U (zh) 一种基于互联网的生态公园水处理用监控装置
CN206384129U (zh) 一种利用风能直接驱动的海上无人航行器
CN216269839U (zh) 一种新型水下滑翔机
CN210293298U (zh) 一种近岸海域水质远程监测装置
CN213139083U (zh) 观测平台
CN210139944U (zh) 全海深剖面浮标

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16869790

Country of ref document: EP

Kind code of ref document: A1