WO2017088156A1 - 一种血压参数检测方法及用户终端 - Google Patents

一种血压参数检测方法及用户终端 Download PDF

Info

Publication number
WO2017088156A1
WO2017088156A1 PCT/CN2015/095717 CN2015095717W WO2017088156A1 WO 2017088156 A1 WO2017088156 A1 WO 2017088156A1 CN 2015095717 W CN2015095717 W CN 2015095717W WO 2017088156 A1 WO2017088156 A1 WO 2017088156A1
Authority
WO
WIPO (PCT)
Prior art keywords
ecg
ppg
signal
blood pressure
contact
Prior art date
Application number
PCT/CN2015/095717
Other languages
English (en)
French (fr)
Inventor
桂永林
杨波
占奇志
李红刚
钱泽旭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580084753.8A priority Critical patent/CN108348178B/zh
Priority to PCT/CN2015/095717 priority patent/WO2017088156A1/zh
Priority to US15/779,088 priority patent/US10758143B2/en
Priority to EP15909067.9A priority patent/EP3366202B1/en
Publication of WO2017088156A1 publication Critical patent/WO2017088156A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6898Portable consumer electronic devices, e.g. music players, telephones, tablet computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • A61B5/1172Identification of persons based on the shapes or appearances of their bodies or parts thereof using fingerprinting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a blood pressure parameter detecting method and a user terminal.
  • the existing end products for measuring blood pressure using the pulse wave transit time (PWTT) measurement method such as a combination of a tablet computer and a sphygmomanometer or a combination of a smartphone and a blood pressure detecting mobile phone case, are used by the user.
  • PWTT pulse wave transit time
  • the inventor of the present invention found in the research process that, on the one hand, the above-mentioned scheme for measuring blood pressure is complicated, the steps are cumbersome, and it is difficult to learn and master, and the subjects measuring blood pressure are often dominated by elderly people, and it is difficult for the elderly to learn and master quickly.
  • the above blood pressure measurement method On the other hand, in the existing blood pressure detecting scheme, the terminal device can also collect relevant signals and output blood pressure parameters in a state where the user does not stably contact the detecting point, which affects the accuracy of the blood pressure parameter detecting result.
  • the embodiment of the invention provides a blood pressure detecting method and a user terminal, so as to improve the convenience and accuracy of blood pressure detection of the user terminal.
  • a first aspect of the embodiments of the present invention discloses a blood pressure parameter detecting method, including:
  • the user terminal UE detects a user's ECG signal through a first electrocardiogram ECG contact and a second ECG contact connected to the ECG detection circuit of the UE, wherein the first ECG contact and the second ECG contact constitute a pair of detecting electrodes;
  • the UE starts the photoplethysmography PPG detection circuit when it is determined that the detected ECG signal matches the pre-stored reference ECG signal, and detects the user by the PPG detection point connected to the PPG detection circuit.
  • PPG signal ;
  • the UE determines that the detected PPG signal matches the pre-stored reference PPG signal.
  • the blood pressure detecting application is turned on, and the detected ECG signal and the PPG signal are processed by the blood pressure detecting application to acquire the blood pressure parameter of the user.
  • the area of the first detection area formed by the PPG detection point and the first ECG contact is smaller than a preset area threshold; the second ECG contact The second detection area is set in the UE, and the first detection area and the second detection area are different.
  • the predetermined area may be, for example, an average area of the finger end surface of an adult, which allows the user to simultaneously contact the PPG detection point and the first ECG contact with only one finger, which is advantageous for setting Reducing the number of contact positions between the user and the detection point is beneficial to improving the stability of the user's contact with the ECG detection point and the PPG detection point, thereby improving the accuracy of the UE detecting blood pressure parameters.
  • the second ECG contact is disposed in a second detection area of the UE, and the first detection area and the second detection area are different.
  • the UE is connected to the ECG detection circuit of the UE. Before the first electrocardiogram ECG contact and the second ECG contact detect the ECG signal of the user, the method further includes:
  • the UE detects an open operation instruction of a startup switch of an ECG detection circuit of the UE for the UE;
  • the ECG detecting circuit is connected to the first ECG contact and the second ECG contact, and the startup switch of the ECG detecting circuit includes at least one of the following: a pressure touch module, a physical button, and a fingerprint identification.
  • a pressure touch module a physical button
  • a fingerprint identification a fingerprint identification.
  • the UE starts the ECG detection circuit in the case that the UE detects an open operation instruction of a start switch of the ECG detection circuit of the UE.
  • a second aspect of an embodiment of the present invention discloses a user terminal UE for blood pressure detection, the UE comprising a memory and a processor coupled to the memory.
  • the memory is configured to store instructions
  • the processor is configured to execute the instructions
  • the processor runs the instructions to perform some or all of the steps of any of the methods of the first aspect of the embodiments of the present invention.
  • a third aspect of the embodiments of the present invention discloses a computer readable storage medium, wherein the computer readable storage medium stores a program code that needs to be executed when the user terminal UE is applied to blood pressure detection.
  • the program code specifically includes instructions for performing some or all of the steps of any of the methods of the first aspect of the embodiments of the present invention.
  • a fourth aspect of the embodiments of the present invention discloses a user terminal UE applied to blood pressure detection, the UE comprising a functional unit for performing some or all of the steps of any of the methods of the first aspect of the embodiments of the present invention.
  • the first detection area is in an upper frame of the UE, and the second detection area is in a bottom frame of the UE;
  • the first detection area is in a fingerprint identification module position of the UE
  • the second detection area is in an upper border of the UE
  • the first ECG contact is disposed on the fingerprint.
  • the PPG detection point is disposed on the metal drive ring or the metal frame of the module, and the PPG detection point is disposed in the RF sensor electrode array of the fingerprint recognition module.
  • the first detection area is in a preset position next to the handset of the UE, and the second detection area is in a side frame of the UE; when the user answers the phone, the user's palm and the UE When the side frame is in contact, the second detection area is contacted, and a part of the user's ear (such as the earlobe) contacts the first detection area, so that when the user makes a call, the UE can also measure the blood pressure parameter of the user, which is beneficial to improving the UE.
  • the convenience of blood pressure detection is used to measure the blood pressure parameter of the user.
  • the UE when the startup switch of the ECG detection circuit includes the pressure touch module of the UE, the UE detects an open operation instruction of the startup switch of the ECG detection circuit of the UE for the UE, including: The UE detects that the pressure parameter input by the user through the pressure touch module matches the preset pressure parameter.
  • the startup switch of the ECG detection circuit includes a physical button for turning on the ECG detection circuit at a preset position of the UE
  • the UE detects that the user initiates the ECG detection circuit for the UE.
  • the opening operation command of the switch includes: the UE capturing an open operation event of the physical button for turning on the ECG detecting circuit of the user for the preset position set in the UE.
  • the UE when the startup switch of the ECG detection circuit includes the fingerprint identification module of the UE, the UE detects an open operation instruction of the startup switch of the ECG detection circuit of the UE for the UE, including: the UE detects Fingerprint data and preset fingerprint input by the user through the fingerprint recognition module The data matches.
  • the UE first detects the ECG signal of the user by using the first ECG contact and the second ECG contact, and secondly, the UE starts the UE when it determines that the detected ECG signal matches the pre-stored reference ECG signal.
  • the PPG detection circuit detects the user's PPG signal through the PPG detection point connected to the PPG detection circuit, and again, the UE turns on the UE blood pressure detection application when it determines that the detected PPG signal matches the pre-stored reference PPG signal. And detecting the detected ECG signal and PPG signal through the blood pressure detecting application to obtain the blood pressure parameter of the user.
  • the UE may self-start the PPG detection circuit of the UE and detect the acquired PPG signal and pre-stored when detecting that the acquired ECG signal matches the pre-stored reference ECG signal.
  • the blood pressure detecting application of the UE can be self-started. It can be seen that the blood pressure parameter detecting process of the UE does not require the user to gradually and cumbersomely set the operation, which is beneficial to improving the convenience of the blood pressure detecting of the UE;
  • the UE needs to detect that the acquired ECG signal matches the pre-stored reference ECG signal to start the PPG detection circuit, and needs to detect that the acquired PPG signal matches the pre-stored reference PPG signal to start the UE.
  • the blood pressure detection application, and the matched ECG signal and the PPG signal correspond to the stable contact state of the user with the above ECG detection point and the PPG detection point, which makes the ECG signal and the PPG signal processed by the UE after starting the blood pressure detection application are stable in the user.
  • the signal acquired in the state of contacting the detection point can reduce the error signal input by the user in the unsteady contact state, and thus is advantageous for improving the accuracy of the UE blood pressure detection.
  • FIG. 1.1 is a schematic diagram of calculating a PWTT based on a PPG waveform and an ECG waveform according to an embodiment of the present invention
  • FIG. 1.2 is a schematic diagram of light intensity of a surface of a transmissive and reflective photoelectric sensor according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a simplified structural composition of a user terminal UE 100 to which a blood pressure parameter detecting method according to an embodiment of the present invention is applied, which is disclosed in the embodiment of the present invention;
  • FIG. 2.1 is a schematic diagram of positional combination of a first detection area and a second detection area according to an embodiment of the present invention
  • FIG. 2.2 is a schematic diagram of positional combination of another first detection area and a second detection area according to an embodiment of the present invention
  • FIG. 2.3 is a schematic diagram of a combination of positions of a first detection area and a second detection area according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a method for detecting blood pressure parameters disclosed in an embodiment of the present invention.
  • FIG. 3.1 is a schematic structural diagram of a UE when an ECG detection circuit startup switch is a pressure touch module according to an embodiment of the present disclosure
  • FIG. 3.2 is a schematic structural diagram of a UE when an ECG detection circuit startup switch is a physical button according to an embodiment of the present disclosure
  • FIG. 4 is a simplified functional block diagram of a blood pressure parameter detecting apparatus disclosed in an embodiment of a unit device of the present invention.
  • the embodiment of the invention provides a blood pressure detecting method and a user terminal, so as to improve the convenience and intelligence of the blood pressure detection of the user terminal and improve the user experience.
  • Blood pressure is the pressure exerted on the blood vessel wall during blood circulation. It is an important physiological parameter reflecting the function of the human circulatory system. It can indirectly map the pumping function of the heart, peripheral vascular resistance, heart rhythm, aortic elasticity, whole body blood volume and The physical state of the blood, etc.
  • non-invasive continuous blood pressure measurement methods using sensors mainly include pulse wave velocity measurement methods.
  • the pulse wave velocity measurement method is based on the characteristic that there is a linear relationship between the pulse wave velocity and the arterial blood pressure, and the measured value of the pulse wave velocity (PWV) is used to indirectly calculate the arterial blood pressure value through the artery.
  • the pulse wave transit time (PWTT) is used to calculate the pulse wave velocity. If the distance between the two points is constant, PWV is inversely proportional to PWTT. Therefore, the arterial blood pressure value can be calculated indirectly by PWTT.
  • PWTT refers to the time spent in the arterial artery from the proximal end to the other end of the telecentric wave. It is a non-invasive parameter that can respond to sudden changes in blood pressure.
  • the measurement method of pulse wave propagation time basically adopts the time delay of synchronously detecting the signals in electrocardiogram (ECG) and photoelectric volume pulse wave (PPG), that is, continuous monitoring by combining one ECG and one PPG.
  • ECG electrocardiogram
  • PPG photoelectric volume pulse wave
  • the time value between the peak point of the R wave of the ECG and the rising point of the rising branch of the PPG is usually taken as PWTT.
  • PWTT and PWV are inversely proportional, so that the distance is constant.
  • PWV can be calculated by PWTT.
  • Electrocardiogram ECG refers to the heart in each cardiac cycle, the pace of the pace, the atria, the ventricle are successively excited, accompanied by changes in the electrocardiogram bioelectricity, through the electrocardiograph to draw a variety of forms of potential changes from the body surface.
  • the heart develops a bio-power source during the excitement, generating an electrical current that flows in the surrounding tissue, so it can be formed by a pair of electrodes outside the heart (such as the first ECG contact and the second ECG contact described in the embodiments of the present invention).
  • a pair of detecting electrodes measured its time-varying potential difference.
  • PhotoPlethysmoGraphy is a non-invasive detection method for detecting changes in blood volume in living tissue by means of photoelectric means according to Lambert Beer's law and light scattering theory.
  • a beam of a certain wavelength When a beam of a certain wavelength is applied to the surface of the fingertip skin, the beam will be transmitted to the optoelectronic receiver by transmission or reflection.
  • the intensity of the light detected by the detector will be weakened, wherein the absorption of light by skin, muscle, tissue, etc. is constant throughout the blood circulation, and the blood volume in the skin changes pulsatingly under the action of the heart.
  • the peripheral blood volume is the largest, the light absorption is also the largest, and the detected light intensity is the smallest.
  • the detected light intensity is the largest, so that the light intensity received by the light receiver is Pulsating changes.
  • the change of the volumetric pulse blood flow can be obtained by converting the light intensity change signal into an electrical signal.
  • a photoelectric sensor is commonly used for acquisition.
  • the photoelectric sensor consists of a light-emitting diode (light-emitting tube) and a photo-transistor (receiver tube), which are divided into transmissive and reflective, as shown in Figure 1.2.
  • the light-emitting diode and the photo-transistor are placed on the same side of the measured tissue as a reflective type, and the incident light is received by the phototransistor on the same side after being scattered by the tissue.
  • the PPG detection point described in the embodiment of the present invention may be, for example, the reflective type. photoelectric sensor.
  • FIG. 2 is a block diagram showing a simplified structural composition of a user terminal UE 100 to which a blood pressure parameter detecting method according to an embodiment of the present invention is applied.
  • the UE 100 includes a processor 101 that can couple one or more data storage media.
  • the data storage medium may include a storage medium Storage Medium 111 and at least one memory Memroy Unit 102.
  • the storage medium 111 can be read-only, such as a read-only memory ROM, or readable/writable, such as a hard disk or flash memory.
  • the memory 102 can be, for example, a random access memory RAM.
  • the memory 102 can be combined with the processor 101, or integrated in the processor 101, or composed of a single unit or a plurality of units.
