WO2017086150A1 - Device for measuring deposit thickness using ultrasonic waves, and method therefor - Google Patents

Device for measuring deposit thickness using ultrasonic waves, and method therefor Download PDF

Info

Publication number
WO2017086150A1
WO2017086150A1 PCT/JP2016/082506 JP2016082506W WO2017086150A1 WO 2017086150 A1 WO2017086150 A1 WO 2017086150A1 JP 2016082506 W JP2016082506 W JP 2016082506W WO 2017086150 A1 WO2017086150 A1 WO 2017086150A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
pipe
deposit
thickness
propagation time
Prior art date
Application number
PCT/JP2016/082506
Other languages
French (fr)
Japanese (ja)
Inventor
永島 良昭
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017551810A priority Critical patent/JP6458164B2/en
Priority to MYPI2018701072A priority patent/MY196045A/en
Publication of WO2017086150A1 publication Critical patent/WO2017086150A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor

Definitions

  • the present invention relates to a deposit thickness measuring device and a deposit thickness measuring method inside a pipe used in, for example, a plant.
  • pipes of power plants, chemical plants, etc. will have defects (thinning) on the inner surface after a long period of time has elapsed since installation. As this thinning progresses, there is a risk that internal fluid such as liquid or steam that penetrates the thickness of the piping and leaks outside. In order to avoid such internal fluid leakage, it is necessary to periodically perform non-destructive inspections of the piping to evaluate the condition, and to take measures such as replacement and repair by grasping the thinning before internal fluid leakage occurs. is there.
  • non-destructive inspection techniques for evaluating the state of pipes, there are firstly techniques for directly detecting pipe thinning and second techniques for detecting factors that cause pipe thinning.
  • an ultrasonic thickness meter that measures the thickness of an inspection object is known as a non-destructive inspection means for non-destructive inspection of the thickness of a pipe.
  • an ultrasonic sensor having a piezoelectric element capable of mutually converting electricity and sound is generally used.
  • Install an ultrasonic sensor on the outer surface of the piping excite bulk waves (elastic waves such as longitudinal and transverse waves) in the piping to be inspected, and receive the elastic waves reflected on the inner surface of the piping with the same or different ultrasonic sensors.
  • Measure pipe wall thickness Since this ultrasonic thickness meter has a narrow inspection range, it takes a long time to inspect a wide area. Moreover, it may be difficult to apply, for example, when a pipe is buried, when a heat insulating material is used around the pipe, or when the pipe is doubled.
  • Patent Document 1 discloses an acoustic disturbance that propagates between two points isolated in the longitudinal direction of a pipe and detects the acoustic disturbance. Calculate the measured value representing the propagation speed of the disturbance, calculate the predicted value corresponding to the propagation speed as a function of the thickness parameter using sound wave propagation theory, and calculate the thickness parameter by fitting the measured value and the predicted value Techniques to do this are disclosed.
  • the principle is to calculate a predicted value corresponding to the propagation velocity as a function of the wall thickness parameter using the propagation theory of sound waves, and is a technique for measuring the wall thickness of the above-mentioned first category pipe.
  • the progress of thinning is fast, it is desirable to be able to grasp it from the stage before the occurrence of thinning.
  • One of the causes of thinning is the effect of deposits accumulated on the inner surface of the pipe. In such a case, detecting the deposits will provide an early indication of thinning.
  • the present invention has been made in view of the above, and an object thereof is to provide an apparatus and a method for measuring a deposit thickness inside a pipe used in a plant or the like.
  • an apparatus for measuring a deposit thickness inside a pipe is an apparatus for measuring the thickness of a deposit inside a pipe, and includes an ultrasonic transmission element arranged on one side of a pipe, and the pipe.
  • Ultrasonic wave receiving elements disposed opposite to each other, an ultrasonic wave transmitter / receiver for driving the ultrasonic wave transmitting element to receive a signal from the ultrasonic wave receiving element, and a propagation time of the ultrasonic wave propagating through a medium in the pipe
  • a deposit thickness calculator for calculating the thickness of the deposit inside the pipe from the propagation time using data of the outer diameter and sound velocity of the medium.
  • the method for measuring a deposit thickness inside a pipe is a method for measuring the thickness of a deposit inside a pipe, wherein an ultrasonic transmission element is arranged on one side of the pipe, and the pipe is sandwiched between them.
  • the ultrasonic receiving elements are arranged opposite to each other, the ultrasonic transmitting element is driven to generate ultrasonic waves in the medium inside the pipe, and the transmitted wave signal propagated through the medium in the pipe is received by the ultrasonic receiving element. Then, the propagation time of the received signal is measured, and the thickness of the deposit inside the pipe is calculated from the propagation time using the outer diameter and sound velocity data of the medium.
  • the signal obtained by calculating a plurality of transmitted wave signals of ultrasonic waves propagating in the axial direction in the pipe filled with liquid according to Example 1 of the present invention is compared with the case where there is no deposit and the case where there is no deposit It is the figure typically shown.
  • FIG. 1 is a diagram schematically showing the entire configuration of a deposit thickness measuring apparatus using ultrasonic waves according to the present embodiment, along with piping to be inspected.
  • both ends of the pipe 1 are open. There are many such open shapes at both ends, for example, in heat exchangers. Deposits 2 may occur on the inner surface of the pipe 1 due to the medium inside the pipe. In this embodiment, an example in which the thickness of the deposit 2 is measured will be described.
  • the deposit thickness measuring apparatus includes an ultrasonic transmission sensor 3 disposed on one side of the pipe 1, an ultrasonic reception sensor 4 disposed opposite to the ultrasonic transmission sensor 3 across the pipe 1, and an ultrasonic transmission sensor 3.
  • the ultrasonic transmitter / receiver 5 that receives the waveform signal from the ultrasonic wave reception sensor 4, the A / D converter 6 that converts the waveform signal output from the ultrasonic transmitter / receiver 5 into a digital waveform signal, and the digital waveform signal
  • a computer 7 composed of a propagation time measuring unit 7a for measuring the propagation time of the sample, a deposit thickness calculating unit 7b for calculating the deposit thickness from the propagation time, and a display device 9 for displaying the measurement result of the deposit thickness.
  • the ultrasonic transmission sensor 3 is disposed near the center of the pipe 1 and is connected to the ultrasonic transmitter / receiver 5 by a coaxial cable or the like.
  • the ultrasonic transmission sensor 3 is constituted by, for example, a piezoelectric element.
  • the ultrasonic receiving sensor 4 arranged on the opposite side is arranged near the center of the pipe 1 and is connected to the ultrasonic transceiver 5 by a coaxial cable or the like.
  • the ultrasonic wave reception sensor 4 is constituted by a piezoelectric element, for example.
  • the ultrasonic transmitter / receiver 3 is connected to the deposit thickness calculator 7b and the A / D converter 6 through a digital cable, and applies a transmission waveform signal to the ultrasonic transmission sensor 3 under the control of the deposit thickness calculator 7b. Further, the reception waveform signal from the ultrasonic reception sensor 4 is amplified, and the amplified reception waveform signal is output to the A / D converter 6.
  • the computer 7 functions as a propagation time measuring unit 7a and a deposit thickness calculating unit 7b.
  • the A / D converter 6 converts the received waveform signal output from the ultrasonic transceiver 3 into a digital waveform signal and outputs the digital waveform signal to the propagation time measurement unit 7 a included in the computer 7.
