WO2017090656A1 - Method for producing trans-cyclohexanecarboxylic acid - Google Patents

Method for producing trans-cyclohexanecarboxylic acid Download PDF

Info

Publication number
WO2017090656A1
WO2017090656A1 PCT/JP2016/084740 JP2016084740W WO2017090656A1 WO 2017090656 A1 WO2017090656 A1 WO 2017090656A1 JP 2016084740 W JP2016084740 W JP 2016084740W WO 2017090656 A1 WO2017090656 A1 WO 2017090656A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
group
solvent
trans
Prior art date
Application number
PCT/JP2016/084740
Other languages
French (fr)
Japanese (ja)
Inventor
憲之 飛田
大川 春樹
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020187017074A priority Critical patent/KR20180088667A/en
Priority to CN201680068733.6A priority patent/CN108290813A/en
Publication of WO2017090656A1 publication Critical patent/WO2017090656A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/50Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C62/00Compounds having carboxyl groups bound to carbon atoms of rings other than six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C62/08Saturated compounds containing ether groups, groups, groups, or groups
    • C07C62/10Saturated compounds containing ether groups, groups, groups, or groups with a six-membered ring

Definitions

  • the present invention relates to a process for producing trans-cyclohexanecarboxylic acid.
  • trans-4-substituted cyclohexanecarboxylic acid is preferably used.
  • a method for producing trans-4-substituted cyclohexanecarboxylic acid a mixture of a cis isomer and a trans isomer 4-substituted cyclohexanecarboxylic acid ester is heated to 200 ° C. in the presence of an excess strong base with a mixed solvent of alcohol and water. A method (see Non-Patent Document 1) is known.
  • An object of the present invention is to provide a method capable of producing a trans-4-substituted cyclohexanecarboxylic acid in a high yield under mild conditions.
  • the present invention provides the following [1] to [8].
  • a formula (1-A) comprising a step (1) of heating a cis-trans mixture of a 4-substituted-cyclohexanecarboxylic acid compound represented by formula (1-1), a mixture containing a base and a hydrophobic organic solvent
  • J 1 represents a halogen atom, a hydroxyl group, or an amino group.
  • n represents an integer of 1 to 20.
  • compound (1-1) a compound represented by the formula (1-1)
  • compound (1-A trans-4-substituted-cyclohexanecarboxylic acid represented by the formula (1-A)
  • R 1 represents an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms.
  • J 1 represents any one of the group consisting of a halogen atom, a hydroxyl group and an amino group.
  • n represents an integer of 1 to 20.
  • R 1 examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an isopropyl group, an isobutyl group, a t-butyl group, an n-pentyl group, and an n-hexyl group. Since the compound (1-1) is easily available, a methyl group, an ethyl group, an n-propyl group and an n-hexyl group are preferable, and a compound (1-1) having a high purity as a raw material is available. Since it is easy, a methyl group and an ethyl group are more preferable.
  • N represents an integer from 1 to 20. N> 8 is preferable because the melting points of the compound (1-1) and the compound (1-A) are high, and n is more preferably 8 ⁇ n ⁇ 14 because it is cheaper. N is particularly preferably 11 because of excellent solubility.
  • J 1 represents a halogen atom, a hydroxyl group, or an amino group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable because the compound is stable.
  • one or more hydrogen atoms constituting the amino group may be substituted with an alkyl group.
  • the amino group include —NH 2 group, dimethylamino group, diethylamino group, dipropylamino group, dibutylamino group, dihexylamino group, morpholinyl group, piperidinyl group, pyrrolidinyl group and the like.
  • a dimethylamino group is preferred because the production of the compound (1-1) is easy.
  • J 1 is preferably a hydroxyl group.
  • Compound (1-1) is obtained by catalytic hydrogenation of the compound represented by Compound (2-1), and can be obtained according to the method described in Recueil des Travaux Chimiques des Pays-Bas, 1996,115,321-328. it can.
  • Examples of the catalyst used for catalytic hydrogenation include a palladium catalyst, a ruthenium catalyst, a platinum catalyst, a nickel catalyst, and a rhodium catalyst.
  • a palladium catalyst, a platinum catalyst, a ruthenium catalyst, and a rhodium catalyst are preferable because the aromatic ring is easily hydrogenated, and a ruthenium catalyst is preferable because the catalyst is inexpensive.
  • the catalyst is preferably supported on carbon, alumina, or silica, and preferably contains moisture because it can be handled safely.
  • the catalyst is more preferably ruthenium-carbon because of its excellent reaction activity.
  • solvents used for catalytic hydrogenation include methanol, ethanol, isopropanol, tetrahydrofuran, methylcyclohexane and the like. Tetrahydrofuran and methylcyclohexane are preferred because the compound (2-1) is difficult to transesterify, and methylcyclohexane is more preferred because it can be safely handled as a compound.
  • the solvent used for the catalytic hydrogenation is preferably 100 parts by weight or more with respect to 100 parts by weight of the compound (2-1).
  • the solvent is more preferably 150 parts by weight or more because the reaction proceeds uniformly, and particularly preferably 150 parts by weight or more and 600 parts by weight or less because the volumetric efficiency of the reaction kettle is high and removal is easy.
  • an acid such as acetic acid, formic acid or hydrochloric acid may be added to the above solvent.
  • the hydrogen pressure for catalytic hydrogenation is usually 1 MPa to 15 MPa.
  • the hydrogen pressure is preferably from 1 MPa to 10 MPa because there are few side reactions, and more preferably from 4 MPa to 10 MPa because the reaction yield is high.
  • the reaction temperature is preferably 50 ° C. to 200 ° C., more preferably 50 ° C. to 120 ° C. because there are few side reactions, and particularly preferably 70 ° C. to 120 ° C. because the reaction rate is fast.
  • the reaction solution may be used in the step (1) as it is in the solution after removing the catalyst by catalytic hydrogenation after the catalytic hydrogenation, or may be used in the step (1) by distilling off the reaction solvent. Good. Since the operation is simple, it is preferable to use the solution in the step (1) as it is without removing the reaction solvent.
  • step (1) may be performed after hydrolysis of the carboxylic acid ester and then R 1 is converted to a hydrogen atom, or step (1) is performed without hydrolysis.
  • the compound (1-A) may be obtained while converting R 1 to a hydrogen atom.
  • a hydrophobic organic solvent itself or a solvent containing a hydrophobic organic solvent is used.
  • the hydrophobic organic solvent include aromatic systems such as benzene, toluene, xylene (orthoxylene, metaxylene, paraxylene, or a mixture thereof), mesitylene, cymene, cumene, durene, chlorobenzene, diphenyl ether, anisole, and thioanisole.
  • organic solvents, hydrocarbon organic solvents such as heptane, octane, nonane, decane, undecane, dodecane, cyclohexane and methylcyclohexane.
  • a pressurized container such as an autoclave
  • a solvent having a boiling point higher than the reaction temperature should be used.
  • a pressurized container such as an autoclave is not necessary, and the pressure is preferably 0.8 to 1.2 atm, more preferably 0.9 to 1.1 atm. .
  • the base used for isomerization includes at least one selected from the group consisting of hydroxides, hydrides and alkoxide compounds.
  • hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide and the like.
  • Examples of the hydride include sodium hydride, potassium hydride, calcium hydride and the like.
  • Examples of the alkoxide compound include sodium methoxy, ethoxy sodium, i-propoxy sodium, t-butoxy sodium, and t-butoxy potassium.
  • an alkoxide compound is preferable because the reaction mass properties tend to be better, and t-butoxy sodium or t-butoxy potassium is more preferable.
  • the reaction solution becomes heterogeneous, so increasing the surface area of the base is effective for increasing the reaction rate. For this reason, for example, base pellets may be crushed and used, or water may be added and dissolved to form a two-layer reaction solution with an organic solvent.
  • a phase transfer catalyst other than a polymer having an oxyethylene unit such as crown ether or polyethylene glycol may be added. Examples of such a phase transfer catalyst include a tetraalkylammonium salt, and a tetrabutylammonium salt is more preferable.
  • the base is preferably at least 1.1 molar equivalents relative to 1 mole of compound (1-1). Since a neutralization reaction is required when taking out as carboxylic acid after reaction, 1.1 to 5 molar equivalents are preferable, and 1.1 to 4 molar equivalents are more preferable.
  • the reaction temperature is usually 120 ° C. or higher, preferably 140 ° C. or higher and 180 ° C. or lower, more preferably 150 ° C. or higher and 170 ° C. or lower, which is not unreasonable in terms of equipment.
  • the reaction time is preferably 1 minute to 24 hours, more preferably 1 to 12 hours, and further preferably 2 to 10 hours.
  • the trans isomer obtained in the above step (1) is obtained by precipitation as a salt. Therefore, it is preferable to carry out the step (2) in order to take out the compound (1-A).
  • step (2) examples include the following two methods.
  • the first method is described below. First, the salt of the compound (1-A) precipitated from the reaction solution is collected by filtration, dispersed in water, and neutralized. The precipitated solid is collected by filtration and washed with an organic solvent to remove the remaining cis form.
  • inorganic acids such as hydrochloric acid and sulfuric acid are preferably used.
  • organic solvent examples include aromatic solvents such as toluene, xylene and benzene, aliphatic saturated hydrocarbon solvents such as n-heptane, n-hexane, n-pentane and n-octane, chloroform, dichloromethane, trichloroethane and chlorobenzene.
  • group solvent of these is mentioned.
  • the mixed solvent a plurality of the above solvents may be combined, or a mixed solvent in which a good solvent of the compound (1-A) and an aliphatic saturated hydrocarbon solvent such as n-hexane, n-pentane and n-octane are combined. But you can.
  • ester solvents such as ethyl acetate, butyl acetate and ethyl lactate, ether solvents such as diethyl ether and tetrahydrofuran, halogen solvents such as chloroform, dichloromethane and trichloroethane, methyl isobutyl ketone And ketone solvents such as methyl ethyl ketone.
  • ester solvents and halogen solvents are preferred because of their high acid stability and easy distillation, and ester solvents are more preferred.
  • a mixed solvent of an aromatic solvent and an aliphatic saturated hydrocarbon solvent As a solvent for washing, since the trans purity and yield of the compound are high, a mixed solvent of an aromatic solvent and an aliphatic saturated hydrocarbon solvent, a mixed solvent ester solvent of a halogen solvent and an aliphatic saturated hydrocarbon solvent, A mixed solvent of an aliphatic saturated hydrocarbon solvent is preferred. From the viewpoint of environmental compatibility, a mixed solvent of an aromatic solvent and an aliphatic saturated hydrocarbon solvent, and a mixed solvent of an ester solvent and an aliphatic saturated hydrocarbon solvent are more preferable.
  • the reaction solution is neutralized after adding the good solvent and water.
  • the organic layer containing the compound (1-A) which is a carboxylic acid form the compound (1-A) can be taken out by crystallization with a saturated hydrocarbon solvent which is a poor solvent and filtering.
  • inorganic acids such as hydrochloric acid and sulfuric acid are preferably used. Since the solubility of the compound (1-A) in an aromatic solvent is low, a salt may be removed by adding a good solvent as appropriate before or during neutralization and separating with water. The neutralization is more preferably performed after adding a good solvent and water.
  • the poor solvent examples include cyclic saturated hydrocarbon solvents such as cyclohexane and methylcyclohexane, and aliphatic saturated hydrocarbon solvents such as n-heptane, n-hexane, n-pentane and n-octane. Of the above solvents, aliphatic saturated hydrocarbon solvents are preferred, and n-heptane is more preferred.
  • the second method is preferable because a higher purity compound (1-A) can be obtained and filterability is excellent.
  • the filtrate at the time of crystallization can be recovered and reused in the step (1) again.
  • the above filtrate contains the cis form of compound (1-A) and compound (1-A), but the filtrate may be concentrated under reduced pressure and step (1) may be performed again, or step (1) without concentration. ) May be added, and the poor solvent may be distilled off by heating.
  • Examples of the compound (1-1) preferably used include the following compounds (1-1-1) to (1-1-24).
  • the water layer was removed by allowing to stand, and washing with water was repeated until the pH reached 4 or more.
  • the present invention is an excellent method for obtaining trans-cyclohexanecarboxylic acid in a high yield.

Abstract

Provided is a method for producing a trans-4-substituted-cyclohexanecarboxylic acid under mild conditions with high yield. A method for producing a trans-4-substituted-cyclohexanecarboxylic acid (1-A), involving a step of heating a mixture containing a cis-trans mixure (1-1) of a 4-substitued-cyclohexanecarboxylic acid compound, a base and a hydrophobic organic solvent. The base comprises at least one compound selected from the group consisting of a hydroxide, a hydride and an alkoxide compound.

Description

トランス-シクロヘキサンカルボン酸の製造方法Process for producing trans-cyclohexanecarboxylic acid
 本発明は、トランス-シクロヘキサンカルボン酸の製造方法に関する。 The present invention relates to a process for producing trans-cyclohexanecarboxylic acid.
 近年、フラットパネル表示装置(FPD)に用いられる、偏光板、位相差板などの光学フィルムに適用され得る液晶材料として、シクロアルカンに由来する構造を含む化合物が注目されており、例えば、該液晶材料を製造する際の中間体として、トランス-4-置換シクロヘキサンカルボン酸が好ましく用いられる。
 トランス-4-置換シクロヘキサンカルボン酸の製造方法としては、シス体及びトランス体4-置換シクロヘキサンカルボン酸エステルの混合物を、アルコール及び水の混合溶媒で過剰の強塩基の存在下で200℃に加熱する方法(非特許文献1参照)が知られている。
In recent years, as a liquid crystal material that can be applied to an optical film such as a polarizing plate or a retardation plate used in a flat panel display (FPD), a compound including a structure derived from cycloalkane has been attracting attention. As an intermediate for producing the material, trans-4-substituted cyclohexanecarboxylic acid is preferably used.
As a method for producing trans-4-substituted cyclohexanecarboxylic acid, a mixture of a cis isomer and a trans isomer 4-substituted cyclohexanecarboxylic acid ester is heated to 200 ° C. in the presence of an excess strong base with a mixed solvent of alcohol and water. A method (see Non-Patent Document 1) is known.
 従前の製造方法では、過酷な加圧条件が必要である上に、トランス-4-置換シクロヘキサンカルボン酸の収率が十分なものではなかった。
 本発明の目的は、緩和な条件下で、高い収率でトランス-4-置換シクロヘキサンカルボン酸を製造し得る方法を提供することにある。
In the conventional production method, severe pressure conditions are required, and the yield of trans-4-substituted cyclohexanecarboxylic acid is not sufficient.
An object of the present invention is to provide a method capable of producing a trans-4-substituted cyclohexanecarboxylic acid in a high yield under mild conditions.
 即ち、本発明は、以下の[1]~[8]を提供するものである。 That is, the present invention provides the following [1] to [8].
[1]式(1-1)であらわされる4-置換-シクロヘキサンカルボン酸化合物のシス-トランス混合物、塩基及び疎水性有機溶媒を含む混合物を加熱する工程(1)を含む式(1-A)であらわされるトランス-4-置換-シクロヘキサンカルボン酸の製造方法。
Figure JPOXMLDOC01-appb-I000002
[式(1-1)中、Rは水素原子又は炭素数1~20のアルキル基を表す。
 式(1-1)および式(1-A)中、Jはハロゲン原子、水酸基、またはアミノ基を表す。
nは1~20の整数を表す。]
[2]塩基が、水酸化物、水素化物およびアルコキサイド化合物からなる群から選ばれる少なくとも1つを含む請求項1に記載の製造方法。
[3]塩基が、アルコキサイド化合物である請求項1または2に記載の製造方法。
[4]塩基が、式(1-1)であらわされる化合物に対して、1.1モル当量以上である請求項1~3のいずれかに記載の製造方法。
[5]Jが水酸基である請求項1~4のいずれかに記載の製造方法。
[6]140℃~180℃で加熱する請求項1~5のいずれかに記載の製造方法。
[7]疎水性有機溶媒の沸点以下で加熱する請求項1~6のいずれかに記載の製造方法。
[8]0.8~1.2気圧で加熱する請求項1~7の製造方法。
[1] A formula (1-A) comprising a step (1) of heating a cis-trans mixture of a 4-substituted-cyclohexanecarboxylic acid compound represented by formula (1-1), a mixture containing a base and a hydrophobic organic solvent A process for producing trans-4-substituted-cyclohexanecarboxylic acid represented by
Figure JPOXMLDOC01-appb-I000002
[In Formula (1-1), R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
In Formula (1-1) and Formula (1-A), J 1 represents a halogen atom, a hydroxyl group, or an amino group.
n represents an integer of 1 to 20. ]
[2] The production method according to claim 1, wherein the base contains at least one selected from the group consisting of hydroxide, hydride and alkoxide compound.
[3] The production method according to claim 1 or 2, wherein the base is an alkoxide compound.
[4] The production method according to any one of claims 1 to 3, wherein the base is 1.1 molar equivalents or more based on the compound represented by the formula (1-1).
[5] The method according to any one of claims 1 ~ 4 J 1 is a hydroxyl group.
[6] The production method according to any one of [1] to [5], wherein the heating is performed at 140 ° C to 180 ° C.
[7] The production method according to any one of [1] to [6], wherein the heating is performed at a boiling point or less of the hydrophobic organic solvent.
[8] The method according to any one of [1] to [7], wherein the heating is performed at 0.8 to 1.2 atmospheres.
 本発明によれば、高収率でトランス-シクロヘキサンカルボン酸を製造することが可能となる。 According to the present invention, it is possible to produce trans-cyclohexanecarboxylic acid with high yield.
 本発明の製造方法は、シス-トランス混合物である式(1-1)であらわされる化合物(以下「化合物(1-1)」という場合がある)、塩基及び疎水性有機溶媒を含む混合物を加熱する工程を含む式(1-A)で表されるトランス-4-置換-シクロヘキサンカルボン酸(以下「化合物(1-A)」という場合がある)の製造方法である。 In the production method of the present invention, a mixture containing a compound represented by the formula (1-1) (hereinafter sometimes referred to as “compound (1-1)”), which is a cis-trans mixture, a base and a hydrophobic organic solvent is heated. A process for producing trans-4-substituted-cyclohexanecarboxylic acid represented by the formula (1-A) (hereinafter sometimes referred to as “compound (1-A)”).
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 式(1-1)中、Rは炭素数1~20のアルキル基を表し、炭素数1~10のアルキル基であることが好ましい。
 式(1-1)、および式(1-A)中Jはハロゲン原子、水酸基、アミノ基からなる群のいずれかを表す。nは1~20の整数を表す。
In formula (1-1), R 1 represents an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms.
In formula (1-1) and formula (1-A), J 1 represents any one of the group consisting of a halogen atom, a hydroxyl group and an amino group. n represents an integer of 1 to 20.
 Rとしては、メチル基、エチル基、n-プロピル基、n-ブチル基、イソプロピル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基などが挙げられる。化合物(1-1)の入手が容易であることから、メチル基、エチル基、n-プロピル基及びn-ヘキシル基が好ましく、原料となる化合物(1-1)の純度が高いものが入手しやすいことから、メチル基及びエチル基がより好ましい。 Examples of R 1 include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an isopropyl group, an isobutyl group, a t-butyl group, an n-pentyl group, and an n-hexyl group. Since the compound (1-1) is easily available, a methyl group, an ethyl group, an n-propyl group and an n-hexyl group are preferable, and a compound (1-1) having a high purity as a raw material is available. Since it is easy, a methyl group and an ethyl group are more preferable.
 nは1から20の整数を表す。化合物(1-1)および化合物(1-A)の融点が高いことから、n>8であることが好ましく、さらに安価であることからnは8<n<14を満たすことがより好ましく、さらに溶解性に優れることからnは11であるのが特に好ましい。 N represents an integer from 1 to 20. N> 8 is preferable because the melting points of the compound (1-1) and the compound (1-A) are high, and n is more preferably 8 <n <14 because it is cheaper. N is particularly preferably 11 because of excellent solubility.
 Jはハロゲン原子、水酸基、またはアミノ基を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられるが、化合物が安定であることからフッ素原子及び塩素原子が好ましい。 J 1 represents a halogen atom, a hydroxyl group, or an amino group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable because the compound is stable.
 アミノ基は、アミノ基を構成する1つ以上の水素がアルキル基で置換されていてもよい。該アミノ基としては、-NH基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジヘキシルアミノ基、モルホリニル基、ピペリジニル基、ピロリジニル基などが挙げられる。化合物(1-1)の製造が容易なことから、ジメチルアミノ基が好ましい。 In the amino group, one or more hydrogen atoms constituting the amino group may be substituted with an alkyl group. Examples of the amino group include —NH 2 group, dimethylamino group, diethylamino group, dipropylamino group, dibutylamino group, dihexylamino group, morpholinyl group, piperidinyl group, pyrrolidinyl group and the like. A dimethylamino group is preferred because the production of the compound (1-1) is easy.
 Jは水酸基であることが好ましい。 J 1 is preferably a hydroxyl group.
 化合物(1-1)は、化合物(2-1)であらわされる化合物の接触水素化によって得られ、Recueil des Travaux Chimiques des Pays-Bas,1996,115,321-328に記載の方法に準じて得ることができる。 Compound (1-1) is obtained by catalytic hydrogenation of the compound represented by Compound (2-1), and can be obtained according to the method described in Recueil des Travaux Chimiques des Pays-Bas, 1996,115,321-328. it can.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
[式(2-1)中、R、J及びnは前記と同じ意味を表す。] [In formula (2-1), R 1 , J 1 and n represent the same meaning as described above. ]
 接触水素化に用いられる触媒としては、パラジウム触媒、ルテニウム触媒、白金触媒、ニッケル触媒、ロジウム触媒などが挙げられる。このうち、パラジウム触媒、白金触媒、ルテニウム触媒及びロジウム触媒は、芳香環を容易に水素化させることから好ましく、また触媒が安価であることからルテニウム触媒が好ましい。 Examples of the catalyst used for catalytic hydrogenation include a palladium catalyst, a ruthenium catalyst, a platinum catalyst, a nickel catalyst, and a rhodium catalyst. Among these, a palladium catalyst, a platinum catalyst, a ruthenium catalyst, and a rhodium catalyst are preferable because the aromatic ring is easily hydrogenated, and a ruthenium catalyst is preferable because the catalyst is inexpensive.
 上記触媒は、炭素、アルミナ、シリカに担持されたものが好ましく、安全に取り扱えることから水分を含むことが好ましい。触媒は、反応活性に優れることから、ルテニウム-炭素がより好ましい。 The catalyst is preferably supported on carbon, alumina, or silica, and preferably contains moisture because it can be handled safely. The catalyst is more preferably ruthenium-carbon because of its excellent reaction activity.
 接触水素化に用いられる溶媒の例としては、メタノール、エタノール、イソプロパノール、テトラヒドロフラン、メチルシクロヘキサンなどが挙げられる。化合物(2-1)がエステル交換しにくいことから、テトラヒドロフラン及びメチルシクロヘキサンが好ましく、化合物として安全に取り扱えることからメチルシクロヘキサンがより好ましい。 Examples of solvents used for catalytic hydrogenation include methanol, ethanol, isopropanol, tetrahydrofuran, methylcyclohexane and the like. Tetrahydrofuran and methylcyclohexane are preferred because the compound (2-1) is difficult to transesterify, and methylcyclohexane is more preferred because it can be safely handled as a compound.
 接触水素化に用いられる溶媒は、化合物(2-1)100重量部に対して、100重量部以上が好ましい。溶媒は、反応が均一に進行することから150重量部以上がより好ましく、反応釜の容積効率が高いこと、また除去が容易であることから150重量部以上600重量部以下が特に好ましい The solvent used for the catalytic hydrogenation is preferably 100 parts by weight or more with respect to 100 parts by weight of the compound (2-1). The solvent is more preferably 150 parts by weight or more because the reaction proceeds uniformly, and particularly preferably 150 parts by weight or more and 600 parts by weight or less because the volumetric efficiency of the reaction kettle is high and removal is easy.
 接触水素化の際、上記溶媒に、さらに酢酸、ギ酸、塩酸などの酸を加えてもよい。 In the case of catalytic hydrogenation, an acid such as acetic acid, formic acid or hydrochloric acid may be added to the above solvent.
 接触水素化の水素圧力は、通常、1MPa~15MPaで実施される。水素圧力は、副反応が少ないことから1MPa~10MPaが好ましく、反応収率が高いことから4MPa~10MPaがより好ましい。反応温度は、50℃~200℃が好ましく、副反応が少ないことから50℃~120℃がより好ましく、反応速度が速いことから70℃~120℃が特に好ましい。 The hydrogen pressure for catalytic hydrogenation is usually 1 MPa to 15 MPa. The hydrogen pressure is preferably from 1 MPa to 10 MPa because there are few side reactions, and more preferably from 4 MPa to 10 MPa because the reaction yield is high. The reaction temperature is preferably 50 ° C. to 200 ° C., more preferably 50 ° C. to 120 ° C. because there are few side reactions, and particularly preferably 70 ° C. to 120 ° C. because the reaction rate is fast.
 反応溶液は、接触水素化後、反応溶液をろ過することによって触媒を除去した後、溶液のまま工程(1)に用いてもよいし反応溶媒を留去して工程(1)に用いてもよい。操作が簡便であることから、反応溶媒を除去せず、溶液のまま工程(1)に用いることが好ましい。 The reaction solution may be used in the step (1) as it is in the solution after removing the catalyst by catalytic hydrogenation after the catalytic hydrogenation, or may be used in the step (1) by distilling off the reaction solvent. Good. Since the operation is simple, it is preferable to use the solution in the step (1) as it is without removing the reaction solvent.
 Rがアルキル基の場合、カルボン酸エステルを一旦加水分解してからRを水素原子に変換した後に工程(1)を行ってもよいし、加水分解を行わずに工程(1)を行い、Rを水素原子に変換しながら化合物(1-A)を得てもよい。 When R 1 is an alkyl group, step (1) may be performed after hydrolysis of the carboxylic acid ester and then R 1 is converted to a hydrogen atom, or step (1) is performed without hydrolysis. The compound (1-A) may be obtained while converting R 1 to a hydrogen atom.
 工程(1)には、疎水性有機溶媒そのもの、または疎水性有機溶媒を含む溶媒が用いられる。
 かかる疎水性有機溶媒としては、ベンゼン、トルエン、キシレン(オルトキシレン、メタキシレン、パラキシレン、あるいはこれらの混合物)、メシチレン、シメン、クメン、デュレン、クロロベンゼン、ジフェニルエーテル、アニソール及びチオアニソール等の芳香族系有機溶媒、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、シクロヘキサン及びメチルシクロヘキサン等の炭化水素系有機溶媒が挙げられる。常圧での沸点が異性化反応に必要な温度より低い疎水性有機溶媒を用いる場合には、オートクレーブ等の加圧容器が必要となることから、反応温度よりも沸点の高い溶媒を用いることが好ましい。その場合、オートクレーブ等の加圧容器は不要であり、圧力は0.8~1.2気圧で実施することが好ましく、より好ましくは0.9~1.1気圧の範囲で実施することができる。
In the step (1), a hydrophobic organic solvent itself or a solvent containing a hydrophobic organic solvent is used.
Examples of the hydrophobic organic solvent include aromatic systems such as benzene, toluene, xylene (orthoxylene, metaxylene, paraxylene, or a mixture thereof), mesitylene, cymene, cumene, durene, chlorobenzene, diphenyl ether, anisole, and thioanisole. Examples include organic solvents, hydrocarbon organic solvents such as heptane, octane, nonane, decane, undecane, dodecane, cyclohexane and methylcyclohexane. When using a hydrophobic organic solvent whose boiling point at normal pressure is lower than the temperature required for the isomerization reaction, a pressurized container such as an autoclave is required, and therefore a solvent having a boiling point higher than the reaction temperature should be used. preferable. In that case, a pressurized container such as an autoclave is not necessary, and the pressure is preferably 0.8 to 1.2 atm, more preferably 0.9 to 1.1 atm. .
 異性化に用いる塩基は、水酸化物、水素化物およびアルコキサイド化合物からなる群から選ばれる少なくとも1つを含む。
 水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウムなどが挙げられる。
 水素化物としては、水素化ナトリウム、水素化カリウム、水素化カルシウムなどが挙げられる。
 アルコキサイド化合物としては、メトキシナトリウム、エトキシナトリウム、i-プロポキシナトリウム、t-ブトキシナトリウム、t-ブトキシカリウムなどが挙げられる。
 塩基としては、反応マス性状がより良好になる傾向があることから、アルコキサイド化合物が好ましく、t-ブトキシナトリウム又はt-ブトキシカリウムがより好ましい。
The base used for isomerization includes at least one selected from the group consisting of hydroxides, hydrides and alkoxide compounds.
Examples of the hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide and the like.
Examples of the hydride include sodium hydride, potassium hydride, calcium hydride and the like.
Examples of the alkoxide compound include sodium methoxy, ethoxy sodium, i-propoxy sodium, t-butoxy sodium, and t-butoxy potassium.
As the base, an alkoxide compound is preferable because the reaction mass properties tend to be better, and t-butoxy sodium or t-butoxy potassium is more preferable.
 溶媒中で上記の塩基を用いる場合は、反応溶液は不均一になることから、反応速度を高めるには塩基の表面積を高めることが有効である。このため、例えば、塩基のペレットを粉砕して使用してもよいし、水を加えて溶解させて有機溶媒との二層系の反応溶液にしてもよい。また、クラウンエーテル、ポリエチレングリコールなどのオキシエチレンユニットを有するポリマー以外の相間移動触媒を加えてもよい。このような相間移動触媒としては、テトラアルキルアンモニウム塩等が挙げられ、テトラブチルアンモニウム塩がより好ましい。 When the above-mentioned base is used in a solvent, the reaction solution becomes heterogeneous, so increasing the surface area of the base is effective for increasing the reaction rate. For this reason, for example, base pellets may be crushed and used, or water may be added and dissolved to form a two-layer reaction solution with an organic solvent. Further, a phase transfer catalyst other than a polymer having an oxyethylene unit such as crown ether or polyethylene glycol may be added. Examples of such a phase transfer catalyst include a tetraalkylammonium salt, and a tetrabutylammonium salt is more preferable.
 前記塩基は化合物(1-1)1モルに対して1.1モル当量以上であることが好ましい。反応後カルボン酸として取り出すときに中和反応が必要となるので、1.1モル当量以上5モル当量以下が好ましく、1.1モル当量以上4モル当量以下がより好ましい。 The base is preferably at least 1.1 molar equivalents relative to 1 mole of compound (1-1). Since a neutralization reaction is required when taking out as carboxylic acid after reaction, 1.1 to 5 molar equivalents are preferable, and 1.1 to 4 molar equivalents are more preferable.
 反応温度は、通常、120℃以上であり、装置面で無理のない140℃以上180℃以下が好ましく、150℃以上170℃以下がより好ましい。 The reaction temperature is usually 120 ° C. or higher, preferably 140 ° C. or higher and 180 ° C. or lower, more preferably 150 ° C. or higher and 170 ° C. or lower, which is not unreasonable in terms of equipment.
 反応時間は、好ましくは1分~24時間、より好ましくは1~12時間、さらに好ましくは2~10時間である。 The reaction time is preferably 1 minute to 24 hours, more preferably 1 to 12 hours, and further preferably 2 to 10 hours.
 上記工程(1)でトランス体得られたトランス体は塩として沈殿して得られる。よって、化合物(1-A)を取り出すため、工程(2)を実施することが好ましい。 The trans isomer obtained in the above step (1) is obtained by precipitation as a salt. Therefore, it is preferable to carry out the step (2) in order to take out the compound (1-A).
 工程(2)としては、以下の二つの方法などが挙げられる。
 第一の方法を以下に述べる。まず反応溶液から析出した化合物(1-A)の塩を濾取後、水に分散させたのちに中和する。析出した固体を濾取し、有機溶媒で洗浄して残存するシス体を除去する。
Examples of the step (2) include the following two methods.
The first method is described below. First, the salt of the compound (1-A) precipitated from the reaction solution is collected by filtration, dispersed in water, and neutralized. The precipitated solid is collected by filtration and washed with an organic solvent to remove the remaining cis form.
 中和は、塩酸、硫酸などの無機酸が好適に用いられる。 For neutralization, inorganic acids such as hydrochloric acid and sulfuric acid are preferably used.
 上記有機溶媒としては、トルエン、キシレン及びベンゼン等の芳香族系溶媒、n-ヘプタン、n-ヘキサン、n-ペンタン及びn-オクタン等の脂肪族飽和炭化水素溶媒、クロロホルム、ジクロロメタン、トリクロロエタン及びクロロベンゼン等のハロゲン系溶媒が挙げられる。また混合溶媒としては上記溶媒を複数組み合わせてもよいし、化合物(1-A)の良溶媒と、n-ヘキサン、n-ペンタン及びn-オクタン等の脂肪族飽和炭化水素溶媒を組み合わせた混合溶媒でもよい。 Examples of the organic solvent include aromatic solvents such as toluene, xylene and benzene, aliphatic saturated hydrocarbon solvents such as n-heptane, n-hexane, n-pentane and n-octane, chloroform, dichloromethane, trichloroethane and chlorobenzene. The halogen type | system | group solvent of these is mentioned. As the mixed solvent, a plurality of the above solvents may be combined, or a mixed solvent in which a good solvent of the compound (1-A) and an aliphatic saturated hydrocarbon solvent such as n-hexane, n-pentane and n-octane are combined. But you can.
 化合物(1-A)の良溶媒としては、酢酸エチル、酢酸ブチル及び乳酸エチル等のエステル系溶媒、ジエチルエーテル及びテトラヒドロフラン等のエーテル系溶媒、クロロホルム、ジクロロメタン及びトリクロロエタン等のハロゲン系溶媒、メチルイソブチルケトン及びメチルエチルケトン等のケトン系溶媒が挙げられる。これらのうち、エステル系溶媒及びハロゲン系溶媒が酸への安定性が高いこと、また留去が容易なことから好ましく、エステル系溶媒がより好ましい。 As a good solvent for the compound (1-A), ester solvents such as ethyl acetate, butyl acetate and ethyl lactate, ether solvents such as diethyl ether and tetrahydrofuran, halogen solvents such as chloroform, dichloromethane and trichloroethane, methyl isobutyl ketone And ketone solvents such as methyl ethyl ketone. Of these, ester solvents and halogen solvents are preferred because of their high acid stability and easy distillation, and ester solvents are more preferred.
 洗浄用溶媒としては、化合物のトランス純度と収率が高いことから、芳香族系溶媒と脂肪族飽和炭化水素溶媒の混合溶媒、ハロゲン系溶媒と脂肪族飽和炭化水素溶媒の混合溶媒エステル系溶媒と脂肪族飽和炭化水素溶媒の混合溶媒が好ましい。環境適合性の観点から、香族系溶媒と脂肪族飽和炭化水素溶媒の混合溶媒、およびエステル系溶媒と脂肪族飽和炭化水素溶媒の混合溶媒がより好ましい。 As a solvent for washing, since the trans purity and yield of the compound are high, a mixed solvent of an aromatic solvent and an aliphatic saturated hydrocarbon solvent, a mixed solvent ester solvent of a halogen solvent and an aliphatic saturated hydrocarbon solvent, A mixed solvent of an aliphatic saturated hydrocarbon solvent is preferred. From the viewpoint of environmental compatibility, a mixed solvent of an aromatic solvent and an aliphatic saturated hydrocarbon solvent, and a mixed solvent of an ester solvent and an aliphatic saturated hydrocarbon solvent are more preferable.
 次に第二の方法を以下に述べる。反応溶液に上記良溶媒と水を加えた後に中和する。カルボン酸体である化合物(1-A)を含む有機層を回収後、貧溶媒である飽和炭化水素溶媒で晶析して濾取すれば化合物(1-A)を取り出せる。 Next, the second method is described below. The reaction solution is neutralized after adding the good solvent and water. After recovering the organic layer containing the compound (1-A) which is a carboxylic acid form, the compound (1-A) can be taken out by crystallization with a saturated hydrocarbon solvent which is a poor solvent and filtering.
 中和は、塩酸、硫酸などの無機酸が好適に用いられる。化合物(1-A)の芳香族溶媒への溶解性が低いので、中和前あるいは中和中に適宜良溶媒を加えて水と分液して塩を除去してもよい。中和は良溶媒と水を加えた後に行うほうがより好ましい。 For neutralization, inorganic acids such as hydrochloric acid and sulfuric acid are preferably used. Since the solubility of the compound (1-A) in an aromatic solvent is low, a salt may be removed by adding a good solvent as appropriate before or during neutralization and separating with water. The neutralization is more preferably performed after adding a good solvent and water.
 貧溶媒としては、シクロヘキサン及びメチルシクロヘキサン等の環状飽和炭化水素溶媒、n-ヘプタン、n-ヘキサン、n-ペンタン及びn-オクタン等の脂肪族飽和炭化水素溶媒が挙げられる。上記溶媒のうち、脂肪族飽和炭化水素溶媒が好ましく、n-ヘプタンがより好ましい。 Examples of the poor solvent include cyclic saturated hydrocarbon solvents such as cyclohexane and methylcyclohexane, and aliphatic saturated hydrocarbon solvents such as n-heptane, n-hexane, n-pentane and n-octane. Of the above solvents, aliphatic saturated hydrocarbon solvents are preferred, and n-heptane is more preferred.
 第二の方法が、より高純度の化合物(1-A)が得られること、濾過性に優れることから好ましい。 The second method is preferable because a higher purity compound (1-A) can be obtained and filterability is excellent.
 さらに上記の第二の方法では、晶析時の濾液を回収して、再び工程(1)に再利用することもできる。 Furthermore, in the second method described above, the filtrate at the time of crystallization can be recovered and reused in the step (1) again.
 上記濾液には化合物(1-A)と化合物(1-A)のシス体が含まれるが濾液を減圧濃縮して再度工程(1)を実施してもよいし、濃縮せずに工程(1)で用いる溶媒を加えて、加熱により貧溶媒を留去してもよい。 The above filtrate contains the cis form of compound (1-A) and compound (1-A), but the filtrate may be concentrated under reduced pressure and step (1) may be performed again, or step (1) without concentration. ) May be added, and the poor solvent may be distilled off by heating.
 好適に用いられる化合物(1-1)としては、例えば、以下の化合物(1-1-1)~(1-1-24)が挙げられる。 Examples of the compound (1-1) preferably used include the following compounds (1-1-1) to (1-1-24).
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
 以下、本発明を、実施例を用いてさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、例中の「%」及び「部」は、特記ない限り、それぞれ、質量%及び質量部である。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In the examples, “%” and “part” are, respectively, mass% and part by mass unless otherwise specified.
(実施例1)
Figure JPOXMLDOC01-appb-I000008
 Recueil des Travaux Chimiques des Pays-Bas,1996,115,321-328に記載の方法により得られたcis/trans=8/2の化合物(A)10g、メチルシクロヘキサン80g、水酸化カリウム2.5g及び55%水酸化n-テトラブチルアンモニウム水溶液1.4gを混合し、65℃で8時間撹拌した。25℃に冷却後、静置して油層を除き、メシチレン50gと20%硫酸10.7gを加えて30分間撹拌した。静置して水層を除き、pH4以上になるまで水洗を繰り返した。モレキュラーシーブス3Aを用いて脱水後、メシチレン50gを追加してからt-ブトキシカリウム9.8gを加えた。徐々に加熱しながら軽沸成分を取り除き、160℃まで加熱して8時間撹拌した。この時、反応マスの性状は白色スラリーであった。60℃に冷却後、水30gと20%硫酸21.5gを加えて30分間撹拌した。静置して水層を除き、pH4以上になるまで水洗を繰り返した。0℃冷却後、析出した固体を濾過し、乾燥することにより化合物(B)を8.5g得た。収率は93%であった。
Example 1
Figure JPOXMLDOC01-appb-I000008
10 g of cis / trans = 8/2 compound (A) obtained by the method described in Recueil des Travaux Chimiques des Pays-Bas, 1996, 115, 321-328, 80 g of methylcyclohexane, 2.5 g of potassium hydroxide and 55% water 1.4 g of an aqueous solution of n-tetrabutylammonium oxide was mixed and stirred at 65 ° C. for 8 hours. After cooling to 25 ° C., the mixture was allowed to stand to remove the oil layer, and 50 g of mesitylene and 10.7 g of 20% sulfuric acid were added and stirred for 30 minutes. The water layer was removed by allowing to stand, and washing with water was repeated until the pH reached 4 or more. After dehydration using Molecular Sieves 3A, 50 g of mesitylene was added and 9.8 g of potassium t-butoxy was added. The light boiling component was removed while gradually heating, and the mixture was heated to 160 ° C. and stirred for 8 hours. At this time, the reaction mass was white slurry. After cooling to 60 ° C., 30 g of water and 21.5 g of 20% sulfuric acid were added and stirred for 30 minutes. The water layer was removed by allowing to stand, and washing with water was repeated until the pH reached 4 or more. After cooling at 0 ° C., the precipitated solid was filtered and dried to obtain 8.5 g of Compound (B). The yield was 93%.
(実施例2)
 Recueil des Travaux Chimiques des Pays-Bas,1996,115,321-328に記載の方法により得られたcis/trans=8/2の化合物(A)10g、メチルシクロヘキサン80g、水酸化カリウム2.5g及び55%水酸化n-テトラブチルアンモニウム水溶液1.4gを混合し、65℃で8時間撹拌した。25℃に冷却後、静置して油層を除き、メシチレン50gと20%硫酸10.7gを加えて30分間撹拌した。静置して水層を除き、pH4以上になるまで水洗を繰り返した。モレキュラーシーブス3Aを用いて脱水後、メシチレン50gを追加してから水酸化カリウム5.0gを加えた。徐々に加熱しながら軽沸成分を取り除き、160℃まで加熱して8時間撹拌した。この時、反応マスの性状は粘ちょうな固形物が沈殿した状態であった。60℃に冷却後、水30gと20%硫酸21.5gを加えて30分間撹拌した。静置して水層を除き、pH4以上になるまで水洗を繰り返した。0℃冷却後、析出した固体を濾過し、乾燥することにより化合物(B)を8.5g得た。収率は93%であった。
(Example 2)
10 g of cis / trans = 8/2 compound (A) obtained by the method described in Recueil des Travaux Chimiques des Pays-Bas, 1996, 115, 321-328, 80 g of methylcyclohexane, 2.5 g of potassium hydroxide and 55% water 1.4 g of an aqueous solution of n-tetrabutylammonium oxide was mixed and stirred at 65 ° C. for 8 hours. After cooling to 25 ° C., the mixture was allowed to stand to remove the oil layer, and 50 g of mesitylene and 10.7 g of 20% sulfuric acid were added and stirred for 30 minutes. The water layer was removed by allowing to stand, and washing with water was repeated until the pH reached 4 or more. After dehydration using Molecular Sieves 3A, 50 g of mesitylene was added, and 5.0 g of potassium hydroxide was added. The light boiling component was removed while gradually heating, and the mixture was heated to 160 ° C. and stirred for 8 hours. At this time, the reaction mass was in a state where a viscous solid was precipitated. After cooling to 60 ° C., 30 g of water and 21.5 g of 20% sulfuric acid were added and stirred for 30 minutes. The water layer was removed by allowing to stand, and washing with water was repeated until the pH reached 4 or more. After cooling at 0 ° C., the precipitated solid was filtered and dried to obtain 8.5 g of Compound (B). The yield was 93%.
(比較例1)
 Recueil des Travaux Chimiques des Pays-Bas,1996,115,321-328に記載の方法では、目的物のトランス-シクロヘキサンカルボン酸を収率60%にて合成している。
(Comparative Example 1)
In the method described in Recueil des Travaux Chimiques des Pays-Bas, 1996, 115, 321-328, the target product, trans-cyclohexanecarboxylic acid, is synthesized in a yield of 60%.
 以上のことから、本発明が高収率にてトランス-シクロヘキサンカルボン酸を得る優れた方法であることが分かる。 From the above, it can be seen that the present invention is an excellent method for obtaining trans-cyclohexanecarboxylic acid in a high yield.

Claims (8)

  1.  式(1-1)で表される4-置換-シクロヘキサンカルボン酸化合物のシス-トランス混合物、塩基及び疎水性有機溶媒を含む混合物を加熱する工程(1)を含む式(1-A)で表されるトランス-4-置換-シクロヘキサンカルボン酸の製造方法。
    Figure JPOXMLDOC01-appb-I000001
    [式(1-1)中、Rは水素原子又は炭素数1~20のアルキル基を表す。
     式(1-1)および式(1-A)中、Jはハロゲン原子、水酸基、またはアミノ基を表す。nは1~20の整数を表す。]
    Represented by the formula (1-A) including the step (1) of heating the cis-trans mixture of the 4-substituted-cyclohexanecarboxylic acid compound represented by the formula (1-1) and the mixture containing the base and the hydrophobic organic solvent. Process for producing trans-4-substituted-cyclohexanecarboxylic acid.
    Figure JPOXMLDOC01-appb-I000001
    [In Formula (1-1), R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
    In Formula (1-1) and Formula (1-A), J 1 represents a halogen atom, a hydroxyl group, or an amino group. n represents an integer of 1 to 20. ]
  2.  塩基が、水酸化物、水素化物およびアルコキサイド化合物からなる群から選ばれる少なくとも1つを含む請求項1に記載の製造方法。 The production method according to claim 1, wherein the base contains at least one selected from the group consisting of hydroxides, hydrides and alkoxide compounds.
  3.  塩基が、アルコキサイド化合物である請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the base is an alkoxide compound.
  4.  塩基が、式(1-1)で表される化合物に対して、1.1モル当量以上である請求項1~3のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the base is 1.1 molar equivalents or more based on the compound represented by the formula (1-1).
  5.  式(1-1)および式(1-A)中のJが水酸基である請求項1~4のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 4, wherein J 1 in the formula (1-1) and the formula (1-A) is a hydroxyl group.
  6.  140℃~180℃で加熱する工程である請求項1~5のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 5, which is a step of heating at 140 ° C to 180 ° C.
  7.  工程(1)が、疎水性有機溶媒の沸点以下で加熱する工程である請求項1~6のいずれかに記載の製造方法。 The process according to any one of claims 1 to 6, wherein the step (1) is a step of heating at a boiling point or less of the hydrophobic organic solvent.
  8.  工程(1)が、0.8~1.2気圧下で加熱される請求項1~7の製造方法。 The process according to any one of claims 1 to 7, wherein the step (1) is heated at 0.8 to 1.2 atm.
PCT/JP2016/084740 2015-11-27 2016-11-24 Method for producing trans-cyclohexanecarboxylic acid WO2017090656A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187017074A KR20180088667A (en) 2015-11-27 2016-11-24 Preparation of trans-cyclohexanecarboxylic acid
CN201680068733.6A CN108290813A (en) 2015-11-27 2016-11-24 The manufacturing method of trans-cyclohexane formic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-231449 2015-11-27
JP2015231449A JP6720512B2 (en) 2015-11-27 2015-11-27 Method for producing trans-cyclohexanecarboxylic acid

Publications (1)

Publication Number Publication Date
WO2017090656A1 true WO2017090656A1 (en) 2017-06-01

Family

ID=58763447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084740 WO2017090656A1 (en) 2015-11-27 2016-11-24 Method for producing trans-cyclohexanecarboxylic acid

Country Status (4)

Country Link
JP (1) JP6720512B2 (en)
KR (1) KR20180088667A (en)
CN (1) CN108290813A (en)
WO (1) WO2017090656A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120636A (en) * 1980-02-26 1981-09-22 Kanto Kagaku Kk Preparation of ee type monosubstituted cyclohexane-1- carboxylic acid
JPS56125342A (en) * 1980-03-07 1981-10-01 Kanto Kagaku Kk Preparation of ee-type mono-substituted cyclohexane-1- carboxylic acid ester
JPS60258141A (en) * 1984-06-06 1985-12-20 Nippon Kayaku Co Ltd Preparation of 4-substituted cyclohexane-1-carboxylic acid with high trans-content
JPS6354321A (en) * 1985-03-27 1988-03-08 Ajinomoto Co Inc Blood sugar lowering agent
JPH10237015A (en) * 1996-06-18 1998-09-08 Katayama Seiyakushiyo:Kk Epimerization of 2-or 4-substituted cyclohexanecarboxylic acid
WO2003078381A1 (en) * 2002-03-18 2003-09-25 Tanabe Seiyaku Co., Ltd. PROCESS FOR PREPARATION OF trans-4-AMINOCYCLOHEXANE- CARBOXYLIC ACIDS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831118A (en) * 1996-06-18 1998-11-03 Katayama Seiyakusyo Co., Ltd. Epimerization of 2- or 4- substituted cyclohexanecarboxylic acids
CN106316825A (en) * 2016-08-24 2017-01-11 泰州精英化成医药科技有限公司 Preparing method for trans- 4- hydroxycyclohexanecarboxylic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120636A (en) * 1980-02-26 1981-09-22 Kanto Kagaku Kk Preparation of ee type monosubstituted cyclohexane-1- carboxylic acid
JPS56125342A (en) * 1980-03-07 1981-10-01 Kanto Kagaku Kk Preparation of ee-type mono-substituted cyclohexane-1- carboxylic acid ester
JPS60258141A (en) * 1984-06-06 1985-12-20 Nippon Kayaku Co Ltd Preparation of 4-substituted cyclohexane-1-carboxylic acid with high trans-content
JPS6354321A (en) * 1985-03-27 1988-03-08 Ajinomoto Co Inc Blood sugar lowering agent
JPH10237015A (en) * 1996-06-18 1998-09-08 Katayama Seiyakushiyo:Kk Epimerization of 2-or 4-substituted cyclohexanecarboxylic acid
WO2003078381A1 (en) * 2002-03-18 2003-09-25 Tanabe Seiyaku Co., Ltd. PROCESS FOR PREPARATION OF trans-4-AMINOCYCLOHEXANE- CARBOXYLIC ACIDS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUB, J. ET AL., RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, vol. 115, no. 6, 1996, pages 321 - 328, XP008042798 *

Also Published As

Publication number Publication date
KR20180088667A (en) 2018-08-06
JP2017095420A (en) 2017-06-01
JP6720512B2 (en) 2020-07-08
CN108290813A (en) 2018-07-17

Similar Documents

Publication Publication Date Title
JP5372258B2 (en) Process for producing 1,4-disubstituted cyclohexane derivatives
CN107778183B (en) Preparation method of 2,4, 6-trifluorobenzylamine
JP6146724B2 (en) Method for producing alkyl fluoroacrylate
US20110166387A1 (en) High-Purity N-Ethylmethylamine and Process for Preparing Same
JP6137185B2 (en) (R) -1,1,3-Trimethyl-4-aminoindane production method
JP2020063196A (en) Method for producing 5,5&#39;-methylenedisalicylic acid
JP6720512B2 (en) Method for producing trans-cyclohexanecarboxylic acid
JP4216563B2 (en) Purification method of fluorenylidene diallylphenol
JP2002531440A (en) Method for preparing 4-hydroxyquinoline and / or tautomers
US9206099B2 (en) Method for producing hydrogenated biphenol
JP5212740B2 (en) Process for producing 1,2-diaminocyclohexane
US8212085B2 (en) Method for purifying optically active 1-(2-trifluoromethylphenyl)ethanol
JPH11130728A (en) Production of mono-tertiary-alkyl ester of malonic acid
JP5811133B2 (en) Method for producing vinyl group-containing compound
KR101341449B1 (en) Preparation of p-Chloromethylbenzoic acid and Benzoic acid from by-products in method for processing dimethyl terephthalate
JP2008231064A (en) Production method of carbazoylalkyl (meth)acrylate
WO2009086283A1 (en) Synthesis of enantiomerically pure 2-hydroxy-2-aryl-ethylamines
EP3774710A1 (en) Process for the production of 2-methyl-4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-butenal
JP5003231B2 (en) Process for producing trans, trans-4,4&#39;-bicyclohexyldicarboxylic acid
JP4129765B2 (en) Method for producing racemic aminopentanenitrile
JP3564179B2 (en) Method for producing 1,2-indanediol
JPH11140015A (en) Production of carboxylated biphenol compound
EP3178815B1 (en) Method for producing optically active 2-methylpiperazine
JP2008308458A (en) Production method of pyridinecarbonyl compound
JP2003012614A (en) Method for producing phenoxypropylamines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187017074

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16868599

Country of ref document: EP

Kind code of ref document: A1