  • the processor 101 is a control center of the UE 100, and specifically provides time series and process equipment for executing instructions, completing interrupt events, providing time functions, and other functions.
  • the processor 101 includes one or more central processing unit CPUs, such as CPU0 and CPU1 as described in FIG.
  • the UE 100 may further include multiple processors, such as the processor 101 and the processor 112 described in FIG. 2. Each processor can be single core or multiple cores.
  • a particular implementation of a processor or memory described herein includes a general purpose component or a special purpose component that is configured to perform a certain task at a particular time, the specialized component being produced for performing a dedicated task.
  • the processor described in the embodiments of the present invention may include at least one electronic device, circuit, and/or processor chip configured to process data (such as computer program instructions).
  • Program code executed by the processor 101, and/or the processor 112, or a single CPU of the processor 101 and/or the processor 112 may be stored in the memory 102 or the storage medium 111.
  • program code (such as an ECG signal detection module) stored in the storage medium 111 may be copied into the memory 102 to facilitate execution of the program code by the processor.
  • At least one processor runs a kernel module (e.g., including an open operating system in the following trademarks kernel module: LINUX TM, WINDOWS TM, ANDROID TM, IOS TM , etc.), the kernel module of the other programs for controlling the operation of the UE 100, Control communication with external devices and control utilization of device resources.
  • a kernel module e.g., including an open operating system in the following trademarks kernel module: LINUX TM, WINDOWS TM, ANDROID TM, IOS TM , etc.
  • the UE 100 further includes a first ECG contact 103, a PPG detection point 104, a second ECG contact 105, an ECG detection circuit 106 coupled to the first ECG contact 103, the second ECG contact 105, and The PPG detection circuit is connected to the PPG detection circuit 107.
  • the detection electrode composed of the first ECG contact 103 and the second ECG contact 105 is configured to detect a user ECG signal, and the PPG detection point is used to detect a user PPG signal; the ECG detection circuit 106 and the The PPG detecting circuit 107 may specifically be composed of a primary amplifying circuit, a high-pass filter circuit, a low-pass cascade circuit, a second-order amplification circuit, and a potential translation circuit.
  • an area of the first detection area formed by the PPG detection point 104 and the first ECG contact 103 is smaller than a preset area threshold; and the second ECG contact 105 is disposed in the second part of the UE 100.
  • the detection area is different, and the first detection area and the second detection area are different.
  • the predetermined area may be, for example, an average area of the finger end surface of an adult, which allows the user to simultaneously contact the PPG detection point and the first ECG contact with only one finger, which is advantageous for setting Reducing the number of contact positions between the user and the detection point is beneficial to improving the stability of the user's contact with the ECG detection point and the PPG detection point, thereby improving the accuracy of the UE detecting blood pressure parameters.
  • the combination form of the first detection area and the second detection area can be various.
  • the first detection area may be in an upper frame of the UE 100, and the second detection area may be in a lower frame of the UE 100, and the material of the upper and lower frames is preferably metal. Material.
  • the first detection area may be in a fingerprint identification module position of the UE 100 (such as a home key position, directly below a mobile phone back camera, etc.),
  • the second detection area may be located in the upper border of the UE 100, where the first ECG contact 103 and the PPG detection point 104 may be disposed in the fingerprint identification module of the UE 100, the first ECG
  • the contact point 103 can be specifically disposed on the metal drive ring or the metal frame of the fingerprint recognition module.
  • the PPG detection point 104 can be specifically disposed in the RF sensor electrode array of the fingerprint recognition module.
  • the first detection area may be in a preset position next to the handset of the UE 100, and the second detection area may be in a side border of the UE 100, and the user is connected.
  • the telephone when the palm of the user is in contact with the side frame of the UE 100, is capable of contacting the second detection area, and a part of the user's ear (such as an earlobe) can simultaneously contact the first detection area.
  • the setting scheme that the area of the first detection area is smaller than the preset area threshold is only a preferred embodiment, and the detection position of the PPG detection point 104 and the detection position of the first ECG detection point 103 are It may be two locations on the UE 100 that are far away from each other.
  • the present invention does not uniquely limit the detection position of the PPG detection point 104 and the detection position of the first ECG contact 103.
  • the UE 100 may further include a receiving/transmitting circuit 108 and an antenna 109, and the receiving/transmitting circuit 108 and the antenna 109 are used to implement connection of the UE 100 to an external network.
  • the constituent units of the UE 100 described above may be coupled to each other through a communication bus, and the bus includes at least one of the following: a data bus, an address bus, a control bus, an expansion bus, and a local bus.
  • the UE 100 is only an example physical device device disclosed in the embodiment of the present invention.
  • the UE 100 described in the embodiment of the present invention may be, for example, a smart phone, a tablet computer, a wearable device, a notebook computer, or the like.
  • the electronic device of the blood pressure detecting application is installed, and the embodiment of the present invention does not uniquely limit the physical device form of the UE.
  • the memory 102 in the UE 100 shown in FIG. 2 stores a program to be run, and the program specifically includes a kernel module of an operating system of the UE, and at least one software module (ECG signal detection module, PPG detection circuit startup module, PPG signal detection) Module, blood pressure detection application startup module, blood pressure detection program, etc.).
  • the UE 100 is capable of running the program (as well as other programs) to obtain blood pressure parameters of the user.
  • the processor 101 of the UE 100 executes an ECG signal detection module in the memory 102, and detects a user's ECG signal through a first ECG contact and a second ECG contact connected to the ECG detection circuit 106 of the UE 100, Wherein the first ECG contact and the second ECG contact constitute a pair of detection electrodes;
  • the processor 101 of the UE 100 determines the detected ECG signal and the pre-stored reference When the ECG signal is matched, the PPG detection circuit startup module in the memory 102 is executed to start the PPG detection circuit of the UE;
  • the processor 101 of the UE 100 executes a PPG signal detection module in the memory 102, and detects a PPG signal of the user by using a PPG detection point connected to the PPG detection circuit;
  • the processor 101 of the UE 100 when it is determined that the detected PPG signal matches the pre-stored reference PPG signal, executes the blood pressure detecting application starting module in the memory 102, and starts the blood pressure detecting application of the UE. ;
  • the processor 101 of the UE 100 invokes a blood pressure detecting program in the memory 102, and processes the detected ECG signal and PPG signal by the blood pressure detecting application to acquire a blood pressure parameter of the user.
  • the blood pressure detecting program may specifically include a pre-stored PWTT calculation program and a blood pressure parameter calculation program, where the PWTT calculation program may specifically include a signal-by-beat separation subroutine, a low-pass filter subroutine, a de-limit drift subroutine, The R wave peak point detection subroutine of the ECG signal, the rising point detection subroutine of the PPG signal, and the PWTT calculation subroutine, etc., wherein the blood pressure calculation formula included in the blood pressure calculation program may specifically be as follows:
  • the DBP is a diastolic pressure
  • the DBP o is a calibrated diastolic pressure
  • the SBP is a systolic pressure
  • the SBP o is a calibrated systolic pressure
  • the PWTT is a pulse wave propagation time
  • the PWTT o calibrates a pulse wave propagation time
  • A is a constant.
  • the UE first detects the ECG signal of the user through the first ECG contact and the second ECG contact, and secondly, the UE starts the PPG of the UE if it determines that the detected ECG signal matches the pre-stored reference ECG signal. Detecting the circuit and detecting the PPG signal of the user through the PPG detection point connected to the PPG detection circuit, and again, the UE turns on the blood pressure detection application of the UE when it determines that the detected PPG signal matches the pre-stored reference PPG signal, and The detected ECG signal and PPG signal are processed by a blood pressure detection application to obtain a blood pressure parameter of the user.
  • the UE detects the acquired ECG signal and When the pre-stored reference ECG signal is matched, the PPG detection circuit of the UE may be self-started, and when the acquired PPG signal is detected to match the pre-stored reference PPG signal, the blood pressure detection application of the UE may be self-started.
  • the blood pressure parameter detection process of the UE does not require the user to gradually and tediously set the operation, which is beneficial to improving the convenience of the blood pressure detection of the UE;
  • the UE needs to detect that the acquired ECG signal matches the pre-stored reference ECG signal to start the PPG detection circuit, and needs to detect that the acquired PPG signal matches the pre-stored reference PPG signal to start the UE.
  • the blood pressure detection application, and the matched ECG signal and the PPG signal correspond to the stable contact state of the user with the above ECG detection point and the PPG detection point, which makes the ECG signal and the PPG signal processed by the UE after starting the blood pressure detection application are stable in the user.
  • the signal acquired in the state of contacting the detection point can reduce the error signal input by the user in the unsteady contact state, and thus is advantageous for improving the accuracy of the UE blood pressure detection.
  • the UE 100 further includes a startup switch of the ECG detection circuit 106, where the startup switch includes at least one of the following: a pressure touch module, a physical button, and a fingerprint recognition module;
  • the processor 101 is further configured to:
  • the ECG detection circuit 106 is activated in the event that a user's open operation command for the start switch of the ECG detection circuit 106 of the UE 100 is detected.
  • the above software modules may be comprised of one or more sets of instructions by which the UE performs one or more sub-steps consistent with the functions described above by running the one or more sets of instructions. These sub-steps will be described in detail in the subsequent method embodiments of the present invention.
  • the method embodiment of the present invention discloses a blood pressure parameter detecting method. It should be noted that although the blood pressure parameter detecting method disclosed in the embodiment of the present invention can be implemented by the physical device of the example UE 100 as shown in FIG. 2, the above-described example UE 100 does not constitute the method for detecting the blood pressure parameter disclosed in the method embodiment of the present invention. The only limit.
  • the blood pressure parameter detecting method disclosed in the method embodiment includes the following steps:
  • the UE passes the first ECG contact and the second ECG connected to the ECG detection circuit of the UE.
  • the contact detects the ECG signal of the user;
  • the UE starts the PPG detection circuit of the UE, and detects the PPG of the user by using the PPG detection point connected to the PPG detection circuit, if the UE determines that the detected ECG signal matches the pre-stored reference ECG signal. signal;
  • the pre-stored reference ECG signal may include multiple sets of ECG signals pre-recorded by the user in different states and different time periods, or may be multiple groups of different user groups pre-stored by the developer when the UE leaves the factory.
  • the ECG signal may also be a plurality of sets of ECG signals that are pushed by the cloud server and matched with physiological parameters of the user, and the physiological parameters of the user may be, for example, gender, age, and the like.
  • the specific manner in which the UE determines that the detected ECG signal matches the pre-stored reference ECG signal may be:
  • the UE extracts the feature signal in the detected ECG signal, and processes the extracted feature signal to obtain a potential difference value (absolute value). If the potential difference value matches the potential difference value extracted from the pre-stored reference ECG signal, the UE determines The detected ECG signal matches the pre-stored reference ECG signal. or,
  • the UE draws an amplitude-time waveform diagram of the ECG signal based on the detected ECG signal, if the waveform map matches the amplitude-time waveform diagram of the pre-stored reference ECG signal (eg, the period is similar, the waveform changes match, etc.) Then, the UE determines that the detected ECG signal matches the pre-stored reference ECG signal.
  • the UE starts the blood pressure detecting application of the UE, and processes the detected ECG signal and the PPG by using the blood pressure detecting application, if the UE determines that the detected PPG signal matches the pre-stored reference PPG signal. Signal to obtain the user's blood pressure parameters.
  • the specific manner in which the UE determines that the detected PPG signal matches the pre-stored reference PPG signal may be:
  • the UE extracts the feature signal in the detected PPG signal, and processes the extracted feature signal to obtain an amplitude difference (absolute value), if the amplitude difference and the amplitude difference value extracted from the pre-stored reference PPG signal If matched, the UE determines that the detected PPG signal matches the pre-stored reference PPG signal. or,
  • the UE draws a magnitude-time waveform diagram of the PPG signal based on the detected PPG signal, if the waveform map matches the amplitude-time waveform diagram of the pre-stored reference PPG signal (eg, the period is similar, the waveform changes are consistent, etc.) Then, the UE determines that the detected PPG signal matches the pre-stored reference PPG signal.
  • the display state and the display content of the display screen of the UE may be various.
  • the display screen of the UE may be in a state of interest screen, that is, the UE may be in a standby state to directly open the blood pressure detecting application from the background, thereby improving the convenience of the UE detecting blood pressure. Sex.
  • the display screen of the UE when the UE turns on the blood pressure detecting application of the UE, the display screen of the UE may be in a bright screen state, and the display screen may specifically display an application interface of the blood pressure detecting application, and may also show that the UE is currently Other applications that are running.
  • the display interface of the UE displays the contact call information, and the UE can open the blood pressure detection application from the background.
  • the UE determines that the detected PPG signal matches the pre-stored reference PPG signal, then lights up the screen and turns on the blood pressure detecting application, and the UE can further output on the display screen.
  • the prompt information for reminding the user that blood pressure or the like is being measured or the UE may also display a real-time change graph of blood pressure on the display screen, such as displaying the blood pressure parameter of the user in a digital scrolling manner, or the UE may also be on the display screen.
  • the interaction diagram between the UE and the user's blood pressure measurement is displayed to remind the user to stably contact the ECG contact and the PPG detection point, which is beneficial to obtain accurate blood pressure detection results.
  • the foregoing detected ECG signal and the PPG signal may be specifically stored in a buffer of the UE in the form of a fused signal, and the specific manner in which the UE processes the detected ECG signal and the PPG signal by the blood pressure detecting application to obtain the blood pressure parameter of the user.
  • it can be:
  • the UE firstly processes the acquired fusion signal according to the pre-stored pulse wave transmission time PWTT calculation strategy to obtain the PWTT. Secondly, the UE calculates the user's blood pressure parameter according to the PWTT and the pre-stored blood pressure calculation strategy.
  • the specific manner in which the UE processes the acquired fusion signal according to the pre-stored pulse wave transmission time PWTT to obtain the PWTT is:
  • the UE first separates the acquired fused signal by beat to obtain the separated ECG signal and the separated PPG signal; secondly, the UE performs high frequency for the separated ECG signal and the separated PPG signal respectively.
  • the noise filtering process is performed to obtain the denoised ECG signal and the denoised PPG signal; again, the UE performs a baseline removal drift process on the denoised ECG signal and the denoised PPG signal to obtain the ECG after the baseline drift is removed.
  • Signal and PPG signal after baseline drift removal again, the UE processes the ECG signal after baseline drift removal and removes the PPG signal after baseline drift based on the pre-stored differential threshold algorithm to obtain the R wave peak point of the ECG signal and the rise of the PPG signal.
  • the UE determines the PWTT based on the determined R wave peak point of the ECG signal and the rising edge turning point of the PPG signal.
  • the UE first detects the ECG signal of the user by using the first ECG contact and the second ECG contact, and secondly, the UE determines that the detected ECG signal matches the pre-stored reference ECG signal.
  • the PPG detection circuit of the UE is started, and the PPG signal of the user is detected by the PPG detection point connected to the PPG detection circuit.
  • the UE starts the UE when it determines that the detected PPG signal matches the pre-stored reference PPG signal.
  • the blood pressure detection application and processing of the detected ECG signal and PPG signal by the blood pressure detection application to obtain the user's blood pressure parameters.
  • the UE may self-start the PPG detection circuit of the UE and detect the acquired PPG signal and pre-stored when detecting that the acquired ECG signal matches the pre-stored reference ECG signal.
  • the blood pressure detecting application of the UE can be self-started. It can be seen that the blood pressure parameter detecting process of the UE does not require the user to gradually and cumbersomely set the operation, which is beneficial to improving the convenience of the blood pressure detecting of the UE;
  • the UE needs to detect that the acquired ECG signal matches the pre-stored reference ECG signal to start the PPG detection circuit, and needs to detect that the acquired PPG signal matches the pre-stored reference PPG signal to start the UE.
  • the blood pressure detection application, and the matched ECG signal and the PPG signal correspond to the stable contact state of the user with the above ECG detection point and the PPG detection point, which makes the ECG signal and the PPG signal processed by the UE after starting the blood pressure detection application are stable in the user.
  • the signal acquired in the state of contacting the detection point can reduce the error signal input by the user in the unsteady contact state, and thus is advantageous for improving the accuracy of the UE blood pressure detection.
  • the UE may further Do the following:
  • the UE detects an open operation instruction of the start switch of the ECG detection circuit of the UE for the UE; wherein
  • the ECG detection circuit is connected to the first ECG contact and the second ECG contact, and the startup switch of the ECG detection circuit includes at least one of the following: a pressure touch module, a physical button, and a fingerprint recognition module.
  • the UE starts the ECG detection circuit in the case that the user detects an open operation command of the start switch of the ECG detection circuit of the UE.
  • the startup switch of the ECG detection circuit includes a pressure touch module of the UE, and the UE detects that the user activates an operation command for the startup switch of the ECG detection circuit of the UE: the UE detects that the user passes the pressure touch
  • the pressure parameters input by the control module are matched with the preset pressure parameters.
  • the pressure touch module of the UE may be specifically disposed directly under the camera on the back of the UE, wherein the first ECG contact is disposed on the metal frame of the pressure touch module, and the PPG detection is performed.
  • the point is disposed in the pressure sensor array of the pressure touch module, and the second ECG contact is disposed at a preset position of the side frame of the UE, and the preset pressure parameter is a pressure interval of 5N to 10N (this interval is beneficial to ensure user stability)
  • the preset pressure parameter is a pressure interval of 5N to 10N (this interval is beneficial to ensure user stability)
  • the UE detects that the user turns on the operation instruction of the startup switch of the ECG detection circuit of the UE.
  • the specific manner is that the UE captures an open operation event of the physical button for turning on the ECG detection circuit of the user for the preset position set in the UE.
  • the physical button of the preset position of the UE for turning on the ECG detection circuit is specifically disposed on the upper side frame of the UE, near the position of the earphone hole, and the specific form of the physical button may be, for example, a touch.
  • a point switch (a pressing operation corresponds to an opening operation event of the ECG detecting circuit), a joystick (a toggle operation corresponds to an opening operation event of the ECG detecting circuit), a knob (a rotating operation corresponds to an opening operation event of the ECG detecting circuit), and the like
  • an indicator light can be further disposed nearby, which can visually display the ON working state and the OFF working state of the ECG detecting circuit.
  • the UE detects that the user initiates an operation command for the startup switch of the PPG detection circuit of the UE, and the UE detects that the user passes the fingerprint identification.
  • the fingerprint data input by the module is matched with the preset fingerprint data. Match. After the UE identifies the user fingerprint data, the identity of the current user can be confirmed, and the blood pressure parameter detected by the UE can be accurately uploaded to the database associated with the confirmed user identity.
  • the fingerprint identification module of the UE is set at the Home key position below the display screen on the front of the UE. If the UE detects that the fingerprint data input by the user through the fingerprint recognition module is related to the preset fingerprint data, If it matches, the UE starts the ECG detection circuit.
  • the switch state of the ECG detection circuit in the embodiment of the present invention may be flexibly set according to a preset startup policy, and the startup switch of the ECG detection circuit described in the foregoing optional embodiment may be the foregoing preset.
  • the startup strategy is an alternative in the case where the ECG detection circuit is normally closed.
  • the preset startup strategy is that the ECG detection circuit is normally open, it is obviously also possible for the UE not to set the startup switch for starting the ECG detection circuit.
  • the UE may perform the following operations:
  • the UE broadcasts the detected blood pressure parameter of the user through the speaker;
  • the UE displays the blood pressure parameter of the detected user on the display screen of the UE;
  • the UE uploads physiological data carrying the user identity or the UE identity (such as the SIM card number, the user name, and the like) and the blood pressure parameter of the detected user to the server, and the server may further share the physiological data to the pre-bound On several terminal devices, or transmitted to the medical service information management system for analyzing the blood pressure parameters of the user to implement monitoring the physiological state of the user.
  • physiological data carrying the user identity or the UE identity (such as the SIM card number, the user name, and the like) and the blood pressure parameter of the detected user to the server, and the server may further share the physiological data to the pre-bound On several terminal devices, or transmitted to the medical service information management system for analyzing the blood pressure parameters of the user to implement monitoring the physiological state of the user.
  • the UE may multiplex the startup switch for starting the ECG detection circuit described in the foregoing optional embodiment (only Limited to the case where the start switch and the first ECG contact and the PPG detection point are fused together, for example, multiplexing the above-mentioned pressure touch module start switch, that is, after the UE determines that the detected PPG signal matches the pre-stored reference PPG signal, Continue to detect whether the pressure parameter input by the user through the pressure touch module matches the preset pressure parameter. If it matches, the PPG detection circuit is activated.
  • the output may be used to remind the user to stably contact the first detection area and the first
  • the prompt information of the second detection area is thus beneficial to further ensure stable contact between the user and the first detection area and the second detection area, thereby improving the accuracy of blood pressure detection.
  • the steps performed in the UE may be performed by the UE by executing the foregoing software. Module to achieve.
  • the step S301 can be implemented by the UE performing the ECG signal detecting module shown in FIG. 2;
  • the step S302 can be implemented by the UE performing the PPG circuit starting module and the PPG signal detecting module shown in FIG. 2;
  • S303 can be implemented by the UE executing the blood pressure detecting application starting module shown in FIG. 2 and calling the blood pressure detecting program.
  • the blood pressure parameter detecting method described in the embodiment of the method of the present invention can also be realized by the apparatus disclosed in the functional unit device embodiment described below.
  • the device comprises a blood pressure parameter detecting device as shown in Figure 4, which is capable of implementing the method steps as described in Figure 3.
  • FIG. 4 is a simplified functional block diagram of a blood pressure parameter detecting apparatus 400 disclosed in the embodiment of the functional device of the present invention.
  • the image information processing apparatus 400 includes an ECG signal detecting unit 401, an ECG circuit starting unit 402, a PPG signal detecting unit 403, a blood pressure detecting application starting unit 404, and a signal processing unit 405, wherein:
  • the ECG signal detecting unit 401 is configured to detect a user's ECG signal by a first electrocardiogram ECG contact and a second ECG contact connected to an ECG detecting circuit of the UE, wherein the first ECG contact and the The second ECG contact constitutes a pair of detecting electrodes;
  • the ECG circuit starting unit 402 is configured to: when it is determined that the ECG signal detected by the ECG signal detecting unit 401 matches the pre-stored reference ECG signal, activate the photoplethysmography PPG detecting circuit;
  • the PPG signal detecting unit 403 is configured to detect a PPG signal of the user by using a PPG detection point connected to the PPG detecting circuit;
  • the blood pressure detecting application starting unit 404 is configured to: when it is determined that the PPG signal detected by the PPG signal detecting unit 403 matches the pre-stored reference PPG signal, turn on the blood pressure detecting application;
  • the signal processing unit 405 applies an ECG signal and a PPG signal detected by the blood pressure detecting application to acquire a blood pressure parameter of the user.
  • the blood pressure parameter detecting device further includes:
  • a switch enable detecting unit 406 configured to detect, before the ECG signal detecting unit detects a user's ECG signal by using a first electrocardiogram ECG contact and a second ECG contact connected to the ECG detecting circuit of the UE, An open operation command of a start switch of an ECG detection circuit of the UE; wherein the ECG detection circuit connects the first ECG contact and the second ECG contact,
  • the startup switch of the ECG detection circuit includes at least one of the following: a pressure touch module, a physical button, and a fingerprint recognition module;
  • the ECG detecting circuit starting unit 407 is configured to activate the ECG detecting circuit if the switch start detecting unit detects an open operation command of a start switch of the ECG detecting circuit of the UE by the user.
  • the blood pressure parameter detecting device 400 described in the embodiment of the functional unit device of the present invention is presented in the form of a functional unit.
  • the term "unit” as used herein shall be understood to mean the broadest possible meaning, and the object for implementing the functions described for each "unit” may be, for example, an integrated circuit ASIC, a single circuit for executing one or more software or firmware.
  • a processor shared, dedicated or chipset
  • memory of the program combinatorial logic, and/or other suitable components that perform the functions described above.
  • the hardware carrier of the blood pressure parameter detecting device 400 can be composed of any of the UEs 100 shown in any of FIG. 2, FIG. 2.1, FIG. 2.2, FIG. 2.3, FIG. 3.1, and FIG.
  • the function of the ECG signal detecting unit 401 may be implemented by the processor 101, the memory 102, the first ECG contact 103, the second ECG contact 105, and the ECG detecting circuit 106 in the UE 100, specifically
  • the processor 100 executes an ECG signal detection module in the memory 102, and detects an ECG signal of the user through the ECG detection circuit 106 and the first ECG contact 104 and the second ECG contact 105;
  • the function of the PPG circuit starting unit 402 can be implemented by the processor 101, the memory 102, and the PPG detecting circuit 107 in the UE 100. Specifically, the processor 100 executes the PPG circuit starting module in the memory 102 to start the PPG detection. Circuit 107;
  • the function of the PPG signal detecting unit 403 may be implemented by the processor 101, the memory 102, the PPG detecting circuit 107, and the PPG detecting point 104 in the UE 100, specifically, performing PPG signal detection in the memory 102 by the processor 100.
  • the function of the blood pressure detecting application starting unit 404 can be implemented by the processor 101 and the memory 102 in the UE 100, in particular, performing the blood pressure check in the memory 102 by the processor 100. Test the application startup module to enable the blood pressure detection application;
  • the function of the signal processing unit 405 may be implemented by the processor 101 and the memory 102 in the UE 100, in particular, the processor 100 executes a blood pressure detecting program in the memory 102, and processes the detected ECG signal and PPG. Signal to obtain the user's blood pressure parameters.
  • the UE first detects the ECG signal of the user by using the first ECG contact and the second ECG contact, and secondly, the UE determines that the detected ECG signal matches the pre-stored reference ECG signal.
  • the PPG detection circuit of the UE is started, and the PPG signal of the user is detected by the PPG detection point connected to the PPG detection circuit.
  • the UE starts the UE when it determines that the detected PPG signal matches the pre-stored reference PPG signal.
  • the blood pressure detection application and processing of the detected ECG signal and PPG signal by the blood pressure detection application to obtain the user's blood pressure parameters.
  • the UE may self-start the PPG detection circuit of the UE and detect the acquired PPG signal and pre-stored when detecting that the acquired ECG signal matches the pre-stored reference ECG signal.
  • the blood pressure detecting application of the UE can be self-started. It can be seen that the blood pressure parameter detecting process of the UE does not require the user to gradually and cumbersomely set the operation, which is beneficial to improving the convenience of the blood pressure detecting of the UE;
  • the UE needs to detect that the acquired ECG signal matches the pre-stored reference ECG signal to start the PPG detection circuit, and needs to detect that the acquired PPG signal matches the pre-stored reference PPG signal to start the UE.
  • the blood pressure detection application, and the matched ECG signal and the PPG signal correspond to the stable contact state of the user with the above ECG detection point and the PPG detection point, which makes the ECG signal and the PPG signal processed by the UE after starting the blood pressure detection application are stable in the user.
  • the signal acquired in the state of contacting the detection point can reduce the error signal input by the user in the unsteady contact state, and thus is advantageous for improving the accuracy of the UE blood pressure detection.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Vascular Medicine (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Multimedia (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种用户终端UE(100)包括:存储有可执行程序代码的存储器(102),第一ECG触点(103)、第二ECG触点(105)、与第一ECG触点(103)和第二ECG触点(105)连接的ECG检测电路(106)、PPG检测点(104)、与PPG检测点(104)连接的PPG检测电路(107);与存储器(102)、ECG检测电路(106)以及PPG检测电路(107)耦合的处理器(101);处理器(101)调用存储器(102)中存储的可执行代码,执行如下步骤:通过第一ECG触点(103)和第二ECG触点(105)检测用户的ECG信号,其中第一ECG触点(103)和第二ECG触点(105)组成一对检测电极;在判断出检测到的ECG信号与预存的参考ECG信号匹配的情况下,启动PPG检测电路(107),并通过PPG检测点(104)检测用户的PPG信号;在判断出检测到的PPG信号与预存的参考PPG信号匹配的情况下,开启血压检测应用,并通过检测到的ECG信号和PPG信号获取用户的血压参数。

Description

一种血压参数检测方法及用户终端 技术领域
本发明涉及电子技术领域,具体涉及了一种血压参数检测方法及用户终端。
背景技术
现有的利用脉搏波传播时间(Pulse wave transit time,PWTT)测量方法的测量血压的终端产品中,例如平板电脑与血压计组合产品或者智能手机与血压检测手机壳组合产品,用户在使用该类终端产品测量血压时,一般需要执行以下操作:主设备解锁→打开应用→建立与从设备的通信连接→选择参数(例如选择用户)→启动测量→根据提示将手放到测量点,然后设备才能完成测量并且显示测量结果。
本发明的发明人在研究过程中发现,一方面,上述测量血压的方案操作复杂,步骤繁琐,不易学习和掌握,且测量血压的对象往往以老年人群体为主,老人很难快速学习和掌握上述血压测量方法。另一方面,现有血压检测方案中,用户在未稳定接触检测点的状态下,终端设备也能够采集相关信号并输出血压参数,这影响了血压参数的检测结果的准确性。
发明内容
本发明实施例提供一种血压检测方法及用户终端,以期提高用户终端血压检测的便捷性和精确度。
本发明实施例第一方面公开了一种血压参数检测方法,包括:
用户终端UE通过与所述UE的ECG检测电路连接的第一心电图ECG触点和第二ECG触点检测用户的ECG信号,其中,所述第一ECG触点和所述第二ECG触点组成一对检测电极;
所述UE在判断出所述检测到的ECG信号与预存的参考ECG信号匹配的情况下,启动光电容积脉搏波描记PPG检测电路,并通过与所述PPG检测电路连接的PPG检测点检测用户的PPG信号;
所述UE在判断出所述检测到的PPG信号与预存的参考PPG信号匹配的情 况下,开启血压检测应用,并通过所述血压检测应用处理检测到的ECG信号和PPG信号以获取用户的血压参数。
本发明实施例第一方面第一种可能的实现方式中,所述PPG检测点和所述第一ECG触点形成的第一检测区域的面积小于预设面积阈值;所述第二ECG触点设置于UE的第二检测区域,且第一检测区域和第二检测区域不同。例如,上述预设面积例如可以是成年人的手指指端表面的平均面积,这使得用户仅需要一根手指即可同时接触所述PPG检测点和所述第一ECG触点,这样设置有利于减少用户与检测点的接触位置的数量,有利于提升用户接触ECG检测点和PPG检测点的稳定性,从而提升UE检测血压参数的精确度。
所述第二ECG触点设置于所述UE的第二检测区域,且所述第一检测区域和所述第二检测区域不同。
结合本发明实施例第一方面或第一方面第一种可能的实现方式,在本发明实施例第一方面第二种可能的实现方式中,所述UE通过与所述UE的ECG检测电路连接的第一心电图ECG触点和第二ECG触点检测用户的ECG信号之前,所述方法还包括:
所述UE检测用户针对所述UE的ECG检测电路的启动开关的开启操作指令;
其中,所述ECG检测电路连接所述第一ECG触点和所述第二ECG触点,所述ECG检测电路的启动开关至少包括以下任意一种:压力触控模组、物理按键以及指纹识别模组;
所述UE在检测到用户针对所述UE的ECG检测电路的启动开关的开启操作指令的情况下,启动所述ECG检测电路。
本发明实施例第二方面公开了一种用于血压检测的用户终端UE,该UE包括存储器以及和所述存储器耦合的处理器。所述存储器被配置用于存储指令,处理器被配置用于运行所述指令,所述处理器运行所述指令以执行本发明实施例第一方面任一方法的部分或全部步骤。
本发明实施例第三方面公开了一种计算机可读存储介质,其中,该计算机可读存储介质存储有用户终端UE应用于血压检测时所需要执行的程序代码, 该程序代码具体包括用于执行本发明实施例第一方面任一方法的部分或全部步骤的指令。
本发明实施例第四方面公开了一种应用于血压检测的用户终端UE,所述UE包括用于执行本发明实施例第一方面任一方法的部分或全部步骤的功能单元。
在一些可能的实现方式中,所述第一检测区域处于所述UE的上边框,所述第二检测区域处于所述UE的下边框;
在一些可能的实现方式中,所述第一检测区域处于所述UE的指纹识别模组位置,所述第二检测区域处于UE的上边框其中,所述第一ECG触点设置于所述指纹识别模组的金属驱动环或金属边框上,所述PPG检测点设置于所述指纹识别模组的射频传感电极阵列中。
在一些可能的实现方式中,所述第一检测区域处于所述UE的听筒旁的预设位置,所述第二检测区域处于所述UE的侧边框;用户接电话时,用户的手掌与UE侧边框接触时,接触所述第二检测区域,用户的耳朵某一部分(如耳垂)接触到上述第一检测区域,如此,用户打电话时,UE也可以测量用户的血压参数,有利于提升UE血压检测的便捷性。
在一些可能的实现方式中,所述ECG检测电路的启动开关包括UE的压力触控模组时,所述UE检测到用户针对UE的ECG检测电路的启动开关的开启操作指令,包括:所述UE检测到用户通过压力触控模组输入的压力参数与预设压力参数相匹配。
在一些可能的实现方式中,所述ECG检测电路的启动开关包括设置于UE的预设位置的用于开启ECG检测电路的物理按键时,所述UE检测到用户针对UE的ECG检测电路的启动开关的开启操作指令,包括:所述UE捕捉到用户针对设置于UE的预设位置的用于开启ECG检测电路的物理按键的开启操作事件。
在一些可能的实现方式中,所述ECG检测电路的启动开关包括UE的指纹识别模组时,所述UE检测到用户针对UE的ECG检测电路的启动开关的开启操作指令,包括:UE检测到用户通过指纹识别模组输入的指纹数据与预设指纹 数据相匹配。
本发明实施例中,UE首先通过第一ECG触点和第二ECG触点检测用户的ECG信号,其次,UE在判断出检测到的ECG信号与预存的参考ECG信号匹配的情况下,启动UE的PPG检测电路,并通过与PPG检测电路连接的PPG检测点检测用户的PPG信号,再次,UE在判断出检测到的PPG信号与预存的参考PPG信号匹配的情况下,开启UE的血压检测应用,并通过血压检测应用处理检测到的ECG信号和PPG信号以获取用户的血压参数。
一方面,上述UE的血压参数检测过程中,UE在检测到获取的ECG信号与预存的参考ECG信号匹配的情况下,可以自启动UE的PPG检测电路,并在检测到获取的PPG信号与预存的参考PPG信号匹配的情况下,可以自启动UE的血压检测应用,可见,上述UE的血压参数检测过程无需用户逐步冗繁的设置操作,有利于提升UE血压检测的便捷性;
另一方面,上述UE在检测血压的过程中,需要检测到获取的ECG信号与预存的参考ECG信号匹配以启动PPG检测电路,需要检测到获取的PPG信号与预存的参考PPG信号匹配以启动UE的血压检测应用,而匹配的ECG信号和PPG信号对应用户与上述ECG检测点和PPG检测点的稳定接触状态,这使得UE启动血压检测应用后所处理的ECG信号和PPG信号均是在用户稳定接触检测点的状态下获取的信号,能够减少用户在非稳定接触状态下输入的误差信号,故而有利于提升UE血压检测的精确度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1.1是本发明实施例公开的一种基于PPG波形和ECG波形计算PWTT的示意图;
图1.2是本发明实施例公开的一种透射式和反射式光电传感器采集体表光强示意图;
图2是本发明实施例公开的一种应用本发明实施例公开的血压参数检测方法的用户终端UE 100的简化结构组成框图;
图2.1是本发明实施例公开的一种第一检测区域和第二检测区域的位置组合示意图;
图2.2是本发明实施例公开的另一种第一检测区域和第二检测区域的位置组合示意图;
图2.3是本发明实施例公开的又一种第一检测区域和第二检测区域的位置组合示意图;
图3是本发明实施例公开的一种血压参数检测方法的流程示意图;
图3.1是本发明实施例公开的一种ECG检测电路启动开关为压力触控模组时UE的结构示意图;
图3.2是本发明实施例公开的一种ECG检测电路启动开关为物理按键时UE的结构示意图;
图4是本发明单元装置实施例公开的一种血压参数检测装置的简化功能单元框图。
具体实施方式
本发明实施例提供血压检测方法及用户终端,以期提高用户终端血压检测的便捷性和智能性,提升用户体验。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对 于这些过程、方法、产品或设备固有的其它步骤或单元。
以下分别进行详细说明。
为了便于理解本发明实施例,下面先对本发明实施例中涉及的血压检测原理进行描述。血压是血液循环时对血管壁所施加的压力,它是反映人体循环系统机能的重要生理参数,能够间接的映射出心脏的泵血功能、外周血管阻力、心律、大动脉弹性、全身的血容量以及血液的物理状态等。目前利用传感器无创连续的血压测量方法主要有脉搏波速测定法。其中,脉搏波速测定法是基于脉搏波的传播速度与动脉血压之间存在线性关系的特性提出,用测量的脉搏波速(Pulse wave velocity,PWV)的值来间接计算出动脉血压值,通过在动脉中的两点间脉搏波传输时间(Pulse wave transit time,PWTT)来计算出脉搏波速,如果两点间距离不变,PWV与PWTT成反比,因此可以通过PWTT来间接计算出动脉血压值。PWTT是指在人体动脉中从近心端一点到远心端另外一点脉搏波传播所用的时间,是一个能反应血压突然变化的非侵入性参数。脉搏波传播时间的测量方法基本都采用同步检测心电(electrocardiogram,简称ECG)图和光电容积脉搏波描记(PPG)图中的信号的时间延迟,即结合一路ECG和一路PPG的方法来连续监测,如图1.1所示,通常是将ECG的R波峰值点与PPG的上升支的上升点之间的时间值作为PWTT,在距离一定时,PWTT和PWV成反比,故而在距离一定的情况下,可以通过PWTT来计算PWV。
心电图ECG指的是心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着心电图生物电的变化,通过心电描记器从体表引出多种形式的电位变化的图形。心脏在兴奋过程中出现生物电源,产生电流,它在周围组织里流动,所以可以通过心脏外的一对电极(如本发明实施例所描述的第一ECG触点和第二ECG触点所构成的一对检测电极)测得到它的时变电势差。光电容积脉搏波描记(PhotoPlethysmoGraphy,PPG)是根据Lambert Beer定律和光的散射理论,借助光电手段在活体组织中检测血液容积变化的一种无创检测方法。当一定波长的光束照射到指端皮肤表面时,光束将通过透射或反射方式传送到光电接收器。在此过程中由于受到指端皮肤肌肉和血液的吸收衰减作 用,检测器检测到的光强度将减弱,其中皮肤、肌肉、组织等对光的吸收在整个血液循环中是保持恒定不变的,而皮肤内的血液容积在心脏作用下呈搏动性变化,当心脏收缩时外周血容量最多,光吸收量也最大,检测到的光强度最小;而在心脏舒张时,正好相反,检测到的光强度最大,使光接收器接收到的光强度随之呈脉动性变化。将此光强度变化信号转换成电信号便可获得容积脉搏血流的变化。为了获得PPG信号,常用光电传感器进行采集。光电传感器由一个发光二极管(发光管)和一个光敏三极管(接收管)组成,分为透射式和反射式两种,如图1.2所示。发光二极管和光敏三极管置于所测量组织同侧的测量方式为反射式,入射光经过组织散射后被同侧的光敏三极管接收,本发明实施例所描述的PPG检测点例如可以是所述反射式光电传感器。
请进一步参阅图2,图2是一种应用本发明实施例公开的血压参数检测方法的用户终端UE 100的简化结构组成框图。如图2所示,该UE 100包括处理器101,该处理器101可以耦合一个或多个数据存储介质。该数据存储介质可以包括存储媒介Storage Medium 111和至少一个存储器Memroy Unit 102。该存储媒介111可以是只读的,如只读存储器ROM,或者可读/可写的,如硬盘或闪存。所述存储器102例如可以是随机存取存储器RAM。该存储器102可以与处理器101结合,或者,集成在处理器101中,或者,由一个独立单元或多个单元构成。
所述处理器101是所述UE100的控制中心,具体提供用于执行指令、完成中断事件、提供时间功能以及其他诸多功能的时间序列及工艺设备。可选的,该处理器101包括一个或多个中央处理单元CPU,如图2中所述的CPU0和CPU1。可选的,所述UE100还可以包括多个处理器,例如,图2中所述的处理器101和处理器112。每一个处理器可以是单核或多核。除非特别说明,本发明所描述的处理器或存储器的具体实现方式包括通用组件或专用组件,该通用组件用于在特定时刻被配置执行某一任务,该专用组件被生产用于执行专用任务。本发明实施例所描述的处理器可以包括至少一个电子器件、电路、和/或被配置处理数据(如计算机程序指令)的处理器芯片。