  • the deposit thickness calculator 7 b outputs a control command such as an ultrasonic transmission command to the ultrasonic transceiver 3. Moreover, the deposit thickness calculation process mentioned later is performed.
  • the display device 9 displays display information such as the deposit thickness calculated by the deposit thickness calculation unit 8, and a digital waveform input by the propagation time measurement unit 7 from the A / D converter 6 as necessary. Display the signal.
  • step S101 the deposit thickness calculator 7b controls the ultrasonic transmitter / receiver 5, applies a voltage to the ultrasonic transmission sensor 3, and transmits the ultrasonic wave 10 from the ultrasonic transmission sensor 3 to the inside of the pipe 1.
  • the ultrasonic wave 10 propagates through the liquid 11 inside the pipe 1 and reaches the position of the ultrasonic wave reception sensor 4.
  • step S ⁇ b> 102 the A / D converter 6 starts recording waveform data from the timing when the ultrasonic transmitter / receiver 5 applies a voltage to the ultrasonic transmission sensor 3, and transmits the ultrasonic waves propagated through the pipe 1.
  • a signal obtained by amplifying the signal received by the ultrasonic wave receiving sensor 4 by the ultrasonic wave transmitter / receiver 5 is converted into digital data.
  • the propagation time measurement unit 7a measures the propagation time of the transmitted ultrasonic wave.
  • FIG. 3 shows the state of the transmitted wave signal when there is no deposit inside the pipe 1 and when there is no deposit.
  • the propagation time measuring unit 7a measures the propagation time of the waveform signal 15a or the waveform signal 15b that appears after the waveform signal 14a or the waveform signal 14b.
  • the waveform signals 14a and 15a or the waveform signals 14b and 15b may not be completely separated, and it may be difficult to measure the propagation time. A method in that case will be described in Example 2.
  • step S104 the sound speed is obtained from the propagation time.
  • the speed of sound is calculated by dividing the distance between the ultrasonic transmission sensor 3 and the ultrasonic reception sensor by the measured propagation time.
  • referring to the relationship between frequency ⁇ liquid column outer diameter and sound velocity (preliminarily stored as data) shown in FIG. 3 is known).
  • the liquid column outer diameter is r3.
  • step S105 the deposit thickness is obtained from the difference between the pipe inner diameter r2 and the liquid column outer diameter r3.
  • a wall thickness parameter is calculated using a sound wave propagation theory.
  • a technique for calculating a wall thickness parameter by calculating a predicted value corresponding to the propagation velocity as a function of and adapting the measured value and the predicted value.
  • the above prior art has the following problems. That is, it is a principle of calculating the corresponding predicted value of the propagation velocity as a function of the wall thickness parameter using a sound wave propagation theory, and is a technique for measuring the wall thickness of the pipe.
  • the thickness of the deposit 2 inside the pipe 1 is determined.
  • the ultrasonic transmission element 3 disposed on one side of the pipe 1, the ultrasonic reception element 4 disposed opposite to the pipe 1, and the ultrasonic transmission element 3 by driving the ultrasonic transmission element 3.
  • an ultrasonic transmitter / receiver 5 that receives a signal from the transmission line 4
  • a propagation time measurement unit 7 a that measures the propagation time of the ultrasonic wave that has propagated through the medium in the pipe, and the propagation using the outer diameter and sound velocity data of the medium. Since the deposit thickness calculator 7b for calculating the thickness of the deposit inside the pipe from the time is provided, the average thickness of the deposit 2 inside the pipe 1 can be measured.
  • FIG. 6 is a diagram schematically showing the entire configuration of the deposit thickness measuring apparatus using ultrasonic waves according to the present embodiment, along with the piping to be inspected.
  • the deposit thickness measuring apparatus using ultrasonic waves according to the present embodiment is similar to the deposit thickness measuring apparatus shown in FIG.
  • the ultrasonic reception sensor 4 includes five ultrasonic reception sensors 4a, 4b, 4c, 4d, and 4e. Of the five ultrasonic reception sensors, four ultrasonic reception sensors 4a, 4b, 4c, and 4d are arranged at positions close to the outer periphery of the pipe, and one ultrasonic reception sensor 4e is near the center of the pipe. Placed in.
  • the five ultrasonic reception sensors 4a, 4b, 4c, 4d, and 4e may be connected to the ultrasonic transmitter / receiver 5 by individual cables (coaxial cables or the like), or are arranged on the outer periphery. 4a, 4b, 4c, and 4d may be connected in parallel to be connected to the ultrasonic transmitter / receiver 5 with two cables together with the ultrasonic reception sensor 4e.
  • step S103 in addition to step S103 described in the first embodiment, addition / subtraction processing of a plurality of transmitted wave signals is performed.
  • Sa a waveform signal received by the ultrasonic receiving sensors 4a, 4b, 4c, and 4d arranged on the outer periphery
  • Se a waveform signal received by the ultrasonic receiving sensor 4e.
  • the ultrasonic zero-order mode S0 the entire liquid column is displaced in the same phase
  • the primary mode S1 the liquid column center and outer periphery are displaced in the opposite phase
  • the waveform signal can be obtained by separating the mode Vg0 in which the sound velocity does not change depending on the outer diameter of the liquid column and the mode Vg1 in which the sound velocity changes depending on the outer diameter of the liquid column.
  • FIG. 8 shows an example of the signal. Comparing the calculation waveform 1 and the calculation waveform 2, the calculation waveform 1 is the same in the case where there is no deposit and the case where there is no deposit, but in the calculation waveform 2, signals appear at different positions depending on whether there is no deposit. .
  • the calculation waveform can be separated. It is possible to measure the propagation time.
  • the transmission ultrasonic transmission sensor 3 includes five ultrasonic transmission sensors 3a, 3b, 3c, 3d, and 3e. Of the five ultrasonic transmission sensors, four ultrasonic transmission sensors 3a, 3b, 3c, and 3d are arranged at positions close to the outer periphery of the pipe, and one ultrasonic transmission sensor 3e is near the center of the pipe. Placed in.
  • the five ultrasonic transmission sensors 3a, 3b, 3c, 3d, and 3e may be connected to the ultrasonic transmitter / receiver 5 by individual cables (coaxial cables or the like), or ultrasonic transmission sensors arranged on the outer periphery.
  • 3a, 3b, 3c, and 3d may be connected in parallel to form one, and the ultrasonic transmitter / receiver 5 may be connected to the ultrasonic transmitter / receiver 5 through two cables together with the ultrasonic transmission sensor 3e.
  • a waveform of the mode Vg0 in which the ultrasonic velocity is not changed by the outer diameter of the liquid column by arranging a plurality of ultrasonic transmission sensors 3 or ultrasonic reception sensors 4 in the radial direction and adding or subtracting a plurality of signals. Since the signal and the waveform signal of the mode Vg1 in which the sound velocity changes depending on the outer diameter of the liquid column are separated, it can be expected that the measurement of the propagation time is reliable.
  • FIG. 9 is a diagram schematically showing the overall configuration of the deposit thickness measuring apparatus using ultrasonic waves according to the present embodiment, along with the piping to be inspected.
  • the deposit thickness measuring apparatus using ultrasonic waves according to the present embodiment is similar to the deposit thickness measuring apparatus shown in FIG.
  • the transmission ultrasonic transmission sensor 3 includes five ultrasonic transmission sensors 3a, 3b, 3c, 3d, and 3e.
  • the transmission ultrasonic transmission sensor 3 also has a reception function. For example, when the deposit is local, such as 2a and 2b, the ultrasonic wave 10 is reflected by the deposit 2a and 2b. It fulfills the function of receiving ultrasonic waves that return as ultrasonic reflected waves 10a and 10b.
  • the ultrasonic transmission sensor 3 since the ultrasonic transmission sensor 3 also serves as a reception function and detects the reflected waves from the local deposits 2a and 2b, the average deposit thickness is small. When detection by this method is difficult, the detection performance of deposits can be improved by using this example together.

