WO2017090904A1 - 차세대 염기서열분석법을 이용한 유전체 dna 말단 서열의 대량 분석방법 - Google Patents

차세대 염기서열분석법을 이용한 유전체 dna 말단 서열의 대량 분석방법 Download PDF

Info

Publication number
WO2017090904A1
WO2017090904A1 PCT/KR2016/012357 KR2016012357W WO2017090904A1 WO 2017090904 A1 WO2017090904 A1 WO 2017090904A1 KR 2016012357 W KR2016012357 W KR 2016012357W WO 2017090904 A1 WO2017090904 A1 WO 2017090904A1
Authority
WO
WIPO (PCT)
Prior art keywords
bac
dna
primer
sequence
axis
Prior art date
Application number
PCT/KR2016/012357
Other languages
English (en)
French (fr)
Inventor
박홍석
김지선
김민영
나윤정
Original Assignee
주식회사 지앤시바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지앤시바이오 filed Critical 주식회사 지앤시바이오
Publication of WO2017090904A1 publication Critical patent/WO2017090904A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids

Definitions

  • NGS Next generation sequencing
  • Genome physics maps are a method of aligning sequence sequences with contiguous contices and scaffolds to improve the accuracy of genome structures such as 'sequence gap linkage', 'sequence accuracy' verification, and super-scale scaffold construction. It is used as a very important technology.
  • the core technology used in genomic physics mapping is to use the information of the inserted genomic DNA by proliferating the genomic DNA of the subject using a plasmid, or vector, capable of self-proliferation in E. coli.
  • the vector is divided into BAC (Bacteria Artificial Chromosome), Fosme, Cosmid, etc. according to the size of DNA that can be inserted into the vector.
  • genomic DNA insertions usually 100,000 to 200,000 bases in length, are possible.
  • a BAC clone in which genomic DNA is inserted is composed of two sites of a BAC vector and a genomic DNA inserted therein, and a vector-specific base sequence (T7 promoter and SP6 promoter) embedded in the BAC vector is inserted. It is located close to both ends of the genomic DNA. Therefore, the nucleotide sequences at both ends of the inserted genomic DNA can be translated using these T7 and SP6 promoters as sequencing primers.
  • the orientation of both terminal sequences of the inserted genomic DNA is distinguished according to the type of promoter used for sequencing.
  • T7-BAC end sequence T7-BES
  • SP6-BES genomic DNA terminal sequence translated into the SP6 promoter
  • 'T7-BES' and 'SP6-BES' are essential information for preparing 'Physical Physics Map' and have been traditionally used for genome structure and sequencing error verification in many genome translation studies including human genome project.
  • this method is capable of mass deciphering, but has low efficiency due to the small amount of 'T7-BES' and 'SP6-BES' that are finally obtained, and corresponds to base sequence information of post-decoding BAC clone, which is the biggest advantage of BES sequencing. Because the BAC clone cannot be located, the sequenced BAC clone cannot be used in subsequent studies.
  • Patent Document 1 Korean Patent Registration No. 10-1406720
  • Patent Document 2 Republic of Korea Patent Registration No. 10-1447593
  • Patent Document 3 Korean Patent Registration No. 10-1533792
  • Patent Document 4 Korean Patent Publication No. 10-2015-0017525
  • the present invention uses a primer capable of specifically amplifying only the terminal nucleotide sequence (BES) of the genomic DNA, thereby rapidly and inexpensively massing the terminal nucleotide sequence of the genomic DNA inserted into the vector by the NGS method. It aims to provide a way to produce and locate clones corresponding to the produced BES information.
  • BES terminal nucleotide sequence
  • the present invention comprises the steps of extracting the genomic DNA of the assay to produce a BAC library and collecting each BAC clone in a 384-well plate to produce a cell stock; Constructing a three-dimensional BAC library consisting of 60 reservoirs by three-dimensionally combining 20 BAC clones of the 384-well plate for cell stock; Extracting BAC clone DNA after propagating BAC clones of the three-dimensional BAC library using E.
  • markers are identified in rows, columns and plates so as to distinguish the origin of genomic DNA collected on the 384-well plate for cell stock in the X-axis (horizontal), Y-axis (vertical) and Z-axis (plates). It is preferable to number them.
  • the Y-type adapter primer has a nucleotide sequence of SEQ ID NO: 1 and SEQ ID NO: 2, it is preferable that the five base sequences of the terminal is a non-complementary primer.
  • the extracted BAC clone DNA is preferably cleaved using ultrasonic waves.
  • the primer comprising the SP6 promoter sequence is preferably a GSB-SP6 primer consisting of a forward adapter of SEQ ID NO: 3, a barcode sequence indicating a position in a three-dimensional BAC library, and an SP6 promoter of SEQ ID NO: 4.
  • the primer comprising the T7 promoter sequence is a GSB-T7 consisting of a forward adapter of SEQ ID NO: 5, a barcode sequence indicating a position in a three-dimensional BAC library, and a T7 promoter of SEQ ID NO: 6 It is preferable that it is a primer.
  • amplification of both ends of the genomic DNA is carried out using the GSB-SP6 primer of claim 6 and the GSB-RP primer of SEQ ID NO: 7 or the GSB-T7 primer of SEQ ID NO: 7 and the GSB-RP primer of SEQ ID NO: 7. It is preferable to carry out.
  • the method of the present invention can amplify the both ends of the nucleotide sequence of the genomic DNA to be analyzed, mass decipher it using an NGS device, and quickly locate the BAC clone corresponding to each terminal sequencing, thereby inserting the genome inserted into the vector. Terminal sequence information of DNA can be mass-produced quickly, simply and inexpensively.
  • the traditional first generation gene analysis technique (based on one ABI3730XL) takes about one month or more, while the method of the present invention allows analysis in one day. In terms of cost, less than one tenth of the cost of the first generation gene analysis technology. In addition, in the first generation gene analysis technology, since the pretreatment stage of sequencing is very complicated, several manpower is required, but the method of the present invention is simple enough that one person can perform the whole process.
  • the method of the present invention can be used to enhance the quality of genome translation, such as sequencing gap closing, sequence accuracy verification, since the location of the clone corresponding to the decoded terminal sequence information can be identified.
  • 1 is the structure of a BAC clone.
  • FIG. 3 is a schematic diagram of a three-dimensional BAC library production.
  • Figure 4 shows the extraction results of BAC clone DNA.
  • Figure 6 shows the GSB-YAP primer nucleotide sequence information, the underlined portion shows the non-complementary nucleotide sequence.
  • Figure 7 is an adapter primer sequence used for amplification of the genomic DNA terminal base sequence inserted into the BAC vector.
  • FIG. 8 shows PCR results using GSB-SP6 / GSB-RP and GSB-T7 / GSB-RP primers.
  • Figure 9 shows the size fraction of PCR DNA.
  • 11 is a sequence data analysis configuration diagram.
  • BAC is used as a vector, but all vectors commonly used may be used.
  • FIG. 2 The overall schematic diagram of the method of the present invention is as shown in FIG. 2, and the details of each step are as follows.
  • Genomic DNA of the subject to be analyzed is extracted to prepare a BAC library, and each BAC clone is collected in a 384-well plate to prepare a cell stock.
  • a three-dimensional BAC library consisting of 60 reservoirs was constructed by three-dimensional pooling (3D-pool) of 20 BAC clones of 20 384-well plates for the cell stock.
  • Three-dimensional BAC library is to extract a certain amount of each BAC clone stored in 384-well plate by the horizontal axis (X axis), vertical axis (Y axis), plate pool (Z axis), and then X axis and Y axis In other words, it is a library that mixes each BAC clone collected by Z axis into one repository.
  • the specific process of manufacturing the 3D BAC library is as follows.
  • the 384-well plates for cell stocks are preferably labeled with marker numbers in rows, columns, and plates so as to distinguish the origin of genomic DNA collected on the X, Y, and Z axes.
  • the top of the 384-well plate is engraved with 24 Arabic numeral serial numbers (1-24) on the horizontal axis (X axis) and 16 alphabets (A-P) on the vertical axis (Y axis) on the left side, and mixed.
  • a certain amount of BAC clones corresponding to the same X-axis or Y-axis column is extracted from each plate to be placed in each container according to each column, and the Z-axis is equivalent to 384 BAC clones in one 384-well plate.
  • the 3D BAC library is prepared by taking them out in one container.
  • BAC clones of the three-dimensional BAC library are grown using a culture medium for culturing E. coli, and then BAC clone DNA is extracted.
  • the extracted BAC clone DNA is cut to the appropriate size for analysis.
  • the method of cutting DNA can be used a variety of commonly used methods, it is more preferable to cut using ultrasonic waves.
  • Y-type adapter primers are attached to both ends of the fragment so as not to bind the DNA fragments.
  • the Y-type adapter primer has a non-complementary sequence at the end to prevent self-bonding of the genomic DNA in the process of amplifying the genomic DNA end sequence.
  • Y-type adapter primer is shown in SEQ ID NO: 1 and SEQ ID NO: 2 in the Sequence Listing, and FIG. 6. As shown in Figure 6, the terminal five sequences are non-complementary with each other.
  • Both terminal sequences of genomic DNA are amplified by PCR using the SP6 promoter and T7 promoter sequences inherent in the BAC vector.
