WO2017086068A1 - Process for producing particles comprising vanadium dioxide, and process for producing dispersion of particles comprising vanadium dioxide - Google Patents

Process for producing particles comprising vanadium dioxide, and process for producing dispersion of particles comprising vanadium dioxide Download PDF

Info

Publication number
WO2017086068A1
WO2017086068A1 PCT/JP2016/080571 JP2016080571W WO2017086068A1 WO 2017086068 A1 WO2017086068 A1 WO 2017086068A1 JP 2016080571 W JP2016080571 W JP 2016080571W WO 2017086068 A1 WO2017086068 A1 WO 2017086068A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium dioxide
temperature
containing particles
hydrothermal reaction
producing
Prior art date
Application number
PCT/JP2016/080571
Other languages
French (fr)
Japanese (ja)
Inventor
孝 阪口
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017551777A priority Critical patent/JPWO2017086068A1/en
Publication of WO2017086068A1 publication Critical patent/WO2017086068A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention addresses the problem of providing a process for producing particles comprising vanadium dioxide which have a small average particle diameter and low unevenness in particle diameter. The process for producing particles comprising vanadium dioxide is one for producing particles comprising vanadium dioxide which has thermochromic properties, and is characterized by comprising: a step in which at least water and a raw material containing vanadium (V) are mixed to prepare a liquid reaction mixture; a step in which the liquid reaction mixture is heated from ordinary temperature to a hydrothermal reaction temperature at a heating rate in the range of 5.8-15.0 °C/min; and a step in which the liquid reaction mixture heated to the hydrothermal reaction temperature is made to undergo a hydrothermal reaction.