Abstract

Provided are: a device for measuring the thickness of a deposit within a pipe used in a plant or the like; and a method for such measurement. The device for measuring the thickness of a deposit using ultrasonic waves comprises: an ultrasonic wave transmitting element disposed on one side of a pipe; an ultrasonic wave receiving element disposed facing the transmitting element, with the pipe therebetween; an ultrasonic wave transceiver that drives the ultrasonic wave transmitting element and that receives a signal from the ultrasonic wave receiving element; a propagation time measurement unit that measures the propagation time of an ultrasonic wave that has propagated through a medium within the pipe; and a deposit thickness calculation unit that calculates the thickness of a deposit within the pipe from the propagation time using the outer diameter of the medium and sound speed data.

Description

超音波を用いた堆積物厚さ測定装置及びその方法Apparatus and method for measuring deposit thickness using ultrasonic waves
 本発明は、例えば、プラント等で用いられる配管内部の堆積物厚さ測定装置および堆積物厚さ測定方法に関する。 The present invention relates to a deposit thickness measuring device and a deposit thickness measuring method inside a pipe used in, for example, a plant.
 例えば、発電プラント,化学プラント等の配管は、敷設してから長期間が経過すると、内面に欠陥(減肉)が発生する。この減肉が進行すると、配管の肉厚を貫通し、液体や蒸気といった配管内を流れる内部流体が外部に漏洩する恐れがある。このような内部流体の漏洩を避けるため、配管について定期的に非破壊検査を行って状態を評価し、内部流体の漏洩が生じる前に減肉を把握して交換や補修といった対策を施す必要がある。 For example, pipes of power plants, chemical plants, etc. will have defects (thinning) on the inner surface after a long period of time has elapsed since installation. As this thinning progresses, there is a risk that internal fluid such as liquid or steam that penetrates the thickness of the piping and leaks outside. In order to avoid such internal fluid leakage, it is necessary to periodically perform non-destructive inspections of the piping to evaluate the condition, and to take measures such as replacement and repair by grasping the thinning before internal fluid leakage occurs. is there.
 配管の状態を評価する非破壊検査技術としては、第一に、配管の減肉を直接検出する技術、第二に、配管に減肉を生じさせる要因を検出する技術がある。 As non-destructive inspection techniques for evaluating the state of pipes, there are firstly techniques for directly detecting pipe thinning and second techniques for detecting factors that cause pipe thinning.
 前者については、配管の肉厚を非破壊検査する非破壊検査手段として、検査対象の肉厚を計測する超音波厚さ計が知られている。超音波厚さ計は、一般的には、電気と音響とを相互に変換可能な圧電素子を有する超音波センサが用いられている。超音波センサを配管外面に設置して、検査対象の配管にバルク波(縦波や横波といった弾性波)を励起し、配管内面で反射した弾性波を同一もしくは別の超音波センサで受信して配管の肉厚を計測する。この超音波厚さ計は、検査範囲が狭いために、広域を検査するには長い時間を要する。また、配管が埋設されている場合や、周囲に保温材や施行されている場合や、配管が二重になっている場合など、適用が困難な場合もある。 As for the former, an ultrasonic thickness meter that measures the thickness of an inspection object is known as a non-destructive inspection means for non-destructive inspection of the thickness of a pipe. As the ultrasonic thickness meter, an ultrasonic sensor having a piezoelectric element capable of mutually converting electricity and sound is generally used. Install an ultrasonic sensor on the outer surface of the piping, excite bulk waves (elastic waves such as longitudinal and transverse waves) in the piping to be inspected, and receive the elastic waves reflected on the inner surface of the piping with the same or different ultrasonic sensors. Measure pipe wall thickness. Since this ultrasonic thickness meter has a narrow inspection range, it takes a long time to inspect a wide area. Moreover, it may be difficult to apply, for example, when a pipe is buried, when a heat insulating material is used around the pipe, or when the pipe is doubled.
 このような超音波厚さ計用いた局所的な従来の検査方法に対し、例えば、特許文献1には、配管の長手方向に隔離された二点間を伝搬する音響外乱を検知し、その音響外乱の伝搬速度を表す実測値を求め、音波の伝搬理論を用いて肉厚パラメータの関数として伝搬速度の対応する予測値を計算し、実測値と予測値を適合させることによって肉厚パラメータを計算する技術が開示されている。 In contrast to such a local conventional inspection method using an ultrasonic thickness gauge, for example, Patent Document 1 discloses an acoustic disturbance that propagates between two points isolated in the longitudinal direction of a pipe and detects the acoustic disturbance. Calculate the measured value representing the propagation speed of the disturbance, calculate the predicted value corresponding to the propagation speed as a function of the thickness parameter using sound wave propagation theory, and calculate the thickness parameter by fitting the measured value and the predicted value Techniques to do this are disclosed.
特開2013-61350号公報JP 2013-61350 A
 しかしながら、上記従来技術には次のような問題点がある。 However, the above prior art has the following problems.
 すなわち、音波の伝搬理論を用いて肉厚パラメータの関数として伝搬速度の対応する予測値を計算する原理であり、前述の第一のカテゴリの配管の肉厚を測定する技術である。
しかしながら、減肉の進行が早い場合などでは、減肉発生前の段階から、それを把握できることが望ましい。減肉の原因の一つに、配管内面に堆積した堆積物の影響がある。このような場合では、堆積物を検出することが、より早期に減肉の兆候を掴めることになる。
That is, the principle is to calculate a predicted value corresponding to the propagation velocity as a function of the wall thickness parameter using the propagation theory of sound waves, and is a technique for measuring the wall thickness of the above-mentioned first category pipe.
However, when the progress of thinning is fast, it is desirable to be able to grasp it from the stage before the occurrence of thinning. One of the causes of thinning is the effect of deposits accumulated on the inner surface of the pipe. In such a case, detecting the deposits will provide an early indication of thinning.
 本発明は上記に鑑みてなされたものであり、プラント等で用いられる配管内部の堆積物厚さ測定装置およびその方法を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide an apparatus and a method for measuring a deposit thickness inside a pipe used in a plant or the like.
 上記目的を達成するための本発明の配管内部の堆積物厚さ測定装置は、配管内部の堆積物の厚さを測定する装置において、配管片側に配置された超音波送信素子と、前記配管を挟んで対向配置された超音波受信素子と、前記超音波送信素子を駆動して前記超音波受信素子からの信号を受信する超音波送受信器と、配管内の媒質を伝搬した超音波の伝搬時間を測定する伝搬時間測定部と、前記媒質の外径と音速のデータを用いて前記伝搬時間から配管内部の堆積物の厚さを算出する堆積物厚さ演算部を備えることを特徴とする。 In order to achieve the above object, an apparatus for measuring a deposit thickness inside a pipe according to the present invention is an apparatus for measuring the thickness of a deposit inside a pipe, and includes an ultrasonic transmission element arranged on one side of a pipe, and the pipe. Ultrasonic wave receiving elements disposed opposite to each other, an ultrasonic wave transmitter / receiver for driving the ultrasonic wave transmitting element to receive a signal from the ultrasonic wave receiving element, and a propagation time of the ultrasonic wave propagating through a medium in the pipe And a deposit thickness calculator for calculating the thickness of the deposit inside the pipe from the propagation time using data of the outer diameter and sound velocity of the medium.
 上記目的を達成するための本発明の配管内部の堆積物厚さ測定方法は、配管内部の堆積物の厚さを測定する方法において、配管片側に超音波送信素子を配置し、前記配管を挟んで超音波受信素子を対向配置し、前記超音波送信素子を駆動して前記配管内部の媒質に超音波を発生し、前記配管内部の媒質を伝搬した透過波信号を前記超音波受信素子で受信し、前記受信信号の伝搬時間を測定し、前記媒質の外径と音速のデータを用いて前記伝搬時間から配管内部の堆積物の厚さを算出することを特徴とする。 In order to achieve the above object, the method for measuring a deposit thickness inside a pipe according to the present invention is a method for measuring the thickness of a deposit inside a pipe, wherein an ultrasonic transmission element is arranged on one side of the pipe, and the pipe is sandwiched between them. The ultrasonic receiving elements are arranged opposite to each other, the ultrasonic transmitting element is driven to generate ultrasonic waves in the medium inside the pipe, and the transmitted wave signal propagated through the medium in the pipe is received by the ultrasonic receiving element. Then, the propagation time of the received signal is measured, and the thickness of the deposit inside the pipe is calculated from the propagation time using the outer diameter and sound velocity data of the medium.
