WO2017086105A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2017086105A1
WO2017086105A1 PCT/JP2016/081635 JP2016081635W WO2017086105A1 WO 2017086105 A1 WO2017086105 A1 WO 2017086105A1 JP 2016081635 W JP2016081635 W JP 2016081635W WO 2017086105 A1 WO2017086105 A1 WO 2017086105A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
scroll
pump
oil
oil supply
Prior art date
Application number
PCT/JP2016/081635
Other languages
French (fr)
Japanese (ja)
Inventor
征大 谷口
央幸 木全
創 佐藤
洋悟 高須
陽平 堀田
太一 舘石
拓馬 山下
暉裕 金井
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201680043307.7A priority Critical patent/CN107850069B/en
Priority to EP16866107.2A priority patent/EP3318759A4/en
Publication of WO2017086105A1 publication Critical patent/WO2017086105A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow

Definitions

  • the present invention relates to a scroll compressor used in a refrigeration system, an air conditioner, and the like.
  • a scroll compressor having a scroll compression mechanism housed in a housing and a drive motor for driving the scroll compression mechanism is widely known.
  • the scroll compression mechanism includes a fixed scroll member provided with a spiral wrap on one side of a disk-shaped end plate and a turning scroll member, and these fixed scroll and the turning scroll are engaged with the wrap
  • the rotating scroll is made to revolve with respect to the fixed scroll. Then, the volume of the compression space formed between the two wraps is reduced along with the turning of the orbiting scroll to compress the fluid (gas refrigerant) in the space.
  • the lubricating oil pumped up by the lubricating oil pump is circulated to the inside of the housing by being dropped and returned to the bottom of the housing after being supplied to each sliding portion. At this time, the fluid introduced into the housing is sucked between the fixed scroll and the orbiting scroll while rolling up the lubricating oil, so that the lubricating oil mixes with the fluid. For this reason, the lubricating oil mixed in the fluid seals a minute gap between the fixed scroll and the wrap of the orbiting scroll, thereby suppressing the decrease in the operating efficiency of the compressor.
  • (A) For example, at a low speed operation of about 50 rps, it is necessary to supply a sufficient amount of lubricating oil to each sliding portion in order to seal the gap between the wraps and to suppress the decrease in the operation efficiency.
  • (B) for example, during high-speed operation of 150 rps or more, if the amount of lubricating oil discharged to the outside of the housing with the fluid increases, the lubricating oil stored in the housing may run short. It is necessary to reduce the amount of lubricating oil. However, increasing the amount supplied to each sliding portion generally increases the amount of lubricating oil discharged, so it is difficult to make the above conditions (A) and (B) compatible.
  • the present invention has been made in view of the above circumstances, and is a scroll compression that can suppress the reduction in the operating efficiency of the compressor during low speed operation and can reduce the amount of lubricating oil discharged from the compressor during high speed operation.
  • the purpose is to provide a machine.
  • the present invention relates to a housing into which low pressure gas flows, a scroll compression mechanism housed in the housing to compress low pressure gas, and a scroll compression mechanism and drive shaft
  • the lubricating oil stored in the bottom of the housing is pumped up by rotation of the drive shaft and the drive motor for driving the scroll compression mechanism, the bearing for rotatably supporting the drive shaft, and the scroll compression mechanism and bearing
  • the lubricating oil pump is operable in an operating range where the number of revolutions of the drive motor is at least 150 rps or more, and the rate of increase of the amount of oil supply per unit time with respect to the number of revolutions. It is characterized in that it is a positive displacement pump in which the inclination indicating the velocity decreases as the rotation speed increases.
  • the lubricating oil pump is driven when the pump oil supply amount per rotation of the lubricating oil pump is Q (cc / rev) and the scroll displacement amount per rotation of the scroll compression mechanism is Vs (cc / rev).
  • Q the pump oil supply amount per rotation of the lubricating oil pump
  • Vs the scroll displacement amount per rotation of the scroll compression mechanism
  • Q / Vs> 0.006 is satisfied
  • the number of rotations of the drive motor is at least 150 rps to 200 rps, 0.003 ⁇ Q / Vs ⁇ 0. It is preferable to satisfy 006. According to this configuration, the amount of lubricating oil supplied to each sliding portion can be sufficiently secured at the low speed operation, and the amount of lubricating oil supplied at the high speed operation can be suppressed.
  • the lubricating oil pumped up by the lubricating oil pump has an oil supply passage through which the lubricating oil supplied to the sliding portion flows, and a return oil passage for returning the surplus lubricating oil supplied to the sliding portion back into the housing, and the minimum diameter in the oil supply passage is d1
  • the inner diameter D of the suction port may satisfy d1 ⁇ D ⁇ d2.
  • the equivalent diameter d2 of the return oil passage is equal to or larger than the inner diameter D of the suction port, surplus lubricating oil is prevented from staying in the return oil passage, and the lubricating oil stored in the bottom of the housing runs short. Can be prevented.
  • the lubricating oil pump may be a rolling piston lubricating oil pump. According to this configuration, since the rolling piston type lubricating oil pump causes a suction loss at high speed rotation, the amount of oil supply at high speed operation of the compressor can be effectively suppressed.
  • the lubricating oil pump can be operated in the operating range where the number of revolutions of the drive motor is at least 150 rps or more, and the inclination indicating the rate of increase of the amount of oil supply per unit time with respect to the number of revolutions is the number of revolutions.
  • the displacement pump is smaller as it becomes larger, it is possible to realize a reduction in the operating efficiency of the compressor at low speed operation and a reduction in the amount of lubricating oil discharged from the compressor at high speed operation. Operation in the rotational speed range is possible.
  • FIG. 1 is an overall cross-sectional view of a scroll compressor according to the present embodiment.
  • FIG. 2 is a cross-sectional view of an oil supply pump provided in the scroll compressor.
  • FIG. 3 is a graph showing the relationship between the pump oil supply amount Q / scroll displacement amount Vs and the rotational speed of the drive motor.
  • FIG. 4 is a graph showing the relationship between the amount of oil supplied per unit time of the pump and the number of rotations of the drive motor.
  • FIG. 1 is an overall cross-sectional view of a scroll compressor according to the present embodiment.
  • the scroll compressor 1 compresses and discharges a sucked fluid (for example, refrigerant), and in the present embodiment, is interposed in a refrigerant flow path that circulates the refrigerant in an air conditioner, a refrigeration apparatus, or the like.
  • a sucked fluid for example, refrigerant
  • the scroll compressor 1 includes a motor (drive motor) 5 as drive means and a scroll compression mechanism 7 driven by the motor 5 in a housing 3.
  • motor drive motor
  • scroll compression mechanism 7 driven by the motor 5 in a housing 3.
  • the housing 3 includes a cylindrical housing body 3a extending vertically, a bottom 3b closing the lower end of the housing body 3a, and a lid 3c closing the upper end of the housing body 3a, and the whole is sealed. It is a pressure vessel.
  • the housing body 3a is provided at its side with a suction pipe 9 for introducing a refrigerant (low pressure gas) into the housing 3.
  • the lid 3 c is provided at its upper portion with a discharge pipe 11 for discharging the refrigerant (high pressure gas) compressed by the scroll compression mechanism 7.
  • the discharge cover 13 is provided between the housing main body 3 a and the lid 3 c, and the inside of the housing 3 is the low pressure chamber 3 A below the discharge cover 13 and the high pressure chamber 3 B above the discharge cover 13.
  • the discharge cover 13 has an opening 13a communicating the low pressure chamber 3A with the high pressure chamber 3B, and a discharge reed valve 13b opening and closing the opening 13a.
  • the bottom in the housing 3 (low pressure chamber 3A) is configured as an oil reservoir 41 in which the lubricating oil 40 is stored.
  • the motor 5 includes a stator 15, a rotor 17, and a rotating shaft (drive shaft) 19.
  • the stator 15 is fixed to the inner wall surface of the housing main body 3a substantially at the center in the vertical direction of the housing main body 3a.
  • the rotor 17 is rotatably provided with respect to the stator 15.
  • the rotating shaft 19 is disposed up and down in the longitudinal direction with respect to the rotor 17.
  • the motor 5 rotates the rotor 17 when power is supplied from the outside of the housing 3, and the rotating shaft 19 rotates with the rotor 17.
  • the motor 5 is configured to be able to control the operating frequency by, for example, an inverter (not shown), and can operate in a wide range from the low rotation speed region to the high rotation speed region.
  • the rotating shaft 19 has end portions projecting upward and downward of the rotor 17, and the upper end portion of the housing main body 3a is vertically moved by the upper bearing 21 and the lower end portion is vertically moved by the lower bearing 23. It is rotatably supported on the axis CE extending in the direction.
  • the rotating shaft 19 is formed at its upper end with an eccentric pin 25 projecting upward along the eccentricity LE which is biased with respect to the axial center CE.
  • the scroll compression mechanism 7 is connected to the upper end of the rotary shaft 19 having the eccentric pin 25.
  • the rotary shaft 19 and the eccentric pin 25 are formed therein with a fueling hole (fueling passage) 27 penetrating vertically.
  • the oil supply hole 27 communicates with the oil supply hole 27 at a height position corresponding to the upper bearing 21 and the lower bearing 23, and penetrates in the radial direction of the rotary shaft 19 with the upper oil supply hole (oil supply passage) 27a.
  • a (fuel supply passage) 27b is provided.
  • an oil supply pump (lubricating oil pump) 29 disposed in the oil reservoir 41 is provided at the lower end of the rotating shaft 19. The oil supply pump 29 pumps up the lubricating oil 40 stored in the oil reservoir 41 as the rotary shaft 19 rotates.
  • Lubricated oil is pumped to the sliding portion between the upper bearing 21 and the lower bearing 23 and the rotating shaft 19 and the scroll compression mechanism 7 through the oil supply hole 27, the upper oil supply hole 27 a and the lower oil supply hole 27 b of the rotary shaft 19. Supplied.
  • the upper bearing 21 penetrates the upper end portion of the rotating shaft 19 to rotatably support the rotating shaft 19.
  • the upper bearing 21 has a recess 21 a formed on the upper surface thereof so as to surround the upper end portion of the rotary shaft 19 penetrated.
  • the recess 21 a accommodates a slide bush 37 described later, and stores the lubricating oil 40 fed by the oil supply pump 29 through the oil supply hole 27. Then, the stored lubricating oil 40 is supplied to the scroll compression mechanism 7.