所述处理器101,和/或,处理器112,或,处理器101和/或处理器112中的单个CPU所执行的程序代码可以存储在存储器102或存储介质111中。可选的, 存储在存储介质111中的程序代码(如ECG信号检测模块)可以被拷贝至存储器102中,以便于处理器运行所述程序代码。处理器至少运行一个内核模块(例如包括如下商标的开放操作系统中的内核模块:LINUXTM,WINDOWSTM,ANDROIDTM,IOSTM等),该内核模块用于控制UE 100中的其他程序的运行、控制与外部设备的通信以及控制对设备资源的利用。
所述UE 100进一步包括第一ECG触点103、PPG检测点104、第二ECG触点105、与所述第一ECG触点103、第二ECG触点105连接的ECG检测电路106,以及与所述PPG检测点连接的PPG检测电路107。其中,所述第一ECG触点103和所述第二ECG触点105组成的检测电极用于检测用户ECG信号,所述PPG检测点用于检测用户PPG信号;所述ECG检测电路106和所述PPG检测电路107具体可以由初级放大电路、高通滤波电路、低通级联电路、二阶放大电路以及电位平移电路等组成。
可选的,所述PPG检测点104和所述第一ECG触点103形成的第一检测区域的面积小于预设面积阈值;所述第二ECG触点105设置于所述UE 100的第二检测区域,且所述第一检测区域和所述第二检测区域不同。例如,上述预设面积例如可以是成年人的手指指端表面的平均面积,这使得用户仅需要一根手指即可同时接触所述PPG检测点和所述第一ECG触点,这样设置有利于减少用户与检测点的接触位置的数量,有利于提升用户接触ECG检测点和PPG检测点的稳定性,从而提升UE检测血压参数的精确度。
可以理解的是,所述第一检测区域和所述第二检测区域的组合形式可以是多种多样的。
一个实施例中,如图2.1所示,所述第一检测区域可以处于所述UE 100的上边框,所述第二检测区域可以处于所述UE 100的下边框,该上下边框的材质优选金属材质。
另一个实施例中,如图2.2所示,所述第一检测区域可以处于所述UE 100的指纹识别模组位置(如Home键位置、手机后背摄像头正下方,等等),所述第二检测区域可以处于所述UE 100的上边框,其中,所述第一ECG触点103和所述PPG检测点104可以设置于所述UE 100的指纹识别模组中,所述第一ECG 触点103具体可以设置于所述指纹识别模组的金属驱动环或金属边框上,所述PPG检测点104具体可以设置于所述指纹识别模组的射频传感电极阵列中。
再一个实施例中,如图2.3所示,所述第一检测区域可以处于所述UE 100的听筒旁的预设位置,所述第二检测区域可以处于所述UE 100的侧边框,用户接电话,用户的手掌与所述UE 100的侧边框接触时,能够接触所述第二检测区域,用户的耳朵某一部分(如耳垂)能够同时接触到所述第一检测区域。
可以理解的是,所述第一检测区域的面积小于预设面积阈值的设置方案只是一种优选的实施方案,所述PPG检测点104的检测位置和所述第一ECG检测点103的检测位置可以是所述UE100上的距离较远的两处位置,本发明对上述PPG检测点104的检测位置和第一ECG触点103的检测位置不做唯一限定。
可选的,所述UE 100还可以包括接收/发送电路108和天线109,所述接收/发送电路108和天线109用于实现UE 100与外部网络的连接。上述UE 100的组成单元可以通过通信总线相互耦合,所述总线至少包括以下任意一种:数据总线、地址总线、控制总线、扩展总线和局部总线。
需要注意的是,所述UE 100仅仅是本发明实施例公开的一种示例实体装置形态,本发明实施例中所描述的UE 100例如可以是智能手机、平板电脑、可穿戴设备、笔记本电脑等安装有血压检测应用的电子设备,本发明实施例对UE的实体装置形态不做唯一限定。
如图2所示的UE 100中的存储器102存储有待运行的程序,该程序具体包括UE的操作系统的内核模块,以及至少一个软件模块(ECG信号检测模块、PPG检测电路启动模块、PPG信号检测模块、血压检测应用启动模块、血压检测程序,等等)。UE 100能够运行所述程序(以及其他程序)以获取用户的血压参数。
所述UE 100的处理器101执行所述存储器102中的ECG信号检测模块,通过与所述UE 100的ECG检测电路106连接的第一ECG触点和第二ECG触点检测用户的ECG信号,其中,所述第一ECG触点和所述第二ECG触点组成一对检测电极;
所述UE 100的处理器101在判断出所述检测到的ECG信号与预存的参考 ECG信号匹配的情况下,执行所述存储器102中的PPG检测电路启动模块,启动所述UE的PPG检测电路;
所述UE 100的处理器101执行所述存储器102中的PPG信号检测模块,通过与所述PPG检测电路连接的PPG检测点检测用户的PPG信号;
所述UE 100的处理器101在判断出所述检测到的PPG信号与预存的参考PPG信号匹配的情况下,执行所述存储器102中的血压检测应用启动模块,开启所述UE的血压检测应用;
所述UE 100的处理器101调用所述存储器102中的血压检测程序,通过所述血压检测应用处理检测到的ECG信号和PPG信号以获取用户的血压参数。其中,所述血压检测程序具体可以包括预存的PWTT计算程序和血压参数计算程序,其中,所述PWTT计算程序具体可以包括信号逐拍分离子程序、低通滤波子程序、去极限漂移子程序、ECG信号的R波峰值点检测子程序、PPG信号的上升点检测子程序,以及PWTT计算子程序等组成,所述血压计算程序中所包括的血压计算公式具体可以是如下所示公式:
Figure PCTCN2015095717-appb-000001
Figure PCTCN2015095717-appb-000002
其中,所述DBP为舒张压,所述DBPo为校准舒张压,所述SBP为收缩压,所述SBPo为校准收缩压,所述PWTT为脉搏波传播时间,PWTTo校准脉搏波传播时间,所述A为常数。
可以看出,UE首先通过第一ECG触点和第二ECG触点检测用户的ECG信号,其次,UE在判断出检测到的ECG信号与预存的参考ECG信号匹配的情况下,启动UE的PPG检测电路,并通过与PPG检测电路连接的PPG检测点检测用户的PPG信号,再次,UE在判断出检测到的PPG信号与预存的参考PPG信号匹配的情况下,开启UE的血压检测应用,并通过血压检测应用处理检测到的ECG信号和PPG信号以获取用户的血压参数。
一方面,上述UE的血压参数检测过程中,UE在检测到获取的ECG信号与 预存的参考ECG信号匹配的情况下,可以自启动UE的PPG检测电路,并在检测到获取的PPG信号与预存的参考PPG信号匹配的情况下,可以自启动UE的血压检测应用,可见,上述UE的血压参数检测过程无需用户逐步冗繁的设置操作,有利于提升UE血压检测的便捷性;
另一方面,上述UE在检测血压的过程中,需要检测到获取的ECG信号与预存的参考ECG信号匹配以启动PPG检测电路,需要检测到获取的PPG信号与预存的参考PPG信号匹配以启动UE的血压检测应用,而匹配的ECG信号和PPG信号对应用户与上述ECG检测点和PPG检测点的稳定接触状态,这使得UE启动血压检测应用后所处理的ECG信号和PPG信号均是在用户稳定接触检测点的状态下获取的信号,能够减少用户在非稳定接触状态下输入的误差信号,故而有利于提升UE血压检测的精确度。
可选的,所述UE 100还包括所述ECG检测电路106的启动开关,所述启动开关至少包括以下任意一种:压力触控模组、物理按键以及指纹识别模组;所述处理器通过与所述UE 100的ECG检测电路106连接的第一ECG触点103和第二ECG触点105检测用户的ECG信号之前,所述处理器101还用于:
检测用户针对所述UE 100的ECG检测电路106的启动开关的开启操作指令;
在检测到用户针对所述UE 100的ECG检测电路106的启动开关的开启操作指令的情况下,启动所述ECG检测电路106。
上述软件模块可以由一个或多个指令集合组成,UE通过运行该一个或多个指令集合,执行与上述描述的功能一致的一个或多个子步骤。这些子步骤将在本发明后续方法实施例中详细描述。
与上述技术方案一致的,本发明方法实施例公开了一种血压参数检测方法。需要注意的是,虽然本方法实施例公开的血压参数检测方法能够以如图2所示的示例UE 100的实体装置实施,但上述示例UE 100不构成对本发明方法实施例公开血压参数检测方法的唯一限定。
如图3所示,本方法实施例公开的血压参数检测方法包括以下步骤:
S301,UE通过与所述UE的ECG检测电路连接的第一ECG触点和第二ECG 触点检测用户的ECG信号;
S302,所述UE在判断出检测到的ECG信号与预存的参考ECG信号匹配的情况下,启动所述UE的PPG检测电路,并通过与所述PPG检测电路连接的PPG检测点检测用户的PPG信号;
本发明实施例中,上述预存的参考ECG信号可以包括用户在不同状态、不同时段等条件下预先录入的多组ECG信号,也可以是开发人员在UE出厂时预存的包括不同用户群的多组ECG信号,还可以是云服务器推送的与用户生理参数匹配的多组ECG信号,该用户生理参数例如可以是性别、年龄等等。
具体实现中,所述UE判断出检测到的ECG信号与预存的参考ECG信号匹配的具体方式例如可以是:
UE提取检测到的ECG信号中的特征信号,并处理提取的特征信号以获取电势差值(取绝对值),若该电势差值与从预存的参考ECG信号中提取的电势差值相匹配,则UE判断出检测到的ECG信号与预存的参考ECG信号匹配。或者,
UE基于检测的到的ECG信号画出ECG信号的幅值-时间波形图,若该波形图与预存的参考ECG信号的幅值-时间波形图相匹配(如周期相近、波形变化匹配,等),则UE判断出检测到的ECG信号与预存的参考ECG信号匹配。
S303,所述UE在判断出所述检测到的PPG信号与预存的参考PPG信号匹配的情况下,开启所述UE的血压检测应用,并通过所述血压检测应用处理检测到的ECG信号和PPG信号以获取用户的血压参数。
本发明实施例中,上述UE判断出检测到的PPG信号与预存的参考PPG信号匹配的具体方式例如可以是:
UE提取检测到的PPG信号中的特征信号,并处理提取的特征信号以获取幅值差值(取绝对值),若该幅值差值与从预存的参考PPG信号中提取的幅值差值相匹配,则UE判断出检测到的PPG信号与预存的参考PPG信号匹配。或者,
UE基于检测的到的PPG信号画出PPG信号的幅值-时间波形图,若该波形图与预存的参考PPG信号的幅值-时间波形图相匹配(如周期相近、波形变化一致,等),则UE判断出检测到的PPG信号与预存的参考PPG信号匹配。
其中,所述UE开启UE的血压检测应用时,所述UE的显示屏幕的显示状态和显示内容可以是多种多样的。
一个实施例中,所述UE开启UE的血压检测应用时,所述UE的显示屏幕可以处于息屏状态,即UE处于待机状态下可以直接从后台开启血压检测应用,从而提升UE检测血压的便捷性。
另一个实施例中,所述UE开启UE的血压检测应用时,所述UE的显示屏幕可以处于亮屏状态,且该显示屏幕上具体可以展示血压检测应用的应用界面,也可以展示UE当前正在运行的其他应用程序。
举例来说,用户打电话时,UE的显示界面展示联系人来电信息,UE可以从后台开启血压检测应用。
又举例来说,UE的显示屏幕息屏状态下,UE判断出检测到的PPG信号与预存的参考PPG信号匹配,则点亮屏幕,并开启血压检测应用,UE进一步还可以在显示屏幕上输出用于提醒用户正在测量血压等类似的提示信息,或者,UE还可以在显示屏幕上展示血压的实时变化图示,如以数字滚动的形式展示用户的血压参数,或者,UE还可以在显示屏幕上展示UE与用户的血压测量交互图,提醒用户稳定接触ECG触点和PPG检测点,有利于得到准确的血压检测结果。
其中,上述检测到的ECG信号和PPG信号具体可以是以融合信号的形式存储在UE的缓存中,上述UE通过血压检测应用处理检测到的ECG信号和PPG信号以获取用户的血压参数的具体方式例如可以是:
UE首先根据预存的脉搏波传输时间PWTT计算策略处理获取的融合信号以获取PWTT;其次,UE根据PWTT和预存的血压计算策略计算用户的血压参数。
具体实现中,上述UE根据预存的脉搏波传输时间PWTT计算策略处理获取的融合信号以获取PWTT的具体方式为:
UE首先将获取的融合信号逐拍分离得到分离后的ECG信号和分离后的PPG信号;其次,UE针对分离后的ECG信号和分离后的PPG信号分别执行高频 滤噪处理以得到去噪后的ECG信号和去噪后的PPG信号;再次,UE针对去噪后的ECG信号和去噪后的PPG信号分别执行去除基线漂移处理以获取去除基线漂移后的ECG信号和去除基线漂移后的PPG信号;再次,UE基于预存的微分阈值算法分别处理去除基线漂移后的ECG信号和去除基线漂移后的PPG信号以获取ECG信号的R波峰值点和PPG信号的上升沿转折点;最后,UE基于确定的ECG信号的R波峰值点和PPG信号的上升沿转折点确定PWTT。
可以看出,本发明实施例中,UE首先通过第一ECG触点和第二ECG触点检测用户的ECG信号,其次,UE在判断出检测到的ECG信号与预存的参考ECG信号匹配的情况下,启动UE的PPG检测电路,并通过与PPG检测电路连接的PPG检测点检测用户的PPG信号,再次,UE在判断出检测到的PPG信号与预存的参考PPG信号匹配的情况下,开启UE的血压检测应用,并通过血压检测应用处理检测到的ECG信号和PPG信号以获取用户的血压参数。
一方面,上述UE的血压参数检测过程中,UE在检测到获取的ECG信号与预存的参考ECG信号匹配的情况下,可以自启动UE的PPG检测电路,并在检测到获取的PPG信号与预存的参考PPG信号匹配的情况下,可以自启动UE的血压检测应用,可见,上述UE的血压参数检测过程无需用户逐步冗繁的设置操作,有利于提升UE血压检测的便捷性;
另一方面,上述UE在检测血压的过程中,需要检测到获取的ECG信号与预存的参考ECG信号匹配以启动PPG检测电路,需要检测到获取的PPG信号与预存的参考PPG信号匹配以启动UE的血压检测应用,而匹配的ECG信号和PPG信号对应用户与上述ECG检测点和PPG检测点的稳定接触状态,这使得UE启动血压检测应用后所处理的ECG信号和PPG信号均是在用户稳定接触检测点的状态下获取的信号,能够减少用户在非稳定接触状态下输入的误差信号,故而有利于提升UE血压检测的精确度。
可选的,本发明实施例中,上述步骤S201中所述UE通过与所述UE的ECG检测电路连接的第一心电图ECG触点和第二ECG触点检测用户的ECG信号之前,UE还可以执行以下操作:
UE检测用户针对UE的ECG检测电路的启动开关的开启操作指令;其中, ECG检测电路连接第一ECG触点和第二ECG触点,上述ECG检测电路的启动开关至少包括以下任意一种:压力触控模组、物理按键以及指纹识别模组。
所述UE在检测到用户针对UE的ECG检测电路的启动开关的开启操作指令的情况下,启动ECG检测电路。
具体实现中,上述ECG检测电路的启动开关包括UE的压力触控模组,上述UE检测到用户针对UE的ECG检测电路的启动开关的开启操作指令的具体方式为:UE检测到用户通过压力触控模组输入的压力参数与预设压力参数相匹配。
举例来说,如图3.1所示,UE的压力触控模组具体可以设置于UE背面摄像头的正下方,其中,第一ECG触点设置于该压力触控模组的金属边框上,PPG检测点设置于该压力触控模组的压力传感器阵列中,第二ECG触点设置于UE的侧边框预设位置处,假设预设压力参数为压力区间5N至10N(此区间有利于保证用户稳定接触压力触控模组的第一ECG触点和PPG检测点),用户拍照时,用户的手指长按该压力触控模组,UE检测到用户通过压力触控模组输入的压力参数为7.4N,则启动UE的ECG检测电路。
具体实现中,若ECG检测电路的启动开关包括设置于UE的预设位置的用于开启ECG检测电路的物理按键,则上述UE检测到用户针对UE的ECG检测电路的启动开关的开启操作指令的具体方式为:UE捕捉到用户针对设置于UE的预设位置的用于开启ECG检测电路的物理按键的开启操作事件。
举例来说,如图3.2所示,UE的预设位置的用于开启ECG检测电路的物理按键具体设置于UE的上侧边框,靠近耳机孔位置处,该物理按键的具体形式例如可以是触点开关(按压操作对应ECG检测电路的开启操作事件)、操纵杆(拨动操作对应ECG检测电路的开启操作事件)、旋钮(旋转操作对应ECG检测电路的开启操作事件)等等,该物理按键附近还可以进一步设置有指示灯,该指示灯可以直观的展示ECG检测电路的开启工作状态和关闭工作状态。
具体实现中,若ECG检测电路的启动开关包括UE的指纹识别模组,则上述UE检测到用户针对UE的PPG检测电路的启动开关的开启操作指令的具体方式为:UE检测到用户通过指纹识别模组输入的指纹数据与预设指纹数据相匹 配。UE识别出用户指纹数据后,可以确认当前用户的身份,UE检测到的血压参数可以准确的上传至与确认的用户身份关联的数据库中。
举例来说,如图2.2所示,UE的指纹识别模组设置于UE正面的显示屏幕的下方的Home键位置,若UE检测到用户通过指纹识别模组输入的指纹数据与预设指纹数据相匹配,则UE启动ECG检测电路。
此外,需要注意的是,本发明实施例中的ECG检测电路的开关状态可以根据预设启动策略灵活进行设置,上述可选的实施例中所描述的ECG检测电路的启动开关可以是上述预设启动策略为ECG检测电路常关的情况下的可选方案,当上述预设启动策略为ECG检测电路常开时,UE不设置用于启动ECG检测电路的启动开关显然也是可以的。
进一步可选的,上述UE在得到用户的血压参数之后,还可以执行以下操作:
UE通过扬声器播报本次检测到的用户的血压参数;或者,
UE在UE的显示屏幕上展示本次检测到的用户的血压参数;或者,
UE向服务器上传携带有用户身份或UE身份标识(如SIM卡号、用户姓名等等)以及本次检测到的用户的血压参数的生理数据,服务器端可以将该生理数据进一步分享至预先绑定的若干个终端设备上,或者,传输至医疗服务信息管理系统,用于分析用户的血压参数以实施监控用户的生理状态。
进一步可选的,本发明实施例中,上述UE启动UE的PPG检测电路的具体实现过程中,UE可以复用上述可选的实施例中所描述的用于启动ECG检测电路的启动开关(仅限于启动开关和第一ECG触点、PPG检测点融合在一起的情况),例如,复用上述压力触控模组启动开关,即UE判断出检测到的PPG信号与预存的参考PPG信号匹配之后,继续检测用户通过该压力触控模组输入的压力参数是否与预设压力参数匹配,若匹配,则启动PPG检测电路,若不匹配,可以输出用于提醒用户稳定接触第一检测区域和第二检测区域的提示信息,如此,有利于进一步确保用户与第一检测区域和第二检测区域的稳定接触,从而提升血压检测的准确性。
上述UE中执行的部分或全部步骤,具体可以由所述UE通过执行上述软件 模块来实现。例如,所述步骤S301可以由UE执行图2所示的ECG信号检测模块来实现;所述步骤S302可以由UE执行图2所示的PPG电路启动模块和PPG信号检测模块来实现;所述步骤S303可以由UE执行图2所示的血压检测应用启动模块,并调用血压检测程序来实现。
本发明方法实施例中所描述的血压参数检测方法也可以通过下面描述的功能单元装置实施例所公开的装置来实现。该装置包括如图4所示的血压参数检测装置,该血压参数检测装置能够实现如图3所描述的方法步骤。
如图4所示,图4是本发明功能装置实施例公开的一种血压参数检测装置400的简化功能单元框图。该影像信息处理装置400包括ECG信号检测单元401、ECG电路启动单元402、PPG信号检测单元403、血压检测应用启动单元404、信号处理单元405,其中:
所述ECG信号检测单元401,用于通过与所述UE的ECG检测电路连接的第一心电图ECG触点和第二ECG触点检测用户的ECG信号,其中,所述第一ECG触点和所述第二ECG触点组成一对检测电极;
所述ECG电路启动单元402,用于在判断出所述ECG信号检测单元401检测到的ECG信号与预存的参考ECG信号匹配的情况下,启动光电容积脉搏波描记PPG检测电路;
所述PPG信号检测单元403,用于通过与所述PPG检测电路连接的PPG检测点检测用户的PPG信号;
所述血压检测应用启动单元404,用于在判断出所述PPG信号检测单元403检测到的PPG信号与预存的参考PPG信号匹配的情况下,开启血压检测应用;
所述信号处理单元405,应用通过所述血压检测应用处理检测到的ECG信号和PPG信号以获取用户的血压参数。
可选的,所述血压参数检测装置还包括:
开关启动检测单元406,用于在所述ECG信号检测单元通过与所述UE的ECG检测电路连接的第一心电图ECG触点和第二ECG触点检测用户的ECG信号之前,检测用户针对所述UE的ECG检测电路的启动开关的开启操作指令;其中,所述ECG检测电路连接所述第一ECG触点和所述第二ECG触点,所述 ECG检测电路的启动开关至少包括以下任意一种:压力触控模组、物理按键以及指纹识别模组;
ECG检测电路启动单元407,用于在所述开关启动检测单元检测到用户针对所述UE的ECG检测电路的启动开关的开启操作指令的情况下,启动所述ECG检测电路。
需要注意的是,本发明功能单元装置实施例所描述的血压参数检测装置400是以功能单元的形式呈现。这里所使用的术语“单元”应当理解为尽可能最宽的含义,用于实现各个“单元”所描述功能的对象例如可以是集成电路ASIC,单个电路,用于执行一个或多个软件或固件程序的处理器(共享的、专用的或芯片组)和存储器,组合逻辑电路,和/或提供实现上述功能的其他合适的组件。
举例来说,本领域技术员人可以知晓该血压参数检测装置400的硬件载体的组成形式具体可以是图2、图2.1、图2.2、图2.3、图3.1以及图3.2任意个所示的UE 100。
其中,所述ECG信号检测单元401的功能可以由所述UE 100中的处理器101、存储器102、第一ECG触点103、第二ECG触点105以及ECG检测电路106来实现,具体是通过处理器100执行存储器102中的ECG信号检测模块,通过ECG检测电路106以及第一ECG触点104和第二ECG触点105检测用户的ECG信号;
所述PPG电路启动单元402的功能可以由所述UE 100中的处理器101、存储器102以及PPG检测电路107来实现,具体是通过处理器100执行存储器102中的PPG电路启动模块,启动PPG检测电路107;
所述PPG信号检测单元403的功能可以由所述UE 100中的处理器101、存储器102、PPG检测电路107以及PPG检测点104来实现,具体是通过处理器100执行存储器102中的PPG信号检测模块,通过与所述PPG检测电路107连接的PPG检测点104检测用户的PPG信号;
所述血压检测应用启动单元404的功能可以由所述UE 100中的处理器101和存储器102来实现,具体是通过处理器100执行存储器102中的血压检 测应用启动模块,开启血压检测应用;
所述信号处理单元405的功能可以由所述UE 100中的处理器101和存储器102来实现,具体是通过处理器100执行所述存储器102中的血压检测程序,处理检测到的ECG信号和PPG信号以获取用户的血压参数。
可以看出,本发明实施例中,UE首先通过第一ECG触点和第二ECG触点检测用户的ECG信号,其次,UE在判断出检测到的ECG信号与预存的参考ECG信号匹配的情况下,启动UE的PPG检测电路,并通过与PPG检测电路连接的PPG检测点检测用户的PPG信号,再次,UE在判断出检测到的PPG信号与预存的参考PPG信号匹配的情况下,开启UE的血压检测应用,并通过血压检测应用处理检测到的ECG信号和PPG信号以获取用户的血压参数。
一方面,上述UE的血压参数检测过程中,UE在检测到获取的ECG信号与预存的参考ECG信号匹配的情况下,可以自启动UE的PPG检测电路,并在检测到获取的PPG信号与预存的参考PPG信号匹配的情况下,可以自启动UE的血压检测应用,可见,上述UE的血压参数检测过程无需用户逐步冗繁的设置操作,有利于提升UE血压检测的便捷性;
另一方面,上述UE在检测血压的过程中,需要检测到获取的ECG信号与预存的参考ECG信号匹配以启动PPG检测电路,需要检测到获取的PPG信号与预存的参考PPG信号匹配以启动UE的血压检测应用,而匹配的ECG信号和PPG信号对应用户与上述ECG检测点和PPG检测点的稳定接触状态,这使得UE启动血压检测应用后所处理的ECG信号和PPG信号均是在用户稳定接触检测点的状态下获取的信号,能够减少用户在非稳定接触状态下输入的误差信号,故而有利于提升UE血压检测的精确度。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例公开的一种模块隔离、数据访问、代码调用方法、相关装置及系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施 方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (6)