  • primers comprising the SP6 promoter sequence or primers comprising the T7 promoter sequence.
  • the GSB-SP6 primer consists of a forward adapter of SEQ ID NO: 3 (30 bp), a barcode sequence (10 bp) and an SP6 promoter of 18 (18 bp).
  • a primer comprising a T7 promoter sequence is a GSB-T7 primer consisting of a forward adapter of SEQ ID NO: 5 (30 bp), a barcode sequence (10 bp) and a T7 promoter of SEQ ID NO: 6 (20 bp).
  • a reverse primer used with the primer is a GSB-RP primer has a sequence of SEQ ID NO.
  • the barcode sequence is an marker sequence indicating the position in the three-dimensional BAC library. The configuration of the primers is shown in FIG.
  • the amplified DNA is purified and fractionated to a size suitable for NGS sequencing.
  • the average size is preferably 700 bp.
  • PCR oil molecules are prepared using a premix of dNTP, PCR buffer, primers, Taq polymerase, and PPiase (Peptidyl-Prolyl Cis-Trans Isomerase), followed by PCR and DNA mixed in oil molecules. Amplify.
  • the sequence of the amplified DNA is analyzed by NGS to obtain sequence data.
  • the sequence data obtained through the NGS sequencing is used to identify the location of the BAC clone.
  • the adapter primer at the 3 'end portion is removed and sequence data with the adapter primer at the 5' end portion is obtained.
  • the obtained sequence data is separated into 60 types using the barcode sequence used for the production of the 3D sequence library, and the sequence data collected for each barcode is contiguous. Homology search between conticles corresponding to the X, Y, and Z axes are performed to classify by the same sequence and then reclassify the SP6 promoter or T7 promoter by the same clone to identify the location of the BAC clone.
  • BAC libraries were made using CopyRight v2.0 BAC Cloning Kit (Lucigen) and each BAC clone was collected in 384-well plates to make a cell stock. The cell stocks obtained were stored in a -80 ° C freezer.
  • the 384-well plate is a structure in which 24 wells (' ⁇ 1' to ' ⁇ 24') are arranged on the horizontal axis (X axis) and 16 wells ( ⁇ A to ⁇ P) on the vertical axis (Y axis).
  • 24 wells ' ⁇ 1' to ' ⁇ 24'
  • 16 wells ⁇ A to ⁇ P
  • Y axis vertical axis
  • 7,680 BAC clones (384 clones / plate ⁇ 20 plates) stored in 20 384 transparent well plates were used.
  • Extraction of BAC clone DNA was performed using HiPure plasmid kit (Invitrogen). Centrifuge the cultured solution according to the method described in the kit, and sequentially add 4 ml of suspension buffer, 4 ml of lysis buffer and 4 ml of neutralization buffer. The reaction was carried out for a predetermined time to finally dissolve the cell membrane of the cells. The supernatant obtained by centrifuging the lysed liquid was placed in a column, left at room temperature for a certain time, and passed through the column to extract BAC clone DNA.
  • FIG. 4 The results of extracting the BAC clone DNA are shown in FIG. 4.
  • the amount of BAC clone DNA extracted from a total of 60 reservoirs by this method was 1-4 ⁇ g each.
  • End repairing enzyme mix kit (Fermentas, K0771) was used to make the terminal portion of the fragmented DNA into blunt form.
  • the buffer and the enzyme are added to the 1.5 ml microtube containing the DNA and mixed for 5 minutes in a water bath block at 20 ° C., followed by phenolchloroform and ethanol precipitation.
  • the DNA was purified by the method, and the concentration of the DNA was dissolved in 6 ⁇ l of sterile water.
  • Y-type adapter primer (GSB-YAP) was attached to both ends to prevent primers from self ligation.
  • the GSB-YAP used is a double-stranded DNA of 18 bp and has a structure in which the five base sequences of the terminal regions are not complementary to each other.
  • GSB-YAP primer sequence information is shown in FIG. 6, and the underlined region in FIG. 6 indicates non-complementary base sequence.
  • the primers (GSB-SP6), which combine the SP6 promoter or T7 promoter sequence of the BAC vector, the barcode sequence, and the forward adapter primer for emPCR, GSB-T7) was designed and manufactured respectively.
  • the sequence of the GSB-SP6 primer (SEQ ID NO: 2), the GSB-T7 primer (SEQ ID NO: 3), and the GSB_RP primer (SEQ ID NO: 4), which are primers used to amplify the genomic DNA terminal base sequence inserted into the BAC vector, are shown in FIG. It was.
  • PCR was carried out by putting GSB-SP6 primer and GSB-RP primer in one tube and GSB-T7 primer and GSB-RP adapter primer in another tube.
  • PCR amplification reaction was carried out using a ProDNi thermocycler (GnC Bio.), Each reaction 0.25 ⁇ l Taq DNA polymerase, 2.5 ⁇ l 10 ⁇ buffer, 0.5 ⁇ l 50 ⁇ dNTP, GSB- A PCR mixture containing 10 pmol of SP6 primer, 1 ⁇ l / 10 pmol of GSB-RP primer, and 3 ⁇ l of template DNA (Template DNA) was performed in a total amount of 25 ⁇ l. The reaction was denatured at 96 ° C. for 3 minutes, repeated 40 times with 96 ° C. 20 seconds, 50 ° C. 20 seconds, and 72 ° C. 20 seconds, followed by reaction at 72 ° C. for 10 minutes.
  • M is a 100bp size marker.
  • 120 kinds of DNA amplified by 60 kinds of GSB-T7 / GSB-RP and 60 kinds of GSB-SP6 / GSB-RP are combined into one tube, and then the average size that can be used in the GS-FLX sequencer
  • size fractionation was performed using a chroma spin TE1000 column kit (Clontech) and an amplifier bead (Ampure bead, Beckmancoulter). The kit was used according to the product instructions.
  • TE buffer 100 ⁇ l was added to the tube from which the supernatant was removed, vortexed, and then shaken by addition of 500 ⁇ l of sizing solution and incubated in a 25 ° C. water bath for 5 minutes. This solution was mounted in MPC to remove supernatant, washed twice with 70% ethanol, and Ampour XP beads were air dried. 23 ⁇ l of TE buffer was added to the dried beads, followed by shaking. Then, 21 ⁇ l of the supernatant was recovered. The size and concentration of the recovered DNA was measured by Bioanalyzer 2100 (Bioanalyzer 2100, BECKMAN Co.) using a picoRNA chip (PicoRNA chip). As a result, it was confirmed that the DNA concentration was 2.24 ng / ⁇ l and the average size was 704 bp (FIG. 9 b).
  • Reagents and methods necessary for the entire process were carried out according to the Roche method of use.
  • Premixes containing dNTPs, PCR buffers, primers, Taq polymerase, and PPiase were dispensed into 32 emulsion tubes, and recovered in Example 8 to collect bioanalyzer PicoRNA GSB-RPnning chips (Bioanalyzer PicoRNA GSB-).
  • Bioanalyzer PicoRNA GSB-RPnning chips Bioanalyzer PicoRNA GSB-RPnning chips
  • the reaction was carried out by sequentially decreasing the temperature from 80 ° C to 20 ° C by using a PCR device so that the beads and the single-stranded DNA could be combined.
  • PCR premix was mixed with oil and shaken at 12 Hz for 5 minutes using a tissue lyser.
  • PCR oil molecules microreactors
  • PCR was carried out by mounting a tube containing the oil molecule in a PCR device to amplify the DNA mixed in the oil molecule.
  • Streptoavidin-coated beads were recovered from the emPCR-completed samples using isopropanol, ethanol, and an enhancement fluid buffer. After neutralizing the beads with a melting solution and an annealing buffer, an enrichment primer was added and reacted in a 65 ° C. water bath for 5 minutes to prepare a sequencing sample. Enrichment beads washed several times with an enhancement buffer were mixed with the prepared DNA samples and washed with a molten solution to recover only the beads to which the sequencing primers were bound to the target DNA. The collected capture beads were placed in a PicoTiter TM plate and subjected to pyrosequencing for 12 hours. The structure of the finally obtained sequence is as shown in FIG. Each sequence read can be classified into SP6 promoter, T7 promoter and barcode sequence.
  • Fatigue sequencing was performed using the XL70 sequencing library kit to obtain 647,759 sequencing reads, and then the adapter sequence (GSB- RP) were removed and 171,104 and 234,984 sequencing reads with GSB-SP6 and GSB-T7 attached with adapter primers at the 5 'end were obtained, respectively.
  • Each of the obtained sequencing reads was separated back into 60 types (X-axis: 24, Y-axis: 16, Z-axis: 20) using the barcode sequence used to construct the 3D-pool library. Barcode-specific sequencing reads were made contic using a CAP3 assembler.
  • the homology search was performed between the conticles corresponding to the X, Y, and Z axes, and classified according to the same sequence, and then reclassified by clones having the same positions in SP6 and T7 to finally determine the position of the BAC clone.
  • Sequence data analysis configuration is shown in FIG.
  • Genome physics was performed by BLASTN method for BAC terminal sequences obtained by the present invention for contic and scaffold sequences obtained through shot gun sequencing and assembly using NGS instruments such as HiSeq 2500 and GS-FLX. A map was created and the results are shown in FIG. 12. Scaffold order could be determined according to the dielectric structure by using the nucleotide sequence of both ends of the location BAC (black SP6, red T7).
  • the present invention uses a primer capable of specifically amplifying only DNA terminal sequences of a foreign genome (clone) inserted into a vector, and mass production of only DNA terminal nucleotide sequence information of a foreign genome using a NGS sequencing method can be performed quickly and at low cost.
  • this method can provide a method for locating clones corresponding to the information produced, which may be useful in the field of genome decoding.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