 本発明によれば、配管内部の堆積物の平均的な厚さを測定することが可能になる。 According to the present invention, it is possible to measure the average thickness of the deposit inside the pipe.
本発明の実施例1による超音波を用いた堆積物厚さ測定装置を示す図である。It is a figure which shows the deposit thickness measuring apparatus using the ultrasonic wave by Example 1 of this invention. 本発明の実施例1による堆積物厚さ測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the deposit thickness measuring apparatus by Example 1 of this invention. 本発明の実施例1による、液で満たされた配管内を軸方向に伝搬する超音波の透過波信号を、堆積物が無い場合と有る場合を比較して模式的に示した図である。It is the figure which showed typically the transmitted wave signal of the ultrasonic wave which propagates the inside of the pipe | tube filled with the liquid by Example 1 of this invention compared with the case where there is no deposit and the case where there is no deposit. 液で満たされた配管内を軸方向に伝搬する超音波の音速と周波数×液柱外径の積の関係を超音波のモード毎に示した図である。It is the figure which showed the relationship between the sound velocity of the ultrasonic wave which propagates in the pipe | tube filled with the liquid to the axial direction, and the product of a frequency x liquid column outer diameter for every ultrasonic mode. 配管内に堆積物がある状態を配管の断面モデルで示す図である。It is a figure which shows the state with a deposit in piping with the cross-sectional model of piping. 本発明の実施例2による超音波を用いた堆積物厚さ測定装置を示す図である。It is a figure which shows the deposit thickness measuring apparatus using the ultrasonic wave by Example 2 of this invention. 本発明の実施例1による、液で満たされた配管内を軸方向に伝搬する超音波の複数の透過波信号を演算することで得られた信号を、堆積物が無い場合と有る場合を比較して模式的に示した図である。The signal obtained by calculating a plurality of transmitted wave signals of ultrasonic waves propagating in the axial direction in the pipe filled with liquid according to Example 1 of the present invention is compared with the case where there is no deposit and the case where there is no deposit It is the figure typically shown. 本発明の実施例2による超音波を用いた堆積物厚さ測定装置の代案を示す図である。It is a figure which shows the alternative of the deposit thickness measuring apparatus using the ultrasonic wave by Example 2 of this invention. 本発明の実施例3による堆積物厚さ測定装置を示す図である。It is a figure which shows the deposit thickness measuring apparatus by Example 3 of this invention. 本発明の実施例3による、液で満たされた配管内を軸方向に伝搬する超音波の反射波信号を、堆積物が無い場合と有る場合を比較して模式的に示した図である。It is the figure which showed typically the reflected wave signal of the ultrasonic wave which propagates the inside of the pipe | tube filled with the liquid by Example 3 of this invention compared with the case where there is no deposit and the case where there is no deposit.
 以下、実施例を図面を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.
 以下、本発明の一実施例を図1~図5を用いて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
 図1は、本実施例に係る超音波を用いた堆積物厚さ測定装置の全体構成を、検査対象の配管とともに概略的に示す図である。 FIG. 1 is a diagram schematically showing the entire configuration of a deposit thickness measuring apparatus using ultrasonic waves according to the present embodiment, along with piping to be inspected.
 図1において、配管1は両端が開放されている。このような両端が開放された形状は、例えば熱交換器などに多数存在する。配管1の内面には配管内部の媒質によって堆積物2が生じることがある。本実施例においては、この堆積物2の厚さを測定する例を説明する。 In FIG. 1, both ends of the pipe 1 are open. There are many such open shapes at both ends, for example, in heat exchangers. Deposits 2 may occur on the inner surface of the pipe 1 due to the medium inside the pipe. In this embodiment, an example in which the thickness of the deposit 2 is measured will be described.
 堆積物厚さ測定装置は、配管1の片側に配置された超音波送信センサ3、配管1を挟んで超音波送信センサ3に対して対向配置された超音波受信センサ4、超音波送信センサ3を駆動して超音波受信センサ4からの波形信号を受信する超音波送受信器5、超音波送受信器5から出力された波形信号をデジタル波形信号に変換するA/D変換器6、デジタル波形信号の伝搬時間を測定する伝搬時間測定部7a、伝搬時間から堆積物厚さを演算する堆積物厚さ演算部7bから構成されるコンピュータ7、堆積物厚さの測定結果を表示する表示装置9を備える。 The deposit thickness measuring apparatus includes an ultrasonic transmission sensor 3 disposed on one side of the pipe 1, an ultrasonic reception sensor 4 disposed opposite to the ultrasonic transmission sensor 3 across the pipe 1, and an ultrasonic transmission sensor 3. The ultrasonic transmitter / receiver 5 that receives the waveform signal from the ultrasonic wave reception sensor 4, the A / D converter 6 that converts the waveform signal output from the ultrasonic transmitter / receiver 5 into a digital waveform signal, and the digital waveform signal A computer 7 composed of a propagation time measuring unit 7a for measuring the propagation time of the sample, a deposit thickness calculating unit 7b for calculating the deposit thickness from the propagation time, and a display device 9 for displaying the measurement result of the deposit thickness. Prepare.
 超音波送信センサ3は、配管1の中央付近に配置され、同軸ケーブルなどで超音波送受信器5と接続される。超音波送信センサ3、例えば圧電素子によって構成されている。 The ultrasonic transmission sensor 3 is disposed near the center of the pipe 1 and is connected to the ultrasonic transmitter / receiver 5 by a coaxial cable or the like. The ultrasonic transmission sensor 3 is constituted by, for example, a piezoelectric element.
 反対側に配置される超音波受信センサ4は、配管1の中央付近に配置され、同軸ケーブルなどで超音波送受信器5と接続される。超音波受信センサ4は例えば圧電素子によって構成されている。 The ultrasonic receiving sensor 4 arranged on the opposite side is arranged near the center of the pipe 1 and is connected to the ultrasonic transceiver 5 by a coaxial cable or the like. The ultrasonic wave reception sensor 4 is constituted by a piezoelectric element, for example.
 超音波送受信器3は、堆積物厚さ演算部7bやA/D変換器6とデジタルケーブルで接続され、堆積物厚さ演算部7bの制御によって、超音波送信センサ3に送信波形信号を印加し、さらに超音波受信センサ4からの受信波形信号を増幅し、A/D変換器6に増幅後の受信波形信号を出力する。 The ultrasonic transmitter / receiver 3 is connected to the deposit thickness calculator 7b and the A / D converter 6 through a digital cable, and applies a transmission waveform signal to the ultrasonic transmission sensor 3 under the control of the deposit thickness calculator 7b. Further, the reception waveform signal from the ultrasonic reception sensor 4 is amplified, and the amplified reception waveform signal is output to the A / D converter 6.
 コンピュータ7は、伝搬時間測定部7a及び堆積物厚さ演算部7bとして機能する。A/D変換器6は、超音波送受信器3から出力された受信波形信号をテジタル波形信号に変換してコンピュータ7に含まれる伝搬時間測定部7aに出力する。堆積物厚さ演算部7bは、超音波送信指令等の制御指令を超音波送受信器3に出力する。また、後述する堆積物厚さ演算処理を実行する。 The computer 7 functions as a propagation time measuring unit 7a and a deposit thickness calculating unit 7b. The A / D converter 6 converts the received waveform signal output from the ultrasonic transceiver 3 into a digital waveform signal and outputs the digital waveform signal to the propagation time measurement unit 7 a included in the computer 7. The deposit thickness calculator 7 b outputs a control command such as an ultrasonic transmission command to the ultrasonic transceiver 3. Moreover, the deposit thickness calculation process mentioned later is performed.
 表示装置9は、堆積物厚さ演算部8で演算された堆積物厚さ等の表示情報を表示し、必要に応じて、伝搬時間測定部7がA/D変換器6から入力するテジタル波形信号を表示する。 The display device 9 displays display information such as the deposit thickness calculated by the deposit thickness calculation unit 8, and a digital waveform input by the propagation time measurement unit 7 from the A / D converter 6 as necessary. Display the signal.
 超音波を用いた堆積物厚さ測定装置を用いた堆積物厚さの測定方法を、図2のフローチャートを用いて以下に説明する。 A method for measuring the deposit thickness using the deposit thickness measuring apparatus using ultrasonic waves will be described below with reference to the flowchart of FIG.
 ステップS101において、堆積物厚さ演算部7bは超音波送受信器5を制御して、超音波送信センサ3に電圧を印加し、超音波送信センサ3から配管1内部に超音波10を送信する。超音波10は、配管1内部の液体11を伝搬し、超音波受信センサ4の位置に達する。 In step S101, the deposit thickness calculator 7b controls the ultrasonic transmitter / receiver 5, applies a voltage to the ultrasonic transmission sensor 3, and transmits the ultrasonic wave 10 from the ultrasonic transmission sensor 3 to the inside of the pipe 1. The ultrasonic wave 10 propagates through the liquid 11 inside the pipe 1 and reaches the position of the ultrasonic wave reception sensor 4.