  1. 一种血压参数检测方法,其特征在于,包括:
    用户终端UE通过与所述UE的ECG检测电路连接的第一心电图ECG触点和第二ECG触点检测用户的ECG信号,其中,所述第一ECG触点和所述第二ECG触点组成一对检测电极;
    所述UE在判断出所述检测到的ECG信号与预存的参考ECG信号匹配的情况下,启动光电容积脉搏波描记PPG检测电路,并通过与所述PPG检测电路连接的PPG检测点检测用户的PPG信号;
    所述UE在判断出所述检测到的PPG信号与预存的参考PPG信号匹配的情况下,开启血压检测应用,并通过所述血压检测应用处理检测到的ECG信号和PPG信号以获取用户的血压参数。
  2. 根据权利要求1所述的血压参数检测方法,其特征在于,
    所述PPG检测点和所述第一ECG触点形成的第一检测区域的面积小于预设面积阈值;
    所述第二ECG触点设置于所述UE的第二检测区域,且所述第一检测区域和所述第二检测区域不同。
  3. 根据权利要求1或2任一项所述的血压参数检测方法,其特征在于,所述UE通过与所述UE的ECG检测电路连接的第一心电图ECG触点和第二ECG触点检测用户的ECG信号之前,所述方法还包括:
    所述UE检测用户针对所述UE的ECG检测电路的启动开关的开启操作指令;
    其中,所述ECG检测电路连接所述第一ECG触点和所述第二ECG触点,所述ECG检测电路的启动开关至少包括以下任意一种:压力触控模组、物理按键以及指纹识别模组;
    所述UE在检测到用户针对所述UE的ECG检测电路的启动开关的开启操作指令的情况下,启动所述ECG检测电路。
  4. 一种用户终端UE,其特征在于,包括:
    存储有可执行程序代码的存储器,第一ECG触点、第二ECG触点、与所述 第一ECG触点和所述第二ECG触点连接的ECG检测电路、PPG检测点、与所述PPG检测点连接的PPG检测电路;
    与所述存储器、所述ECG检测电路,以及所述PPG检测电路耦合的处理器;
    所述处理器调用所述存储器中存储的所述可执行程序代码,执行如下步骤:
    通过与所述ECG检测电路连接的所述第一心电图ECG触点和所述第二ECG触点检测用户的ECG信号,其中,所述第一ECG触点和所述第二ECG触点组成一对检测电极;
    在判断出所述检测到的ECG信号与预存的参考ECG信号匹配的情况下,启动所述UE的PPG检测电路,并通过与所述PPG检测电路连接的PPG检测点检测用户的PPG信号;
    在判断出所述检测到的PPG信号与预存的参考PPG信号匹配的情况下,开启所述UE的血压检测应用,并通过所述血压检测应用处理检测到的ECG信号和PPG信号以获取用户的血压参数。
  5. 根据权利要求4所述的UE,其特征在于,
    所述PPG检测点和所述第一ECG触点形成的第一检测区域的面积小于预设面积阈值;
    所述第二ECG触点设置于所述UE的第二检测区域,且所述第一检测区域和所述第二检测区域不同。
  6. 根据权利要求4或5任一项所述的UE,其特征在于,所述UE还包括所述ECG检测电路的启动开关,所述启动开关至少包括以下任意一种:压力触控模组、物理按键以及指纹识别模组;所述处理器通过与所述UE的ECG检测电路连接的第一ECG触点和第二ECG触点检测用户的ECG信号之前,所述处理器还用于:
    检测用户针对所述UE的ECG检测电路的启动开关的开启操作指令;
    在检测到用户针对所述UE的ECG检测电路的启动开关的开启操作指令的情况下,启动所述ECG检测电路。
PCT/CN2015/095717 2015-11-26 2015-11-26 一种血压参数检测方法及用户终端 WO2017088156A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580084753.8A CN108348178B (zh) 2015-11-26 2015-11-26 一种血压参数检测方法及用户终端
PCT/CN2015/095717 WO2017088156A1 (zh) 2015-11-26 2015-11-26 一种血压参数检测方法及用户终端
US15/779,088 US10758143B2 (en) 2015-11-26 2015-11-26 Blood pressure parameter detection method and user equipment
EP15909067.9A EP3366202B1 (en) 2015-11-26 2015-11-26 Blood pressure parameter measuring method and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/095717 WO2017088156A1 (zh) 2015-11-26 2015-11-26 一种血压参数检测方法及用户终端