본 발명은 NGS를 이용한 유전체 DNA 염기서열분석방법에 관한 것으로, 보다 구체적으로는 특이적으로 고안된 프라이머를 이용하여 벡터에 삽입된 외래 유전체(클론)의 DNA 말단 영역만을 증폭시킨 후 NGS sequencing방법으로 대량 해독한 염기서열정보를 분석하는 방법에 관한 것이다

Description

차세대 염기서열분석법을 이용한 유전체 DNA 말단 서열의 대량 분석방법
본 발명은 NGS를 이용한 유전체 DNA 서열분석방법에 관한 것으로, 보다 구체적으로는 유전체 DNA 말단 염기서열에 특이적인 프라이머를 사용하여 유전체 DNA의 말단 염기서열만을 대량 증폭시킨 후 NGS를 이용하여 유전체 DNA의 말단 염기서열을 분석하는 방법에 관한 것이다.
현재 주류를 이루고 있는 유전체 해독 방식인 차세대 염기서열분석(Next Generation Sequencing, NGS) 기술은 세포로부터 추출한 유전체 DNA(genomic DNA)를 단편화하여 단편화된 DNA 조각의 염기서열을 단시간에 대량으로 해독하고, 컴퓨터의 알고리즘을 이용하여 해독된 수십억 개의 DNA 단편 염기서열을 재조합하여 원래의 유전체 구조를 완성하는 방법이다. 그러나 이 방법은 NGS 기기 자체의 DNA 해독 오류와 컴퓨터 어셈블링(assembling) 프로그램 오류로 인하여 생산된 재조합 유전체 정보(scaffold, contig)의 염기배열 및 유전체의 구조가 전통적인 방법에 비하여 부정확하다는 단점을 가지고 있다.
이러한 NGS 기술의 단점을 보완하는 기술은 NGS 기기의 종류에 따라서 다양한데, 대부분의 NGS 기종(Illumina사, Roche사, LifeTechnology사)은 유전체 DNA를 3kb, 5kb, 10kb 등의 크기로 크게 조각내어 양쪽 말단을 해독(mate-pair sequencing)한 후, 이 염기배열 정보와 단편의 크기를 표지자(bridge sequence) 정보로 이용하여 DNA를 재조합하는 원리를 사용하고 있다. 한편, 퍼시픽 바이오(Pacific Bio)사는 10kb~20kb의 비교적 긴 DNA 단편을 한 번에 해독하여 이를 데이터 어셈블링(data assembling)에 이용하고 있다.
브릿지 클론 서열(Bridge clone sequence)을 이용하여 콘틱(contig)과 스캐폴드(scaffold)를 만든다는 점은 전통적으로 인간게놈프로젝트에서 사용한 '유전체 물리지도(genome physical map)' 작성기술과 유사하다. 유전체 물리지도는 서열분석(sequencing)된 콘틱과 스캐폴드의 배열 순서를 맞추는 방법으로서, '서열 갭(sequence gap) 연결', '서열정확도' 검증, 초대형 스캐폴드 구축 등 유전체 구조의 정확도를 향상시키는데 매우 중요한 기술로 활용되고 있다.
유전체 물리지도 작성에 사용되는 핵심기술은 대장균 속에서 자가 증식 가능한 플라스미드, 즉 벡터(vector)를 이용하여 연구대상의 유전체 DNA를 증식시켜 삽입된 유전체 DNA 말단의 정보를 이용하는 것이다. 일반적으로 벡터의 종류는 벡터 내로 삽입 가능한 DNA의 크기에 따라서 BAC(Bacteria Artificial Chromosome), Fosme, Cosmid 등으로 나누어진다.
예를 들어 BAC 벡터의 경우, 보통 100,000~200,000 염기 크기의 유전체 DNA 삽입이 가능하다. 도 1에 나타낸 바와 같이, 유전체 DNA가 삽입된 BAC 클론은 BAC 벡터와 이에 삽입되는 유전체 DNA의 두 개의 부위로 구성되는데, BAC 벡터에 내재된 벡터 특이의 염기서열(T7 프로모터와 SP6 프로모터)은 삽입된 유전체 DNA의 양쪽 말단부위에 근접하여 위치하게 된다. 따라서 삽입된 유전체 DNA의 양쪽 말단부위의 염기서열은 이들 T7 프로모터와 SP6 프로모터를 서열분석 프라이머(sequencing primer)로 이용하여 해독이 가능하다. 삽입된 유전체 DNA의 양쪽 말단 염기서열의 방향은 서열분석에 사용한 프로모터 종류에 따라서 구별되는데, T7 프로모터로 해독된 유전체 DNA 말단 염기서열은 'T7-BAC 말단서열(T7-BAC end sequence, T7-BES)'이라고 부르고, SP6 프로모터로 해독된 유전체 DNA 말단 염기서열은 'SP6-BAC 말단서열(SP6-BES)'이라고 부른다. 이들 'T7-BES', 'SP6-BES'는 '유전체 물리지도' 작성에 필수적인 정보로서 전통적으로 인간게놈프로젝트를 비롯하여 많은 유전체 해독 연구에서 유전체 구조 및 서열분석 오류 검증을 위해 사용되었다.
BAC 클론에 삽입된 유전체 DNA의 BES를 해독하는 방법은 전통적인 1세대 유전자분석(capillary sequencing) 방식과 NGS방식이 있다. 1세대 유전자분석은 BAC 클론을 한 개씩 나누어서 서열분석하는 방식으로서, 서열분석 후 해독한 BES 정보와 일치하는 BAC 클론의 위치 파악이 가능하기 때문에 후속 연구에서 재료로 사용할 수 있다는 장점이 있지만, 시간이 오래 걸리고 데이터 생산 비용이 매우 비싸다는 단점이 있다. 최근에는 NGS 기기를 활용하여 BES 염기해독이 가능한데, 이는 수 만개의 BAC 클론을 하나로 모아서 NGS 서열분석 라이브러리(NGS sequencing library, NXSeq library)를 만들어서 대량으로 해독하는 것이다. 그러나 이 방식은 대량 해독은 가능하지만, 최종적으로 얻어지는 'T7-BES', 'SP6-BES'량이 적기 때문에 효율이 낮을 뿐만 아니라, BES 서열분석의 최대 장점인 해독 후 BAC 클론의 염기서열 정보에 해당하는 BAC 클론의 위치 파악이 불가능하기 때문에 서열분석한 BAC 클론을 후속연구에 활용할 수가 없다는 단점이 있다.
*선행기술문헌*
(특허문헌 1) 대한민국 특허등록 제10-1406720호
(특허문헌 2) 대한민국 특허등록 제10-1447593호
(특허문헌 3) 대한민국 특허등록 제10-1533792호
(특허문헌 4) 대한민국 특허공개 제10-2015-0017525호
상기 문제점을 해결하기 위하여 본 발명은 유전체 DNA의 말단 염기서열(BES)만을 특이적으로 증폭할 수 있는 프라이머를 사용하여 NGS 방식으로 벡터에 삽입된 유전체 DNA의 말단염기서열을 신속하고 저렴한 비용으로 대량 생산하고, 생산된 BES 정보에 해당하는 클론의 위치를 규명할 수 있는 방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 분석 대상의 유전체 DNA를 추출하여 BAC 라이브러리를 제작하고 각 BAC 클론을 384-웰 플레이트에 모아 세포 스톡을 제작하는 단계; 상기 세포 스톡용 384-웰 플레이트 20장의 BAC 클론들을 3차원적으로 조합하여 60개 저장소로 구성된 3차원 BAC 라이브러리를 제작하는 단계; 대장균 배양액을 이용하여 상기 3차원 BAC 라이브러리의 BAC 클론들을 증식시킨 후 BAC 클론 DNA를 추출하는 단계; 상기 추출한 BAC 클론 DNA를 분석에 필요한 적절한 크기로 절단하는 단계; 상기 절단한 DNA 단편의 양쪽 말단을 평활 말단화시킨 후 단편의 양쪽 말단에 Y-형 어댑터 프라이머를 부착하는 단계; BAC 벡터의 SP6 프로모터 서열을 포함하는 프라이머 또는 T7 프로모터 서열을 포함하는 프라이머를 이용하여 상기 유전체 DNA의 양쪽 말단 서열을 증폭하는 단계; 상기 증폭된 DNA를 정제하여 NGS 서열분석에 적합한 크기로 분획하는 단계; 상기 분획된 DNA를 emPCR에 의하여 증폭하는 단계; 상기 증폭된 DNA의 서열을 NGS로 분석하여 서열데이터를 얻는 단계; 및 상기 서열데이터를 이용하여 BAC 클론의 위치를 규명하는 단계를 포함하는, 차세대 염기서열분석법을 이용한 유전체 DNA 말단 서열의 대량 분석방법을 제공한다.
상기 방법에서, 상기 세포 스톡용 384-웰 플레이트에 X축(수평), Y축(수직) 및 Z축(플레이트)으로 수집한 유전체 DNA의 유래를 구별할 수 있도록 횡렬, 종렬 및 플레이트 단위로 표식자 번호를 붙이는 것이 바람직하다.
상기 방법에서, 상기 3차원 BAC 라이브러리는,
세포 스톡용 384-웰 플레이트에서 동일한 번호에 해당하는 수평축(X축)의 24개의 BAC 클론들을 하나의 저장소에 모으는 단계; 세포 스톡용 384-웰 플레이트에서 동일한 번호에 해당하는 수직축(Y축)의 16개의 BAC 클론들을 하나의 저장소에 모으는 단계; 및 세포 스톡용 384-웰 플레이트 한 장에 담겨있는 384개 BAC 클론들을 하나의 저장소에 모아 플레이트 풀(Z축)을 얻는 단계를 포함하는 방법에 의하여 제작되는 것이 바람직하다.