 ステップS102において、A/D変換器6は、超音波送受信器5が超音波送信センサ3に電圧を印加したタイミングから波形データの収録を開始しており、配管1内を伝搬した超音波の透過波を超音波受信センサ4が受信した信号を超音波送受信器5が増幅した信号をデジタルデータに変換する。 In step S <b> 102, the A / D converter 6 starts recording waveform data from the timing when the ultrasonic transmitter / receiver 5 applies a voltage to the ultrasonic transmission sensor 3, and transmits the ultrasonic waves propagated through the pipe 1. A signal obtained by amplifying the signal received by the ultrasonic wave receiving sensor 4 by the ultrasonic wave transmitter / receiver 5 is converted into digital data.
 ステップS103において、伝搬時間測定部7aは超音波の透過波の伝搬時間を測定する。図3に、配管1の内部に堆積物が無い場合と有る場合の透過波信号の様子を示す。伝搬時間測定部7aは、このうち、波形信号14a又は波形信号14bの後に出現する波形信号15a又は波形信号15bの伝搬時間を測定する。超音波送信センサ3と超音波受信センサの間の距離によっては、波形信号14aと15a、もしくは、波形信号14bと15bが完全に分離せず、伝搬時間を測定することが難しい場合があるが、その場合の方法は実施例2で述べる。 In step S103, the propagation time measurement unit 7a measures the propagation time of the transmitted ultrasonic wave. FIG. 3 shows the state of the transmitted wave signal when there is no deposit inside the pipe 1 and when there is no deposit. Of these, the propagation time measuring unit 7a measures the propagation time of the waveform signal 15a or the waveform signal 15b that appears after the waveform signal 14a or the waveform signal 14b. Depending on the distance between the ultrasonic transmission sensor 3 and the ultrasonic reception sensor, the waveform signals 14a and 15a or the waveform signals 14b and 15b may not be completely separated, and it may be difficult to measure the propagation time. A method in that case will be described in Example 2.
 ステップS104において、伝搬時間から音速を求める。音速は、超音波送信センサ3と超音波受信センサの間の距離を、測定した伝搬時間で割ることで計算する。次に、図4に示す周波数×液柱外径と音速の関係(予めデータとして保持)を参照し、音速を液柱外径に変換する(周波数は、超音波送受信器5又は超音波送信センサ3で決定されるので既知である)。ここで、液柱とは、図5のモデルに示すように、配管1の内面に堆積物2が存在する場合に、さらにその内側の部分12を意味する。液柱外径はr3ということになる。 In step S104, the sound speed is obtained from the propagation time. The speed of sound is calculated by dividing the distance between the ultrasonic transmission sensor 3 and the ultrasonic reception sensor by the measured propagation time. Next, referring to the relationship between frequency × liquid column outer diameter and sound velocity (preliminarily stored as data) shown in FIG. 3 is known). Here, when the deposit 2 exists on the inner surface of the pipe 1 as shown in the model of FIG. The liquid column outer diameter is r3.
 最後に、ステップS105において、配管内径r2と液柱外径r3の差から堆積物厚さを求める。 Finally, in step S105, the deposit thickness is obtained from the difference between the pipe inner diameter r2 and the liquid column outer diameter r3.
 以上のように構成した本実施例の効果を説明する。 The effect of the present embodiment configured as described above will be described.
 従来技術としては、例えば、配管の長手方向に隔離された二点間を伝搬する音響外乱を検知し、その音響外乱の伝搬速度を表す実測値を求め、音波の伝搬理論を用いて肉厚パラメータの関数として伝搬速度の対応する予測値を計算し、実測値と予測値を適合させることによって肉厚パラメータを計算する技術があった。しかしながら、上記従来技術には次のような問題点があった。すなわち、音波の伝搬理論を用いて肉厚パラメータの関数として伝搬速度の対応する予測値を計算する原理であり、配管の肉厚を測定する技術である。しかし、減肉の進行が早い場合などでは、減肉発生前の段階から、それを把握できることが望ましい。減肉の原因の一つに、配管内面に堆積した堆積物の影響がある。このような場合では、堆積物の厚さを測定することが、より早期に減肉の兆候を掴めることになる
 これに対して、本実施例においては、配管1内部の堆積物2の厚さを測定する装置において、配管1の片側に配置された超音波送信素子3と、配管1を挟んで対向配置された超音波受信素子4と、超音波送信素子3を駆動して超音波受信素子4からの信号を受信する超音波送受信器5と、配管内の媒質を伝搬した超音波の伝搬時間を測定する伝搬時間測定部7aと、前記媒質の外径と音速のデータを用いて前記伝搬時間から配管内部の堆積物の厚さを算出する堆積物厚さ演算部7bを備えたので、配管1内部の堆積物2の平均的な厚さを測定することが可能になる。
As a conventional technique, for example, an acoustic disturbance propagating between two points separated in the longitudinal direction of a pipe is detected, an actual measurement value representing the propagation speed of the acoustic disturbance is obtained, and a wall thickness parameter is calculated using a sound wave propagation theory. There is a technique for calculating a wall thickness parameter by calculating a predicted value corresponding to the propagation velocity as a function of and adapting the measured value and the predicted value. However, the above prior art has the following problems. That is, it is a principle of calculating the corresponding predicted value of the propagation velocity as a function of the wall thickness parameter using a sound wave propagation theory, and is a technique for measuring the wall thickness of the pipe. However, when the progress of thinning is fast, it is desirable to be able to grasp it from the stage before the occurrence of thinning. One of the causes of thinning is the effect of deposits accumulated on the inner surface of the pipe. In such a case, measuring the thickness of the deposit will give an indication of thinning at an earlier stage. On the other hand, in this embodiment, the thickness of the deposit 2 inside the pipe 1 is determined. In the device for measuring the ultrasonic transmission element 3, the ultrasonic transmission element 3 disposed on one side of the pipe 1, the ultrasonic reception element 4 disposed opposite to the pipe 1, and the ultrasonic transmission element 3 by driving the ultrasonic transmission element 3. 4, an ultrasonic transmitter / receiver 5 that receives a signal from the transmission line 4, a propagation time measurement unit 7 a that measures the propagation time of the ultrasonic wave that has propagated through the medium in the pipe, and the propagation using the outer diameter and sound velocity data of the medium. Since the deposit thickness calculator 7b for calculating the thickness of the deposit inside the pipe from the time is provided, the average thickness of the deposit 2 inside the pipe 1 can be measured.
 本発明による第2の実施例を図6~図8を用いて説明する。 A second embodiment according to the present invention will be described with reference to FIGS.
 図6は、本実施例に係る超音波を用いた堆積物厚さ測定装置の全体構成を、検査対象の配管とともに概略的に示す図である。本実施例に係る超音波を用いた堆積物厚さ測定装置は、実施例1の図1で示した堆積物厚さ測定装置と類似しており、以下異なる点を中心に説明する。 FIG. 6 is a diagram schematically showing the entire configuration of the deposit thickness measuring apparatus using ultrasonic waves according to the present embodiment, along with the piping to be inspected. The deposit thickness measuring apparatus using ultrasonic waves according to the present embodiment is similar to the deposit thickness measuring apparatus shown in FIG.
 超音波受信センサ4は、5個の超音波受信センサ4a、4b、4c、4d、4eから構成される。5個の超音波受信センサのうち、4個の超音波受信センサ4a、4b、4c、4dは、配管の外周に近い位置に配列され、1個の超音波受信センサ4eは、配管の中央付近に配置される。5個の超音波受信センサ4a、4b、4c、4d、4eは、各々個別のケーブル(同軸ケーブルなど)で超音波送受信器5と接続しても良いし、外周に配列された超音波受信センサ4a、4b、4c、4dを並列接続して一本とし、超音波受信センサ4eと合わせて二本のケーブルで超音波送受信器5と接続しても良い。 The ultrasonic reception sensor 4 includes five ultrasonic reception sensors 4a, 4b, 4c, 4d, and 4e. Of the five ultrasonic reception sensors, four ultrasonic reception sensors 4a, 4b, 4c, and 4d are arranged at positions close to the outer periphery of the pipe, and one ultrasonic reception sensor 4e is near the center of the pipe. Placed in. The five ultrasonic reception sensors 4a, 4b, 4c, 4d, and 4e may be connected to the ultrasonic transmitter / receiver 5 by individual cables (coaxial cables or the like), or are arranged on the outer periphery. 4a, 4b, 4c, and 4d may be connected in parallel to be connected to the ultrasonic transmitter / receiver 5 with two cables together with the ultrasonic reception sensor 4e.
 本実施例においては、実施例1で説明したステップS103に加えて、複数の透過波信号の加算・減算処理を行う。今、外周に配列された超音波受信センサ4a、4b、4c、4dで受信した波形信号をSa、超音波受信センサ4eで受信した波形信号をSeとする。このとき、超音波の0次モードS0(液柱全体が同位相で変位)と1次モードS1(液柱中心と外周が逆位相で変位)は、下記の式で算出される。 In this embodiment, in addition to step S103 described in the first embodiment, addition / subtraction processing of a plurality of transmitted wave signals is performed. Now, let Sa be a waveform signal received by the ultrasonic receiving sensors 4a, 4b, 4c, and 4d arranged on the outer periphery, and Se be a waveform signal received by the ultrasonic receiving sensor 4e. At this time, the ultrasonic zero-order mode S0 (the entire liquid column is displaced in the same phase) and the primary mode S1 (the liquid column center and outer periphery are displaced in the opposite phase) are calculated by the following equations.