Description

二酸化バナジウム含有粒子の製造方法及び二酸化バナジウム含有粒子分散液の製造方法Method for producing vanadium dioxide-containing particles and method for producing vanadium dioxide-containing particle dispersion
 本発明は、二酸化バナジウム含有粒子の製造方法及び二酸化バナジウム含有粒子分散液の製造方法に関する。特に、平均粒径が小さく、粒径のばらつきが小さい二酸化バナジウム含有粒子の製造方法、及び当該製造方法を用いた二酸化バナジウム含有粒子分散液の製造方法に関する。 The present invention relates to a method for producing vanadium dioxide-containing particles and a method for producing a vanadium dioxide-containing particle dispersion. In particular, the present invention relates to a method for producing vanadium dioxide-containing particles having a small average particle size and a small variation in particle size, and a method for producing a vanadium dioxide-containing particle dispersion using the production method.
 二酸化バナジウム(VO)は、温度変化によって光透過率や光反射率等の光学特性が可逆的に変化するサーモクロミック現象を示す材料として注目されている。
 二酸化バナジウムには多数の結晶構造が存在するが、ルチル型の結晶相(R相)のみがサーモクロミック性を有している。良好な光学特性を得るためには、二酸化バナジウム含有粒子の粒径がナノメートルオーダーであって、凝集がなく、狭い粒径分布を有することが望ましい。
 このような粒子を作製する技術として、水熱合成法が報告されている(例えば、特許文献1参照。)。
Vanadium dioxide (VO 2 ) is attracting attention as a material exhibiting a thermochromic phenomenon in which optical characteristics such as light transmittance and light reflectance change reversibly with temperature change.
Although many crystal structures exist in vanadium dioxide, only the rutile crystal phase (R phase) has thermochromic properties. In order to obtain good optical characteristics, it is desirable that the particle size of the vanadium dioxide-containing particles is on the order of nanometers, has no aggregation, and has a narrow particle size distribution.
A hydrothermal synthesis method has been reported as a technique for producing such particles (see, for example, Patent Document 1).
 上記した従来技術のように、水、バナジウム(V)を含有する原料及び還元剤等を含む反応液を水熱反応させることで、比較的容易にサーモクロミック性を有する二酸化バナジウム含有粒子を作製することができる。 As described above, vanadium dioxide-containing particles having thermochromic properties are relatively easily produced by hydrothermal reaction of a reaction solution containing water, a raw material containing vanadium (V), a reducing agent, and the like. be able to.
 しかしながら、上記従来技術によれば、得られる二酸化バナジウム含有粒子の粒径は十分に小さくなく、粒径のばらつきも大きい。 However, according to the above prior art, the particle size of the obtained vanadium dioxide-containing particles is not sufficiently small, and the variation in particle size is large.
特開2011-178825号公報JP 2011-178825 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、平均粒径が小さく、粒径のばらつきが小さい二酸化バナジウム含有粒子の製造方法、及び当該製造方法を用いた二酸化バナジウム含有粒子分散液の製造方法を提供することである。 The present invention has been made in view of the above-mentioned problems and situations, and the problem to be solved is a method for producing vanadium dioxide-containing particles having a small average particle size and a small variation in particle size, and a dioxide dioxide using the production method. It is to provide a method for producing a vanadium-containing particle dispersion.
 本発明に係る上記課題を解決すべく、上記問題の原因等について検討した結果、少なくとも水と、バナジウム(V)を含有する原料とを混合して反応液を調製し、当該反応液を5.8~15.0℃/minの範囲内の昇温速度で常温から水熱反応温度まで昇温させ、水熱反応温度に到達した反応液を水熱反応させることで、平均粒径が小さく、粒径のばらつきが小さい二酸化バナジウム含有粒子を製造できることを見いだした。
 すなわち、本発明に係る課題は、以下の手段により解決される。
As a result of investigating the cause of the above-mentioned problem in order to solve the above-mentioned problems according to the present invention, at least water and a raw material containing vanadium (V) are mixed to prepare a reaction liquid. By raising the temperature from room temperature to the hydrothermal reaction temperature at a rate of temperature rise within the range of 8 to 15.0 ° C./min, the reaction liquid reaching the hydrothermal reaction temperature is hydrothermally reacted, so that the average particle size is small. It has been found that vanadium dioxide-containing particles with small particle size variations can be produced.
That is, the subject concerning this invention is solved by the following means.
 1.サーモクロミック性を有する二酸化バナジウムを含有する二酸化バナジウム含有粒子の製造方法であって、
 少なくとも、水と、バナジウム(V)を含有する原料とを混合して反応液を調製する工程と、
 前記反応液を5.8~15.0℃/minの範囲内の昇温速度で常温から水熱反応温度まで昇温させる工程と、
 前記水熱反応温度に到達した前記反応液を水熱反応させる工程と、を有することを特徴とする二酸化バナジウム含有粒子の製造方法。
1. A method for producing vanadium dioxide-containing particles containing vanadium dioxide having thermochromic properties,
A step of mixing at least water and a raw material containing vanadium (V) to prepare a reaction solution;
Raising the temperature of the reaction solution from room temperature to a hydrothermal reaction temperature at a rate of temperature rise in the range of 5.8 to 15.0 ° C./min;
And a step of hydrothermally reacting the reaction solution that has reached the hydrothermal reaction temperature. A method for producing vanadium dioxide-containing particles, comprising:
 2.前記水熱反応温度が200~350℃の範囲内であることを特徴とする第1項に記載の二酸化バナジウム含有粒子の製造方法。 2. 2. The method for producing vanadium dioxide-containing particles according to item 1, wherein the hydrothermal reaction temperature is in the range of 200 to 350 ° C.
 3.前記水熱反応させる工程において、前記反応液を0.1~24時間水熱反応させることを特徴とする第1項又は第2項に記載の二酸化バナジウム含有粒子の製造方法。 3. 3. The method for producing vanadium dioxide-containing particles according to item 1 or 2, wherein, in the hydrothermal reaction step, the reaction solution is subjected to a hydrothermal reaction for 0.1 to 24 hours.
 4.前記昇温させる工程において、前記反応液が前記水熱反応温度に到達する前であって、前記反応液が100~200℃の範囲内のいずれかの温度に到達した時に昇温を停止し、当該温度を0.5~5時間保持することを特徴とする第1項から第3項までのいずれか一項に記載の二酸化バナジウム含有粒子の製造方法。 4. In the step of raising the temperature, before the reaction solution reaches the hydrothermal reaction temperature, the temperature rise is stopped when the reaction solution reaches any temperature within the range of 100 to 200 ° C., 4. The method for producing vanadium dioxide-containing particles according to any one of items 1 to 3, wherein the temperature is maintained for 0.5 to 5 hours.
 5.第1項から第4項までのいずれか一項に記載の二酸化バナジウム含有粒子の製造方法により二酸化バナジウム含有粒子を製造する工程を有することを特徴とする二酸化バナジウム含有粒子分散液の製造方法。 5. A method for producing a vanadium dioxide-containing particle dispersion, comprising a step of producing vanadium dioxide-containing particles by the method for producing vanadium dioxide-containing particles according to any one of items 1 to 4.
 本発明によれば、平均粒径が小さく、粒径のばらつきが小さい二酸化バナジウム含有粒子を製造することができ、当該二酸化バナジウム含有粒子を含有する二酸化バナジウム含有粒子分散液を製造することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 水熱反応を行う直前の昇温速度を速めて、上記所定範囲内とすることにより、核が多数発生して二酸化バナジウム含有粒子が小粒子化するものと考えている。これは、A相等、上記R相以外の他の結晶相の粒子成長が抑制されたためではないかと推察している。
According to the present invention, vanadium dioxide-containing particles having a small average particle diameter and small particle size variation can be produced, and a vanadium dioxide-containing particle dispersion containing the vanadium dioxide-containing particles can be produced.
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
It is considered that by increasing the heating rate immediately before the hydrothermal reaction to be within the predetermined range, a large number of nuclei are generated and the vanadium dioxide-containing particles are reduced in size. It is presumed that this is because the grain growth of crystal phases other than the R phase, such as the A phase, was suppressed.
 本発明の二酸化バナジウム含有粒子の製造方法は、サーモクロミック性を有する二酸化バナジウムを含有する二酸化バナジウム含有粒子の製造方法であって、少なくとも、水と、バナジウム(V)を含有する原料とを混合して反応液を調製する工程と、前記反応液を5.8~15.0℃/minの範囲内の昇温速度で常温から水熱反応温度まで昇温させる工程と、前記水熱反応温度に到達した前記反応液を水熱反応させる工程と、を有することを特徴とする。この特徴は、請求項1から請求項5までの各請求項に共通する又は対応する技術的特徴である。
 本発明においては、前記水熱反応温度が200~350℃の範囲内であることが好ましい。
 また、本発明においては、前記水熱反応させる工程において、前記反応液を0.1~24時間水熱反応させることが好ましい。これにより、得られる二酸化バナジウム含有粒子の平均粒径を制御しやすく、かつエネルギー消費量が多くなりすぎることを抑制できる。
 また、本発明においては、前記昇温させる工程において、前記反応液が前記水熱反応温度に到達する前であって、前記反応液が100~200℃の範囲内のいずれかの温度に到達した時に昇温を停止し、当該温度を0.5~5時間保持することが好ましい。このように昇温を一旦停止することで材料を全て溶解させることができ、その後の昇温により均一な粒子を形成することができるものと考えられる。
The method for producing vanadium dioxide-containing particles of the present invention is a method for producing vanadium dioxide-containing particles containing vanadium dioxide having thermochromic properties, wherein at least water and a raw material containing vanadium (V) are mixed. Preparing the reaction solution, raising the temperature of the reaction solution from room temperature to the hydrothermal reaction temperature at a temperature rise rate in the range of 5.8 to 15.0 ° C./min, and adjusting the hydrothermal reaction temperature to And a hydrothermal reaction of the reached reaction liquid. This feature is a technical feature common to or corresponding to each of claims 1 to 5.
In the present invention, the hydrothermal reaction temperature is preferably in the range of 200 to 350 ° C.
In the present invention, in the hydrothermal reaction step, the reaction solution is preferably hydrothermally reacted for 0.1 to 24 hours. Thereby, it is easy to control the average particle diameter of the obtained vanadium dioxide-containing particles, and it is possible to suppress an excessive increase in energy consumption.
In the present invention, in the step of raising the temperature, the reaction solution reaches any temperature within a range of 100 to 200 ° C. before the reaction solution reaches the hydrothermal reaction temperature. It is sometimes preferable to stop the temperature rise and hold the temperature for 0.5 to 5 hours. Thus, it is considered that all the materials can be dissolved by temporarily stopping the temperature increase, and uniform particles can be formed by the subsequent temperature increase.
 また、本発明の二酸化バナジウム含有粒子分散液の製造方法は、上記二酸化バナジウム含有粒子の製造方法により二酸化バナジウム含有粒子を製造する工程を有することを特徴とする。これにより、粒径が小さく、粒径のばらつきも小さい二酸化バナジウム含有粒子を含有する二酸化バナジウム含有粒子分散液を製造することができる。 Further, the method for producing a vanadium dioxide-containing particle dispersion of the present invention is characterized by having a step of producing vanadium dioxide-containing particles by the method for producing vanadium dioxide-containing particles. As a result, a vanadium dioxide-containing particle dispersion containing vanadium dioxide-containing particles having a small particle diameter and a small variation in particle diameter can be produced.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
《二酸化バナジウム含有粒子の製造方法の概要》
 本発明の二酸化バナジウム含有粒子の製造方法は、サーモクロミック性を有する二酸化バナジウムを含有する二酸化バナジウム含有粒子の製造方法であって、少なくとも、水と、バナジウム(V)を含有する原料とを混合して反応液を調製する工程(反応液調製工程)と、反応液を5.8~15.0℃/minの範囲内の昇温速度で常温から水熱反応温度まで昇温させる工程(昇温工程)と、水熱反応温度に到達した反応液を水熱反応させる工程(水熱反応工程)と、を有することを特徴とする。
<< Outline of Production Method of Vanadium Dioxide-Containing Particles >>
The method for producing vanadium dioxide-containing particles of the present invention is a method for producing vanadium dioxide-containing particles containing vanadium dioxide having thermochromic properties, wherein at least water and a raw material containing vanadium (V) are mixed. Preparing a reaction solution (reaction solution preparation step), and a step of raising the reaction solution from normal temperature to a hydrothermal reaction temperature at a temperature increase rate in the range of 5.8 to 15.0 ° C./min (temperature increase). And a step (hydrothermal reaction step) of hydrothermal reaction of the reaction solution that has reached the hydrothermal reaction temperature.
 以下に、本発明の二酸化バナジウム含有粒子の製造方法で用いられる材料や各種条件、測定方法等について詳細に説明する。 Hereinafter, materials, various conditions, measurement methods and the like used in the method for producing vanadium dioxide-containing particles of the present invention will be described in detail.
[1:反応液調製工程]
 反応液調製工程では、少なくとも、水と、バナジウム(V)を含有する原料とを混合し反応液を調製する。この反応液は、原料が水中に溶解した水溶液であっても良いし、原料が水中に分散した懸濁液であっても良い。
[1: Reaction liquid preparation step]
In the reaction liquid preparation step, at least water and a raw material containing vanadium (V) are mixed to prepare a reaction liquid. This reaction solution may be an aqueous solution in which the raw material is dissolved in water, or may be a suspension in which the raw material is dispersed in water.
(バナジウム(V)を含有する原料)
 本発明において、バナジウム(V)を含有する原料とは、バナジウム(V)を含有するバナジウム化合物、又は、当該バナジウム化合物とその他の化合物との混合物をいう。当該原料としては、溶媒中に溶解されたものを用いても良いし、分散媒中に分散されたものを用いても良い。
(Raw material containing vanadium (V))
In the present invention, the raw material containing vanadium (V) refers to a vanadium compound containing vanadium (V) or a mixture of the vanadium compound and other compounds. As the raw material, a material dissolved in a solvent may be used, or a material dispersed in a dispersion medium may be used.
 原料に含有されるバナジウム化合物としては、五価のバナジウム(V)の化合物であれば、特に限定されず、例えば、五酸化二バナジウム(V)、バナジン酸アンモニウム(NHVO)、三塩化酸化バナジウム(VOCl)、メタバナジン酸ナトリウム(NaVO)等を用いることができる。中でも、バナジウム原子以外の金属原子を含まないため二酸化バナジウム含有粒子の形成が妨げられず、より純度の高い二酸化バナジウム含有粒子を得られる観点から、五酸化二バナジウム、バナジン酸アンモニウム及び三塩化酸化バナジウムから選定された化合物が好ましい。また、原料に含有されるバナジウム化合物としては、1種のみであっても良いし2種以上であっても良い。 The vanadium compound contained in the raw material is not particularly limited as long as it is a pentavalent vanadium (V) compound. For example, divanadium pentoxide (V 2 O 5 ), ammonium vanadate (NH 4 VO 3 ). , Vanadium trichloride oxide (VOCl 3 ), sodium metavanadate (NaVO 3 ), and the like can be used. Among them, since it does not contain metal atoms other than vanadium atoms, formation of vanadium dioxide-containing particles is not hindered, and from the viewpoint of obtaining higher purity vanadium dioxide-containing particles, vanadium pentoxide, ammonium vanadate and vanadium trichloride oxide. A compound selected from is preferred. Moreover, as a vanadium compound contained in a raw material, only 1 type may be sufficient and 2 or more types may be sufficient.
 上記した原料に対しては、後述する水熱反応工程を行う前に、過酸化水素の存在下で前処理を行っても良い。水熱反応工程前に過酸化水素の存在下で前処理を行うことにより、特に五酸化二バナジウム等の非イオン性のバナジウム化合物を含有する場合であっても、反応液がゾル状になり、水熱反応が均一に進行し得る。この場合、例えば、バナジウム化合物1モルに対して0.5~10モルの過酸化水素を反応液に添加し、例えば20~40℃で、必要に応じて撹拌しながら0.5~10時間程度反応させれば良い。 The above-described raw material may be pretreated in the presence of hydrogen peroxide before performing the hydrothermal reaction step described later. By performing the pretreatment in the presence of hydrogen peroxide before the hydrothermal reaction step, the reaction solution becomes a sol even when a nonionic vanadium compound such as divanadium pentoxide is contained, Hydrothermal reaction can proceed uniformly. In this case, for example, 0.5 to 10 mol of hydrogen peroxide is added to the reaction solution with respect to 1 mol of the vanadium compound, and the mixture is stirred at 20 to 40 ° C. for about 0.5 to 10 hours as necessary. What is necessary is just to make it react.
(水)
 本発明に係る水は、特に限定されないが、不純物の少ない高純度のものが好ましく、具体的には、イオン交換水、蒸留水等の精製水を用いることができる。
(water)
Although the water which concerns on this invention is not specifically limited, The highly purified thing with few impurities is preferable, Specifically, purified water, such as ion-exchange water and distilled water, can be used.
(本発明に係る反応液が含有していても良いその他の化合物)
 本発明に係る反応液には、還元剤を含有させることが好ましい。還元剤としては、水に容易に溶解する性質を有し、かつ、バナジウム(V)を含有する原料の還元剤として機能すれば良く、例えば、ヒドラジン(N)、ヒドラジン一水和物等のヒドラジンの水和物(N・nHO)、シュウ酸((COOH))、シュウ酸二水和物等のシュウ酸の水和物(H・nHO)等が挙げられる。なお、還元剤としては、1種単独で用いられても良いし2種以上を組み合わせて用いられても良い。
 反応液中の還元剤の含有量は、特に制限されるものではないが、例えば、バナジウム化合物1モルに対して0.01~2モルである。
(Other compounds that the reaction solution according to the present invention may contain)
The reaction solution according to the present invention preferably contains a reducing agent. The reducing agent has a property of easily dissolving in water, and may function as a reducing agent for a raw material containing vanadium (V). For example, hydrazine (N 2 H 4 ), hydrazine monohydrate Hydrazine hydrate (N 2 H 4 .nH 2 O), oxalic acid ((COOH) 2 ), oxalic acid dihydrate and the like hydrate (H 2 C 2 O 4 .nH 2 O) and the like. In addition, as a reducing agent, it may be used individually by 1 type and may be used in combination of 2 or more type.
The content of the reducing agent in the reaction solution is not particularly limited, but is, for example, 0.01 to 2 mol with respect to 1 mol of the vanadium compound.
 なお、反応液に上記還元剤を含有させる場合、後述する水熱反応工程前に酸化還元反応を行わせるものとしても良い。例えば、水熱反応工程前に、還元剤を含有する反応液を、例えば20~40℃で、必要に応じて撹拌しながら0.5~10時間程度反応させれば良い。複数の還元剤を採用する場合は、複数の還元剤を同時に又は順次添加して酸化還元反応を行わせることができる。還元剤による酸化還元反応は、上記した原料に対する過酸化水素による前処理と同時に行っても良く(すなわち、過酸化水素及び還元剤を含有する反応液を用いて前処理を行う。)、又は、過酸化水素による前処理とは別に順次行っても良い。水熱反応工程前に酸化還元反応を行わせることにより、二酸化バナジウムを生成しやすくすることができる。 In addition, when the above-mentioned reducing agent is contained in the reaction liquid, it is possible to perform an oxidation-reduction reaction before the hydrothermal reaction step described later. For example, before the hydrothermal reaction step, the reaction solution containing the reducing agent may be reacted at 20 to 40 ° C. for about 0.5 to 10 hours with stirring as necessary. When a plurality of reducing agents are employed, a plurality of reducing agents can be added simultaneously or sequentially to cause the redox reaction. The oxidation-reduction reaction with the reducing agent may be performed simultaneously with the above-described pretreatment of the raw material with hydrogen peroxide (that is, the pretreatment is performed using a reaction solution containing hydrogen peroxide and a reducing agent), or You may carry out sequentially separately from the pre-processing by hydrogen peroxide. By performing the oxidation-reduction reaction before the hydrothermal reaction step, vanadium dioxide can be easily generated.
 また、本発明に係る反応液は、例えば、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)、リン(P)及びチタン(Ti)からなる群から選定される、少なくとも1種の原子を含む化合物を含有していても良い。 The reaction solution according to the present invention includes, for example, tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), and osmium (Os). ), Ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F), phosphorus (P) and titanium (Ti). A selected compound containing at least one atom may be contained.
 これらの原子を含む化合物を、添加剤として本発明に係る反応液に添加することにより、最終的に得られる二酸化バナジウム含有粒子のサーモクロミック性(特に、転移温度)を制御することができる。 By adding a compound containing these atoms as an additive to the reaction solution according to the present invention, the thermochromic properties (particularly the transition temperature) of the finally obtained vanadium dioxide-containing particles can be controlled.
 また、本発明に係る反応液は、酸化性又は還元性を有する物質を更に含むものであって良い。このような物質には、例えば、過酸化水素(H)が含まれる。酸化性又は還元性を有する物質を添加することにより、反応液のpHを調整したり、上記原料を均一に溶解させたりすることができる。 In addition, the reaction liquid according to the present invention may further contain a substance having oxidizing property or reducing property. Such materials include, for example, hydrogen peroxide (H 2 O 2 ). By adding an oxidizing or reducing substance, the pH of the reaction solution can be adjusted, or the raw materials can be uniformly dissolved.
 また、本発明に係る反応液は、pH調節剤として、塩酸、硫酸、硝酸、リン酸、水酸化アンモニウム、アンモニア等の有機又は無機の酸又はアルカリを含んでも良い。反応液のpHは、二酸化バナジウム含有粒子の粒径及びサーモクロミック性の観点から、例えば4~7である。 In addition, the reaction solution according to the present invention may contain an organic or inorganic acid or alkali such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, ammonium hydroxide, or ammonia as a pH regulator. The pH of the reaction solution is, for example, 4 to 7 from the viewpoint of the particle size and thermochromic properties of the vanadium dioxide-containing particles.
[2:昇温工程]
 昇温工程では、反応液調製工程で調製した反応液を、5.8~15.0℃/minの範囲内の昇温速度で常温から水熱反応温度まで昇温させる。
 具体的には、調製した反応液を、水熱反応処理に用いられるオートクレーブ装置等の密閉容器内に収容し、密閉空間内で加熱することによって、5.8~15.0℃/minの範囲内の昇温速度で常温(例えば25℃)から水熱反応温度まで昇温させる。昇温速度が5.8℃/min未満であると、得られる二酸化バナジウム含有粒子の平均粒径及び粒径のばらつきを小さくすることができない。一方、15.0℃/minより大きい昇温速度に設定することは、装置その他の昇温手段の設計上、困難である。
[2: Temperature raising step]
In the temperature raising step, the temperature of the reaction solution prepared in the reaction solution preparation step is raised from room temperature to the hydrothermal reaction temperature at a temperature rising rate in the range of 5.8 to 15.0 ° C./min.
Specifically, the prepared reaction solution is housed in a sealed container such as an autoclave apparatus used for hydrothermal reaction treatment, and heated in a sealed space to a range of 5.8 to 15.0 ° C./min. The temperature is raised from normal temperature (for example, 25 ° C.) to the hydrothermal reaction temperature at the temperature rising rate. When the rate of temperature rise is less than 5.8 ° C./min, the average particle size and variation in particle size of the obtained vanadium dioxide-containing particles cannot be reduced. On the other hand, it is difficult to set the temperature rising rate higher than 15.0 ° C./min in terms of the design of the apparatus and other temperature raising means.
 ここで、水熱反応温度とは、後述する水熱反応工程を行うときの反応液の液温をいい、反応液を昇温して当該水熱反応温度に到達した後に水熱反応工程を行う。水熱反応温度としては、例えば、200~350℃の範囲内であり、好ましくは200~300℃の範囲内、更に好ましくは230~300℃の範囲内である。 Here, the hydrothermal reaction temperature refers to the liquid temperature of the reaction liquid when performing the hydrothermal reaction process described later, and the hydrothermal reaction process is performed after the reaction liquid is heated to reach the hydrothermal reaction temperature. . The hydrothermal reaction temperature is, for example, in the range of 200 to 350 ° C., preferably in the range of 200 to 300 ° C., more preferably in the range of 230 to 300 ° C.
 なお、昇温工程における昇温速度としては、常温から水熱反応温度までの昇温期間において、5.8~15.0℃/minの範囲内のいずれか一の値で一定であっても良いし、5.8~15.0℃/minの範囲内で時間経過とともに昇温速度が変動するものとしても良い。 The rate of temperature increase in the temperature increasing step may be constant at any one value within the range of 5.8 to 15.0 ° C./min during the temperature increasing period from room temperature to the hydrothermal reaction temperature. Alternatively, the rate of temperature rise may vary with time within a range of 5.8 to 15.0 ° C./min.
 また、昇温工程においては、反応液が水熱反応温度に到達する前であって、反応液が100~200℃の範囲内のいずれかである保持温度に到達した時に昇温を停止し、当該保持温度を0.5~5時間保持することが好ましい。このように昇温を一旦停止することで材料を全て溶解させることができ、その後の昇温により均一な粒子を形成することができるものと考えている。 Further, in the temperature raising step, the temperature rise is stopped before the reaction solution reaches the hydrothermal reaction temperature, and when the reaction solution reaches a holding temperature that is in the range of 100 to 200 ° C., The holding temperature is preferably held for 0.5 to 5 hours. It is considered that all the materials can be dissolved by temporarily stopping the temperature increase in this way, and uniform particles can be formed by the subsequent temperature increase.
 また、この場合には、反応液を保持温度に0.5~5時間保持した後、当該反応液の昇温を再開して水熱反応温度まで昇温させる。
 なお、5.8~15.0℃/minの範囲内であれば、昇温停止前と昇温再開後とで昇温速度が異なっていても良い。また、昇温再開後、反応液が100~200℃の温度範囲内であって上記保持温度よりも高い温度に到達した時に昇温を停止し、当該温度で0.5~5時間保持するものとしても良い。また、このような昇温停止、温度保持及び昇温再開を複数回繰り返すものとしても良い。
In this case, after holding the reaction solution at the holding temperature for 0.5 to 5 hours, the temperature of the reaction solution is restarted and raised to the hydrothermal reaction temperature.
As long as it is within the range of 5.8 to 15.0 ° C./min, the rate of temperature rise may be different before the temperature rise is stopped and after the temperature rise is resumed. In addition, after the temperature rise is resumed, the temperature rise is stopped when the reaction solution reaches a temperature within the temperature range of 100 to 200 ° C. and higher than the holding temperature, and is held at the temperature for 0.5 to 5 hours. It is also good. Moreover, it is good also as what repeats such temperature rising stop, temperature holding | maintenance, and temperature rising restart several times.
[3:水熱反応工程]
 水熱反応工程では、昇温工程で水熱反応温度まで昇温された反応液を用いて水熱反応処理を行う。ここで、「水熱反応」とは、温度と圧力が、水の臨界点(374℃、22MPa)よりも低く、100℃以上の熱水(亜臨界水)中において生じる化学反応を意味する。水熱反応処理は、例えば、オートクレーブ装置等の密閉容器内で実施される。上記昇温工程により昇温された反応液に対して水熱反応処理を行うことにより、二酸化バナジウムが結晶成長して二酸化バナジウム含有粒子が得られる。
[3: Hydrothermal reaction step]
In the hydrothermal reaction step, a hydrothermal reaction process is performed using the reaction liquid heated to the hydrothermal reaction temperature in the temperature raising step. Here, “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) having a temperature and pressure lower than the critical point of water (374 ° C., 22 MPa) and at 100 ° C. or higher. A hydrothermal reaction process is implemented in airtight containers, such as an autoclave apparatus, for example. By carrying out a hydrothermal reaction treatment on the reaction solution heated in the temperature raising step, vanadium dioxide crystal grows to obtain vanadium dioxide-containing particles.
 水熱反応処理の条件(反応物の量、処理温度、処理圧力、処理時間)は、適宜設定されるが、水熱反応温度は、上記したように、例えば、200~350℃の範囲内であり、好ましくは200~300℃の範囲内、更に好ましくは230~300℃の範囲内である。温度を350℃以下にすることにより二酸化バナジウム含有粒子の平均粒径を小さくすることができる。一方、温度が高いほど反応速度は速くなり、200℃以上であれば十分な反応速度が得られるとともに、二酸化バナジウム含有粒子のサーモクロミック性がより優れたものとなる。 The conditions of the hydrothermal reaction treatment (amount of reactants, treatment temperature, treatment pressure, treatment time) are appropriately set, but the hydrothermal reaction temperature is, for example, within the range of 200 to 350 ° C. as described above. Yes, preferably in the range of 200 to 300 ° C, more preferably in the range of 230 to 300 ° C. By setting the temperature to 350 ° C. or lower, the average particle size of the vanadium dioxide-containing particles can be reduced. On the other hand, the higher the temperature, the faster the reaction rate. When the temperature is 200 ° C. or higher, a sufficient reaction rate is obtained, and the thermochromic properties of the vanadium dioxide-containing particles are further improved.
 また、水熱反応処理の時間は、例えば0.1時間~7日の範囲内であり、0.1~24時間の範囲内であることが好ましい。時間を長くすることにより、得られる二酸化バナジウム含有粒子の平均粒径等を制御することができ、7日以内であると、エネルギー消費量が多くなりすぎることを抑制できる。なお、本発明においては、水熱反応処理の時間には、上記昇温工程の時間を含まないものとする。
 また、水熱反応処理の圧力は特に制限されないが、例えば水熱反応時の飽和水蒸気圧であり、より具体的には、例えば5~7MPaの範囲内である。
The hydrothermal reaction treatment time is, for example, in the range of 0.1 hour to 7 days, and preferably in the range of 0.1 to 24 hours. By increasing the time, it is possible to control the average particle size and the like of the obtained vanadium dioxide-containing particles, and when it is within 7 days, it is possible to suppress an excessive increase in energy consumption. In the present invention, the time for the hydrothermal reaction treatment does not include the time for the temperature raising step.
The pressure of the hydrothermal reaction treatment is not particularly limited, but is, for example, the saturated water vapor pressure during the hydrothermal reaction, and more specifically, for example, within a range of 5 to 7 MPa.
 また、水熱反応は、撹拌されながら行われることが、二酸化バナジウム含有粒子の粒径をより均一化できるため、好ましい。 In addition, it is preferable that the hydrothermal reaction is performed with stirring because the particle diameter of the vanadium dioxide-containing particles can be made more uniform.
 なお、水熱反応処理は、バッチ式で実施しても良く、連続式で実施しても良い。 It should be noted that the hydrothermal reaction treatment may be performed in a batch method or a continuous method.
 水熱反応処理終了後は、速やかに反応液の温度を150℃以下まで冷却することが好ましい。より好ましくは、30分以内に150℃以下まで冷却する。 After completion of the hydrothermal reaction treatment, it is preferable to quickly cool the temperature of the reaction solution to 150 ° C. or less. More preferably, it cools to 150 degrees C or less within 30 minutes.
 以上の工程により、サーモクロミック性を有する二酸化バナジウム含有粒子を含む懸濁液が得られる。当該懸濁液に対して濾過(例えば限外濾過)や遠心分離を行うことにより、分散媒や溶媒の置換を行い、二酸化バナジウム含有粒子を水やアルコール等によって洗浄しても良い。得られた二酸化バナジウム含有粒子は、任意の手段により乾燥しても良い。これにより、本発明に係る二酸化バナジウム含有粒子が得られる。 Through the above steps, a suspension containing vanadium dioxide-containing particles having thermochromic properties is obtained. The suspension may be replaced with a dispersion medium or a solvent by filtering (for example, ultrafiltration) or centrifuging, and the vanadium dioxide-containing particles may be washed with water or alcohol. The obtained vanadium dioxide-containing particles may be dried by any means. Thereby, the vanadium dioxide containing particle | grains based on this invention are obtained.
《二酸化バナジウム含有粒子》
 本発明の二酸化バナジウム含有粒子の製造方法によって製造された二酸化バナジウム含有粒子は、少なくとも二酸化バナジウム(VO)を含有し、かつ、サーモクロミック性を有する。
 当該二酸化バナジウム含有粒子の平均粒径は、1~100nmの範囲内であることが好ましい。
<Vanadium dioxide-containing particles>
The vanadium dioxide-containing particles produced by the method for producing vanadium dioxide-containing particles of the present invention contain at least vanadium dioxide (VO 2 ) and have thermochromic properties.
The average particle diameter of the vanadium dioxide-containing particles is preferably in the range of 1 to 100 nm.
 このような二酸化バナジウム含有粒子を含有する光学フィルム等であれば、ヘイズが発生することを抑制でき、また、可視光透過率を向上させることができる。 If it is an optical film or the like containing such vanadium dioxide-containing particles, the occurrence of haze can be suppressed, and the visible light transmittance can be improved.
 本発明の製造方法により製造された二酸化バナジウム含有粒子を、例えばバインダー樹脂中に分散された状態で基材上に設けることで、光学フィルムを製造することができる。 An optical film can be produced by providing the vanadium dioxide-containing particles produced by the production method of the present invention on a substrate, for example, in a state dispersed in a binder resin.
(サーモクロミック性及び透明性)
 本発明に係る二酸化バナジウム含有粒子は、サーモクロミック性と透明性とを有している。
 本発明に係る二酸化バナジウム含有粒子の可視光透過率は、高いほど好ましいが、70%以上であることが好ましい。
(Thermochromic and transparency)
The vanadium dioxide-containing particles according to the present invention have thermochromic properties and transparency.
The higher the visible light transmittance of the vanadium dioxide-containing particles according to the present invention, the better, but 70% or more is preferable.
 また、二酸化バナジウム含有粒子が有するサーモクロミック性としては、温度変化によって光透過率や光反射率等の光学特性が可逆的に変化すれば特に限定されるものではない。例えば、25℃/50%RH及び85℃/85%RHにおける光透過率の差が30%以上であることが好ましい。
 二酸化バナジウム含有粒子の光透過率は、例えば、分光光度計V-670(日本分光(株)製)を用いて、波長2000nmにおける光透過率として測定することができる。
Further, the thermochromic property of the vanadium dioxide-containing particles is not particularly limited as long as optical properties such as light transmittance and light reflectance are reversibly changed by temperature change. For example, the difference in light transmittance at 25 ° C./50% RH and 85 ° C./85% RH is preferably 30% or more.
The light transmittance of the vanadium dioxide-containing particles can be measured as the light transmittance at a wavelength of 2000 nm using, for example, a spectrophotometer V-670 (manufactured by JASCO Corporation).
 また、本発明に係る二酸化バナジウム含有粒子は、上記したとおり、二酸化バナジウム(VO)の他、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)、リン(P)及びチタン(Ti)からなる群から選定される、少なくとも1種の原子を含んでいても良い。これらのような原子を含有することにより、二酸化バナジウム含有粒子の相転移特性(特に、調光温度)を制御することが可能となる。なお、最終的に得られる二酸化バナジウム含有粒子に対する、これらの原子の添加総量は、バナジウム(V)原子に対して0.1~5.0原子%程度で十分であり、例えば、1.0原子%である。添加総量が5.0原子%以下であると、十分なサーモクロミック性(例えば、調光前後の光透過率の差)を確保することができる。 Further, the vanadium dioxide-containing particles according to the present invention, as described above, other than vanadium dioxide (VO 2 ), tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), Rhenium (Re), iridium (Ir), osmium (Os), ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F), It may contain at least one kind of atom selected from the group consisting of phosphorus (P) and titanium (Ti). By containing such atoms, it becomes possible to control the phase transition characteristics (particularly the dimming temperature) of the vanadium dioxide-containing particles. The total amount of these atoms added to the finally obtained vanadium dioxide-containing particles is sufficient to be about 0.1 to 5.0 atomic% with respect to the vanadium (V) atom. %. When the total amount added is 5.0 atomic% or less, sufficient thermochromic properties (for example, a difference in light transmittance before and after dimming) can be ensured.
(平均粒径の測定方法)
 二酸化バナジウム含有粒子の平均粒径としては、例えば、次の方法で測定することができる。
 まず、二酸化バナジウム含有粒子を1質量%の濃度で水に混合し、超音波で15分間分散して測定用サンプルを作製する。次に、作製した測定用サンプルについて、島津製作所製のレーザー回折式粒度分布測定装置を用いて、二酸化バナジウム含有粒子の粒径D50を測定する。なお、測定値としては、個数基準値を採用することができる。
(Measuring method of average particle size)
The average particle size of the vanadium dioxide-containing particles can be measured, for example, by the following method.
First, vanadium dioxide-containing particles are mixed with water at a concentration of 1% by mass, and dispersed with ultrasonic waves for 15 minutes to prepare a measurement sample. Next, the particle size D50 of the vanadium dioxide-containing particles is measured for the produced measurement sample using a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation. The number reference value can be adopted as the measurement value.
《二酸化バナジウム含有粒子分散液の製造方法》
 本発明の二酸化バナジウム含有粒子分散液の製造方法は、上記した二酸化バナジウム含有粒子の製造方法により二酸化バナジウム含有粒子を製造する工程を有することを特徴とする。
<< Method for Producing Vanadium Dioxide-Containing Particle Dispersion >>
The method for producing a vanadium dioxide-containing particle dispersion of the present invention includes a step of producing vanadium dioxide-containing particles by the above-described method for producing vanadium dioxide-containing particles.
 本発明の二酸化バナジウム含有粒子分散液の製造方法としては、上記水熱反応工程後の反応液をそのまま用いて二酸化バナジウム含有粒子分散液としても良いし、上記水熱反応工程後に得られた二酸化バナジウム含有粒子を分散媒に分散させる工程を更に有するものとしても良い。 As a method for producing the vanadium dioxide-containing particle dispersion of the present invention, the reaction liquid after the hydrothermal reaction step may be used as it is to obtain a vanadium dioxide-containing particle dispersion, or the vanadium dioxide obtained after the hydrothermal reaction step. A step of dispersing the contained particles in a dispersion medium may be further included.
 分散媒としては、特に制限されず、例えばアルコールのような有機溶媒、又は水のような無機性の溶媒を用いることができる。また、分散媒として水を用いる場合、分散媒は水のみからなるものであっても良いし、例えば水に加えて0.1~10質量%(分散液中)程度の有機溶媒、例えばメタノール、エタノール、イソプロパノール、ブタノール等のアルコール、アセトン等のケトン類等を含んでも良い。また、分散媒としては、リン酸緩衝液、酢酸緩衝液等の緩衝液を用いることもできる。 The dispersion medium is not particularly limited, and an organic solvent such as alcohol or an inorganic solvent such as water can be used. When water is used as the dispersion medium, the dispersion medium may be composed of water alone, for example, in addition to water, an organic solvent of about 0.1 to 10% by mass (in the dispersion), such as methanol, Alcohols such as ethanol, isopropanol and butanol, and ketones such as acetone may also be included. Moreover, as a dispersion medium, buffer solutions, such as a phosphate buffer and an acetate buffer, can also be used.
 二酸化バナジウム含有粒子分散液には、例えば、塩酸、硫酸、硝酸、リン酸、水酸化アンモニウム、アンモニア等の有機又は無機の酸又はアルカリ等のpH調整剤を含有させるものとしても良く、これにより所望のpHに調整しても良い。なお、二酸化バナジウム含有粒子分散液中での二酸化バナジウム含有粒子の凝集が抑制されるという観点から、pHが4~7であることが好ましい。 The vanadium dioxide-containing particle dispersion may contain, for example, an organic or inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, ammonium hydroxide, ammonia, or a pH adjuster such as alkali. You may adjust to pH of this. In view of suppressing aggregation of vanadium dioxide-containing particles in the vanadium dioxide-containing particle dispersion, the pH is preferably 4 to 7.
 例えば、上記のようにして製造した二酸化バナジウム含有粒子分散液を基材上に塗布することで、フィルムを製造することが可能である。 For example, a film can be produced by applying a vanadium dioxide-containing particle dispersion produced as described above onto a substrate.
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
《二酸化バナジウム含有粒子101の調製》
 60gの10質量%過酸化水素水(和光純薬工業(株))(溶媒)に、原料として1.80gの五酸化バナジウム(V、和光純薬工業(株)製、特級)を添加し、これを4時間撹拌して澄んだ赤茶色のゾルを得た。得られたゾルに、還元剤として5質量%のヒドラジン一水和物(N・HO、和光純薬工業(株)製、特級)水溶液を、酸化バナジウム(V)に対するモル比が1.2となるようにゆっくり滴下し、反応液を調製した。
<< Preparation of vanadium dioxide-containing particles 101 >>
1.80 g of vanadium pentoxide (V 2 O 5 , manufactured by Wako Pure Chemical Industries, Ltd., special grade) as a raw material in 60 g of 10 mass% hydrogen peroxide water (Wako Pure Chemical Industries, Ltd.) (solvent) And stirred for 4 hours to obtain a clear reddish brown sol. In the obtained sol, an aqueous solution of 5% by mass of hydrazine monohydrate (N 2 H 4 .H 2 O, manufactured by Wako Pure Chemical Industries, Ltd., special grade) as a reducing agent was added in a molar ratio with respect to vanadium oxide (V). Was slowly added dropwise to give a reaction solution of 1.2.
 調製した反応液を、市販の水熱反応処理用オートクレーブ(オーエムラボテック(株)製、MMJ-100)に入れ、昇温速度を5.8℃/minに設定し、25℃(常温)から270℃(水熱反応温度)まで昇温した。昇温後、270℃で24時間水熱反応させた。水熱反応後、得られた反応生成物を室温まで冷却した後に限外濾過し、水及びエタノールで洗浄した。更に、この反応生成物を、定温乾燥機を用いて60℃で10時間乾燥させた。これにより、二酸化バナジウム含有粒子101を得た。 The prepared reaction solution was put into a commercially available autoclave for hydrothermal reaction treatment (OMJ Lab Tech Co., Ltd., MMJ-100), the heating rate was set to 5.8 ° C./min, and the temperature was increased from 25 ° C. (normal temperature) to 270 ° C. The temperature was raised to ° C (hydrothermal reaction temperature). After the temperature increase, a hydrothermal reaction was performed at 270 ° C. for 24 hours. After the hydrothermal reaction, the obtained reaction product was cooled to room temperature, ultrafiltered, and washed with water and ethanol. Furthermore, this reaction product was dried at 60 ° C. for 10 hours using a constant temperature dryer. Thereby, vanadium dioxide containing particles 101 were obtained.
《二酸化バナジウム含有粒子102の調製》
 上記二酸化バナジウム含有粒子101の調製において、昇温速度を10.0℃/minに設定した以外は同様にして、二酸化バナジウム含有粒子102を調製した。
<< Preparation of vanadium dioxide-containing particles 102 >>
In the preparation of the vanadium dioxide-containing particles 101, vanadium dioxide-containing particles 102 were prepared in the same manner except that the temperature rising rate was set to 10.0 ° C./min.
《二酸化バナジウム含有粒子103の調製》
 上記二酸化バナジウム含有粒子101の調製において、昇温速度を15.0℃/minに設定した以外は同様にして、二酸化バナジウム含有粒子103を調製した。
<< Preparation of vanadium dioxide-containing particles 103 >>
In the preparation of the vanadium dioxide-containing particles 101, vanadium dioxide-containing particles 103 were prepared in the same manner except that the temperature rising rate was set to 15.0 ° C./min.
《二酸化バナジウム含有粒子104の調製》
 上記二酸化バナジウム含有粒子101の調製において、還元剤として、5質量%のヒドラジン一水和物水溶液の代わりに5質量%のシュウ酸((COOH)、和光純薬工業(株)製、特級)水溶液を用いた以外は同様にして、二酸化バナジウム含有粒子104を調製した。
<< Preparation of vanadium dioxide-containing particles 104 >>
In the preparation of the vanadium dioxide-containing particles 101, 5% by mass of oxalic acid ((COOH) 2 , manufactured by Wako Pure Chemical Industries, Ltd., special grade) was used as the reducing agent instead of the 5% by mass hydrazine monohydrate aqueous solution. Vanadium dioxide-containing particles 104 were prepared in the same manner except that the aqueous solution was used.
《二酸化バナジウム含有粒子105の調製》
 純水60gに、バナジン酸アンモニウム(NHVO、Strem Chemical社製、99.995%)2.6gを混合し、更に、還元剤として5質量%のヒドラジン一水和物(N・HO、和光純薬工業(株)製、特級)水溶液を、バナジン酸アンモニウムに対するモル比が1.0となるようにゆっくり滴下し、反応液を調製した。
<< Preparation of vanadium dioxide-containing particles 105 >>
2.6 g of ammonium vanadate (NH 4 VO 3 , manufactured by Strem Chemical Co., 99.995%) is mixed with 60 g of pure water, and further 5% by mass of hydrazine monohydrate (N 2 H 4 as a reducing agent). · H 2 O, manufactured by Wako Pure Chemical Industries, Ltd., special grade) to the aqueous solution, the molar ratio of ammonium vanadate 1.0 so as slowly added dropwise, to prepare a reaction solution.
 調製した反応液を、市販の水熱反応処理用オートクレーブ(オーエムラボテック(株)製、MMJ-100)に入れ、昇温速度を10.0℃/minに設定し、25℃(常温)から270℃(水熱反応温度)まで昇温した。昇温後、270℃で24時間水熱反応させた。水熱反応後、得られた反応生成物を室温まで冷却した後に限外濾過し、水及びエタノールで洗浄した。更に、この反応生成物を、定温乾燥機を用いて60℃で10時間乾燥させた。これにより、二酸化バナジウム含有粒子105を得た。 The prepared reaction liquid was put into a commercially available autoclave for hydrothermal reaction treatment (OMJ Lab Tech Co., Ltd., MMJ-100), the temperature rising rate was set to 10.0 ° C./min, and the temperature was increased from 25 ° C. (normal temperature) to 270. The temperature was raised to ° C (hydrothermal reaction temperature). After the temperature increase, a hydrothermal reaction was performed at 270 ° C. for 24 hours. After the hydrothermal reaction, the obtained reaction product was cooled to room temperature, ultrafiltered, and washed with water and ethanol. Furthermore, this reaction product was dried at 60 ° C. for 10 hours using a constant temperature dryer. Thereby, vanadium dioxide containing particles 105 were obtained.
《二酸化バナジウム含有粒子106の調製》
 上記二酸化バナジウム含有粒子102の調製において、水熱反応させる時間を10時間に変更した以外は同様にして、二酸化バナジウム含有粒子106を調製した。
<< Preparation of vanadium dioxide-containing particles 106 >>
In the preparation of the vanadium dioxide-containing particles 102, vanadium dioxide-containing particles 106 were prepared in the same manner except that the hydrothermal reaction time was changed to 10 hours.
《二酸化バナジウム含有粒子107の調製》
 上記二酸化バナジウム含有粒子102の調製において、水熱反応温度である270℃に到達する前であって、反応液が150℃に到達した時に昇温を停止し、150℃で2.0時間保持した後、再び10.0℃/minの昇温速度で270℃まで昇温させた以外は同様にして、二酸化バナジウム含有粒子107を調製した。
<< Preparation of vanadium dioxide-containing particles 107 >>
In the preparation of the vanadium dioxide-containing particles 102, before reaching the hydrothermal reaction temperature of 270 ° C., the temperature rise was stopped when the reaction solution reached 150 ° C. and held at 150 ° C. for 2.0 hours. Thereafter, vanadium dioxide-containing particles 107 were prepared in the same manner except that the temperature was increased again to 270 ° C. at a temperature increase rate of 10.0 ° C./min.
《二酸化バナジウム含有粒子108の調製》
 上記二酸化バナジウム含有粒子101の調製において、昇温速度を2.2℃/minに設定した以外は同様にして、二酸化バナジウム含有粒子108を調製した。
<< Preparation of Vanadium Dioxide-Containing Particles 108 >>
In the preparation of the vanadium dioxide-containing particles 101, vanadium dioxide-containing particles 108 were prepared in the same manner except that the temperature rising rate was set to 2.2 ° C./min.
《二酸化バナジウム含有粒子109の調製》
 上記二酸化バナジウム含有粒子101の調製において、昇温速度を3.5℃/minに設定した以外は同様にして、二酸化バナジウム含有粒子109を調製した。
<< Preparation of Vanadium Dioxide-Containing Particles 109 >>
In the preparation of the vanadium dioxide-containing particles 101, vanadium dioxide-containing particles 109 were prepared in the same manner except that the temperature rising rate was set to 3.5 ° C./min.
《二酸化バナジウム含有粒子110の調製》
 上記二酸化バナジウム含有粒子102の調製において、水熱反応温度である270℃に到達する前であって、反応液が80℃に到達した時に昇温を停止し、80℃で2.0時間保持した後、再び10.0℃/minの昇温速度で270℃まで昇温させた以外は同様にして、二酸化バナジウム含有粒子110を調製した。
<< Preparation of vanadium dioxide-containing particles 110 >>
In the preparation of the vanadium dioxide-containing particles 102, before reaching the hydrothermal reaction temperature of 270 ° C., the temperature rise was stopped when the reaction solution reached 80 ° C. and held at 80 ° C. for 2.0 hours. Thereafter, vanadium dioxide-containing particles 110 were prepared in the same manner except that the temperature was increased again to 270 ° C. at a temperature increase rate of 10.0 ° C./min.
《二酸化バナジウム含有粒子111の調製》
 上記二酸化バナジウム含有粒子102の調製において、水熱反応温度である270℃に到達する前であって、反応液が100℃に到達した時に昇温を停止し、100℃で2.0時間保持した後、再び10.0℃/minの昇温速度で270℃まで昇温させた以外は同様にして、二酸化バナジウム含有粒子111を調製した。
<< Preparation of Vanadium Dioxide-Containing Particles 111 >>
In the preparation of the vanadium dioxide-containing particles 102, before reaching the hydrothermal reaction temperature of 270 ° C., the temperature rise was stopped when the reaction solution reached 100 ° C. and held at 100 ° C. for 2.0 hours. Thereafter, vanadium dioxide-containing particles 111 were prepared in the same manner except that the temperature was increased again to 270 ° C. at a temperature increase rate of 10.0 ° C./min.
《二酸化バナジウム含有粒子112の調製》
 上記二酸化バナジウム含有粒子102の調製において、水熱反応温度である270℃に到達する前であって、反応液が200℃に到達した時に昇温を停止し、200℃で2.0時間保持した後、再び10.0℃/minの昇温速度で270℃まで昇温させた以外は同様にして、二酸化バナジウム含有粒子112を調製した。
<< Preparation of vanadium dioxide-containing particles 112 >>
In the preparation of the vanadium dioxide-containing particles 102, before reaching the hydrothermal reaction temperature of 270 ° C., the temperature rise was stopped when the reaction solution reached 200 ° C. and held at 200 ° C. for 2.0 hours. Thereafter, vanadium dioxide-containing particles 112 were prepared in the same manner except that the temperature was increased again to 270 ° C. at a temperature increase rate of 10.0 ° C./min.
《二酸化バナジウム含有粒子113の調製》
 上記二酸化バナジウム含有粒子102の調製において、水熱反応温度である270℃に到達する前であって、反応液が220℃に到達した時に昇温を停止し、220℃で2.0時間保持した後、再び10.0℃/minの昇温速度で270℃まで昇温させた以外は同様にして、二酸化バナジウム含有粒子113を調製した。
<< Preparation of vanadium dioxide-containing particles 113 >>
In the preparation of the vanadium dioxide-containing particles 102, before reaching the hydrothermal reaction temperature of 270 ° C., the temperature rise was stopped when the reaction solution reached 220 ° C. and held at 220 ° C. for 2.0 hours. Thereafter, vanadium dioxide-containing particles 113 were prepared in the same manner except that the temperature was increased again to 270 ° C. at a temperature increase rate of 10.0 ° C./min.
《二酸化バナジウム含有粒子114の調製》
 上記二酸化バナジウム含有粒子102の調製において、水熱反応温度である270℃に到達する前であって、反応液が150℃に到達した時に昇温を停止し、150℃で0.3時間保持した後、再び10.0℃/minの昇温速度で270℃まで昇温させた以外は同様にして、二酸化バナジウム含有粒子114を調製した。
<< Preparation of vanadium dioxide-containing particles 114 >>
In the preparation of the vanadium dioxide-containing particles 102, before reaching the hydrothermal reaction temperature of 270 ° C., the temperature rise was stopped when the reaction solution reached 150 ° C. and held at 150 ° C. for 0.3 hours. Thereafter, vanadium dioxide-containing particles 114 were prepared in the same manner except that the temperature was increased again to 270 ° C. at a temperature increase rate of 10.0 ° C./min.
《二酸化バナジウム含有粒子115の調製》
 上記二酸化バナジウム含有粒子102の調製において、水熱反応温度である270℃に到達する前であって、反応液が150℃に到達した時に昇温を停止し、150℃で0.5時間保持した後、再び10.0℃/minの昇温速度で270℃まで昇温させた以外は同様にして、二酸化バナジウム含有粒子115を調製した。
<< Preparation of vanadium dioxide-containing particles 115 >>
In the preparation of the vanadium dioxide-containing particles 102, before reaching the hydrothermal reaction temperature of 270 ° C., the temperature rise was stopped when the reaction solution reached 150 ° C. and held at 150 ° C. for 0.5 hour. Thereafter, vanadium dioxide-containing particles 115 were prepared in the same manner except that the temperature was raised again to 270 ° C. at a temperature raising rate of 10.0 ° C./min.
《二酸化バナジウム含有粒子116の調製》
 上記二酸化バナジウム含有粒子102の調製において、水熱反応温度である270℃に到達する前であって、反応液が150℃に到達した時に昇温を停止し、150℃で5.0時間保持した後、再び10.0℃/minの昇温速度で270℃まで昇温させた以外は同様にして、二酸化バナジウム含有粒子116を調製した。
<< Preparation of Vanadium Dioxide-Containing Particles 116 >>
In the preparation of the vanadium dioxide-containing particles 102, before reaching the hydrothermal reaction temperature of 270 ° C., the temperature rise was stopped when the reaction solution reached 150 ° C. and held at 150 ° C. for 5.0 hours. Thereafter, vanadium dioxide-containing particles 116 were prepared in the same manner except that the temperature was increased again to 270 ° C. at a temperature increase rate of 10.0 ° C./min.
《二酸化バナジウム含有粒子117の調製》
 上記二酸化バナジウム含有粒子102の調製において、水熱反応温度である270℃に到達する前であって、反応液が150℃に到達した時に昇温を停止し、150℃で6.0時間保持した後、再び10.0℃/minの昇温速度で270℃まで昇温させた以外は同様にして、二酸化バナジウム含有粒子117を調製した。
<< Preparation of vanadium dioxide-containing particles 117 >>
In the preparation of the vanadium dioxide-containing particles 102, before reaching the hydrothermal reaction temperature of 270 ° C., the temperature rise was stopped when the reaction solution reached 150 ° C. and held at 150 ° C. for 6.0 hours. Thereafter, vanadium dioxide-containing particles 117 were prepared in the same manner except that the temperature was increased again to 270 ° C. at a temperature increase rate of 10.0 ° C./min.
《二酸化バナジウム含有粒子101~117の評価》
 上記のようにして調製した二酸化バナジウム含有粒子101~117について、以下の評価を行った。その評価結果を表1に示す。
<< Evaluation of vanadium dioxide-containing particles 101-117 >>
The vanadium dioxide-containing particles 101 to 117 prepared as described above were evaluated as follows. The evaluation results are shown in Table 1.
(1)平均粒径の測定
 二酸化バナジウム含有粒子の平均粒径及びCV値は、得られた粒子を用いて走査型電子顕微鏡(FE-SEM)により評価した。
 各粒子の粒径は、いわゆる面積円相当径とし、SEM写真において各粒子の面積を測定し、同一の面積を有する円の直径を各粒子の粒径とした。また、SEM写真において、寸法及び形状が最も普遍的な粒子10個を選定し、当該粒子10個の平均粒径及び変動係数(CV値)を算出した。
(1) Measurement of average particle diameter The average particle diameter and CV value of vanadium dioxide-containing particles were evaluated by a scanning electron microscope (FE-SEM) using the obtained particles.
The particle diameter of each particle was a so-called area circle equivalent diameter, the area of each particle was measured in an SEM photograph, and the diameter of a circle having the same area was defined as the particle diameter of each particle. Further, in the SEM photograph, 10 particles having the most universal size and shape were selected, and the average particle size and coefficient of variation (CV value) of the 10 particles were calculated.
(2)サーモクロミック性評価
 固形分が0.0001質量%となるように二酸化バナジウム含有粒子に純水を加え、超音波分散機(エスエムティー社製 UH-300)で5分間の超音波分散処理を施して再分散させ、測定試料とした。試料を市販の栓付石英セル(2面透光型45mm×12.5mm×10mm)内に入れ、調温可能な分光光度計(日本分光社製V-670型、190-2500nm)により、25℃及び80℃における波長1300nmでの試料の光透過率を測定した。25℃における波長1300nmでの光透過率から、80℃における波長1300nmでの光透過率を引いて差分を算出し、評価した。なお、差分が大きいほどサーモクロミック性に優れることを示す。
(2) Evaluation of thermochromic properties Pure water is added to vanadium dioxide-containing particles so that the solid content is 0.0001% by mass, and ultrasonic dispersion treatment is performed for 5 minutes with an ultrasonic disperser (UH-300 manufactured by SMT). And redispersed to prepare a measurement sample. The sample was placed in a commercially available quartz cell with a plug (double-sided translucent type 45 mm × 12.5 mm × 10 mm), and a spectrophotometer (V-670, manufactured by JASCO Corporation, 190-2500 nm) capable of adjusting the temperature was 25 The light transmittance of the sample at a wavelength of 1300 nm at 80 ° C. and 80 ° C. was measured. The difference was calculated and evaluated by subtracting the light transmittance at a wavelength of 1300 nm at 80 ° C. from the light transmittance at a wavelength of 1300 nm at 25 ° C. In addition, it shows that it is excellent in thermochromic property, so that a difference is large.
(3)ヘイズ測定
 作製した二酸化バナジウム含有粒子を用いて、粒子濃度が5質量%となるように純水を加え、二酸化バナジウム含有粒子分散液を調製した。20gの二酸化バナジウム含有粒子分散液を、90gの10質量%ポリビニルアルコール水溶液と混合した(二酸化バナジウム含有粒子の含有量が、形成される層の固形分中10質量%となるようにした。)。ポリエチレンテレフタレートフィルム(厚さ50μm)上に、調製した混合液を乾燥層厚5μmとなるようにワイヤーバーで塗布して層を形成し、60℃で24時間乾燥して測定用フィルムとした。
 作製した測定用フィルムを用いて、日本電色工業(株)製 ヘーズメーター NDH 7000を用いてヘイズ値の測定を行った。ヘイズ値は小さいほど透明フィルムとして良好であることを示す。
(3) Haze measurement Using the produced vanadium dioxide-containing particles, pure water was added so that the particle concentration was 5% by mass to prepare a vanadium dioxide-containing particle dispersion. 20 g of the vanadium dioxide-containing particle dispersion was mixed with 90 g of a 10% by mass polyvinyl alcohol aqueous solution (the content of vanadium dioxide-containing particles was 10% by mass in the solid content of the formed layer). On the polyethylene terephthalate film (thickness 50 μm), the prepared mixed solution was applied with a wire bar so as to have a dry layer thickness of 5 μm to form a layer, and dried at 60 ° C. for 24 hours to obtain a measurement film.
The haze value was measured using the Nippon Denshoku Industries Co., Ltd. haze meter NDH7000 using the produced film for a measurement. A smaller haze value indicates a better transparent film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(4)まとめ
 表1に示すように、本発明に係る二酸化バナジウム含有粒子は、比較例の二酸化バナジウム含有粒子に比べて、平均粒径及びCV値が小さいことが分かる。したがって、本発明の二酸化バナジウム含有粒子の製造方法によれば、平均粒径が小さく、粒径のばらつきが小さい二酸化バナジウム含有粒子を製造することができるといえる。
 更に、本発明に係る二酸化バナジウム含有粒子は、比較例の二酸化バナジウム含有粒子よりも、サーモクロミック性及びヘイズ値に優れていることが分かる。
(4) Summary As shown in Table 1, it can be seen that the vanadium dioxide-containing particles according to the present invention have a smaller average particle size and CV value than the vanadium dioxide-containing particles of the comparative example. Therefore, according to the method for producing vanadium dioxide-containing particles of the present invention, it can be said that vanadium dioxide-containing particles having a small average particle size and a small variation in particle size can be produced.
Furthermore, it turns out that the vanadium dioxide containing particle | grains which concern on this invention are excellent in thermochromic property and a haze value rather than the vanadium dioxide containing particle | grains of a comparative example.
 以上のように、本発明は、平均粒径が小さく、粒径のばらつきが小さい二酸化バナジウム含有粒子の製造方法、及び当該製造方法を用いた二酸化バナジウム含有粒子分散液の製造方法を提供することに適している。 As described above, the present invention provides a method for producing vanadium dioxide-containing particles having a small average particle size and small variation in particle size, and a method for producing a vanadium dioxide-containing particle dispersion using the production method. Is suitable.

Claims (5)

  1.  サーモクロミック性を有する二酸化バナジウムを含有する二酸化バナジウム含有粒子の製造方法であって、
     少なくとも、水と、バナジウム(V)を含有する原料とを混合して反応液を調製する工程と、
     前記反応液を5.8~15.0℃/minの範囲内の昇温速度で常温から水熱反応温度まで昇温させる工程と、
     前記水熱反応温度に到達した前記反応液を水熱反応させる工程と、を有することを特徴とする二酸化バナジウム含有粒子の製造方法。
    A method for producing vanadium dioxide-containing particles containing vanadium dioxide having thermochromic properties,
    A step of mixing at least water and a raw material containing vanadium (V) to prepare a reaction solution;
    Raising the temperature of the reaction solution from room temperature to a hydrothermal reaction temperature at a rate of temperature rise in the range of 5.8 to 15.0 ° C./min;
    And a step of hydrothermally reacting the reaction solution that has reached the hydrothermal reaction temperature. A method for producing vanadium dioxide-containing particles, comprising:
  2.  前記水熱反応温度が200~350℃の範囲内であることを特徴とする請求項1に記載の二酸化バナジウム含有粒子の製造方法。 The method for producing vanadium dioxide-containing particles according to claim 1, wherein the hydrothermal reaction temperature is in the range of 200 to 350 ° C.
  3.  前記水熱反応させる工程において、前記反応液を0.1~24時間水熱反応させることを特徴とする請求項1又は請求項2に記載の二酸化バナジウム含有粒子の製造方法。 The method for producing vanadium dioxide-containing particles according to claim 1 or 2, wherein, in the hydrothermal reaction step, the reaction solution is hydrothermally reacted for 0.1 to 24 hours.
  4.  前記昇温させる工程において、前記反応液が前記水熱反応温度に到達する前であって、前記反応液が100~200℃の範囲内のいずれかの温度に到達した時に昇温を停止し、当該温度を0.5~5時間保持することを特徴とする請求項1から請求項3までのいずれか一項に記載の二酸化バナジウム含有粒子の製造方法。 In the step of raising the temperature, before the reaction solution reaches the hydrothermal reaction temperature, the temperature rise is stopped when the reaction solution reaches any temperature within the range of 100 to 200 ° C., The method for producing vanadium dioxide-containing particles according to any one of claims 1 to 3, wherein the temperature is maintained for 0.5 to 5 hours.
  5.  請求項1から請求項4までのいずれか一項に記載の二酸化バナジウム含有粒子の製造方法により二酸化バナジウム含有粒子を製造する工程を有することを特徴とする二酸化バナジウム含有粒子分散液の製造方法。 A method for producing a vanadium dioxide-containing particle dispersion, comprising a step of producing vanadium dioxide-containing particles by the method for producing vanadium dioxide-containing particles according to any one of claims 1 to 4.
PCT/JP2016/080571 2015-11-18 2016-10-14 Process for producing particles comprising vanadium dioxide, and process for producing dispersion of particles comprising vanadium dioxide WO2017086068A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017551777A JPWO2017086068A1 (en) 2015-11-18 2016-10-14 Method for producing vanadium dioxide-containing particles and method for producing vanadium dioxide-containing particle dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-225262 2015-11-18
JP2015225262 2015-11-18

Publications (1)

Publication Number Publication Date
WO2017086068A1 true WO2017086068A1 (en) 2017-05-26

Family

ID=58718772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080571 WO2017086068A1 (en) 2015-11-18 2016-10-14 Process for producing particles comprising vanadium dioxide, and process for producing dispersion of particles comprising vanadium dioxide

Country Status (2)

Country Link
JP (1) JPWO2017086068A1 (en)
WO (1) WO2017086068A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006624A (en) * 2017-06-23 2019-01-17 国立研究開発法人産業技術総合研究所 Nanoparticle of fluorine-doped titanium oxide vanadium and method for producing the same, and dispersion liquid, coating, transparent resin molding and laminate containing the nanoparticle
JP2020138871A (en) * 2019-02-26 2020-09-03 国立研究開発法人産業技術総合研究所 Method for producing vanadium dioxide particles

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229386A (en) * 1995-02-28 1996-09-10 Mazda Motor Corp Hydrocarbon adsorbent, its production and exhaust gas purifying catalyst
JPH09298324A (en) * 1996-03-06 1997-11-18 Seiko Epson Corp Piezoelectric thin film element, manufacture thereof, and ink jet recorder head using the same
JPH11263623A (en) * 1998-03-18 1999-09-28 Nittetsu Mining Co Ltd Production of magnetic powder
JP2001180930A (en) * 1999-12-28 2001-07-03 Ykk Corp Laminar boehmite particle and its manufacturing method
JP2010069474A (en) * 2008-08-22 2010-04-02 National Institute Of Advanced Industrial Science & Technology Method and apparatus for synthesizing nanoparticle by circulation type supercritical hydrothermal synthesis
JP2010083708A (en) * 2008-09-30 2010-04-15 Tdk Corp Method for producing barium titanate fine particle and method for manufacturing electronic component
JP2011178825A (en) * 2010-02-26 2011-09-15 National Institute Of Advanced Industrial Science & Technology Single crystal fine particle, method for producing the same, and application thereof
JP2014040331A (en) * 2012-08-21 2014-03-06 Fujifilm Corp Method for manufacturing zinc tin oxide
WO2016158432A1 (en) * 2015-03-31 2016-10-06 コニカミノルタ株式会社 Vanadium-dioxide-containing particles having thermochromic property and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229386A (en) * 1995-02-28 1996-09-10 Mazda Motor Corp Hydrocarbon adsorbent, its production and exhaust gas purifying catalyst
JPH09298324A (en) * 1996-03-06 1997-11-18 Seiko Epson Corp Piezoelectric thin film element, manufacture thereof, and ink jet recorder head using the same
JPH11263623A (en) * 1998-03-18 1999-09-28 Nittetsu Mining Co Ltd Production of magnetic powder
JP2001180930A (en) * 1999-12-28 2001-07-03 Ykk Corp Laminar boehmite particle and its manufacturing method
JP2010069474A (en) * 2008-08-22 2010-04-02 National Institute Of Advanced Industrial Science & Technology Method and apparatus for synthesizing nanoparticle by circulation type supercritical hydrothermal synthesis
JP2010083708A (en) * 2008-09-30 2010-04-15 Tdk Corp Method for producing barium titanate fine particle and method for manufacturing electronic component
JP2011178825A (en) * 2010-02-26 2011-09-15 National Institute Of Advanced Industrial Science & Technology Single crystal fine particle, method for producing the same, and application thereof
JP2014040331A (en) * 2012-08-21 2014-03-06 Fujifilm Corp Method for manufacturing zinc tin oxide
WO2016158432A1 (en) * 2015-03-31 2016-10-06 コニカミノルタ株式会社 Vanadium-dioxide-containing particles having thermochromic property and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006624A (en) * 2017-06-23 2019-01-17 国立研究開発法人産業技術総合研究所 Nanoparticle of fluorine-doped titanium oxide vanadium and method for producing the same, and dispersion liquid, coating, transparent resin molding and laminate containing the nanoparticle
JP2020138871A (en) * 2019-02-26 2020-09-03 国立研究開発法人産業技術総合研究所 Method for producing vanadium dioxide particles
JP7145506B2 (en) 2019-02-26 2022-10-03 国立研究開発法人産業技術総合研究所 Method for producing vanadium dioxide particles

Also Published As

Publication number Publication date
JPWO2017086068A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP5476581B2 (en) Thermochromic fine particles, dispersion thereof, production method thereof, and light control paint, light control film and light control ink
JP5548479B2 (en) Method for producing single crystal fine particles
JP5625172B2 (en) Vanadium dioxide fine particles, production method thereof, and thermochromic film
JP5598857B2 (en) Fine particles, process for producing the same, and paints, films and inks containing such fine particles
Chung et al. Synthesis of minimal-size ZnO nanoparticles through sol–gel method: Taguchi design optimisation
JP6004418B2 (en) VO2-containing composition and method for producing VO2-dispersed resin layer
JP2014198645A (en) Production method of composite vanadium oxide particle
JP2012116737A (en) Method of producing a-phase vanadium dioxide (vo2) particle
JP2013071859A (en) Method for producing vanadium dioxide particle
WO2017086068A1 (en) Process for producing particles comprising vanadium dioxide, and process for producing dispersion of particles comprising vanadium dioxide
WO2016152865A1 (en) Method for producing vanadium dioxide-containing particles
WO2016158432A1 (en) Vanadium-dioxide-containing particles having thermochromic property and manufacturing method thereof
JP2017186447A (en) Producing method for thermochromic vanadium dioxide containing particles and producing method for thermochromic vanadium dioxide containing particle dispersion
JP6846743B2 (en) Fluorodoped titanium vanadium oxide nanoparticles and their production method, as well as dispersions, paints, transparent resin molded products and laminates containing the nanoparticles.
WO2018116762A1 (en) Zirconia sol and method for producing same
WO2016158894A1 (en) Method for producing vanadium dioxide-containing particles, vanadium dioxide-containing particles, method for preparing dispersion liquid, dispersion liquid and optical film
JP6520698B2 (en) Method for producing vanadium dioxide-containing particles and method for producing vanadium dioxide-containing particle dispersion
WO2020045163A1 (en) Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles
JP6520622B2 (en) Method for producing vanadium dioxide-containing particles
JP2017110144A (en) Method for producing vanadium dioxide-containing grain
KR102058140B1 (en) Method for preparing tungstene oxide hydrate nano particles
JP2018087255A (en) Production method of vanadium dioxide-containing fine particle, vanadium dioxide-containing fine particle, and fluid dispersion
JP6977723B2 (en) Production method of vanadium dioxide-containing particles and vanadium dioxide-containing particles
JP2016190938A (en) Method for producing vanadium dioxide-containing particle
JP2014080350A (en) Vanadium oxide particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551777

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866070

Country of ref document: EP

Kind code of ref document: A1