상기 방법에서, 상기 Y-형 어댑터 프라이머는 서열번호 1과 서열번호 2의 염기서열을 가지며 말단의 5개의 염기서열이 비상보적인 프라이머인 것이 바람직하다.
상기 방법에서, 상기 추출한 BAC 클론 DNA는 초음파를 사용하여 절단하는 것이 바람직하다.
상기 방법에서, 상기 SP6 프로모터 서열을 포함하는 프라이머는 서열번호 3의 포워드 어댑터, 3차원 BAC 라이브러리에서의 위치를 표시하는 바코드 서열 및 서열번호 4의 SP6 프로모터로 이루어진 GSB-SP6 프라이머인 것이 바람직하다.
상기 방법에서, 상기 T7 프로모터 서열을 포함하는 프라이머는 서열번호 5의 포워드 어댑터, 3차원 BAC 라이브러리에서의 위치를 표시하는 바코드 서열 및 서열번호 6의 T7 프로모터로 이루어진 GSB-T7 프라이머인 것이 바람직하다.
상기 방법에서, 상기 유전체 DNA 양쪽 말단 서열의 증폭은 제6항의 GSB-SP6 프라이머와 서열번호 7의 GSB-RP 프라이머, 또는 제7항의 GSB-T7 프라이머와 서열번호 7의 GSB-RP 프라이머를 사용하여 행하는 것이 바람직하다.
본 발명의 방법은 분석하고자 하는 유전체 DNA의 양쪽 말단 염기서열을 대량 증폭하여 NGS 기기를 이용하여 대량 해독하고 각 말단 염기서열에 해당하는 BAC 클론의 위치를 신속하게 파악할 수 있어, 벡터에 삽입된 유전체 DNA의 말단 염기서열 정보를 신속, 간편, 저렴하게 대량 생산할 수 있다.
본 발명의 실시예에서 실시한 7,680 클론을 기준으로 비교할 때, 전통적인 1세대 유전자분석 기술(ABI3730XL 1대 기준)은 약 1개월 이상이 소요되는 반면, 본 발명의 방법을 사용하면 1일이면 분석이 가능하며, 비용 측면에서도 1세대 유전자분석 기술의 1/10 이하의 비용이 소요된다. 또한 1세대 유전자 분석기술의 경우 서열분석의 전처리 단계가 매우 복잡하기 때문에 수 명의 인력이 필요하지만, 본 발명의 방법은 1인이 전 과정을 수행할 수 있을 정도로 일이 간단하다.
또한 해독한 대량의 말단염기서열 정보를 이용하여 콘틱이나 스캐폴드의 순서를 손쉽게 결정할 수 있으며 수십 메가 크기의 초대형 스캐폴드 구축 등 정밀한 유전체 물리지도 작성이 가능하게 된다.
또한 본 발명의 방법은 해독한 말단염기서열 정보에 해당하는 클론의 위치 규명이 가능하기 때문에 서열분석 갭 연결(sequencing gap closing), 서열 정확도 검증 등 유전체 해독의 질을 고도화시키는데 이용될 수 있다.
도 1은 BAC 클론의 구조이다.
도 2는 본 발명의 전체 구성도이다.
도 3은 3차원 BAC 라이브러리 제작 모식도이다.
도 4는 BAC 클론 DNA의 추출 결과를 나타낸 것이다.
도 5는 BAC 클론 DNA의 단편화 결과를 나타낸 것이다.
도 6은 GSB-YAP 프라이머 염기서열정보이며, 밑줄부위는 비상보성 염기서열을 나타낸 것이다.
도 7은 BAC 벡터에 삽입된 유전체 DNA 말단염기서열의 증폭에 사용한 어댑터 프라이머 서열이다.
도 8은 GSB-SP6/GSB-RP 및 GSB-T7/GSB-RP 프라이머를 사용한 PCR 결과를 나타낸 것이다.
도 9는 PCR DNA의 크기 분획을 나타낸 것이다.
도 10은 GS-FLX로 피로시퀀싱한 서열 판독들의 염기배열구조이다.
도 11은 서열데이터 분석 구성도이다.
도 12는 BAC 말단서열을 이용한 유전체 물리지도 작성의 예이다.
본 발명에서 벡터로는 BAC를 사용하였으나, 통상적으로 사용되는 모든 벡터를 사용할 수 있다.
본 발명의 방법의 전체 구성도는 도 2에 나타낸 바와 같으며, 각 단계에 대한 구체적인 내용은 다음과 같다.
1. 세포 스톡(cell stock)의 제작
분석하고자 하는 대상의 유전체 DNA를 추출하여 BAC 라이브러리를 제작하고 각 BAC 클론을 384-웰 플레이트(384-well plate)에 모아 세포 스톡을 제작한다.
2. 3차원 BAC 라이브러리의 제작
상기 세포 스톡용 384-웰 플레이트 20장의 BAC 클론들을 3차원적으로 조합하여(3-dimentional pooling; 3D-pool) 60개 저장소로 구성된 3차원 BAC 라이브러리를 제작한다. 3차원 BAC 라이브러리란 384-웰 플레이트에 보관된 각각의 BAC 클론을 수평축(X축), 수직축(Y축), 플레이트 풀(Plate pool, Z축) 별로 일정량씩 적출한 후, X축, Y축, Z축 별로 모아진 각각의 BAC 클론을 하나의 저장소(reservoir)에 혼합해 놓은 라이브러리를 말한다.
3차원 BAC 라이브러리를 제작하는 구체적인 과정은 다음과 같다.
(1) 세포 스톡용 384-웰 플레이트에서 동일한 번호에 해당하는 수평축(horizontal; X축)의 24개의 BAC 클론들을 하나의 저장소에 모은다.
(2) 세포 스톡용 384-웰 플레이트에서 동일한 번호에 해당하는 수직축(vertical; Y축)의 16개의 BAC 클론들을 하나의 저장소에 모은다.
(3) 세포 스톡용 384-웰 플레이트 한 장에 담겨있는 384개 BAC 클론들을 하나의 저장소에 모아 플레이트 풀(plate pool, Z축)을 얻는다.
상기 세포 스톡용 384-웰 플레이트에는 X축, Y축 및 Z축으로 수집한 유전체 DNA의 유래를 구별할 수 있도록 횡렬, 종렬 및 플레이트 단위로 표식자 번호를 붙이는 것이 바람직하다. 상세하게는, 384-웰 플레이트의 상단에는 수평축(X축)으로 24개의 아라비아 숫자 일련번호(1~24)를, 좌측에는 수직축(Y축)으로 16개의 알파벳(A~P)을 새기고, 혼합하고자 하는 각각의 플레이트에서 동일한 X축 열 혹은 Y축 열에 해당하는 BAC 클론들을 일정량씩 적출하여 각 열에 따라서 각각의 용기에 담고, Z축은 384-웰 플레이트 1장에 들어 있는 384개 BAC 클론에서 동량을 적출하여 하나의 용기에 담아 3차원 BAC 라이브러리를 제작한다.
3. BAC 클론의 증식 및 BAC 클론 DNA 추출
대장균을 배양하는 배양액을 이용하여 상기 3차원 BAC 라이브러리의 BAC 클론들을 증식시킨 후 BAC 클론 DNA를 추출한다.
4. 추출한 DNA의 절단
상기 추출한 BAC 클론 DNA를 분석에 필요한 적절한 크기로 절단한다. 이때 DNA를 절단하는 방법은 통상적으로 사용되는 다양한 방법을 사용할 수 있지만, 초음파를 사용하여 절단하는 것이 보다 바람직하다.
5. Y-형 어댑터 프라이머(Y-type adapter primer)의 부착
상기 절단한 DNA 단편의 양쪽 말단을 평활 말단화(blunt end)시킨 후, DNA 단편끼리 결합하지 못하도록 단편의 양쪽 말단에 Y-형 어댑터 프라이머를 부착한다. Y-형 어댑터 프라이머는 말단에 비상보적 서열을 가지고 있어서 유전체 DNA 말단서열을 증폭하는 과정에서 유전체 DNA의 자가결합을 방지한다.
Y-형 어댑터 프라이머의 한 예를 서열목록의 서열번호 1과 서열번호 2, 및 도 6에 나타내었다. 도 6에 나타낸 바와 같이, 말단 5개의 서열은 서로 비상보적이다.
6. 유전체 DNA 양쪽 말단 서열의 증폭
BAC 벡터에 내재된 SP6 프로모터와 T7 프로모터 서열을 이용하여 유전체 DNA의 양쪽 말단 서열을 PCR을 실시하여 증폭한다.
SP6 프로모터 서열을 포함하는 프라이머 또는 T7 프로모터 서열을 포함하는 프라이머를 사용하여 유전체 DNA의 양쪽 말단 서열을 증폭하는 것이 바람직하다.
SP6 프로모터 서열을 포함하는 프라이머의 한 예인 GSB-SP6 프라이머는 서열번호 3의 포워드 어댑터(30bp), 바코드 서열(10bp) 및 서열번호 4의 SP6 프로모터(18bp)로 이루어진다. T7 프로모터 서열을 포함하는 프라이머의 한 예인 GSB-T7 프라이머는 서열번호 5의 포워드 어댑터(30bp), 바코드 서열(10bp) 및 서열번호 6의 T7 프로모터(20bp)로 이루어진다. 상기 프라이머와 함께 사용되는 역방향 프라이머의 한 예인 GSB-RP 프라이머는 서열번호 7의 서열을 가진다. 이때, 바코드 서열은 3차원 BAC 라이브러리에서의 위치를 표시하는 표식자 서열이다. 상기 프라이머들의 구성을 도 7에 나타내었다.
하나의 저장소의 DNA를 2개로 나누어 하나는 GSB-SP6 프라이머와 GSB-RP 프라이머를 넣어 PCR을 실시하고, 다른 하나는 GSB-T7 프라이머와 GSB-RP 프라이머를 넣어 PCR을 실시하는 것이 바람직하다.
7. 증폭된 DNA의 정제 및 크기분획
상기 증폭된 DNA를 정제하여 NGS 서열분석에 적합한 크기로 분획한다. 예를 들어 NGS 분석에 GS-FLX 서열분석기를 사용하는 경우에는 평균사이즈가 700bp인 것이 바람직하다.
8. emPCR에 의한 DNA의 증폭
상기 적합한 크기로 분획된 DNA를 emPCR에 의하여 증폭한다. DNA 증폭에는 dNTP, PCR 버퍼, 프라이머, Taq 중합효소, PPiase(Peptidyl-Prolyl Cis-Trans Isomerase)를 혼합한 프리믹스(premix)를 사용하여 PCR 오일분자를 만든 후 PCR을 실시하여 오일분자에 혼합된 DNA를 증폭한다.
9. NGS에 의한 서열분석
상기 증폭된 DNA의 서열을 NGS로 분석하여 서열데이터를 얻는다.
10. BAC 클론의 위치 규명
상기 NGS 서열분석을 통해 얻은 서열데이터를 이용하여 BAC 클론의 위치를 규명한다.
얻어진 서열데이터에서 3' 말단 부위의 어댑터 프라이머를 제거하고 5' 말단 부위의 어댑터 프라이머를 가진 서열데이터를 확보한다. 확보한 서열데이터를 3차원 서열 라이브러리 제작에 사용한 바코드 서열을 이용하여 60종류로 다시 분리한 후 바코드별로 모아진 서열데이터를 콘틱으로 만든다. X축, Y축 및 Z축 각각에 해당하는 콘틱들간의 상동성 검색을 실시하여 동일한 서열별로 분류한 후 SP6 프로모터 또는 T7 프로모터의 위치가 동일한 클론별로 재분류하여 BAC 클론의 위치를 규명한다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.
<실시예 1>
세포 스톡의 제작
거저리(Tenebrio) 유전체 DNA를 추출한 후, CopyRight v2.0 BAC 클로닝 키트(Lucigen)를 이용하여 BAC 라이브러리를 제작하고 각각의 BAC 클론을 384-웰 플레이트에 모아(picking) 세포 스톡을 만들었다. 얻어진 세포 스톡은 -80℃ 냉동고에 보관하였다.
<실시예 2>
3차원 BAC 라이브러리(3D-dimentional BAC library) 제작
상기 방법으로 제작한 세포 스톡인 20장의 384-웰 플레이트를 혼합하여 60개의 저장소로 구성된 3차원 BAC 라이브러리를 제작하였다. 3차원 BAC 라이브러리의 제작과정을 도 3에 나타내었으며, 구체적인 제작방법은 다음과 같다.
(1) -80℃ 냉동고에 세포 스톡으로 보관된 384-웰 플레이트 20장을 4℃ 냉장고로 옮겨 해동시켰다.
(2) 384-웰 플레이트는 수평축(X축)으로 24개('×1'~'×24'), 수직축(Y축)으로 16개(×A~×P)의 웰이 배열된 구조로써, 본 발명에서는 20개의 384 투명웰 플레이트에 보관된 7,680개의 BAC 클론(384클론/플레이트×20플레이트)을 이용하였다.
(3) 먼저, 각 플레이트의 동일한 위치에 있는 웰(예, #1 플레이트의 h1 레인(16개 웰), #2 플레이트의 h1 레인(16개 웰)...#20 플레이트의 h1 레인(16개 웰)로부터 각 2㎕씩 스톡 세포를 취하여 50㎖의 1×LB배지가 들어있는 1개의 저장소(Rx)에 혼합하여, X축으로부터 24개의 혼합물('Rx1'~'Rx24')을 만들었다. 동일한 방법으로 Y축으로부터는 16개의 혼합물('RyA'~'RyP')을 만들었다. 또한 각 플레이트의 384개 세포를 1개의 저장소(Rp)에 혼합한 플레이트 풀(plate pool)(Z축)로 20개의 혼합물('Rz1'~'Rz20')을 만들었다. 최종적으로 7,680개의 BAC 클론으로부터 60개의 혼합물 저장소(X축:24개, Y축:16개, Z축:20개)를 만들었다.
(4) 각 저장소에 모아진 BAC 클론 혼합물과 동량의 DMSO 동결보존액을 섞어 준 후, -80℃ 냉동고에 보관하였다.
(5) -80℃ 냉동고의 저장소 스톡으로부터 각각 312㎕(X축), 208㎕(Y축), 500㎕(Z축)를 취하여 50㎖의 1×LB 배지와 혼합한 후, 37℃ 배양기에서 200rpm으로 진탕(shaking)하면서 6시간 동안 배양하였다(OD=약1.0).
<실시예 3>
BAC 클론 DNA의 추출
BAC 클론 DNA의 추출은 HiPure 플라스미드 키트(Invitrogen)를 사용하였다. 키트에 설명된 사용방법에 따라서 배양한 용액을 원심분리방법으로 모은 균체에 현탁버퍼(suspension buffer) 4㎖, 라이시스버퍼(lysis buffer) 4㎖, 중화버퍼(neutralize buffer) 4㎖를 순차적으로 넣고 일정시간씩 반응시켜 최종적으로 균체의 세포막을 용해시켰다. 용해된 액체를 원심분리하여 취한 상층액을 칼럼에 넣고 일정시간 실온에 둔 후 칼럼을 통과시켜 BAC 클론 DNA를 추출하였다.
BAC 클론 DNA를 추출한 결과를 도 4에 나타내었다. 도 4에서 1~6레인은 BAC 클론 DNA를 각 1㎕ 로딩(=100~120ng)한 것이며, M은 1kb 람다 래더(lambda ladder)이다.
상기 방법으로 총 60개의 저장소로부터 추출한 BAC 클론 DNA의 양은 각각 1~4㎍이었다.
<실시예 4>
DNA의 단편화
1.5㎖ 마이크로튜브에 추출한 BAC 클론 DNA 1㎍을 넣고 1×TE로 전체 부피를 50㎕로 조정한 후, 초음파 기기(US portable cleaners, 모델명:US-05, JEIOTECH, Korea)의 '하이 모드(high mode)'에서 30~120초간 반응시켜, DNA를 100bp~10kb 크기로 단편화시켰다. 그 결과를 도 5에 나타내었다. 각각 3㎕ 로딩(=100~120ng)한 것이고, 사이즈 마커는 100bp 래더이다.
<실시예 5>
단편화된 DNA 말단부위 수복
단편화된 DNA의 말단 부위를 평활말단(blunt form)으로 만들기 위해 말단 수복 효소 믹스 키트(end repairing enzyme mix kit, Fermentas, K0771)를 사용하였다.
제조회사의 키트 사용방법에 따라서 각각의 DNA가 담겨있는 1.5㎖ 마이크로튜브에 버퍼와 효소를 넣고 혼합하여 20℃ 수조블록(water bath block)에서 5분간 반응시킨 후, 페놀클로로포름(phenolchloroform)과 에탄올 침전법으로 DNA를 정제하고 멸균수 6㎕에 DNA를 녹여서 그 농도를 측정하였다.
<실시예 6>
Y-형 어댑터 프라이머의 결합
중합효소반응시 시발체가 되고, DNA 단편들이 자가결합(self ligation)되는 것을 막기 위해 Y-형 어댑터 프라이머(GSB-YAP)을 양쪽 말단에 결합시켜 주었다.
사용한 GSB-YAP은 18bp의 이중가닥 DNA로서 말단부위 5개 염기서열이 서로 상보적이지 않는 구조를 가지고 있다. GSB-YAP 프라이머 염기서열 정보를 도 6에 나타내었으며, 도 6에서 밑줄친 부위는 비상보성 염기서열을 나타낸다.
평활말단화시킨 DNA 200ng과 GSB-YAP 200ng을 넣은 튜브에 리가아제(ligase) 2.5㎕를 혼합하고 16℃ 수조에서 3시간 동안 반응시켰다. 반응이 끝나면 DNA 정제키트를 사용하여 정제한 후 DNA를 멸균수 30㎕에 녹였다.
<실시예 7>
BAC 벡터에 삽입된 유전체 DNA 말단 염기서열의 증폭
삽입된 유전체 DNA의 양쪽말단 염기서열을 특이적으로 증폭하기 위하여 BAC 벡터의 SP6 프로모터 또는 T7 프로모터 서열, 바코드(Barcode) 서열, emPCR용 포워드 어댑터 프라이머(forward adaptor primer)를 결합한 프라이머(GSB-SP6과 GSB-T7)를 각각 디자인하여 제작하였다. BAC 벡터에 삽입된 유전체 DNA 말단염기서열의 증폭에 사용한 프라이머인 GSB-SP6 프라이머(서열번호 2), GSB-T7 프라이머(서열번호 3) 및 GSB_RP 프라이머(서열번호 4)의 서열을 도 7에 나타내었다.
하나의 저장소 DNA를 두 개의 튜브로 나눈 후, 한 튜브에는 GSB-SP6 프라이머와 GSB-RP 프라이머를 넣고, 다른 튜브에는 GSB-T7 프라이머와 GSB-RP 어댑터 프라이머를 넣어 PCR을 실시하였다.
PCR 증폭반응은 ProDNi 유전자증폭기(ProDNi thermocycler, GnC Bio.)를 사용하여 실시하였으며, 각 반응은 Taq DNA 중합효소(Taq DNA polymerase) 0.25㎕, 10×버퍼 2.5㎕, 50×dNTP 0.5㎕, GSB-SP6 프라이머 10pmol, GSB-RP 프라이머 1㎕/10pmol, 주형 DNA(Template DNA) 3㎕를 함유하는 PCR 혼합액으로 총 25㎕의 양으로 수행하였다. 반응은 96℃에서 3분간 변성하고, 96℃ 20초, 50℃ 20초, 72℃ 20초로 40회 반복시킨 후 72℃에서 10분간 반응시켰다. 증폭반응 후 1% 농도의 아가로스 젤에서 전기영동한 후 에티디움 브로마이드(ethidium bromide)로 착색시켜 UV 트랜스일루미네이커(transilluminator)에서 확인하였다. 그 결과를 도 8에 나타내었다. 도 8에는 M은 100bp 사이즈 마커이다.
그 결과, 도 8의 a에서 2.0kb 이하의 PCR 단편이 증폭되는 것을 확인하였으며, X축, Y축, Z축으로 수집한 60개의 저장소의 BAC 클론에 대하여 동일한 방법으로 PCR을 실시하여 도 8의 b와 같은 결과를 얻었다.
<실시예 8>
크기 분획(Size fraction)
GSB-T7/GSB-RP 60종류, GSB-SP6/GSB-RP 60종류로 증폭된 120종류의 DNA를 하나의 튜브로 다시 합친 후, GS-FLX 서열분석기(sequencer)에 사용가능한 크기인 평균크기 700bp의 DNA를 추출하기 위해 크로마 스핀 TE1000 칼럼 키트(chroma spin TE1000 column kit, Clontech)와 앰퓨어 비드(Ampure bead, Beckmancoulter)로 크기 분획을 실시하였다. 키트는 제품설명서에 따라서 사용하였다.
DNA 약 100㎕를 크기 분획 비드가 들어있는 TE1000 칼럼에 통과시키고 자유낙하시켜 총 10개 방울을 받아낸 뒤 전기영동으로 크기를 확인하고(도 9의 a), 큰 사이즈의 DNA가 상대적으로 적은 10번째 방울의 DNA로 다음 과정을 진행하였다.
작은 크기의 DNA를 제거하기 위하여 큰 사이즈의 DNA를 제거한 10번째 방울의 DNA가 들어있는 튜브에 앰퓨어 XP 비드(AMPure XP Bead) 250㎕를 넣어 MPC 장치에 장착한 후 버퍼를 제거하고, 사이징 용액(sizing solution) 500㎕를 첨가하여 앰퓨어 XP 비드와 혼합하였다. 사이징 혼합액(sizing mix) 125㎕를 회수한 10번째 방울의 PCR 산물 50㎕와 재혼합한 후, 25℃ 수조에서 5분간 인큐베이션하고, MPC에 장착하여 상층액을 회수하였다. 회수한 상층액 125㎕를 사용하고 남은 사이징 혼합액 375㎕에 넣고 혼합하여 25℃ 수조에서 인큐베이션한 후, MPC에 다시 장착하여 상층액을 제거하였다. 상층액을 제거한 튜브에 TE 버퍼 100㎕를 첨가하여 흔들어준(vortex) 후 사이징 용액 500㎕를 첨가하여 흔들어주고 25℃ 수조에서 5분간 인큐베이션하였다. 이 용액을 MPC에 장착하여 상층액을 제거하고, 70% 에탄올로 2회 세척한 후 앰퓨어 XP 비드를 대기건조시켰다. 건조된 비드에 TE 버퍼 23㎕를 넣어 흔들어준 후, 다시 MPC에 장착하여 상층액 21㎕를 회수하였다. 회수한 DNA의 크기와 농도는 피코RNA 칩(PicoRNA chip)을 사용하여 바이오애널라이저 2100(Bioanalyzer 2100, BECKMAN Co.)으로 측정하였다. 그 결과 DNA 농도는 2.24ng/㎕, 평균 크기는 704bp임을 확인하였다(도 9의 b)
<실시예 9>
emPCR을 통한 DNA의 증폭
전과정에 필요한 시약 및 방법은 Roche사의 사용방법에 따라서 실시하였다. dNTP, PCR 버퍼, 프라이머, Taq 중합효소, PPiase를 혼합한 프리믹스(premix)를 32개 에멀젼 튜브(emulsion tube)에 분주하고, 실시예 8에서 회수하여 바이오애널라이저 PicoRNA GSB-RPnning 칩(Bioanalyzer PicoRNA GSB-RPnning chip)으로 계산한 DNA의 카피 개수와 비드의 개수를 적정량 혼합 후 비드와 단일가닥 DNA가 결합할 수 있도록 PCR 기기로 80℃에서 20℃까지 순차적으로 온도를 내리는 반응을 실시하였다. 반응이 끝난 DNA 포획 비드(DNA captured bead)에 멸균수를 넣은 후, PCR 프리믹스가 혼합된 오일(oil)과 혼합시켜 티슈라이저(Tissue lyser)를 사용하여 12Hz에서 5분 동안 셰이킹(shaking)하여 PCR 오일 분자(microreactors)를 만들었다. PCR 오일분자가 들어있는 튜브를 PCR기기에 장착하여 PCR을 실시하여 오일분자에 혼합된 DNA를 증폭하였다.
<실시예 10>
GS-FLX 서열분석
전과정에 필요한 시약 및 방법은 Roche사의 사용방법에 따라서 실시하였다. emPCR이 끝난 시료에, 이소프로판올(iso-propanol), 에탄올, 증진 유체 버퍼(enhancing fluid buffer) 등을 사용하여 스트렙토아비딘(streptoavidin)이 코팅된 비드를 회수하였다. 용융용액(Melting solution)과 어닐링버퍼(annealing buffer)로 비드를 중화시킨 후 강화 프라이머(enrichment primer)를 넣고 65℃ 수조에서 5분 동안 반응시켜 서열분석 시료를 준비하였다. 증진버퍼(enhancing buffer)로 수차례 세척한 강화 비드(enrichment bead)를 준비된 DNA 시료와 혼합하고 용융용액으로 세척하여 서열분석 프라이머가 표적 DNA가 결합된 비드만을 회수하였다. 회수한 포획비드를 PicoTiterTM 플레이트에 넣고 12시간 동안 피로시퀀싱(pyrosequencing)을 진행하였다. 최종적으로 얻어지는 시퀀스의 구조는 도 10에 나타낸 바와 같다. 각 서열 판독들은 SP6 프로모터, T7 프로모터 및 바코드 서열로 분류할 수 있다.
<실시예 11>
서열데이터(Sequence data) 분석
XL70 서열분석 라이브러리 키트(XL70 sequencing library kit)로 피로시퀀싱을 실시하여 647,759개의 서열분석 판독(sequencing read)을 확보한 후, BlastN 방법으로 서열 라이브러리 제작과정에서 3' 말단에 부착시킨 어댑터 서열(GSB-RP)을 모두 제거하고, 5' 말단 부위에 어댑터 프라이머로 부착시킨 GSB-SP6와 GSB-T7를 가지고 있는 서열분석 판독 171,104개와 234,984개를 각각 확보하였다. 확보한 각각의 서열분석 판독을 3D-풀 라이브러리(3D-pool library) 제작에 사용한 바코드 서열을 이용하여 60종류(X축: 24, Y축: 16, Z축: 20)로 다시 분리한 후, 바코드별로 모아진 서열분석 판독은 CAP3 어셈블러(assembler)를 사용하여 콘틱으로 만들었다. X축, Y축, Z축 각각에 해당하는 콘틱들간에 상동성 검색을 실시하여 동일한 서열별로 분류한 후, SP6 및 T7에서 위치가 동일한 클론별로 재분류하여 최종적으로 BAC 클론의 위치를 규명하였다. 서열데이터 분석구성도를 도 11에 나타내었다.
BlastN을 사용하여 서열 상동성을 X축, Y축, Z축으로 상호교차검색 한 결과, 본 실험에 사용한 7,680종류(384-웰 플레이트 20장)에서 클론의 위치가 판명된 BAC 클론의 수는 총 7,108개(실험군의 93%)였으며, 각 판독들의 서열 길이는 17bp~793bp 분포를 보였으며, 평균길이는 268bp였다. 위치가 판명된 7,108개 중에서 BAC 클론의 양쪽 말단서열 SP6와 T7이 모두 확인된 클론은 5,062개(실험군의 66%), SP6만 확인된 클론은 1,153개(실험군의 15%), T7만 확인된 클론은 893개(12%)였다.
<실시예 12>
BAC 말단 서열을 이용한 유전체 물리지도(genome physical map) 작성
HiSeq 2500, GS-FLX 등 NGS 기기를 사용하여 샷건(shot gun) 서열분석 및 어셈블리를 통해 얻은 콘틱과 스캐폴드 서열에 대해 본 발명에서 얻은 BAC 말단서열을 BLASTN 방법으로 상동성 검색을 실시하여 유전체 물리지도를 작성하였으며, 그 결과를 도 12에 나타내었다. 위치가 규명된 BAC의 양쪽말단 염기서열(SP6는 검정색, T7은 빨간색)을 이용하여 유전체 구조에 맞게 스캐폴드의 순서를 규명할 수가 있었다.
본 발명은 벡터에 삽입된 외래 유전체(클론)의 DNA 말단 염기서열만을 특이적으로 증폭할 수 있는 프라이머를 사용하여 NGS sequencing방법으로 외래 유전체의 DNA 말단염기서열 정보만을 신속하고 저렴한 비용으로 대량 생산하고, 생산된 정보에 해당하는 클론의 위치를 규명할 수 있는 방법을 제공할 수 있어 유전체 해독분야에서 유용하게 활용될 수 있을 것이다.

Claims (8)

  1. 분석 대상의 유전체 DNA를 추출하여 BAC 라이브러리를 제작하고 각 BAC 클론을 384-웰 플레이트에 모아 세포 스톡을 제작하는 단계;
    상기 세포 스톡용 384-웰 플레이트 20장의 BAC 클론들을 3차원적으로 조합하여 60개 저장소로 구성된 3차원 BAC 라이브러리를 제작하는 단계;
    대장균 배양액을 이용하여 상기 3차원 BAC 라이브러리의 BAC 클론들을 증식시킨 후 BAC 클론 DNA를 추출하는 단계;
    상기 추출한 BAC 클론 DNA를 분석에 적합한 크기로 절단하는 단계;
    상기 절단한 DNA 단편의 양쪽 말단을 평활 말단화시킨 후 단편의 양쪽 말단에 Y-형 어댑터 프라이머를 부착하는 단계;
    BAC 벡터의 SP6 프로모터 서열을 포함하는 프라이머 또는 T7 프로모터 서열을 포함하는 프라이머를 이용하여 상기 유전체 DNA의 양쪽 말단 서열을 증폭하는 단계;
    상기 증폭된 DNA를 정제하여 NGS 서열분석에 적합한 크기로 분획하는 단계;
    상기 분획된 DNA를 emPCR에 의하여 증폭하는 단계;
    상기 증폭된 DNA의 서열을 NGS로 분석하여 서열데이터를 얻는 단계; 및
    상기 서열데이터를 이용하여 BAC 클론의 위치를 규명하는 단계를 포함하는, 차세대 염기서열분석법을 이용한 유전체 DNA 말단서열의 대량 분석방법.
  2. 제1항에 있어서,
    상기 세포 스톡용 384-웰 플레이트에 X축(수평), Y축(수직) 및 Z축(플레이트)으로 수집한 유전체 DNA의 유래를 구별할 수 있도록 횡렬, 종렬 및 플레이트 단위로 표식자 번호를 붙이는 것을 특징으로 하는 방법.
  3. 제2항에 있어서,
    상기 3차원 BAC 라이브러리는,
    세포 스톡용 384-웰 플레이트에서 동일한 번호에 해당하는 수평축(X축)의 24개의 BAC 클론들을 하나의 저장소에 모으는 단계;
    세포 스톡용 384-웰 플레이트에서 동일한 번호에 해당하는 수직축(Y축)의 16개의 BAC 클론들을 하나의 저장소에 모으는 단계; 및
    세포 스톡용 384-웰 플레이트 한 장에 담겨있는 384개 BAC 클론들을 하나의 저장소에 모아 플레이트 풀(Z축)을 얻는 단계를 포함하는 방법에 의하여 제작되는 것을 특징으로 하는 방법.
  4. 제1항에 있어서,
    상기 Y-형 어댑터 프라이머는 서열번호 1과 서열번호 2의 염기서열을 가지고 말단의 5개의 염기서열이 비상보적인 프라이머인 것을 특징으로 하는 방법.
  5. 제1항에 있어서,
    상기 추출한 BAC 클론 DNA는 초음파를 사용하여 절단하는 것을 특징으로 하는 방법.
  6. 제1항에 있어서,
    상기 SP6 프로모터 서열을 포함하는 프라이머는 서열번호 3의 포워드 어댑터, 3차원 BAC 라이브러리에서의 위치를 표시하는 바코드 서열 및 서열번호 4의 SP6 프로모터로 이루어진 GSB-SP6 프라이머인 것을 특징으로 하는 방법.
  7. 제1항에 있어서,
    상기 T7 프로모터 서열을 포함하는 프라이머는 서열번호 5의 포워드 어댑터, 3차원 BAC 라이브러리에서의 위치를 표시하는 바코드 서열 및 서열번호 6의 T7 프로모터로 이루어진 GSB-T7 프라이머인 것을 특징으로 하는 방법.
  8. 제1항에 있어서,
    상기 유전체 DNA 양쪽 말단 서열의 증폭은 제6항의 GSB-SP6 프라이머와 서열번호 7의 GSB-RP 프라이머, 또는 제7항의 GSB-T7 프라이머와 서열번호 7의 GSB-RP 프라이머를 사용하여 행하는 것을 특징으로 하는 방법.
PCT/KR2016/012357 2015-11-26 2016-10-31 차세대 염기서열분석법을 이용한 유전체 dna 말단 서열의 대량 분석방법 WO2017090904A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0166022 2015-11-26
KR1020150166022A KR101632881B1 (ko) 2015-11-26 2015-11-26 차세대 염기서열분석법을 이용한 유전체 dna 말단 서열의 대량 분석방법

Publications (1)

Publication Number Publication Date
WO2017090904A1 true WO2017090904A1 (ko) 2017-06-01

Family

ID=56353469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012357 WO2017090904A1 (ko) 2015-11-26 2016-10-31 차세대 염기서열분석법을 이용한 유전체 dna 말단 서열의 대량 분석방법

Country Status (2)

Country Link
KR (1) KR101632881B1 (ko)
WO (1) WO2017090904A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101632881B1 (ko) * 2015-11-26 2016-06-23 주식회사 지앤시바이오 차세대 염기서열분석법을 이용한 유전체 dna 말단 서열의 대량 분석방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020061523A1 (en) * 1998-10-20 2002-05-23 Schwartz David C. Method for analyzing nucleic acid reactions
KR101632881B1 (ko) * 2015-11-26 2016-06-23 주식회사 지앤시바이오 차세대 염기서열분석법을 이용한 유전체 dna 말단 서열의 대량 분석방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406720B1 (ko) 2012-06-19 2014-06-13 (주)지노첵 차세대 염기서열 분석법을 위한 융합 프라이머의 설계방법 그리고 이러한 융합 프라이머 및 차세대 염기서열 분석법을 이용한 표적 유전자의 유전자형 분석방법
KR102118180B1 (ko) 2013-08-07 2020-06-02 주식회사 시선바이오머티리얼스 차세대 염기서열 분석법을 이용한 체성돌연변이 검출방법
KR101447593B1 (ko) 2013-12-31 2014-10-07 서울대학교산학협력단 차세대 시퀀싱 방법을 이용하여 생물체의 엽록체, 미토콘드리아 또는 핵 리보솜 dna의 완전한 게놈 서열을 해독하는 방법
KR101533792B1 (ko) 2015-02-24 2015-07-06 대한민국 Ngs 기반 인간 객체의 상염색체 분석방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020061523A1 (en) * 1998-10-20 2002-05-23 Schwartz David C. Method for analyzing nucleic acid reactions
KR101632881B1 (ko) * 2015-11-26 2016-06-23 주식회사 지앤시바이오 차세대 염기서열분석법을 이용한 유전체 dna 말단 서열의 대량 분석방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DALLOUL ET AL.: "Multi-platform Next-generation Sequencing of the Domestic Turkey (Meleagris Gallopavo): Genome Assembly and Analysis", PLOS BIOLOGY, vol. 8, no. 9, September 2010 (2010-09-01), pages 1 - 21, XP055386038 *
MASCHER ET AL.: "Application of Genotyping-by-sequencing on Semiconductor Sequencing Platforms: a Comparison of Genetic and Reference-based Marker Ordering in Barley", PLOS ONE, vol. 8, no. 10, October 2013 (2013-10-01), pages 1 - 11, XP055386041 *
MYBURG ET AL.: "The Genome of Eucalyptus Grandis", NATURE, vol. 510, 19 June 2014 (2014-06-19), pages 356 - 362, XP055386033 *

Also Published As

Publication number Publication date
KR101632881B1 (ko) 2016-06-23

Similar Documents

Publication Publication Date Title
CN105506103B (zh) 线粒体基因组扩增的通用引物混合物及其设计和扩增方法
CN109468384B (zh) 一种同时检测45个y基因座的复合扩增检测试剂盒
WO2016195382A1 (ko) 바코드 서열을 포함하는 어댑터를 이용한 차세대 염기서열 분석 방법
CN108611398A (zh) 通过新一代测序进行基因分型
EP3885448A1 (en) Analysis of chromatin using a nicking enzyme
CN106574287A (zh) 用于核酸扩增的样品制备
CN108192963B (zh) 一种准确鉴定金钱鱼遗传性别的特异分子标记及其引物
CN106676099B (zh) 构建简化基因组文库的方法及试剂盒
WO2013191400A1 (ko) 차세대 염기서열 분석법을 위한 융합 프라이머의 설계방법 그리고 이러한 융합 프라이머 및 차세대 염기서열 분석법을 이용한 표적 유전자의 유전자형 분석방법
WO2014092458A1 (ko) 코돈 조합화 및 변이유발을 이용한 유전자 라이브러리의 합성 방법
Tokarev et al. Hexokinase as a versatile molecular genetic marker for Microsporidia
CN106591427B (zh) 一种鉴别两种散白蚁的issr-scar标记方法
WO2017090904A1 (ko) 차세대 염기서열분석법을 이용한 유전체 dna 말단 서열의 대량 분석방법
Yoshikawa et al. Development of microsatellite markers for the two giant salamander species (Andrias japonicus and A. davidianus)
Nthangeni et al. Development of a versatile cassette for directional genome walking using cassette ligation-mediated PCR and its application in the cloning of complete lipolytic genes from Bacillus species
WO2020171596A1 (ko) 가노더마 속 미생물 검출 및 뿌리 썩음병 진단을 위한 조성물 및 이를 이용한 방법
CN111575386B (zh) 一种检测人y-snp基因座的荧光复合扩增试剂盒及应用
WO2011078448A1 (ko) 메타게놈 유래 알칼린 포스파타아제
KR101448964B1 (ko) 유채 품종 특이적 마커, 프라이머 및 이의 용도
Matsumura et al. DeepSuperSAGE: high‐throughput transcriptome sequencing with now‐and next‐generation sequencing technologies
WO2020171604A1 (ko) Ganoderma 속 미생물 검출 및 뿌리 썩음병 진단을 위한 조성물 및 이를 이용한 방법
WO2020171595A1 (ko) 가노더마 속 미생물 검출 및 뿌리 썩음병 진단을 위한 조성물 및 이를 이용한 방법
KR101435440B1 (ko) 식물의 품종 구분용 마커의 제조방법
KR101435443B1 (ko) 유채 품종 특이적 마커, 프라이머 및 이의 용도
KR102081586B1 (ko) 양파의 항존 유전자 및 이를 분리하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868803

Country of ref document: EP

Kind code of ref document: A1