WO2017090327A1 - Power steering system - Google Patents

Power steering system Download PDF

Info

Publication number
WO2017090327A1
WO2017090327A1 PCT/JP2016/079896 JP2016079896W WO2017090327A1 WO 2017090327 A1 WO2017090327 A1 WO 2017090327A1 JP 2016079896 W JP2016079896 W JP 2016079896W WO 2017090327 A1 WO2017090327 A1 WO 2017090327A1
Authority
WO
WIPO (PCT)
Prior art keywords
worm shaft
worm
power steering
rotation axis
elastic member
Prior art date
Application number
PCT/JP2016/079896
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 福田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2017090327A1 publication Critical patent/WO2017090327A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/22Toothed members; Worms for transmissions with crossing shafts, especially worms, worm-gears
    • F16H55/24Special devices for taking up backlash
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings

Definitions

  • the present invention relates to a power steering device.
  • an elastic member is installed on a worm shaft bearing that meshes with a worm wheel provided on a steering shaft of a power steering device, and the elastic member biases the bearing toward the worm wheel side.
  • the clearance (gear backlash) in the meshing between the teeth of the worm shaft and the worm wheel is adjusted.
  • An object of the present invention is to provide a power steering device capable of improving the support stability and steering feeling of a worm shaft.
  • a power steering device is provided on the end side of a worm shaft on the opposite side of the electric motor in the direction of the rotation axis of the worm shaft, and on the outer peripheral side of a bearing that rotatably supports the worm shaft.
  • an elastic member is provided that applies a biasing force to the bearing at a plurality of power points in a direction around the rotation axis of the worm shaft so as to reduce backlash between the worm wheel and the worm shaft.
  • the elastic member applies a biasing force to the bearing at a plurality of power points, so that the support stability of the worm shaft is higher than that when the power point is only one point. Can be improved.
  • FIG. 1 is a schematic diagram illustrating a vehicle power steering apparatus according to a first embodiment.
  • 1 is an external view of a vehicle power steering apparatus according to a first embodiment.
  • FIG. 3 is a partial perspective view of the vicinity of the worm gear according to the first embodiment.
  • FIG. 3 is a partial cross-sectional view in the vicinity of a worm shaft according to the first embodiment.
  • 3 is an enlarged cross-sectional view of a backlash adjusting mechanism of Embodiment 1.
  • FIG. It is the front surface of the elastic member of Example 1, and a holder member, a plane, a right side surface, and a perspective view.
  • FIG. 3 is an enlarged schematic view of a bearing housing portion of Example 1. It is the schematic showing the relationship between the backlash adjustment mechanism of Example 1, a worm shaft, and a worm wheel.
  • FIG. 10 is a schematic diagram illustrating an operation of a backlash adjusting mechanism according to the second embodiment.
  • FIG. 1 is a schematic diagram showing a vehicle power steering apparatus according to a first embodiment.
  • the power steering device EPS according to the first embodiment includes a steering mechanism, a reduction gear mechanism, an electric motor 3, and a backlash adjusting mechanism 30.
  • the steering mechanism includes a steering shaft S1 connected to the steering wheel SW, an intermediate shaft S2 connected via a universal joint, and a pinion shaft PS connected via a universal joint.
  • a rack and pinion mechanism is configured in which a pinion gear PG formed at the tip of the pinion shaft PS meshes with a rack gear RG formed on the rack bar RB.
  • the rack bar RB moves left and right.
  • the steered wheels FR and FL are steered through the link mechanism TR.
  • the power steering device EPS is mounted on the pinion shaft PS.
  • the power steering device EPS supplies power to the torque sensor TS that detects the steering torque of the driver, the electric motor 3 that applies assist torque, the controller ECU that controls the operation of the electric motor 3, and the electric motor 3.
  • a battery BATT The torque sensor TS is arranged on the outer periphery of the pinion shaft PS and closer to the steering wheel SW than the rack bar RB.
  • the electric motor 3 is arranged on the side opposite to the steering wheel SW side of the pinion shaft PS (hereinafter referred to as the tip side of the pinion shaft PS).
  • FIG. 2 is an external view of the vehicle power steering apparatus according to the first embodiment
  • FIG. 3 is a partial perspective view of the vicinity of the worm gear of the first embodiment
  • FIG. 4 is a partial cross-sectional view of the vicinity of the worm shaft of the first embodiment.
  • 2A is a front view seen from the front front side of the vehicle
  • FIG. 2B is a bottom view seen from the bottom side of the vehicle.
  • the power steering device EPS includes a torque sensor housing THS that houses the torque sensor TS, a gear housing HS that houses the reduction gear mechanism, a motor housing MHS that houses the electric motor 3, and a motor cover MC that closes the motor housing MHS.
  • a rack housing RHS for accommodating the rack bar RB.
  • the gear housing HS has a wheel housing portion HS1 for housing the worm wheel WW and a shaft housing portion HS2 for housing the worm shaft WS.
  • the resin worm wheel WW is attached to the pinion shaft PS.
  • the worm wheel WW meshes with a worm shaft WS formed with a metal worm connected to the electric motor 3, and constitutes a reduction gear mechanism by the worm gear WG.
  • the rotation axis of the worm wheel WW is defined as the wheel axis OWW
  • the rotation axis of the worm shaft WS is defined as the shaft axis OWS
  • the shaft axis OWS is inclined with respect to a plane orthogonal to the wheel axis OWW. Intersect.
  • Torque output from the electric motor 3 is transmitted from the worm shaft WS to the worm wheel WW, and assist torque is applied to the pinion shaft PS.
  • the worm wheel WW transmits torque and rotation from the pinion shaft PS to the worm shaft WS.
  • the worm shaft WS transmits torque and rotation from the worm wheel WW to the electric motor 3.
  • the first bearing 10 is provided at the end of the worm shaft WS farther from the electric motor 3.
  • the first bearing 10 is a tip side bearing that rotatably holds the tip side of the worm shaft WS.
  • the first bearing 10 is a ball bearing having a ball as a rolling element between a cylindrical inner ring and an outer ring, and is a radial bearing mainly receiving a radial load.
  • the inner ring is fixed to the tip of the worm shaft WS.
  • a backlash adjusting mechanism 30 is provided between the first bearing 10 and the gear housing HS. Details of the backlash adjusting mechanism 30 will be described later.
  • a second bearing 20 is provided on the side of the worm shaft WS close to the electric motor 3.
  • the second bearing 20 is a ball bearing that rotatably holds the electric motor 3 side of the worm shaft WS.
  • the inner ring of the second bearing 20 is in contact with the step portion of the worm shaft WS, and the outer ring is fastened and fixed between the gear housing HS by a lock nut 21.
  • the worm shaft WS is rotatably supported and the movement in the axial direction is restricted.
  • the shaft housing portion HS2 is a space provided on the opposite side to the side where the electric motor 3 is provided in both longitudinal ends of the shaft housing portion HS2, and the inner shape in a cross section orthogonal to the shaft axis OWS is formed in a circle
  • the cylindrical holder accommodating portion HS10 is provided.
  • the backlash adjusting mechanism 30 is fixedly installed in the holder accommodating portion HS10 by press fitting.
  • the holder housing portion HS10 is a simple circular recess without forming a step or the like on the circumferential surface, and does not require a complicated shape.
  • FIG. 5 is an enlarged sectional view of the backlash adjusting mechanism of the first embodiment
  • FIG. 6 is a front view, a plane surface, a right side surface, and a perspective view of the elastic member and the holder member of the first embodiment. 5 and 6 show the state in which the first bearing 10 is most biased (the state in which the elastic member 32 has the largest diameter).
  • the backlash adjusting mechanism 30 includes a holder member 31, an elastic member 32, and a metal cap 33.
  • the holder member 31 is a member that holds the first bearing 10, and the first bearing 10 is installed on the inner peripheral side thereof so as to be slidable in a certain direction.
  • a part of the elastic member 32 is installed in engagement with the holder member 31, and the other part is installed in contact with the first bearing 10.
  • FIG. 8 is a schematic diagram illustrating a relationship between the backlash adjusting mechanism, the worm shaft, and the worm wheel according to the first embodiment.
  • a hatched area P in FIG. 8 is an engagement area between the worm shaft WS and the worm wheel WW.
  • the elastic member 32 urges the first bearing 10 to the hatched area P in FIG. 8 and constantly presses the tip of the worm shaft WS held by the first bearing 10 toward the worm wheel WW side (hereinafter referred to as “the worm wheel WW”). Pressing force F: Refer to the arrow in FIG.
  • the metal cap 33 is provided so as to cover the outer periphery of the holder member 31, and is a lid member that covers the first bearing 10, the holder member 31, and the elastic member 32.
  • the metal cap 33 is press-fitted into the holder housing part HS10 of the shaft housing part HS2. That is, the backlash adjusting mechanism 30 is press-fitted and fixed in the holder housing portion HS10 of the shaft housing portion HS2 via the metal cap 33.
  • the holder member 31 is integrally formed of a resin material.
  • the side approaching the worm wheel WW is defined as the lower side
  • the direction away from the worm wheel WW is defined as the upper side
  • the right side and the left side are defined based on the plan view.
  • the holder member 31 has a bearing accommodating portion 315 that accommodates the first bearing 10.
  • FIG. 7 is an enlarged schematic view of the bearing housing portion of the first embodiment. As shown in FIG. 7, the bearing housing portion 315 has a long hole shape for sliding the first bearing 10 in a certain radial direction (vertical direction shown in FIG. 6), and changes in the center O of the first bearing 10.
  • the arc shape of the inner peripheral surface 315a opposite to the worm wheel WW is a combination of an arc having a radius smaller than the radius of the outer peripheral surface 10b of the first bearing 10 and an arc having a radius larger than the radius of the outer peripheral surface 10b. It is configured. As a result, the first bearing 10 is restrained from fitting into the arc of the bearing housing portion 315, and a stable slide is ensured. Note that the arc shape of the inner peripheral surface 315b on the worm wheel WW side is not so much loaded, so it is formed in the same arc as the radius of the first bearing 10, but may be formed in the same manner as the upper arc.
  • the periphery of the elongated hole-shaped bearing housing portion 315 is surrounded by a cylindrical outer peripheral wall 310.
  • a ring groove 311 is formed on the outer peripheral surface of the outer peripheral wall 310, and an O-ring 34 is attached to the ring groove 311. And it functions as a buffer member between the metal cap 33 described later.
  • Two upper guide portions 314 are erected along the outer peripheral wall 310 on both sides of a lower guide portion 313, which will be described later, above the outer peripheral wall 310.
  • the inner peripheral side of the upper guide portion 314 is formed in the same shape as the upper inner peripheral surface 315a of the bearing accommodating portion 315.
  • a lower guide portion 313 having a side end face 319 facing the left and right sides is formed upright along the outer peripheral wall 310 below the outer peripheral wall 310.
  • the inner peripheral side of the lower guide portion 313 is formed in the same shape as the bearing housing portion 315.
  • a holding groove 313 a for holding the elastic member 32 is formed on the outer periphery of the lower guide portion 313.
  • the holding groove 313a is formed at a position overlapping the first bearing 10 in the radial direction when the first bearing 10 is mounted.
  • an engaging convex portion 313b standing on the near side is formed at the approximate center of the lower guide portion 313. This engagement convex part 313b restrict
  • the upper surface 310a of the outer peripheral wall 310 where the upper guide part 314 and the lower guide part 313 are not erected is formed so as to be at the same position as the rear end of the holding grooves 313a and 314a, and holds a part of the elastic member 32 is doing. Further, on the right side of the upper surface 310a, a rotation restriction portion 312a that is partially cut away toward the back side, accommodates the other end portion 321 of the elastic member 32 described later, and restricts movement in the rotation direction is formed. Yes.
  • the elastic member accommodating portion in which the elastic member 32 is installed is substantially circumferential from the holding groove 313a formed on the outer periphery of the lower guide portion, the upper surface 310a of the outer peripheral wall 310, and the rotation restricting portion 312a. It is configured.
  • the elastic member accommodating portion is provided offset from the bearing accommodating portion 315 in the axial direction.
  • the elastic member housing portion is provided on the front side, and the bearing housing portion 315 is provided on the back side.
  • the thickness (diameter cross-sectional dimension) of the outer peripheral wall 310 surrounding the bearing housing part 315 is formed larger than the thickness (radial cross-sectional dimension) of each part constituting the elastic member housing part.
  • the first bearing 10 slides upon receiving a load from the worm shaft WS, the first bearing 10 abuts on the inner periphery of the outer peripheral wall 310 and the load acts. At this time, by forming the outer peripheral wall 310 thick, the radial dimension is effectively used to ensure the strength.
  • An opening 317 having a larger diameter than the inner peripheral surface 10 a of the first bearing 10 and a smaller diameter than the outer peripheral surface 10 b of the first bearing 10 is formed on the bottom surface 316 of the holder member 31. Even if the tips of the worm shafts WS attached to the first bearing 10 protrude slightly, they do not interfere with each other through the opening 317.
  • the elastic member 32 includes a main body 320 and one end 322 and the other end 321 (see FIG. 8) provided at both ends of the main body 320.
  • the main body 320 is formed of an elastic material in an arc shape, and specifically, a wire spring formed of spring steel is curved so as to cover the lower guide portion 313 from the other end portion 312 from the outer periphery.
  • the second spring part 320b formed linearly through the inner periphery of the upper guide part 314 located on the right side of FIG.
  • a fourth spring portion 320d formed linearly on the inner circumference of the upper guide portion 314 located on the left side of FIG. 8, and a third curved shape connecting the second spring portion 320b and the fourth spring portion 320d.
  • a spring portion 320c formed linearly through the inner periphery of the upper guide part 314 located on the left side of FIG.
  • the main body 320 has a shape surrounding the first bearing 10 in the direction around the rotation axis of the worm shaft WS.
  • the apparatus is reduced in size.
  • the one end 322 and the other end 321 are provided so as to be separated from each other, stick-slip caused by a frictional force change due to contact between the wire spring ends is prevented.
  • a plane PX in which the two force points of the elastic member 32 are virtual planes orthogonal to the rotation axis of the worm wheel WW and overlap with virtual lines orthogonal to both the rotation axis of the worm wheel WW and the rotation axis of the worm shaft WS.
  • the outer peripheral surface 10b of the first bearing 10 and the main body 320 have a point A on the inner peripheral side of the second spring part 320b formed linearly and a point B on the inner peripheral side of the third spring part 320c. And the curved first spring portion 320a and the third spring portion 320c are not in contact with each other.
  • the position of the force point changes as the diameter of the elastic member 32 increases. Also suppresses the change in the direction of action of the biasing force.
  • the portion where the outer peripheral surface 10b of the first bearing 10 contacts the main body 320 may be a line contact or a surface contact having a predetermined area regardless of only the point contact. .
  • the one end portion 322 is formed so that the end of the coil spring is a free end and is located on the lower guide portion 313 side than the rotation restricting portion 312a. Note that the position of the one end portion 322 may be located closer to the upper guide portion 314 than the rotation restricting portion 312a.
  • the one end portion 322 is provided such that the relative position with respect to the other end portion 321 can be displaced when the main body portion 320 undergoes a diameter expansion deformation.
  • the other end 321 is formed by bending the terminal end of the coil spring, and is formed to extend from the main body 320 in parallel with the axial direction of the worm shaft WS. The other end 321 is arranged so as to be accommodated in the rotation restricting portion 312a of the holder member 31.
  • the other end portion 312 functions as a starting point of the elastic force of the elastic member 32 while restricting relative movement in the rotational direction relative to the holder member 31 around the rotation axis of the worm shaft WS by the rotation restricting portion 312a of the holder member 31. To do.
  • the elastic member 32 is disposed so as to be positioned on the inner periphery of the upper guide portion 314 through the outer periphery of the lower guide portion 313 with respect to the elastic member housing portion of the holder member 31, and the inner peripheral surface of the lower guide portion 313.
  • the first bearing 10 is elastically held between 315b and the inner periphery of the main body 320. That is, the initial position is a state in which the inner peripheral surface 315b of the lower guide portion 313 and the outer peripheral surface of the first bearing 10 are in contact with each other. When an upper force is applied from the worm shaft WS in this state, the first bearing 10 slides upward against the elastic force of the elastic member 32.
  • the elastic member 32 is stretched toward the upper guide portion 314 in a state where movement in the radial direction is restricted by the lower guide portion 313. Since the one end portion 322 is a free end, the main body portion 320 is deformed to expand its diameter, and a force F is generated downward using the elastic force accompanying the deformation (see FIG. 8).
  • the wire length of the elastic member 32 can be used in a wide range, and as a result, the spring constant can be set small. Therefore, the load change with respect to the slide amount can be set gently.
  • the lower guide portion 313 is provided so as to be offset in the worm wheel side of the holder member 31, that is, in the direction of the resultant force F of the reaction force F1 and the reaction force F2. Therefore, the power points A and B can be easily laid out at positions facing the resultant force F, and the first bearing 10 can be stably held.