 S0=Sa+Se (演算1)
 S1=Sa-Se (演算2)
実際には、信号の強度比率が異なるので、信号Saと信号Seは係数を掛けて加算又は減算するのが都合が良い。係数は予め校正データを取得して求めることができる。
S0 = Sa + Se (Calculation 1)
S1 = Sa-Se (Calculation 2)
Actually, since the signal intensity ratio is different, it is convenient to add or subtract the signal Sa and the signal Se by multiplying by a coefficient. The coefficient can be obtained by acquiring calibration data in advance.
 このような演算をすることで、液柱の外径によって音速が変化しないモードVg0と、液柱の外径によって音速が変化するモードVg1を分離して波形信号を得ることができる。図8にその信号の例を示す。演算波形1と演算波形2を比較すると、演算波形1は堆積物が無い場合と有る場合で同じであるが、演算波形2は、堆積物が無い場合と有る場合で異なる位置に信号が出現する。このような演算信号を使うことによって、例えば、超音波送信センサ3と超音波受信センサ4の距離が短く、信号14と信号15が明確に分離しない場合でも、演算波形では分離できるので、確実に伝搬時間を測定することが可能となる。 By performing such calculation, the waveform signal can be obtained by separating the mode Vg0 in which the sound velocity does not change depending on the outer diameter of the liquid column and the mode Vg1 in which the sound velocity changes depending on the outer diameter of the liquid column. FIG. 8 shows an example of the signal. Comparing the calculation waveform 1 and the calculation waveform 2, the calculation waveform 1 is the same in the case where there is no deposit and the case where there is no deposit, but in the calculation waveform 2, signals appear at different positions depending on whether there is no deposit. . By using such a calculation signal, for example, even when the distance between the ultrasonic transmission sensor 3 and the ultrasonic reception sensor 4 is short and the signal 14 and the signal 15 are not clearly separated, the calculation waveform can be separated. It is possible to measure the propagation time.
 本実施例は、超音波送信センサと超音波受信センサの配列を交代しても良い。すなわち、図8の配列としても良い。図8では、送信超音波送信センサ3は、5個の超音波送信センサ3a、3b、3c、3d、3eから構成される。5個の超音波送信センサのうち、4個の超音波送信センサ3a、3b、3c、3dは、配管の外周に近い位置に配列され、1個の超音波送信センサ3eは、配管の中央付近に配置される。5個の超音波送信センサ3a、3b、3c、3d、3eは、各々個別のケーブル(同軸ケーブルなど)で超音波送受信器5と接続しても良いし、外周に配列された超音波送信センサ3a、3b、3c、3dを並列接続して一本とし、超音波送信センサ3eと合わせて二本のケーブルで超音波送受信器5と接続しても良い。 In this embodiment, the arrangement of the ultrasonic transmission sensor and the ultrasonic reception sensor may be changed. That is, the arrangement shown in FIG. In FIG. 8, the transmission ultrasonic transmission sensor 3 includes five ultrasonic transmission sensors 3a, 3b, 3c, 3d, and 3e. Of the five ultrasonic transmission sensors, four ultrasonic transmission sensors 3a, 3b, 3c, and 3d are arranged at positions close to the outer periphery of the pipe, and one ultrasonic transmission sensor 3e is near the center of the pipe. Placed in. The five ultrasonic transmission sensors 3a, 3b, 3c, 3d, and 3e may be connected to the ultrasonic transmitter / receiver 5 by individual cables (coaxial cables or the like), or ultrasonic transmission sensors arranged on the outer periphery. 3a, 3b, 3c, and 3d may be connected in parallel to form one, and the ultrasonic transmitter / receiver 5 may be connected to the ultrasonic transmitter / receiver 5 through two cables together with the ultrasonic transmission sensor 3e.
 以上のように構成した本実施例の効果を説明する。 The effect of the present embodiment configured as described above will be described.
 本実施例においては、超音波送信センサ3もしくは超音波受信センサ4を径方向に複数配列し、複数の信号を加算又は減算することにより、液柱の外径によって音速が変化しないモードVg0の波形信号と、液柱の外径によって音速が変化するモードVg1の波形信号を分離するので、伝搬時間測定が確実になることが期待できる。 In the present embodiment, a waveform of the mode Vg0 in which the ultrasonic velocity is not changed by the outer diameter of the liquid column by arranging a plurality of ultrasonic transmission sensors 3 or ultrasonic reception sensors 4 in the radial direction and adding or subtracting a plurality of signals. Since the signal and the waveform signal of the mode Vg1 in which the sound velocity changes depending on the outer diameter of the liquid column are separated, it can be expected that the measurement of the propagation time is reliable.
 本発明による第3の実施例を図9~図10を用いて説明する。 A third embodiment according to the present invention will be described with reference to FIGS.
 図9は、本実施例に係る超音波を用いた堆積物厚さ測定装置の全体構成を、検査対象の配管とともに概略的に示す図である。本実施例に係る超音波を用いた堆積物厚さ測定装置は、実施例1の図1で示した堆積物厚さ測定装置と類似しており、以下異なる点を中心に説明する。 FIG. 9 is a diagram schematically showing the overall configuration of the deposit thickness measuring apparatus using ultrasonic waves according to the present embodiment, along with the piping to be inspected. The deposit thickness measuring apparatus using ultrasonic waves according to the present embodiment is similar to the deposit thickness measuring apparatus shown in FIG.
 送信超音波送信センサ3は、5個の超音波送信センサ3a、3b、3c、3d、3eから構成される。送信超音波送信センサ3は、受信機能も兼ねており、例えば、堆積物が2a、2bのように局所的であった場合に、超音波10が、堆積物が2a、2bで反射し、各々超音波反射波10a、10bとなって戻る超音波を受信する機能を果たす。 The transmission ultrasonic transmission sensor 3 includes five ultrasonic transmission sensors 3a, 3b, 3c, 3d, and 3e. The transmission ultrasonic transmission sensor 3 also has a reception function. For example, when the deposit is local, such as 2a and 2b, the ultrasonic wave 10 is reflected by the deposit 2a and 2b. It fulfills the function of receiving ultrasonic waves that return as ultrasonic reflected waves 10a and 10b.
 このような構成によれば、図10に示すように、堆積物が無い場合は、受信信号には送信波16だけが表示されるが、局所的な堆積物があった場合は、堆積物2aで反射した反射波信号17aと、堆積物2bで反射した17bが検出される。堆積物が局所的で平均堆積物厚さが小さくなり、実施例1や実施例2の方法で厚さ測定が難しい場合に、本実施例を併用することで、堆積物の検出性能を向上することができる。 According to such a configuration, as shown in FIG. 10, when there is no deposit, only the transmission wave 16 is displayed in the received signal, but when there is a local deposit, the deposit 2a is displayed. And the reflected wave signal 17a reflected by and the 17b reflected by the deposit 2b are detected. When the deposit is local and the average deposit thickness is small and it is difficult to measure the thickness by the method of Example 1 or Example 2, the detection performance of the deposit is improved by using this example together. be able to.
 以上のように構成した本実施例の効果を説明する。 The effect of the present embodiment configured as described above will be described.
 本実施例においては、超音波送信センサ3が受信機能を兼ねて、局所的な堆積物2a、2bからの反射波を検出するので、平均堆積物厚さが小さく、実施例1や実施例2の方法で検出が難しい場合に、本実施例を併用することで、堆積物の検出性能を向上することができる。 In the present embodiment, since the ultrasonic transmission sensor 3 also serves as a reception function and detects the reflected waves from the local deposits 2a and 2b, the average deposit thickness is small. When detection by this method is difficult, the detection performance of deposits can be improved by using this example together.
1 配管
2 堆積物
2a、2b 局所的な堆積物
3、3a、3b、3c、3d、3e 超音波送信センサ
4、4a、4b、4c、4d、4e 超音波受信センサ
5 超音波送受信器
6 A/D変換器
7 コンピュータ
7a 伝搬時間測定部
7b 堆積物厚さ演算部
9 表示装置
10 超音波
10a、10b 超音波(反射波)
11 液
12 液が形成する柱(液柱)
13a、13b 超音波の周波数領域
14a、14b 透過波信号(0次モード)
15a、15b 透過波信号(1次モード)
16 送信波信号
17a、17b 反射波信号
DESCRIPTION OF SYMBOLS 1 Piping 2 Deposit 2a, 2b Local deposit 3, 3a, 3b, 3c, 3d, 3e Ultrasonic transmission sensor 4, 4a, 4b, 4c, 4d, 4e Ultrasonic reception sensor 5 Ultrasonic transmitter / receiver 6A / D converter 7 Computer 7a Propagation time measurement unit 7b Deposit thickness calculation unit 9 Display device 10 Ultrasonic wave 10a, 10b Ultrasonic wave (reflected wave)
11 Liquid 12 Column formed by liquid (liquid column)
13a, 13b Ultrasonic frequency region 14a, 14b Transmitted wave signal (0th order mode)
15a, 15b Transmitted wave signal (primary mode)
16 Transmitted wave signal 17a, 17b Reflected wave signal