  • a notch 21 b is formed on a part of the outer periphery so as to have a gap with the inner wall surface of the housing main body 3 a of the housing 3, and the oil drainage hole (return oil passage communicating the notch 21 b and the recess 21 a ) 21c is formed.
  • a cover plate 31 is provided below the notch 21 b of the upper bearing 21, .
  • the cover plate 31 is provided to extend in the vertical direction.
  • the cover plate 31 is formed by curving both ends toward the inner wall surface of the housing main body 3a so as to cover the periphery of the notch 21b, and the lower end is bent so as to gradually approach the inner wall surface of the housing main body 3a It is done.
  • the oil drain hole 21 c discharges the lubricating oil 40 surplusly stored in the recess 21 a from the notch 21 b to the outer periphery of the upper bearing 21.
  • the cover plate 31 receives the lubricating oil 40 discharged from the notch 21b and guides it toward the inner wall surface of the housing main body 3a.
  • the lubricating oil 40 guided toward the inner wall surface by the cover plate 31 is returned to the oil reservoir 41 at the bottom of the housing 3 along the inner wall surface by the cover plate 31.
  • the scroll compression mechanism 7 is disposed inside the housing 3 in the low pressure chamber 3A lower than the discharge cover 13 and above the upper bearing 21 and fixed scroll 33, orbiting scroll 35 and slide bush 37. And.
  • a spiral fixed side wrap 33b is formed on the inner surface (lower surface in FIG. 1) of the fixed side end plate 33a fixed inside the housing 3.
  • the fixed end plate 33a has a discharge hole 33c at its center.
  • a spiral movable side wrap 35b is formed on the inner surface (upper surface in FIG. 1) of the movable side end plate 35a facing the inner surface of the fixed side end plate 33a in the fixed scroll 33. Then, the movable side wrap 35b of the orbiting scroll 35 and the fixed side wrap 33b of the fixed scroll 33 are engaged with each other while being out of phase with each other, whereby the compression divided by the end plates 33a, 35a and the respective wraps 33b, 35b A room is formed. Further, the orbiting scroll 35 has a cylindrical boss 35c to which the eccentric pin 25 of the rotating shaft 19 is connected to the outer surface (the lower surface in FIG. 1) of the movable side end plate 35a and the eccentric rotation of the eccentric pin 25 is transmitted.
  • the orbiting scroll 35 is prevented from rotating on the basis of the eccentric rotation of the eccentric pin 25 by a rotation preventing mechanism 39 such as a known Oldham link arranged between the outer surface of the movable side end plate 35a and the upper bearing 21. While being revolved.
  • a rotation preventing mechanism 39 such as a known Oldham link arranged between the outer surface of the movable side end plate 35a and the upper bearing 21. While being revolved.
  • the slide bush 37 is accommodated in the recess 21 a of the upper bearing 21 described above, and is interposed between the eccentric pin 25 of the rotating shaft 19 and the boss 35 c of the orbiting scroll 35 to rotate the eccentric pin 25 of the orbiting scroll 35. It is transmitted as a turning movement.
  • the slide bush 37 is provided slidably in the radial direction of the eccentric pin 25 in order to maintain the meshing between the movable side wrap 35 b of the orbiting scroll 35 and the fixed side wrap 33 b of the fixed scroll 33.
  • the low-pressure refrigerant introduced into the low-pressure chamber 3 ⁇ / b> A in the housing 3 via the suction pipe 9 is compressed between the fixed scroll 33 and the orbiting scroll 35 by the orbiting scroll 35 revolving. It is compressed while being inhaled into the room.
  • a part of the lubricating oil 40 discharged into the housing 3 through the oil drain hole 21 c is wound up by the low-pressure refrigerant in the low-pressure chamber 3A, mixed with the low-pressure refrigerant and fixed scroll 33 and It is drawn between the orbiting scroll 35 and is supplied to the sliding portion between the fixed scroll 33 and the orbiting scroll 35. Therefore, the lubricating oil 40 mixed in the refrigerant seals the minute gap between the respective wraps 33b and 35b, thereby preventing the refrigerant from leaking from the gap and suppressing the decrease in the operation efficiency of the scroll compressor 1 doing.
  • the compressed high-pressure refrigerant is discharged from the discharge hole 33c of the fixed scroll 33 to the outer surface side of the fixed end plate 33a, and the discharge reed valve 13b of the discharge cover 13 is opened by its own pressure, and the high pressure chamber is opened from the opening hole 13a. It reaches 3 B and is discharged to the outside of the housing 3 through the discharge pipe 11.
  • the upper limit value of the rotational speed is 100 to 140 rps, but this upper limit value is increased (for example, 150 rps or more) to increase the rotational speed range. It is considered to drive at.
  • the operable rotational speed range first, from the viewpoint of supplying lubricating oil, first, at low speed operation (low rotational range) of about 50 rps, for example, the gaps between the wraps 33b and 35b are sealed.
  • FIG. 2 is a cross-sectional view of the fuel pump.
  • the oil supply pump 29 is a so-called rolling piston (positive displacement) oil supply pump, and as shown in FIG.
  • the feed pump 29 includes a cylinder chamber 45 whose lower opening is sealed by a cover body 44 attached to the bottom of the lower bearing 23.
  • the cover body 44 integrally includes a suction nozzle 43 extending downward, and the suction nozzle 43 is formed with a suction port 43A communicating with the cylinder chamber 45.
  • a rotor 47 fitted in an eccentric shaft portion 46 formed at the lower end of the rotating shaft 19 is accommodated.
  • the inner circumferential surface of the cylinder chamber 45 is in sliding contact with the cylinder chamber 45 and revolves and turns.
  • the rotor 47 is integrally provided with a blade 47A that divides the inside of the cylinder chamber 45 into an oil supply chamber 45A and an oil discharge chamber 45B.
  • the lubricating oil 40 accumulated in the oil reservoir 41 is sucked into the oil supply chamber 45A through the suction port 43A of the suction nozzle 43 and the oil supply port 48 by the revolving motion of the rotor 47, and is discharged from the oil discharge chamber 45B to the oil discharge port 49.
  • the air is sent to the oil supply hole 27 of the rotary shaft 19 through the communication passage 50 (see FIG. 1).
  • the rolling piston type oil supply pump 29 Since the rolling piston type oil supply pump 29 generates suction loss at high speed rotation, the amount of oil supply at high speed operation of the motor 5 (compressor 1) can be effectively suppressed.
  • the above-described rolling piston type oil supply pump 29 is merely an example, and as long as it is a positive displacement type oil supply pump, an oil supply pump having another configuration may be adopted.
  • the lubricating oil 40 pumped up by the lubricating pump 29 through the suction port 43A flows through the oil supply hole 27 of the rotary shaft 19, and a part of the lubricating oil 40 flows through the upper oil supply hole 27a and the lower oil supply hole 27b.
  • the sliding parts of the upper bearing 21 and the lower bearing 23 and the rotary shaft 19 are respectively supplied.
  • a part of the lubricating oil 40 is stored in the recess 21 a of the upper bearing 21 and supplied to the sliding portion between the recess 21 a and the orbiting scroll 35, and the excess lubricating oil 40 is discharged through the oil drainage hole 21 c. It is returned to the oil reservoir 41.
  • the inner diameter D of the suction port 43A of the oil supply pump 29 is the minimum diameter d1 of the oil supply hole 27 including the upper oil supply hole 27a and the lower oil supply hole 27b, and the equivalent diameter d2 of the oil discharge hole 21c; It is in a relationship that satisfies d2.
  • the smallest diameter d1 of the oil supply hole 27 refers to the narrowest portion of the inner diameter of the oil supply hole 27 for supplying the sliding portion (upper bearing 21, recess 21a, lower bearing 23) from the oil supply pump 29.
  • the inner diameters of the upper fuel hole 27a and the lower fuel hole 27b are the minimum diameter d1.
  • the minimum diameter d1 (the inner diameter of the upper oil supply hole 27a and the lower oil supply hole 27b) in the oil supply hole 27 is equal to or less than the inner diameter D of the suction port 43A, so the lubricating oil 40 pumped up by the oil supply pump 29 is assured Can be supplied to the sliding portion between the upper bearing 21 and the lower bearing 23 and the rotating shaft 19. Further, since the equivalent diameter d2 of the oil drain hole 21c is equal to or larger than the inner diameter D of the suction port 43A, the excess lubricating oil 40 is prevented from staying in the recess 21a and the oil drain hole 21c. It is possible to prevent the shortage of the lubricating oil stored in the oil reservoir 41 at the bottom.
  • the positive displacement feed pump 29 is configured so that the inner diameter D of the suction port 43A of the feed pump 29 satisfies d1 ⁇ D ⁇ d2.
  • the losses can be greater.
  • FIG. 3 is a graph showing the relationship between the pump oil supply amount Q and the rotational speed of the motor with respect to the scroll displacement amount Vs.
  • FIG. 4 is a graph which shows the relationship between the amount of refueling per unit time of a pump, and the rotation speed of a motor.
  • the pump oil supply amount Q (cc / rev) is a value indicating the amount of oil supply (discharge) per one rotation of the oil supply pump 29, and the scroll displacement amount Vs (cc / rev) is per one rotation of the scroll compression mechanism 7. It is a value indicating the amount of ink that can be pushed out (discharged).
  • the theoretical value of the pump oil supply amount Q / scroll displacement amount Vs in the oil supply pump 29 is 0.008.
  • FIG. 3 which measured the pump oil supply amount Q (cc / rev) of the oil supply pump 29 which has the above-mentioned performance in the state which changed rotation speed.
  • the measured value of the pump oil supply amount Q / scroll displacement amount Vs tends to decrease as the rotation speed of the motor 5 becomes larger than the theoretical value.
  • the pump oil supply amount Q / scroll displacement Vs at the high speed operation satisfies 0.003 ⁇ Q / Vs ⁇ 0.006, as shown in FIG. 4, the oil supply per unit time at the high speed operation
  • the measured value of the amount V (cc / s) can make the deviation from the theoretical value larger than that at low speed operation.
  • the amount of oil supply V (cc / s) per unit time during high speed operation can be reduced, and accordingly, the amount of lubricating oil discharged from the scroll compressor 1 can be reduced. Therefore, it is possible to realize a reduction in the operating efficiency of the scroll compressor 1 at the time of low speed operation and a reduction in the amount of lubricating oil discharged from the scroll compressor 1 at the high speed operation. Can be realized.
  • the pump oil supply amount Q / scroll displacement amount Vs at the time of high speed operation is configured to satisfy 0.003 ⁇ Q / Vs ⁇ 0.006, but the range of Q / Vs ⁇ 0.003 is satisfied.
  • the amount of lubricating oil supplied to each sliding portion is reduced, cooling failure of the scroll compression mechanism 7, the upper bearing 21, and the lower bearing 23 is caused, and the seizure of the scroll compression mechanism 7, the upper bearing 21, and the lower bearing 23 May occur.
  • the range of 0.006 ⁇ Q / Vs the amount of lubricating oil supplied from the oil supply pump 29 increases, and the amount of lubricating oil discharged from the scroll compressor 1 increases. As a result, the housing 3 is produced. If the amount of lubricating oil stored in the interior is reduced, cooling failure of the scroll compression mechanism 7, the upper bearing 21, and the lower bearing 23 may be caused, and seizing of the scroll compression mechanism 7, the upper bearing 21, and the lower bearing 23 may occur. is there.
  • the inclination ⁇ indicating the increase rate of the oil supply amount decreases as the rotation speed increases. . Therefore, not only the supply amount of the lubricating oil can be suppressed at the high speed operation, but also the supply amount of the lubricating oil to each sliding portion can be sufficiently ensured at the low speed operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A scroll compressor is equipped with: a scroll compression mechanism that is housed in a housing and compresses a low-pressure gas; a motor that is linked to the scroll compression mechanism by a rotary shaft and that drives the scroll compression mechanism; an upper bearing and a lower bearing that support the rotary shaft in a rotatable manner; and an oil supply pump that draws in lubricating oil due to the rotation of the rotary shaft and supplies the lubricating oil to sliding parts. The oil supply pump is a positive-displacement pump which is capable of operating in an operating region wherein the rotational frequency of the motor is 150 rps or higher, and for which an inclination indicating the rate of increase in the amount of oil supplied per unit time with respect to the rotational frequency decreases as the rotational frequency increases.

Description

スクロール圧縮機Scroll compressor
 本発明は、冷凍装置や空気調和装置などに使用されるスクロール圧縮機に関する。 The present invention relates to a scroll compressor used in a refrigeration system, an air conditioner, and the like.
 一般に、ハウジング内に収容されるスクロール圧縮機構と、このスクロール圧縮機構を駆動する駆動モータとを備えたスクロール圧縮機が広く知られている。スクロール圧縮機構は、円板状の端板の一面側に渦巻状のラップが設けられた固定スクロール部材と旋回スクロール部材とを備えて構成され、これら固定スクロールと旋回スクロールとを、ラップを噛み合わせた状態で対向させ、固定スクロールに対して旋回スクロールを公転旋回運動させる。そして、双方のラップの間に形成される圧縮空間の容積を旋回スクロールの旋回に伴って減少させることで、その空間内の流体(ガス冷媒)の圧縮を行っている。 Generally, a scroll compressor having a scroll compression mechanism housed in a housing and a drive motor for driving the scroll compression mechanism is widely known. The scroll compression mechanism includes a fixed scroll member provided with a spiral wrap on one side of a disk-shaped end plate and a turning scroll member, and these fixed scroll and the turning scroll are engaged with the wrap The rotating scroll is made to revolve with respect to the fixed scroll. Then, the volume of the compression space formed between the two wraps is reduced along with the turning of the orbiting scroll to compress the fluid (gas refrigerant) in the space.
 スクロール圧縮機では、スクロール圧縮機構や軸受の焼き付きの防止や冷却等を目的として各摺動部の潤滑が必要となる。また、固定スクロール及び旋回スクロールのラップ間の微小な隙間から流体が漏れると、圧縮機の能力低下に繋がる。このため、ハウジングの底部に潤滑油を貯留すると共に、駆動モータの回転軸の下端部付近に潤滑油ポンプを設け、潤滑油ポンプが回転軸の回転により潤滑油を汲み上げて各摺動部に供給する構成が採用され、従来、駆動モータの回転数に応じて潤滑油の供給量を変動可能なスクロール圧縮機が提案されている(例えば、特許文献1参照)。 In the scroll compressor, lubrication of each sliding portion is required for the purpose of preventing seizing of the scroll compression mechanism and the bearing and cooling thereof. In addition, if fluid leaks from a minute gap between the fixed scroll and the orbiting scroll, this leads to a reduction in the capacity of the compressor. Therefore, the lubricating oil is stored in the bottom of the housing and a lubricating oil pump is provided near the lower end of the rotating shaft of the drive motor, and the lubricating oil pump pumps up the lubricating oil by the rotation of the rotating shaft and supplies it to each sliding portion In the related art, there has been proposed a scroll compressor capable of changing the amount of lubricating oil supplied in accordance with the number of revolutions of a drive motor (for example, see Patent Document 1).
 潤滑油ポンプで汲み上げられた潤滑油は、各摺動部に供給された後、滴下してハウジングの底部へ戻されることでハウジング内を循環する。この際、ハウジング内に導入された流体は、潤滑油を巻き上げつつ、固定スクロールと旋回スクロールとの間に吸い込まれることで流体に潤滑油が混入する。このため、流体に混入した潤滑油が固定スクロール及び旋回スクロールのラップ間の微小な隙間をシールすることで圧縮機の運転効率の低下を抑制している。 The lubricating oil pumped up by the lubricating oil pump is circulated to the inside of the housing by being dropped and returned to the bottom of the housing after being supplied to each sliding portion. At this time, the fluid introduced into the housing is sucked between the fixed scroll and the orbiting scroll while rolling up the lubricating oil, so that the lubricating oil mixes with the fluid. For this reason, the lubricating oil mixed in the fluid seals a minute gap between the fixed scroll and the wrap of the orbiting scroll, thereby suppressing the decrease in the operating efficiency of the compressor.
特開平08-177773号公報Unexamined-Japanese-Patent No. 08-177773 gazette
 ところで、近年、スクロール圧縮機を用いた冷凍装置や空気調和装置の能力の向上が要望されている。このため、スクロール圧縮機の回転数(運転周波数)の上限値を従来の100~140rpsから上げて(例えば150rps以上)、より広い回転数領域で運転することが検討されている。この場合、潤滑油を供給する観点から以下の条件(A)、(B)を満たす必要がある。 By the way, in recent years, there is a demand for improvement of the capacity of a refrigeration system or an air conditioning system using a scroll compressor. For this reason, it has been studied to operate in a wider rotation speed region by raising the upper limit value of the rotation speed (operating frequency) of the scroll compressor from 100 to 140 rps (for example, 150 rps or more). In this case, the following conditions (A) and (B) need to be satisfied from the viewpoint of supplying the lubricating oil.
 (A)例えば、50rps程度の低速運転時には、ラップ間の隙間をシールして運転効率の低下を抑えるために、十分な量の潤滑油を各摺動部に供給する必要がある。一方、(B)例えば、150rps以上の高速運転時には、流体と共にハウジングの外部に吐出される潤滑油の量が増加すると、ハウジング内に貯留される潤滑油が不足する恐れがあるため、吐出される潤滑油量を抑える必要がある。しかし、各摺動部への供給量を増加させると、一般に、吐出される潤滑油量も増加するため、上記した条件(A)、(B)を両立させることは困難であった。 (A) For example, at a low speed operation of about 50 rps, it is necessary to supply a sufficient amount of lubricating oil to each sliding portion in order to seal the gap between the wraps and to suppress the decrease in the operation efficiency. On the other hand, (B), for example, during high-speed operation of 150 rps or more, if the amount of lubricating oil discharged to the outside of the housing with the fluid increases, the lubricating oil stored in the housing may run short. It is necessary to reduce the amount of lubricating oil. However, increasing the amount supplied to each sliding portion generally increases the amount of lubricating oil discharged, so it is difficult to make the above conditions (A) and (B) compatible.
 本発明は、上記の事情に鑑みてなされたものであり、低速運転時における圧縮機の運転効率低下の抑制と、高速運転時における圧縮機から吐出される潤滑油量の低減を実現できるスクロール圧縮機を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a scroll compression that can suppress the reduction in the operating efficiency of the compressor during low speed operation and can reduce the amount of lubricating oil discharged from the compressor during high speed operation. The purpose is to provide a machine.
 上述した課題を解決し、目的を達成するために、本発明は、低圧ガスが流入するハウジングと、ハウジング内に収容されて低圧ガスを圧縮するスクロール圧縮機構と、スクロール圧縮機構と駆動軸で連結されて該スクロール圧縮機構を駆動する駆動モータと、駆動軸を回転自在に支持する軸受部と、駆動軸の回転により、ハウジングの底部に貯留される潤滑油を汲み上げてスクロール圧縮機構及び軸受部の各摺動部に供給する潤滑油ポンプと、を備え、潤滑油ポンプは、駆動モータの回転数が少なくとも150rps以上の運転領域で運転可能であり、回転数に対する単位時間あたりの給油量の増加率を示す傾きが、該回転数が大きくなるにつれて小さくなる容積式ポンプであることを特徴とする。 In order to solve the problems described above and achieve the object, the present invention relates to a housing into which low pressure gas flows, a scroll compression mechanism housed in the housing to compress low pressure gas, and a scroll compression mechanism and drive shaft The lubricating oil stored in the bottom of the housing is pumped up by rotation of the drive shaft and the drive motor for driving the scroll compression mechanism, the bearing for rotatably supporting the drive shaft, and the scroll compression mechanism and bearing The lubricating oil pump is operable in an operating range where the number of revolutions of the drive motor is at least 150 rps or more, and the rate of increase of the amount of oil supply per unit time with respect to the number of revolutions. It is characterized in that it is a positive displacement pump in which the inclination indicating the velocity decreases as the rotation speed increases.
 この構成によれば、低速運転時における圧縮機の運転効率低下の抑制と、高速運転時における圧縮機から吐出される潤滑油量の低減を実現することができ、より広い回転数領域での運転が可能となる。また、ハウジング内には低圧ガスが流入しているため、潤滑油ポンプと各摺動部との間の圧力差を小さく保つことができ、差圧によって過剰に潤滑油が供給されることを防止できる。 According to this configuration, it is possible to realize a reduction in the operating efficiency of the compressor during low speed operation and a reduction in the amount of lubricating oil discharged from the compressor during high speed operation, and an operation in a wider rotation speed range Is possible. In addition, since low pressure gas flows into the housing, the pressure difference between the lubricating oil pump and each sliding portion can be kept small, and excessive supply of lubricating oil due to differential pressure is prevented. it can.
 また、潤滑油ポンプは、該潤滑油ポンプの1回転あたりのポンプ給油量をQ(cc/rev)、スクロール圧縮機構の1回転あたりのスクロール押しのけ量をVs(cc/rev)とした場合、駆動モータの回転数が0rps以上60rps以下の運転領域で、Q/Vs>0.006を満たし、駆動モータの回転数が少なくとも150rps以上200rps以下の運転領域で、0.003≦Q/Vs≦0.006を満たすことが好ましい。この構成によれば、低速運転時には各摺動部への潤滑油の供給量を十分に確保しつつ、高速運転時の潤滑油の供給量を抑えることができる。 The lubricating oil pump is driven when the pump oil supply amount per rotation of the lubricating oil pump is Q (cc / rev) and the scroll displacement amount per rotation of the scroll compression mechanism is Vs (cc / rev). In the operating range where the number of revolutions of the motor is from 0 rps to 60 rps, Q / Vs> 0.006 is satisfied, and in the operating range where the number of rotations of the drive motor is at least 150 rps to 200 rps, 0.003 ≦ Q / Vs ≦ 0. It is preferable to satisfy 006. According to this configuration, the amount of lubricating oil supplied to each sliding portion can be sufficiently secured at the low speed operation, and the amount of lubricating oil supplied at the high speed operation can be suppressed.
 また、摺動部へ供給される潤滑油が流通する給油路と、摺動部に供給された余剰の潤滑油をハウジング内に戻す戻し油路とを備え、給油路における最小径をd1、戻し油路の等価径をd2、潤滑油ポンプの吸込口の内径をDとした場合、吸込口の内径Dは、d1≦D≦d2を満たしても良い。この構成によれば、給油路における最小径d1は、吸込口の内径D以下であるため、潤滑油ポンプが汲み上げた潤滑油を確実に摺動部へ供給できる。また、戻し油路の等価径d2は、吸込口の内径D以上であるため、余剰の潤滑油が戻し油路内に滞留することが防止され、ハウジングの底部に貯留される潤滑油が不足することを防止できる。 In addition, it has an oil supply passage through which the lubricating oil supplied to the sliding portion flows, and a return oil passage for returning the surplus lubricating oil supplied to the sliding portion back into the housing, and the minimum diameter in the oil supply passage is d1 Assuming that the equivalent diameter of the oil passage is d2 and the inner diameter of the suction port of the lubricating oil pump is D, the inner diameter D of the suction port may satisfy d1 ≦ D ≦ d2. According to this configuration, since the minimum diameter d1 in the oil supply passage is equal to or less than the inner diameter D of the suction port, the lubricating oil pumped up by the lubricating oil pump can be reliably supplied to the sliding portion. Further, since the equivalent diameter d2 of the return oil passage is equal to or larger than the inner diameter D of the suction port, surplus lubricating oil is prevented from staying in the return oil passage, and the lubricating oil stored in the bottom of the housing runs short. Can be prevented.
 また、潤滑油ポンプは、ローリングピストン式の潤滑油ポンプとしてもよい。この構成によれば、ローリングピストン式の潤滑油ポンプは、高速回転時に吸入損失が生じるため、圧縮機の高速運転時の給油量を効果的に抑制できる。 Also, the lubricating oil pump may be a rolling piston lubricating oil pump. According to this configuration, since the rolling piston type lubricating oil pump causes a suction loss at high speed rotation, the amount of oil supply at high speed operation of the compressor can be effectively suppressed.
 本発明によれば、潤滑油ポンプは、駆動モータの回転数が少なくとも150rps以上の運転領域で運転可能であり、回転数に対する単位時間あたりの給油量の増加率を示す傾きが、該回転数が大きくなるにつれて小さくなる容積式ポンプであるため、低速運転時における圧縮機の運転効率低下の抑制と、高速運転時における圧縮機から吐出される潤滑油量の低減を実現することができ、より広い回転数領域での運転が可能となる。 According to the present invention, the lubricating oil pump can be operated in the operating range where the number of revolutions of the drive motor is at least 150 rps or more, and the inclination indicating the rate of increase of the amount of oil supply per unit time with respect to the number of revolutions is the number of revolutions. As the displacement pump is smaller as it becomes larger, it is possible to realize a reduction in the operating efficiency of the compressor at low speed operation and a reduction in the amount of lubricating oil discharged from the compressor at high speed operation. Operation in the rotational speed range is possible.
図1は、本実施形態に係るスクロール圧縮機の全体断面図である。FIG. 1 is an overall cross-sectional view of a scroll compressor according to the present embodiment. 図2は、スクロール圧縮機が備える給油ポンプの横断面図である。FIG. 2 is a cross-sectional view of an oil supply pump provided in the scroll compressor. 図3は、ポンプ給油量Q/スクロール押しのけ量Vsと、駆動モータの回転数との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the pump oil supply amount Q / scroll displacement amount Vs and the rotational speed of the drive motor. 図4は、ポンプの単位時間あたりの給油量と、駆動モータの回転数との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the amount of oil supplied per unit time of the pump and the number of rotations of the drive motor.
 以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Hereinafter, embodiments according to the present invention will be described in detail based on the drawings. The present invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by persons skilled in the art or those that are substantially the same.
 図1は、本実施形態に係るスクロール圧縮機の全体断面図である。スクロール圧縮機1は、吸入した流体(例えば冷媒)を圧縮して吐出するものであり、本実施形態では、空気調和装置や冷凍装置などにおいて冷媒を循環する冷媒流路に介在される。 FIG. 1 is an overall cross-sectional view of a scroll compressor according to the present embodiment. The scroll compressor 1 compresses and discharges a sucked fluid (for example, refrigerant), and in the present embodiment, is interposed in a refrigerant flow path that circulates the refrigerant in an air conditioner, a refrigeration apparatus, or the like.
 図1に示すように、スクロール圧縮機1は、ハウジング3の内部に、駆動手段であるモータ(駆動モータ)5と、モータ5により駆動されるスクロール圧縮機構7と、を備えている。 As shown in FIG. 1, the scroll compressor 1 includes a motor (drive motor) 5 as drive means and a scroll compression mechanism 7 driven by the motor 5 in a housing 3.
 ハウジング3は、上下に延在する筒状のハウジング本体3aと、ハウジング本体3aの下端を閉塞する底部3bと、ハウジング本体3aの上端を閉塞する蓋部3cと、を備え、全体が密閉された圧力容器となっている。ハウジング本体3aは、その側部に、ハウジング3内に冷媒(低圧ガス)を導入させる吸入管9が設けられている。蓋部3cは、その上部に、スクロール圧縮機構7によって圧縮された冷媒(高圧ガス)を排出させる吐出管11が設けられている。なお、ハウジング3は、ハウジング本体3aと蓋部3cとの間にディスチャージカバー13が設けられ、ハウジング3の内部は、ディスチャージカバー13より下側の低圧室3Aとディスチャージカバー13より上側の高圧室3Bとに仕切られている。ディスチャージカバー13は、低圧室3Aと高圧室3Bとを連通する開口孔13aが形成され、開口孔13aを開閉する吐出リード弁13bが設けられている。また、ハウジング3(低圧室3A)内の底は、潤滑油40が溜められる油溜41として構成されている。 The housing 3 includes a cylindrical housing body 3a extending vertically, a bottom 3b closing the lower end of the housing body 3a, and a lid 3c closing the upper end of the housing body 3a, and the whole is sealed. It is a pressure vessel. The housing body 3a is provided at its side with a suction pipe 9 for introducing a refrigerant (low pressure gas) into the housing 3. The lid 3 c is provided at its upper portion with a discharge pipe 11 for discharging the refrigerant (high pressure gas) compressed by the scroll compression mechanism 7. In the housing 3, the discharge cover 13 is provided between the housing main body 3 a and the lid 3 c, and the inside of the housing 3 is the low pressure chamber 3 A below the discharge cover 13 and the high pressure chamber 3 B above the discharge cover 13. Divided into The discharge cover 13 has an opening 13a communicating the low pressure chamber 3A with the high pressure chamber 3B, and a discharge reed valve 13b opening and closing the opening 13a. The bottom in the housing 3 (low pressure chamber 3A) is configured as an oil reservoir 41 in which the lubricating oil 40 is stored.
 モータ5は、ステータ15と、ロータ17と、回転シャフト(駆動軸)19と、を備えている。ステータ15は、ハウジング本体3aの上下方向のほぼ中央において、ハウジング本体3aの内壁面に固定されている。ロータ17は、ステータ15に対して回転可能に設けられている。回転シャフト19は、ロータ17に対して長手方向を上下に配置されている。モータ5は、ハウジング3の外部から電源が供給されることでロータ17を回転させ、ロータ17と共に回転シャフト19が回転する。本実施形態では、モータ5は、例えば、インバータ(不図示)によって運転周波数を制御可能に構成され、低回転数領域から高回転数領域までの広範囲で運転することができる。 The motor 5 includes a stator 15, a rotor 17, and a rotating shaft (drive shaft) 19. The stator 15 is fixed to the inner wall surface of the housing main body 3a substantially at the center in the vertical direction of the housing main body 3a. The rotor 17 is rotatably provided with respect to the stator 15. The rotating shaft 19 is disposed up and down in the longitudinal direction with respect to the rotor 17. The motor 5 rotates the rotor 17 when power is supplied from the outside of the housing 3, and the rotating shaft 19 rotates with the rotor 17. In the present embodiment, the motor 5 is configured to be able to control the operating frequency by, for example, an inverter (not shown), and can operate in a wide range from the low rotation speed region to the high rotation speed region.
 回転シャフト19は、ロータ17の上方および下方に端部が突出して設けられ、ハウジング本体3aに対し、上端部が上部軸受(軸受部)21に、下端部が下部軸受(軸受部)23によって上下方向に延在する軸心CEを基に回転可能に支持されている。回転シャフト19は、その上端に、軸心CEに対して偏った偏心LEに沿って上方に突出した偏心ピン25が形成されている。この偏心ピン25を有する回転シャフト19の上端に、スクロール圧縮機構7が連結されている。また、回転シャフト19および偏心ピン25は、その内部に、上下に貫通する給油孔(給油路)27が形成されている。この給油孔27は、上部軸受21及び下部軸受23に相当する高さ位置に、該給油孔27に連通して回転シャフト19の径方向に貫通する上部給油孔(給油路)27a、下部給油孔(給油路)27bを備える。また、回転シャフト19の下端には、油溜41に配置される給油ポンプ(潤滑油ポンプ)29が設けられている。給油ポンプ29は、回転シャフト19の回転に伴って油溜41に溜められた潤滑油40を汲み上げる。汲み上げられた潤滑油は、回転シャフト19の給油孔27、上部給油孔27a及び下部給油孔27bを通じて、上部軸受21及び下部軸受23と回転シャフト19との摺動部、及び、スクロール圧縮機構7に供給される。 The rotating shaft 19 has end portions projecting upward and downward of the rotor 17, and the upper end portion of the housing main body 3a is vertically moved by the upper bearing 21 and the lower end portion is vertically moved by the lower bearing 23. It is rotatably supported on the axis CE extending in the direction. The rotating shaft 19 is formed at its upper end with an eccentric pin 25 projecting upward along the eccentricity LE which is biased with respect to the axial center CE. The scroll compression mechanism 7 is connected to the upper end of the rotary shaft 19 having the eccentric pin 25. In addition, the rotary shaft 19 and the eccentric pin 25 are formed therein with a fueling hole (fueling passage) 27 penetrating vertically. The oil supply hole 27 communicates with the oil supply hole 27 at a height position corresponding to the upper bearing 21 and the lower bearing 23, and penetrates in the radial direction of the rotary shaft 19 with the upper oil supply hole (oil supply passage) 27a. A (fuel supply passage) 27b is provided. Further, at the lower end of the rotating shaft 19, an oil supply pump (lubricating oil pump) 29 disposed in the oil reservoir 41 is provided. The oil supply pump 29 pumps up the lubricating oil 40 stored in the oil reservoir 41 as the rotary shaft 19 rotates. Lubricated oil is pumped to the sliding portion between the upper bearing 21 and the lower bearing 23 and the rotating shaft 19 and the scroll compression mechanism 7 through the oil supply hole 27, the upper oil supply hole 27 a and the lower oil supply hole 27 b of the rotary shaft 19. Supplied.
 上部軸受21は、回転シャフト19の上端部を貫通させて回転シャフト19を回転可能に支持する。上部軸受21は、その上面に、貫通させた回転シャフト19の上端部を囲むように凹部21aが形成されている。凹部21aは、後述するスライドブッシュ37を収容すると共に、給油ポンプ29により給油孔27を介して送り込まれた潤滑油40を貯留する。そして、貯留された潤滑油40は、スクロール圧縮機構7に供給される。 The upper bearing 21 penetrates the upper end portion of the rotating shaft 19 to rotatably support the rotating shaft 19. The upper bearing 21 has a recess 21 a formed on the upper surface thereof so as to surround the upper end portion of the rotary shaft 19 penetrated. The recess 21 a accommodates a slide bush 37 described later, and stores the lubricating oil 40 fed by the oil supply pump 29 through the oil supply hole 27. Then, the stored lubricating oil 40 is supplied to the scroll compression mechanism 7.
 また、上部軸受21は、ハウジング3のハウジング本体3aの内壁面と隙間を有するように外周の一部に切欠21bが形成され、当該切欠21bと凹部21aとを連通する排油孔(戻し油路)21cが形成されている。また、上部軸受21の切欠21bの下方において、カバープレート31が設けられている。カバープレート31は、上下方向に延在して設けられている。カバープレート31は、切欠21bの周囲を覆うようにハウジング本体3aの内壁面に両側端を向けて湾曲して形成され、かつ下端がハウジング本体3aの内壁面に漸次近づくように折曲して形成されている。そして、排油孔21cは、凹部21aに余剰に貯留された潤滑油40を切欠21bから上部軸受21の外周に排出する。カバープレート31は、切欠21bから排出された潤滑油40を受けてハウジング本体3aの内壁面に向けて案内する。カバープレート31により内壁面に向けて案内された潤滑油40は、カバープレート31により内壁面を伝ってハウジング3内の底の油溜41に戻される。 In the upper bearing 21, a notch 21 b is formed on a part of the outer periphery so as to have a gap with the inner wall surface of the housing main body 3 a of the housing 3, and the oil drainage hole (return oil passage communicating the notch 21 b and the recess 21 a ) 21c is formed. Further, below the notch 21 b of the upper bearing 21, a cover plate 31 is provided. The cover plate 31 is provided to extend in the vertical direction. The cover plate 31 is formed by curving both ends toward the inner wall surface of the housing main body 3a so as to cover the periphery of the notch 21b, and the lower end is bent so as to gradually approach the inner wall surface of the housing main body 3a It is done. Then, the oil drain hole 21 c discharges the lubricating oil 40 surplusly stored in the recess 21 a from the notch 21 b to the outer periphery of the upper bearing 21. The cover plate 31 receives the lubricating oil 40 discharged from the notch 21b and guides it toward the inner wall surface of the housing main body 3a. The lubricating oil 40 guided toward the inner wall surface by the cover plate 31 is returned to the oil reservoir 41 at the bottom of the housing 3 along the inner wall surface by the cover plate 31.
 スクロール圧縮機構7は、ハウジング3の内部において、ディスチャージカバー13より下側の低圧室3Aであって上部軸受21の上方に配置されており、固定スクロール33と、旋回スクロール35と、スライドブッシュ37と、を備えている。 The scroll compression mechanism 7 is disposed inside the housing 3 in the low pressure chamber 3A lower than the discharge cover 13 and above the upper bearing 21 and fixed scroll 33, orbiting scroll 35 and slide bush 37. And.
 固定スクロール33は、ハウジング3の内部に固定された固定側端板33aの内面(図1における下面)に、渦巻状の固定側ラップ33bが形成されている。固定側端板33aは、その中央部に吐出孔33cが形成されている。 In the fixed scroll 33, a spiral fixed side wrap 33b is formed on the inner surface (lower surface in FIG. 1) of the fixed side end plate 33a fixed inside the housing 3. The fixed end plate 33a has a discharge hole 33c at its center.
 旋回スクロール35は、固定スクロール33における固定側端板33aの内面に対面する可動側端板35aの内面(図1における上面)に、渦巻状の可動側ラップ35bが形成されている。そして、旋回スクロール35の可動側ラップ35bと、固定スクロール33の固定側ラップ33bとが互いに位相をずらして噛み合わされることで、各端板33a,35aおよび各ラップ33b,35bで区画された圧縮室が形成されている。また、旋回スクロール35は、可動側端板35aの外面(図1における下面)に、回転シャフト19の偏心ピン25が接続されて当該偏心ピン25の偏心した回転が伝達される円筒形状のボス35cが形成されている。また、旋回スクロール35は、可動側端板35aの外面と上部軸受21との間に配置された周知のオルダムリンクなどの自転阻止機構39により、偏心ピン25の偏心した回転に基づき自転を阻止されつつ公転旋回される。 In the orbiting scroll 35, a spiral movable side wrap 35b is formed on the inner surface (upper surface in FIG. 1) of the movable side end plate 35a facing the inner surface of the fixed side end plate 33a in the fixed scroll 33. Then, the movable side wrap 35b of the orbiting scroll 35 and the fixed side wrap 33b of the fixed scroll 33 are engaged with each other while being out of phase with each other, whereby the compression divided by the end plates 33a, 35a and the respective wraps 33b, 35b A room is formed. Further, the orbiting scroll 35 has a cylindrical boss 35c to which the eccentric pin 25 of the rotating shaft 19 is connected to the outer surface (the lower surface in FIG. 1) of the movable side end plate 35a and the eccentric rotation of the eccentric pin 25 is transmitted. Is formed. Further, the orbiting scroll 35 is prevented from rotating on the basis of the eccentric rotation of the eccentric pin 25 by a rotation preventing mechanism 39 such as a known Oldham link arranged between the outer surface of the movable side end plate 35a and the upper bearing 21. While being revolved.
 スライドブッシュ37は、上述した上部軸受21の凹部21aに収容され、回転シャフト19の偏心ピン25と旋回スクロール35のボス35cとの間に介在されて、偏心ピン25の回転移動を旋回スクロール35の旋回移動として伝達するものである。また、スライドブッシュ37は、旋回スクロール35の可動側ラップ35bと、固定スクロール33の固定側ラップ33bとの噛み合わせを維持するために偏心ピン25の径方向にスライド移動可能に設けられている。 The slide bush 37 is accommodated in the recess 21 a of the upper bearing 21 described above, and is interposed between the eccentric pin 25 of the rotating shaft 19 and the boss 35 c of the orbiting scroll 35 to rotate the eccentric pin 25 of the orbiting scroll 35. It is transmitted as a turning movement. The slide bush 37 is provided slidably in the radial direction of the eccentric pin 25 in order to maintain the meshing between the movable side wrap 35 b of the orbiting scroll 35 and the fixed side wrap 33 b of the fixed scroll 33.
 このスクロール圧縮機構7では、吸入管9を介してハウジング3内の低圧室3Aに導入された低圧の冷媒は、旋回スクロール35が公転旋回することで固定スクロール33と旋回スクロール35との間の圧縮室内に吸入されつつ圧縮される。ここで、排油孔21cを通じて、ハウジング3内に排出された潤滑油40の一部は、低圧室3A内の低圧の冷媒に巻き上げられることで、この低圧の冷媒に混入して固定スクロール33と旋回スクロール35との間に吸い込まれて、固定スクロール33と旋回スクロール35との摺動部に供給される。このため、冷媒に混入した潤滑油40は、各ラップ33b,35b間の微小な隙間をシールすることで、該隙間から冷媒が漏れることを防止し、スクロール圧縮機1の運転効率の低下を抑制している。 In the scroll compression mechanism 7, the low-pressure refrigerant introduced into the low-pressure chamber 3 </ b> A in the housing 3 via the suction pipe 9 is compressed between the fixed scroll 33 and the orbiting scroll 35 by the orbiting scroll 35 revolving. It is compressed while being inhaled into the room. Here, a part of the lubricating oil 40 discharged into the housing 3 through the oil drain hole 21 c is wound up by the low-pressure refrigerant in the low-pressure chamber 3A, mixed with the low-pressure refrigerant and fixed scroll 33 and It is drawn between the orbiting scroll 35 and is supplied to the sliding portion between the fixed scroll 33 and the orbiting scroll 35. Therefore, the lubricating oil 40 mixed in the refrigerant seals the minute gap between the respective wraps 33b and 35b, thereby preventing the refrigerant from leaking from the gap and suppressing the decrease in the operation efficiency of the scroll compressor 1 doing.
 圧縮された高圧の冷媒は、固定スクロール33の吐出孔33cから固定側端板33aの外面側に吐出され、自身の圧力によりディスチャージカバー13の吐出リード弁13bを開放し、開口孔13aから高圧室3Bに至り、吐出管11を介してハウジング3の外部に排出される。 The compressed high-pressure refrigerant is discharged from the discharge hole 33c of the fixed scroll 33 to the outer surface side of the fixed end plate 33a, and the discharge reed valve 13b of the discharge cover 13 is opened by its own pressure, and the high pressure chamber is opened from the opening hole 13a. It reaches 3 B and is discharged to the outside of the housing 3 through the discharge pipe 11.
 ところで、近年、スクロール圧縮機1を用いた冷凍装置や空気調和装置では、冷凍能力または空調能力の向上が要望される傾向にある。一般に、スクロール圧縮機では、回転数(運転周波数)の上限値を100~140rpsとしたものが知られているが、この上限値を従来よりも上げて(例えば150rps以上)、より広い回転数領域で運転することが検討されている。運転可能な回転数領域を広げる場合、潤滑油を供給する観点から、第1に、例えば、50rps程度の低速運転時(低回転領域)には、各ラップ33b,35b間の隙間をシールして運転効率の低下を抑えるために、十分な量の潤滑油40を各摺動部に供給する必要がある。また、第2に、例えば、150rps以上の高速運転時(高回転領域)には、冷媒と共にハウジング3の外部に吐出される潤滑油40の量が増加するため、ハウジング3内に貯留される潤滑油量の不足を防止すべく、吐出される潤滑油量を抑える必要がある。しかし、一般に、モータ5の回転数を上昇させて潤滑油40の供給量を増加させると、ハウジング3の外部に吐出される潤滑油量も増加するため、上記した第1及び第2の条件を両立させることは困難であった。本実施形態にかかるスクロール圧縮機1は、低速運転時における運転効率低下の抑制と、高速運転時におけるハウジング3の外部に吐出される潤滑油量の低減の両立を図っている。 By the way, in the refrigeration apparatus and air conditioning apparatus using the scroll compressor 1 in recent years, there is a tendency for improvement of refrigeration capacity or air conditioning capacity to be demanded. Generally, in scroll compressors, it is known that the upper limit value of the rotational speed (operating frequency) is 100 to 140 rps, but this upper limit value is increased (for example, 150 rps or more) to increase the rotational speed range. It is considered to drive at. In order to widen the operable rotational speed range, first, from the viewpoint of supplying lubricating oil, first, at low speed operation (low rotational range) of about 50 rps, for example, the gaps between the wraps 33b and 35b are sealed. It is necessary to supply a sufficient amount of lubricating oil 40 to each sliding portion in order to suppress a decrease in operating efficiency. Second, for example, during high-speed operation (high rotation area) of 150 rps or more, the amount of lubricating oil 40 discharged to the outside of the housing 3 along with the refrigerant increases, so the lubrication stored in the housing 3 In order to prevent the shortage of the amount of oil, it is necessary to suppress the amount of lubricating oil discharged. However, in general, when the supply amount of the lubricating oil 40 is increased by increasing the rotational speed of the motor 5, the amount of the lubricating oil discharged to the outside of the housing 3 also increases, so the first and second conditions described above are satisfied. It was difficult to make it compatible. The scroll compressor 1 according to the present embodiment achieves both suppression of decrease in operating efficiency at low speed operation and reduction of the amount of lubricating oil discharged to the outside of the housing 3 at high speed operation.
 図2は、給油ポンプの横断面図である。給油ポンプ29は、いわゆるローリングピストン式(容積式)の給油ポンプであり、図1に示すように、下部軸受23に設けられている。給油ポンプ29は、下部軸受23の底面部に取り付けられたカバー体44により、下方開放部が密閉されたシリンダ室45を備える。カバー体44は、下方に延びる吸込ノズル43を一体に備え、この吸込ノズル43にはシリンダ室45に連通する吸込口43Aが形成されている。シリンダ室45内には、図1及び図2に示すように、回転シャフト19の下端に形成された偏心軸部46に嵌合されるロータ47が収容され、このロータ47は、回転シャフト19の回転に伴い、シリンダ室45の内周面を摺接しながら公転旋回運動する。ロータ47には、図2に示すように、シリンダ室45内を給油室45Aと排油室45Bとに仕切るブレード47Aが一体に設けられる。ロータ47の公転旋回運動により、油溜41に溜まった潤滑油40は、吸込ノズル43の吸込口43Aと給油口48を通じて給油室45Aに吸い込まれ、排油室45Bから排油口49に吐出し、連通路50(図1参照)を経て回転シャフト19の給油孔27へと送り出される。ローリングピストン式の給油ポンプ29は、高速回転時に吸入損失が生じるため、モータ5(圧縮機1)の高速運転時の給油量を効果的に抑制することができる。なお、上記したローリングピストン式の給油ポンプ29は、一例にすぎず、容積式の給油ポンプであれば、他の構成の給油ポンプを採用してもよい。 FIG. 2 is a cross-sectional view of the fuel pump. The oil supply pump 29 is a so-called rolling piston (positive displacement) oil supply pump, and as shown in FIG. The feed pump 29 includes a cylinder chamber 45 whose lower opening is sealed by a cover body 44 attached to the bottom of the lower bearing 23. The cover body 44 integrally includes a suction nozzle 43 extending downward, and the suction nozzle 43 is formed with a suction port 43A communicating with the cylinder chamber 45. In the cylinder chamber 45, as shown in FIG. 1 and FIG. 2, a rotor 47 fitted in an eccentric shaft portion 46 formed at the lower end of the rotating shaft 19 is accommodated. With the rotation, the inner circumferential surface of the cylinder chamber 45 is in sliding contact with the cylinder chamber 45 and revolves and turns. As shown in FIG. 2, the rotor 47 is integrally provided with a blade 47A that divides the inside of the cylinder chamber 45 into an oil supply chamber 45A and an oil discharge chamber 45B. The lubricating oil 40 accumulated in the oil reservoir 41 is sucked into the oil supply chamber 45A through the suction port 43A of the suction nozzle 43 and the oil supply port 48 by the revolving motion of the rotor 47, and is discharged from the oil discharge chamber 45B to the oil discharge port 49. The air is sent to the oil supply hole 27 of the rotary shaft 19 through the communication passage 50 (see FIG. 1). Since the rolling piston type oil supply pump 29 generates suction loss at high speed rotation, the amount of oil supply at high speed operation of the motor 5 (compressor 1) can be effectively suppressed. The above-described rolling piston type oil supply pump 29 is merely an example, and as long as it is a positive displacement type oil supply pump, an oil supply pump having another configuration may be adopted.
 上述したように、吸込口43Aを通じて、給油ポンプ29で汲み上げられた潤滑油40は、回転シャフト19の給油孔27を流れ、潤滑油40の一部が上部給油孔27a及び下部給油孔27bを通じて、上部軸受21及び下部軸受23と回転シャフト19との摺動部にそれぞれ供給される。また、潤滑油40の一部は、上部軸受21の凹部21aに貯留されて該凹部21aと旋回スクロール35との摺動部に供給されると共に、余剰の潤滑油40は排油孔21cを通じて、油溜41に戻される。 As described above, the lubricating oil 40 pumped up by the lubricating pump 29 through the suction port 43A flows through the oil supply hole 27 of the rotary shaft 19, and a part of the lubricating oil 40 flows through the upper oil supply hole 27a and the lower oil supply hole 27b. The sliding parts of the upper bearing 21 and the lower bearing 23 and the rotary shaft 19 are respectively supplied. Further, a part of the lubricating oil 40 is stored in the recess 21 a of the upper bearing 21 and supplied to the sliding portion between the recess 21 a and the orbiting scroll 35, and the excess lubricating oil 40 is discharged through the oil drainage hole 21 c. It is returned to the oil reservoir 41.
 本実施形態では、給油ポンプ29の吸込口43Aの内径Dは、上部給油孔27a及び下部給油孔27bを含む給油孔27の最小径d1、排油孔21cの等価径d2と、d1≦D≦d2を満たす関係にある。 In the present embodiment, the inner diameter D of the suction port 43A of the oil supply pump 29 is the minimum diameter d1 of the oil supply hole 27 including the upper oil supply hole 27a and the lower oil supply hole 27b, and the equivalent diameter d2 of the oil discharge hole 21c; It is in a relationship that satisfies d2.
 ここで、給油孔27の最小径d1とは、給油ポンプ29から各摺動部(上部軸受21、凹部21a、下部軸受23)に供給するための給油孔27のうち、最も内径の狭い部分をいい、本実施形態では上部給油孔27a及び下部給油孔27bの内径が最小径d1となっている。また、排油孔21cの等価径d2は、排油孔21cの断面積をA、排油孔21cの外郭長さをLとした場合にd2=4×A/Lで表されるパラメータである。 Here, the smallest diameter d1 of the oil supply hole 27 refers to the narrowest portion of the inner diameter of the oil supply hole 27 for supplying the sliding portion (upper bearing 21, recess 21a, lower bearing 23) from the oil supply pump 29. No, in this embodiment, the inner diameters of the upper fuel hole 27a and the lower fuel hole 27b are the minimum diameter d1. The equivalent diameter d2 of the oil drain hole 21c is a parameter represented by d2 = 4 × A / L, where A is the sectional area of the oil drain hole 21c and L is the outer length of the oil drain hole 21c. .
 この構成によれば、給油孔27における最小径d1(上部給油孔27a及び下部給油孔27bの内径)は、吸込口43Aの内径D以下であるため、給油ポンプ29が汲み上げた潤滑油40を確実に上部軸受21及び下部軸受23と回転シャフト19との摺動部へ供給できる。また、排油孔21cの等価径d2は、吸込口43Aの内径D以上であるため、余剰の潤滑油40が凹部21a、及び、排油孔21c内に滞留することが防止され、ハウジング3の底部の油溜41に貯留される潤滑油が不足することを防止できる。 According to this configuration, the minimum diameter d1 (the inner diameter of the upper oil supply hole 27a and the lower oil supply hole 27b) in the oil supply hole 27 is equal to or less than the inner diameter D of the suction port 43A, so the lubricating oil 40 pumped up by the oil supply pump 29 is assured Can be supplied to the sliding portion between the upper bearing 21 and the lower bearing 23 and the rotating shaft 19. Further, since the equivalent diameter d2 of the oil drain hole 21c is equal to or larger than the inner diameter D of the suction port 43A, the excess lubricating oil 40 is prevented from staying in the recess 21a and the oil drain hole 21c. It is possible to prevent the shortage of the lubricating oil stored in the oil reservoir 41 at the bottom.
 容積式の給油ポンプ29は、一般に、回転数が上昇すると、圧力損失が大きくなる傾向にあるが、給油ポンプ29の吸込口43Aの内径Dをd1≦D≦d2を満たすように構成したため、圧力損失をより大きくすることができる。 In general, although the pressure loss tends to increase as the rotational speed increases, the positive displacement feed pump 29 is configured so that the inner diameter D of the suction port 43A of the feed pump 29 satisfies d1 ≦ D ≦ d2. The losses can be greater.
 図3は、スクロール押しのけ量Vsに対するポンプ給油量Qとモータの回転数との関係を示すグラフである。また、図4は、ポンプの単位時間あたりの給油量と、モータの回転数との関係を示すグラフである。ポンプ給油量Q(cc/rev)は、給油ポンプ29が1回転あたりに給油(吐出)する量を示す値であり、スクロール押しのけ量Vs(cc/rev)は、スクロール圧縮機構7が1回転あたりに押しのける(吐出する)量を示す値である。本実施形態では、給油ポンプ29におけるポンプ給油量Q/スクロール押しのけ量Vsの理論値は0.008となっている。 FIG. 3 is a graph showing the relationship between the pump oil supply amount Q and the rotational speed of the motor with respect to the scroll displacement amount Vs. Moreover, FIG. 4 is a graph which shows the relationship between the amount of refueling per unit time of a pump, and the rotation speed of a motor. The pump oil supply amount Q (cc / rev) is a value indicating the amount of oil supply (discharge) per one rotation of the oil supply pump 29, and the scroll displacement amount Vs (cc / rev) is per one rotation of the scroll compression mechanism 7. It is a value indicating the amount of ink that can be pushed out (discharged). In the present embodiment, the theoretical value of the pump oil supply amount Q / scroll displacement amount Vs in the oil supply pump 29 is 0.008.
 上記した性能を有する給油ポンプ29のポンプ給油量Q(cc/rev)を、回転数を変化させた状態で計測したものが図3である。図3に示すように、ポンプ給油量Q/スクロール押しのけ量Vsの実測値は、理論値と比べて、モータ5の回転数が大きくなるにつれて減少する傾向にある。具体的には、モータ5の回転数が0rps以上60rps以下の低速運転時(低回転領域)では、Q/Vs>0.006を満たしているのに対して、モータ5の回転数が少なくとも150rps以上200rps以下の高速運転時(高回転領域)では、0.003≦Q/Vs≦0.006を満たす範囲に低減している。一般に、OCR(冷媒循環量に占める吐出油量の割合)は、モータ5(圧縮機)の回転数に対して指数的に増加する傾向にある。このため、モータ5の回転数が0rps以上60rps以下の範囲では、OCRが小さくなり、給油ポンプ29の給油量の大小が効率に大きく影響する。 It is FIG. 3 which measured the pump oil supply amount Q (cc / rev) of the oil supply pump 29 which has the above-mentioned performance in the state which changed rotation speed. As shown in FIG. 3, the measured value of the pump oil supply amount Q / scroll displacement amount Vs tends to decrease as the rotation speed of the motor 5 becomes larger than the theoretical value. Specifically, during low speed operation (low rotation range) where the number of revolutions of the motor 5 is 0 rps or more and 60 rps or less, Q / Vs> 0.006 is satisfied while the number of revolutions of the motor 5 is at least 150 rps During high-speed operation (high rotation range) at not less than 200 rps or more, reduction to a range satisfying 0.003 ≦ Q / Vs ≦ 0.006 is made. In general, the OCR (the ratio of the amount of discharged oil to the refrigerant circulation amount) tends to increase exponentially with the number of rotations of the motor 5 (compressor). For this reason, when the rotational speed of the motor 5 is in the range of 0 rps to 60 rps, the OCR becomes small, and the amount of the amount of oil supplied by the oil supply pump 29 greatly affects the efficiency.
 この構成では、低速運転時におけるポンプ給油量Q/スクロール押しのけ量Vsは、Q/Vs>0.006を満たしているため、図4に示すように、低速運転時における単位時間あたりの給油量V(cc/s)の実測値は、理論値との偏差を小さく保持することができる。このため、冷媒に混入される潤滑油の量を十分に確保することができ、この潤滑油が各ラップ33b,35b間の微小な隙間をシールすることで、該隙間から冷媒が漏れることを防止し、スクロール圧縮機1の運転効率の低下を抑制できる。なお、低速運転時におけるポンプ給油量Q/スクロール押しのけ量Vsが、Q/Vs≦0.006となる場合には、上記したラップ33b,35b間の微小な隙間をシールするに十分な量の潤滑油を供給することができず、スクロール圧縮機1の運転効率の低減につながる。 In this configuration, since the pump oil supply amount Q / scroll displacement Vs at the low speed operation satisfies Q / Vs> 0.006, as shown in FIG. 4, the oil supply amount V per unit time at the low speed operation The measured value of (cc / s) can keep the deviation from the theoretical value small. Therefore, the amount of the lubricating oil mixed in the refrigerant can be sufficiently secured, and the lubricating oil seals the minute gap between the wraps 33b and 35b to prevent the refrigerant from leaking from the gap Thus, it is possible to suppress the decrease in the operating efficiency of the scroll compressor 1. When the pump oil supply amount Q / scroll displacement amount Vs at the time of low speed operation is Q / Vs ≦ 0.006, a sufficient amount of lubrication to seal the minute gap between the wraps 33 b and 35 b described above Oil can not be supplied, which leads to a reduction in the operating efficiency of the scroll compressor 1.
 一方、高速運転時におけるポンプ給油量Q/スクロール押しのけ量Vsは、0.003≦Q/Vs≦0.006を満たしているため、図4に示すように、高速運転時における単位時間あたりの給油量V(cc/s)の実測値は、低速運転時に比べて理論値との偏差をより大きくすることができる。このため、高速運転時における単位時間あたりの給油量V(cc/s)を少なくすることができるため、その分、スクロール圧縮機1から吐出される潤滑油量の低減を実現することができる。従って、低速運転時におけるスクロール圧縮機1の運転効率低下の抑制と、高速運転時におけるスクロール圧縮機1から吐出される潤滑油量の低減を実現することができ、より広い回転数領域での運転を実現することができる。 On the other hand, since the pump oil supply amount Q / scroll displacement Vs at the high speed operation satisfies 0.003 ≦ Q / Vs ≦ 0.006, as shown in FIG. 4, the oil supply per unit time at the high speed operation The measured value of the amount V (cc / s) can make the deviation from the theoretical value larger than that at low speed operation. For this reason, the amount of oil supply V (cc / s) per unit time during high speed operation can be reduced, and accordingly, the amount of lubricating oil discharged from the scroll compressor 1 can be reduced. Therefore, it is possible to realize a reduction in the operating efficiency of the scroll compressor 1 at the time of low speed operation and a reduction in the amount of lubricating oil discharged from the scroll compressor 1 at the high speed operation. Can be realized.
 本実施形態では、高速運転時におけるポンプ給油量Q/スクロール押しのけ量Vsは、0.003≦Q/Vs≦0.006を満たすように構成しているが、Q/Vs<0.003の範囲では、各摺動部に供給される潤滑油量が低減するため、スクロール圧縮機構7や上部軸受21、下部軸受23の冷却不良をまねき、スクロール圧縮機構7や上部軸受21、下部軸受23の焼き付きが生じるおそれがある。また、0.006<Q/Vsの範囲では、給油ポンプ29から供給される潤滑油量が増大することにより、スクロール圧縮機1から吐出される潤滑油量が増大するため、結果として、ハウジング3内に貯留される潤滑油量が低減することにより、スクロール圧縮機構7や上部軸受21、下部軸受23の冷却不良をまねき、スクロール圧縮機構7や上部軸受21、下部軸受23の焼き付きが生じるおそれがある。 In this embodiment, the pump oil supply amount Q / scroll displacement amount Vs at the time of high speed operation is configured to satisfy 0.003 ≦ Q / Vs ≦ 0.006, but the range of Q / Vs <0.003 is satisfied. In this case, since the amount of lubricating oil supplied to each sliding portion is reduced, cooling failure of the scroll compression mechanism 7, the upper bearing 21, and the lower bearing 23 is caused, and the seizure of the scroll compression mechanism 7, the upper bearing 21, and the lower bearing 23 May occur. In the range of 0.006 <Q / Vs, the amount of lubricating oil supplied from the oil supply pump 29 increases, and the amount of lubricating oil discharged from the scroll compressor 1 increases. As a result, the housing 3 is produced. If the amount of lubricating oil stored in the interior is reduced, cooling failure of the scroll compression mechanism 7, the upper bearing 21, and the lower bearing 23 may be caused, and seizing of the scroll compression mechanism 7, the upper bearing 21, and the lower bearing 23 may occur. is there.
 また、本実施形態では、単位時間あたりの給油量Vの実測値のグラフは、図4に示すように、給油量の増加率を示す傾きθが、該回転数が大きくなるにつれて小さくなっている。このため、高速運転時に潤滑油の供給量を抑制できるだけでなく、低速運転時においても各摺動部への潤滑油の供給量を十分に確保することができる。 Further, in the present embodiment, as shown in FIG. 4, in the graph of the measured value of the oil supply amount V per unit time, the inclination θ indicating the increase rate of the oil supply amount decreases as the rotation speed increases. . Therefore, not only the supply amount of the lubricating oil can be suppressed at the high speed operation, but also the supply amount of the lubricating oil to each sliding portion can be sufficiently ensured at the low speed operation.
 以上、本発明の一実施形態を説明したが、本実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。本実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。本実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。 As mentioned above, although one Embodiment of this invention was described, this embodiment is shown as an example and it is not intending limiting the range of invention. This embodiment can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. The present embodiment and the modifications thereof are included in the invention described in the claims and the equivalents thereof as well as included in the scope and the gist of the invention.
 1 スクロール圧縮機
 3 ハウジング
 3a ハウジング本体
 5 モータ(駆動モータ)
 7 スクロール圧縮機構
 9 吸入管
 11 吐出管
 13 ディスチャージカバー
 19 回転シャフト(駆動軸)
 21 上部軸受(軸受部)
 21c 排油孔(戻し油路)
 23 下部軸受(軸受部)
 27 給油孔(給油路)
 27a 上部給油孔(給油路)
 27b 下部給油孔(給油路)
 29 給油ポンプ(潤滑油ポンプ)
 31 カバープレート
 33 固定スクロール
 33a 固定側端板
 33b 固定側ラップ
 33c 吐出孔
 35 旋回スクロール
 35a 可動側端板
 35b 可動側ラップ
 35c ボス
 37 スライドブッシュ
 39 自転阻止機構
 40 潤滑油
 41 油溜
 43 吸込ノズル
 43A 吸込口
 44 カバー体
 45 シリンダ室
 45A 給油室
 45B 排油室
 46 偏心軸部
 47 ロータ
 47A ブレード
 48 給油口
 49 排油口
 50 連通路
 D 内径
 d1 最小径
 d2 等価径
1 scroll compressor 3 housing 3a housing body 5 motor (drive motor)
7 scroll compression mechanism 9 suction pipe 11 discharge pipe 13 discharge cover 19 rotating shaft (drive shaft)
21 Upper bearing (bearing)
21c Oil drain hole (return oil passage)
23 Lower bearing (bearing)
27 refueling hole (refueling passage)
27a Upper oil supply hole (oil supply passage)
27b Lower oil supply hole (oil supply passage)
29 Oil supply pump (lubricating oil pump)
31 cover plate 33 fixed scroll 33a fixed side plate 33b fixed side wrap 33c discharge hole 35 orbiting scroll 35a movable side plate 35b movable side wrap 35c boss 37 slide bush 39 rotation prevention mechanism 40 lubricating oil 41 oil reservoir 43 suction nozzle 43A suction Port 44 Cover body 45 Cylinder chamber 45A Oil supply chamber 45B Oil discharge chamber 46 Eccentric shaft 47 Rotor 47A Blade 48 Oil supply port 49 Oil outlet 50 Communication passage D Inner diameter d1 Minimum diameter d2 Equivalent diameter

Claims (4)

  1.  低圧ガスが流入するハウジングと、
     前記ハウジング内に収容されて前記低圧ガスを圧縮するスクロール圧縮機構と、
     前記スクロール圧縮機構と駆動軸で連結されて該スクロール圧縮機構を駆動する駆動モータと、
     前記駆動軸を回転自在に支持する軸受部と、
     前記駆動軸の回転により、前記ハウジングの底部に貯留される潤滑油を汲み上げて前記スクロール圧縮機構及び前記軸受部の各摺動部に供給する潤滑油ポンプと、を備え、
     前記潤滑油ポンプは、前記駆動モータの回転数が少なくとも150rps以上の運転領域で運転可能であり、前記回転数に対する単位時間あたりの給油量の増加率を示す傾きが、該回転数が大きくなるにつれて小さくなる容積式ポンプであることを特徴とするスクロール圧縮機。
    A housing into which low pressure gas flows,
    A scroll compression mechanism housed in the housing for compressing the low pressure gas;
    A drive motor coupled to the scroll compression mechanism by a drive shaft to drive the scroll compression mechanism;
    A bearing portion rotatably supporting the drive shaft;
    A lubricant oil pump that pumps up lubricant oil stored in the bottom of the housing by rotation of the drive shaft and supplies the lubricant to the scroll compression mechanism and the sliding parts of the bearing;
    The lubricating oil pump can be operated in an operating range where the number of revolutions of the drive motor is at least 150 rps or more, and the inclination indicating the rate of increase of the amount of oil supply per unit time to the number of revolutions increases as the number of revolutions increases. A scroll compressor characterized by being a positive displacement pump.
  2.  前記潤滑油ポンプは、該潤滑油ポンプの1回転あたりのポンプ給油量をQ(cc/rev)、前記スクロール圧縮機構の1回転あたりのスクロール押しのけ量をVs(cc/rev)とした場合、
     前記駆動モータの回転数が0rps以上60rps以下の運転領域で、
     Q/Vs>0.006
     を満たし、
     前記駆動モータの回転数が少なくとも150rps以上200rps以下の運転領域で、
     0.003≦Q/Vs≦0.006
     を満たすことを特徴とする請求項1に記載のスクロール圧縮機。
    The lubricating oil pump has a pump oil supply amount per rotation of the lubricating oil pump as Q (cc / rev) and a scroll displacement amount per rotation of the scroll compression mechanism as Vs (cc / rev),
    In an operating range where the number of revolutions of the drive motor is from 0 rps to 60 rps,
    Q / Vs> 0.006
    The filling,
    In an operating range where the number of rotations of the drive motor is at least 150 rps and less than 200 rps,
    0.003 ≦ Q / Vs ≦ 0.006
    The scroll compressor according to claim 1, wherein:
  3.  前記摺動部へ供給される潤滑油が流通する給油路と、前記摺動部に供給された余剰の潤滑油を前記ハウジング内に戻す戻し油路とを備え、
     前記給油路における最小径をd1、前記戻し油路の等価径をd2、前記潤滑油ポンプの吸込口の内径をDとした場合、
     前記潤滑油ポンプの吸込口の内径Dは、
     d1≦D≦d2
     を満たすことを特徴とする請求項1または2に記載のスクロール圧縮機。
    The oil supply passage through which the lubricating oil supplied to the sliding portion flows, and the return oil passage for returning the surplus lubricating oil supplied to the sliding portion back into the housing,
    Assuming that the minimum diameter in the oil supply passage is d1, the equivalent diameter of the return oil passage is d2, and the inner diameter of the suction port of the lubricating oil pump is D:
    The inner diameter D of the suction port of the lubricating oil pump is
    d1 ≦ D ≦ d2
    The scroll compressor according to claim 1 or 2, characterized in that
  4.  前記潤滑油ポンプは、ローリングピストン式の潤滑油ポンプであることを特徴とする請求項1から3のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 3, wherein the lubricating oil pump is a rolling piston lubricating oil pump.
PCT/JP2016/081635 2015-11-20 2016-10-25 Scroll compressor WO2017086105A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680043307.7A CN107850069B (en) 2015-11-20 2016-10-25 Screw compressor
EP16866107.2A EP3318759A4 (en) 2015-11-20 2016-10-25 Scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-227877 2015-11-20
JP2015227877A JP2017096145A (en) 2015-11-20 2015-11-20 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2017086105A1 true WO2017086105A1 (en) 2017-05-26

Family

ID=58718700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081635 WO2017086105A1 (en) 2015-11-20 2016-10-25 Scroll compressor

Country Status (4)

Country Link
EP (1) EP3318759A4 (en)
JP (1) JP2017096145A (en)
CN (1) CN107850069B (en)
WO (1) WO2017086105A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145412A (en) * 2019-06-28 2020-12-29 丹佛斯商用压缩机公司 Scroll compressor provided with a track disc lubrication system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115176086B (en) * 2020-07-20 2023-10-20 株式会社日立产机系统 Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
CN113482932B (en) * 2021-08-23 2023-09-01 广东美芝制冷设备有限公司 Rotary compressor and refrigeration equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272683A (en) * 1993-03-16 1994-09-27 Toshiba Corp Lubrication pump device for compressor
JPH08177773A (en) * 1994-12-27 1996-07-12 Toshiba Corp Oil feeding pump device in compressor
JPH0921391A (en) * 1995-07-05 1997-01-21 Mitsubishi Heavy Ind Ltd Scroll compressor
JPH0942181A (en) * 1995-08-04 1997-02-10 Mitsubishi Heavy Ind Ltd Scroll type compressor
JP2003184776A (en) * 2001-12-18 2003-07-03 Mitsubishi Heavy Ind Ltd Compressor
JP2013238142A (en) * 2012-05-14 2013-11-28 Mitsubishi Electric Corp Scroll compressor
US20150071805A1 (en) * 2012-04-12 2015-03-12 Emerson Climate Technologies (Suzhou) Co., Ltd. Rotor pump and rotary machinery comprising same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137292A (en) * 1992-10-23 1994-05-17 Daikin Ind Ltd Rolling piston type compressor
WO2012147145A1 (en) * 2011-04-25 2012-11-01 株式会社日立製作所 Refrigerant compressor and refrigeration cycle apparatus using same
CN203476700U (en) * 2013-09-12 2014-03-12 南京奥特佳冷机有限公司 Horizontal type full-closed scroll compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272683A (en) * 1993-03-16 1994-09-27 Toshiba Corp Lubrication pump device for compressor
JPH08177773A (en) * 1994-12-27 1996-07-12 Toshiba Corp Oil feeding pump device in compressor
JPH0921391A (en) * 1995-07-05 1997-01-21 Mitsubishi Heavy Ind Ltd Scroll compressor
JPH0942181A (en) * 1995-08-04 1997-02-10 Mitsubishi Heavy Ind Ltd Scroll type compressor
JP2003184776A (en) * 2001-12-18 2003-07-03 Mitsubishi Heavy Ind Ltd Compressor
US20150071805A1 (en) * 2012-04-12 2015-03-12 Emerson Climate Technologies (Suzhou) Co., Ltd. Rotor pump and rotary machinery comprising same
JP2013238142A (en) * 2012-05-14 2013-11-28 Mitsubishi Electric Corp Scroll compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3318759A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145412A (en) * 2019-06-28 2020-12-29 丹佛斯商用压缩机公司 Scroll compressor provided with a track disc lubrication system

Also Published As

Publication number Publication date
EP3318759A4 (en) 2018-10-31
CN107850069B (en) 2019-04-12
JP2017096145A (en) 2017-06-01
CN107850069A (en) 2018-03-27
EP3318759A1 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6300829B2 (en) Rotary compressor
CN111133197B (en) Scroll compressor having a scroll compressor with a suction chamber
JP5433604B2 (en) Scroll compressor
WO2017086105A1 (en) Scroll compressor
JP6554926B2 (en) Scroll compressor
JP2018021493A (en) Scroll compressor
US9239052B2 (en) Scroll compressor having out-of-phase back pressure chamber and compression chamber oil-feeding paths
CN108496008B (en) Scroll compressor and air conditioner provided with same
US7458789B2 (en) Scroll compressor
KR20190131838A (en) Compressor having improved differential pressure structure for oil supplying
KR102392655B1 (en) Compressor having seperated oil retrun flow path and refrigerant flow path
JP2014152747A (en) Displacement type compressor
WO2019240134A1 (en) Scroll compressor
JP5328536B2 (en) Scroll compressor
EP3339647A1 (en) Compressor
JP7143128B2 (en) compressor
JP5114708B2 (en) Hermetic scroll compressor
WO2020230232A1 (en) Compressor
JP2019138234A (en) Compressor
JP2009062858A (en) Horizontal type compressor
US20200284257A1 (en) Scroll compressor
WO2022070527A1 (en) Hermetic electric compressor
KR20130092769A (en) Scroll compressor
JP6462265B2 (en) Open type compressor
KR20190000687A (en) Compressor having enhaced lubrication structre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866107

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016866107

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE