WO2017090760A1 - Culture device - Google Patents

Culture device Download PDF

Info

Publication number
WO2017090760A1
WO2017090760A1 PCT/JP2016/085072 JP2016085072W WO2017090760A1 WO 2017090760 A1 WO2017090760 A1 WO 2017090760A1 JP 2016085072 W JP2016085072 W JP 2016085072W WO 2017090760 A1 WO2017090760 A1 WO 2017090760A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
bag
space
expansion
portions
Prior art date
Application number
PCT/JP2016/085072
Other languages
French (fr)
Japanese (ja)
Inventor
樋口 朗
浩幸 内藤
慶司 本庄
透 安孫子
林部 和弥
工藤 泰之
広和 小田桐
Original Assignee
株式会社京都製作所
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京都製作所, デクセリアルズ株式会社 filed Critical 株式会社京都製作所
Priority to JP2017552749A priority Critical patent/JP6600364B2/en
Publication of WO2017090760A1 publication Critical patent/WO2017090760A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/14Bags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions

Definitions

  • the present invention relates to a culture apparatus used for culturing microorganisms and animal and plant cells.
  • the culture bag is a bag body in which a culture solution in which a culture target (for example, cells) is suspended at a constant concentration (number) is accommodated.
  • the culture bag also includes a port for supplying a mixed gas whose concentration is controlled, such as oxygen and carbon dioxide, a port for supplying or collecting a culture solution, a port for acquiring a sample, and the like.
  • a culture bag is made of an elastomer material, and is maintained in a prescribed shape by the pressure of the mixed gas during use.
  • the position and orientation of such a culture bag is periodically changed in order to promote culture, for example, to promote cell proliferation.
  • the culture bag described in Patent Document 1 is fixed on a stage that swings about a swing axis.
  • the amount of mixed gas taken into the culture solution for example, the amount of dissolved oxygen, is determined by the rocking stroke, the rocking angle, and the rocking speed, which are the rocking conditions of the culture bag.
  • the rocking condition is determined by the nature of the culture object (for example, a cell).
  • the gas involved in the collision between the wave of the culture solution and the inner wall surface of the culture bag may become bubbles.
  • bubbles are generated when the culture wave is large.
  • bubbles When the bubble bursts, the cells around the bubble are damaged by the impact caused by the bubble, and in some cases, cell death may be caused.
  • bubbles may aggregate to form large bubbles (foam), and dissolution of the mixed gas into the culture solution may be inhibited by the large bubbles.
  • the larger the wave of the culture solution the more the culture of the culture target (for example, cell proliferation) can be inhibited.
  • the periodic change in the position and orientation of the culture bag should be suppressed, that is, the change amount should be reduced and the period should be lengthened.
  • the change amount should be reduced and the period should be lengthened.
  • an object of the present invention is to suppress the generation of bubbles in a culture solution that causes damage and damage to a culture target and the generation of waves in the culture solution that cause shear stress in culture performed while flowing the culture solution in a culture bag.
  • a culture bag having a culture part in which a culture space for containing a culture solution and performing culture is formed and made from a deformable material; First and second bag pressing portions that are deformed by pressing different parts of the culture portion of the culture bag; By controlling the first and second bag pressing portions, the first and second bag pressing portions cause different portions of the culture portion to be deformed at different timings, thereby generating a culture fluid flow in the culture space. And a culture device having a portion.
  • the present invention in the culture performed while flowing the culture solution in the culture bag, it is possible to suppress the generation of bubbles in the culture solution that cause damage to the culture target and shear stress.
  • FIG. 1 is a schematic perspective view of a culture bag used in a culture apparatus according to an embodiment of the present invention.
  • Top view of culture bag A longitudinal sectional view along the Yb axis of FIG. Longitudinal sectional view along the Xb axis in FIG.
  • swelling bag part of a culture bag The block diagram which shows the structure of the culture apparatus which concerns on one embodiment of this invention.
  • production method of the flow of the culture solution by several culture bag parts The figure for demonstrating the generation
  • FIG. 7C The figure for demonstrating the generation
  • Longitudinal sectional view along the Xb axis in FIG. The figure which shows schematically the culture apparatus which concerns on different embodiment of this invention.
  • a culture apparatus includes a culture bag that includes a culture part in which a culture space in which culture medium is stored and culture is formed, and is made of a deformable material, and is pressed from the outside.
  • a culture bag that includes a culture part in which a culture space in which culture medium is stored and culture is formed, and is made of a deformable material, and is pressed from the outside.
  • the culture solution can be flowed in the culture space without changing the position and orientation of the culture bag. Therefore, the generation
  • the first and second bag pressing portions are a plurality of inflatable bags that are inflated by receiving supply of fluid, and the culture device supplies the fluid to the first and second inflatable bags, respectively.
  • the control unit controls the first and second fluid supply units so that different portions of the culture unit are deformed at different timings due to the pressures caused by the expansion of the first and second expansion bags. May be.
  • the culture bag includes an inner bag portion and an outer bag portion that accommodates the inner bag portion, the inner bag is the culture portion, and the inflatable bag has an outer surface of the inner bag portion and an inner surface of the outer bag portion at a plurality of locations.
  • the culture space of the culture part of the culture bag may be endless, and the control part may control the first and second bag pressing parts so that the culture medium circulates in the endless culture space. Thereby, the culture solution can circulate. As a result, it is possible to further suppress the generation of waves of the culture solution CF that can cause bubbles and shear stress that can damage the culture target.
  • FIG. 1 schematically shows a culture bag used in a culture apparatus according to an embodiment of the present invention.
  • FIG. 2 is a top view of the culture bag 100.
  • FIG. 3 is a cross-sectional view taken along the Yb axis of FIG.
  • FIG. 4 is a cross-sectional view along the Xb axis of FIG.
  • the culture bag 100 is a bag body in which microorganisms and cells are cultured using a culture solution.
  • the culture bag 100 is also made from a deformable material, such as polyethylene, so that it can be compressed when discarded for single use.
  • the culture bag 100 includes a main body 102 for culturing microorganisms and cells by containing a culture solution in which a culture target (for example, cells) is suspended at a certain concentration (number), and a sheet for holding the main body 102.
  • a culture target for example, cells
  • the main body 102 of the culture bag 100 is a double-structured bag, and the inner bag 106 is a culture unit for accommodating the culture solution CF and performing culture.
  • the main body 102 includes a cover part (outer bag part) 108 that accommodates the culture part 106 so as to cover the culture part 106 over the whole.
  • the culture part 106 is made of a deformable material, preferably an elastic material such as an elastomer material.
  • the cover part 108 that accommodates the culture part 106 is made of a material that is harder (or less likely to deform) than the material of the culture part 106.
  • the culture part (inner bag part of the main body part 102) 106 includes a culture space 110 in which the culture solution CF is accommodated and cultured.
  • the culture space 110 is an endless circumferential space in which the culture solution can circulate, and is annular, and more specifically, an annular (doughnut-shaped) space having a circular longitudinal section. is there.
  • the rotation direction of the annular culture space 110 that is the rotation space is defined as R1.
  • An axis orthogonal to the plane including the circumferential direction R1 is defined as a third bag axis Zb.
  • the axes that are included in the plane including the rotation direction R1, are orthogonal to the third bag axis Zb, and are orthogonal to each other are defined as first and second bag axes Xb and Yb.
  • the circumferential direction of the longitudinal section of the annular culture space 110 orthogonal to the circumferential direction R1 is defined as the longitudinal section circumferential direction R2.
  • the third bag axis Zb is set as a central axis that passes through the center of the annular shape. Further, the sheet-like bracket portion 104 is developed along the first and second bag axes Xb and Yb.
  • the bracket portion 104 that holds the main body portion 102 of the culture bag 100 functions as a bracket for attaching the culture bag 100 to a culture device described later.
  • the main body portion 102 is provided in the bracket portion 104 so as to penetrate the bracket portion 104. That is, the main body portion 102 is divided into an upper half 102a (a portion located on the upper side when attached to a culture apparatus described later) and a lower half 102b by the bracket portion 104. However, the culture space 110 of the main body portion 102 passes through the bracket portion 104.
  • the main body 102 of the culture bag 100 is provided with a plurality of ports (hoses) 112, 114, 116, 118, and 120.
  • Each of the plurality of ports 112, 114, 116, 118, and 120 communicates with the culture space 110 of the culture unit 106.
  • the culture medium port 112 is a port used when supplying the culture medium CF to the culture space 110 of the culture unit 106 and collecting the culture medium CF from the culture space 110.
  • the culture medium port 112 is provided in the upper half 102 a of the main body 102.
  • the sampling port 114 is used for acquiring a sample of microorganisms or cells cultured in the culture space 110 of the culture unit 106.
  • a specified amount of a culture solution (for example, a cell suspension) can be collected from the culture bag 100 via the port 114.
  • the progress of the culture can be known by observing the collected suspension with a microscope or the like. For example, the degree of cell growth can be measured by counting the number of cells through a microscope.
  • the sampling port 110 is a port including a luer lock connector with a valve, for example.
  • the sampling port 114 extends from the lower half 102 b of the main body portion 102 and opens at the bracket portion 104.
  • the first gas supply port 116 is a port used for supplying a mixed gas such as oxygen and carbon dioxide necessary for culture into the culture space 110 of the culture unit 106.
  • the gas supply port 116 extends from the lower half 102 b of the main body 102.
  • the exhaust port 118 is a port used for exhausting the culture space 110 of the culture unit 106 or adjusting the pressure in the culture space 110 by the exhaust.
  • the exhaust port 118 extends from the upper half 102 a of the main body 102.
  • the second gas supply port 120 is used to supply a mixed gas such as oxygen and carbon dioxide necessary for culture into the culture space 106 of the culture unit 102, similarly to the first gas supply port 116. Port.
  • the second gas supply port 120 extends from the upper half 102 a of the main body 102. Although details will be described later, in the case of the present embodiment, the second gas supply port 120 is mainly used, and the first gas supply port 116 is used in an auxiliary manner.
  • the position in the circumferential direction R ⁇ b> 2 may be changed depending on the use (culture type) of the culture bag 100.
  • the first and second gas supply ports 116 and 120 and the exhaust port 118 are provided with filters for suppressing entry of foreign matter into the culture space 110 of the culture bag 100.
  • the body portion 102 of the culture bag 100 further includes a plurality of air supply ports 122 ⁇ / b> A, 122 ⁇ / b> B, 122 ⁇ / b> C, And 122D are provided. These air supply ports will be described.
  • FIG. 5 is a cross-sectional view of the main body 102 along the circular direction R1 of the annular culture space 110 and perpendicular to the radial direction D (see FIG. 2).
  • these air supply ports 122A, 122B, 122C, and 122D do not communicate with the culture space 110, but communicate with the expansion bag portions 124A, 124B, 124C, and 124D.
  • the expansion bag portions 124A, 124B, 124C, and 124D are configured by a plurality of spaces formed between the culture portion 106 and the cover portion 108.
  • the outer surface of the culture unit 106 and the inner surface of the cover unit 108 are joined (for example, welded) at a plurality of joints 126, so that a plurality of independent divided spaces, that is, the expansion bag portions 124A, 124B, 124C, and 124D is formed.
  • each of these inflatable bag portions 124A, 124B, 124C, and 124D is an annular space that circulates the culture portion 106 in the longitudinal section circumferential direction R2.
  • the culture medium port 112 the sampling port 114, the first gas supply port 116, the exhaust port 118, and the second gas supply port 120 are provided in the culture part (inner bag part) 106.
  • the culture portion 106 and the cover portion (outer bag portion) 108 are provided at a joint 126 (cross-hatched portion).
  • the air supply ports 122A, 122B, 122C, and 122D communicate with the plurality of inflatable bag portions 124A, 124B, 124C, and 124D, respectively.
  • each of the plurality of expansion bag portions 124A, 124B, 124C, and 124D receives supply of compressed air intermittently and repeats expansion and contraction.
  • each of the expansion bag parts 124A, 124B, 124C, and 124D intermittently presses different parts of the culture part 106 from the outside, thereby deforming the different parts of the culture part 106 at different timings. .
  • a flow of the culture solution CF in the circulation direction R1 is generated in the culture space 110.
  • FIG. 6 shows a configuration of the culture apparatus 10 for performing culture using the culture solution CF in a state where the culture solution CF circulates in the circulation direction R1 in the annular culture space 110 of the culture bag 100. It is a block diagram.
  • the culture apparatus 10 includes a vent valve 50 connected to the exhaust port 118 of the culture bag 100, a flow rate adjustment valve 52 connected to the first gas supply port 116, and a second gas supply port.
  • a flow control valve 54 connected to 120 is included.
  • the vent valve 50 is a valve for adjusting the pressure in the culture space 110 by exhausting the culture bag 110 from the culture space 110 to the outside. Therefore, the vent valve 50 is disposed between the exhaust port 118 of the culture bag 100 and the outside air. By adjusting the opening degree of the vent valve 50, the pressure of the culture space 110 is adjusted.
  • the flow rate adjusting valves 52 and 54 are valves for adjusting the amount of mixed gas of oxygen and carbon dioxide supplied to the culture space 110 of the culture bag 100.
  • the flow control valve 52 is connected to the first gas supply port 116 of the culture bag 100, and the flow control valve 54 is connected to the second gas supply port 120.
  • the flow control valves 52 and 54 are connected to an oxygen source (for example, an oxygen cylinder) 61 and a carbon dioxide source (for example, a carbon dioxide cylinder) 62 through on-off valves 57 and 58 and flow control valves 59 and 60.
  • an oxygen source for example, an oxygen cylinder
  • a carbon dioxide source for example, a carbon dioxide cylinder
  • the flow rate adjustment valve 52 is connected to a compressed air source (for example, an air cylinder) 63 via an on-off valve 57. Further, the flow rate adjustment valve 54 is connected to the compressed air source 63 via the on-off valve 58. Further, an oxygen source 61 is connected between the on-off valves 57 and 58 and the compressed air source 63 via a flow rate adjustment valve 59. A carbon dioxide source 62 is connected between the on-off valves 57 and 58 and the compressed air source 63 via the flow rate control valve 60.
  • a compressed air source for example, an air cylinder
  • the flow rate adjustment valve 54 is connected to the compressed air source 63 via the on-off valve 58.
  • an oxygen source 61 is connected between the on-off valves 57 and 58 and the compressed air source 63 via a flow rate adjustment valve 59.
  • a carbon dioxide source 62 is connected between the on-off valves 57 and 58 and the compressed air source 63 via the flow rate control valve 60.
  • Oxygen from the oxygen source 61 and carbon dioxide from the carbon dioxide source 62 are mixed together with the compressed air from the compressed air source 63.
  • the mixed gas accompanying the compressed air is supplied to only the flow control valve 54 or both of the flow control valves 52 and 54, that is, only the second gas supply port 120 or both the first and second gas supply ports 116 and 120. Sent to.
  • the amount of oxygen and the amount of carbon dioxide in the mixed gas are adjusted by changing the opening degree of the flow control valves 59 and 60. Further, by selectively opening and closing the on-off valves 57 and 58, only the second gas supply port 120 through only the flow control valve 54 or both of the first and second through the flow control valves 54 and 56 are provided.
  • the mixed gas is supplied to both of the gas supply ports 116 and 120. Furthermore, the supply amount of the mixed gas to the first and second gas supply ports 116 and 120 is adjusted by changing the opening degree of each of the flow rate adjustment valves 52 and 54.
  • oxygen and carbon dioxide are supplied to the culture space 110 of the culture bag 100 through the second gas supply port 120, and the amount of oxygen supplied to the culture space 110 by the flow rate control valves 54, 59, and 60, that is, The oxygen concentration in the culture solution CF is adjusted, and the amount of carbon dioxide supplied to the culture space, that is, the pH value of the culture solution CF is adjusted. Moreover, the shape of the culture part 106 (culture space 110) of the culture bag 100 is maintained in a substantially constant shape by the compressed air.
  • the on-off valve 57 When the oxygen concentration or pH value in the culture solution CF is lower than the set value, the on-off valve 57 is opened, and oxygen and carbon dioxide are mixed into the culture space 110 of the culture bag 100 via the first gas supply port 116. Gas is additionally supplied.
  • the culture solution CF It is possible to finely control the oxygen concentration and pH value.
  • the second gas supply port 120 and the exhaust port 118 are not used.
  • the culture apparatus 10 also has flow control valves 66A, 66B, 66C, and 66D and a switching valve as an air supply unit that supplies compressed air to the plurality of expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100.
  • flow control valves 66A, 66B, 66C, and 66D and a switching valve as an air supply unit that supplies compressed air to the plurality of expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100.
  • 68A, 68B, 68C, and 68D are flow control valves 66A, 66B, 66C, and 66D and a switching valve as an air supply unit that supplies compressed air to the plurality of expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100.
  • the flow control valves 66A, 66B, 66C, and 66D are connected to the expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100 through the air supply ports 122A, 122B, 122C, and 122D. Further, the flow rate adjusting valves 66A, 66B, 66C, and 66D are connected to the outside air and the compressed air source 70 via the switching valves 68A, 68B, 68C, and 68D.
  • the switching valves 68A, 68B, 68C, and 68D By switching the switching valves 68A, 68B, 68C, and 68D, the switching valves 68A, 68B, 68C, and 68D, the flow control valves 66A, 66B, 66C, and 66D, the air supply ports 122A, 122B, 122C, and Compressed air is supplied from the compressed air source 70 to each of the expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100 via 122D.
  • the air in the expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100 includes the air supply ports 122A, 122B, 122C, and 122D, the flow control valves 66A, 66B, 66C, and 66D, and the switching valve.
  • 68A, 68B, 68C, and 68D are discharged to the outside air.
  • the compressed air source 63 and the compressed air source 70 may be the same compressed air source.
  • the culture apparatus 10 further includes a pH sensor 72, a temperature sensor 74, and a dissolved oxygen sensor 76 in order to monitor the state of the culture solution CF during culture.
  • the pH sensor 72 detects the pH value of the solvent liquid CF in the culture space 110
  • the temperature sensor 74 detects the temperature of the solvent liquid CF
  • the dissolved oxygen sensor 76 detects the oxygen concentration of the solvent liquid CF.
  • the culture apparatus 10 has a control box 80 for controlling 57 and 58 and the heater 78.
  • the heater 78 is for adjusting the temperature of the culture solution CF in the culture space 110 of the culture bag 100.
  • the control box 80 includes a valve control unit 82 that controls the plurality of valves 50, 52, 54, and 57 to 60, and a sensor management unit 84 that acquires detection values of the pH sensor 72, the temperature sensor 74, and the dissolved oxygen sensor 76.
  • the sensor management unit 84 of the control box 80 is connected to the pH sensor 72, the temperature sensor 74, and the dissolved oxygen sensor 76, and is detected by the pH value of the culture solution CF detected by the pH sensor 72 and the temperature sensor 74.
  • the temperature of the culture solution CF and the oxygen concentration of the solvent solution CF detected by the dissolved oxygen sensor 76 are periodically acquired.
  • the valve control unit 82 controls the plurality of valves 50, 52, 54, and 57 to 60 so that the pH value and the oxygen concentration of the solvent liquid CF acquired by the sensor management unit 84 are maintained at the set values. .
  • the temperature control unit 86 controls the heater 78 so that the temperature of the solvent liquid CF acquired by the sensor management unit 84 is maintained at the set value.
  • the flow generator 88 is connected to the flow control valves 66A, 66B, 66C, and 66D and the switching valves 68A, 68B, 68C, and 68D, and based on the flow rate of the culture fluid CF set by the user, To control. By controlling these valves, the flow generator 88 controls the expansion and contraction of the expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100, respectively. Thereby, a flow of the culture solution CF is generated in the culture space 110 of the culture bag 100.
  • control for the flow control valves 66A, 66B, 66C, and 66D and the switching valves 68A, 68B, 68C, and 68D that is, the expansion patterns of the expansion bag portions 124A, 124B, 124C, and 124D that generate the flow of the culture fluid CF. Will be described later.
  • the culture environment (pH value, temperature, and oxygen concentration of the culture medium CF) set by the user is maintained by the valve control unit 82, the sensor management unit 84, and the temperature control unit 86.
  • the valve control unit 82, the sensor management unit 84, the temperature control unit 86, and the flow generation unit 88 can output a control signal (current) to each of the plurality of valves 50, 52, 54, and 57 to 60.
  • a detection signal (current) from the pH sensor 72, the temperature sensor 74, and the dissolved oxygen sensor 76 can be received, and driving power can be supplied to the heater 78.
  • the flow control valves 66A, 66B, 66C and 66D and switching valves 68A, 68B, 68C and 68D can output control signals (currents) to, for example, circuit boards.
  • the culture apparatus 10 has a control unit 90 for the user to set culture conditions.
  • the control unit 90 is, for example, a computer, such as an input device 92 such as a mouse or a keyboard for inputting culture conditions desired by the user, and a display for the user to check the culture conditions and the state during culture. And an output device 94.
  • the control unit 90 commands the control box 80 to maintain the culture conditions (pH value, temperature, oxygen concentration, and flow rate of the culture medium CF) set by the user via the input device 92.
  • expansion patterns of the expansion bag portions 124A, 124B, 124C, and 124D that generate the flow of the culture solution CF will be described with reference to FIGS. 7A to 7D.
  • the expansion pattern in which the flow of the culture solution CF flowing in the direction of arrow A is generated will be described.
  • the inflation bag portion 124B is inflated. Most of the culture fluid CF pressed by the expansion of the expansion bag portion 124B flows in the direction of arrow A. That is, most of the culture fluid CF does not flow to the expansion bag portion 124A side where the flow path cross-sectional area is small due to the expansion of the expansion bag portion 124A, but the flow path cross-sectional area is increased because the expansion bag portion 124C is contracted. It flows toward the large inflation bag portion 124C.
  • the inflatable bag portion 124C on the downstream side in the arrow A direction is inflated with respect to the inflatable bag portion 124B.
  • Most of the culture solution CF pressed by the expansion of the expansion bag portion 124C flows in the arrow A direction.
  • the expansion bag portion 124A is contracted substantially simultaneously with the expansion of the expansion bag portion 124C.
  • the inflatable bag portion 124D on the downstream side in the arrow A direction is inflated with respect to the inflatable bag portion 124C.
  • Most of the culture solution CF pressed by the expansion of the expansion bag 124D flows in the direction of arrow A.
  • the inflation bag portion 124B is contracted substantially simultaneously with the inflation of the inflation bag portion 124D.
  • the inflatable bag portion 124D in the state where the inflatable bag portion 124D is inflated, the inflatable bag portion 124A on the downstream side in the arrow A direction is inflated with respect to the inflatable bag portion 124C. Most of the culture solution CF pressed by the expansion of the expansion bag portion A flows in the direction of arrow A. The inflation bag portion 124C is contracted substantially simultaneously with the inflation of the inflation bag portion 124A.
  • the culture solution CF flows in the direction of arrow A by sequentially inflating the plurality of inflatable bag portions 124A, 124B, 124C, and 124D.
  • the culture solution CF is intermittently accelerated by the expansion of the expansion bag portions 124A, 124B, 124C, and 124D. Therefore, the flow of the expansion liquid CF is not a constant flow, but a pulsating flow having a different speed (pressure) in the circulation direction R1.
  • the culture solution CF flows in the circulation direction R1 while being stirred.
  • the generation of bubbles of the culture solution that can cause damage to the culture target and shear stress is suppressed. be able to.
  • the culture solution CF can be flowed in the culture space 110 without changing the position and orientation of the culture bag 100. Therefore, generation
  • the culture space 110 in which the culture solution CF is contained and cultured is an annular space
  • the culture solution CF can circulate. Therefore, the generation
  • the inner wall surface of the culture space 110 and the culture solution are compared with the case where the flow direction changes in a disordered manner due to the circulation of the culture solution CF (by restricting the flow direction to the circulation direction R1). Collisions with CF waves are suppressed. Specifically, the occurrence of a collision in which the flow direction of the culture fluid CF changes rapidly (for example, the flow direction is reversed) is suppressed. Thereby, generation
  • the generated waves of the culture solution CF are also smaller than when the flow direction changes randomly. That is, the generation
  • the annular culture space 110 through which the culture solution CF flows is an endless peripheral space in which the culture solution CF can circulate, the occurrence of a region where the flow rate is substantially zero (so-called stagnation) in the culture solution CF is suppressed. Is done. Therefore, the culture target is prevented from aggregating in a region where the flow rate is substantially zero. As a result, damage to the culture target is suppressed.
  • the “endless circular space in which the culture medium can circulate” refers to an inner surface (for example, in FIG. 2) in which the culture liquid can circulate and restricts the movement of the culture liquid to the center of rotation. It means a space provided with an annular culture space 110 shown in FIG. Further, instead of the annular space of the present embodiment, the culture space may be a three-dimensional shape space such as an “8” shape that intersects three-dimensionally.
  • the convex portions generated in the culture space 110 when the inflated bag portions 124A to 124D of the present embodiment press the culture portion 106 of the culture bag 100 from the outside are necessarily rounded.
  • the shape becomes distorted. Therefore, since it is not as sharp as an impeller that rotates and stirs the culture solution, the shear stress generated by this convex portion is smaller than the shear stress caused by the impeller. Further, in the case of the impeller, a large shear stress is locally generated, but in the case of this convex portion, a small shear stress is generated in a distributed manner. Therefore, the damage to the culture target is also suppressed by the shape feature of the convex portion.
  • the expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100 communicate with the outside air via the switching valves 68A, 68B, 68C, and 68D. It shrinks by being done.
  • the expansion bag portions 124A, 124B, 124C, and 124D may be contracted by sucking the internal air by a vacuum pump (not shown). In this case, the expansion bag portion is contracted at high speed. Therefore, if the expansion of the expansion bag portion is also performed at a high speed, a high-speed flow of the culture solution CF can be generated.
  • the expansion bag portions 124A, 124B, 124C, and 124D are annular spaces that circulate around the culture portion 106 in the circumferential direction R2 in the longitudinal section.
  • the embodiment of the present invention is not limited to this.
  • the culture bag 200 used in the culture device according to another embodiment shown in FIG. 8 has a plurality of inflatable bag portions 208A, 208B, 208C, and 208D, similarly to the culture bag 100 of the above-described embodiment. Is provided.
  • the expansion bag portions 208A, 208B, 208C, and 208D shown in FIG. 8 are not annular spaces that circulate in the circumferential direction of the longitudinal section of the culture space 212.
  • a sheet 204 made of a deformable material is attached to a part of an inner peripheral surface of an annular cover portion 206 having a circular vertical cross section through a plurality of joints.
  • a plurality of inflatable bag portions 208A, 208B, 208C, and 208D that are independent spaces are formed between the sheet 204 and the inner peripheral surface portion of the cover portion 206 to which the sheet 204 is attached.
  • a culture part is constituted by the sheet 204 and the part of the cover part 206 to which the sheet 204 is not attached, and a culture space 212 is formed therein.
  • Air supply ports 210A, 210B, 210C, and 210D are communicated with the expansion bag portions 208A, 208B, 208C, and 208D.
  • the flow of the culture solution can be formed by inflating the expansion bag portions 208A, 208B, 208C, and 208D in order.
  • the culture space 110 of the culture bag 100 is annular, but the embodiment of the present invention is not limited to this.
  • FIG. 9 is a top view of a culture bag having a substantially rectangular culture space.
  • FIG. 10 is a cross-sectional view along the Xb axis of FIG.
  • the culture bag 300 shown in FIGS. 9 and 10 has a substantially rectangular shape, and is a double bag having an inner bag portion (culture portion) 302 and an outer bag portion (cover portion) 304 that accommodates the inner bag portion 302. It is a bag of structure. In addition, a substantially rectangular culture space 312 is formed in the culture unit 302.
  • the outer surface of the culture part (inner bag part) 302 and the inner surface of the cover part (outer bag part) 304 are joined by a plurality of joints 308, whereby a plurality of inflatable bag parts 306A, 306B, 306C and 306D are formed.
  • Each of these inflatable bag portions 306A, 306B, 306C, and 306D is an annular space and communicates with the air supply ports 310A, 310B, 310C, and 310D.
  • the plurality of inflatable bag portions 306A, 306B, 306C, and 306D are arranged in the longitudinal direction of the culture bag 300 (first bag axis Xb direction). Therefore, when the plurality of inflatable bag portions 306A, 306B, 306C, and 306D are inflated in order, a culture solution flow in the longitudinal direction of the culture bag 300 is generated.
  • the culture solution cannot circulate like the above-described culture bag 100 having the annular culture space 110. Therefore, in order to suppress the collision of the flow caused by the expansion of each of the plurality of expansion bag portions, the following expansion pattern of the expansion bag portion is executed.
  • each of the plurality of inflatable bag portions 306A, 306B, 306C, and 306D is inflated one by one in order.
  • the next expansion bag portion expands to newly generate a flow of the culture solution. Thereby, the flow of the culture solution can be generated while suppressing the generation of bubbles.
  • the plurality of inflatable bag portions 124A, 124B, 124C, and 124D which are means for pressing and deforming the culture portion 106 of the culture bag 100
  • the embodiment of the present invention is not limited to this.
  • the expansion bag may be provided not on the culture bag side but on the culture device side. In this case, the culture bag has a simple structure.
  • the means for pressing and deforming the culture unit 106 of the culture bag 100 includes a plurality of inflated parts supplied with fluid (compressed air).
  • the expansion bag portions 124A, 124B, 124C, and 124D the embodiment of the present invention is not limited to this.
  • the culture apparatus 500 includes a plurality of bag pressing portions 502 that press the annular culture portion 402 of the culture bag 400 from the outside to partially deform the culture portion 402. , 504, 506, and 508.
  • the plurality of bag pressing portions 502, 504, 506, and 508 are arranged at equal intervals in the circumferential direction R1. Since the bag pressing portions 502, 504, 506, and 508 have the same configuration, the bag pressing portion 502 will be described.
  • the bag pressing portion 502 includes a pair of bag pressing bars 502A and 502B that sandwich the culture unit 402.

Abstract

A culture device comprising: a culture bag provided with a culture part in which a culture space storing a culture solution therein for performing culture is formed and which is formed of a deformable material; a plurality of bag-pressing parts which are to be pressed from outside so as to deform different sections of the culture part of the culture bag; and a control part which controls the bag-pressing parts so that different sections of the culture part are deformed at different timings by the bag-pressing parts to thereby generate a flow of the culture solution within the culture space.

Description

培養装置Incubator
 本発明は、微生物や動植物細胞などの培養に使用される培養装置に関する。 The present invention relates to a culture apparatus used for culturing microorganisms and animal and plant cells.
 従来より、微生物や動植物細胞などの培養のために、使い捨ての培養バッグが使用されている。培養バッグは、例えば特許文献1に記載するように、袋体であって、その内部に培養対象(例えば細胞)が一定の濃度(数)で懸濁された培養液が収容される。また、培養バッグは、酸素や二酸化炭素などの濃度が管理された混合ガスを内部に供給するためのポート、培養液を供給するまたは回収するためのポート、サンプルを取得するためのポートなどを備える。このような培養バッグは、エラストマー材料から構成されており、使用中、混合ガスの圧力によって規定の形状に維持されている。 Conventionally, disposable culture bags have been used for culturing microorganisms and animal and plant cells. For example, as described in Patent Document 1, the culture bag is a bag body in which a culture solution in which a culture target (for example, cells) is suspended at a constant concentration (number) is accommodated. The culture bag also includes a port for supplying a mixed gas whose concentration is controlled, such as oxygen and carbon dioxide, a port for supplying or collecting a culture solution, a port for acquiring a sample, and the like. . Such a culture bag is made of an elastomer material, and is maintained in a prescribed shape by the pressure of the mixed gas during use.
 また、このような培養バッグは、培養を促進するために、例えば細胞の増殖を促進するために、その位置姿勢が周期的に変更される。例えば、特許文献1に記載された培養バッグは、揺動軸を中心として揺動するステージ上に固定される。培養バッグの揺動条件である揺動ストローク、揺動角度、および揺動速度によって培養液に取り込まれる混合ガスの量、例えば溶存酸素量が決まる。その揺動条件は、培養対象(例えば細胞)の性質によって決定される。 Also, the position and orientation of such a culture bag is periodically changed in order to promote culture, for example, to promote cell proliferation. For example, the culture bag described in Patent Document 1 is fixed on a stage that swings about a swing axis. The amount of mixed gas taken into the culture solution, for example, the amount of dissolved oxygen, is determined by the rocking stroke, the rocking angle, and the rocking speed, which are the rocking conditions of the culture bag. The rocking condition is determined by the nature of the culture object (for example, a cell).
 これにより、培養液が流動してその液面に波が発生し、その液面(気液の界面)の面積が増加する。また、発生した培養壁の波が培養バッグの内壁面に衝突することによって破波される。その結果、積極的に混合ガスが培養液内に取り込まれる。また、培養液が撹拌され、取り込まれたガスが培養液全体に行きわたる。その結果、培養液内の細胞の増殖が促進される。 This causes the culture fluid to flow and generate waves on the liquid surface, increasing the area of the liquid surface (gas-liquid interface). Further, the generated wave of the culture wall is broken by colliding with the inner wall surface of the culture bag. As a result, the mixed gas is actively taken into the culture solution. In addition, the culture solution is agitated, and the incorporated gas reaches the entire culture solution. As a result, the proliferation of cells in the culture medium is promoted.
特表第2010-540228号公報Japanese translation of PCT publication No. 2010-540228
 ところで、培養対象の種類および培養バッグの揺動条件にもよるが、培養液の波と培養バッグの内壁面との衝突に巻き込まれた気体が泡になることがある。特に、培養液の波が大きい場合に泡が発生する。 By the way, although depending on the type of culture target and the conditions of rocking of the culture bag, the gas involved in the collision between the wave of the culture solution and the inner wall surface of the culture bag may become bubbles. In particular, bubbles are generated when the culture wave is large.
 その泡が破裂すると、それによって生じた衝撃によって泡周辺の細胞がダメージを受け、場合によっては細胞死が引き起こされることがある。また、泡が凝集して大きな泡(泡沫)を形成し、その大きな泡によって培養液への混合ガスの溶解が阻害されることがある。 When the bubble bursts, the cells around the bubble are damaged by the impact caused by the bubble, and in some cases, cell death may be caused. In addition, bubbles may aggregate to form large bubbles (foam), and dissolution of the mixed gas into the culture solution may be inhibited by the large bubbles.
 さらに、培養液の波が培養バッグの内壁面に衝突して培養液の流れ方向が急激に変化するとシェアストレスが生じ、その生じたシェアストレスが大きいと細胞がダメージを受けることがある。培養液の波が大きいほど、大きなシェアストレスが生じ、細胞はよりダメージを受ける。 Furthermore, if the flow of the culture solution collides with the inner wall surface of the culture bag and the flow direction of the culture solution changes suddenly, shear stress occurs, and if the generated shear stress is large, the cells may be damaged. The larger the wave of the culture solution, the greater the shear stress and the more damaged the cells.
 したがって、培養液の波が大きいほど、培養対象の培養(例えば細胞の増殖)を阻害しうる。 Therefore, the larger the wave of the culture solution, the more the culture of the culture target (for example, cell proliferation) can be inhibited.
 このような培養を阻害しうる程度の培養液の波の発生を抑制するために、培養バッグの位置姿勢の周期的な変化を抑制すること、すなわちその変化量を小さくするとともに周期を長くすることが考えられる。例えば、特許文献1に記載された培養装置の場合、培養バッグが載置されるステージの揺動ストローク量を小さくするとともにその揺動速度を低速にすることが考えられる。 In order to suppress the occurrence of waves in the culture medium to such an extent that the culture can be inhibited, the periodic change in the position and orientation of the culture bag should be suppressed, that is, the change amount should be reduced and the period should be lengthened. Can be considered. For example, in the case of the culture apparatus described in Patent Document 1, it is conceivable to reduce the swing stroke amount of the stage on which the culture bag is placed and to reduce the swing speed thereof.
 しかしながら、この場合、培養を阻害しうる程度の大きさの培養液の波の発生を抑制することができるが、その結果として、培養液が十分に流動せず、培養液に取り込まれる酸素などのガスの量が不足し、培養対象の培養効率(例えば細胞の増殖速度)が低下する可能性がある。 However, in this case, it is possible to suppress the generation of waves of a culture solution that is large enough to inhibit the culture, but as a result, the culture solution does not flow sufficiently, such as oxygen taken into the culture solution. There is a possibility that the amount of gas is insufficient, and the culture efficiency (for example, cell growth rate) of the culture target is reduced.
 そこで、本発明は、培養バッグ内で培養液を流動させつつ行う培養において、培養対象にダメージを与えうる泡およびシェアストレスを生む培養液の波の発生を抑制することを課題とする。 Therefore, an object of the present invention is to suppress the generation of bubbles in a culture solution that causes damage and damage to a culture target and the generation of waves in the culture solution that cause shear stress in culture performed while flowing the culture solution in a culture bag.
 上記技術的課題を解決するために、本発明の一態様によれば、
 培養液を収容して培養を行う培養空間が内部に形成されて且つ変形可能な材料から作製されている培養部を備える培養バッグと、
 外部から押圧して培養バッグの培養部の異なる部分を変形させる第1および第2のバッグ押圧部と、
 第1および第2のバッグ押圧部を制御することにより、第1および第2のバッグ押圧部によって培養部の異なる部分を異なるタイミングに変形させ、その培養空間内に培養液の流れを発生させる制御部と、を有する培養装置が提供される。
In order to solve the above technical problem, according to one aspect of the present invention,
A culture bag having a culture part in which a culture space for containing a culture solution and performing culture is formed and made from a deformable material;
First and second bag pressing portions that are deformed by pressing different parts of the culture portion of the culture bag;
By controlling the first and second bag pressing portions, the first and second bag pressing portions cause different portions of the culture portion to be deformed at different timings, thereby generating a culture fluid flow in the culture space. And a culture device having a portion.
 本発明によれば、培養バッグ内で培養液を流動させつつ行う培養において、培養対象にダメージを与えうる泡およびシェアストレスを生む培養液の波の発生を抑制することができる。 According to the present invention, in the culture performed while flowing the culture solution in the culture bag, it is possible to suppress the generation of bubbles in the culture solution that cause damage to the culture target and shear stress.
本発明の一実施の形態に係る培養装置に使用される培養バッグの概略的斜視図1 is a schematic perspective view of a culture bag used in a culture apparatus according to an embodiment of the present invention. 培養バッグの上面図Top view of culture bag 図2のYb軸に沿った縦断面図A longitudinal sectional view along the Yb axis of FIG. 図2のXb軸に沿った縦断面図Longitudinal sectional view along the Xb axis in FIG. 培養バッグの複数の膨張バッグ部を示す図The figure which shows the some expansion | swelling bag part of a culture bag 本発明の一実施の形態に係る培養装置の構成を示すブロック図The block diagram which shows the structure of the culture apparatus which concerns on one embodiment of this invention 複数の培養バッグ部による培養液の流れの発生方法を説明するための図The figure for demonstrating the generation | occurrence | production method of the flow of the culture solution by several culture bag parts 図7Aに続く、複数の培養バッグ部による培養液の流れの発生方法を説明するための図The figure for demonstrating the generation | occurrence | production method of the flow of the culture solution by the some culture bag part following FIG. 7A. 図7Bに続く、複数の培養バッグ部による培養液の流れの発生方法を説明するための図The figure for demonstrating the generation | occurrence | production method of the flow of the culture solution by the some culture bag part following FIG. 7B. 図7Cに続く、複数の培養バッグ部による培養液の流れの発生方法を説明するための図The figure for demonstrating the generation | occurrence | production method of the flow of the culture solution by several culture bag parts following FIG. 7C. 本発明の別の実施の形態に係る培養装置に使用される培養バッグの複数の膨張バッグ部を示す図The figure which shows the some expansion | swelling bag part of the culture bag used for the culture apparatus which concerns on another embodiment of this invention. 本発明のさらに別の実施の形態に係る培養装置に使用される培養バッグの上面図The top view of the culture | cultivation bag used for the culture apparatus which concerns on another embodiment of this invention. 図9のXb軸に沿った縦断面図Longitudinal sectional view along the Xb axis in FIG. 本発明の異なる実施の形態に係る培養装置を概略的に示す図The figure which shows schematically the culture apparatus which concerns on different embodiment of this invention.
 本発明の一態様の培養装置は、培養液を収容して培養を行う培養空間が内部に形成されて且つ変形可能な材料から作製されている培養部を備える培養バッグと、外部から押圧して培養バッグの培養部の異なる部分を変形させる第1および第2のバッグ押圧部と、第1および第2のバッグ押圧部を制御することにより、第1および第2のバッグ押圧部によって培養部の異なる部分を異なるタイミングに変形させ、その培養空間内に培養液の流れを発生させる制御部と、を有する。 A culture apparatus according to one embodiment of the present invention includes a culture bag that includes a culture part in which a culture space in which culture medium is stored and culture is formed, and is made of a deformable material, and is pressed from the outside. By controlling the 1st and 2nd bag press part which changes the different part of the culture part of a culture bag, and the 1st and 2nd bag press part, the 1st and 2nd bag press part of a culture part A control unit that deforms different portions at different timings and generates a flow of the culture solution in the culture space.
 この態様によれば、培養バッグの位置姿勢を変更することなく、培養液を培養空間内で流動させることができる。そのため、培養バッグの位置姿勢を変更することによって起こる、培養対象にダメージを与えうる泡およびシェアストレスを生む培養液の波の発生を抑制することができる。 According to this aspect, the culture solution can be flowed in the culture space without changing the position and orientation of the culture bag. Therefore, the generation | occurrence | production of the wave of the culture solution which produces the bubble which can damage a culture | cultivation object and the share stress which arise by changing the position and orientation of a culture bag can be suppressed.
 第1および第2のバッグ押圧部が流体の供給を受けて膨張する複数の膨張バッグであって、培養装置が第1および第2の膨張バッグそれぞれに対して流体を供給する第1および第2の流体供給部を有し、制御部が、第1および第2の膨張バッグそれぞれの膨張による押圧によって培養部の異なる部分が異なるタイミングに変形するように第1および第2の流体供給部を制御してもよい。 The first and second bag pressing portions are a plurality of inflatable bags that are inflated by receiving supply of fluid, and the culture device supplies the fluid to the first and second inflatable bags, respectively. And the control unit controls the first and second fluid supply units so that different portions of the culture unit are deformed at different timings due to the pressures caused by the expansion of the first and second expansion bags. May be.
 培養バッグが内袋部と該内袋部を収容する外袋部とを備え、内袋が培養部であって、膨張バッグが、内袋部の外面と外袋部の内面とを複数個所で接合して該内袋部と外袋部との間の空間を複数に分割することによって形成された複数の分割空間で構成されてもよい。 The culture bag includes an inner bag portion and an outer bag portion that accommodates the inner bag portion, the inner bag is the culture portion, and the inflatable bag has an outer surface of the inner bag portion and an inner surface of the outer bag portion at a plurality of locations. You may comprise by the some division | segmentation space formed by joining and dividing | segmenting the space between this inner bag part and an outer bag part into plurality.
 培養バッグの培養部の培養空間が無端状であって、制御部が無端状の培養空間内で培養液が周回するように第1および第2のバッグ押圧部を制御してもよい。これにより、培養液は周回することができる。その結果として、培養対象にダメージを与えうる泡やシェアストレスを生む培養液CFの波の発生がより抑制される。 The culture space of the culture part of the culture bag may be endless, and the control part may control the first and second bag pressing parts so that the culture medium circulates in the endless culture space. Thereby, the culture solution can circulate. As a result, it is possible to further suppress the generation of waves of the culture solution CF that can cause bubbles and shear stress that can damage the culture target.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施の形態に係る培養装置に使用される培養バッグを概略的に示している。図2は、培養バッグ100の上面図である。図3は、図2のYb軸に沿った断面図である。図4は、図2のXb軸に沿った断面図である。 FIG. 1 schematically shows a culture bag used in a culture apparatus according to an embodiment of the present invention. FIG. 2 is a top view of the culture bag 100. FIG. 3 is a cross-sectional view taken along the Yb axis of FIG. FIG. 4 is a cross-sectional view along the Xb axis of FIG.
 図2に示すように、培養バッグ100は、その内部で培養液を用いて微生物や細胞の培養が行われる袋体である。培養バッグ100はまた、シングルユースを考慮して、廃棄時に圧縮することができるように、ポリエチレンなどの変形可能な材料から作製されている。 As shown in FIG. 2, the culture bag 100 is a bag body in which microorganisms and cells are cultured using a culture solution. The culture bag 100 is also made from a deformable material, such as polyethylene, so that it can be compressed when discarded for single use.
 培養バッグ100は、培養対象(例えば細胞)が一定の濃度(数)で懸濁された培養液を収容して微生物や細胞の培養を行うための本体部102と、本体部102を保持するシート状のブラケット部104とを有する。 The culture bag 100 includes a main body 102 for culturing microorganisms and cells by containing a culture solution in which a culture target (for example, cells) is suspended at a certain concentration (number), and a sheet for holding the main body 102. Shaped bracket portion 104.
 培養バッグ100の本体部102は、図3および図4に示すように、二重構造の袋体であって、内袋部106が培養液CFを収容して培養を行うための培養部である。その培養部106を全体にわたって覆うように該培養部106を収容するカバー部(外袋部)108を本体部102は備える。 As shown in FIGS. 3 and 4, the main body 102 of the culture bag 100 is a double-structured bag, and the inner bag 106 is a culture unit for accommodating the culture solution CF and performing culture. . The main body 102 includes a cover part (outer bag part) 108 that accommodates the culture part 106 so as to cover the culture part 106 over the whole.
 理由は後述するが、培養部106は、変形可能な材料、好ましくはエラストマー材料などの弾性材料から作製されている。その培養部106を収容するカバー部108は、培養部106の材料に比べて硬い(変形しにくい)材料から作製されている。 Although the reason will be described later, the culture part 106 is made of a deformable material, preferably an elastic material such as an elastomer material. The cover part 108 that accommodates the culture part 106 is made of a material that is harder (or less likely to deform) than the material of the culture part 106.
 図2に示すように、培養部(本体部102の内袋部)106は、培養液CFを収容して培養を行う培養空間110を備えている。本実施の形態の場合、培養空間110は、培養液が周回可能な無端状の周回空間であって、環状であって、さらに言えば円形の縦断面を備える円環状(ドーナツ状)の空間である。 As shown in FIG. 2, the culture part (inner bag part of the main body part 102) 106 includes a culture space 110 in which the culture solution CF is accommodated and cultured. In the case of the present embodiment, the culture space 110 is an endless circumferential space in which the culture solution can circulate, and is annular, and more specifically, an annular (doughnut-shaped) space having a circular longitudinal section. is there.
 なお、ここで、環状の培養空間110について、いくつかの用語を定義する。まず、周回空間である環状の培養空間110の周回方向をR1と定義する。この周回方向R1を含む平面と直交する軸を、第3のバッグ軸Zbと定義する。そして、周回方向R1を含む平面に含まれ、第3のバッグ軸Zbと直交し、且つ、互いに直交し合う軸を、第1および第2のバッグ軸Xb、Ybと定義する。また、周回方向R1と直交する環状の培養空間110の縦断面の周方向を縦断面周方向R2と定義する。 Here, some terms are defined for the annular culture space 110. First, the rotation direction of the annular culture space 110 that is the rotation space is defined as R1. An axis orthogonal to the plane including the circumferential direction R1 is defined as a third bag axis Zb. The axes that are included in the plane including the rotation direction R1, are orthogonal to the third bag axis Zb, and are orthogonal to each other are defined as first and second bag axes Xb and Yb. Moreover, the circumferential direction of the longitudinal section of the annular culture space 110 orthogonal to the circumferential direction R1 is defined as the longitudinal section circumferential direction R2.
 さらに、本実施の形態の場合、培養空間110は円環状であるため、第3のバッグ軸Zbを、その円環形状の中心を通過する中心軸とする。また、第1および第2のバッグ軸Xb、Yb軸に沿ってシート状のブラケット部104は展開している。 Furthermore, in the case of the present embodiment, since the culture space 110 has an annular shape, the third bag axis Zb is set as a central axis that passes through the center of the annular shape. Further, the sheet-like bracket portion 104 is developed along the first and second bag axes Xb and Yb.
 培養バッグ100の本体部102を保持するブラケット部104は、培養バッグ100を後述する培養装置に取り付けるためのブラケットとして機能する。 The bracket portion 104 that holds the main body portion 102 of the culture bag 100 functions as a bracket for attaching the culture bag 100 to a culture device described later.
 なお、本実施の形態の場合、本体部102は、ブラケット部104を貫通するように該ブラケット部104に設けられている。すなわち、本体部102は、ブラケット部104によって上半分102a(後述する培養装置に取り付けられた状態のときに上側に位置する部分)と下半分102bとに分かれている。ただし、本体部102の培養空間110は、ブラケット部104を貫通している。 In the case of the present embodiment, the main body portion 102 is provided in the bracket portion 104 so as to penetrate the bracket portion 104. That is, the main body portion 102 is divided into an upper half 102a (a portion located on the upper side when attached to a culture apparatus described later) and a lower half 102b by the bracket portion 104. However, the culture space 110 of the main body portion 102 passes through the bracket portion 104.
 また、本実施の形態の場合、培養バッグ100の本体部102には、複数のポート(ホース)112、114、116、118、および120が設けられている。 In the case of the present embodiment, the main body 102 of the culture bag 100 is provided with a plurality of ports (hoses) 112, 114, 116, 118, and 120.
 複数のポート112、114、116、118、および120それぞれは、培養部106の培養空間110内に連通している。 Each of the plurality of ports 112, 114, 116, 118, and 120 communicates with the culture space 110 of the culture unit 106.
 培養液ポート112は、培養液CFを培養部106の培養空間110に対して供給するおよび培養液CFを培養空間110から回収するときに使用されるポートである。培養液ポート112は、本体部102の上半分102aに設けられている。 The culture medium port 112 is a port used when supplying the culture medium CF to the culture space 110 of the culture unit 106 and collecting the culture medium CF from the culture space 110. The culture medium port 112 is provided in the upper half 102 a of the main body 102.
 サンプリングポート114は、培養部106の培養空間110内で培養されている微生物や細胞のサンプルを取得するために使用される。このポート114を介して、培養バッグ100から培養液(例えば細胞の懸濁液)を指定量採取することができる。この採取した懸濁液を顕微鏡等で観察することにより、培養の進行具合を知ることができる。例えば、顕微鏡を介して細胞の数をカウントすることにより、細胞の成長度合いを測定することができる。なお、サンプリングポート110は、例えばバルブ付きルアーロックコネクタなどを含むポートである。サンプリングポート114は、本体部102の下半分102bから延在してブラケット部104で開口している。 The sampling port 114 is used for acquiring a sample of microorganisms or cells cultured in the culture space 110 of the culture unit 106. A specified amount of a culture solution (for example, a cell suspension) can be collected from the culture bag 100 via the port 114. The progress of the culture can be known by observing the collected suspension with a microscope or the like. For example, the degree of cell growth can be measured by counting the number of cells through a microscope. The sampling port 110 is a port including a luer lock connector with a valve, for example. The sampling port 114 extends from the lower half 102 b of the main body portion 102 and opens at the bracket portion 104.
 第1のガス供給ポート116は、培養部106の培養空間110内に培養に必要な酸素や二酸化炭素などの混合ガスを供給するために使用されるポートである。ガス供給ポート116は、本体部102の下半分102bから延在している。 The first gas supply port 116 is a port used for supplying a mixed gas such as oxygen and carbon dioxide necessary for culture into the culture space 110 of the culture unit 106. The gas supply port 116 extends from the lower half 102 b of the main body 102.
 排気ポート118は、培養部106の培養空間110内を排気するまたはその排気によって培養空間110内の圧力を調節するために使用されるポートである。排気ポート118は、本体部102の上半分102aから延在している。 The exhaust port 118 is a port used for exhausting the culture space 110 of the culture unit 106 or adjusting the pressure in the culture space 110 by the exhaust. The exhaust port 118 extends from the upper half 102 a of the main body 102.
 そして、第2のガス供給ポート120は、第1のガス供給ポート116と同様に、培養部102の培養空間106内に培養に必要な酸素や二酸化炭素などの混合ガスを供給するために使用されるポートである。第2のガス供給ポート120は、本体部102の上半分102aから延在している。また、詳細は後述するが、本実施の形態の場合、第2のガス供給ポート120がメインに使用され、第1のガス供給ポート116が補助的に使用される。 The second gas supply port 120 is used to supply a mixed gas such as oxygen and carbon dioxide necessary for culture into the culture space 106 of the culture unit 102, similarly to the first gas supply port 116. Port. The second gas supply port 120 extends from the upper half 102 a of the main body 102. Although details will be described later, in the case of the present embodiment, the second gas supply port 120 is mainly used, and the first gas supply port 116 is used in an auxiliary manner.
 なお、培養液ポート112、サンプリングポート114、第1のガス供給ポート116、排気ポート118、および第2のガス供給ポート120が設けられている本体部102上の環状周方向R1の位置および縦断面周方向R2の位置は、培養バッグ100の用途(培養の種類)によって変更されてもよい。また、第1および第2のガス供給ポート116、120および排気ポート118には、培養バッグ100の培養空間110内への異物進入を抑制するためのフィルタが設けられている。 The position and longitudinal section of the annular circumferential direction R1 on the main body 102 where the culture medium port 112, the sampling port 114, the first gas supply port 116, the exhaust port 118, and the second gas supply port 120 are provided. The position in the circumferential direction R <b> 2 may be changed depending on the use (culture type) of the culture bag 100. In addition, the first and second gas supply ports 116 and 120 and the exhaust port 118 are provided with filters for suppressing entry of foreign matter into the culture space 110 of the culture bag 100.
 さらに、図2に示すように、培養バッグ100の本体部102には、これらの複数のポート112、114、116、118、および120の他に、さらに複数の空気供給ポート122A、122B、122C、および122Dが設けられている。これらの空気供給ポートについて説明する。 Further, as shown in FIG. 2, in addition to the plurality of ports 112, 114, 116, 118, and 120, the body portion 102 of the culture bag 100 further includes a plurality of air supply ports 122 </ b> A, 122 </ b> B, 122 </ b> C, And 122D are provided. These air supply ports will be described.
 図5は、円環状の培養空間110の周回方向R1に沿って且つ径方向D(図2参照)に直交する本体部102の断面図である。 FIG. 5 is a cross-sectional view of the main body 102 along the circular direction R1 of the annular culture space 110 and perpendicular to the radial direction D (see FIG. 2).
 図5に示すように、これらの空気供給ポート122A、122B、122C、および122Dは、培養空間110には連通しておらず、膨張バッグ部124A、124B、124C、および124Dに連通している。 As shown in FIG. 5, these air supply ports 122A, 122B, 122C, and 122D do not communicate with the culture space 110, but communicate with the expansion bag portions 124A, 124B, 124C, and 124D.
 具体的には、膨張バッグ部124A、124B、124C、および124Dは、培養部106とカバー部108との間に形成された複数の空間で構成されている。例えば、培養部106の外面とカバー部108の内面とが複数の接合箇所126で接合(例えば溶着)されることにより、互いに独立した複数の分割空間、すなわち膨張バッグ部124A、124B、124C、および124Dが形成されている。本実施の形態の場合、これらの膨張バッグ部124A、124B、124C、および124Dそれぞれは、培養部106を縦断面周方向R2に周回している環状の空間である。 Specifically, the expansion bag portions 124A, 124B, 124C, and 124D are configured by a plurality of spaces formed between the culture portion 106 and the cover portion 108. For example, the outer surface of the culture unit 106 and the inner surface of the cover unit 108 are joined (for example, welded) at a plurality of joints 126, so that a plurality of independent divided spaces, that is, the expansion bag portions 124A, 124B, 124C, and 124D is formed. In the case of the present embodiment, each of these inflatable bag portions 124A, 124B, 124C, and 124D is an annular space that circulates the culture portion 106 in the longitudinal section circumferential direction R2.
 なお、図2に示すように、培養液ポート112、サンプリングポート114、第1のガス供給ポート116,排気ポート118、および第2のガス供給ポート120は、培養部(内袋部)106内の培養空間110に連通するために、培養部106とカバー部(外袋部)108の接合箇所126(クロスハッチング部分)に設けられている。 As shown in FIG. 2, the culture medium port 112, the sampling port 114, the first gas supply port 116, the exhaust port 118, and the second gas supply port 120 are provided in the culture part (inner bag part) 106. In order to communicate with the culture space 110, the culture portion 106 and the cover portion (outer bag portion) 108 are provided at a joint 126 (cross-hatched portion).
 複数の膨張バッグ部124A、124B、124C、124Dそれぞれに、空気供給ポート122A、122B、122C、および122Dは連通している。詳細は後述するが、複数の膨張バッグ部124A、124B、124C、および124Dそれぞれは、圧縮空気の供給を断続的に受けて膨張と収縮を繰り返す。それにより、膨張バッグ部124A、124B、124C、および124Dそれぞれは、培養部106の異なる複数の部分を外部から断続的に押圧し、それにより培養部106の異なる複数の部分を異なるタイミングに変形させる。その結果として、培養空間110内に、周回方向R1の培養液CFの流れを発生させる。 The air supply ports 122A, 122B, 122C, and 122D communicate with the plurality of inflatable bag portions 124A, 124B, 124C, and 124D, respectively. Although details will be described later, each of the plurality of expansion bag portions 124A, 124B, 124C, and 124D receives supply of compressed air intermittently and repeats expansion and contraction. Thereby, each of the expansion bag parts 124A, 124B, 124C, and 124D intermittently presses different parts of the culture part 106 from the outside, thereby deforming the different parts of the culture part 106 at different timings. . As a result, a flow of the culture solution CF in the circulation direction R1 is generated in the culture space 110.
 図6は、培養バッグ100の円環状の培養空間110内をその周回方向R1に培養液CFが周回する状態で、その培養液CFを用いて培養を実行するための培養装置10の構成を示すブロック図である。 FIG. 6 shows a configuration of the culture apparatus 10 for performing culture using the culture solution CF in a state where the culture solution CF circulates in the circulation direction R1 in the annular culture space 110 of the culture bag 100. It is a block diagram.
 図6に示すように、培養装置10は、培養バッグ100の排気ポート118に接続されるベント弁50、第1のガス供給ポート116に接続される流量調節弁52、および第2のガス供給ポート120に接続される流量調節弁54を有する。 As shown in FIG. 6, the culture apparatus 10 includes a vent valve 50 connected to the exhaust port 118 of the culture bag 100, a flow rate adjustment valve 52 connected to the first gas supply port 116, and a second gas supply port. A flow control valve 54 connected to 120 is included.
 ベント弁50は、培養バッグ100の培養空間110から外部に排気することによって培養空間110内の圧力を調節するための弁である。そのために、ベント弁50は、培養バッグ100の排気ポート118と外気との間に配置されている。このベント弁50の開度を調節することにより、培養空間110の圧力が調節される。 The vent valve 50 is a valve for adjusting the pressure in the culture space 110 by exhausting the culture bag 110 from the culture space 110 to the outside. Therefore, the vent valve 50 is disposed between the exhaust port 118 of the culture bag 100 and the outside air. By adjusting the opening degree of the vent valve 50, the pressure of the culture space 110 is adjusted.
 流量調節弁52、54は、培養バッグ100の培養空間110に供給される酸素と二酸化炭素の混合ガスの量を調節するための弁である。流量調節弁52は培養バッグ100の第1のガス供給ポート116に接続され、流量調節弁54は第2のガス供給ポート120に接続されている。 The flow rate adjusting valves 52 and 54 are valves for adjusting the amount of mixed gas of oxygen and carbon dioxide supplied to the culture space 110 of the culture bag 100. The flow control valve 52 is connected to the first gas supply port 116 of the culture bag 100, and the flow control valve 54 is connected to the second gas supply port 120.
 流量調節弁52、54は、開閉弁57、58および流量調節弁59、60を介して酸素源(例えば酸素ボンベ)61と二酸化炭素源(例えば二酸化炭素ボンベ)62に接続されている。 The flow control valves 52 and 54 are connected to an oxygen source (for example, an oxygen cylinder) 61 and a carbon dioxide source (for example, a carbon dioxide cylinder) 62 through on-off valves 57 and 58 and flow control valves 59 and 60.
 具体的には、流量調節弁52は、開閉弁57を介して圧縮空気源(例えばエアボンベ)63に接続されている。また、流量調節弁54は、開閉弁58を介して圧縮空気源63に接続されている。さらに、酸素源61が、流量調節弁59を介して、開閉弁57、58と圧縮空気源63との間に接続されている。そして、二酸化炭素源62が、流量調節弁60を介して、開閉弁57、58と圧縮空気源63との間に接続されている。 Specifically, the flow rate adjustment valve 52 is connected to a compressed air source (for example, an air cylinder) 63 via an on-off valve 57. Further, the flow rate adjustment valve 54 is connected to the compressed air source 63 via the on-off valve 58. Further, an oxygen source 61 is connected between the on-off valves 57 and 58 and the compressed air source 63 via a flow rate adjustment valve 59. A carbon dioxide source 62 is connected between the on-off valves 57 and 58 and the compressed air source 63 via the flow rate control valve 60.
 酸素源61からの酸素と二酸化炭素源62からの二酸化炭素は、圧縮空気源63からの圧縮空気に同伴されて互いに混合される。その圧縮空気に同伴する混合ガスは、流量調節弁54のみまたは流量調節弁52、54の両方に、すなわち第2のガス供給ポート120のみまたは第1および第2のガス供給ポート116、120の両方に送られる。混合ガスにおける酸素量と二酸化炭素量は、流量調節弁59、60の開度を変更することによって調節される。また、開閉弁57、58の選択的な開閉により、流量調節弁54のみを介して第2のガス供給ポート120のみに、または流量調節弁54、56の両方を介して第1および第2のガス供給ポート116、120の両方に対して、混合ガスが供給される。さらに、流量調節弁52、54それぞれの開度を変更することによって第1および第2のガス供給ポート116、120への混合ガスの供給量が調節される。 Oxygen from the oxygen source 61 and carbon dioxide from the carbon dioxide source 62 are mixed together with the compressed air from the compressed air source 63. The mixed gas accompanying the compressed air is supplied to only the flow control valve 54 or both of the flow control valves 52 and 54, that is, only the second gas supply port 120 or both the first and second gas supply ports 116 and 120. Sent to. The amount of oxygen and the amount of carbon dioxide in the mixed gas are adjusted by changing the opening degree of the flow control valves 59 and 60. Further, by selectively opening and closing the on-off valves 57 and 58, only the second gas supply port 120 through only the flow control valve 54 or both of the first and second through the flow control valves 54 and 56 are provided. The mixed gas is supplied to both of the gas supply ports 116 and 120. Furthermore, the supply amount of the mixed gas to the first and second gas supply ports 116 and 120 is adjusted by changing the opening degree of each of the flow rate adjustment valves 52 and 54.
 これにより、第2のガス供給ポート120を介して酸素と二酸化炭素が培養バッグ100の培養空間110に供給され、流量調節弁54、59、および60によって培養空間110に供給される酸素量、すなわち培養液CF内の酸素濃度が調節されるとともに、培養空間に供給される二酸化炭素量、すなわち培養液CFのpH値が調節される。また、圧縮空気により、培養バッグ100の培養部106(培養空間110)の形状が略一定の形状に維持される。 Thereby, oxygen and carbon dioxide are supplied to the culture space 110 of the culture bag 100 through the second gas supply port 120, and the amount of oxygen supplied to the culture space 110 by the flow rate control valves 54, 59, and 60, that is, The oxygen concentration in the culture solution CF is adjusted, and the amount of carbon dioxide supplied to the culture space, that is, the pH value of the culture solution CF is adjusted. Moreover, the shape of the culture part 106 (culture space 110) of the culture bag 100 is maintained in a substantially constant shape by the compressed air.
 培養液CF内の酸素濃度やpH値が設定値に比べて低下すると、開閉弁57が開き、第1のガス供給ポート116を介して培養バッグ100の培養空間110に、酸素と二酸化炭素の混合ガスが追加的に供給される。このように、培養バッグ100の培養空間110に混合ガスを供給するためのポート(本実施の形態の場合、第1および第2のガス供給ポート116、120)を複数備えることにより、培養液CFの酸素濃度やpH値を細かく制御することができる。 When the oxygen concentration or pH value in the culture solution CF is lower than the set value, the on-off valve 57 is opened, and oxygen and carbon dioxide are mixed into the culture space 110 of the culture bag 100 via the first gas supply port 116. Gas is additionally supplied. Thus, by providing a plurality of ports (in the case of the present embodiment, the first and second gas supply ports 116 and 120) for supplying the mixed gas to the culture space 110 of the culture bag 100, the culture solution CF It is possible to finely control the oxygen concentration and pH value.
 なお、培養バッグ100の培養空間110が培養液CFで充満される場合、第2のガス供給ポート120および排気ポート118は使用されない。 Note that when the culture space 110 of the culture bag 100 is filled with the culture solution CF, the second gas supply port 120 and the exhaust port 118 are not used.
 培養装置10はまた、培養バッグ100の複数の膨張バッグ部124A、124B、124C、および124Dに対して圧縮空気を供給する空気供給部として、流量調節弁66A、66B、66C、および66Dと切替弁68A、68B、68C、および68Dとを有する。 The culture apparatus 10 also has flow control valves 66A, 66B, 66C, and 66D and a switching valve as an air supply unit that supplies compressed air to the plurality of expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100. 68A, 68B, 68C, and 68D.
 流量調節弁66A、66B、66C、および66Dは、空気供給ポート122A、122B、122C、および122Dを介して培養バッグ100の膨張バッグ部124A、124B、124C、および124Dに接続されている。また、流量調節弁66A、66B、66C、および66Dは、切替弁68A、68B、68C、および68Dを介して外気と圧縮空気源70とに接続されている。切替弁68A、68B、68C、および68Dを切り換えることにより、切替弁68A、68B、68C、および68Dと、流量調節弁66A、66B、66C、および66Dと、空気供給ポート122A、122B、122C、および122Dとを介して圧縮空気源70から培養バッグ100の膨張バッグ部124A、124B、124C、および124Dそれぞれに圧縮空気が供給される。または、培養バッグ100の膨張バッグ部124A、124B、124C、および124D内の空気が、空気供給ポート122A、122B、122C、および122Dと、流量調節弁66A、66B、66C、および66Dと、切替弁68A、68B、68C、および68Dとを介して外気に排出される。なお、圧縮空気源63と圧縮空気源70は、同一の圧縮空気源であってもよい。 The flow control valves 66A, 66B, 66C, and 66D are connected to the expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100 through the air supply ports 122A, 122B, 122C, and 122D. Further, the flow rate adjusting valves 66A, 66B, 66C, and 66D are connected to the outside air and the compressed air source 70 via the switching valves 68A, 68B, 68C, and 68D. By switching the switching valves 68A, 68B, 68C, and 68D, the switching valves 68A, 68B, 68C, and 68D, the flow control valves 66A, 66B, 66C, and 66D, the air supply ports 122A, 122B, 122C, and Compressed air is supplied from the compressed air source 70 to each of the expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100 via 122D. Alternatively, the air in the expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100 includes the air supply ports 122A, 122B, 122C, and 122D, the flow control valves 66A, 66B, 66C, and 66D, and the switching valve. 68A, 68B, 68C, and 68D are discharged to the outside air. The compressed air source 63 and the compressed air source 70 may be the same compressed air source.
培養装置10はさらに、培養中の培養液CFの状態をモニタリングするために、pHセンサ72、温度センサ74、および溶存酸素センサ76を有する。pHセンサ72は培養空間110内の溶媒液CFのpH値を検出し、温度センサ74は溶媒液CFの温度を検出し、溶存酸素センサ76は溶媒液CFの酸素濃度を検出する。 The culture apparatus 10 further includes a pH sensor 72, a temperature sensor 74, and a dissolved oxygen sensor 76 in order to monitor the state of the culture solution CF during culture. The pH sensor 72 detects the pH value of the solvent liquid CF in the culture space 110, the temperature sensor 74 detects the temperature of the solvent liquid CF, and the dissolved oxygen sensor 76 detects the oxygen concentration of the solvent liquid CF.
 培養中の培養液CFの状態、すなわちpHセンサ72、温度センサ74、および溶存酸素センサ76の検出結果に基づいて、ベント弁50と、流量調節弁52、54、59、および60と、開閉弁57および58と、ヒータ78とを制御するための制御ボックス80を、培養装置10は有する。なお、ヒータ78は、培養バッグ100の培養空間110内の培養液CFの温度を調節するためのものである。 Based on the state of the culture fluid CF during culture, that is, the detection results of the pH sensor 72, the temperature sensor 74, and the dissolved oxygen sensor 76, the vent valve 50, the flow control valves 52, 54, 59, and 60, and the on-off valve The culture apparatus 10 has a control box 80 for controlling 57 and 58 and the heater 78. The heater 78 is for adjusting the temperature of the culture solution CF in the culture space 110 of the culture bag 100.
 制御ボックス80は、複数の弁50、52、54、および57~60を制御するバルブ制御部82と、pHセンサ72、温度センサ74、および溶存酸素センサ76の検出値を取得するセンサ管理部84と、ヒータ78を制御する温度制御部86と、流れ発生部88とを有する。 The control box 80 includes a valve control unit 82 that controls the plurality of valves 50, 52, 54, and 57 to 60, and a sensor management unit 84 that acquires detection values of the pH sensor 72, the temperature sensor 74, and the dissolved oxygen sensor 76. A temperature control unit 86 that controls the heater 78, and a flow generation unit 88.
 まず、制御ボックス80のセンサ管理部84は、pHセンサ72、温度センサ74、および溶存酸素センサ76それぞれに接続され、pHセンサ72によって検出された培養液CFのpH値、温度センサ74によって検出された培養液CFの温度、および溶存酸素センサ76によって検出された溶媒液CFの酸素濃度を、定期的に取得する。 First, the sensor management unit 84 of the control box 80 is connected to the pH sensor 72, the temperature sensor 74, and the dissolved oxygen sensor 76, and is detected by the pH value of the culture solution CF detected by the pH sensor 72 and the temperature sensor 74. The temperature of the culture solution CF and the oxygen concentration of the solvent solution CF detected by the dissolved oxygen sensor 76 are periodically acquired.
 バルブ制御部82は、センサ管理部84によって取得される溶媒液CFのpH値と酸素濃度それぞれが設定値で維持されるように、複数の弁50、52、54、および57~60を制御する。温度制御部86は、センサ管理部84によって取得される溶媒液CFの温度が設定値で維持されるように、ヒータ78を制御する。 The valve control unit 82 controls the plurality of valves 50, 52, 54, and 57 to 60 so that the pH value and the oxygen concentration of the solvent liquid CF acquired by the sensor management unit 84 are maintained at the set values. . The temperature control unit 86 controls the heater 78 so that the temperature of the solvent liquid CF acquired by the sensor management unit 84 is maintained at the set value.
 流れ発生部88は、流量調節弁66A、66B、66C、および66Dと切替弁68A、68B、68C、および68Dとに接続され、ユーザによって設定された培養液CFの流速に基づいて、これらの弁を制御する。これらの弁を制御することにより、流れ発生部88は、培養バッグ100の膨張バッグ部124A、124B、124C、および124Dそれぞれの膨張および収縮を制御する。それにより、培養バッグ100の培養空間110内に、培養液CFの流れを発生させる。なお、流量調節弁66A、66B、66C、および66Dと切替弁68A、68B、68C、および68Dに対する制御、すなわち培養液CFの流れを発生させる膨張バッグ部124A、124B、124C、および124Dの膨張パターンについては後述する。 The flow generator 88 is connected to the flow control valves 66A, 66B, 66C, and 66D and the switching valves 68A, 68B, 68C, and 68D, and based on the flow rate of the culture fluid CF set by the user, To control. By controlling these valves, the flow generator 88 controls the expansion and contraction of the expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100, respectively. Thereby, a flow of the culture solution CF is generated in the culture space 110 of the culture bag 100. It should be noted that the control for the flow control valves 66A, 66B, 66C, and 66D and the switching valves 68A, 68B, 68C, and 68D, that is, the expansion patterns of the expansion bag portions 124A, 124B, 124C, and 124D that generate the flow of the culture fluid CF. Will be described later.
 これらのバルブ制御部82、センサ管理部84、および温度制御部86により、ユーザによって設定された培養環境(培養液CFのpH値、温度、および酸素濃度)が維持される。なお、バルブ制御部82、センサ管理部84、温度制御部86、および流れ発生部88は、複数の弁50、52、54、および57~60それぞれに制御信号(電流)を出力することができ、pHセンサ72、温度センサ74、および溶存酸素センサ76からの検出信号(電流)を受け取ることができ、また、ヒータ78に駆動電力を供給することができ、さらに、流量調節弁66A、66B、66C、および66Dと切替弁68A、68B、68C、および68Dに制御信号(電流)を出力することができる、例えば回路基板などである。 The culture environment (pH value, temperature, and oxygen concentration of the culture medium CF) set by the user is maintained by the valve control unit 82, the sensor management unit 84, and the temperature control unit 86. The valve control unit 82, the sensor management unit 84, the temperature control unit 86, and the flow generation unit 88 can output a control signal (current) to each of the plurality of valves 50, 52, 54, and 57 to 60. , A detection signal (current) from the pH sensor 72, the temperature sensor 74, and the dissolved oxygen sensor 76 can be received, and driving power can be supplied to the heater 78. Further, the flow control valves 66A, 66B, 66C and 66D and switching valves 68A, 68B, 68C and 68D can output control signals (currents) to, for example, circuit boards.
 また、培養装置10は、ユーザが培養条件を設定するための制御ユニット90を有する。制御ユニット90は、例えばコンピュータであって、ユーザが所望する培養条件を入力するための例えばマウスやキーボードなどの入力デバイス92と、培養条件や培養中の状態をユーザが確認するためのディスプレイなどの出力デバイス94とを有する。制御ユニット90は、入力デバイス92を介してユーザによって設定された培養条件(培養液CFのpH値、温度、酸素濃度、および流速)を維持するように、制御ボックス80に指令する。 Moreover, the culture apparatus 10 has a control unit 90 for the user to set culture conditions. The control unit 90 is, for example, a computer, such as an input device 92 such as a mouse or a keyboard for inputting culture conditions desired by the user, and a display for the user to check the culture conditions and the state during culture. And an output device 94. The control unit 90 commands the control box 80 to maintain the culture conditions (pH value, temperature, oxygen concentration, and flow rate of the culture medium CF) set by the user via the input device 92.
 ここからは、図7A~図7Dを参照しながら、培養液CFの流れを発生させる膨張バッグ部124A、124B、124C、および124Dの膨張パターンについて説明する。なお、ここでは、矢印A方向に流れる培養液CFの流れが発生する膨張パターンについて説明する。 Hereafter, the expansion patterns of the expansion bag portions 124A, 124B, 124C, and 124D that generate the flow of the culture solution CF will be described with reference to FIGS. 7A to 7D. Here, the expansion pattern in which the flow of the culture solution CF flowing in the direction of arrow A is generated will be described.
 まず、図7Aに示すように、膨張バッグ部124Aが膨張された後に、膨張バッグ部124Bが膨張される。膨張バッグ部124Bの膨張によって押圧された培養液CFは、ほとんどが矢印A方向に流れる。すなわち、培養液CFのほとんどは、膨張バッグ部124Aの膨張によって流路断面積が小さい該膨張バッグ部124A側に流れるのではなく、膨張バッグ部124Cが収縮しているために流路断面積が大きい該膨張バッグ部124C側に流れる。 First, as shown in FIG. 7A, after the inflation bag portion 124A is inflated, the inflation bag portion 124B is inflated. Most of the culture fluid CF pressed by the expansion of the expansion bag portion 124B flows in the direction of arrow A. That is, most of the culture fluid CF does not flow to the expansion bag portion 124A side where the flow path cross-sectional area is small due to the expansion of the expansion bag portion 124A, but the flow path cross-sectional area is increased because the expansion bag portion 124C is contracted. It flows toward the large inflation bag portion 124C.
 次に、図7Bに示すように、膨張バッグ部124Bが膨張した状態で、この膨張バッグ部124Bに対して矢印A方向下流側の膨張バッグ部124Cが膨張される。膨張バッグ部124Cの膨張によって押圧された培養液CFのほとんどが矢印A方向に流れる。なお、膨張バッグ部124Cの膨張とほぼ同時に、膨張バッグ部124Aが収縮される。 Next, as shown in FIG. 7B, in the state where the inflatable bag portion 124B is inflated, the inflatable bag portion 124C on the downstream side in the arrow A direction is inflated with respect to the inflatable bag portion 124B. Most of the culture solution CF pressed by the expansion of the expansion bag portion 124C flows in the arrow A direction. Note that the expansion bag portion 124A is contracted substantially simultaneously with the expansion of the expansion bag portion 124C.
 続いて、図7Cに示すように、膨張バッグ部124Cが膨張した状態で、この膨張バッグ部124Cに対して矢印A方向下流側の膨張バッグ部124Dが膨張される。膨張バッグ124Dの膨張によって押圧された培養液CFのほとんどが矢印A方向に流れる。この膨張バッグ部124Dの膨張と略同時に、膨張バッグ部124Bが収縮される。 Subsequently, as shown in FIG. 7C, in the state where the inflatable bag portion 124C is inflated, the inflatable bag portion 124D on the downstream side in the arrow A direction is inflated with respect to the inflatable bag portion 124C. Most of the culture solution CF pressed by the expansion of the expansion bag 124D flows in the direction of arrow A. The inflation bag portion 124B is contracted substantially simultaneously with the inflation of the inflation bag portion 124D.
 そして、図7Dに示すように、膨張バッグ部124Dが膨張した状態で、この膨張バッグ部124Cに対して矢印A方向下流側の膨張バッグ部124Aが膨張される。膨張バッグ部Aの膨張によって押圧された培養液CFのほとんどが矢印A方向に流れる。この膨張バッグ部124Aの膨張と略同時に、膨張バッグ部124Cが収縮される。 Then, as shown in FIG. 7D, in the state where the inflatable bag portion 124D is inflated, the inflatable bag portion 124A on the downstream side in the arrow A direction is inflated with respect to the inflatable bag portion 124C. Most of the culture solution CF pressed by the expansion of the expansion bag portion A flows in the direction of arrow A. The inflation bag portion 124C is contracted substantially simultaneously with the inflation of the inflation bag portion 124A.
 図7A~図7Dに示すように、複数の膨張バッグ部124A、124B、124C、および124Dが順に膨張することにより、矢印A方向に培養液CFは流れる。また、培養液CFは、膨張バッグ部124A、124B、124C、および124Dそれぞれの膨張によって断続的に加速される。そのため、膨張液CFの流れは、定速な流れではなく、周回方向R1について速度(圧力)が異なる脈流である。その結果、培養液CFは、撹拌されながら周回方向R1に流れる。 As shown in FIGS. 7A to 7D, the culture solution CF flows in the direction of arrow A by sequentially inflating the plurality of inflatable bag portions 124A, 124B, 124C, and 124D. In addition, the culture solution CF is intermittently accelerated by the expansion of the expansion bag portions 124A, 124B, 124C, and 124D. Therefore, the flow of the expansion liquid CF is not a constant flow, but a pulsating flow having a different speed (pressure) in the circulation direction R1. As a result, the culture solution CF flows in the circulation direction R1 while being stirred.
 なお、膨張バッグ部124A、124B、124C、および124Dそれぞれが膨張するタイミング間の時間を調節するとともに、これらの膨張バッグ部それぞれの膨張速度を調節することにより、培養液CFの速度を調節することが可能である。 In addition, while adjusting the time between the timing which each expansion | swelling bag part 124A, 124B, 124C and 124D expand | swells, adjusting the expansion | swelling speed of each of these expansion | swelling bag parts, adjusting the speed | rate of the culture solution CF. Is possible.
 以上のような本実施の形態によれば、培養バッグ100内で培養液CFを流動させつつ行う培養において、培養対象にダメージを与えうる泡およびシェアストレスを生む培養液の波の発生を抑制することができる。 According to the present embodiment as described above, in the culture performed while flowing the culture solution CF in the culture bag 100, the generation of bubbles of the culture solution that can cause damage to the culture target and shear stress is suppressed. be able to.
 具体的に説明すると、本実施の形態の場合、培養バッグ100の位置姿勢を変更することなく、培養液CFを培養空間110内で流動させることができる。そのため、培養バッグ100の位置姿勢を変更することによって起こる、培養対象にダメージを与えうる泡およびシェアストレスを生む培養液の波の発生を抑制することができる。 Specifically, in the case of the present embodiment, the culture solution CF can be flowed in the culture space 110 without changing the position and orientation of the culture bag 100. Therefore, generation | occurrence | production of the wave of the culture solution which produces the bubble which can damage a culture | cultivation object and the share stress which generate | occur | produce by changing the position and orientation of the culture bag 100 can be suppressed.
 また、本実施の形態の場合、図2に示すように、培養液CFを収容して培養を行う培養空間110が円環状の空間であるために、培養液CFは周回することができる。そのため、培養対象にダメージを与えうる泡やシェアストレスを生む培養液CFの波の発生がさらに抑制される。 Further, in the case of the present embodiment, as shown in FIG. 2, since the culture space 110 in which the culture solution CF is contained and cultured is an annular space, the culture solution CF can circulate. Therefore, the generation | occurrence | production of the wave of the culture solution CF which produces the bubble which can damage a culture | cultivation object, and a shear stress is further suppressed.
 具体的に説明すると、培養液CFが周回することにより(流れ方向が周回方向R1に規制されることにより)、流れ方向が無秩序に変化する場合に比べて、培養空間110の内壁面と培養液CFの波との衝突が抑制される。具体的には、培養液CFの流れ方向が急激に変化する(例えば流れ方向が逆転する)衝突の発生が抑制される。それにより、培養対象(例えば細胞)にダメージを与えうる程度の泡やシェアストレスの発生が抑制される。 More specifically, the inner wall surface of the culture space 110 and the culture solution are compared with the case where the flow direction changes in a disordered manner due to the circulation of the culture solution CF (by restricting the flow direction to the circulation direction R1). Collisions with CF waves are suppressed. Specifically, the occurrence of a collision in which the flow direction of the culture fluid CF changes rapidly (for example, the flow direction is reversed) is suppressed. Thereby, generation | occurrence | production of the bubble and the shear stress of the grade which can damage a culture target (for example, cell) are suppressed.
 また、培養液CFが周回することにより(流れ方向が周回方向R1に規制されることにより)、流れ方向が無秩序に変化する場合に比べて、発生する培養液CFの波も小さい。すなわち、培養対象(例えば細胞)にダメージを与えうる程度の泡やシェアストレスを生む程度の大きさの培養液の波の発生が抑制される。 In addition, as the culture solution CF circulates (by restricting the flow direction to the circulation direction R1), the generated waves of the culture solution CF are also smaller than when the flow direction changes randomly. That is, the generation | occurrence | production of the wave of a culture solution of the magnitude | size which is the extent which produces the bubble which can damage a culture | cultivation object (for example, cell), and a shear stress is suppressed.
 さらに、培養液CFが流れる円環状の培養空間110が培養液CFが周回可能な無端状の周回空間であるために、培養液CF内において流速が略ゼロの領域(いわゆる淀み)の発生が抑制される。そのため、流速が略ゼロの領域に培養対象が凝集することが抑制される。その結果、培養対象へのダメージが抑制される。 Furthermore, since the annular culture space 110 through which the culture solution CF flows is an endless peripheral space in which the culture solution CF can circulate, the occurrence of a region where the flow rate is substantially zero (so-called stagnation) in the culture solution CF is suppressed. Is done. Therefore, the culture target is prevented from aggregating in a region where the flow rate is substantially zero. As a result, damage to the culture target is suppressed.
 なお、本願においては、「培養液が周回可能な無端状の周回空間」は、培養液が周回可能であって、且つ、その周回中心への培養液の移動を規制する内面(例えば図2に示す円環状の培養空間110の中心側内周面)を備える空間を意味する。また、本実施の形態の円環状の空間に代わって、培養空間は、例えば、立体交差する「8」の字形状などの三次元的な形状の空間であってもよい。 In the present application, the “endless circular space in which the culture medium can circulate” refers to an inner surface (for example, in FIG. 2) in which the culture liquid can circulate and restricts the movement of the culture liquid to the center of rotation. It means a space provided with an annular culture space 110 shown in FIG. Further, instead of the annular space of the present embodiment, the culture space may be a three-dimensional shape space such as an “8” shape that intersects three-dimensionally.
 さらに、本実施の形態の膨張バッグ部124A~124Dが培養バッグ100の培養部106を外部から押圧することによって培養空間110内に発生する凸部は、図7Aに示すように、必然的に丸みをおびた形状になる。したがって、培養液を回転撹拌するインペラのように鋭利ではないため、インペラによるシェアストレスに比べて、この凸部によって発生するシェアストレスは小さい。また、インペラの場合には局所的に大きいシェアストレスが発生するが、この凸部の場合には分散的に小さいシェアストレスが発生する。したがって、この凸部の形状的な特徴によっても、培養対象へのダメージが抑制される。 Furthermore, as shown in FIG. 7A, the convex portions generated in the culture space 110 when the inflated bag portions 124A to 124D of the present embodiment press the culture portion 106 of the culture bag 100 from the outside are necessarily rounded. The shape becomes distorted. Therefore, since it is not as sharp as an impeller that rotates and stirs the culture solution, the shear stress generated by this convex portion is smaller than the shear stress caused by the impeller. Further, in the case of the impeller, a large shear stress is locally generated, but in the case of this convex portion, a small shear stress is generated in a distributed manner. Therefore, the damage to the culture target is also suppressed by the shape feature of the convex portion.
 以上、上述の実施の形態を挙げて本発明を説明したが、本発明の実施の形態はこれに限らない。 As mentioned above, although the present invention has been described with reference to the above-described embodiment, the embodiment of the present invention is not limited to this.
 例えば、上述の実施の形態の場合、図6に示すように、培養バッグ100の膨張バッグ部124A、124B、124C、および124Dは、切替弁68A、68B、68C、および68Dを介して外気に連通されることによって収縮する。これに代わって、膨張バッグ部124A、124B、124C、および124Dは、真空ポンプ(図示せず)によって内部の空気が吸引されることによって収縮してもよい。この場合、膨張バッグ部の収縮が高速で行われる。したがって、それに対応して膨張バッグ部の膨張も高速で行えば、高速な培養液CFの流れを発生させることができる。 For example, in the case of the above-described embodiment, as shown in FIG. 6, the expansion bag portions 124A, 124B, 124C, and 124D of the culture bag 100 communicate with the outside air via the switching valves 68A, 68B, 68C, and 68D. It shrinks by being done. Alternatively, the expansion bag portions 124A, 124B, 124C, and 124D may be contracted by sucking the internal air by a vacuum pump (not shown). In this case, the expansion bag portion is contracted at high speed. Therefore, if the expansion of the expansion bag portion is also performed at a high speed, a high-speed flow of the culture solution CF can be generated.
 また、上述の実施の形態の場合、図5に示すように、膨張バッグ部124A、124B、124C、および124Dは、培養部106を縦断面周方向R2に周回している環状の空間であるが、本発明の実施の形態はこれに限らない。 In the case of the above-described embodiment, as shown in FIG. 5, the expansion bag portions 124A, 124B, 124C, and 124D are annular spaces that circulate around the culture portion 106 in the circumferential direction R2 in the longitudinal section. The embodiment of the present invention is not limited to this.
 例えば、図8に示す別の実施の形態に係る培養装置に使用される培養バッグ200は、上述の実施の形態の培養バッグ100と同様に、複数の膨張バッグ部208A、208B、208C、および208Dを備える。しかし、図8に示す膨張バッグ部208A、208B、208C、および208Dは、培養空間212の縦断面周方向に周回している環状の空間ではない。 For example, the culture bag 200 used in the culture device according to another embodiment shown in FIG. 8 has a plurality of inflatable bag portions 208A, 208B, 208C, and 208D, similarly to the culture bag 100 of the above-described embodiment. Is provided. However, the expansion bag portions 208A, 208B, 208C, and 208D shown in FIG. 8 are not annular spaces that circulate in the circumferential direction of the longitudinal section of the culture space 212.
 例えば、円形の縦断面を備える円環状のカバー部206の内周面の一部に、変形可能な材料から作製されたシート204が複数の接合箇所を介して貼り付けられている。それにより、シート204と該シート204が貼り付けられたカバー部206の内周面部分との間に、互いに独立した空間である複数の膨張バッグ部208A、208B、208C、および208Dが形成されている。一方、シート204と該シート204が貼り付けられていないカバー部206の部分とで培養部が構成され、その内部に培養空間212が形成されている。また、膨張バッグ部208A、208B、208C、および208Dには、空気供給ポート210A、210B、210C、および210Dが連通されている。 For example, a sheet 204 made of a deformable material is attached to a part of an inner peripheral surface of an annular cover portion 206 having a circular vertical cross section through a plurality of joints. Thereby, a plurality of inflatable bag portions 208A, 208B, 208C, and 208D that are independent spaces are formed between the sheet 204 and the inner peripheral surface portion of the cover portion 206 to which the sheet 204 is attached. Yes. On the other hand, a culture part is constituted by the sheet 204 and the part of the cover part 206 to which the sheet 204 is not attached, and a culture space 212 is formed therein. Air supply ports 210A, 210B, 210C, and 210D are communicated with the expansion bag portions 208A, 208B, 208C, and 208D.
 図7A~図7Dに示す培養バッグ100と同様に、膨張バッグ部208A、208B、208C、および208Dを順に膨張することにより、培養液の流れを形成することができる。 As with the culture bag 100 shown in FIGS. 7A to 7D, the flow of the culture solution can be formed by inflating the expansion bag portions 208A, 208B, 208C, and 208D in order.
 さらに、上述の実施の形態の場合、図2に示すように、培養バッグ100の培養空間110は円環状であるが、本発明の実施の形態はこれに限らない。 Furthermore, in the case of the above-mentioned embodiment, as shown in FIG. 2, the culture space 110 of the culture bag 100 is annular, but the embodiment of the present invention is not limited to this.
 例えば、図9は、略矩形状の培養空間を備える培養バッグの上面図である。また、図10は、図9のXb軸に沿った断面図である。 For example, FIG. 9 is a top view of a culture bag having a substantially rectangular culture space. FIG. 10 is a cross-sectional view along the Xb axis of FIG.
 図9および図10に示す培養バッグ300は、略矩形状であって、内袋部(培養部)302と、その内袋部302を収容する外袋部(カバー部)304とを有する二重構造の袋体である。また、培養部302内には、略矩形状の培養空間312が形成されている。 The culture bag 300 shown in FIGS. 9 and 10 has a substantially rectangular shape, and is a double bag having an inner bag portion (culture portion) 302 and an outer bag portion (cover portion) 304 that accommodates the inner bag portion 302. It is a bag of structure. In addition, a substantially rectangular culture space 312 is formed in the culture unit 302.
 培養部(内袋部)302の外面とカバー部(外袋部)304の内面とが複数の接合箇所308によって接合されており、それにより、これらの間に複数の膨張バッグ部306A、306B、306C、および306Dが形成されている。これらの膨張バッグ部306A、306B、306C、および306Dそれぞれは、環状の空間であって、空気供給ポート310A、310B、310C、および310Dに連通している。 The outer surface of the culture part (inner bag part) 302 and the inner surface of the cover part (outer bag part) 304 are joined by a plurality of joints 308, whereby a plurality of inflatable bag parts 306A, 306B, 306C and 306D are formed. Each of these inflatable bag portions 306A, 306B, 306C, and 306D is an annular space and communicates with the air supply ports 310A, 310B, 310C, and 310D.
 図9に示すように、複数の膨張バッグ部306A、306B、306C、および306Dは、培養バッグ300の長手方向(第1のバッグ軸Xb方向)に並んでいる。したがって、複数の膨張バッグ部306A、306B、306C,および306Dが順に膨張すると、培養バッグ300の長手方向の培養液の流れが生じる。 As shown in FIG. 9, the plurality of inflatable bag portions 306A, 306B, 306C, and 306D are arranged in the longitudinal direction of the culture bag 300 (first bag axis Xb direction). Therefore, when the plurality of inflatable bag portions 306A, 306B, 306C, and 306D are inflated in order, a culture solution flow in the longitudinal direction of the culture bag 300 is generated.
 培養バッグ300の場合、円環状の培養空間110を備える上述の培養バッグ100のように培養液は周回することができない。そのため、複数の膨張バッグ部それぞれの膨張によって生じた流れの衝突を抑制するために、以下のような膨張バッグ部の膨張パターンが実行される。 In the case of the culture bag 300, the culture solution cannot circulate like the above-described culture bag 100 having the annular culture space 110. Therefore, in order to suppress the collision of the flow caused by the expansion of each of the plurality of expansion bag portions, the following expansion pattern of the expansion bag portion is executed.
 例えば、複数の膨張バッグ部306A、306B、306C、および306Dそれぞれは、1つずつ順に膨張される。1つの膨張バッグ部の膨張によって発生した培養液の流れがほぼ治まると、次の膨張バッグ部が膨張して培養液の流れを新たに発生させる。これにより、泡の発生を抑制しつつ、培養液の流れを発生させることができる。 For example, each of the plurality of inflatable bag portions 306A, 306B, 306C, and 306D is inflated one by one in order. When the flow of the culture solution generated by the expansion of one expansion bag portion is almost subsided, the next expansion bag portion expands to newly generate a flow of the culture solution. Thereby, the flow of the culture solution can be generated while suppressing the generation of bubbles.
 また、上述の実施の形態の場合、図7A~図7Dに示すように、培養バッグ100の培養部106を押圧して変形させる手段である複数の膨張バッグ部124A、124B、124C、および124Dは、培養バッグ100に設けられているが、本発明の実施の形態はこれに限らない。例えば、膨張バッグは、培養バッグ側ではなく、培養装置側に設けられてもよい。この場合、培養バッグは、シンプルな構造となる。 In the case of the above-described embodiment, as shown in FIGS. 7A to 7D, the plurality of inflatable bag portions 124A, 124B, 124C, and 124D, which are means for pressing and deforming the culture portion 106 of the culture bag 100, Although it is provided in the culture bag 100, the embodiment of the present invention is not limited to this. For example, the expansion bag may be provided not on the culture bag side but on the culture device side. In this case, the culture bag has a simple structure.
 さらに、上述の実施の形態の場合、図7A~図7Dに示すように、培養バッグ100の培養部106を押圧して変形させる手段は、流体(圧縮空気)の供給を受けて膨張する複数の膨張バッグ部124A、124B、124C、および124Dであるが、本発明の実施の形態はこれに限らない。 Furthermore, in the case of the above-described embodiment, as shown in FIGS. 7A to 7D, the means for pressing and deforming the culture unit 106 of the culture bag 100 includes a plurality of inflated parts supplied with fluid (compressed air). Although the expansion bag portions 124A, 124B, 124C, and 124D, the embodiment of the present invention is not limited to this.
 例えば、図11に示す別の実施の形態に係る培養装置500は、培養バッグ400の円環状の培養部402を外部から押圧して該培養部402を部分的に変形させる複数のバッグ押圧部502、504、506、および508を有する。図11に示すように、複数のバッグ押圧部502、504、506、および508は、周回方向R1に等間隔に配置されている。バッグ押圧部502、504、506、および508は同様の構成であるため、バッグ押圧部502について説明すると、バッグ押圧部502は、培養部402を挟持する一対のバッグ押圧バー502A、502Bを備える。 For example, the culture apparatus 500 according to another embodiment shown in FIG. 11 includes a plurality of bag pressing portions 502 that press the annular culture portion 402 of the culture bag 400 from the outside to partially deform the culture portion 402. , 504, 506, and 508. As shown in FIG. 11, the plurality of bag pressing portions 502, 504, 506, and 508 are arranged at equal intervals in the circumferential direction R1. Since the bag pressing portions 502, 504, 506, and 508 have the same configuration, the bag pressing portion 502 will be described. The bag pressing portion 502 includes a pair of bag pressing bars 502A and 502B that sandwich the culture unit 402.
 例えば、バッグ押圧部504の一対のバッグ押圧バー504A、504Bが培養部402を挟持して変形させた状態で、バッグ押圧部506の一対のバッグ押圧バー506A、506Bが培養部402を挟持すると、バッグ押圧部508側に向かう矢印A方向の培養液CFの流れが生じる。 For example, when the pair of bag pressing bars 506A and 506B of the bag pressing unit 504 sandwich the culture unit 402 and the pair of bag pressing bars 506A and 506B of the bag pressing unit 506 sandwich the culture unit 402, the culture unit 402 is sandwiched. A flow of the culture solution CF in the direction of arrow A toward the bag pressing portion 508 occurs.
 最後に、上述の実施の形態の場合、図5に示すように、培養バッグ100の培養部106の異なる部分を異なるタイミングに変形させ、その培養空間110内に培養液CFの流れを発生させる複数のバッグ押圧部(膨張バッグ部)124A、124B、124C、および124Dは4個であるが、本発明の実施の形態はこれに限らない。バッグ押圧部は、少なくとも2つ以上あればよい。 Finally, in the case of the above-described embodiment, as shown in FIG. 5, different portions of the culture unit 106 of the culture bag 100 are deformed at different timings to generate a flow of the culture solution CF in the culture space 110. There are four bag pressing portions (inflatable bag portions) 124A, 124B, 124C, and 124D, but the embodiment of the present invention is not limited to this. There may be at least two bag pressing portions.
 以上のように、本発明における技術の例示として、実施の形態を説明した。そのために、添付図面及び詳細な説明を提供した。したがって、添付図面及び詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、前記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 As described above, the embodiment has been described as an example of the technique in the present invention. For this purpose, the accompanying drawings and detailed description are provided. Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the technology. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本発明における技術を例示するためのものであるから、特許請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略等を行うことができる。 In addition, since the above-described embodiment is for illustrating the technique in the present invention, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims and the equivalents thereof.
 2015年11月27日に出願された日本特許出願第2015-232255号の明細書、図面、及び特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。 The disclosures of the specification, drawings, and claims of Japanese Patent Application No. 2015-232255 filed on November 27, 2015 are incorporated herein by reference in their entirety. .

Claims (4)

  1.  培養液を収容して培養を行う培養空間が内部に形成されて且つ変形可能な材料から作製されている培養部を備える培養バッグと、
     外部から押圧して培養バッグの培養部の異なる部分を変形させる第1および第2のバッグ押圧部と、
     第1および第2のバッグ押圧部を制御することにより、第1および第2のバッグ押圧部によって培養部の異なる部分を異なるタイミングに変形させ、その培養空間内に培養液の流れを発生させる制御部と、を有する培養装置。
    A culture bag having a culture part in which a culture space for containing a culture solution and performing culture is formed and made from a deformable material;
    First and second bag pressing portions that are deformed by pressing different parts of the culture portion of the culture bag;
    By controlling the first and second bag pressing portions, the first and second bag pressing portions cause different portions of the culture portion to be deformed at different timings, thereby generating a culture fluid flow in the culture space. And a culture device.
  2.  第1および第2のバッグ押圧部が流体の供給を受けて膨張する複数の膨張バッグであって、
     第1および第2の膨張バッグそれぞれに対して流体を供給する第1および第2の流体供給部を有し、
     制御部が、第1および第2の膨張バッグそれぞれの膨張による押圧によって培養部の異なる部分が異なるタイミングに変形するように第1および第2の流体供給部を制御する、請求項1に記載の培養装置。
    A plurality of inflatable bags in which the first and second bag pressing portions are inflated by receiving a supply of fluid;
    Having first and second fluid supply parts for supplying fluid to the first and second inflatable bags, respectively;
    2. The control unit according to claim 1, wherein the control unit controls the first and second fluid supply units such that different portions of the culture unit are deformed at different timings by pressing due to expansion of the first and second expansion bags. Culture device.
  3.  培養バッグが、内袋部と、内袋部を収容する外袋部とを備え、
     内袋が培養部であって、
     膨張バッグが、内袋部の外面と外袋部の内面とを複数個所で接合して該内袋部と外袋部との間の空間を複数に分割することによって形成された複数の分割空間で構成されている、請求項2に記載の培養装置。
    The culture bag includes an inner bag portion and an outer bag portion that houses the inner bag portion,
    The inner bag is the culture part,
    The inflatable bag has a plurality of divided spaces formed by joining the outer surface of the inner bag portion and the inner surface of the outer bag portion at a plurality of locations and dividing the space between the inner bag portion and the outer bag portion into a plurality of spaces. The culture apparatus according to claim 2, comprising:
  4.  培養バッグの培養部の培養空間が無端状であって、
     制御部が、無端状の培養空間内で培養液が周回するように、第1および第2のバッグ押圧部を制御する、請求項1から3のいずれか一項に記載の培養装置。
    The culture space of the culture part of the culture bag is endless,
    The culture apparatus according to any one of claims 1 to 3, wherein the control unit controls the first and second bag pressing units so that the culture solution circulates in the endless culture space.
PCT/JP2016/085072 2015-11-27 2016-11-25 Culture device WO2017090760A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017552749A JP6600364B2 (en) 2015-11-27 2016-11-25 Incubator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015232255 2015-11-27
JP2015-232255 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017090760A1 true WO2017090760A1 (en) 2017-06-01

Family

ID=58763565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085072 WO2017090760A1 (en) 2015-11-27 2016-11-25 Culture device

Country Status (2)

Country Link
JP (1) JP6600364B2 (en)
WO (1) WO2017090760A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521845A (en) * 2018-04-25 2021-08-30 グローバル・ライフ・サイエンシズ・ソリューションズ・ユーエスエー・エルエルシー Inflatable bioreactor and usage
WO2024009678A1 (en) * 2022-07-07 2024-01-11 東洋製罐グループホールディングス株式会社 Cell culture system, and cell transport method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255077A (en) * 1989-03-28 1990-10-15 Kawasumi Lab Inc Culture bag
JP2005323588A (en) * 2004-04-13 2005-11-24 Toyo Seikan Kaisha Ltd Culturing double vessel and culturing method
WO2007052718A1 (en) * 2005-11-01 2007-05-10 Medinet Co., Ltd. Shaker for cell culture and shaken culture system in cell culture method
JP2010540228A (en) * 2007-09-26 2010-12-24 ジーイー・ヘルスケア・バイオサイエンス・バイオプロセス・コーポレイション Mixing container device with internal circulation
JP2011521641A (en) * 2008-05-30 2011-07-28 コーニング インコーポレイテッド Cell culture apparatus and method
WO2014045532A1 (en) * 2012-09-24 2014-03-27 東洋製罐グループホールディングス株式会社 Bubble removal method and bubble removal device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195394B2 (en) * 2004-07-19 2007-03-27 Vijay Singh Method for resonant wave mixing in closed containers
US9868095B2 (en) * 2007-05-02 2018-01-16 Finesse Solutions, Inc. Disposable bioreactor system
JP2010136628A (en) * 2008-12-09 2010-06-24 Ihi Corp Cell culture bag and cell culture method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255077A (en) * 1989-03-28 1990-10-15 Kawasumi Lab Inc Culture bag
JP2005323588A (en) * 2004-04-13 2005-11-24 Toyo Seikan Kaisha Ltd Culturing double vessel and culturing method
WO2007052718A1 (en) * 2005-11-01 2007-05-10 Medinet Co., Ltd. Shaker for cell culture and shaken culture system in cell culture method
JP2010540228A (en) * 2007-09-26 2010-12-24 ジーイー・ヘルスケア・バイオサイエンス・バイオプロセス・コーポレイション Mixing container device with internal circulation
JP2011521641A (en) * 2008-05-30 2011-07-28 コーニング インコーポレイテッド Cell culture apparatus and method
WO2014045532A1 (en) * 2012-09-24 2014-03-27 東洋製罐グループホールディングス株式会社 Bubble removal method and bubble removal device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BEDELL G.W.: "Stimulation of Commercial Algal Biomass Production by the Use of Geothermal Water for Temperature Control.", BIOTECHNOLOGY AND BIOENGINEERING, vol. 27, 1985, pages 1063 - 1066, XP055385411 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521845A (en) * 2018-04-25 2021-08-30 グローバル・ライフ・サイエンシズ・ソリューションズ・ユーエスエー・エルエルシー Inflatable bioreactor and usage
WO2024009678A1 (en) * 2022-07-07 2024-01-11 東洋製罐グループホールディングス株式会社 Cell culture system, and cell transport method

Also Published As

Publication number Publication date
JPWO2017090760A1 (en) 2018-07-26
JP6600364B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6600364B2 (en) Incubator
ES2438777T3 (en) Method and apparatus for a non-nutritive suction pulse generator
US9663753B2 (en) Tangential flow perfusion system
US8058057B2 (en) Cell culture apparatus and method
CN106754356B (en) Three-dimensional perfused culture system and the histoorgan of 3D printing
WO2008098165A3 (en) Oscillating cell culture bioreactor
JP2012526498A (en) Inflatable ear device
US20120276622A1 (en) Apparatus and method for high-throughput micro-cell culture with mechanical stimulation
US20070269789A1 (en) Bioreactor for Producing a Tissue Prosthesis, Particularly a Heart Valve
WO2015034416A1 (en) Cell culture bag with internal dialysis membrane
US11913590B2 (en) Flexible peristaltic robot with built-in bidirectional gas pump for self-regulating gas flow
JP6577596B2 (en) Incubator
US20120283609A1 (en) Vibrational Support Surface
EP3950920A1 (en) Cell manipulation device and cell manipulation method
WO2017090752A1 (en) Culture bag and culture device
JPH01225475A (en) Culture apparatus
JPWO2016104452A1 (en) Cell culture device and cell culture bag
CN105779290B (en) A kind of nano bubble stem cell pilot scale culture bioreactor system
CN210784387U (en) CT scanning head support and CT scanning equipment
Chen et al. Modelling and simulation for underwater hovering control based on ballast tank
CN116870285A (en) Directional flushing device for focus part of urinary patient
US20090061508A1 (en) Laminar flow reactor
EP3887496A1 (en) Bioreactor with filter
JP3779564B2 (en) Aeration culture tank
RU2269447C1 (en) Sea swell simulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552749

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868703

Country of ref document: EP

Kind code of ref document: A1