Claims (5)

  1.  配管片側に配置された超音波送信素子と、
     前記配管を挟んで対向に配置された超音波受信素子と、
     前記超音波送信素子を駆動して前記超音波受信素子からの信号を受信する超音波送受信器と、
     配管内の媒質を伝搬した超音波の伝搬時間を測定する伝搬時間測定部と、
     前記媒質の外径と音速のデータを用いて前記伝搬時間から配管内部の堆積物の厚さを算出する堆積物厚さ演算部を備えることを特徴とする超音波を用いた堆積物厚さ測定装置。
    An ultrasonic transmission element arranged on one side of the pipe;
    An ultrasonic receiving element disposed opposite to the pipe,
    An ultrasonic transceiver for driving the ultrasonic transmission element to receive a signal from the ultrasonic reception element;
    A propagation time measurement unit for measuring the propagation time of the ultrasonic wave propagated through the medium in the pipe;
    Sediment thickness measurement using ultrasonic waves, comprising: a deposit thickness calculator that calculates the thickness of the deposit inside the pipe from the propagation time using the outer diameter and sound velocity data of the medium apparatus.
  2.  請求項1において、
     前記配管片側に配置された超音波送信素子が、前記配管の径方向に配置される複数の超音波送信素子であり、
     前記配管を挟んで対向に配置された超音波受信素子が前記配管の径方向に配置される複数の超音波受信素子であり、
     前記伝搬時間測定部が、前記複数の超音波受信素子で受信された信号を加算又は減算することで演算波形を算出し、前記演算波形から超音波の伝搬時間を測定することを特徴とする超音波を用いた堆積物厚さ測定装置。
    In claim 1,
    The ultrasonic transmission elements arranged on one side of the pipe are a plurality of ultrasonic transmission elements arranged in the radial direction of the pipe,
    The ultrasonic receiving elements arranged opposite to each other across the pipe are a plurality of ultrasonic receiving elements arranged in the radial direction of the pipe,
    The propagation time measuring unit calculates a calculation waveform by adding or subtracting signals received by the plurality of ultrasonic receiving elements, and measures an ultrasonic propagation time from the calculation waveform. Deposit thickness measurement device using sound waves.
  3.  配管内部の堆積物の厚さを測定する超音波素子であって、
     前記配管片側に径方向に配置される複数の超音波送信素子と、
     前記配管を挟んで対向に配置され、径方向に配置される複数の超音波受信素子を有することを特徴とする超音波素子。
    An ultrasonic element for measuring the thickness of deposits inside a pipe,
    A plurality of ultrasonic transmission elements arranged in the radial direction on one side of the pipe;
    An ultrasonic element comprising a plurality of ultrasonic receiving elements arranged opposite to each other across the pipe and arranged in a radial direction.
  4.  配管片側に超音波送信素子を配置し、
     前記配管を挟んで超音波受信素子を対向に配置し、
     前記超音波送信素子を駆動して前記配管内部の媒質に超音波を発生し、
     前記配管内部の媒質を伝搬した透過波信号を前記超音波受信素子で受信し、
     前記受信信号の伝搬時間を測定し、
     前記媒質の外径と音速のデータを用いて前記伝搬時間から配管内部の堆積物の厚さを算出することを特徴とする超音波を用いた堆積物厚さ測定方法。
    An ultrasonic transmission element is placed on one side of the pipe,
    An ultrasonic receiving element is disposed opposite to the pipe,
    Driving the ultrasonic transmission element to generate ultrasonic waves in the medium inside the pipe,
    The transmitted wave signal propagated through the medium inside the pipe is received by the ultrasonic receiving element,
    Measuring the propagation time of the received signal;
    A method for measuring the thickness of a deposit using ultrasonic waves, wherein the thickness of the deposit inside the pipe is calculated from the propagation time using data on the outer diameter and sound velocity of the medium.
  5.  請求項4において、
     配管片側の径方向に複数の超音波送信素子を配置し、
     前記配管を挟んで径方向に複数の超音波受信素子を対向に配置し、
     前記複数の超音波受信素子で受信した信号を加算又は減算することで演算波形を算出し、前記演算波形から超音波の伝搬時間を測定することを特徴とする超音波を用いた堆積物厚さ測定方法。
    In claim 4,
    A plurality of ultrasonic transmission elements are arranged in the radial direction on one side of the pipe,
    A plurality of ultrasonic receiving elements are arranged opposite to each other in the radial direction across the pipe,
    The thickness of the deposit using ultrasonic waves, wherein a calculated waveform is calculated by adding or subtracting signals received by the plurality of ultrasonic receiving elements, and an ultrasonic propagation time is measured from the calculated waveforms. Measuring method.
PCT/JP2016/082506 2015-11-20 2016-11-02 Device for measuring deposit thickness using ultrasonic waves, and method therefor WO2017086150A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017551810A JP6458164B2 (en) 2015-11-20 2016-11-02 Apparatus and method for measuring deposit thickness using ultrasonic waves
MYPI2018701072A MY196045A (en) 2015-11-20 2016-11-02 Device for Measuring Deposit Thickness using Ultrasonic Waves, and Method Therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-227224 2015-11-20
JP2015227224 2015-11-20

Publications (1)

Publication Number Publication Date
WO2017086150A1 true WO2017086150A1 (en) 2017-05-26

Family

ID=58718782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082506 WO2017086150A1 (en) 2015-11-20 2016-11-02 Device for measuring deposit thickness using ultrasonic waves, and method therefor

Country Status (3)

Country Link
JP (1) JP6458164B2 (en)
MY (1) MY196045A (en)
WO (1) WO2017086150A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008017A (en) * 2017-12-05 2018-05-08 董海峰 Deposit detection device in a kind of petroleum pipeline
US20230003572A1 (en) * 2021-06-30 2023-01-05 Endress+Hauser Conducta Gmbh+Co. Kg Interface sensor and operating method of an interface sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254112A (en) * 1985-09-03 1987-03-09 Fuji Electric Co Ltd Thickness measuring method for scale in pipe
JP2002328119A (en) * 2001-05-01 2002-11-15 Hideo Nishino Method of estimating tube parameter, method of evaluating condition of tube material, method of inspecting tube, and device for estimating tube parameter used therefor
JP2008076296A (en) * 2006-09-22 2008-04-03 Kyushu Electric Power Co Inc Ultrasonic flaw detecting technique using ultrasonic flaw detector and the lorentz force

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6634233B2 (en) * 2001-01-23 2003-10-21 Wright State University Method for determining the wall thickness and the speed of sound in a tube from reflected and transmitted ultrasound pulses

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254112A (en) * 1985-09-03 1987-03-09 Fuji Electric Co Ltd Thickness measuring method for scale in pipe
JP2002328119A (en) * 2001-05-01 2002-11-15 Hideo Nishino Method of estimating tube parameter, method of evaluating condition of tube material, method of inspecting tube, and device for estimating tube parameter used therefor
JP2008076296A (en) * 2006-09-22 2008-04-03 Kyushu Electric Power Co Inc Ultrasonic flaw detecting technique using ultrasonic flaw detector and the lorentz force

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008017A (en) * 2017-12-05 2018-05-08 董海峰 Deposit detection device in a kind of petroleum pipeline
CN108008017B (en) * 2017-12-05 2020-09-29 中国特种设备检测研究院 Device for detecting deposits in petroleum pipe
US20230003572A1 (en) * 2021-06-30 2023-01-05 Endress+Hauser Conducta Gmbh+Co. Kg Interface sensor and operating method of an interface sensor

Also Published As

Publication number Publication date
MY196045A (en) 2023-03-09
JP6458164B2 (en) 2019-01-23
JPWO2017086150A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
US8820163B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
JP4589280B2 (en) Pipe inspection method using guide wave and pipe inspection apparatus
US20170268950A1 (en) An apparatus and method for measuring the pressure inside a pipe or container
CN103245454A (en) Non-intrusive pipeline real-time monitoring, prewarning and fault locating system
JP4012237B2 (en) Piping inspection method and apparatus
JP3913144B2 (en) Piping inspection method and apparatus
Ma et al. The reflection of guided waves from simple dents in pipes
JP2004301540A (en) Non-destructive inspection method and non-destructive inspection device
JP5531376B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP5663319B2 (en) Guide wave inspection method and apparatus
JP6502821B2 (en) Valve seat leak inspection apparatus and valve seat leak inspection method
JP6458164B2 (en) Apparatus and method for measuring deposit thickness using ultrasonic waves
Liu et al. Optimizing the frequency range of microwaves for high-resolution evaluation of wall thinning locations in a long-distance metal pipe
JP5530405B2 (en) Nondestructive inspection method and nondestructive inspection device
JP5297791B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP5143111B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guide wave
JP2014062758A (en) Method and device for nondestructive inspection using guide wave
JP6458167B2 (en) Pipe thickness measuring apparatus and method using ultrasonic waves
JP5431905B2 (en) Nondestructive inspection method and nondestructive inspection apparatus using guide wave
Bertoncini et al. 3D characterization of defects in Guided Wave monitoring of pipework using a magnetostrictive sensor
JP6496181B2 (en) Ultrasonic measurement method and ultrasonic measurement apparatus
RU2789793C1 (en) Method for determining the linear coordinate of the place of occurrence of a leak in a pipeline
JP5750066B2 (en) Non-destructive inspection method using guided waves
Lee et al. Wireless monitoring of the height of condensed water in steam pipes
JP4906561B2 (en) In-pipe deposit diagnosis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551810

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866152

Country of ref document: EP

Kind code of ref document: A1