Publications (1)

Publication Number Publication Date
WO2017088156A1 true WO2017088156A1 (zh) 2017-06-01

Family

ID=58763830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095717 WO2017088156A1 (zh) 2015-11-26 2015-11-26 一种血压参数检测方法及用户终端

Country Status (4)

Country Link
US (1) US10758143B2 (zh)
EP (1) EP3366202B1 (zh)
CN (1) CN108348178B (zh)
WO (1) WO2017088156A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112203582A (zh) * 2018-06-01 2021-01-08 深圳市长桑技术有限公司 脉冲传播时间确定方法和系统
CN113288049A (zh) * 2020-02-24 2021-08-24 华为技术有限公司 一种数据采集方法、终端设备及存储介质
WO2023284706A1 (zh) * 2021-07-14 2023-01-19 维沃移动通信有限公司 按键模组、设备控制方法、装置及电子设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018072195A1 (zh) * 2016-10-21 2018-04-26 华为技术有限公司 血压检测信号采样补偿方法和装置以及血压信号采集系统
US20180185643A1 (en) * 2016-11-30 2018-07-05 Physiocue, Inc. Cardiac health monitoring systems and methods involving hypertension relief device(s) and/or features
KR102655738B1 (ko) * 2016-12-27 2024-04-05 삼성전자주식회사 접촉형 혈압 측정 장치
CN107550481A (zh) * 2017-08-24 2018-01-09 京东方科技集团股份有限公司 一种便携设备及血压测量方法
US20190082984A1 (en) * 2017-09-19 2019-03-21 Pixart Imaging Inc. Method and electronic device capable of establishing personal blood pressure estimation model for specific user/person
KR102592077B1 (ko) * 2018-08-01 2023-10-19 삼성전자주식회사 생체정보 측정 장치 및 방법
JP7124552B2 (ja) * 2018-08-21 2022-08-24 オムロンヘルスケア株式会社 測定装置
CN109480802B (zh) * 2018-12-29 2021-06-25 中国科学院合肥物质科学研究院 一种基于波形分析技术的血压参数估计系统及方法
TWI750504B (zh) * 2019-08-29 2021-12-21 鉅怡智慧股份有限公司 活體偵測的方法及相關裝置
KR102594403B1 (ko) * 2020-12-09 2023-10-25 선전 구딕스 테크놀로지 컴퍼니, 리미티드 생체 특징 정보의 검출 장치 및 전자 기기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102008296A (zh) * 2010-12-24 2011-04-13 吉林大学 基于脉搏波信号和心电信号测量动脉血压装置及测量方法
CN104323764A (zh) * 2014-10-13 2015-02-04 天津工业大学 一种基于智能手机的人体动脉血压测量方法
WO2015061166A1 (en) * 2013-10-25 2015-04-30 Qualcomm Incorporated System and method for obtaining bodily function measurements using a mobile device
WO2015171764A1 (en) * 2014-05-06 2015-11-12 Alivecor, Inc. Blood pressure monitor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6647287B1 (en) * 2000-04-14 2003-11-11 Southwest Research Institute Dynamic cardiovascular monitor
CN1307937C (zh) 2003-05-22 2007-04-04 香港中文大学 信号顶端点搜寻装置和方法以及其在血压测量中的应用
KR100871230B1 (ko) 2007-03-12 2008-11-28 삼성전자주식회사 통신 장치와 연동되는 비가압적이고 비침습적인 손목형혈압 측정 방법 및 장치
US8162841B2 (en) * 2007-08-31 2012-04-24 Pacesetter, Inc. Standalone systemic arterial blood pressure monitoring device
CN201617817U (zh) 2010-03-01 2010-11-03 李莉 便携式动态心电、血压记录仪
US20110224499A1 (en) * 2010-03-10 2011-09-15 Sotera Wireless, Inc. Body-worn vital sign monitor
US20120029320A1 (en) * 2010-07-30 2012-02-02 Nellcor Puritan Bennett Llc Systems and methods for processing multiple physiological signals
US20140031646A1 (en) * 2012-03-29 2014-01-30 Sergey Yakirevich Blood pressure estimation using a hand-held device
JP2014012072A (ja) * 2012-07-04 2014-01-23 Sony Corp 計測装置、計測方法、プログラム、記憶媒体及び計測システム
US9808206B1 (en) * 2013-09-09 2017-11-07 Scanadu, Inc. Data acquisition quality and data fusion for personal portable wireless vital signs scanner
US20150313484A1 (en) * 2014-01-06 2015-11-05 Scanadu Incorporated Portable device with multiple integrated sensors for vital signs scanning
GB201402728D0 (en) * 2014-02-17 2014-04-02 Pousach Ltd Phone
US20150313486A1 (en) * 2014-05-02 2015-11-05 Xerox Corporation Determining pulse wave transit time from ppg and ecg/ekg signals
CN104856661A (zh) * 2015-05-11 2015-08-26 北京航空航天大学 一种基于舒张压动态补偿的可穿戴式连续血压估测系统及方法
US20170079591A1 (en) * 2015-09-21 2017-03-23 Qualcomm Incorporated System and method for obtaining vital measurements using a mobile device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102008296A (zh) * 2010-12-24 2011-04-13 吉林大学 基于脉搏波信号和心电信号测量动脉血压装置及测量方法
WO2015061166A1 (en) * 2013-10-25 2015-04-30 Qualcomm Incorporated System and method for obtaining bodily function measurements using a mobile device
WO2015171764A1 (en) * 2014-05-06 2015-11-12 Alivecor, Inc. Blood pressure monitor
CN104323764A (zh) * 2014-10-13 2015-02-04 天津工业大学 一种基于智能手机的人体动脉血压测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3366202A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112203582A (zh) * 2018-06-01 2021-01-08 深圳市长桑技术有限公司 脉冲传播时间确定方法和系统
CN112203582B (zh) * 2018-06-01 2024-04-16 深圳市长桑技术有限公司 脉冲传播时间确定方法和系统
CN113288049A (zh) * 2020-02-24 2021-08-24 华为技术有限公司 一种数据采集方法、终端设备及存储介质
WO2023284706A1 (zh) * 2021-07-14 2023-01-19 维沃移动通信有限公司 按键模组、设备控制方法、装置及电子设备

Also Published As

Publication number Publication date
EP3366202A1 (en) 2018-08-29
US20180344193A1 (en) 2018-12-06
CN108348178B (zh) 2021-01-05
EP3366202B1 (en) 2020-05-27
US10758143B2 (en) 2020-09-01
EP3366202A4 (en) 2018-10-31
CN108348178A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2017088156A1 (zh) 一种血压参数检测方法及用户终端
US11931132B2 (en) System and method for obtaining bodily function measurements using a mobile device
US10052035B2 (en) System and method for obtaining bodily function measurements using a mobile device
JP6659830B2 (ja) 生体情報分析装置、システム、及び、プログラム
Kwon et al. Validation of heart rate extraction using video imaging on a built-in camera system of a smartphone
JP6123885B2 (ja) 血流指標算出方法、血流指標算出プログラム及び血流指標算出装置
KR20190050725A (ko) 모바일 단말을 이용한 맥파 신호 및 스트레스 측정 방법 및 장치
Popescu et al. Cardiowatch: A solution for monitoring the heart rate on a Mobile device
TWI795219B (zh) 基於血流動力學分析且與氣血循環及深層睡眠相關的特定生理綜合症偵測方法及系統
Jonnada Cuff-less blood pressure measurement using a smart phone
TW202334987A (zh) 基於血流動力學及弦脈分析且與肝火旺盛/心火旺盛相關的特定生理綜合症偵測方法及系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909067

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015909067

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE