WO2017090636A1 - 溶融ナトリウム電池及び溶融ナトリウム電池用隔壁 - Google Patents

溶融ナトリウム電池及び溶融ナトリウム電池用隔壁 Download PDF

Info

Publication number
WO2017090636A1
WO2017090636A1 PCT/JP2016/084683 JP2016084683W WO2017090636A1 WO 2017090636 A1 WO2017090636 A1 WO 2017090636A1 JP 2016084683 W JP2016084683 W JP 2016084683W WO 2017090636 A1 WO2017090636 A1 WO 2017090636A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition wall
head
cathode chamber
partition
hole
Prior art date
Application number
PCT/JP2016/084683
Other languages
English (en)
French (fr)
Inventor
大川 宏
Original Assignee
有限会社 中勢技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016037170A external-priority patent/JP6276305B2/ja
Application filed by 有限会社 中勢技研 filed Critical 有限会社 中勢技研
Priority to US15/777,679 priority Critical patent/US20180375163A1/en
Priority to EP16868579.0A priority patent/EP3382786A4/en
Priority to BR112018009244-4A priority patent/BR112018009244B1/pt
Priority to CN201680066696.5A priority patent/CN108292784B/zh
Priority to RU2018122804A priority patent/RU2686089C1/ru
Priority to KR1020187012821A priority patent/KR102033266B1/ko
Publication of WO2017090636A1 publication Critical patent/WO2017090636A1/ja
Priority to US17/381,236 priority patent/US20210351442A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a molten sodium battery using molten sodium as a cathode active material and ⁇ alumina as a solid electrolyte, and a partition for a molten sodium battery.
  • molten sodium battery two types of batteries, a sodium sulfur battery using molten sulfur as the anode active material and a sodium molten salt battery using nickel chloride or the like as the anode active material, have been put into practical use. Both of these molten sodium batteries employ ⁇ -alumina partition walls as a solid electrolyte. These molten sodium batteries are all used at a high temperature of 250 ° C. to 350 ° C., and when charging / discharging, the battery itself is heated by the internal resistance and the temperature rises. When the battery is not charging / discharging, it is heated outside the battery. However, the leakage temperature decreases. As described above, the sodium battery is required to have durability that can withstand long-term use over 10 years as the battery temperature fluctuates with charging and discharging.
  • Sodium which is a cathode active material of a molten sodium battery, a compound such as sodium polysulfide generated in an anode chamber during discharge, and ⁇ -alumina constituting a partition are vulnerable to water. For this reason, a high degree of airtightness that prevents moisture in the atmosphere from entering the cathode chamber and the anode chamber is required.
  • Both the sodium-sulfur battery and the sodium molten salt battery that have been put to practical use use a bottomed top opening tube in the shape of a test tube as a partition made of ⁇ -alumina.
  • An insulating ring made of ⁇ -alumina is hermetically bonded to the upper end portion of the bottomed upper end opening tube with a glass bonding material.
  • a metal lid is hermetically joined to the inner peripheral surface side of the insulating ring to form one pole chamber on the inner peripheral surface side of the partition wall, and a metal case is hermetically sealed to the outer peripheral surface side of the insulating ring.
  • the other electrode chamber on the outer peripheral surface side of the partition is formed by bonding.
  • molten sodium is stored in one polar chamber on the inner peripheral surface side as a cathode chamber
  • molten sulfur is stored in the other polar chamber on the outer peripheral surface side as an anode chamber.
  • molten metal chloride is accommodated in one polar chamber on the inner peripheral surface side to serve as an anode chamber
  • molten sodium is accommodated in the other polar chamber on the outer peripheral surface side to serve as a cathode chamber.
  • the partition wall separating the cathode chamber and the anode chamber is exposed to the pressure in the anode chamber on both sides and the pressure in the cathode chamber, and is deformed by a pressure corresponding to the difference between the two pressures.
  • ⁇ -alumina constituting the partition has a property common to ceramics that it is strong against pressing but weak against tension. For this reason, the use and shape which a tensile stress does not act as much as possible for a partition are calculated
  • the pressing force acts on all parts of the partition wall, and the tensile force does not act. be able to.
  • a plate-shaped partition wall having a plate-like outer shape described in Japanese Patent Application Laid-Open No. 50-38030 and having a pore-like cathode chamber running parallel to the inside can be cited.
  • the plate-like partition is held in the anode chamber, and the pressing force acts on the plate-like portion excluding the partition lid by using the cathode chamber inside the partition in a state where the pressure is reduced with respect to the external anode chamber. The tensile force is not applied.
  • a sodium-sulfur battery having a plate-like partition having a cathode chamber on one side and an anode chamber on the other side can be found in patent documents.
  • a bending stress acts on the partition walls and a tensile stress acts on the surface on one side of the plate-shaped partition walls.
  • an ⁇ -alumina ring is bonded to the upper end portion of the ⁇ -alumina tube with a glass bonding agent, and metal members are respectively connected to the inner peripheral surface side and the outer peripheral surface side of the ⁇ -alumina ring. Be joined.
  • the opening at the upper end of the ⁇ -alumina tube is wide, the joining area is large and two places must be joined. For this reason, advanced joining technology is required.
  • the plate-shaped partition wall having a cathode chamber inside is composed of a plate-shaped partition wall body made of ⁇ -alumina and a rectangular plate-shaped ⁇ -alumina lid bonded to the upper end thereof.
  • a through hole is formed in the center of the lid, and a metal thin tube is inserted into the through hole, and a bonding agent is put into the gap between the outer peripheral surface of the thin tube and the inner peripheral surface of the through hole of the lid. is doing.
  • the metal anode chamber container is a rectangular parallelepiped box with an opening at the top, and a plate-shaped partition made of ⁇ alumina is inserted into this container, and the outer peripheral surface of the rectangular lid of the partition and the metal cover that covers it.
  • a bonding agent is put in the gap on the inner peripheral surface above the container and bonded.
  • the joint surface is rectangular and the portion that contacts the side is straight and long.
  • bimetal it is conceivable that a large peeling stress acts between the bonded metal group and the ceramics to damage the seal. For this reason, this seal form is not practical.
  • the present invention relates to a partition wall for a molten sodium battery that can be easily sealed between a plate-shaped partition wall having a cathode chamber therein and a metal anode container that houses the plate-shaped partition wall to form an airtight anode chamber.
  • An object of the present invention is to provide a molten sodium battery.
  • the partition for a molten sodium battery of the present invention is arranged in a metal anode container having a joint portion having a through-hole communicating between the inside and the outside, and a cathode chamber, the cathode chamber, and the outside are arranged at the central portion in the thickness direction.
  • a plate-like partition body made of ⁇ -alumina having a through-hole to be connected, and a through-hole integrally formed in the partition body and communicating with the cathode chamber through the through-hole are hermetically attached to the joint. And a ceramic head.
  • the molten sodium battery of the present invention includes a molten sodium serving as a cathode active material, an anode active material, a sodium container containing molten sodium, a partition having a cathode chamber therein, an anode active material and the partition.
  • a plate-shaped ⁇ -alumina partition body having a cathode chamber and a through-hole connecting the cathode chamber and the outside at the center in the direction, and formed integrally with the partition body and communicated with the cathode chamber through the through-hole And a ceramic head that is airtightly attached to the joint.
  • This molten sodium battery has a molten sodium serving as a cathode active material, an anode active material, and a sodium container for storing molten sodium.
  • the anode active material can be molten sulfur or a metal halide.
  • the partition wall is made of a ceramic material that is formed in a plate shape and is integrally formed with a ⁇ -alumina partition wall body and airtightly attached to the junction of the anode container.
  • the head is composed of. That is, the seal structure of the partition wall and the anode container is a seal structure of the connection part between the partition wall head and the anode container.
  • the seal surface is cylindrical or ring-shaped, and the diameter of the seal surface can be reduced, and a seal with higher airtightness can be more easily achieved.
  • the thickness of the partition main body is as thick as twice or more the partition wall functional thickness through which sodium ions functioning as a solid electrolyte pass.
  • the bending stress of the partition wall body is proportional to the square of the thickness, that is, has a bending strength that is four times or more higher than the plate thickness of the partition wall function thickness as it is.
  • the partition for molten sodium battery of the present invention is composed of a partition body and a head.
  • This partition main body is made of ⁇ -alumina in the form of a plate having a cathode chamber at the center in the thickness direction.
  • the product made of ⁇ -alumina includes those in which all parts are made of ⁇ -alumina and those that are mostly made of ⁇ -alumina and partly made of ceramics such as ⁇ -alumina.
  • the plate body having the cathode chamber in the central portion in the thickness direction of the partition wall main body means that the plate-shaped front side portion is on the front side in the thickness direction of the plate shape, the plate-like back side portion is on the back side, and the peripheral edge is in the center. It means that it consists of a central part with a cathode chamber that spreads out thinly.
  • the cathode chamber is usually used under reduced pressure, and pressure such as atmospheric pressure acts on the outer surface side of the plate-like front side portion and the plate-like back side portion so that the plate-like front side portion and the plate-like back side portion protrude toward the cathode chamber side. That is, the cathode chamber is deformed so as to be crushed.
  • the cathode chamber can be formed into a plurality of tunnel-like spaces that run parallel to each other at intervals, or struts can be provided at predetermined intervals between the plate-like front side portion and the plate-like back side portion.
  • the plate-like front side and the plate-like back side of the bulkhead body function as a bulkhead that allows sodium ions to pass through. Accordingly, both the surface of the plate-like front side portion and the back surface of the plate-like back side portion of the partition wall body function as the partition surface. For this reason, the partition body according to the present invention has a partition function surface that is twice as large as that of the plate-shaped partition without the cathode chamber.
  • the thickness of the wall through which sodium ions permeate the bulkhead body is the thickness of the front side or the back side of the plate.
  • the thickness of the partition wall body is the sum of the thickness of the plate-like front side portion, the thickness of the plate-like back side portion, and the thickness of the central portion of the cathode chamber, and is 2 times the thickness of the wall through which sodium ions permeate. More than double.
  • the thickness of the wall through which sodium ions permeate is the normal partition wall thickness
  • the thickness of the partition wall main body is twice or more the thickness of the normal partition wall. That is, since the partition wall body is twice or more thick, it has a strength that can withstand bending stress and mechanical stress, for example, bending stress that is at least four times that of a normal plate-shaped partition wall.
  • the through-hole connecting the cathode chamber and the outside is preferably provided in the peripheral edge of the partition wall main body, that is, in the central frame. However, it can also be provided on the plate-like front side or the plate-like back side.
  • the plate-shaped partition which has a cathode chamber in the center of the conventional thickness direction can be used as a partition main body as it is.
  • the head is made of ceramic with a projecting shape integrally formed with the bulkhead body and having a through hole communicating with the cathode chamber.
  • the joined portion of the anode container is airtightly joined to the head.
  • the head has a function of closing a joint portion that becomes a passage to the outside of the anode container and a function of fixing the partition wall in the anode container.
  • the head may be formed of the same ⁇ -alumina as that of the partition wall main body, or may be formed of a ceramic other than ⁇ -alumina, for example, ⁇ -alumina.
  • the shape of the head can be a cylindrical shape with a through hole in the center, preferably a shaft hole, the tip of which protrudes from the bulkhead body, and the base of the head is integral with the peripheral edge of the bulkhead body. It is preferable to do this. Whether the outer peripheral surface of the head has a constant outer diameter or a truncated cone with a small tip, a part of the axial direction has a large diameter, or conversely has a small ring-shaped convex or concave part But it ’s okay.
  • the outer diameter of the head is preferably the same as or larger than the thickness of the bulkhead body. Increasing the size increases the overall mechanical strength.
  • the head is attached to the anode container with a cylindrical joint of the anode container, and the partition body is held by the anode container through the head. For this reason, the movement of the anode container is transmitted to the partition body through the head, and a large stress acts on the head and the boundary between the head and the partition body. For this reason, the boundary between the head and the bulkhead body must be large and strong enough to withstand stress.
  • this bulkhead body is large and strong with a thickness more than twice that of a normal plate-shaped bulkhead, so that the head can be made relatively large, and the boundary between the head and the bulkhead body. It can withstand stress on the part.
  • the head can have a nipple shape composed of a convex portion having a shaft hole.
  • the joint portion may have a cap shape having an opening for exposing a peripheral portion including the shaft hole of the head portion and covering the nipple-shaped head portion.
  • the outer peripheral surface of the nipple head is coated with a cap-shaped joint portion of the anode container, and the anode is between the outer peripheral surface of the deposited nipple-shaped head and the inner peripheral surface of the cap-shaped joint portion to be deposited. It is intended to block the movement of gas and liquid such as moisture between the interior and the outside.
  • the outer peripheral surface of the nipple-shaped head has at least one ring groove that makes one round of the outer peripheral surface that also serves as a reservoir for leaking gas. Further, in order to facilitate joining with the cap-like joining portion, it is preferable to perform metallizing such as nickel spraying on the outer peripheral surface of the nipple-like head.
  • the through hole of the nipple head is the same as that of the conventional plate-shaped partition wall, but in the present invention, this through hole is provided at the axial center of the nipple head.
  • the through hole is preferably coaxial with the outer peripheral surface as an axial hole.
  • a thin metal fitting made of a metal thin tube through which molten sodium flows is inserted into and joined to this through hole, and the cylindrical nipple head has a cap shape attached to the outer peripheral surface of the thin metal fitting inserted into the through hole. It functions as an insulator that electrically insulates the joint.
  • the seal surface is preferably the outer peripheral surface of a thin tube fitting having the same outer diameter as the inner peripheral surface of the through hole having a diameter of about 2 to 5 mm, and the sealing is further facilitated by reducing the seal diameter.
  • the head is a two-step mountain head having a top surface with a shaft hole and an upper step and a lower step having a ring-shaped surface
  • the joint is a ring-shaped joint having a ring-shaped portion.
  • a ring-shaped surface below the ring-shaped portion of the ring-shaped joint portion of the anode container is attached to the lower ring-shaped step surface of the two-step mountain-shaped head.
  • the ring-shaped joint portion preferably has a hat shape having a cylindrical wall extending downward from the periphery of the ring-shaped portion.
  • the hat-shaped joint portion of the anode container By attaching the hat-shaped joint portion of the anode container to the two-step mountain-shaped head of the plate-shaped partition wall, the movement of gas and liquid such as moisture between the inside of the anode chamber and the outside is blocked.
  • To join the ring-shaped stepped surface of the mountain-shaped head and the ring-shaped top of the hat-shaped joint first put the hat-shaped joint on the mountain-shaped head, and the top of the mountain-shaped head is the ring of the hat-shaped joint.
  • the ring-shaped step surface of the mountain-shaped head and the inner surface of the ring-shaped top portion of the hat-shaped joint are brought into contact with each other.
  • a predetermined pressure is applied from the outside of the ring-shaped top portion of the hat-shaped joint portion, and the pressure is maintained at a predetermined temperature and heat-welded.
  • the top surface with the shaft hole of the two-step mountain head is joined with a thin tube fitting made up of the same ring-shaped flange portion as this top surface and a thin tube portion rising from this ring-shaped flange portion.
  • This joint also brings the top surface of the head into contact with the flange portion of the thin tube fitting in the same manner as the hat-shaped joint.
  • a predetermined pressure is applied to the flange portion of the thin tube fitting and pressed against the top surface of the head, and the pressure is maintained at a predetermined temperature and heat-welded.
  • the two-step mountain-shaped head, the hat-shaped joint, and the thin tube fitting are joined at the same time.
  • the head is preferably separated from the bulkhead body.
  • the plate-shaped partition wall body having a cathode chamber inside and the partition wall composed of the partition wall body and the head have a plate-shaped front side portion and a plate-shaped back side portion which are divided in half by a plane passing through the cathode chamber in the middle of the plate thickness.
  • the plate-like front side portion and the plate-like back side portion can be bonded together to create a single piece.
  • the integration may be performed at the green compact stage before sintering by performing sintering and welding at the same time during sintering, or by bonding the plate-shaped front side portion and the plate-shaped back side portion with a bonding agent.
  • the dimensional accuracy of a bonding surface part can be easily made high by making the surface shape
  • a frame-like and columnar joining member may be interposed between the plate-like front side portion and the plate-like back side portion.
  • the partition wall body or the partition wall may be formed by a method using an extinguishing mold that burns and disappears in the cathode chamber.
  • the metal anode container accommodates and fixes the plate-shaped partition wall and forms an anode chamber surrounding the plate-shaped partition wall.
  • a metal having corrosion resistance to molten sulfur and molten sodium polysulfide such as stainless steel and aluminum alloy can be used.
  • This anode container has a joint that communicates the inside and outside of the anode chamber.
  • the joint is attached to the head of the plate-shaped partition wall, and the inside and outside of the anode chamber are hermetically sealed.
  • the joint can be a cap-shaped joint.
  • a brazing agent such as a glass powder bonding agent or silver solder is used, a hot-pressure bonding method is used, or only the cap-shaped joint is heated.
  • One method or two or more methods can be employed, such as heat fitting to thermally expand and adhere to the cold nipple-shaped head, or tightening the outer peripheral surface of the cap-shaped joint with a fastening metal fitting.
  • the joined portion can be separated from the anode container body, and after joining, the joined portion can be joined and integrated with the anode container body by a laser welding machine or the like.
  • a bellows-like easy-displacement means that enables relative displacement between the joint portion and the anode container main body can be provided in the portion of the anode container body around the joint portion.
  • a ring-shaped metal plate formed concentrically so that the ring-shaped concave portion and the ring-shaped convex portion spread, a bellows, or a flexible tube can be used.
  • a guide for defining the position of the partition wall body of the partition wall may be provided on the inner peripheral surface of the anode container, or an urging means for pressing the partition wall body in the nipple direction to define the position of the partition wall body.
  • the molten sodium battery of the present invention requires a sodium container that holds most of the molten sodium. Since the cathode chamber of the molten sodium battery of the present invention is formed inside the plate-shaped partition wall, the volume of the cathode chamber is small. On the other hand, since a molten sodium battery is a battery suitable for large-capacity discharge, a large amount of molten sodium is required. This large amount of sodium is held in a sodium container communicating with the cathode chamber through a thin metal fitting.
  • both the cathode chamber and the anode chamber including the sodium container require high airtightness. Further, this molten sodium battery undergoes a temperature change of about 50 ° C. during one charge / discharge operation. For this reason, the cathode chamber and the anode chamber are used under reduced pressure.
  • the partition wall is surrounded by the anode chamber, and the cathode chamber is formed inside the partition wall. In order to prevent tensile stress from acting on the partition walls, the cathode chamber is preferably further decompressed than the anode chamber. The cathode chamber is preferably at a reduced pressure close to vacuum.
  • the constituent elements of the battery other than the cathode chamber and the anode chamber of the molten sodium battery of the present invention are basically the same as those of the conventional sodium sulfur battery and sodium molten salt battery.
  • FIG. 1 is a longitudinal sectional view of a sodium sulfur battery of Example 1.
  • FIG. It is a partial expanded sectional view of FIG. It is a fragmentary top view of the partition shown in sectional drawing of FIG. 4 is a longitudinal sectional view of a main part of a sodium sulfur battery of Example 2.
  • times of the partition cross section shown in sectional drawing of FIG. 4 is a longitudinal sectional view of a main part of a sodium sulfur battery of Example 3.
  • FIG. 1 shows a longitudinal section of the sodium-sulfur battery 1
  • FIG. 2 shows an enlarged section of the main part
  • FIG. 3 shows a partial plane of the partition wall 11.
  • the battery 1 includes a partition 11, an anode container 12, a sodium container 13, a cathode chamber 110 formed as an inner space of the partition, an anode chamber 120 surrounding the partition 11 in the inner space of the anode container 12, and a cathode chamber. 110, the molten sodium 14, which is a cathode active material housed in the sodium container 13, the molten sulfur 15, which is an anode active material housed in the anode chamber 120, and the interior space of the cathode chamber 110 and the sodium container 12 communicate with each other.
  • the main components are a thin tube fitting 16 and an insulator 17 which is interposed between the anode container 12 and the sodium container 13 and electrically insulates the two. Since this battery 1 uses molten sulfur 15 as the anode active material, it is a sodium sulfur battery.
  • the partition wall 11 is composed of a plate-shaped partition wall main body 111 and a nipple-shaped head portion 117, and both are integrally formed of ⁇ alumina.
  • the bulkhead body 111 is a square plate having a length and width of about 100 mm and a thickness of about 6 mm, and a front side portion 112 and a back side portion 113 having a length and width of 100 mm and a thickness of 2 mm respectively, and a square shape having a length and width of 100 mm, a width of 2 mm, and a thickness of 2 mm.
  • a frame portion 114 positioned between the front side portion 112 and the back side portion 113 and 81 column portions 115 positioned at equal intervals between the front side portion 112 and the back side portion 113 in a columnar shape having an outer diameter of 2 mm and a thickness of 2 mm. It consists of.
  • the nipple-shaped head portion 117 includes a columnar upper portion 118 having an outer diameter of about 10 mm and a height of 8 mm, and a columnar lower portion 119 having an outer diameter of about 13 mm and a height of about 12 mm. It is a two-stage columnar protrusion shape. Since the lower portion 119 is formed integrally with the partition wall main body 111, a part of the outer peripheral surface is covered with the partition wall main body 111.
  • the through hole 1175 of the nipple head 117 is composed of an upper shaft hole portion 1176 having an inner peripheral diameter of about 4 mm and a length of about 5 mm and a lower shaft hole portion 1177 having an inner peripheral diameter of about 3 mm and a length of about 7 mm.
  • the lower shaft hole 1177 opens into the cathode chamber 110.
  • the lower part 119 of the nipple head 117 is integrated with the bulkhead body 111 by the side end face of the bulkhead body 111 and the front side part 112 and the surface of the back side part 113 connected to the side end face, and the lower part 119 can be regarded as a part of the bulkhead body 111. Therefore, the integration of the nipple head 117 and the bulkhead 111 is sophisticated.
  • This partition wall 11 is formed by granulating ⁇ alumina fine powder obtained by firing sodium carbonate and ⁇ alumina in advance to synthesize ⁇ alumina, and dividing the front side consolidated body and back side consolidated into two at the center in the thickness direction of the partition wall 11. It can be obtained by molding a body, combining them into a partition compacted body, and sintering it.
  • the outer peripheral surface of the sintered nipple head 117 is formed slightly larger and the through hole is formed slightly smaller, and the step surface and the through hole between the outer peripheral surface and the lower portion of the upper portion of the nipple head 117 are dimensioned by mechanical grinding or the like. It is preferable to increase the accuracy.
  • the anode container 12 includes a rectangular parallelepiped container main body 121 having a thickness of about 105 mm and a thickness of about 50 mm, and a cap 122 having an outer diameter of about 12 mm, an inner diameter of about 10 mm, and a height of about 10 mm formed integrally on the upper surface thereof. It is formed of a stainless steel plate of about 1 mm. More specifically, the anode container 12 can be formed by three parts: an upper cover part 123 including a cap 122, a bottom cover part (not shown) of the container body 121, and a body part 124 of the container body 121 excluding these parts.
  • the upper lid portion 123 including the cap 122 is attached to the upper portion 118 of the nipple head 117 of the partition wall 11, and the lower end of the cap 122 is brought into contact with the upper end surface of the lower portion 119 of the nipple head 117. Then, the outer peripheral surface of the upper portion 118 and the inner peripheral surface of the cap 122 are joined by heat fitting and thermocompression bonding, and the upper lid portion 123 and the partition wall 11 are integrated.
  • one end portion of the short portion 162 of the thin tube fitting 16 is inserted into the upper shaft hole portion 1176 of the through hole 1175 of the upper portion 118 of the head portion 117 of the partition wall 11 and joined.
  • the upper lid portion 123 and the body portion 124 to which the partition wall 11 is joined are integrated by laser welding.
  • a felt-shaped current collector (not shown) made of carbon fibers impregnated with sulfur of about 100 mm in length and width and about 18 mm in thickness is opened on both sides of the partition wall 11 held in the container body 121.
  • the bottom lid portion can be integrated by laser welding and then inserted from the bottom.
  • the sodium container 13 is formed by forming cuts having a height of about 20 mm, a width of about 25 mm, and a thickness of about 50 mm at one end of a rectangular parallelepiped having a length and thickness of about 50 mm and a width of about 105 mm, respectively.
  • the sodium container 13 is formed of a stainless steel plate having a thickness of about 1 mm.
  • the thin tube fitting 16 is a stainless steel thin tube having a diameter of about 3 mm and a thickness of about 1 mm.
  • the thin tube fitting 16 is composed of a long part 161 having an end with an enlarged diameter and a short part 162 having an end with a narrowed diameter inserted into the end with an enlarged diameter.
  • the long portion 161 of the thin metal fitting 16 is hermetically welded so as to penetrate the upper surface in which the notch of the sodium container 13 is formed, and one end of the long part 161 is inside the sodium container 13. It is bent into an inverted U shape so as to be located near the lower surface of. As shown in FIG.
  • the short portion 162 of the thin tube fitting 16 is inserted into the upper shaft hole portion 1176 of the through hole 1175 of the nipple head 117 and is airtightly joined.
  • the long part 161 and the short part 162 of the thin tube fitting 16 when the sodium container 13 is assembled to the anode container 12, the respective free ends are fitted coaxially, and then the part is heated and welded.
  • the insulator 17 is an inorganic fiber sheet having a thickness of about 3 mm, and is interposed between the anode container 12 and the sodium container 13 to electrically insulate them.
  • molten sodium is injected into the sodium container 13 from an injection pipe portion (not shown). Thereafter, the inside of the sodium container 13 and the cathode chamber 110 are deaerated to close the injection tube, and a state close to vacuum is obtained.
  • the inside of the anode container 12 is deaerated from a deaeration pipe part (not shown), and the deaeration pipe part is closed by reducing the pressure so that the cathode chamber 110 is further decompressed.
  • the sodium-sulfur battery of this example has the above configuration. When this battery is heated to about 300 ° C. and connected to an external load using the anode container 12 as an anode terminal and the sodium container 13 as a cathode terminal, it functions like a normal sodium sulfur battery.
  • the seal that isolates the anode chamber 120 from the outside is one of the seals of the outer peripheral surface of the nipple head 117 of the partition wall 11 and the inner peripheral surface of the cap 122 of the anode container 12. It is done in the place. That is, a simple cylindrical nipple and a cylindrical cap are provided at a single coaxial seal.
  • the cylindrical sealing surface is easy to finish the sealing surface and the dimensional accuracy can be easily increased. For this reason, sealing is easy.
  • there is an advantage that the sealing surface is hardly peeled off because the heat fitting is performed to mechanically fasten the nipple head 117 with the cap 122.
  • the upper lid portion 123 including the cap 122 of this embodiment is mounted on the upper portion 118 of the nipple head 117 of the partition wall 11, and the lower end of the cap 122 is brought into contact with the upper end surface of the lower portion 119 of the nipple head 117. I am letting. For this reason, the distortion generated between the partition wall 11 and the anode container 12 is concentrated on the lower end of the cap 122 and the upper end surface of the lower portion 119 of the nipple-shaped head portion 117, and the upper portion 118 of the joined nipple-shaped head portion 117. Hardly occur on the outer peripheral surface of the cap and the inner peripheral surface of the cap 122. For this reason, it is hard to produce the joining surface peeling.
  • the nipple head 117 includes an upper portion 18 joined to the cap 122 and a lower portion 119 that is thicker than the upper portion 18, and is integrated with the partition wall main body 111 at the thick lower portion 119. For this reason, it has a strong shape against the stress acting between the nipple head 117 and the partition wall body 111.
  • the partition wall body 111 since the plate-shaped partition wall body 111 that is weak against mechanical stress is held in a state of floating in the cathode chamber 100, the partition wall body 111 is not easily subjected to partial tensile stress such as bending. It has become. For this reason, the possibility of mechanical breakage of the partition wall body 111 is low and it is durable.
  • a sodium-sulfur battery 2 according to Example 2 of the present invention will be described with reference to FIGS.
  • the partition wall 11 of the sodium-sulfur battery 1 of Example 1 is changed to the partition wall 21, and other parts are the same as those of Example 1. Therefore, the partition wall 21 will be mainly described.
  • FIG. 4 shows a longitudinal section of the main part of the sodium-sulfur battery 2
  • FIG. 5 shows a main part viewed from a direction rotated 90 degrees of the partition wall section shown in the sectional view of FIG.
  • the partition wall 21 is composed of a plate-shaped partition wall main body 211 formed of ⁇ alumina and a nipple-shaped head portion 217 formed of ⁇ alumina, and both are integrally joined together by glass solder.
  • the bulkhead 211 is a square plate having a length and width of about 100 mm and a thickness of about 6 mm, and a front side portion 212 and a back side portion 213 each having a length and width of 100 mm and a thickness of 2 mm, and a square shape having a length and width of 100 mm, a width of 2 mm, and a thickness of 2 mm.
  • a frame portion 214 positioned between the front side portion 212 and the back side portion 213, and 81 columnar portions 215 positioned at regular intervals between the front side portion 212 and the back side portion 213 in a columnar shape having an outer diameter of 2 mm and a thickness of 2 mm.
  • the space between the front side portion 212 and the back side portion 213 is a cathode chamber 210.
  • a single through hole 2140 is formed in the frame portion 214 and serves as a passage that communicates the cathode chamber 210 with the outside.
  • the partition wall body 211 can be manufactured in the same manner as the manufacturing method of the partition wall 11 described in the first embodiment.
  • the nipple-shaped head portion 217 includes a columnar upper portion 218 having an outer diameter of about 10 mm and a height of 8 mm, and a columnar lower portion 219 having an outer diameter of about 13 mm and a height of about 12 mm, as shown in FIG. It is a two-stage columnar protrusion shape.
  • a groove 2190 penetrating both side surfaces of a rectangular cross section is formed at the center of the lower surface of the lower portion 219.
  • the groove 2190 has a width of about 6 mm and a depth of about 10 mm.
  • An end portion of the partition wall body 211 in which the through hole 2140 is formed is attached to the groove 2190.
  • a through hole 2175 having one end opened to the upper part 218 of the nipple head 117 and the other end opened to the groove 2190 is formed.
  • the through-hole 2175 includes an upper shaft hole portion 2176 having an inner peripheral diameter of about 4 mm and a length of about 5 mm, and a lower shaft hole portion 2177 having an inner peripheral diameter of about 3 mm and a depth of about 7 mm.
  • This nipple head 217 forms a green compact made of a little larger columnar ⁇ -alumina, which is molded by machining and then sintered.
  • the sintered product can be manufactured to a predetermined size by machining.
  • the partition 21 is obtained by joining the nipple head 217 to the end of the partition body 211 where the through hole 2140 is formed with glass solder.
  • the partition wall 21 is also integrated with the partition wall body 211 at the thick lower portion 219 of the nipple head 217 in the same manner as the partition wall 11 of the first embodiment. For this reason, the integrity of the nipple head 217 and the partition wall 211 is high.
  • the configuration of the sodium-sulfur battery 2 of the second embodiment is the same as that of the sodium-sulfur battery 1 of the first embodiment, the description thereof is omitted.
  • the partition body 211 and the nipple head 217 are divided into two parts, and then joined and integrated by using an electrophoretic deposition method. It is effective when adopting a molding method that can only be compact.
  • a sodium-sulfur battery 3 according to Example 3 of the present invention will be described with reference to FIG.
  • This battery is obtained by changing the partition 11, the anode container 12 and the thin tube 16 of the sodium-sulfur battery 1 of Example 1, and other parts are the same as those of Example 1.
  • FIG. 6 shows a longitudinal section of the main part of the sodium sulfur battery 3. 6 corresponds to the cross section viewed from the direction rotated 90 degrees of the cross section of FIG. 4, and the direction is the same as the direction viewed in FIG.
  • the partition wall 31 is composed of a plate-shaped partition wall main body 311 formed of ⁇ alumina and a head portion 317 formed of ⁇ alumina, and both are integrally joined with glass solder.
  • the partition wall body 311 has a square plate shape, and includes a front side portion 312, a back side portion 313, a frame portion 314, and a column portion 315, and a space between the front side portion 312 and the back side portion 313 is a cathode chamber 310.
  • One through-hole 3140 is formed in the frame portion 314 and serves as a passage that communicates the cathode chamber 210 with an external sodium tank.
  • the partition main body 311 is the same as the partition main body 211 of the second embodiment.
  • the head portion 317 has a shaft hole 3170 and is a two-step mountain head portion including an upper step portion 318 having a top surface 3181 and a lower step portion 319 having a ring-shaped shoulder surface 3191.
  • the shaft hole 3170 of the head 317 includes an upper shaft hole 3171 having an inner diameter of 6 mm and a depth of 7 mm and a lower shaft hole 3172 having an inner diameter of 3 mm and a depth of 8 mm that extends coaxially downward thereto.
  • the upper step 318 of the head 317 has an outer diameter of 16 mm and a height of 5 mm.
  • the lower step portion 319 has an outer diameter of 27 mm and a height of 26 mm, and the ring-shaped shoulder surface has an inner diameter of 16 mm, an outer diameter of 27 mm, and a width of 5.5 m.
  • An engaging groove 3190 having a width of 6 mm and a depth of 16 mm centered on the shaft center is provided at the lower end of the lower step portion 319.
  • the shaft hole 3170 opens on the upper surface of the engagement groove 3190.
  • the head 317 is a two-step mountain head having a line symmetry with respect to the axis of the shaft hole 3170 and having a height of 31 mm.
  • This head 317 can also be manufactured by the same method as the head 217 of the second embodiment.
  • the partition wall 31 is obtained by joining the head portion 317 to the end portion of the partition wall body 311 where the through hole 3140 is formed with glass solder.
  • the partition wall 31 is integrated with the partition wall body 311 at a thick lower step 319 of the head portion 317. For this reason, the integrity of the head 317 and the bulkhead body 311 is high.
  • the anode container 32 has a rectangular parallelepiped container body 321 having a thickness of approximately 105 mm and a thickness of approximately 50 mm, a top surface portion 3221 having an outer diameter of 28 mm and an opening having a diameter of 16 mm formed integrally with the upper surface portion of the container body 321. It is formed of a stainless steel plate having a thickness of about 1 mm, which includes a hat-like joint portion 322 including a cylindrical wall portion 3222 having a height of 5 mm and a diameter of 5 mm extending downward from the periphery.
  • the anode container 32 is composed of two parts: an upper lid part including a hat-shaped joint 322 and a container body part excluding these parts.
  • the hat-shaped joint portion 322 includes a top surface portion 3221 and a cylindrical wall portion 3222.
  • the joining of the upper lid part including the hat-like joining part 322 and the head part 317 of the partition wall 31 is achieved by the following method. First, the hat-shaped joint portion 322 of the upper lid portion is put on the head portion 317 of the partition wall 31, and the upper step portion 318 of the head portion 317 is projected from the opening of the top surface portion 3221 of the hat-shaped joint portion 322, so And the ring-shaped shoulder surface 3191 of the lower step portion 319 of the head portion 317, and the hat-shaped joint portion 322 is attached to the head portion 317 of the partition wall 31.
  • the inner peripheral surface of the cylindrical wall portion 3222 of the hat-shaped joint portion 322 and the outer peripheral surface of the lower step portion 317 are coaxially fitted, and the upper lid portion including the hat-shaped joint portion 322 is the head portion 317 of the partition wall 31.
  • the top surface portion 3221 of the hat-shaped joint portion 322 is maintained on the ring-shaped shoulder surface 3191 of the lower step portion 317.
  • a predetermined pressing force is applied from the upper surface of the top surface portion 3221 of the hat-shaped joint portion 322 to press the top surface portion 34221 against the ring-shaped shoulder surface 3191 of the lower step portion 319 of the head 317.
  • it is heated to a predetermined temperature, and this state is maintained for a predetermined time, and the lower surface of the top surface portion 3221 of the hat-shaped joint portion 322 and the ring-shaped surface of the lower step portion 319 of the head portion 317 are heat diffusion bonded.
  • the partition wall 31 is joined to the upper cover of the anode container 32.
  • the short portion 362 of the thin tube fitting 36 is thermally diffusion joined to the ring-shaped top surface 3181 of the upper step 318 of the head 317.
  • the thin tube fitting 36 is composed of two parts, a long part 361 and a short part 362.
  • the long portion 361 is the same as the long portion of the thin tube fitting 16 of the first embodiment.
  • the short portion 362 of the thin tube fitting 36 includes a funnel-shaped end portion 363 having a hook and a thin tubular portion 364.
  • the funnel-shaped end portion 363 includes a ring-shaped ridge 3631 and a foot 3632 having a frustoconical outer shape. In the state where the narrow tube portion 364 is coaxially positioned on the shaft core portion of the foot 3632, the lower ends thereof are integrated by welding.
  • the short portion 362 is formed by inserting the foot 3632 of the funnel-shaped end portion 363 into the upper shaft hole 3171 of the upper step portion 318 of the head 317 and the lower surface of the flange 3631 on the ring of the upper step portion 318.
  • the top surface 3181 is contacted.
  • the upper surface of the flange 3631 is pressed with a predetermined pressing force and heated at a predetermined temperature, and the lower surface of the flange 3631 and the ring-shaped top surface 3181 of the upper step portion 318 are heat diffusion bonded.
  • the upper cover of the anode container 32 and the container body are integrated as follows. First, a carbon fiber felt impregnated with sulfur is placed in the container body. Next, the partition wall 31 is inserted into the container body, and the container body is covered with an upper lid. Thereafter, the container body and the upper lid are integrated by laser welding and caulking.
  • the sodium sulfur battery 3 of Example 3 has the above-described configuration.
  • the partition wall 31 and the anode container 32 of the sodium-sulfur battery 3 are configured such that the ring-shaped shoulder surface 3191 of the lower step 319 of the head portion 317 of the partition wall 31 and the upper portion of the outer peripheral surface are the top surface portion 3221 and the cylindrical wall portion 3222 of the anode container 32.
  • strain such as relative deformation acting between the partition wall 31 and the anode container 32 is first received by the upper portion of the outer peripheral surface of the lower step portion 319 and the cylindrical wall portion 3222 of the hat-shaped joint portion 322.
  • distortions such as relative deformation acting between the partition wall 31 and the anode container 32 do not directly act on the ring-shaped shoulder surface 3191 and the top surface portion 3221 which are the joint surfaces, and the joint surfaces are destroyed. Less likely.
  • strain such as relative deformation acting between the sodium container and the partition wall 31 is first received by the upper shaft hole 3171 of the upper step portion 318 and the truncated cone-shaped foot 3632 of the thin tube fitting 36.
  • the strain such as relative deformation acting between the partition wall 31 and the sodium container does not directly act on the ring-shaped top surface 3181 which is the joint surface and the flange 3631 of the funnel-shaped end portion 363, but the joint surface. Is less likely to be destroyed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

陰極室を内部に持つ板状隔壁とこれを収納して気密な陽極室を形成する金属製の陽極容器とのシールが容易な溶融ナトリウム電池及びその隔壁を提供することを目的とする。 この隔壁11は、内外を連通する筒状のソケット122を有する金属製の陽極容器12内に配置される厚さ方向の中央部に陰極室110と貫通孔1175とを有する板状でβアルミナ製の隔壁本体111と、この隔壁本体11に一体的に形成され貫通孔を介して該陰極室と連通する通孔を持ちソケット122に気密的に被着されるセラミックス製のニップル状頭部117とからなる。

Description

溶融ナトリウム電池及び溶融ナトリウム電池用隔壁
 本発明は、陰極活物質として溶融ナトリウム、固体電解質としてβアルミナを用いた溶融ナトリウム電池及び溶融ナトリウム電池用隔壁に関する。
 溶融ナトリウム電池としては、陽極活物質に溶融硫黄を用いるナトリウム硫黄電池及び陽極活物質に塩化ニッケル等を用いるナトリウム溶融塩電池の2種類の電池が実用化されている。これらの溶融ナトリウム電池は共に固体電解質としてβアルミナ製の隔壁が採用されている。また、これらの溶融ナトリウム電池はいずれも250℃から350℃の高温で使用され、充放電時には内部抵抗で電池自体が加熱されて温度が上がり、電池が充放電していないときは電池外に熱が漏れ温度が低下する。このように、ナトリウム電池は充放電に伴い、電池温度が変動する、しかも10年以上に渡る長期間の使用に耐える耐久性が要請されている。
 溶融ナトリウム電池の陰極活物質であるナトリウム及び放電時に陽極室に生成する多硫化ナトリウム等の化合物さらには隔壁を構成するβアルミナは水に弱い。このため、大気中の水分が陰極室及び陽極室に侵入しない高度の気密性を必要とする。
 実用化されているナトリウム硫黄電池及びナトリウム溶融塩電池では、いずれもβアルミナ製の隔壁として試験管形状の有底上端開口管が使用されている。この有底上端開口管の上端部にαアルミナ製の絶縁リングをガラス接合材で気密的に接合している。そしてこの絶縁リングの内周面側に金属製蓋を気密的に接合して隔壁の内周面側の一方の極室を形成し、この絶縁リングの外周面側に金属製ケースを気密的に接合して隔壁の外周面側の他方の極室を形成している。
 ナトリウム硫黄電池では内周面側の一方の極室に溶融ナトリウムを収納して陰極室とし、外周面側の他方の極室に溶融硫黄を収納して陽極室としている。また、ナトリウム溶融塩電池では内周面側の一方の極室に溶融金属塩化物を収納して陽極室とし、外周面側の他方の極室に溶融ナトリウムを収納して陰極室としている。
 陰極室と陽極室を隔てる隔壁は、両側の陽極室内の圧力及び陰極室内の圧力にさらされ、両圧力の差に相当する圧力による変形を受ける。隔壁を構成するβアルミナはセラミックスに共通する性質として押圧には強いが引っ張りには弱いとう性質がある。このため、隔壁は可能な限り引っ張り応力が作用しない使用および形状が求められる。前記した試験管形状の有底上端開口管では、内周面側の圧力を外周面側の圧力より低くすることで、隔壁の全ての部分で押圧力が作用し引っ張り力が作用しない状態とすることができる。隔壁の他の形状としては、特開昭50-38030号公報に記載されている外形が板状で、内部に並走する細孔状の陰極室を持つ板状隔壁を挙げることができる。この板状隔壁は陽極室内に保持され、隔壁の内部の陰極室を外部の陽極室に対して減圧された状態で使用することによりこの隔壁の蓋を除く板状の部分で押圧力が作用し引っ張り力が作用しない状態としている。
 βアルミナ製の隔壁として、一方の側に陰極室、他方の側に陽極室を持つ板状の隔壁を持つナトリウム硫黄電池が特許文献等で見られる。しかし、これらのナトリウム硫黄電池では、隔壁に曲げ応力が作用し、板状隔壁の一方の側の表面に引っ張り応力が作用するため、隔壁が割れる場合も想定され、実用的ではない。
特開平6-196204号公報 特開昭50-38030号公報
 隔壁が試験管状の有底上端開口管である場合、βアルミナ管の上端部にαアルミナリングがガラス接合剤で接合され、このαアルミナリングの内周面側と外周面側に金属部材がそれぞれ接合される。この場合、βアルミナ管の上端部の開口が広いため、接合面積が広くかつ2か所を接合しなければならない。このため高度の接合技術を必要とする。
 内部に陰極室を持つ板状隔壁では、βアルミナ製の板状の隔壁本体とその上端に接合された長方形板状のαアルミナ製の蓋で構成されている。この蓋の中央部に貫通孔が形成されており、この貫通孔に金属製の細管が挿し込まれ、この細管の外周面と蓋の貫通孔の内周面の間隙に接合剤を入れて接合している。一方、金属製の陽極室容器は上端開口の直方体形状の箱状で、この容器にβアルミナ製の板状の隔壁を挿入し、隔壁の長方形状の蓋の外周面とそれを覆う金属製の容器の上方の内周面の間隙に接合剤を入れて接合している。この板状隔壁では接合面が長方形状でその辺に当たる部分が直線状で長い。このため、バイメタルとして知られているように、接合された金族とセラミックスの間に大きな剥離応力が作用しシールが損傷することも考えられる。このためこのシール形態は実用性に乏しい。
 本発明は、陰極室を内部に持つ板状隔壁とこの板状隔壁を内部に収納して気密な陽極室を形成する金属製の陽極容器とのシールが容易な溶融ナトリウム電池用隔壁及びこの隔壁を持つ溶融ナトリウム電池を提供することを目的とする。
 本発明の溶融ナトリウム電池用隔壁は、内外を連通する貫通孔を持つ接合部を有する金属製の陽極容器内に配置される、厚さ方向の中央部に陰極室と該陰極室と外側とを結ぶ貫通孔とを有する板状でβアルミナ製の隔壁本体と、この隔壁本体に一体的に形成され貫通孔を介して陰極室と連通する通孔を持ち前記接合部に気密的に被着されるセラミックス製の頭部と、からなることを特徴とする。また、本発明の溶融ナトリウム電池は、陰極活物質となる溶融ナトリウムと、陽極活物質と、溶融ナトリウムを収納するナトリウム容器と、内部に陰極室を持つ隔壁と、陽極活物質及び前記隔壁を気密的に収納する陽極容器とを有する溶融ナトリウム電池であって、前記陽極容器は内外を連通する貫通孔を持つ接合部を有する金属製であり、前記隔壁は前記陽極容器内に配置される厚さ方向の中央部に該陰極室と該陰極室と外側とを結ぶ貫通孔とを有する板状でβアルミナ製の隔壁本体とこの隔壁本体に一体的に形成され貫通孔を介して陰極室と連通する通孔を持ち前記接合部に気密的に被着されるセラミックス製の頭部とからなる、ことを特徴とする。
発明の構成、作用効果
 この溶融ナトリウム電池は、陰極活物質となる溶融ナトリウムと、陽極活物質と、溶融ナトリウムを収納するナトリウム容器とを有する。また、陽極活物質としては溶融硫黄あるいはハロゲン化金属とすることができる。
 本発明の溶融ナトリウム電池及び溶融ナトリウム電池用隔壁では、その隔壁を板状でβアルミナ製の隔壁本体とこの隔壁本体一体的に形成され陽極容器の接合部に気密的に被着されるセラミックス製の頭部とから構成されている。すなわち隔壁と陽極容器のシール構造を隔壁の頭部と陽極容器の接続部のシール構造としている。このためシール面が筒状あるいはリング状でしかもシール面の径を小さくでき、より容易に高い気密性を持つシールが可能となる。
 さらに本発明の溶融ナトリウム電池用隔壁では、後で説明するように、その隔壁本体の厚さが、固体電解質として機能するナトリウムイオンが通る隔壁機能厚さの2倍以上と厚い。このため、隔壁本体の耐曲げ応力は、隔壁機能厚さをそのまま板厚とするものに対して、厚さの2乗に比例する、すなわち4倍以上高い曲げ強度を持つものとなっている。
 本発明の溶融ナトリウム電池用隔壁は、隔壁本体と頭部とで構成されている。この隔壁本体は厚さ方向の中央部に陰極室を有する板状でβアルミナ製である。ここでβアルミナ製とは全ての部分がβアルミナで形成されているもの、及び大部分がβアルミナで構成され他に一部αアルミナ等のセラミックスで形成されているものを含む。
 隔壁本体の厚さ方向の中央部に陰極室を有する板状であるとは、板形状の厚さ方向の表側に板状表側部、裏側に板状裏側部、中央に周縁を構成する枠内に薄く広がる陰極室を持つ中央部からなることを意味する。陰極室は通常減圧下で使用され、大気圧等の圧力が板状表側部及び板状裏側部の外面側に作用しこれら板状表側部及び板状裏側部を陰極室側に張り出させるように、すなわち陰極室を押し潰すように変形させる。この圧力に耐えるために陰極室を互いに間隔を隔てて並走する複数個のトンネル状空間としたり、板状表側部と板状裏側部の間に所定間隔で支柱を設けたりすることができる。
 この隔壁本体の板状表側部及び板状裏側部がナトリウムイオンを通す隔壁機能を果たす。従ってこの隔壁本体の板状表側部の表面及び板状裏側部の裏面の両面が隔壁面として機能する。このため、内部に陰極室を有しない板状隔壁に対して本発明に係る隔壁本体は2倍大きい隔壁機能面を有することになる。
 さらに、この隔壁本体のナトリウムイオンが透過する壁の厚さは, 板状表側部あるいは板状裏側部の厚さである。一方、隔壁本体の厚さは、板状表側部の厚さと板状裏側部の厚さ及び陰極室の中央部の厚さを合計した厚さとなり、ナトリウムイオンが透過する壁の厚さの2倍以上となる。ナトリウムイオンが透過する壁の厚さを通常の隔壁の厚さとすると、この隔壁本体の厚さは、通常の隔壁の厚さの2倍以上厚いものである。すなわちこの隔壁本体は2倍以上厚いために、機械的応力,例えば、曲げ応力に対して通常の板状隔壁の4倍以上と曲げ応力に耐える強さを持つ。
 陰極室と外側を結ぶ貫通孔は隔壁本体の周縁部,すなわち中央部の枠部に設けるのが好ましい。しかし板状表側部や板状裏側部に設けることもできる。
 なお、隔壁本体としては従来の厚さ方向の中央に陰極室を持つ板状隔壁をそのまま隔壁本体として使用できる。
 頭部は隔壁本体に一体的に形成され陰極室と連通する通孔を持つ突部状でセラミックス製である。この頭部に陽極容器の接合部が気密的に接合される。頭部は陽極容器の外側への通路となる接合部を閉じる蓋の機能を持つと共に隔壁を陽極容器内に固定する機能を持つ。この頭部は隔壁本体と同じβアルミナで形成しても、βアルミナ以外のセラミックス、例えばαアルミナで形成しても良い。
 頭部の形状は中心部に通孔、好ましくは軸孔を持つ筒状とすることができ、その先端部が隔壁本体より突出し,頭部の基部が隔壁本体の周縁部と一体的なものとするのが好ましい。頭部の外周面は外周径が一定のものとするものでも、先端が小さい円錐台形のものでも,軸方向の一部が径の大きい,あるいは逆に小さいリング状の凸部あるいは凹部を持つものでも良い。
 頭部の外周径は隔壁本体の厚さと同じか大きくすることが好ましい。大きくすることにより全体としての機械的強度が増す。頭部は陽極容器の筒状の接合部が被着されて陽極容器と一体化され、隔壁本体が頭部を介して陽極容器に保持されることになる。このため、陽極容器の動きは頭部を介して隔壁本体に伝わり、頭部及び頭部と隔壁本体の境界部分には大きなストレスが作用する。このため頭部と隔壁本体の境界部分はストレスに耐える大きい丈夫なものとする必要がある。前記したように、この隔壁本体は通常の板状隔壁の2倍以上の厚さを持つ大きく丈夫なものであるため相対的に頭部も大きなものとすることができ頭部と隔壁本体の境界部分にかかるストレスに耐えるものとすることができる。
 具体的に頭部は軸孔を持つ凸部からなるニップル状とすることができる。また接合部は頭部の軸孔を含む周縁部を表出させる開口を持ちニップル状の頭部を覆うキャップ状とすることができる。このニップル状頭部の外周面には陽極容器のキャップ状接合部が被着され,被着されたニップル状頭部の外周面と被着するキャップ状接合部の内周面との間で陽極室内部と外界との水分等のガス及び液体の移動を遮断するものである。
 ニップル状頭部の外周面には漏れ出るガスのガス溜めともなる外周面を1周する少なくとも1個のリング溝を持つものとするのが好ましい。また、キャップ状接合部との接合を容易にするためにニップル状頭部の外周面にはニッケル溶射等のメタライジングを施すのが好ましい。