  • the metal cap 33 is provided between the holder housing portion HS10 of the shaft housing portion HS2 and the holder member 31.
  • the metal cap 33 includes a cylindrical annular portion 330, an axial stopper portion 331 that is reduced in diameter so as to close the opening on the front side of the annular portion 330, and a through hole that opens at the center of the axial stopper portion 331.
  • the mouth 332 is formed of a metal material. Further, in the portion where the lower guide portion 313 of the through-hole 332 of the axial stopper portion 331 is located, a notch 334 through which the engaging convex portion 313b can penetrate and a part on the back side on both sides of the notch 334 are provided.
  • a bent stopper portion 333 is formed.
  • the metal cap 33 has a plurality of drop-off restricting portions 335 in the circumferential direction on the back side of the annular portion 330.
  • the inner peripheral diameter of the annular portion 330 of the metal cap 33 is formed slightly larger than the outer peripheral diameter of the outer peripheral wall 310 of the holder member 31, and has a size having a radial clearance. Thereby, the difference in linear expansion coefficient is absorbed.
  • the elastic member 32 is assembled to the holder member 31, and the first bearing 10 is attached to the bearing housing portion 315. Further, after attaching the O-ring 34 to the ring groove 311, the metal cap 33 is covered, the drop-off restricting portion 335 is bent, and the holder member 31 is fixed. The assembly parts are press-fitted into the holder housing portion HS10, and the worm shaft WS is inserted into the first bearing 10 in this state, whereby the apparatus is assembled.
  • the first bearing 10 is movable in the direction between the worm shafts WS.
  • the main body 320 is provided so as to undergo a diameter expansion deformation when the first bearing 10 moves in a direction away from the worm wheel WW while holding the worm shaft WS.
  • the main body 320 urges the first bearing 10 in one direction (the lower side shown in FIG. 6) in a state where the first bearing 10 holds the worm shaft WS and constantly presses the first bearing 10 toward the worm wheel side.
  • the worm wheel WW having resin teeth expands, and the worm shaft WS (and the first bearing 10) that meshes with the worm wheel WW increases the distance between the worm shaft WS and the worm wheel WW. Force in the direction to act.
  • the first bearing 10 of the backlash adjusting mechanism 30 moves in a direction away from the worm wheel WW against the urging force of the elastic member 32.
  • the movement is possible until the outer peripheral surface 10b of the first bearing 10 comes into contact with the inner peripheral surface 315a that is the inner wall of the holder member 31 in the above direction. Therefore, it is possible to adjust the backlash while avoiding a sudden increase in friction caused by the temperature rise.
  • the worm wheel WW contracts.
  • the first bearing 10 of the backlash adjusting mechanism 30 is moved in the direction toward the worm wheel WW by the urging force of the elastic member 32, whereby the distance between the worm shaft WS and the worm wheel WW is reduced. Decrease by WW shrinkage.
  • the movement is possible until the outer peripheral surface 10b of the first bearing 10 comes into contact with the inner peripheral surface 315b which is the inner wall in the direction of the holder member 31. Therefore, the backlash can be adjusted regardless of the temperature drop. Even when the worm gear (worm shaft or worm wheel) is worn by use, the backlash can be adjusted by reducing the distance between the axes by the urging force of the elastic member 32 as in the case of the temperature drop.
  • FIG. 8 is a schematic diagram illustrating the operation of the backlash adjusting mechanism of the first embodiment.
  • the driver steers the steering wheel SW
  • the worm wheel WW rotates together with the pinion shaft PS.
  • necessary assist torque is transmitted from the electric motor 3 to the worm wheel WW via the worm gear WG according to the steering torque.
  • the direction of the force acting between the worm shaft WS and the worm wheel WW changes according to the steering direction of the steering wheel SW.
  • the direction of the urging force applied by the elastic member 32 changes according to the steering angle.
  • the bearing moving direction (direction in which the urging force is applied) from the shaft axis OWS toward the inner peripheral surface 315a opposite to the worm wheel WW is a longitudinal direction of the bearing housing portion 315, and the worm shaft WS and the worm.
  • a case is assumed in which the setting is made out of the region where the force acting between the wheels WW is applied.
  • the reaction force received from the first bearing 10 decreases as the steering is performed, and in the other steering direction, the reaction force received from the first bearing 10 increases as the steering is performed.
  • the transmission torque of the worm gear WG varies depending on the steering direction, which may give the driver a feeling of strangeness.
  • the direction of the urging force F which is the resultant force of the urging forces FA and FB from the two points of the elastic member 32, is received from the worm wheel WW when the worm shaft WS rotates in one direction of rotation.
  • the holder member 31 is installed so as to face the reaction force F1 and the resultant force F12 of the reaction force F2 received from the worm wheel WW when the worm shaft WS rotates in the other direction of rotation.
  • the holder member 31 is installed so that the longitudinal direction of the bearing accommodating portion 315 and the direction of the resultant force F12 coincide.
  • the anisotropy of the urging force accompanying the steering direction can be suppressed in the direction of the resultant force vector of the resultant force F12, and a stable assist torque can be applied.
  • the lower guide portion 313 is arranged offset in the direction of the resultant force vector F of the force FA and FB urged by the elastic member 32. Accordingly, the force points A and B and the lower guide portion 313 are positioned so as to face each other with the rotation axis of the worm shaft WS interposed therebetween, and the force points A and B can be easily laid out at positions facing the urging force F.
  • Example 1 The effects of the present invention ascertained from Example 1 are listed below.
  • a worm gear WG having a worm wheel WW provided to mesh with the worm;
  • a gear housing HS having a wheel housing portion HS1 for housing the worm wheel WW and a shaft housing portion HS2 for housing the worm shaft WS;
  • a first bearing 10 (bearing) provided on the end side of the worm shaft WS opposite to the electric motor 3 in the direction of the rotation axis of the worm shaft WS and rotatably supporting the worm shaft WS; Provided on the outer periphery of the first bearing 10 and attached to the first bearing 10 at a plurality of power points in the direction around the rotation axis of the worm shaft WS so as to reduce backlash between the worm wheel WW and the worm shaft WS.
  • An elastic member 32 for applying a force Have Therefore, since the elastic member 32 applies urging force to the first bearing 10 at a plurality of power points, the support stability of the worm shaft WS can be improved as compared with the case where the power point is only one point.
  • the elastic member 32 applies an urging force to the first bearing 10 at two power points. That is, the support point of the worm shaft WS in the direction around the rotation axis of the worm shaft WS is three points including the mesh point with the worm wheel WW, and the support stability is the best.
  • the elastic member 32 is a virtual plane in which the two force points of the elastic member 32 are orthogonal to the rotation axis of the worm wheel WW and are orthogonal to both the rotation axis of the worm wheel WW and the rotation axis of the worm shaft WS. It is provided so as to straddle the overlapping plane PX. Therefore, the balance between the two power points and the reaction force from the worm wheel is improved, and the support stability can be further improved.
  • the elastic member 32 has a direction of the resultant force vector of a plurality of force points when the worm shaft WS rotates to one side of the rotation direction and the reaction force received from the worm wheel WW and when the worm shaft WS rotates to the other side of the rotation direction. It is provided so as to be positioned between the direction of the reaction force received from the worm wheel WW. Therefore, it is possible to appropriately apply an urging force to reaction forces from the worm wheels WW that are different in the left and right steering directions of the steering wheel SW.
  • the elastic member 32 has a worm when all of a plurality of power points are applied when the worm shaft WS rotates in one direction of rotation and the reaction force received from the worm wheel WW and when the worm shaft WS rotates in the other direction of rotation. It is provided so as to be located outside the range sandwiched between the direction of the reaction force received from the wheel WW. Therefore, the support stability can be further improved by widening the support span of a plurality of power points.
  • the elastic member 32 is configured such that the direction of the resultant force vector of the plurality of force points is the reaction force received from the worm wheel WW when the worm shaft WS rotates in one direction of rotation and the worm shaft when the worm shaft WS rotates in the other direction. It is provided so as to substantially coincide with the direction of the resultant force vector of the reaction force received from the wheel WW. Therefore, it is possible to more appropriately apply the urging force to the reaction force from the worm wheel WW that is different in the left and right steering directions of the steering wheel SW.
  • the elastic member 32 has a shape surrounding the outer periphery of the first bearing 10 in the direction around the rotation axis of the worm shaft WS. That is, since the elastic member 32 has a shape surrounding the first bearing 10, it is possible to reduce the size of the device as compared with the case where the coil spring is provided at each of the plurality of power points.
  • the elastic member 32 is a wire spring, and both ends of the wire spring are provided so as to be separated from each other. Therefore, it is possible to prevent stick slip caused by a change in frictional force due to contact between the ends of the wire springs.
  • the outer peripheral wall 310 (cylindrical portion) that surrounds the outer peripheral side of the first bearing 10, the holding groove 313 a that holds the elastic member 32, and the upper surfaces of the outer peripheral wall 310 310a (elastic member holding part) is provided, and it has the holder member 31 provided in the shaft accommodating part HS2. That is, by providing the elastic member 32 in the gear housing HS while being held by the holder member 31, the assembling workability is better than when the elastic member 32 is directly assembled to the gear housing HS.
  • the holder member 31 is opposed to the outer peripheral surface 10b of the first bearing 10 in the radial direction of the rotation axis of the worm shaft WS, and is provided on the worm wheel WW side in the direction around the rotation axis of the worm shaft WS.
  • a lower guide portion 313 (elastic member locking portion) is provided,
  • the elastic member 32 is a wire spring, and the other end 321 that is a part of the elastic member 32 in the direction around the rotation axis of the worm shaft WS is on the outer peripheral side of the lower guide portion 313 (elastic member locking portion).
  • the elastic member 32 is locked, and one of both end portions of the elastic member 32 is locked to a rotation restricting portion 312a (spring end locking portion) provided on the holder member 31. That is, the other end portion 321 that is the end portion on the rotation restricting portion 312a side in the circumferential range of the elastic member 32 is locked to the holder member 31, so that the holder member 31 accompanying the expansion and contraction of the spring diameter.
  • the relative movement amount with respect to is small. Accordingly, the frictional sliding accompanying the relative movement between the elastic member 32 and the lower guide portion 313 is reduced, the occurrence of hysteresis accompanying this is suppressed, and the urging force can be stabilized.
  • the holder member 31 is opposed to the outer peripheral surface of the first bearing 10 in the radial direction of the rotational axis of the worm shaft WS and is provided on the worm wheel WW side in the direction around the rotational axis of the worm shaft WS.
  • Side guide portion 313 (elastic member locking portion)
  • the elastic member 32 is formed so as to apply a biasing force to the first bearing 10 at two power points, and these two power points are applied to the lower guide portion 313 in the direction around the rotation axis of the worm shaft WS. It is provided at a symmetrical position. Therefore, the support stability of the elastic member can be improved.
  • the holder member 31 is opposed to the outer peripheral surface 10b of the first bearing 10 in the radial direction of the rotation axis of the worm shaft WS, and is provided on the worm wheel WW side in the direction around the rotation axis of the worm shaft WS. It has a lower guide part 313, In the lower guide portion 313, the worm shaft WS is rotated to one side in the rotation direction in the direction around the rotation axis of the worm shaft WS with respect to a virtual line orthogonal to the rotation axis of the worm wheel WW and the rotation axis of the worm shaft WS.
  • reaction force F1 sometimes received from the worm wheel WW and the reaction force F2 received from the worm wheel WW when the worm shaft WS rotates to the other side in the rotation direction are offset in the vector direction. Therefore, when a plurality of force points A and B are arranged at a position opposite to the resultant force F, the force points A and B and the lower guide portion 313 are opposed to each other across the rotation axis of the worm shaft WS. It is easy to lay out A and B at positions facing the resultant force.
  • the holder member 31 is opposed to the outer peripheral surface 10b of the first bearing 10 in the radial direction of the rotation axis of the worm shaft WS, and is provided on the opposite side of the worm wheel WW in the direction around the rotation axis of the worm shaft WS.
  • the inner peripheral surface 315a has a direction of reaction force received from the worm wheel WW when the worm shaft WS rotates in one direction of rotation in the direction around the rotation axis of the worm shaft WS and the worm shaft WS rotates in the other direction of rotation. It is provided so as to be positioned between the direction of the reaction force received from the worm wheel WW. Therefore, even when the direction of the force received by the steering wheel SW is changed by switching the steering wheel SW, the stopper function can be exhibited.
  • the elastic member 32 has a second spring part 320b and a fourth spring part 320d (straight line part) in which a part of the elastic member 32 is linearly formed in the direction around the rotation axis of the worm shaft WS.
  • a biasing force is applied to the first bearing 10 at the spring portion 320b and the fourth spring portion 320d. That is, by using the straight line portion as the power point, even if the position of the power point changes with the diameter expansion of the elastic member 32, it is possible to suppress a change in the direction of application of the urging force.
  • FIG. 9 is a schematic diagram illustrating the operation of the backlash adjusting mechanism of the second embodiment.
  • the direction of the biasing force F which is the resultant force of the forces FA and FB biased from the two points of the elastic member 32, is the reaction force received from the worm wheel WW when the worm shaft WS rotates in one direction of rotation.
  • the holder member 31 is installed so as to face F1 and the resultant force F12 of the reaction force F2 received from the worm wheel WW when the worm shaft WS rotates in the other direction of rotation.
  • the worm wheel WW and the worm shaft WS are installed so as to coincide with the direction PM intersecting the plane PX including a virtual line orthogonal to the rotation axis of the worm shaft WS at a predetermined angle ⁇ .
  • the worm wheel WW and the worm shaft WS are installed so as to coincide with the direction PM intersecting the plane PX including a virtual line orthogonal to the rotation axis of the worm shaft WS at a predetermined angle ⁇ .
  • the direction of the biasing force F which is the resultant force of the forces FA and FB biased from two points of the elastic member 32, is the same as the component force component of the reaction force F1 and the component force component of the reaction force F2.
  • the holder member 31 is set to face the direction PM. That is, it is one elastic member that applies the urging force to the first bearing 10, and it is necessary to urge the first bearing 10 with the same urging force in a balanced manner.
  • the perpendicular direction dropped from the apex that is the center of the first bearing 10 is the direction PM in which the component components of the reaction forces F1 and F2 have the same magnitude.
  • the holder member 31 is attached to the first bearing 10 in a balanced manner. Can give power.
  • the holder member 31 is opposed to the outer peripheral surface 10b of the first bearing 10 in the radial direction of the rotation axis of the worm shaft WS, and is provided on the worm wheel WW side in the direction around the rotation axis of the worm shaft WS.
  • a lower guide portion 313 (elastic member locking portion) is provided, In the lower guide portion 313, the worm shaft WS is rotated to one side in the rotation direction in the direction around the rotation axis of the worm shaft WS with respect to a virtual line orthogonal to the rotation axis of the worm wheel WW and the rotation axis of the worm shaft WS.
  • the reaction force F1 sometimes received from the worm wheel WW and the component component of the reaction force F2 received from the worm wheel WW when the worm shaft WS rotates to the other side in the rotation direction are offset so as to have the same magnitude. That is, it is one elastic member that applies the urging force to the first bearing 10, and it is necessary to urge the first bearing 10 with the same urging force in a balanced manner. Therefore, by installing the holder member 31 so that the first bearing 10 can move along the direction PM in which the component components of the reaction forces F1 and F2 have the same magnitude, the holder member 31 is balanced with respect to the first bearing 10. Energizing force can be given.
  • the concrete structure of this invention is not limited to an Example, The design change of the range which does not deviate from the summary of invention are included in the present invention.
  • the O-ring is installed in the first embodiment in order to prevent the holder member from rattling in the metal cap of the backlash adjusting mechanism.
  • the O-ring may be eliminated and a claw may be provided on the metal cap.
  • a protrusion protruding from the outer peripheral surface is provided on the outer wall of the holder member without providing an O-ring (and an O-ring installation groove), and this protrusion contacts the inner peripheral surface of the metal cap. It is good also as preventing backlash by contacting.

Abstract

The purpose of the present invention is to provide a power steering system such that the support stability of a worm shaft and the steering feeling can be improved. This power steering system is equipped with: a bearing which is provided at the end on the opposite side of a worm shaft from an electric motor in the direction of the rotational axis of the worm shaft, and rotatably supports the worm shaft; and an elastic member which is provided on the peripheral side of the bearing, and applies biasing force to the bearing at a plurality of points in the direction about the rotational axis of the worm shaft so as to reduce the backlash between a worm wheel and the worm shaft.

Description

パワーステアリング装置Power steering device
 本発明は、パワーステアリング装置に関する。 The present invention relates to a power steering device.
 この種の装置においては、パワーステアリング装置の操舵軸に設けられたウォームホイールと噛み合うウォームシャフトの軸受に弾性部材を設置し、この弾性部材により前記軸受をウォームホイール側に向かって付勢することで、ウォームシャフトとウォームホイールの歯の噛み合いにおける隙間(ギヤのバックラッシュ)が調整されている。 In this type of device, an elastic member is installed on a worm shaft bearing that meshes with a worm wheel provided on a steering shaft of a power steering device, and the elastic member biases the bearing toward the worm wheel side. The clearance (gear backlash) in the meshing between the teeth of the worm shaft and the worm wheel is adjusted.
特開2013-208933号公報JP 2013-208933 A
 しかし、特許文献1に記載の技術では、弾性部材によるウォームシャフトへの付勢力が一点から付与されており、操舵方向によってウォームシャフトとウォームホイールとの噛合い力に異方性が生じると、ウォームシャフトの支持安定性が得られず、操舵フィーリングを向上できないという課題があった。
 本発明の目的とするところは、ウォームシャフトの支持安定性及び操舵フィーリングを向上できるパワーステアリング装置を提供することにある。
However, in the technique described in Patent Document 1, the urging force to the worm shaft by the elastic member is applied from one point, and if anisotropy occurs in the meshing force between the worm shaft and the worm wheel depending on the steering direction, the worm There was a problem that the support stability of the shaft could not be obtained and the steering feeling could not be improved.
An object of the present invention is to provide a power steering device capable of improving the support stability and steering feeling of a worm shaft.
 本発明の一実施形態に係るパワーステアリング装置は、ウォームシャフトの回転軸の方向において電動モータの反対側のウォームシャフトの端部側に設けられ、ウォームシャフトを回転自在に軸支する軸受の外周側に、ウォームホイールとウォームシャフトの間のバックラッシュが低減するようにウォームシャフトの回転軸周りの方向において、軸受に対し複数の力点において付勢力を付与する弾性部材を備えた。 A power steering device according to an embodiment of the present invention is provided on the end side of a worm shaft on the opposite side of the electric motor in the direction of the rotation axis of the worm shaft, and on the outer peripheral side of a bearing that rotatably supports the worm shaft. In addition, an elastic member is provided that applies a biasing force to the bearing at a plurality of power points in a direction around the rotation axis of the worm shaft so as to reduce backlash between the worm wheel and the worm shaft.
 よって、本発明の一実施形態に係るパワーステアリング装置によれば、弾性部材が軸受に対し複数の力点で付勢力を付与するため、力点が1点のみの場合に比べ、ウォームシャフトの支持安定性を向上させることができる。 Therefore, according to the power steering device according to an embodiment of the present invention, the elastic member applies a biasing force to the bearing at a plurality of power points, so that the support stability of the worm shaft is higher than that when the power point is only one point. Can be improved.
実施例1の車両用パワーステアリング装置を表す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram illustrating a vehicle power steering apparatus according to a first embodiment. 実施例1の車両用パワーステアリング装置の外観図である。1 is an external view of a vehicle power steering apparatus according to a first embodiment. 実施例1のウォームギヤ付近の部分透視斜視図である。FIG. 3 is a partial perspective view of the vicinity of the worm gear according to the first embodiment. 実施例1のウォームシャフト付近の部分断面図である。FIG. 3 is a partial cross-sectional view in the vicinity of a worm shaft according to the first embodiment. 実施例1のバックラッシュ調整機構の拡大断面図である。3 is an enlarged cross-sectional view of a backlash adjusting mechanism of Embodiment 1. FIG. 実施例1の弾性部材とホルダ部材の正面、平面、右側面及び斜視図である。It is the front surface of the elastic member of Example 1, and a holder member, a plane, a right side surface, and a perspective view. 実施例1の軸受収容部の拡大概略図である。FIG. 3 is an enlarged schematic view of a bearing housing portion of Example 1. 実施例1のバックラッシュ調整機構とウォームシャフト及びウォームホイールとの関係を表す概略図である。It is the schematic showing the relationship between the backlash adjustment mechanism of Example 1, a worm shaft, and a worm wheel. 実施例2のバックラッシュ調整機構の作用を表す概略図である。FIG. 10 is a schematic diagram illustrating an operation of a backlash adjusting mechanism according to the second embodiment.
 図1は実施例1の車両用パワーステアリング装置を表す概略図である。実施例1のパワーステアリング装置EPSは、操舵機構と、減速歯車機構と、電動モータ3と、バックラッシュ調整機構30とを有する。操舵機構は、ステアリングホイールSWに接続されたステアリングシャフトS1と、ユニバーサルジョイントを介して接続された中間シャフトS2と、ユニバーサルジョイントを介して接続されたピニオンシャフトPSとを有する。そして、ピニオンシャフトPSの先端に形成されたピニオンギヤPGと、ラックバーRBに形成されたラックギヤRGとが噛合するラック&ピニオン機構を構成する。ステアリングホイールSWの回転に応じてピニオンギヤPGが回転すると、ラックバーRBが左右に移動する。このラックバーRBの移動により、リンク機構TRを介して転舵輪FR,FLを転舵する。 FIG. 1 is a schematic diagram showing a vehicle power steering apparatus according to a first embodiment. The power steering device EPS according to the first embodiment includes a steering mechanism, a reduction gear mechanism, an electric motor 3, and a backlash adjusting mechanism 30. The steering mechanism includes a steering shaft S1 connected to the steering wheel SW, an intermediate shaft S2 connected via a universal joint, and a pinion shaft PS connected via a universal joint. A rack and pinion mechanism is configured in which a pinion gear PG formed at the tip of the pinion shaft PS meshes with a rack gear RG formed on the rack bar RB. When the pinion gear PG rotates according to the rotation of the steering wheel SW, the rack bar RB moves left and right. By this movement of the rack bar RB, the steered wheels FR and FL are steered through the link mechanism TR.
 ピニオンシャフトPS上には、パワーステアリング装置EPSが取り付けられている。このパワーステアリング装置EPSは、運転者の操舵トルクを検出するトルクセンサTSと、アシストトルクを付与する電動モータ3と、電動モータ3の作動を制御するコントローラECUと、電動モータ3に電力を供給するバッテリBATTとを有する。トルクセンサTSは、ピニオンシャフトPSの外周であって、ラックバーRBよりもステアリングホイールSW側に配置されている。電動モータ3は、ピニオンシャフトPSのステアリングホイールSW側とは反対側(以下、ピニオンシャフトPSの先端側と記載する。)に配置されている。 The power steering device EPS is mounted on the pinion shaft PS. The power steering device EPS supplies power to the torque sensor TS that detects the steering torque of the driver, the electric motor 3 that applies assist torque, the controller ECU that controls the operation of the electric motor 3, and the electric motor 3. A battery BATT. The torque sensor TS is arranged on the outer periphery of the pinion shaft PS and closer to the steering wheel SW than the rack bar RB. The electric motor 3 is arranged on the side opposite to the steering wheel SW side of the pinion shaft PS (hereinafter referred to as the tip side of the pinion shaft PS).
 図2は実施例1の車両用パワーステアリング装置の外観図、図3は実施例1のウォームギヤ付近の部分透視斜視図、図4は実施例1のウォームシャフト付近の部分断面図である。図2(a)は、車両の前方正面側から見た正面図、図2(b)は車両の底面側から見た底面図である。パワーステアリング装置EPSは、トルクセンサTSを収容するトルクセンサハウジングTHSと、減速歯車機構を収容するギヤハウジングHSと、電動モータ3を収容するモータハウジングMHSと、モータハウジングMHSを閉塞するモータカバーMCと、ラックバーRBを収容するラックハウジングRHSと、を有する。ギヤハウジングHSは、ウォームホイールWWを収容するホイール収容部HS1と、ウォームシャフトWSを収容するシャフト収容部HS2とを有する。 FIG. 2 is an external view of the vehicle power steering apparatus according to the first embodiment, FIG. 3 is a partial perspective view of the vicinity of the worm gear of the first embodiment, and FIG. 4 is a partial cross-sectional view of the vicinity of the worm shaft of the first embodiment. 2A is a front view seen from the front front side of the vehicle, and FIG. 2B is a bottom view seen from the bottom side of the vehicle. The power steering device EPS includes a torque sensor housing THS that houses the torque sensor TS, a gear housing HS that houses the reduction gear mechanism, a motor housing MHS that houses the electric motor 3, and a motor cover MC that closes the motor housing MHS. A rack housing RHS for accommodating the rack bar RB. The gear housing HS has a wheel housing portion HS1 for housing the worm wheel WW and a shaft housing portion HS2 for housing the worm shaft WS.
 ピニオンシャフトPSには樹脂製のウォームホイールWWが取り付けられている。このウォームホイールWWには電動モータ3と連結された金属製のウォームが形成されたウォームシャフトWSが噛合し、ウォームギヤWGによる減速歯車機構を構成する。ウォームホイールWWの回転軸をホイール軸OWWと定義し、ウォームシャフトWSの回転軸をシャフト軸OWSと定義したとき、シャフト軸OWSは、ホイール軸OWWに対して直交する平面に対して傾斜した状態で交差する。電動モータ3から出力されたトルクは、ウォームシャフトWSからウォームホイールWWに伝達され、ピニオンシャフトPSにアシストトルクが付与される。また、ウォームホイールWWは、ピニオンシャフトPSからのトルク及び回転をウォームシャフトWSに伝達する。ウォームシャフトWSは、ウォームホイールWWからのトルク及び回転を電動モータ3に伝達する。 The resin worm wheel WW is attached to the pinion shaft PS. The worm wheel WW meshes with a worm shaft WS formed with a metal worm connected to the electric motor 3, and constitutes a reduction gear mechanism by the worm gear WG. When the rotation axis of the worm wheel WW is defined as the wheel axis OWW and the rotation axis of the worm shaft WS is defined as the shaft axis OWS, the shaft axis OWS is inclined with respect to a plane orthogonal to the wheel axis OWW. Intersect. Torque output from the electric motor 3 is transmitted from the worm shaft WS to the worm wheel WW, and assist torque is applied to the pinion shaft PS. The worm wheel WW transmits torque and rotation from the pinion shaft PS to the worm shaft WS. The worm shaft WS transmits torque and rotation from the worm wheel WW to the electric motor 3.
 ウォームシャフトWSの電動モータ3より遠い側の端部には、第1軸受10を有する。第1軸受10は、ウォームシャフトWSの先端側を回転自在に保持する先端側ベアリングである。第1軸受10は、円筒状の内輪と外輪の間に転動体としてボールを有するボールベアリングであり、主にラジアル荷重を受けるラジアル軸受である。内輪はウォームシャフトWSの先端に固定されている。また、第1軸受10とギヤハウジングHSとの間には、バックラッシュ調整機構30が設けられている。尚、バックラッシュ調整機構30の詳細については後述する。ウォームシャフトWSの電動モータ3に近い側には第2軸受20が設けられている。第2軸受20は、ウォームシャフトWSの電動モータ3側を回転自在に保持するボールベアリングである。第2軸受20の内輪はウォームシャフトWSの段部に当接し、外輪はロックナット21によりギヤハウジングHSとの間で締め付け固定されている。これにより、ウォームシャフトWSを回転可能に支持すると共に、軸方向の移動を規制している。 The first bearing 10 is provided at the end of the worm shaft WS farther from the electric motor 3. The first bearing 10 is a tip side bearing that rotatably holds the tip side of the worm shaft WS. The first bearing 10 is a ball bearing having a ball as a rolling element between a cylindrical inner ring and an outer ring, and is a radial bearing mainly receiving a radial load. The inner ring is fixed to the tip of the worm shaft WS. A backlash adjusting mechanism 30 is provided between the first bearing 10 and the gear housing HS. Details of the backlash adjusting mechanism 30 will be described later. A second bearing 20 is provided on the side of the worm shaft WS close to the electric motor 3. The second bearing 20 is a ball bearing that rotatably holds the electric motor 3 side of the worm shaft WS. The inner ring of the second bearing 20 is in contact with the step portion of the worm shaft WS, and the outer ring is fastened and fixed between the gear housing HS by a lock nut 21. As a result, the worm shaft WS is rotatably supported and the movement in the axial direction is restricted.
 (バックラッシュ調整機構)
 次にバックラッシュ調整機構について説明する。シャフト収容部HS2は、シャフト収容部HS2の長手方向両端部のうち電動モータ3が設けられる側とは反対側に設けられた空間であって、シャフト軸OWSに対する直交断面における内側形状が円形に形成された円筒状のホルダ収容部HS10を有する。バックラッシュ調整機構30は、ホルダ収容部HS10に圧入により固定設置されている。このホルダ収容部HS10は円周面に段部等を形成することなく、単純な円形の凹部であり、複雑な形状を必要としていない。以下、図4に示すホルダ収容部HS10に挿入する方向を奥側と記載し、電動モータ3側の方向を手前側と記載する。図5は実施例1のバックラッシュ調整機構の拡大断面図、図6は実施例1の弾性部材とホルダ部材の正面、平面、右側面及び斜視図である。尚、図5,6は共に第1軸受10が最も偏倚した状態(弾性部材32が最も拡径した状態)を示す。
(Backlash adjustment mechanism)
Next, the backlash adjustment mechanism will be described. The shaft housing portion HS2 is a space provided on the opposite side to the side where the electric motor 3 is provided in both longitudinal ends of the shaft housing portion HS2, and the inner shape in a cross section orthogonal to the shaft axis OWS is formed in a circle The cylindrical holder accommodating portion HS10 is provided. The backlash adjusting mechanism 30 is fixedly installed in the holder accommodating portion HS10 by press fitting. The holder housing portion HS10 is a simple circular recess without forming a step or the like on the circumferential surface, and does not require a complicated shape. Hereinafter, the direction to be inserted into the holder housing portion HS10 shown in FIG. 4 is referred to as the back side, and the direction on the electric motor 3 side is referred to as the near side. FIG. 5 is an enlarged sectional view of the backlash adjusting mechanism of the first embodiment, and FIG. 6 is a front view, a plane surface, a right side surface, and a perspective view of the elastic member and the holder member of the first embodiment. 5 and 6 show the state in which the first bearing 10 is most biased (the state in which the elastic member 32 has the largest diameter).
 バックラッシュ調整機構30は、ホルダ部材31と弾性部材32と金属キャップ33と、を有する。ホルダ部材31は、第1軸受10を保持する部材であり、その内周側に第1軸受10が一定の方向にスライド可能に設置されている。弾性部材32は、その一部分がホルダ部材31に係合して設置されるとともに、他の部分が第1軸受10に当接して設置されている。図8は、実施例1のバックラッシュ調整機構とウォームシャフト及びウォームホイールとの関係を表す概略図である。図8の斜線領域PがウォームシャフトWSとウォームホイールWWとの噛合い領域である。弾性部材32は、第1軸受10を図8の斜線領域Pに付勢し、第1軸受10に保持されたウォームシャフトWSの先端部をウォームホイールWW側に向かって常時押し付けている(以下、押し付け力F:図8の矢印参照)。 The backlash adjusting mechanism 30 includes a holder member 31, an elastic member 32, and a metal cap 33. The holder member 31 is a member that holds the first bearing 10, and the first bearing 10 is installed on the inner peripheral side thereof so as to be slidable in a certain direction. A part of the elastic member 32 is installed in engagement with the holder member 31, and the other part is installed in contact with the first bearing 10. FIG. 8 is a schematic diagram illustrating a relationship between the backlash adjusting mechanism, the worm shaft, and the worm wheel according to the first embodiment. A hatched area P in FIG. 8 is an engagement area between the worm shaft WS and the worm wheel WW. The elastic member 32 urges the first bearing 10 to the hatched area P in FIG. 8 and constantly presses the tip of the worm shaft WS held by the first bearing 10 toward the worm wheel WW side (hereinafter referred to as “the worm wheel WW”). Pressing force F: Refer to the arrow in FIG.
 金属キャップ33は、ホルダ部材31の外周を覆うように設けられており、第1軸受10とホルダ部材31と弾性部材32を覆う蓋部材である。金属キャップ33はシャフト収容部HS2のホルダ収容部HS10に圧入される。すなわち、バックラッシュ調整機構30は、金属キャップ33を介してシャフト収容部HS2のホルダ収容部HS10内に圧入固定されている。 The metal cap 33 is provided so as to cover the outer periphery of the holder member 31, and is a lid member that covers the first bearing 10, the holder member 31, and the elastic member 32. The metal cap 33 is press-fitted into the holder housing part HS10 of the shaft housing part HS2. That is, the backlash adjusting mechanism 30 is press-fitted and fixed in the holder housing portion HS10 of the shaft housing portion HS2 via the metal cap 33.
 (ホルダ部材)
 ホルダ部材31は、樹脂材料によって一体に形成されている。ここで、図6に基づいて説明するにあたり、ウォームホイールWWに近づく側を下側、ウォームホイールWWから離れる方向を上側と定義し、平面図を基準に右側,左側と定義する。ホルダ部材31は、第1軸受10を収容する軸受収容部315を有する。図7は実施例1の軸受収容部の拡大概略図である。この軸受収容部315は、図7に示すように、第1軸受10を一定の径方向(図6に示す上下方向)にスライドさせる長穴形状であり、第1軸受10の中心Oの変化で見ると、初期位置における第1軸受10の中心Ominから最大変位位置における第1軸受10の中心Omaxの範囲で第1軸受10がスライド移動する。図7中に、スライド移動に伴う変位量をαで示す。また、ウォームホイールWWとは反対側の内周面315aの円弧形状は、第1軸受10の外周面10bの半径より小さな半径となる円弧と外周面10bの半径より大きな半径となる円弧の組み合わせで構成されている。これにより、第1軸受10が軸受収容部315の円弧に嵌まり込むのを抑制し、安定したスライドを確保している。尚、ウォームホイールWW側の内周面315bの円弧形状はさほど荷重が作用しないため、第1軸受10の半径と同じ円弧に形成しているが、上側の円弧と同様に形成してもよい。
(Holder member)
The holder member 31 is integrally formed of a resin material. Here, in the description based on FIG. 6, the side approaching the worm wheel WW is defined as the lower side, the direction away from the worm wheel WW is defined as the upper side, and the right side and the left side are defined based on the plan view. The holder member 31 has a bearing accommodating portion 315 that accommodates the first bearing 10. FIG. 7 is an enlarged schematic view of the bearing housing portion of the first embodiment. As shown in FIG. 7, the bearing housing portion 315 has a long hole shape for sliding the first bearing 10 in a certain radial direction (vertical direction shown in FIG. 6), and changes in the center O of the first bearing 10. As seen, the first bearing 10 slides in the range from the center Omin of the first bearing 10 at the initial position to the center Omax of the first bearing 10 at the maximum displacement position. In FIG. 7, the amount of displacement accompanying the slide movement is indicated by α. The arc shape of the inner peripheral surface 315a opposite to the worm wheel WW is a combination of an arc having a radius smaller than the radius of the outer peripheral surface 10b of the first bearing 10 and an arc having a radius larger than the radius of the outer peripheral surface 10b. It is configured. As a result, the first bearing 10 is restrained from fitting into the arc of the bearing housing portion 315, and a stable slide is ensured. Note that the arc shape of the inner peripheral surface 315b on the worm wheel WW side is not so much loaded, so it is formed in the same arc as the radius of the first bearing 10, but may be formed in the same manner as the upper arc.
 この長穴形状の軸受け収容部315の周囲は筒状の外周壁310により囲繞されている。外周壁310の外周面にはリング溝311が形成され、このリング溝311にOリング34が取り付けられる。そして、後述する金属キャップ33との間で緩衝部材として機能する。
 外周壁310の上側であって後述する下側ガイド部313の両側には、二つの上側ガイド部314が外周壁310に沿って立設形成されている。この上側ガイド部314の内周側は軸受収容部315の上側内周面315aと同じ形状で形成されている。
The periphery of the elongated hole-shaped bearing housing portion 315 is surrounded by a cylindrical outer peripheral wall 310. A ring groove 311 is formed on the outer peripheral surface of the outer peripheral wall 310, and an O-ring 34 is attached to the ring groove 311. And it functions as a buffer member between the metal cap 33 described later.
Two upper guide portions 314 are erected along the outer peripheral wall 310 on both sides of a lower guide portion 313, which will be described later, above the outer peripheral wall 310. The inner peripheral side of the upper guide portion 314 is formed in the same shape as the upper inner peripheral surface 315a of the bearing accommodating portion 315.
 また、外周壁310の下側には左右側に面した側端面319を有する下側ガイド部313が外周壁310に沿って立設形成されている。この下側ガイド部313の内周側は軸受収容部315と同じ形状で形成されている。更に、この下側ガイド部313の外周には弾性部材32を保持する保持溝313aが形成されている。この保持溝313aは、第1軸受10を装着したときに第1軸受10と径方向に見て重なる位置に形成されている。更に、下側ガイド部313の略中央には手前側に立設された係合凸部313bが形成されている。この係合凸部313bは後述する金属キャップ33との間でホルダ部材31との相対回転を規制する。
 上側ガイド部314及び下側ガイド部313の立設されていない外周壁310の上面310aは保持溝313a及び314aの奥側端と同じ位置となるように形成され、弾性部材32の一部を保持している。また、上面310aの右側には、奥側に向けて一部が切り欠かれ、後述する弾性部材32の他端部321を収容し、回転方向の移動を規制する回転規制部312aが形成されている。
Further, a lower guide portion 313 having a side end face 319 facing the left and right sides is formed upright along the outer peripheral wall 310 below the outer peripheral wall 310. The inner peripheral side of the lower guide portion 313 is formed in the same shape as the bearing housing portion 315. Further, a holding groove 313 a for holding the elastic member 32 is formed on the outer periphery of the lower guide portion 313. The holding groove 313a is formed at a position overlapping the first bearing 10 in the radial direction when the first bearing 10 is mounted. Further, an engaging convex portion 313b standing on the near side is formed at the approximate center of the lower guide portion 313. This engagement convex part 313b restrict | limits the relative rotation with the holder member 31 between the metal caps 33 mentioned later.
The upper surface 310a of the outer peripheral wall 310 where the upper guide part 314 and the lower guide part 313 are not erected is formed so as to be at the same position as the rear end of the holding grooves 313a and 314a, and holds a part of the elastic member 32 is doing. Further, on the right side of the upper surface 310a, a rotation restriction portion 312a that is partially cut away toward the back side, accommodates the other end portion 321 of the elastic member 32 described later, and restricts movement in the rotation direction is formed. Yes.
 上記の構成において、弾性部材32が設置される弾性部材収容部は、下側ガイド部外周に形成された保持溝313aと、外周壁310の上面310aと、回転規制部312aとから略円周に構成されている。弾性部材収容部は、軸受収容部315とは軸方向にオフセットして設けられる。言い換えると、弾性部材収容部は手前側に設けられ、軸受収容部315は奥側に設けられる。
 また、軸受収容部315を囲繞する外周壁310の厚み(径方向断面寸法)は、弾性部材収容部を構成する各部位の厚み(径方向断面寸法)より大きく形成されている。すなわち、第1軸受10がウォームシャフトWSから荷重を受けてスライドすると外周壁310の内周に当接して荷重が作用する。このとき、外周壁310を厚く構成することで径方向寸法を有効に使用して強度を確保している。
 ホルダ部材31の底面316には第1軸受10の内周面10aよりも大径で、かつ、第1軸受10の外周面10bよりも小径の開口317が形成されている。第1軸受10に取り付けられたウォームシャフトWSの先端が若干飛び出していても、開口317により相互に干渉することはない。
In the above-described configuration, the elastic member accommodating portion in which the elastic member 32 is installed is substantially circumferential from the holding groove 313a formed on the outer periphery of the lower guide portion, the upper surface 310a of the outer peripheral wall 310, and the rotation restricting portion 312a. It is configured. The elastic member accommodating portion is provided offset from the bearing accommodating portion 315 in the axial direction. In other words, the elastic member housing portion is provided on the front side, and the bearing housing portion 315 is provided on the back side.
Further, the thickness (diameter cross-sectional dimension) of the outer peripheral wall 310 surrounding the bearing housing part 315 is formed larger than the thickness (radial cross-sectional dimension) of each part constituting the elastic member housing part. That is, when the first bearing 10 slides upon receiving a load from the worm shaft WS, the first bearing 10 abuts on the inner periphery of the outer peripheral wall 310 and the load acts. At this time, by forming the outer peripheral wall 310 thick, the radial dimension is effectively used to ensure the strength.
An opening 317 having a larger diameter than the inner peripheral surface 10 a of the first bearing 10 and a smaller diameter than the outer peripheral surface 10 b of the first bearing 10 is formed on the bottom surface 316 of the holder member 31. Even if the tips of the worm shafts WS attached to the first bearing 10 protrude slightly, they do not interfere with each other through the opening 317.
 (弾性部材)
 弾性部材32は、本体部320と、本体部320の両端に設けられた一端部322および他端部321(図8参照)とから構成されている。本体部320は、弾性材料で円弧状に形成されており、具体的には、ばね鋼によって成形された線ばねを、他端部312から下側ガイド部313を外周から覆うように湾曲形状に形成された第1ばね部320aと、第1ばね部320aの湾曲形状と異なり、図8の右側に位置する上側ガイド部314の内周を通り直線的に形成された第2ばね部320bと、図8の左側に位置する上側ガイド部314の内周において直線的に形成された第4ばね部320dと、第2ばね部320bと第4ばね部320dとの間を接続する湾曲形状の第3ばね部320cと、から構成されている。
(Elastic member)
The elastic member 32 includes a main body 320 and one end 322 and the other end 321 (see FIG. 8) provided at both ends of the main body 320. The main body 320 is formed of an elastic material in an arc shape, and specifically, a wire spring formed of spring steel is curved so as to cover the lower guide portion 313 from the other end portion 312 from the outer periphery. Unlike the formed first spring part 320a and the curved shape of the first spring part 320a, the second spring part 320b formed linearly through the inner periphery of the upper guide part 314 located on the right side of FIG. A fourth spring portion 320d formed linearly on the inner circumference of the upper guide portion 314 located on the left side of FIG. 8, and a third curved shape connecting the second spring portion 320b and the fourth spring portion 320d. And a spring portion 320c.
 すなわち、本体部320は、ウォームシャフトWSの回転軸回りの方向において、第1軸受10を包囲する形状を有する。これにより、複数の力点に個別に弾性部材を配置する場合に比べ、装置を小型化している。また、一端部322と他端部321が互いに離間するように設けられるため、線ばね端部同士の接触による摩擦力変化に伴って生じるスティックスリップを防止する。また、弾性部材32の2点の力点が、ウォームホイールWWの回転軸に直交する仮想平面であってウォームホイールWWの回転軸とウォームシャフトWSの回転軸の両方に直交する仮想線と重なる平面PXを跨ぐように設けられる。これにより、第1軸受10の外周面10bと本体部320とは、直線的に形成された第2ばね部320bの内周側における点Aと、第3ばね部320cの内周側における点Bとの2点で点接触し、湾曲形状の第1ばね部320a及び第3ばね部320cとは非接触となる。また、直線的に形成された第2ばね部320b及び第3ばね部320cにおいて第1軸受10に付勢力を付与するため、弾性部材32の拡径に伴い力点の位置が変化した場合であっても、付勢力の作用方向の変化を抑制する。但し、第1軸受10の外周面10bと本体部320とが接触する部分は、点接触だけに拘わらず、線接触であってもよいし、所定の面積をもった面接触であってもよい。 That is, the main body 320 has a shape surrounding the first bearing 10 in the direction around the rotation axis of the worm shaft WS. Thereby, compared with the case where an elastic member is individually arrange | positioned to several power points, the apparatus is reduced in size. In addition, since the one end 322 and the other end 321 are provided so as to be separated from each other, stick-slip caused by a frictional force change due to contact between the wire spring ends is prevented. Further, a plane PX in which the two force points of the elastic member 32 are virtual planes orthogonal to the rotation axis of the worm wheel WW and overlap with virtual lines orthogonal to both the rotation axis of the worm wheel WW and the rotation axis of the worm shaft WS. It is provided to straddle. As a result, the outer peripheral surface 10b of the first bearing 10 and the main body 320 have a point A on the inner peripheral side of the second spring part 320b formed linearly and a point B on the inner peripheral side of the third spring part 320c. And the curved first spring portion 320a and the third spring portion 320c are not in contact with each other. In addition, in order to apply a biasing force to the first bearing 10 in the second spring part 320b and the third spring part 320c formed in a straight line, the position of the force point changes as the diameter of the elastic member 32 increases. Also suppresses the change in the direction of action of the biasing force. However, the portion where the outer peripheral surface 10b of the first bearing 10 contacts the main body 320 may be a line contact or a surface contact having a predetermined area regardless of only the point contact. .
 一端部322はコイルばねの終端が自由端として、回転規制部312aよりも下側ガイド部313側に位置するように形成されている。尚、一端部322の位置は回転規制部312aより上側ガイド部314側に位置してもよい。この一端部322は、本体部320が拡径変形するとき、他端部321に対する相対位置が変位可能に設けられている。他端部321は、コイルばねの終端を折り曲げることで形成されており、本体部320からウォームシャフトWSの軸方向と平行に延びるように形成されている。この他端部321がホルダ部材31の回転規制部312aに収まるように配置される。そして、他端部312は、ホルダ部材31の回転規制部312aにより、ウォームシャフトWSの回転軸回りにおけるホルダ部材31に対する回転方向の相対移動を規制すると共に、弾性部材32の弾性力の起点として機能する。 The one end portion 322 is formed so that the end of the coil spring is a free end and is located on the lower guide portion 313 side than the rotation restricting portion 312a. Note that the position of the one end portion 322 may be located closer to the upper guide portion 314 than the rotation restricting portion 312a. The one end portion 322 is provided such that the relative position with respect to the other end portion 321 can be displaced when the main body portion 320 undergoes a diameter expansion deformation. The other end 321 is formed by bending the terminal end of the coil spring, and is formed to extend from the main body 320 in parallel with the axial direction of the worm shaft WS. The other end 321 is arranged so as to be accommodated in the rotation restricting portion 312a of the holder member 31. The other end portion 312 functions as a starting point of the elastic force of the elastic member 32 while restricting relative movement in the rotational direction relative to the holder member 31 around the rotation axis of the worm shaft WS by the rotation restricting portion 312a of the holder member 31. To do.
 弾性部材32は、ホルダ部材31の弾性部材収容部に対し、下側ガイド部313の外周を通って上側ガイド部314の内周に位置するように配置され、下側ガイド部313の内周面315bと本体部320内周との間で第1軸受10が弾性的に保持される。すなわち、初期位置は下側ガイド部313の内周面315bと第1軸受10の外周面とが接触した状態である。この状態でウォームシャフトWSから上側の力が作用すると、弾性部材32の弾性力に抗して第1軸受10が上側にスライドする。このとき、弾性部材32は下側ガイド部313により径方向への移動が拘束された状態で上側ガイド部314に向けて引き伸ばされる。一端部322が自由端であるため、本体部320が拡径変形し、この変形に伴う弾性力を利用して、下側に向けて力Fを発生する(図8参照)。このように拡径変形を利用することで、弾性部材32の線長を広範囲で使用することができ、その結果、ばね定数を小さく設定することができる。よって、スライド量に対する荷重変化を緩やかに設定できる。また、下側ガイド部313は、ホルダ部材31のウォームホイール側、すなわち、反力F1と反力F2の合力Fの方向にオフセットするように設けられている。よって、力点A,Bを合力Fと対向する位置に容易にレイアウト可能となり、第1軸受10を安定して保持できる。 The elastic member 32 is disposed so as to be positioned on the inner periphery of the upper guide portion 314 through the outer periphery of the lower guide portion 313 with respect to the elastic member housing portion of the holder member 31, and the inner peripheral surface of the lower guide portion 313. The first bearing 10 is elastically held between 315b and the inner periphery of the main body 320. That is, the initial position is a state in which the inner peripheral surface 315b of the lower guide portion 313 and the outer peripheral surface of the first bearing 10 are in contact with each other. When an upper force is applied from the worm shaft WS in this state, the first bearing 10 slides upward against the elastic force of the elastic member 32. At this time, the elastic member 32 is stretched toward the upper guide portion 314 in a state where movement in the radial direction is restricted by the lower guide portion 313. Since the one end portion 322 is a free end, the main body portion 320 is deformed to expand its diameter, and a force F is generated downward using the elastic force accompanying the deformation (see FIG. 8). Thus, by utilizing the diameter expansion deformation, the wire length of the elastic member 32 can be used in a wide range, and as a result, the spring constant can be set small. Therefore, the load change with respect to the slide amount can be set gently. The lower guide portion 313 is provided so as to be offset in the worm wheel side of the holder member 31, that is, in the direction of the resultant force F of the reaction force F1 and the reaction force F2. Therefore, the power points A and B can be easily laid out at positions facing the resultant force F, and the first bearing 10 can be stably held.
 (金属キャップ)
 金属キャップ33は、シャフト収容部HS2のホルダ収容部HS10とホルダ部材31との間に設けられている。金属キャップ33は、円筒状の円環部330と、円環部330の手前側において開口を閉塞するように縮径された軸方向ストッパ部331と、軸方向ストッパ部331の中央に開口する貫通口332とが金属材料によって形成されている。また、軸方向ストッパ部331の貫通口332の下側ガイド部313が位置する部分には、係合凸部313bが貫通可能な切り欠き334と、この切り欠き334の両側において奥側に一部分が折り曲げられたストッパ部333とが形成されている。これにより、ホルダ部材31と金属キャップ33との相対回転を規制する(ホルダ部材の回り止め部)と共に、ストッパ部333により第1軸受10の軸方向のがたつきを抑制する。また、金属キャップ33は、円環部330の奥側において円周方向に複数の脱落規制部335を有する。これにより、シャフト収容部側に脱落規制のための加工を施すことなくホルダ部材31の脱落を防止することで、ホルダ収容部HS10の成形性を向上する。金属キャップ33の円環部330の内周径は、ホルダ部材31の外周壁310の外周径よりも若干大きめに形成され、径方向隙間を有するサイズとされている。これにより、線膨張係数の違いを吸収する。
(Metal cap)
The metal cap 33 is provided between the holder housing portion HS10 of the shaft housing portion HS2 and the holder member 31. The metal cap 33 includes a cylindrical annular portion 330, an axial stopper portion 331 that is reduced in diameter so as to close the opening on the front side of the annular portion 330, and a through hole that opens at the center of the axial stopper portion 331. The mouth 332 is formed of a metal material. Further, in the portion where the lower guide portion 313 of the through-hole 332 of the axial stopper portion 331 is located, a notch 334 through which the engaging convex portion 313b can penetrate and a part on the back side on both sides of the notch 334 are provided. A bent stopper portion 333 is formed. Accordingly, relative rotation between the holder member 31 and the metal cap 33 is restricted (a detent portion of the holder member), and the axial shaking of the first bearing 10 is suppressed by the stopper portion 333. Further, the metal cap 33 has a plurality of drop-off restricting portions 335 in the circumferential direction on the back side of the annular portion 330. Thereby, the moldability of the holder accommodating portion HS10 is improved by preventing the holder member 31 from falling off without performing the processing for the dropping restriction on the shaft accommodating portion side. The inner peripheral diameter of the annular portion 330 of the metal cap 33 is formed slightly larger than the outer peripheral diameter of the outer peripheral wall 310 of the holder member 31, and has a size having a radial clearance. Thereby, the difference in linear expansion coefficient is absorbed.
 (組み付け)
 バックラッシュ調整機構30は、ホルダ部材31に弾性部材32が組みつけられ、軸受収容部315に第1軸受10を取り付ける。更にリング溝311にOリング34を取り付けた後、金属キャップ33を被せ、脱落規制部335を折り曲げてホルダ部材31を固定することでアッセンブリされる。このアッセンブリパーツは、ホルダ収容部HS10に圧入され、この状態でウォームシャフトWSが第1軸受10に挿入されることで、装置が組み立てられる。組立状態では、ウォームシャフトWSとウォームホイールWWの軸間方向の離れ方向と縮み方向との両方向で、第1軸受10の外周面10bとホルダ部材31の内周面315a,315bとの間に隙間が生じ、第1軸受10がウォームシャフトWSの軸間方向に移動可能な状態となっている。
(Assembly)
In the backlash adjusting mechanism 30, the elastic member 32 is assembled to the holder member 31, and the first bearing 10 is attached to the bearing housing portion 315. Further, after attaching the O-ring 34 to the ring groove 311, the metal cap 33 is covered, the drop-off restricting portion 335 is bent, and the holder member 31 is fixed. The assembly parts are press-fitted into the holder housing portion HS10, and the worm shaft WS is inserted into the first bearing 10 in this state, whereby the apparatus is assembled. In the assembled state, there is a gap between the outer peripheral surface 10b of the first bearing 10 and the inner peripheral surfaces 315a and 315b of the holder member 31 in both the separating direction and the contracting direction of the worm shaft WS and the worm wheel WW. Thus, the first bearing 10 is movable in the direction between the worm shafts WS.
 本体部320は、第1軸受10がウォームシャフトWSを保持した状態でウォームホイールWWから離間する方向に移動するとき拡径変形するように設けられている。本体部320は、第1軸受10がウォームシャフトWSを保持した状態でこの第1軸受10を一方向(図6に示す下側)に付勢し、ウォームホイール側に向かって常時押し付けている。
 温度が上昇すると、樹脂製の歯部を有するウォームホイールWWが膨張し、ウォームホイールWWと噛み合うウォームシャフトWS(及び第1軸受10)には、ウォームシャフトWSとウォームホイールWWの軸間距離が増加する方向の力が作用する。このとき、バックラッシュ調整機構30の第1軸受10は、弾性部材32の付勢力に抗して、ウォームホイールWWから離間する方向に移動する。上記移動は、ホルダ部材31の上記方向における内壁である内周面315aに第1軸受10の外周面10bが接するまで可能である。よって、温度上昇に起因するフリクションの急激な増加を避けつつバックラッシュを調整することができる。
The main body 320 is provided so as to undergo a diameter expansion deformation when the first bearing 10 moves in a direction away from the worm wheel WW while holding the worm shaft WS. The main body 320 urges the first bearing 10 in one direction (the lower side shown in FIG. 6) in a state where the first bearing 10 holds the worm shaft WS and constantly presses the first bearing 10 toward the worm wheel side.
As the temperature rises, the worm wheel WW having resin teeth expands, and the worm shaft WS (and the first bearing 10) that meshes with the worm wheel WW increases the distance between the worm shaft WS and the worm wheel WW. Force in the direction to act. At this time, the first bearing 10 of the backlash adjusting mechanism 30 moves in a direction away from the worm wheel WW against the urging force of the elastic member 32. The movement is possible until the outer peripheral surface 10b of the first bearing 10 comes into contact with the inner peripheral surface 315a that is the inner wall of the holder member 31 in the above direction. Therefore, it is possible to adjust the backlash while avoiding a sudden increase in friction caused by the temperature rise.
 温度が低下すると、ウォームホイールWWが収縮する。このとき、バックラッシュ調整機構30の第1軸受10は、弾性部材32の付勢力により、ウォームホイールWWへ向かう方向に移動し、これによりウォームシャフトWSとウォームホイールWWの軸間距離が、ウォームホイールWWの収縮分だけ減少する。上記移動は、ホルダ部材31の上記方向における内壁である内周面315bに第1軸受10の外周面10bが接するまで可能である。よって、温度低下に関わらずバックラッシュを調整することができる。
 使用によりウォームギヤ(ウォームシャフト又はウォームホイール)が摩耗した場合でも、温度低下時と同様、弾性部材32の付勢力により、軸間距離が摩耗分だけ減少して、バックラッシュを調整することができる。
 ウォームギヤWGの噛み合い分力が発生すると、ウォームシャフトWSにはウォームホイールWWから離間する方向にラジアル力が作用し、ホルダ部材31の上記方向における内壁である内周面315aに第1軸受10の外周面10bが接するまで移動する。しかし、調整したいバックラッシュ量は微小であるため、噛み合いに影響することはなく、ギヤの噛み合いは円滑に行われる。
When the temperature decreases, the worm wheel WW contracts. At this time, the first bearing 10 of the backlash adjusting mechanism 30 is moved in the direction toward the worm wheel WW by the urging force of the elastic member 32, whereby the distance between the worm shaft WS and the worm wheel WW is reduced. Decrease by WW shrinkage. The movement is possible until the outer peripheral surface 10b of the first bearing 10 comes into contact with the inner peripheral surface 315b which is the inner wall in the direction of the holder member 31. Therefore, the backlash can be adjusted regardless of the temperature drop.
Even when the worm gear (worm shaft or worm wheel) is worn by use, the backlash can be adjusted by reducing the distance between the axes by the urging force of the elastic member 32 as in the case of the temperature drop.
When the meshing force of the worm gear WG is generated, a radial force acts on the worm shaft WS in a direction away from the worm wheel WW, and the outer periphery of the first bearing 10 is applied to the inner peripheral surface 315a which is the inner wall of the holder member 31 in the above direction. Move until the surface 10b touches. However, since the amount of backlash to be adjusted is very small, it does not affect the meshing, and the gears mesh smoothly.
 (バックラッシュ調整機構の作用)
 図8は実施例1のバックラッシュ調整機構の作用を表す概略図である。運転者がステアリングホイールSWを操舵すると、ピニオンシャフトPSと一緒にウォームホイールWWも回転する。そして、操舵トルクに応じて必要なアシストトルクが電動モータ3からウォームギヤWGを介してウォームホイールWWに伝達される。このとき、ステアリングホイールSWの操舵方向に応じてウォームシャフトWSとウォームホイールWWとの間に作用する力の方向が変化する。言い換えると、弾性部材32によって付与される付勢力の方向が操舵角に応じて変化する。
(Operation of backlash adjustment mechanism)
FIG. 8 is a schematic diagram illustrating the operation of the backlash adjusting mechanism of the first embodiment. When the driver steers the steering wheel SW, the worm wheel WW rotates together with the pinion shaft PS. Then, necessary assist torque is transmitted from the electric motor 3 to the worm wheel WW via the worm gear WG according to the steering torque. At this time, the direction of the force acting between the worm shaft WS and the worm wheel WW changes according to the steering direction of the steering wheel SW. In other words, the direction of the urging force applied by the elastic member 32 changes according to the steering angle.
 仮に、軸受収容部315の長手方向であって、シャフト軸OWSからウォームホイールWWとは反対側の内周面315aに向かう軸受移動方向(付勢力が付与される方向)が、ウォームシャフトWSとウォームホイールWWとの間に作用する力の作用領域から外れて設定した場合を想定する。この場合、一方の操舵方向では第1軸受10から受ける反力が操舵するほど小さくなり、他方の操舵方向では第1軸受10から受ける反力が操舵するほど大きくなる。そうすると、操舵方向に伴いウォームギヤWGの伝達トルクに違いが生じ、運転者に違和感を与えるおそれがある。そこで、実施例1では、弾性部材32の2点から付勢する力FA及びFBの合力である付勢力Fの方向が、ウォームシャフトWSが回転方向一方側に回転したときにウォームホイールWWから受ける反力F1と、ウォームシャフトWSが回転方向他方側に回転したときにウォームホイールWWから受ける反力F2の合力F12と対向するようにホルダ部材31を設置することとした。言い換えると、ホルダ部材31の軸受収容部315の長手方向と合力F12の方向が一致するように設置した。合力F12の合力ベクトルの方向に操舵方向に伴う付勢力の異方性を抑制することができ、安定したアシストトルクを付与できる。 Temporarily, the bearing moving direction (direction in which the urging force is applied) from the shaft axis OWS toward the inner peripheral surface 315a opposite to the worm wheel WW is a longitudinal direction of the bearing housing portion 315, and the worm shaft WS and the worm. A case is assumed in which the setting is made out of the region where the force acting between the wheels WW is applied. In this case, in one steering direction, the reaction force received from the first bearing 10 decreases as the steering is performed, and in the other steering direction, the reaction force received from the first bearing 10 increases as the steering is performed. In this case, the transmission torque of the worm gear WG varies depending on the steering direction, which may give the driver a feeling of strangeness. Therefore, in the first embodiment, the direction of the urging force F, which is the resultant force of the urging forces FA and FB from the two points of the elastic member 32, is received from the worm wheel WW when the worm shaft WS rotates in one direction of rotation. The holder member 31 is installed so as to face the reaction force F1 and the resultant force F12 of the reaction force F2 received from the worm wheel WW when the worm shaft WS rotates in the other direction of rotation. In other words, the holder member 31 is installed so that the longitudinal direction of the bearing accommodating portion 315 and the direction of the resultant force F12 coincide. The anisotropy of the urging force accompanying the steering direction can be suppressed in the direction of the resultant force vector of the resultant force F12, and a stable assist torque can be applied.
 また、下側ガイド部313は、弾性部材32が付勢する力FAとFBの合力ベクトルFの方向にオフセットして配置した。これにより、力点A,Bと下側ガイド部313とがウォームシャフトWSの回転軸を挟んで対向する位置となり、力点A,Bを付勢力Fと対向する位置にレイアウトしやすい。 Further, the lower guide portion 313 is arranged offset in the direction of the resultant force vector F of the force FA and FB urged by the elastic member 32. Accordingly, the force points A and B and the lower guide portion 313 are positioned so as to face each other with the rotation axis of the worm shaft WS interposed therebetween, and the force points A and B can be easily laid out at positions facing the urging force F.
 [実施例1の効果]
  以下、実施例1から把握される本発明の効果を列挙する。
 (1)ステアリングホイールSWの操舵操作を転舵輪に伝達する操舵機構と、
 操舵機構に操舵力を付与する電動モータ3と、
 操舵機構と電動モータ3の間に設けられ電動モータ3の回転力を操舵機構に伝達するウォームギヤWGあって、電動モータ3側に設けられウォームが形成されたウォームシャフトWSおよび操舵機構側に設けられウォームと噛合うように設けられたウォームホイールWWを有するウォームギヤWGと、
 ウォームホイールWWを収容するホイール収容部HS1とウォームシャフトWSを収容するシャフト収容部HS2を有するギヤハウジングHSと、
 ウォームシャフトWSの回転軸の方向において電動モータ3の反対側のウォームシャフトWSの端部側に設けられ、ウォームシャフトWSを回転自在に軸支する第1軸受10(軸受)と、
 第1軸受10の外周側に設けられ、ウォームホイールWWとウォームシャフトWSの間のバックラッシュが低減するようにウォームシャフトWSの回転軸周りの方向において、第1軸受10に対し複数の力点において付勢力を付与する弾性部材32と、
 を有する。
 よって、弾性部材32が第1軸受10に対し複数の力点で付勢力を付与するため、力点が1点のみの場合に比べ、ウォームシャフトWSの支持安定性を向上させることができる。
[Effect of Example 1]
The effects of the present invention ascertained from Example 1 are listed below.
(1) a steering mechanism that transmits the steering operation of the steering wheel SW to the steered wheels;
An electric motor 3 for applying a steering force to the steering mechanism;
There is a worm gear WG provided between the steering mechanism and the electric motor 3 for transmitting the rotational force of the electric motor 3 to the steering mechanism, provided on the worm shaft WS provided on the electric motor 3 side and the steering mechanism side. A worm gear WG having a worm wheel WW provided to mesh with the worm;
A gear housing HS having a wheel housing portion HS1 for housing the worm wheel WW and a shaft housing portion HS2 for housing the worm shaft WS;
A first bearing 10 (bearing) provided on the end side of the worm shaft WS opposite to the electric motor 3 in the direction of the rotation axis of the worm shaft WS and rotatably supporting the worm shaft WS;
Provided on the outer periphery of the first bearing 10 and attached to the first bearing 10 at a plurality of power points in the direction around the rotation axis of the worm shaft WS so as to reduce backlash between the worm wheel WW and the worm shaft WS. An elastic member 32 for applying a force;
Have
Therefore, since the elastic member 32 applies urging force to the first bearing 10 at a plurality of power points, the support stability of the worm shaft WS can be improved as compared with the case where the power point is only one point.
 (2)上記(1)に記載のパワーステアリング装置において、
 弾性部材32は、第1軸受10に対し2点の力点において付勢力を付与する。
 すなわち、ウォームシャフトWSの回転軸周りの方向におけるウォームシャフトWSの支持点がウォームホイールWWとの噛合い点を含めて3点となり、最も支持安定性がよい。
 (3)上記(2)に記載のパワーステアリング装置において、
 弾性部材32は、弾性部材32の2点の力点が、ウォームホイールWWの回転軸に直交する仮想平面であってウォームホイールWWの回転軸とウォームシャフトWSの回転軸の両方に直交する仮想線と重なる平面PXを跨ぐように設けられる。
 よって、2点の力点とウォームホイールからの反力のバランスが向上し、支持安定性を更に向上させることができる。
(2) In the power steering device according to (1) above,
The elastic member 32 applies an urging force to the first bearing 10 at two power points.
That is, the support point of the worm shaft WS in the direction around the rotation axis of the worm shaft WS is three points including the mesh point with the worm wheel WW, and the support stability is the best.
(3) In the power steering device according to (2),
The elastic member 32 is a virtual plane in which the two force points of the elastic member 32 are orthogonal to the rotation axis of the worm wheel WW and are orthogonal to both the rotation axis of the worm wheel WW and the rotation axis of the worm shaft WS. It is provided so as to straddle the overlapping plane PX.
Therefore, the balance between the two power points and the reaction force from the worm wheel is improved, and the support stability can be further improved.
 (4)上記(1)に記載のパワーステアリング装置において、
 弾性部材32は、複数の力点の合力ベクトルの方向が、ウォームシャフトWSが回転方向一方側に回転したときにウォームホイールWWから受ける反力の方向とウォームシャフトWSが回転方向他方側に回転したときにウォームホイールWWから受ける反力の方向との間に位置するように設けられる。
 よって、ステアリングホイールSWの左右操舵の方向で夫々異なるウォームホイールWWからの反力に対し適切に付勢力を付与することができる。
 (5)上記(4)に記載のパワーステアリング装置において、
 弾性部材32は、複数の力点の全てが、ウォームシャフトWSが回転方向一方側に回転したときに前記ウォームホイールWWから受ける反力の方向とウォームシャフトWSが回転方向他方側に回転したときにウォームホイールWWから受ける反力の方向とで挟まれる範囲の外に位置するように設けられる。
 よって、複数の力点の支持スパンを広げることで、より支持安定性を向上させることができる。
(4) In the power steering apparatus described in (1) above,
The elastic member 32 has a direction of the resultant force vector of a plurality of force points when the worm shaft WS rotates to one side of the rotation direction and the reaction force received from the worm wheel WW and when the worm shaft WS rotates to the other side of the rotation direction. It is provided so as to be positioned between the direction of the reaction force received from the worm wheel WW.
Therefore, it is possible to appropriately apply an urging force to reaction forces from the worm wheels WW that are different in the left and right steering directions of the steering wheel SW.
(5) In the power steering device according to (4),
The elastic member 32 has a worm when all of a plurality of power points are applied when the worm shaft WS rotates in one direction of rotation and the reaction force received from the worm wheel WW and when the worm shaft WS rotates in the other direction of rotation. It is provided so as to be located outside the range sandwiched between the direction of the reaction force received from the wheel WW.
Therefore, the support stability can be further improved by widening the support span of a plurality of power points.
 (6)上記(4)に記載のパワーステアリング装置において、
 弾性部材32は、複数の力点の合力ベクトルの方向が、ウォームシャフトWSが回転方向一方側に回転したときにウォームホイールWWから受ける反力とウォームシャフトWSが回転方向他方側に回転したときにウォームホイールWWから受ける反力の合力ベクトルの方向とほぼ一致するように設けられる。
 よって、ステアリングホイールSWの左右操舵の方向で夫々異なるウォームホイールWWからの反力に対しより適切に付勢力を付与することができる。
 (7)上記(1)に記載のパワーステアリング装置において、
 弾性部材32は、ウォームシャフトWSの回転軸周りの方向において、第1軸受10の外周を包囲する形状を有する。
 すなわち、弾性部材32が第1軸受10を包囲する形状を有するため、コイルばねを複数の力点の夫々に設ける場合に比べ、装置の小型化を図ることができる。
 (8)上記(7)に記載のパワーステアリング装置において、
 弾性部材32は線ばねであって、線ばねの両端部は互いに離間するように設けられる。
 よって、線ばねの端部同士の接触による摩擦力の変化に伴うスティックスリップを防止することができる。
(6) In the power steering device according to (4),
The elastic member 32 is configured such that the direction of the resultant force vector of the plurality of force points is the reaction force received from the worm wheel WW when the worm shaft WS rotates in one direction of rotation and the worm shaft when the worm shaft WS rotates in the other direction. It is provided so as to substantially coincide with the direction of the resultant force vector of the reaction force received from the wheel WW.
Therefore, it is possible to more appropriately apply the urging force to the reaction force from the worm wheel WW that is different in the left and right steering directions of the steering wheel SW.
(7) In the power steering device according to (1),
The elastic member 32 has a shape surrounding the outer periphery of the first bearing 10 in the direction around the rotation axis of the worm shaft WS.
That is, since the elastic member 32 has a shape surrounding the first bearing 10, it is possible to reduce the size of the device as compared with the case where the coil spring is provided at each of the plurality of power points.
(8) In the power steering device according to (7),
The elastic member 32 is a wire spring, and both ends of the wire spring are provided so as to be separated from each other.
Therefore, it is possible to prevent stick slip caused by a change in frictional force due to contact between the ends of the wire springs.
 (9)上記(7)に記載のパワーステアリング装置は、第1軸受10の外周側を包囲する外周壁310(筒状部)と、弾性部材32を保持する保持溝313a及び外周壁310の上面310a(弾性部材保持部)を備え、シャフト収容部HS2内に設けられるホルダ部材31を有する。
 すなわち、弾性部材32をホルダ部材31に保持させた状態でギヤハウジングHSに設けることで、ギヤハウジングHSに弾性部材32を直接組み付ける場合に比べ、組付け作業性がよい。
 (10)上記(9)に記載のパワーステアリング装置において、
 ホルダ部材31は、ウォームシャフトWSの回転軸の径方向において第1軸受10の外周面10bと離間した状態で対向し、かつウォームシャフトWSの回転軸周りの方向においてウォームホイールWW側に設けられた下側ガイド部313(弾性部材係止部)を備え、
 弾性部材32は、線ばねであって、ウォームシャフトWSの回転軸周りの方向において弾性部材32の一部である他端部321が下側ガイド部313(弾性部材係止部)の外周側に係止され、弾性部材32の両端部のうちの一方がホルダ部材31に設けられた回転規制部312a(ばね端部係止部)に係止される。
 すなわち、弾性部材32の周方向範囲のうち、回転規制部312a側の端部である他端部321はホルダ部材31に係止されているため、ばねの拡径、縮径に伴うホルダ部材31に対する相対移動量が少ない。よって、弾性部材32と下側ガイド部313との相対移動に伴う摩擦摺動が小さくなり、これに伴うヒステリシスの発生が抑制され、付勢力の安定化を図ることができる。
(9) In the power steering device according to (7), the outer peripheral wall 310 (cylindrical portion) that surrounds the outer peripheral side of the first bearing 10, the holding groove 313 a that holds the elastic member 32, and the upper surfaces of the outer peripheral wall 310 310a (elastic member holding part) is provided, and it has the holder member 31 provided in the shaft accommodating part HS2.
That is, by providing the elastic member 32 in the gear housing HS while being held by the holder member 31, the assembling workability is better than when the elastic member 32 is directly assembled to the gear housing HS.
(10) In the power steering device according to (9) above,
The holder member 31 is opposed to the outer peripheral surface 10b of the first bearing 10 in the radial direction of the rotation axis of the worm shaft WS, and is provided on the worm wheel WW side in the direction around the rotation axis of the worm shaft WS. A lower guide portion 313 (elastic member locking portion) is provided,
The elastic member 32 is a wire spring, and the other end 321 that is a part of the elastic member 32 in the direction around the rotation axis of the worm shaft WS is on the outer peripheral side of the lower guide portion 313 (elastic member locking portion). The elastic member 32 is locked, and one of both end portions of the elastic member 32 is locked to a rotation restricting portion 312a (spring end locking portion) provided on the holder member 31.
That is, the other end portion 321 that is the end portion on the rotation restricting portion 312a side in the circumferential range of the elastic member 32 is locked to the holder member 31, so that the holder member 31 accompanying the expansion and contraction of the spring diameter. The relative movement amount with respect to is small. Accordingly, the frictional sliding accompanying the relative movement between the elastic member 32 and the lower guide portion 313 is reduced, the occurrence of hysteresis accompanying this is suppressed, and the urging force can be stabilized.
 (11)上記(9)に記載のパワーステアリング装置において、
 ホルダ部材31は、ウォームシャフトWSの回転軸の径方向において第1軸受10の外周面と離間した状態で対向し、かつウォームシャフトWSの回転軸周りの方向においてウォームホイールWW側に設けられた下側ガイド部313(弾性部材係止部)を備え、
 弾性部材32は、第1軸受10に対し2点の力点において付勢力を付与するように形成され、この2点の力点は、ウォームシャフトWSの回転軸周りの方向において下側ガイド部313に対し対称な位置に設けられる。
 よって、弾性部材の支持安定性を向上できる。
 (12)上記(9)に記載のパワーステアリング装置において、
 ホルダ部材31は、ウォームシャフトWSの回転軸の径方向において第1軸受10の外周面10bと離間した状態で対向し、かつウォームシャフトWSの回転軸周りの方向においてウォームホイールWW側に設けられた下側ガイド部313を備え、
 下側ガイド部313は、ウォームホイールWWの回転軸とウォームシャフトWSの回転軸と直交する仮想線に対し、ウォームシャフトWSの回転軸周りの方向において、ウォームシャフトWSが回転方向一方側に回転したときにウォームホイールWWから受ける反力F1とウォームシャフトWSが回転方向他方側に回転したときにウォームホイールWWから受ける反力F2の合力Fのベクトル方向にオフセットするように設けられている。
 よって、複数の力点A,Bを合力Fと対向する位置に配置する場合、この力点A,Bと下側ガイド部313とがウォームシャフトWSの回転軸を挟んで対向する位置となるため、力点A,Bを合力と対向する位置にレイアウトしやすい。
(11) In the power steering device according to (9) above,
The holder member 31 is opposed to the outer peripheral surface of the first bearing 10 in the radial direction of the rotational axis of the worm shaft WS and is provided on the worm wheel WW side in the direction around the rotational axis of the worm shaft WS. Side guide portion 313 (elastic member locking portion),
The elastic member 32 is formed so as to apply a biasing force to the first bearing 10 at two power points, and these two power points are applied to the lower guide portion 313 in the direction around the rotation axis of the worm shaft WS. It is provided at a symmetrical position.
Therefore, the support stability of the elastic member can be improved.
(12) In the power steering device according to (9) above,
The holder member 31 is opposed to the outer peripheral surface 10b of the first bearing 10 in the radial direction of the rotation axis of the worm shaft WS, and is provided on the worm wheel WW side in the direction around the rotation axis of the worm shaft WS. It has a lower guide part 313,
In the lower guide portion 313, the worm shaft WS is rotated to one side in the rotation direction in the direction around the rotation axis of the worm shaft WS with respect to a virtual line orthogonal to the rotation axis of the worm wheel WW and the rotation axis of the worm shaft WS. The reaction force F1 sometimes received from the worm wheel WW and the reaction force F2 received from the worm wheel WW when the worm shaft WS rotates to the other side in the rotation direction are offset in the vector direction.
Therefore, when a plurality of force points A and B are arranged at a position opposite to the resultant force F, the force points A and B and the lower guide portion 313 are opposed to each other across the rotation axis of the worm shaft WS. It is easy to lay out A and B at positions facing the resultant force.
 (13)上記(9)に記載のパワーステアリング装置において、
 ホルダ部材31は、ウォームシャフトWSの回転軸の径方向において第1軸受10の外周面10bと離間した状態で対向し、かつウォームシャフトWSの回転軸周りの方向においてウォームホイールWWの反対側に設けられ、第1軸受10の所定以上の移動を規制する内周面315a(ストッパ部)を備え、
 内周面315aは、ウォームシャフトWSの回転軸周りの方向において、ウォームシャフトWSが回転方向一方側に回転したときにウォームホイールWWから受ける反力の方向とウォームシャフトWSが回転方向他方側に回転したときにウォームホイールWWから受ける反力の方向との間に位置するように設けられる。
 よって、ステアリングホイールSWの操舵により受ける力の方向が、ステアリングホイールSWの切り替えしにより変化した場合でも、ストッパ機能を発揮することができる。
(13) In the power steering device according to (9),
The holder member 31 is opposed to the outer peripheral surface 10b of the first bearing 10 in the radial direction of the rotation axis of the worm shaft WS, and is provided on the opposite side of the worm wheel WW in the direction around the rotation axis of the worm shaft WS. Provided with an inner peripheral surface 315a (stopper portion) that restricts movement of the first bearing 10 beyond a predetermined amount,
The inner peripheral surface 315a has a direction of reaction force received from the worm wheel WW when the worm shaft WS rotates in one direction of rotation in the direction around the rotation axis of the worm shaft WS and the worm shaft WS rotates in the other direction of rotation. It is provided so as to be positioned between the direction of the reaction force received from the worm wheel WW.
Therefore, even when the direction of the force received by the steering wheel SW is changed by switching the steering wheel SW, the stopper function can be exhibited.
 (14)上記(7)に記載のパワーステアリング装置において、
 弾性部材32は、ウォームシャフトWSの回転軸周りの方向において、弾性部材32の一部が直線状に形成された第2ばね部320b及び第4ばね部320d(直線部)を有し、第2ばね部320b及び第4ばね部320dにおいて第1軸受10に対し付勢力を付与する。
 すなわち、直線部を力点とすることで、弾性部材32の拡径に伴い力点の位置が変化した場合であっても、付勢力の作用方向の変化を抑制することができる。
(14) In the power steering device according to (7),
The elastic member 32 has a second spring part 320b and a fourth spring part 320d (straight line part) in which a part of the elastic member 32 is linearly formed in the direction around the rotation axis of the worm shaft WS. A biasing force is applied to the first bearing 10 at the spring portion 320b and the fourth spring portion 320d.
That is, by using the straight line portion as the power point, even if the position of the power point changes with the diameter expansion of the elastic member 32, it is possible to suppress a change in the direction of application of the urging force.
 〔実施例2〕
 次に、実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点について説明する。図9は実施例2のバックラッシュ調整機構の作用を表す概略図である。実施例1では、弾性部材32の2点から付勢する力FA及びFBの合力である付勢力Fの方向が、ウォームシャフトWSが回転方向一方側に回転したときにウォームホイールWWから受ける反力F1と、ウォームシャフトWSが回転方向他方側に回転したときにウォームホイールWWから受ける反力F2の合力F12と対向するようにホルダ部材31を設置することとした。これに対し、実施例2では、ウォームホイールWWの回転軸とウォームシャフトWSの回転軸と直交する仮想線を含む平面PXと所定の角度θで交差する方向PMと一致するように設置した点が異なる。
[Example 2]
Next, Example 2 will be described. Since the basic configuration is the same as that of the first embodiment, different points will be described. FIG. 9 is a schematic diagram illustrating the operation of the backlash adjusting mechanism of the second embodiment. In the first embodiment, the direction of the biasing force F, which is the resultant force of the forces FA and FB biased from the two points of the elastic member 32, is the reaction force received from the worm wheel WW when the worm shaft WS rotates in one direction of rotation. The holder member 31 is installed so as to face F1 and the resultant force F12 of the reaction force F2 received from the worm wheel WW when the worm shaft WS rotates in the other direction of rotation. In contrast, in the second embodiment, the worm wheel WW and the worm shaft WS are installed so as to coincide with the direction PM intersecting the plane PX including a virtual line orthogonal to the rotation axis of the worm shaft WS at a predetermined angle θ. Different.
 具体的には、弾性部材32の2点から付勢する力FA及びFBの合力である付勢力Fの方向が、反力F1の分力成分と、反力F2の分力成分とが同じ大きさとなる方向PMと対向するようにホルダ部材31を設置することとした。すなわち、第1軸受10に付勢力を付与するのは、一つの弾性部材であり、同じ付勢力で第1軸受10をバランスよく付勢する必要がある。反力F1と反力F2とで形成される三角形において、第1軸受10の中心である頂点から降ろした垂線方向が、反力F1,F2の分力成分が同じ大きさとなる方向PMとなる。よって、ホルダ部材31を、平面PXとなす角θで交差する垂線方向(方向PM)に沿って第1軸受10が移動可能なように設置することで、第1軸受10に対し、バランスよく付勢力を付与できる。 Specifically, the direction of the biasing force F, which is the resultant force of the forces FA and FB biased from two points of the elastic member 32, is the same as the component force component of the reaction force F1 and the component force component of the reaction force F2. The holder member 31 is set to face the direction PM. That is, it is one elastic member that applies the urging force to the first bearing 10, and it is necessary to urge the first bearing 10 with the same urging force in a balanced manner. In the triangle formed by the reaction force F1 and the reaction force F2, the perpendicular direction dropped from the apex that is the center of the first bearing 10 is the direction PM in which the component components of the reaction forces F1 and F2 have the same magnitude. Therefore, by installing the holder member 31 so that the first bearing 10 can move along the perpendicular direction (direction PM) intersecting with the angle θ formed with the plane PX, the holder member 31 is attached to the first bearing 10 in a balanced manner. Can give power.
 以上説明したように、実施例2にあっては下記の作用効果が得られる。
 (15)上記(9)に記載のパワーステアリング装置において、
  ホルダ部材31は、ウォームシャフトWSの回転軸の径方向において第1軸受10の外周面10bと離間した状態で対向し、かつウォームシャフトWSの回転軸周りの方向においてウォームホイールWW側に設けられた下側ガイド部313(弾性部材係止部)を備え、
 下側ガイド部313は、ウォームホイールWWの回転軸とウォームシャフトWSの回転軸と直交する仮想線に対し、ウォームシャフトWSの回転軸周りの方向において、ウォームシャフトWSが回転方向一方側に回転したときにウォームホイールWWから受ける反力F1とウォームシャフトWSが回転方向他方側に回転したときにウォームホイールWWから受ける反力F2の分力成分が同じ大きさとなる方向にオフセットするように設けられる。
 すなわち、第1軸受10に付勢力を付与するのは、一つの弾性部材であり、同じ付勢力で第1軸受10をバランスよく付勢する必要がある。そこで、ホルダ部材31を、反力F1,F2の分力成分が同じ大きさとなる方向PMに沿って第1軸受10が移動可能なように設置することで、第1軸受10に対し、バランスよく付勢力を付与できる。
As described above, the following operational effects are obtained in the second embodiment.
(15) In the power steering device according to (9) above,
The holder member 31 is opposed to the outer peripheral surface 10b of the first bearing 10 in the radial direction of the rotation axis of the worm shaft WS, and is provided on the worm wheel WW side in the direction around the rotation axis of the worm shaft WS. A lower guide portion 313 (elastic member locking portion) is provided,
In the lower guide portion 313, the worm shaft WS is rotated to one side in the rotation direction in the direction around the rotation axis of the worm shaft WS with respect to a virtual line orthogonal to the rotation axis of the worm wheel WW and the rotation axis of the worm shaft WS. The reaction force F1 sometimes received from the worm wheel WW and the component component of the reaction force F2 received from the worm wheel WW when the worm shaft WS rotates to the other side in the rotation direction are offset so as to have the same magnitude.
That is, it is one elastic member that applies the urging force to the first bearing 10, and it is necessary to urge the first bearing 10 with the same urging force in a balanced manner. Therefore, by installing the holder member 31 so that the first bearing 10 can move along the direction PM in which the component components of the reaction forces F1 and F2 have the same magnitude, the holder member 31 is balanced with respect to the first bearing 10. Energizing force can be given.
 [他の実施例]
 以上、本発明を実現するための形態を、実施例に基づいて説明してきたが、本発明の具体的な構成は実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。例えば、バックラッシュ調整機構の金属キャップ内におけるホルダ部材のガタ発生防止のため、実施例1ではOリングを設置したが、Oリングを廃止し、金属キャップに爪を設けてもよい。また、例えば実施例1において、Oリング(及びOリング設置用の溝)を設けることなく、ホルダ部材の外壁に、外周面から突出する突起を設け、この突起が金属キャップの内周面と当接することで、ガタ発生を防止することとしてもよい。
[Other embodiments]
As mentioned above, although the form for implement | achieving this invention has been demonstrated based on the Example, the concrete structure of this invention is not limited to an Example, The design change of the range which does not deviate from the summary of invention Are included in the present invention. For example, the O-ring is installed in the first embodiment in order to prevent the holder member from rattling in the metal cap of the backlash adjusting mechanism. However, the O-ring may be eliminated and a claw may be provided on the metal cap. Further, for example, in Example 1, a protrusion protruding from the outer peripheral surface is provided on the outer wall of the holder member without providing an O-ring (and an O-ring installation groove), and this protrusion contacts the inner peripheral surface of the metal cap. It is good also as preventing backlash by contacting.
 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。上記実施形態を任意に組み合わせても良い。 Although only a few embodiments of the present invention have been described above, various modifications or improvements can be made to the illustrated embodiments without substantially departing from the novel teachings and advantages of the present invention. Will be easily understood by those skilled in the art. Therefore, it is intended that the embodiment added with such changes or improvements is also included in the technical scope of the present invention. You may combine the said embodiment arbitrarily.
 本願は、2015年11月24日付出願の日本国特許出願第2015-228338号に基づく優先権を主張する。2015年11月24日付出願の日本国特許出願第2015-228338号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2015-228338 filed on Nov. 24, 2015. The entire disclosure of Japanese Patent Application No. 2015-228338, filed November 24, 2015, including the specification, claims, drawings, and abstract, is incorporated herein by reference in its entirety.
3  電動モータ10  軸受10b  外周面30  バックラッシュ調整機構31  ホルダ部材32  弾性部材33  金属キャップ34  リング310  外周壁312  他端部312a  回転規制部313  下側ガイド部313a  保持溝313b  係合凸部314  上側ガイド部315  軸受収容部320  本体部321  他端部322  一端部ECU  コントローラEPS  パワーステアリング装置FR,FL  転舵輪HS  ギヤハウジングHS1  ホイール収容部HS10  ホルダ収容部HS2  シャフト収容部MC  モータカバーMHS  モータハウジングPG  ピニオンギヤPS  ピニオンシャフトSW  ステアリングホイールTS  トルクセンサWG  ウォームギヤWS  ウォームシャフトWW  ウォームホイール 3 Electric motor 10, bearing 10b, outer peripheral surface 30, backlash adjustment mechanism 31, holder member 32, elastic member 33, metal cap 34, ring 310, outer peripheral wall 312, other end 312a, rotation restricting portion 313, lower guide portion 313a, retaining groove 313b, engaging convex portion 314, upper portion Guide section 315 Bearing housing section 320 Main body section 321 Other end section 322 One end ECU Controller EPS Power steering device FR, FL Steering wheel HS Gear housing HS1 Wheel housing section HS10 Holder housing section HS2 Shaft housing section MC Motor cover MHS Motor housing PG Pinion gear PS Pinion shaft SW Steering wheel TS Torque sensor WG Worm gear WS Worm shaft WW Worm wheel

Claims (15)

  1.  パワーステアリング装置であって、該パワーステアリング装置は、
     ステアリングホイールの操舵操作を転舵輪に伝達する操舵機構と、
     前記操舵機構に操舵力を付与する電動モータと、
     前記操舵機構と前記電動モータの間に設けられ前記電動モータの回転力を前記操舵機構に伝達するウォームギヤであって、前記電動モータ側に設けられウォームが形成されたウォームシャフトおよび前記操舵機構側に設けられ前記ウォームと噛合うように設けられたウォームホイールを有するウォームギヤと、
     前記ウォームホイールを収容するホイール収容部と前記ウォームシャフトを収容するシャフト収容部を有するギヤハウジングと、
     前記ウォームシャフトの回転軸の方向において前記電動モータの反対側の前記ウォームシャフトの端部側に設けられ、前記ウォームシャフトを回転自在に軸支する軸受と、
     前記軸受の外周側に設けられ、前記ウォームホイールと前記ウォームシャフトの間のバックラッシュが低減するように前記ウォームシャフトの回転軸周りの方向において、前記軸受に対し複数の力点において付勢力を付与する弾性部材と、
     を有することを特徴とするパワーステアリング装置。
    A power steering device, wherein the power steering device
    A steering mechanism that transmits the steering operation of the steering wheel to the steered wheels;
    An electric motor for applying a steering force to the steering mechanism;
    A worm gear provided between the steering mechanism and the electric motor for transmitting the rotational force of the electric motor to the steering mechanism, wherein the worm shaft is provided on the electric motor side and formed with a worm, and on the steering mechanism side. A worm gear having a worm wheel provided to mesh with the worm;
    A gear housing having a wheel housing portion for housing the worm wheel and a shaft housing portion for housing the worm shaft;
    A bearing provided on the end side of the worm shaft opposite to the electric motor in the direction of the rotation axis of the worm shaft, and rotatably supporting the worm shaft;
    A biasing force is applied to the bearing at a plurality of power points in a direction around the rotation axis of the worm shaft so as to reduce backlash between the worm wheel and the worm shaft. An elastic member;
    A power steering apparatus comprising:
  2.  請求項1に記載のパワーステアリング装置において、
     前記弾性部材は、前記軸受に対し2点の力点において付勢力を付与することを特徴とするパワーステアリング装置。
    The power steering apparatus according to claim 1, wherein
    The power steering device according to claim 1, wherein the elastic member applies a biasing force to the bearing at two power points.
  3.  請求項2に記載のパワーステアリング装置において、
     前記弾性部材は、前記弾性部材の前記2点の力点が、前記ウォームホイールの回転軸に直交する仮想平面であって前記ウォームホイールの回転軸と前記ウォームシャフトの回転軸の両方に直交する仮想線と重なる平面を跨ぐように設けられることを特徴とするパワーステアリング装置。
    The power steering apparatus according to claim 2,
    The elastic member is an imaginary line in which the two force points of the elastic member are virtual planes orthogonal to the rotation axis of the worm wheel and are orthogonal to both the rotation axis of the worm wheel and the rotation axis of the worm shaft. A power steering device that is provided so as to straddle a plane that overlaps with the power steering device.
  4.  請求項1に記載のパワーステアリング装置において、
     前記弾性部材は、前記複数の力点の合力ベクトルの方向が、前記ウォームシャフトが回転方向一方側に回転したときに前記ウォームホイールから受ける反力の方向と前記ウォームシャフトが回転方向他方側に回転したときに前記ウォームホイールから受ける反力の方向との間に位置するように設けられることを特徴とするパワーステアリング装置。
    The power steering apparatus according to claim 1, wherein
    In the elastic member, the direction of the resultant force vector of the plurality of force points is the direction of the reaction force received from the worm wheel when the worm shaft rotates in one direction of rotation and the worm shaft rotates in the other direction of rotation. A power steering device characterized in that the power steering device is provided so as to be positioned between the direction of the reaction force received from the worm wheel.
  5.  請求項4に記載のパワーステアリング装置において、
     前記弾性部材は、前記複数の力点の全てが、前記ウォームシャフトが回転方向一方側に回転したときに前記ウォームホイールから受ける反力の方向と前記ウォームシャフトが回転方向他方側に回転したときに前記ウォームホイールから受ける反力の方向とで挟まれる範囲の外に位置するように設けられることを特徴とするパワーステアリング装置。
    The power steering apparatus according to claim 4, wherein
    The elastic member includes a direction of a reaction force received from the worm wheel when the worm shaft rotates in one direction of rotation and a direction of the reaction force received from the worm wheel when the worm shaft rotates in the other direction of rotation. A power steering device, wherein the power steering device is provided so as to be located outside a range sandwiched by a direction of a reaction force received from a worm wheel.
  6.  請求項4に記載のパワーステアリング装置において、
     前記弾性部材は、前記複数の力点の合力ベクトルの方向が、前記ウォームシャフトが回転方向一方側に回転したときに前記ウォームホイールから受ける反力と前記ウォームシャフトが回転方向他方側に回転したときに前記ウォームホイールから受ける反力の合力ベクトルの方向とほぼ一致するように設けられることを特徴とするパワーステアリング装置。
    The power steering apparatus according to claim 4, wherein
    When the direction of the resultant force vector of the plurality of force points is the reaction force received from the worm wheel when the worm shaft rotates in one direction of rotation and the worm shaft rotates in the other direction of rotation. A power steering device, wherein the power steering device is provided so as to substantially coincide with a direction of a resultant force vector of a reaction force received from the worm wheel.
  7.  請求項1に記載のパワーステアリング装置において、
     前記弾性部材は、前記ウォームシャフトの回転軸周りの方向において、前記軸受の外周を包囲する形状を有することを特徴とするパワーステアリング装置。
    The power steering apparatus according to claim 1, wherein
    The power steering device according to claim 1, wherein the elastic member has a shape surrounding an outer periphery of the bearing in a direction around a rotation axis of the worm shaft.
  8.  請求項7に記載のパワーステアリング装置において、
     前記弾性部材は、線ばねであって、前記線ばねの両端部は互いに離間するように設けられることを特徴とするパワーステアリング装置。
    The power steering apparatus according to claim 7, wherein
    The elastic member is a wire spring, and both ends of the wire spring are provided so as to be separated from each other.
  9.  請求項7に記載のパワーステアリング装置は、前記軸受の外周側を包囲する筒状部と、前記弾性部材を保持する弾性部材保持部を備え、前記シャフト収容部内に設けられるホルダ部材を有することを特徴とするパワーステアリング装置。 The power steering device according to claim 7 includes a cylindrical member that surrounds the outer peripheral side of the bearing and an elastic member holding portion that holds the elastic member, and has a holder member provided in the shaft housing portion. A featured power steering device.
  10.  請求項9に記載のパワーステアリング装置において、
     前記ホルダ部材は、前記ウォームシャフトの回転軸の径方向において前記軸受の外周面と離間した状態で対向し、かつ前記ウォームシャフトの回転軸周りの方向において前記ウォームホイール側に設けられた弾性部材係止部を備え、
     前記弾性部材は、線ばねであって、前記ウォームシャフトの回転軸周りの方向において前記弾性部材の一部が前記弾性部材係止部の外周側に係止され、前記弾性部材の両端部のうちの一方が前記ホルダ部材に設けられたばね端部係止部に係止されることを特徴とするパワーステアリング装置。
    The power steering apparatus according to claim 9, wherein
    The holder member is opposed to the outer peripheral surface of the bearing in a radial direction of the rotation axis of the worm shaft and is disposed on the worm wheel side in a direction around the rotation axis of the worm shaft. With a stop,
    The elastic member is a wire spring, and a part of the elastic member is locked to the outer peripheral side of the elastic member locking portion in a direction around the rotation axis of the worm shaft, and is out of both ends of the elastic member. One of these is locked by a spring end locking portion provided on the holder member.
  11.  請求項9に記載のパワーステアリング装置において、
     前記ホルダ部材は、前記ウォームシャフトの回転軸の径方向において前記軸受の外周面と離間した状態で対向し、かつ前記ウォームシャフトの回転軸周りの方向において前記ウォームホイール側に設けられた弾性部材係止部を備え、
     前記弾性部材は、前記軸受に対し2点の力点において付勢力を付与するように形成され、前記2点の力点は、前記ウォームシャフトの回転軸周りの方向において前記弾性部材係止部に対し対称な位置に設けられることを特徴とするパワーステアリング装置。
    The power steering apparatus according to claim 9, wherein
    The holder member is opposed to the outer peripheral surface of the bearing in a radial direction of the rotation axis of the worm shaft and is disposed on the worm wheel side in a direction around the rotation axis of the worm shaft. With a stop,
    The elastic member is formed so as to apply an urging force to the bearing at two force points, and the two force points are symmetrical with respect to the elastic member locking portion in a direction around the rotation axis of the worm shaft. A power steering device characterized by being provided at a different position.
  12.  請求項9に記載のパワーステアリング装置において、
     前記ホルダ部材は、前記ウォームシャフトの回転軸の径方向において前記軸受の外周面と離間した状態で対向し、かつ前記ウォームシャフトの回転軸周りの方向において前記ウォームホイール側に設けられた弾性部材係止部を備え、
     前記弾性部材係止部は、前記ウォームホイールの回転軸と前記ウォームシャフトの回転軸と直交する仮想線に対し、前記ウォームシャフトの回転軸周りの方向において、前記ウォームシャフトが回転方向一方側に回転したときに前記ウォームホイールから受ける反力と前記ウォームシャフトが回転方向他方側に回転したときに前記ウォームホイールから受ける反力の合力ベクトルの方向にオフセットするように設けられることを特徴とするパワーステアリング装置。
    The power steering apparatus according to claim 9, wherein
    The holder member is opposed to the outer peripheral surface of the bearing in a radial direction of the rotation axis of the worm shaft and is disposed on the worm wheel side in a direction around the rotation axis of the worm shaft. With a stop,
    The elastic member locking portion rotates the worm shaft to one side in the rotation direction in a direction around the rotation axis of the worm shaft with respect to a virtual line orthogonal to the rotation axis of the worm wheel and the rotation axis of the worm shaft. The power steering is provided so as to be offset in the direction of the resultant vector of the reaction force received from the worm wheel and the reaction force received from the worm wheel when the worm shaft rotates to the other side in the rotation direction. apparatus.
  13.  請求項9に記載のパワーステアリング装置において、
     前記ホルダ部材は、前記ウォームシャフトの回転軸の径方向において前記軸受の外周面と離間した状態で対向し、かつ前記ウォームシャフトの回転軸周りの方向において前記ウォームホイールの反対側に設けられ、前記軸受の所定以上の移動を規制するストッパ部を備え、
     前記ストッパ部は、前記ウォームシャフトの回転軸周りの方向において、前記ウォームシャフトが回転方向一方側に回転したときに前記ウォームホイールから受ける反力の方向と前記ウォームシャフトが回転方向他方側に回転したときに前記ウォームホイールから受ける反力の方向との間に位置するように設けられることを特徴とするパワーステアリング装置。
    The power steering apparatus according to claim 9, wherein
    The holder member is opposed to the outer peripheral surface of the bearing in a radial direction of the rotation axis of the worm shaft, and is provided on the opposite side of the worm wheel in a direction around the rotation axis of the worm shaft, Provided with a stopper that restricts the movement of the bearing beyond a predetermined level,
    In the direction around the rotation axis of the worm shaft, the stopper portion rotates in the direction of the reaction force received from the worm wheel when the worm shaft rotates in one direction of rotation and the worm shaft rotates in the other direction of rotation. A power steering device characterized in that the power steering device is provided so as to be positioned between the direction of the reaction force received from the worm wheel.
  14.  請求項7に記載のパワーステアリング装置において、
     前記弾性部材は、前記ウォームシャフトの回転軸周りの方向において、前記弾性部材の一部が直線状に形成された直線部を有し、前記直線部において前記軸受に対し付勢力を付与することを特徴とするパワーステアリング装置。
    The power steering apparatus according to claim 7, wherein
    The elastic member has a straight portion in which a part of the elastic member is formed in a straight line in a direction around the rotation axis of the worm shaft, and applies a biasing force to the bearing in the straight portion. A featured power steering device.
  15.  請求項9に記載のパワーステアリング装置において、
     前記ホルダ部材は、前記ウォームシャフトの回転軸の径方向において前記軸受の外周面と離間した状態で対向し、かつ前記ウォームシャフトの回転軸周りの方向において前記ウォームホイール側に設けられた弾性部材係止部を備え、
     前記弾性部材係止部は、前記ウォームホイールの回転軸と前記ウォームシャフトの回転軸と直交する仮想線に対し、前記ウォームシャフトの回転軸周りの方向において、前記ウォームシャフトが回転方向一方側に回転したときに前記ウォームホイールから受ける反力と前記ウォームシャフトが回転方向他方側に回転したときに前記ウォームホイールから受ける反力の分力成分が同じ大きさとなる方向にオフセットするように設けられることを特徴とするパワーステアリング装置。
    The power steering apparatus according to claim 9, wherein
    The holder member is opposed to the outer peripheral surface of the bearing in a radial direction of the rotation axis of the worm shaft and is disposed on the worm wheel side in a direction around the rotation axis of the worm shaft. With a stop,
    The elastic member locking portion rotates the worm shaft to one side in the rotation direction in a direction around the rotation axis of the worm shaft with respect to a virtual line orthogonal to the rotation axis of the worm wheel and the rotation axis of the worm shaft. The reaction force received from the worm wheel and the component component of the reaction force received from the worm wheel when the worm shaft rotates to the other side in the rotation direction are offset so as to have the same magnitude. A featured power steering device.
PCT/JP2016/079896 2015-11-24 2016-10-07 Power steering system WO2017090327A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015228338A JP2017094884A (en) 2015-11-24 2015-11-24 Power steering device
JP2015-228338 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090327A1 true WO2017090327A1 (en) 2017-06-01

Family

ID=58763813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079896 WO2017090327A1 (en) 2015-11-24 2016-10-07 Power steering system

Country Status (2)

Country Link
JP (1) JP2017094884A (en)
WO (1) WO2017090327A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108045429A (en) * 2017-12-08 2018-05-18 芜湖世特瑞转向系统有限公司 The retarder of electric boosting steering system
CN108050240A (en) * 2017-12-08 2018-05-18 芜湖世特瑞转向系统有限公司 Suitable for the tolerance compensating ring of the reducing gear of electric boosting steering system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6875963B2 (en) 2017-08-31 2021-05-26 Kyb株式会社 Power steering device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108025A (en) * 1999-10-08 2001-04-20 Koyo Seiko Co Ltd Electric steering device
JP2006111133A (en) * 2004-10-14 2006-04-27 Favess Co Ltd Electric power steering device
JP2010221891A (en) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd Power steering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108025A (en) * 1999-10-08 2001-04-20 Koyo Seiko Co Ltd Electric steering device
JP2006111133A (en) * 2004-10-14 2006-04-27 Favess Co Ltd Electric power steering device
JP2010221891A (en) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd Power steering device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108045429A (en) * 2017-12-08 2018-05-18 芜湖世特瑞转向系统有限公司 The retarder of electric boosting steering system
CN108050240A (en) * 2017-12-08 2018-05-18 芜湖世特瑞转向系统有限公司 Suitable for the tolerance compensating ring of the reducing gear of electric boosting steering system
CN108050240B (en) * 2017-12-08 2020-12-11 芜湖世特瑞转向系统有限公司 Tolerance compensation ring for speed reducing mechanism of electric power steering system
CN108045429B (en) * 2017-12-08 2020-12-11 芜湖世特瑞转向系统有限公司 Speed reducer of electric power steering system

Also Published As

Publication number Publication date
JP2017094884A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US9902421B2 (en) Worm reduction gear and steering mechanism
JP4866931B2 (en) Power steering device
JP5039036B2 (en) Power steering device, reduction mechanism and bearing holder
KR102281674B1 (en) Reducer for vehicle
US10059366B2 (en) Electrically driven power steering device
CN109080693B (en) Steering device
US20180195602A1 (en) Worm reducer
EP2684771B1 (en) Rack shaft supporting device and steering system using the same
US20170144695A1 (en) Electric power steering device
WO2017090327A1 (en) Power steering system
CN107750218B (en) Transmission for electric power steering device
JP5062465B2 (en) Steering device
JP2006232103A (en) Impact absorbing steering column device and electrically driven power steering device
US20190337554A1 (en) Electric power steering system
JP6305799B2 (en) Power steering device
JP2006213299A (en) Steering device
JP2016182888A (en) Power steering device
JP5945705B2 (en) Power steering device
JP6731164B2 (en) Worm reducer and electric power steering device
JP2012116337A (en) Telescopic shaft mechanism of steering system
JP7322417B2 (en) Worm reducer
JP7228997B2 (en) steering device
WO2024058015A1 (en) Steering device
US11965582B2 (en) Worm reducer and electric assist device
JP2009062031A (en) Electric telescopic adjustment type steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868276

Country of ref document: EP

Kind code of ref document: A1