 ニップル状頭部の通孔は従来の板状隔壁のものと同じであるが、本発明では、この通孔はニップル状頭部の軸心部に設けられている。通孔は軸孔として外周面と同軸的となっているのが好ましい。この通孔に溶融ナトリウムが流れる金属製の細管からなる細管金具が挿入されて接合され,筒状のニップル状頭部は通孔に挿着された細管金具と外周面に被着されたキャップ状接合部を電気的に絶縁する絶縁体として機能する。
 ニップル状頭部の通孔への細管金具のシールも高い気密性が要求される。しかしシール表面が好ましくは直径2~5mm程度の通孔の内周面と同じ程度の外径の細管金具の外周面であり、シール直径を小さくすることによりシールはさらに容易となる。
 また、頭部は軸孔を備える頂面を持ち上方段部とリング状面を持つ下方段部の2段階の山状頭部とし、接合部はリング状部分を持つリング状接合部とすることができる。この2段階の山状頭部の下段のリング状段面には陽極容器のリング状接合部のリング状部分の下側のリング状面が被着される。リング状接合部はより具体的にリング状部分の該周縁から下方に延びる筒状壁を持つハット形状とすることが好ましい。板状隔壁の2段階の山状頭部に陽極容器のハット状接合部が被着することで、陽極室内部と外界との水分等のガス及び液体の移動を遮断する。山状頭部のリング状段面とハット状接合部のリング状頂部の接合は,まず、山状頭部にハット状接合部を被せ、山状頭部の頂部分をハット状接合部のリング状頂部分の中央孔より突出させ、山状頭部のリング状段面とハット状接合部のリング状頂部分の内側面とを当接させる。次にハット状接合部のリング状頂部分の外側から所定の押圧を加えつつ所定温度に維持し加熱圧接する。
 2段階の山状頭部の軸孔を持つ頂面にはこの頂面と同じリング状フランジ部分とこのリング状フランジ部分から立ち上がる細管部分からなる細管金具が接合される。この接合もハット状接合部と同じく頭部の頂面と細管金具のフランジ部分とを当接させる。次に細管金具のフランジ部分に所定の押圧を加えて頭部の頂面に押し付けつつ所定温度に維持し加熱圧接するものである。
 2段階の山状頭部とハット状接合部及び細管金具の接合は一度に同時に行うのが好ましい。また、頭部は隔壁本体と分離した状態で行うのがこのましい。
 内部に陰極室を持つ板状の隔壁本体及びこの隔壁本体と頭部とからなる隔壁は、板厚の中程で陰極室を通る面で2分した板状表側部及び板状裏側部をそれぞれ形成しその後板状表側部と板状裏側部とを貼り合わせて一体化して作成することができる。一体化は焼結前のグリーンコンパクトの段階で組み付け焼結時に焼結と溶着とを同時に行うとか、板状表側部と板状裏側部とを焼結したのち接合剤で貼り付けることでも良い。なお、グリーンコンパクトの形成時に金型面で成形される面が貼り合わせ面とすることにより貼り合わせ面部の寸法精度を容易に高くできる。
 板状表側部と板状裏側部との間に枠状及び柱状の接合部材(スペーサ)を介在させるものでも良い。また陰極室を燃えて消失するような消失型を使用する方法で隔壁本体あるいは隔壁を形成しても良い。
 金属製の陽極容器は内部に板状隔壁を収容固定するとともに板状隔壁の周囲を囲む陽極室を形成するものである。金属としてはステンレススチール、アルミニウム合金等溶融硫黄及び溶融多硫化ナトリウムに耐食性を持つ金属が使用できる。
 この陽極容器は陽極室の内外を連通する接合部を有する。前に述べたように接合部は板状隔壁の頭部に被着し、陽極室の内外を気密的にシールする。頭部がニップル状頭部の場合、接合部はキャップ状の接合部とすることができる。ニップル状頭部の外周面とキャップ状接合部の内周面の接合は、ガラス粉末接合剤や銀ろう等のろう剤を用いたり、熱圧接合法を用いたり、キャップ状接合部のみを加熱して熱膨張させ冷たいニップル状頭部に被着させる熱嵌めを行うとか、キャップ状接合部の外周面を締め付け金具で締め付ける等の一つ方法あるいは二つ以上の方法を採用できる。
 頭部と接合部との接合を容易にするために、接合部を陽極容器本体から分離した状態とし、接合後に、接合部を陽極容器本体にレーザー溶接機等で接合一体化することもできる。また、接合部の周囲の陽極容器本体の部分に、接合部と陽極容器本体との相対変位を可能にする蛇腹状等の易変位手段を設けることもできる。易変位手段としては、輪状の金属板を同心状にリング状凹部とリング状凸部が広がるように成形したものとか、ベローズとかフレキシブルチュウブを用いることができる。また、陽極容器の内周面に隔壁の隔壁本体の位置を規定するガイドを設けたり、隔壁本体をニップル方向に押し付けて隔壁本体の位置を規定する付勢手段を設けることもできる。
 本発明の溶融ナトリウム電池は、大部分の溶融ナトリウムを保持するナトリウム容器を必要とする。本発明の溶融ナトリウム電池の陰極室は板状の隔壁の内部に形成されているため、陰極室の容積が小さい。一方、溶融ナトリウム電池は大容量の放電に適した電池であるため、多量の溶融ナトリウムを必要とする。この多量のナトリウムは陰極室と細管金具で連通するナトリウム容器に保持されている。
 本発明の溶融ナトリウム電池では、ナトリウム容器を含む陰極室及び陽極室は共に高度の気密性を必要とする。また、この溶融ナトリウム電池は、1回の充放電操作中に50℃程度の温度変化を受ける。このため、陰極室及び陽極室は減圧下で使用される。本発明の溶融ナトリウム電池では、隔壁が陽極室で囲まれ、陰極室が隔壁の内部に形成されている。隔壁に引っ張り応力が作用しないようにするため、陰極室は陽極室よりさらに減圧にすることが好ましい。陰極室は真空に近い減圧度にするのが好ましい。
 本発明の溶融ナトリウム電池の陰極室及び陽極室以外の電池の構成要素については、従来のナトリウム硫黄電池及びナトリウム溶融塩電池のものと基本的には同じである。
実施例1のナトリウム硫黄電池の縦断面図である。 図1の部分拡大断面図である。 図2の断面図に示す隔壁の部分平面図である。 実施例2のナトリウム硫黄電池の要部縦断面図である。 図4の断面図に示す隔壁断面の90度回転した方向から見た要部縦断面図である。 実施例3のナトリウム硫黄電池の要部縦断面図である。
(実施態様の説明)
 以下、本発明のナトリウム硫黄電池の実施例を挙げて本発明をさらに具体的に説明する。
 本発明の実施例1のナトリウム硫黄電池1を図1~3に基づいて説明する。ここで、図1はナトリウム硫黄電池1の縦断面を、図2はその要部の拡大断面を、図3はその隔壁11の部分平面を示す。
 この電池1は、隔壁11と、陽極容器12と、ナトリウム容器13と、隔壁の内部空間として形成された陰極室110と、陽極容器12の内部空間で隔壁11を囲む陽極室120と、陰極室110内及びナトリウム容器13内に収容された陰極活物質である溶融ナトリウム14と、陽極室120に収納された陽極活物質である溶融硫黄15と、陰極室110とナトリウム容器12の内部空間を連通する細管金具16と、陽極容器12とナトリウム容器13の間に介在し両者を電気的に絶縁する絶縁体17を主な構成要素としている。この電池1は陽極活物質として溶融硫黄15を用いているので、ナトリウム硫黄電池である。
 隔壁11は、板状の隔壁本体111とニップル状頭部117とからなり、両者は一体的にβアルミナで形成されている。隔壁本体111は縦横それぞれ100mm程度、厚さ6mm程度の正方形の板状で、縦横それぞれ100mm、厚さ2mmの表側部112及び裏側部113と、縦横それぞれ100mm、幅2mm、厚さ2mmの正方形状で、表側部112及び裏側部113の間に位置する枠部114と、外径2mm、厚さ2mmの柱状で表側部112及び裏側部113の間に等間隔で位置する81個の支柱部115とからなる。
 ニップル状頭部117は図3にその外側面を示すように外周径10mm程度、高さ8mmの柱状の上方部118と外周径13mm程度、高さ12mm程度の柱状の下方部119とからなる、2段の柱状突部形状である。なお、この下方部119は隔壁本体111と一体的に形成されているため一部の外周面は隔壁本体111に覆われたものとなっている。そしてニップル状頭部117の通孔1175は内周径4mm程度、長さ5mm程度の上方軸孔部1176と内周径3mm程度、長さ7mm程度の下方軸孔部1177で構成されている。下方軸孔部1177は陰極室110に開口している。
 ニップル状頭部117の下方部119は隔壁本体111の側端面とこれに繋がる表側部112及び裏側部113の表面とで隔壁本体111と一体化し、下方部119は隔壁本体111の一部とみなせるもので、ニップル状頭部117と隔壁本体111との一体化は高度のものとなっている。
 この隔壁11は炭酸ナトリウムとαアルミナを焼成して予めβアルミナを合成して得られたβアルミナ微粉末を造粒し、隔壁11の厚さ方向の中央で2分割した表側圧密体と裏側圧密体とを成形し、両者を合わせて隔壁圧密体とし、これを、焼結することで得ることができる。なお、表側圧密体と裏側圧密体とはそれぞれ2分割面を金型で成形し、表面及び裏面をゴム型で圧縮成形する方法を採用することが好ましい。焼結体のニップル状頭部117の外周面は少し大きく通孔は少し小さく成形し、ニップル状頭部117の上方部の外周面と下方部との段差面及び通孔は機械研削等で寸法精度を高くするようにするのが好ましい。
 陽極容器12は縦横それぞれ105mm程度厚さ50mm程度の直方体状の容器本体121とその上面に一体的に形成された外周径12mm程度、内径10mm程度、高さ10mm程度のキャップ122とからなり厚さ1mm程度のステンレススチール板で形成されている。より具体的には、この陽極容器12はキャップ122を含む上蓋部分123と容器本体121の底蓋部分(図示せず)とこれらを除く容器本体121の胴部分124の3部分で形成できる。
 まず、キャップ122を含む上蓋部分123を隔壁11のニップル状頭部117の上方部118に装着し、キャップ122の下端をニップル状頭部117の下方部119の上端面に当接させる。そして熱嵌合,熱圧着して上方部118の外周面とキャップ122の内周面とを接合し、上蓋部分123と隔壁11とを一体化する。
 この接合の前後に、細管金具16の短い部分162の一端部を隔壁11の頭部117の上方部118の通孔1175の上方軸孔部1176に挿入して接合する。
 次に、隔壁11が接合された上蓋部分123と胴部分124をレーザ溶接して一体化する。次に、縦横それぞれ100mm程度で厚さ18mm程度の硫黄が含浸されたカーボン繊維からなるフェルト状集電体(図示せず)を容器本体121内の保持されている隔壁11の両側に、開口している底から挿入し、その後底蓋部分をレーザ溶接で一体化して形成することができる。
 ナトリウム容器13は、縦、厚さがそれぞれ50mm程度、横105mm程度の直方体の下方側の一端部に高さ20mm程度、横25mm程度,厚さ50mm程度の切り込みを形成したものである。このナトリウム容器13は厚さ1mm程度のステンレススチール板で形成されている。
 細管金具16は口径が3mm程度厚さ1mm程度のステンレススチール製の細管である。この細管金具16は一端が口径の広がった端部を持つ長い部分161と口径の広がった端部に挿入された口径を狭めた端部を持つ短い部分162からなる。細管金具16の長い部分161は、図1に示されているように、ナトリウム容器13の切り込みが形成された上側の面を貫通するように気密的に溶接され、その一端はナトリウム容器13の内部の下面近くに位置するように逆U字形に曲げられている。細管金具16の短い部分162は、図2に示すように,ニップル状頭部117の通孔1175の上方軸孔部1176に挿入されて気密的に接合される。細管金具16の長い部分161と短い部分162の接合は,陽極容器12にナトリウム容器13が組み付けられる時にそれぞれの自由端部が同軸的に嵌合させ、その後その部分を加熱し溶着する。
 絶縁体17は厚さ3mm程度の無機繊維のシートで、陽極容器12とナトリウム容器13の間に介在し両者を電気的に絶縁する。
 陽極容器12とナトリウム容器13が組み付けられた後、図示しない注入管部よりナトリウム容器13中に溶融ナトリウムが注入される。その後、ナトリウム容器13内及び陰極室110を脱気して注入管を閉じ、真空に近い状態とする。
 この後、陽極容器12内を図示しない脱気管部より脱気して陰極室110がより減圧された状態になるように減圧して脱気管部を閉じる。
 本実施例のナトリウム硫黄電池は以上の構成よりなる。この電池を300℃程度に加熱し、陽極容器12を陽極端子とし、ナトリウム容器13を陰極端子として外部負荷につなげば通常のナトリウム硫黄電池のように機能する。
 本実施例のナトリウム硫黄電池では、陽極室120を気密的に外部より隔絶するシールは、隔壁11のニップル状頭部117の外周面と陽極容器12のキャップ122の内周面のシールの1か所でなされている。すなわち単純な柱状のニップルと筒状のキャップとの同軸状の筒状のシール1か所でなされている。筒状のシール面はシール面を仕上げるのに容易で寸法精度も容易に高くすることができる。このためシールが容易となっている。特にニップル状頭部117をキャップ122で機械的に締め付ける熱嵌合がなされているのでシール面が剥離されにくい利点がある。
 また、本実施例のキャップ122を含む上蓋部分123を隔壁11のニップル状頭部117の上方部118に装着し、キャップ122の下端をニップル状頭部117の下方部119の上端面に当接させている。このため隔壁11と陽極容器12との間に発生する歪はキャップ122の下端とニップル状頭部117の下方部119の上端面に集中し、接合されているニップル状頭部117の上方部118の外周面とキャップ122の内周面には起こりにくい。このため、接合面が剥離する等が生じにくい。
 また、ニップル状頭部117はキャップ122と接合される上方部18と上方部18より太い下方部119からなり、太い下方部119で隔壁本体111と一体化されている。このためニップル状頭部117と隔壁本体111との間に作用する応力に対して強固な形状になっている。
 さらに、機械的応力に対して弱い板状の隔壁本体111は陰極室100内で浮いた状態で保持されているため、隔壁本体111には曲げ等の部分的に引っ張り応力が作用しにくい状態となっている。このため、隔壁本体111の機械的破壊の可能性が低く耐久性のあるものとなっている。
 本発明の実施例2のナトリウム硫黄電池2を図4,5に基づいて説明する。この電池は実施例1のナトリウム硫黄電池1の隔壁11を隔壁21に変更したもので、他の部分は実施例1の部分と同じである。このため、隔壁21を主に説明する。
 このナトリウム硫黄電池2の要部縦断面を図4に、図4の断面図に示す隔壁断面の90度回転した方向から見た要部を図5に示す。
 隔壁21は、βアルミナで形成された板状の隔壁本体211とαアルミナで形成されたニップル状頭部217とからなり、両者は一体的にガラス半田で一体的に接合されたものである。
 隔壁本体211は縦横それぞれ100mm程度、厚さ6mm程度の正方形の板状で、縦横それぞれ100mm、厚さ2mmの表側部212及び裏側部213と、縦横それぞれ100mm、幅2mm、厚さ2mmの正方形状で、表側部212及び裏側部213の間に位置する枠部214と、外径2mm、厚さ2mmの柱状で表側部212及び裏側部213の間に等間隔で位置する81個の支柱部215とからなり、表側部212及び裏側部213の間の空間が陰極室210となっている。枠部214には1個の通孔2140が形成され、陰極室210と外部とを連通する通路となっている。
 隔壁本体211は実施例1で説明した隔壁11の製造方法と同様に製造できる。
 ニップル状頭部217は図5にその縦断面を示すように外周径10mm程度、高さ8mmの柱状の上方部218と外周径13mm程度、高さ12mm程度の柱状の下方部219とからなる、2段の柱状突部形状である。
 この下方部219の下面の中央部には、断面長方形の両側面を貫く溝2190が形成されている。この溝2190は幅6mm程度深さ10mm程度である。この溝2190に隔壁本体211の通孔2140が形成されている端部が装着される。
 ニップル状頭部117の上方部218に一端が開口し他端が溝2190に開口する通孔2175が形成されている。この通孔2175は内周径4mm程度、長さ5mm程度の上方軸孔部2176と内周径3mm程度、深さ7mm程度の下方軸孔部2177とで構成されている。
 このニップル状頭部217は少し大きい柱状のαアルミナからなるグリーンコンパクトを形成し,これを機械加工で成形し,その後焼結し。焼結されたものを機械加工により所定寸法として製造することができる。
 このニップル状頭部217を隔壁本体211の貫通孔2140が形成されている端部にガラス半田で接合することにより隔壁21が得られる。
 この隔壁21も実施例1の隔壁11と同じように、そのニップル状頭部217の太い下方部219で隔壁本体211と一体化されている。このためニップル状頭部217と隔壁本体211との一体性が高い。
 この実施例2のナトリウム硫黄電池2の構成は実施例1のナトリウム硫黄電池1と同じであるので,説明を省略する。
 このナトリウム硫黄電池2の隔壁21のように、隔壁本体211とニップル状頭部217とを分けて2部品とし,その後接合して一体化する方法は、電気泳動付着法で肉厚のほぼ等しいグレーンコンパクトしかできない成形法を採用する場合に有効である。
 本発明の実施例3のナトリウム硫黄電池3を図6に基づいて説明する。この電池は実施例1のナトリウム硫黄電池1の隔壁11、陽極容器12及び細管16を変更したもので、他の部分は実施例1の部分と同じである。
 このナトリウム硫黄電池3の要部縦断面を図6に示す。なお、図6の断面は図4の断面の90度回転した方向から見た断面に相当し、方向としては図5の見た方向と同じである。
 隔壁31は、βアルミナで形成された板状の隔壁本体311とαアルミナで形成された頭部317とからなり、両者はガラス半田で一体的に接合されたものである。
 隔壁本体311は正方形の板状で、表側部312、裏側部313、枠部314と支柱部315とからなり、表側部312及び裏側部313の間の空間が陰極室310となっている。枠部314には1個の通孔3140が形成され、陰極室210と外部のナトリウムタンクとを連通する通路となっている。なお、隔壁本体311は実施例2の隔壁本体211と同じものである。
 頭部317は軸孔3170を持つとともに、頂面3181を持つ上方段部318とリング状肩面3191をもつ下方段部319からなる2段階の山状頭部となっている。
 この頭部317の軸孔3170は、内径6mm深さ7mmの上方軸孔3171とこれに同軸的に下方に延びる内径3mm深さ8mmの下方軸孔3172からなる。頭部317の上方段部318の外周径は16mmで高さは5mmである。下方段部319の外周径は27mmで高さは26mmであり、リング状肩面は内周径16mm、外周径27mm、幅5.5mである。
 下方段部319の下端部にその軸芯を中心とする幅6mm,深さ16mmの両端開口の係合溝3190が設けられている。軸孔3170はこの係合溝3190の上面に開口する。この頭部317は軸孔3170の軸芯に対して線対称の形状を持ち、高さ31mmの2段階の山状頭部である。
 この頭部317も実施例2の頭部217と同じ方法で製造できる。この頭部317を隔壁本体311の貫通孔3140が形成されている端部にガラス半田で接合することにより隔壁31が得られる。この隔壁31も実施例2の隔壁21と同じように、その頭部317の太い下方段部319で隔壁本体311と一体化されている。このため頭部317と隔壁本体311との一体性が高い。
 陽極容器32は縦横それぞれ105mm程度厚さ50mm程度の直方体状の容器本体321とその上面部に一体的に形成された、口径16mmの開口を持つ外周径28mmの頂面部3221とこの頂面部3221の周縁より下方に延びる高さ5mmの外周径28mmの筒壁部3222とよりなるハット状接合部322とからなり、厚さ1mm程度のステンレススチール板で形成されている。
 より具体的には、この陽極容器32はハット状接合部322を含む上蓋の部分とこれらを除く容器本体の部分の2部分からなる。ここでハット状接合部322は頂面部3221と筒壁部3222とからなる。
 ハット状接合部322を含む上蓋の部分と隔壁31の頭部317との接合は次の方法で達成される。まず、上蓋部分のハット状接合部322を隔壁31の頭部317に被せ,ハット状接合部322の頂面部3221の開口より頭部317の上方段部318を突出させて,頂面部3221の下面と頭部317の下方段部319のリング状肩面3191と当接させ、ハット状接合部322を隔壁31の頭部317に装着させる。この状態でハット状接合部322の筒壁部3222の内周面と下方段部317の外周面は同軸的に嵌合し、ハット状接合部322を含む上蓋の部分は隔壁31の頭部317に固定保持され、そのハット状接合部322の頂面部3221は下方段部317のリング状肩面3191上に維持される。
 この状態でハット状接合部322の頂面部3221の上面より所定の押圧力をかけ、頂面部34221を頭部317の下方段部319のリング状肩面3191に押しつける。この状態で所定温度に加熱し,その状態を所定時間維持し、ハット状接合部322の頂面部3221の下面と頭部317の下方段部319のリング状面を熱拡散接合させる。これにより隔壁31は陽極容器32の上蓋に接合される。
 この接合と同時に細管金具36の短い部分362が頭部317の上方段部318のリング状頂面3181に熱拡散接合させる。細管金具36は長い部分361と短い部分362の2つの部分で構成されている。長い部分361は実施例1の細管金具16の長い部分と同一のものである。細管金具36の短い部分362は図6に示すように鍔を持つロート状の端部363と細管状の細管部364とからなっている。ロート状の端部363はリング状の鍔3631と外周形状が円錐台形状の足3632とからなっている。この足3632の軸芯部に細管部364が同軸的に位置する状態でそれらの下端が溶接一体化されている。
 この短い部分362は,図6に示すようにそのロート状端部363の足3632を頭部317の上方段部318の上方軸孔3171に挿入し、鍔3631の下面を上方段部318のリング状頂面3181に当接させる。この状態で、鍔3631の上面に所定の押圧力で押しつけ所定温度で加熱し、鍔3631の下面と上方段部318のリング状頂面3181とを熱拡散接合させるものである。
 陽極容器32の上蓋と容器本体との一体化は次のようになされる。まず、容器本体に硫黄を含浸させた炭素繊維フェルトを納める。次に、この容器本体に隔壁31を挿入し、容器本体に上蓋を被せる。この後、容器本体と上蓋とをレーザー溶接とかかしめ接合で一体化する。
 この実施例3のナトリウム硫黄電池3は前記した構成を持つ。このナトリウム硫黄電池3の隔壁31と陽極容器32は、隔壁31の頭部317の下方段部319のリング状肩面3191と外周面の上部とを陽極容器32の頂面部3221と筒壁部3222とからなるハット状接合部322で一体化されている。このため、隔壁31と陽極容器32との間に作用する相対変形等のひずみは,まず、下方段部319の外周面の上部とハット状接合部322の筒壁部3222とで受けることになる。このため、隔壁31と陽極容器32との間に作用する相対変形等のひずみは,直接には接合面であるリング状肩面3191と頂面部3221には作用せず、接合面が破壊される可能性が低くなる。
 同様に、ナトリウム容器と隔壁31との間に作用する相対変形等のひずみは,まず、上方段部318の上方軸孔3171と細管金具36の円錐台形状の足3632とで受けることになる。
 このため、隔壁31とナトリウム容器との間に作用する相対変形等のひずみは,直接には接合面であるリング状頂面3181とロート状端部363の鍔3631には作用せず、接合面が破壊される可能性が低くなる。
1、2、3・・ナトリウム硫黄電池   11、21、31・・隔壁
12、32・・陽極容器   13・・ナトリウム容器  
16、36・・細管金具   111、211、311・・隔壁本体
117、217・・ニップル
121・・容器本体   122・・キャップ

Claims (10)

  1.  内外を連通する貫通孔を持つ接合部を有する金属製の陽極容器内に配置される、厚さ方向の中央部に陰極室と該陰極室と外側とを結ぶ貫通孔とを有する板状でβアルミナ製の隔壁本体と、
     該隔壁本体に一体的に形成され該貫通孔を介して該陰極室と連通する通孔を持ち該接合部に気密的に被着されるセラミックス製の頭部と、
    からなる溶融ナトリウム電池用隔壁。
  2.  前記接合部は筒状であり、前記頭部は筒状の前記接合部の内周面に被着されたニップル状である請求項1記載の溶融ナトリウム電池用隔壁。
  3.  前記接合部は前記貫通孔と該貫通孔を区画するリング状の被着面を持つ部分からなり、前記頭部は前記通孔を持つ中心部分と該中心部分の周囲にあり該接合部の被着面に接合されるリング状の被着面を持つ部分とからなる請求項1記載の溶融ナトリウム電池用隔壁。
  4.  前記接合部は前記リング状の被着面を持つ部分からなる頂面部と該頂面部の該周縁より下方に延びる筒壁部とからなるハット状であり、前記頭部は前記通孔を持つ上方段部と該上方段部の周囲にあり該接合部の該被着面に接合されるリング状の被着面を持つ下方段部とからなる請求項3記載の溶融ナトリウム電池用隔壁。
  5.  前記セラミックスはβアルミナ及びαアルミナの1種である請求項1~4の1項に記載の溶融ナトリウム電池用隔壁。
  6.  少なくとも前記隔壁本体は前記陰極室を通る面で分割された表側部と裏側部とからなり、該表側部と裏側部が直接あるいは接合部材を介して接合一体化されたものである請求項1~5の1項に記載の溶融ナトリウム電池用隔壁。
  7.  少なくとも前記陰極室は消失型で形成されたものである請求項1~5の1項に記載の溶融ナトリウム電池用隔壁。
  8.  陰極活物質となる溶融ナトリウムと、陽極活物質と、該溶融ナトリウムを収納するナトリウム容器と、内部に陰極室を持つ隔壁と、該陽極活物質及び該隔壁を気密的に収納する陽極容器とを有する溶融ナトリウム電池であって、
    前記陽極容器は内外を連通する貫通孔を持つ接合部を有する金属製であり、
     前記隔壁は該陽極容器内に配置される厚さ方向の中央部に該陰極室と該陰極室と外側とを結ぶ貫通孔とを有する板状でβアルミナ製の隔壁本体と該隔壁本体に一体的に形成され該貫通孔を介して該陰極室と連通する通孔を持ち該接合部に気密的に被着されるセラミックス製の頭部とからなる、
    ことを特徴とする溶融ナトリウム電池。
  9.  前記ナトリウム容器と前記陰極室とは前記頭部の前記通孔に連通する金属製の細管で連通されている請求項8に記載の溶融ナトリウム電池。
  10.  前記陽極活物質は溶融硫黄あるいはハロゲン化金属である請求項8又は9に記載の溶融ナトリウム電池。
PCT/JP2016/084683 2015-11-24 2016-11-23 溶融ナトリウム電池及び溶融ナトリウム電池用隔壁 WO2017090636A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/777,679 US20180375163A1 (en) 2015-11-24 2016-11-23 Molten sodium battery and partition wall for molten sodium battery
EP16868579.0A EP3382786A4 (en) 2015-11-24 2016-11-23 SACRED MUSHROOM BATTERY AND PARTITION WALL FOR SACRED MUSHROOM BATTERY
BR112018009244-4A BR112018009244B1 (pt) 2015-11-24 2016-11-23 Parede divisória para bateria de sódio fundido e bateria de sódio fundido
CN201680066696.5A CN108292784B (zh) 2015-11-24 2016-11-23 熔融钠电池以及熔融钠电池用隔壁
RU2018122804A RU2686089C1 (ru) 2015-11-24 2016-11-23 Батарея с расплавленным натрием и перегородка для батареи с расплавленным натрием
KR1020187012821A KR102033266B1 (ko) 2015-11-24 2016-11-23 용융 나트륨 전지 및 용융 나트륨 전지용 격벽
US17/381,236 US20210351442A1 (en) 2015-11-24 2021-07-21 Molten sodium battery and partition wall for molten sodium battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015228547 2015-11-24
JP2015-228547 2015-11-24
JP2016037170A JP6276305B2 (ja) 2015-11-24 2016-02-29 溶融ナトリウム電池及び溶融ナトリウム電池用隔壁
JP2016-037170 2016-02-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/777,679 A-371-Of-International US20180375163A1 (en) 2015-11-24 2016-11-23 Molten sodium battery and partition wall for molten sodium battery
US17/381,236 Continuation US20210351442A1 (en) 2015-11-24 2021-07-21 Molten sodium battery and partition wall for molten sodium battery

Publications (1)

Publication Number Publication Date
WO2017090636A1 true WO2017090636A1 (ja) 2017-06-01

Family

ID=58764068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084683 WO2017090636A1 (ja) 2015-11-24 2016-11-23 溶融ナトリウム電池及び溶融ナトリウム電池用隔壁

Country Status (1)

Country Link
WO (1) WO2017090636A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186139A1 (ja) 2021-03-02 2022-09-09 株式会社人工資源研究所 ナトリウムイオン透過板状隔壁及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038030A (ja) * 1973-08-11 1975-04-09
JPS50127129A (ja) * 1974-03-27 1975-10-06
JPS50154733A (ja) * 1974-06-04 1975-12-13
JPH01252587A (ja) * 1988-03-31 1989-10-09 Ngk Insulators Ltd ナトリウム―硫黄電池における金属製部品とセラミック製部品の結合方法
WO2011152028A1 (ja) * 2010-05-31 2011-12-08 Ohkawa Hiroshi 固体電解質二次電池
JP2012099293A (ja) * 2010-11-01 2012-05-24 Shoku Chiba ナトリウム硫黄電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038030A (ja) * 1973-08-11 1975-04-09
JPS50127129A (ja) * 1974-03-27 1975-10-06
JPS50154733A (ja) * 1974-06-04 1975-12-13
JPH01252587A (ja) * 1988-03-31 1989-10-09 Ngk Insulators Ltd ナトリウム―硫黄電池における金属製部品とセラミック製部品の結合方法
WO2011152028A1 (ja) * 2010-05-31 2011-12-08 Ohkawa Hiroshi 固体電解質二次電池
JP2012099293A (ja) * 2010-11-01 2012-05-24 Shoku Chiba ナトリウム硫黄電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3382786A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186139A1 (ja) 2021-03-02 2022-09-09 株式会社人工資源研究所 ナトリウムイオン透過板状隔壁及びその製造方法
KR20230154185A (ko) 2021-03-02 2023-11-07 주식회사 인공자원연구소 나트륨 이온 투과 판상 격벽 및 그 제조 방법

Similar Documents

Publication Publication Date Title
US20210351442A1 (en) Molten sodium battery and partition wall for molten sodium battery
JP3306257B2 (ja) 2次電池の安全装置
KR101504985B1 (ko) 고체 전해질 2차 전지
JP5681005B2 (ja) 扁平形電池
JP4184740B2 (ja) キャップ組立体及びそれを具備した角形2次電池
KR101140480B1 (ko) 콘덴서
US4419418A (en) Individual rechargeable electric cell
WO2017090636A1 (ja) 溶融ナトリウム電池及び溶融ナトリウム電池用隔壁
US3421945A (en) Fusion-sealed metal-enclosed rechargeable battery cell
US5164272A (en) Alkali metal cell
KR100764827B1 (ko) 전지 및 그 제조 방법
US5197995A (en) Method of making an alkali metal cell
JP5167926B2 (ja) キャパシタ
KR101385741B1 (ko) 나트륨-유황 전지의 열압착 접합용 인서트재
JPH04267061A (ja) リチウム−沃素電池
US4739221A (en) A gas discharge lamp with a sintered cathode member fused to a lead and the method of manufacture
CN216084987U (zh) 锂离子电池盖板、锂离子电池及其应用产品
US3423645A (en) Hermetically enclosed galvanic microelement
CN211907490U (zh) 顶盖组件及电池
JPH0648766Y2 (ja) 気密端子
JPS59194366A (ja) ナトリウム−硫黄電池
CN113833853A (zh) 密封组件
JPH0337956A (ja) 有機電解液電池
JPH0554873A (ja) 密閉型電池
JP2004171917A (ja) アルカリ乾電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187012821

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018009244

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112018009244

Country of ref document: BR

Free format text: APRESENTE AS TRADUCOES SIMPLES DAS FOLHAS DE ROSTO DAS CERTIDOES DE DEPOSITO DAS PRIORIDADES JP 2015-228547 E JP 2016-037170; OU DECLARACOES DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NAS PRIORIDADES REIVINDICADAS, CONTENDO TODOS OS DADOS IDENTIFICADORES DESTAS (TITULARES, NUMEROS DE REGISTRO, DATA E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013. CABE SALIENTAR QUE NAO FOI POSSIVEL IDENTIFICAR OS TITULARES DOS PEDIDOS NOS DOCUMENTOS JUNTADOS AO PROCESSO, TAMPOUCO NOS APRESENTADOS NA OMPI, POIS SE ENCONTRAM EM JAPONES. TAL INFORMACAO E NECESSARIA PARA O EXAME DA CESSAO DO DOCUMENTO DE PRIORIDADE.

ENP Entry into the national phase

Ref document number: 112018009244

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180507