WO2017085789A1 - Digital transmitter - Google Patents

Digital transmitter Download PDF

Info

Publication number
WO2017085789A1
WO2017085789A1 PCT/JP2015/082259 JP2015082259W WO2017085789A1 WO 2017085789 A1 WO2017085789 A1 WO 2017085789A1 JP 2015082259 W JP2015082259 W JP 2015082259W WO 2017085789 A1 WO2017085789 A1 WO 2017085789A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
modulation
digital
digital modulation
Prior art date
Application number
PCT/JP2015/082259
Other languages
French (fr)
Japanese (ja)
Inventor
英之 中溝
檜枝 護重
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017551425A priority Critical patent/JP6351871B2/en
Priority to PCT/JP2015/082259 priority patent/WO2017085789A1/en
Publication of WO2017085789A1 publication Critical patent/WO2017085789A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits

Definitions

  • the present invention relates to a digital transmitter for directly transmitting a digital modulation signal generated by a digital circuit such as a modem in a high frequency band.
  • Non-Patent Document 1 discloses a digital transmitter that directly transmits a digital modulation signal generated by a digital circuit such as a modem in a high frequency band.
  • the digital modulation signal generated by the modem is directly transmitted in the high frequency band, so that an analog circuit for converting the modulation signal in the baseband frequency band to the frequency in the high frequency band is not required, and the circuit configuration is simplified.
  • the digital modulation signal generated by the modem is delta-sigma-modulated and the digital signal after delta-sigma modulation is transmitted.
  • a ⁇ modulation circuit that outputs a modulation signal is mounted.
  • Non-Patent Document 2 below discloses a circuit configuration of a ⁇ modulation circuit.
  • the digital modulation signal generated by the modem can be transmitted directly in the high frequency band.
  • the digital modulation signal generated by the modem is delta-sigma modulated, ⁇ noise is generated in the vicinity of the desired modulation signal band. ) Deteriorated. Note that this ⁇ noise interferes with communication in adjacent channels and other communication in the adjacent frequency band, and causes deterioration in communication quality.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to obtain a digital transmitter capable of reducing ⁇ noise accompanying delta-sigma modulation of a digital modulation signal and increasing a signal-to-noise ratio. Objective.
  • a digital transmitter modulates communication data to generate a digital modulation signal, and delta-sigma modulates the digital modulation signal generated by the modem and outputs a digital modulation signal after delta-sigma modulation.
  • the circuit configurations or operating conditions of the plurality of ⁇ modulation circuits are different, ⁇ noise associated with delta-sigma modulation of the digital modulation signal is reduced, and the signal-to-noise ratio is increased. There is an effect that can.
  • Embodiment 1 of this invention It is a block diagram which shows the digital transmitter by Embodiment 1 of this invention. It is a block diagram which shows the digital transmitter by Embodiment 2 of this invention. It is a block diagram which shows the digital transmitter by Embodiment 3 of this invention. It is a block diagram which shows the digital transmitter by Embodiment 4 of this invention. It is a block diagram which shows the delta-sigma modulation circuits 51 and 52 of the digital transmitter by Embodiment 4 of this invention. It is a block diagram which shows the delta-sigma modulation circuits 51 and 52 of the digital transmitter by Embodiment 5 of this invention. It is a block diagram which shows the modulation signal output circuit part 6 of the digital transmitter by Embodiment 6 of this invention.
  • FIG. 1 is a block diagram showing a digital transmitter according to Embodiment 1 of the present invention.
  • a modulation signal output circuit unit 1 is composed of a modem 11 and ⁇ modulation circuits 12 and 13, which modulate communication data to generate a digital modulation signal and delta-sigma modulate the digital modulation signal. It is.
  • the modem 11 modulates the communication data to generate a digital modulation signal, and outputs the digital modulation signal to the ⁇ modulation circuits 12 and 13.
  • the ⁇ modulation circuit 12 has a signal input terminal connected to a signal output terminal of the modem 11, and delta-sigma modulates the digital modulation signal output from the modem 11 and outputs a digital modulation signal after delta-sigma modulation. It is.
  • the ⁇ modulation circuit 13 has a signal input terminal connected to the signal output terminal of the modem 11 and has a circuit configuration different from that of the ⁇ modulation circuit 12, but the digital modulation output from the modem 11 is the same as the ⁇ modulation circuit 12.
  • the signal is delta-sigma modulated and a digitally modulated signal after delta-sigma modulation is output.
  • the high frequency unit 2 is a circuit composed of high frequency circuits 21 and 22 and a synthesis circuit 23.
  • the signal input terminal of the high frequency circuit 21 is connected to the signal output terminal of the ⁇ modulation circuit 12, and the signal power (signal level) of the digital modulation signal output from the ⁇ modulation circuit 12 is set to a desired power level (signal level).
  • the frequency of the digital modulation signal is converted from IF frequency (intermediate frequency) to RF frequency (radio frequency).
  • the high-frequency circuit 22 has a signal input terminal connected to a signal output terminal of the ⁇ modulation circuit 13, converts the signal power of the digital modulation signal output from the ⁇ modulation circuit 13 to a desired power level, and the digital modulation signal Is converted from IF frequency to RF frequency.
  • the high frequency circuits 21 and 22 convert the signal power of the digital modulation signal and the frequency, but either one of the signal power or the frequency conversion is converted. You can do it.
  • the high-frequency circuits 21 and 22 for example, an amplification circuit that inputs a 1-bit digital modulation signal and performs a switching operation, and a variable gain circuit that adjusts the signal power of the digital modulation signal to a desired power level
  • the circuit is composed of element circuits such as a frequency conversion circuit that converts the frequency of the digital modulation signal from IF frequency to RF frequency, and a filter circuit that suppresses unnecessary waves contained in the digital modulation signal.
  • another element circuit may be included.
  • the synthesizing circuit 23 has a first signal input terminal connected to a signal output terminal of the high frequency circuit 21 and a second signal input terminal connected to a signal output terminal of the high frequency circuit 22. The digital modulation signal and the digital modulation signal converted by the high frequency circuit 22 are combined to output a combined signal of the two digital modulation signals.
  • the modem 11 of the modulation signal output circuit unit 1 receives communication data including various kinds of information from the outside, the modem 11 modulates the communication data to generate a digital modulation signal, and the digital modulation signal is converted into the ⁇ modulation circuit 12. , 13 are output.
  • the digital modulation signal generated by the modem 11 for example, a digital modulation signal in which an amplitude value at each time of an analog modulation signal output from a general modem is represented by multiple bits can be considered.
  • the present invention is not limited to a multi-bit digital modulation signal.
  • the ⁇ modulation circuit 12 When receiving the digital modulation signal from the modem 11, the ⁇ modulation circuit 12 performs delta sigma modulation on the digital modulation signal and outputs the digital modulation signal after the delta sigma modulation to the high frequency circuit 21.
  • the ⁇ modulation circuit 13 When receiving the digital modulation signal from the modem 11, the ⁇ modulation circuit 13 performs delta sigma modulation on the digital modulation signal and outputs the digital modulation signal after the delta sigma modulation to the high frequency circuit 22.
  • the digital modulation signal after delta-sigma modulation output from the ⁇ modulation circuits 12 and 13 is a 1-bit or multi-bit digital modulation signal suitable for signal processing of the high-frequency circuits 21 and 22.
  • the characteristic of ⁇ noise generated when the ⁇ modulation circuits 12 and 13 perform delta-sigma modulation depends on the circuit configuration of the ⁇ modulation circuits 12 and 13. In the first embodiment, it is assumed that the circuit configurations of the ⁇ modulation circuit 12 and the ⁇ modulation circuit 13 are different. If the circuit configurations of the ⁇ modulation circuit 12 and the ⁇ modulation circuit 13 are different, the delta sigma is used. Since the modulation processing sequence is different, the characteristics of ⁇ noise are different. Thereby, the ⁇ noise component generated from the ⁇ modulation circuit 12 and the ⁇ noise component generated from the ⁇ modulation circuit 13 are incoherent.
  • the ⁇ modulation circuits 12 and 13 perform delta-sigma modulation on the same digital modulation signal output from the modem 11, the desired signal component of the digital modulation signal output from the ⁇ modulation circuit 12 and the ⁇ modulation are used.
  • the desired signal component of the digital modulation signal output from the circuit 13 is coherent.
  • Specific circuit configurations of the ⁇ modulation circuits 12 and 13 include a ⁇ modulation circuit in which the number of stages of a built-in ⁇ modulator described in a fourth embodiment described later is one, or a built-in circuit described in a fifth embodiment described later.
  • a ⁇ modulator circuit having two stages of ⁇ modulators is conceivable. For example, if the number of stages of the ⁇ modulator included in the ⁇ modulation circuit 12 is one and the number of stages of the ⁇ modulator included in the ⁇ modulation circuit 13 is 2, ⁇ generated from the ⁇ modulation circuit 12 The noise component and the ⁇ noise component generated from the ⁇ modulation circuit 13 become incoherent.
  • the high frequency circuit 21 When the high frequency circuit 21 receives the digital modulation signal after the delta sigma modulation from the ⁇ modulation circuit 12, the high frequency circuit 21 converts the signal power of the digital modulation signal into a desired power level and converts the frequency of the digital modulation signal from the IF frequency to the RF frequency. The frequency is converted to a frequency, and the converted digital modulation signal is output to the synthesis circuit 23.
  • the high frequency circuit 22 receives the digital modulation signal after delta-sigma modulation from the ⁇ modulation circuit 13
  • the high frequency circuit 22 converts the signal power of the digital modulation signal to a desired power level, and changes the frequency of the digital modulation signal from the IF frequency to the RF frequency.
  • the frequency is converted to a frequency, and the converted digital modulation signal is output to the synthesis circuit 23.
  • the converted digital modulation signal output from the high-frequency circuit 21 and the converted digital modulation signal output from the high-frequency circuit 22 have the same signal power and the same frequency.
  • the ⁇ noise component is incoherent, but the desired signal component of the digital modulation signal is coherent.
  • the combining circuit 23 combines the converted digital modulation signal output from the high frequency circuit 21 and the converted digital modulation signal output from the high frequency circuit 22 and outputs a combined signal of the two digital modulation signals. .
  • the desired signal components of the two digital modulation signals are coherent, the two desired signal components are voltage-added by the synthesis of the synthesis circuit 23.
  • the ⁇ noise components of the two digital modulation signals are incoherent, the ⁇ noise components of the two digital modulation signals are added by the synthesis of the synthesis circuit 23.
  • the signal-to-noise ratio which is the power ratio between the desired signal component and the ⁇ noise component in the combined signal output from the combining circuit 23, is the digital modulation signal output from each of the high frequency circuits 21 and 22.
  • the SNR of the desired signal component and the ⁇ noise component is theoretically improved by 3 dB.
  • the modem 11 that modulates communication data to generate a digital modulation signal, and the digital modulation signal generated by the modem 11 are delta-sigma modulated to produce a delta-sigma ⁇ modulation circuits 12 and 13 that output the modulated digital modulation signal, and the signal power of the digital modulation signal output from the ⁇ modulation circuits 12 and 13 is converted to a desired power level, and the frequency of the digital modulation signal is changed.
  • the high frequency circuits 21 and 22 for converting the IF frequency to the RF frequency, the digital modulation signal after the conversion by the high frequency circuit 21 and the digital modulation signal after the conversion by the high frequency circuit 22 are combined, and a combined signal of the two digital modulation signals And the circuit configuration of the ⁇ modulation circuits 12 and 13 is different. Since it is configured, by reducing the ⁇ noise associated with the delta-sigma modulation of digital modulation signals, an effect that can increase the SNR.
  • the modulation signal output circuit unit 1 includes two ⁇ modulation circuits 12 and 13 having different circuit configurations. However, the modulation signal output circuit unit 1 has a different circuit configuration.
  • the high-frequency unit 2 mounts N high-frequency circuits, and the combining circuit 23 combines the converted digital modulation signals output from the N high-frequency circuits. May be.
  • the high frequency unit 2 converts the signal power of the digital modulation signal output from the ⁇ modulation circuits 12 and 13 to a desired power level, and changes the frequency of the digital modulation signal from the IF frequency to the RF frequency.
  • the two digital modulation signals after the conversion are combined, and the digital modulation signals output from the ⁇ modulation circuits 12 and 13 are combined and then the combined signal of the two digital modulation signals. May be converted to a desired power level, and the frequency of the combined signal may be converted from the IF frequency to the RF frequency.
  • FIG. 2 is a block diagram showing a digital transmitter according to Embodiment 2 of the present invention.
  • the high frequency unit 3 is a circuit composed of a synthesis circuit 31 and a high frequency circuit 32.
  • the combining circuit 31 has a first signal input terminal connected to the signal output terminal of the ⁇ modulation circuit 12, and a second signal input terminal connected to the signal output terminal of the ⁇ modulation circuit 13.
  • the output digital modulation signal after delta sigma modulation and the digital modulation signal after delta sigma modulation output from the ⁇ modulation circuit 13 are combined, and a combined signal of the two digital modulation signals is output to the high frequency circuit 32.
  • the high frequency circuit 32 has a signal input terminal connected to a signal output terminal of the synthesis circuit 31, converts the signal power of the synthesis signal output from the synthesis circuit 31 to a desired power level, and converts the frequency of the synthesis signal to IF. Convert from frequency to RF frequency.
  • the high-frequency circuit 32 performs conversion of the signal power and frequency of the combined signal. However, any one of the conversion of signal power or frequency may be performed. Good.
  • the synthesizing circuit 31 synthesizes the digital modulation signal after the delta-sigma modulation output from the ⁇ modulation circuit 12 and the digital modulation signal after the delta-sigma modulation output from the ⁇ modulation circuit 13 to synthesize two digital modulation signals.
  • the combined signal is output.
  • the desired signal components of the two digital modulation signals are coherent, the two desired signal components are voltage-added by the synthesis of the synthesis circuit 31.
  • the synthesis of the synthesis circuit 31 causes the ⁇ noise components of the two digital modulation signals to be power addition.
  • the SNR that is the power ratio between the desired signal component and the ⁇ noise component in the combined signal output from the combining circuit 31 is equal to the desired signal component in the digital modulation signal output from each of the ⁇ modulation circuits 12 and 13 and ⁇ .
  • the theoretical improvement is 3 dB.
  • the high frequency circuit 32 When the high frequency circuit 32 receives the combined signal from the combining circuit 31, the high frequency circuit 32 converts the signal power of the combined signal into a desired power level and converts the frequency of the combined signal from the IF frequency to the RF frequency.
  • the modem 11 that modulates communication data to generate a digital modulation signal, and the digital modulation signal generated by the modem 11 are delta-sigma modulated to produce a delta-sigma ⁇ modulation circuits 12 and 13 for outputting the modulated digital modulation signal, the digital modulation signal after the delta-sigma modulation output from the ⁇ modulation circuit 12, and the digital modulation after the delta-sigma modulation output from the ⁇ modulation circuit 13 And combining the signal and outputting a combined signal of the two digital modulation signals, converting the signal power of the combined signal output from the combining circuit 31 to a desired power level, and changing the frequency of the combined signal And a high-frequency circuit 32 for converting the IF frequency to the RF frequency, and the ⁇ modulation circuits 12 and 13 have different circuit configurations.
  • the high frequency unit 3 combines the digital modulation signals output from the ⁇ modulation circuits 12 and 13 and then sets the power level and frequency of the signal power of the combined signal of the two digital modulation signals. Since conversion is performed, the number of high-frequency circuits can be reduced to one, and the circuit configuration can be simplified.
  • the modulation signal output circuit unit 1 includes two ⁇ modulation circuits 12 and 13 having different circuit configurations.
  • the modulation signal output circuit unit 1 has a different circuit configuration.
  • N number of ⁇ modulation circuits may be mounted, and the combining circuit 31 of the high-frequency unit 2 may combine the delta-sigma modulated digital modulation signals output from the N ⁇ modulation circuits.
  • Embodiment 3 the synthesis circuit 23 synthesizes the converted digital modulation signal output from the high-frequency circuit 21 and the converted digital modulation signal output from the high-frequency circuit 22 to produce two digital modulations.
  • the output of the composite signal of the signal is shown, the digital modulation signal radiated from the plurality of antennas is provided with a plurality of antennas that radiate the converted digital modulation signals output from the high-frequency circuits 21 and 22 to the space. You may make it synthesize
  • the high frequency section 4 is a circuit composed of high frequency circuits 21 and 22 and antennas 41 and 42.
  • the antenna 41 is connected to the signal output terminal of the high-frequency circuit 21 and radiates the converted digital modulation signal output from the high-frequency circuit 21 to the space.
  • the antenna 42 is connected to the signal output terminal of the high-frequency circuit 22 and radiates the converted digital modulation signal output from the high-frequency circuit 22 into space.
  • the high-frequency unit 4 When receiving the digital modulation signal after the delta-sigma modulation from the ⁇ modulation circuit 12, the high frequency circuit 21 converts the signal power of the digital modulation signal to a desired power level as well as the digital modulation signal, as in the first embodiment. The frequency of the modulation signal is converted from the IF frequency to the RF frequency, and the converted digital modulation signal is output. When receiving the digital modulation signal after the delta sigma modulation from the ⁇ modulation circuit 13, the high frequency circuit 22 converts the signal power of the digital modulation signal to a desired power level as well as the digital modulation signal, as in the first embodiment.
  • the frequency of the modulation signal is converted from the IF frequency to the RF frequency, and the converted digital modulation signal is output.
  • the converted digital modulation signal output from the high-frequency circuit 21 and the converted digital modulation signal output from the high-frequency circuit 22 have the same signal power and the same frequency.
  • the ⁇ noise component is incoherent, but the desired signal component of the digital modulation signal is coherent.
  • the antenna 41 When receiving the converted digital modulation signal from the high-frequency circuit 21, the antenna 41 radiates the digital modulation signal to space.
  • the antenna 42 receives the converted digital modulation signal from the high frequency circuit 22, the antenna 42 radiates the digital modulation signal to space.
  • the digital modulation signal radiated from the antenna 41 and the digital modulation signal radiated from the antenna 42 are combined in space.
  • the two desired signal components of the two digital modulation signals output from the high-frequency circuits 21 and 22 are coherent, the two desired signal components are voltage-added by synthesis in space.
  • the ⁇ noise components of the two digital modulation signals are incoherent, the ⁇ noise components of the two digital modulation signals are summed by combining in space.
  • the SNR which is the power ratio between the desired signal component and the ⁇ noise component in the signal synthesized in space, is the difference between the desired signal component and the ⁇ noise component in the digital modulation signal output from each of the high frequency circuits 21 and 22.
  • the theoretical improvement is 3 dB. Therefore, a receiver that is a communication target with the digital transmitter can receive a signal having a high SNR.
  • the modem 11 that modulates communication data to generate a digital modulation signal, and the digital modulation signal generated by the modem 11 are delta-sigma modulated to produce a delta-sigma ⁇ modulation circuits 12 and 13 that output the modulated digital modulation signal, and the signal power of the digital modulation signal output from the ⁇ modulation circuits 12 and 13 is converted to a desired power level, and the frequency of the digital modulation signal is changed.
  • the synthesis circuit 23 is not necessary.
  • Embodiment 4 FIG.
  • the modulation signal output circuit unit 1 is mounted with the ⁇ modulation circuits 12 and 13 having different circuit configurations.
  • the circuit configuration of the ⁇ modulation circuits 12 and 13 is provided. Therefore, the load of circuit development increases.
  • the fourth embodiment therefore, a case where a plurality of ⁇ modulation circuits having the same circuit configuration are mounted in the modulation signal output circuit section and different operating conditions are set for the plurality of ⁇ modulation circuits will be described.
  • the modulation signal output circuit unit 5 is a digital circuit including a modem 11, ⁇ modulation circuits 51 and 52, and a setting circuit 53.
  • the ⁇ modulation circuit 51 has a signal input terminal connected to the signal output terminal of the modem 11, and delta-sigma modulates the digital modulation signal output from the modem 11 and outputs a digital modulation signal after delta-sigma modulation. It is.
  • the ⁇ modulation circuit 52 is a circuit having the same circuit configuration as the ⁇ modulation circuit 51.
  • the ⁇ modulation circuit 52 has a signal input terminal connected to the signal output terminal of the modem 11, delta-sigma-modulates the digital modulation signal output from the modem 11, and outputs a digital modulation signal after delta-sigma modulation.
  • the setting circuit 53 is a circuit for setting different operating conditions for the ⁇ modulation circuits 51 and 52.
  • FIG. 5 is a block diagram showing ⁇ modulation circuits 51 and 52 of a digital transmitter according to Embodiment 4 of the present invention.
  • an initial value circuit 61 is a circuit that outputs an initial value of a digital modulation signal corresponding to the operating condition set by the setting circuit 53.
  • the setting circuit 53 sets different operating conditions for the ⁇ modulation circuits 51 and 52, the initial value output from the initial value circuit 61 of the ⁇ modulation circuit 51 and the initial value circuit 61 of the ⁇ modulation circuit 52 are It becomes a value different from the initial value to be output.
  • the PN signal generation circuit 62 is a circuit that generates a PN signal (pseudo noise signal) corresponding to the operating condition set by the setting circuit 53 and outputs the PN signal.
  • the setting circuit 53 sets different operating conditions for the ⁇ modulation circuits 51 and 52
  • the PN signal output from the PN signal generation circuit 62 of the ⁇ modulation circuit 51 and the PN signal generation circuit of the ⁇ modulation circuit 52 are set. The signal is different from the PN signal output by 62.
  • the adder 63 has a first signal input terminal connected to the signal output terminal of the modem 11, a second signal input terminal connected to the signal output terminal of the initial value circuit 61, and a third signal input terminal generating a PN signal.
  • the digital modulation signal output from the modem 11 is output from the initial value circuit 61.
  • the initial value and the pseudo noise signal output from the PN signal generation circuit 62 are added, and a digital modulation signal obtained by adding the initial value and the pseudo noise signal is output to the ⁇ modulator 64.
  • the digital noise signal output from the PN signal generation circuit 62 is added to the digital modulation signal output from the modem 11 to add the pseudo noise signal.
  • the modulation signal is output to the ⁇ modulator 64.
  • the signal input terminal of the ⁇ modulator 64 is connected to the signal output terminal of the adder 63, and the digital modulation signal output from the adder 63 is delta-sigma-modulated to output a digital modulation signal after delta-sigma modulation. It is a digital circuit.
  • the setting circuit 53 sets different operating conditions for the ⁇ modulation circuits 51 and 52.
  • the initial value circuit 61 of the ⁇ modulation circuits 51 and 52 outputs an initial value of a digital modulation signal corresponding to the operating condition to the adder 63. Since different operating conditions are set for the modulation circuits 51 and 52, the initial value output from the initial value circuit 61 of the ⁇ modulation circuit 51 is different from the initial value output from the initial value circuit 61 of the ⁇ modulation circuit 52. become.
  • any initial value may be used as long as the initial value is different, and it may be appropriately determined at the time of design.
  • the PN signal generating circuit 62 of the ⁇ modulation circuits 51 and 52 When the setting circuit 53 sets an operating condition, the PN signal generating circuit 62 of the ⁇ modulation circuits 51 and 52 generates a PN signal corresponding to the operating condition and outputs the PN signal to the adder 63. Since the circuit 53 sets different operating conditions for the ⁇ modulation circuits 51 and 52, the PN signal output from the PN signal generation circuit 62 of the ⁇ modulation circuit 51 and the PN signal generation circuit 62 of the ⁇ modulation circuit 52 output. The PN signal is different from the PN signal. In the fourth embodiment, any PN signal may be used as long as the PN signals are different, and may be appropriately determined at the time of design.
  • the adder 63 of the ⁇ modulation circuits 51 and 52 outputs the digital modulation signal output from the modem 11 from the initial value circuit 61 when the first clock of the clock group indicating the operation timing is input.
  • the initial value and the pseudo noise signal output from the PN signal generation circuit 62 are added, and a digital modulation signal obtained by adding the initial value and the pseudo noise signal is output to the ⁇ modulator 64.
  • the adder 63 of the ⁇ modulation circuits 51 and 52 receives the pseudo noise signal output from the PN signal generation circuit 62 in response to the digital modulation signal output from the modem 11. And the digital modulation signal added with the pseudo noise signal is output to the ⁇ modulator 64.
  • the ⁇ modulator 64 of the ⁇ modulation circuits 51 and 52 When receiving the digital modulation signal from the adder 63, the ⁇ modulator 64 of the ⁇ modulation circuits 51 and 52 performs delta sigma modulation on the digital modulation signal and outputs the digital modulation signal after the delta sigma modulation to the high frequency circuits 21 and 22. To do. Even if the circuit configurations of the ⁇ modulation circuits 51 and 52 are the same, if the initial value and the PN signal are different, the characteristic of ⁇ noise generated when delta-sigma modulation of the digital modulation signal output from the modem 11 is incoherent. become.
  • the desired signal component becomes coherent if the same digital modulation signal output from the modem 11 is subjected to delta sigma modulation.
  • the fourth embodiment an example is shown in which both the initial value and the PN signal are different.
  • the ⁇ noise characteristic is made incoherent and desired.
  • the signal component can be made coherent. Therefore, if the initial value output from the initial value circuit 61 of the ⁇ modulation circuit 51 and the initial value output from the initial value circuit 61 of the ⁇ modulation circuit 52 are different, the PN signal generation circuit of the ⁇ modulation circuits 51 and 52
  • the PN signals output from 62 may be the same.
  • the initial values of the ⁇ modulation circuits 51 and 52 are set.
  • the initial value output from the circuit 61 may be the same.
  • the modulation signal output circuit unit 5 is mounted with the ⁇ modulation circuits 51 and 52 having the same circuit configuration and is different from the ⁇ modulation circuits 51 and 52. Since the setting circuit 53 for setting the operating conditions is mounted, as in the first embodiment, the ⁇ noise associated with the delta-sigma modulation of the digital modulation signal can be reduced and the SNR can be increased. Compared with the case where the ⁇ modulation circuits 12 and 13 having different circuit configurations are mounted, the load required for the circuit development of the ⁇ modulation circuits 51 and 52 can be reduced.
  • Embodiment 5 the single-stage ⁇ modulation circuit in which the number of ⁇ modulators 64 included in the ⁇ modulation circuits 51 and 52 having the same circuit configuration is one is shown. However, the circuit configuration is the same.
  • the delta-sigma modulation circuits 51 and 52 may include a plurality of delta-sigma modulators having a plurality of delta-sigma modulators.
  • FIG. 6 is a block diagram showing ⁇ modulation circuits 51 and 52 of a digital transmitter according to Embodiment 5 of the present invention.
  • an initial value circuit 71 is a circuit that outputs a first initial value and a second initial value of a digital modulation signal corresponding to the operating condition set by the setting circuit 53.
  • the setting circuit 53 sets different operating conditions for the ⁇ modulation circuits 51 and 52
  • the first initial value output from the initial value circuit 71 of the ⁇ modulation circuit 51 and the initial value of the ⁇ modulation circuit 52 are set. It becomes a value different from the first initial value output from the circuit 71.
  • the second initial value output from the initial value circuit 71 of the ⁇ modulation circuit 51 is different from the second initial value output from the initial value circuit 71 of the ⁇ modulation circuit 52.
  • the PN signal generation circuit 72 generates a first PN signal and a second PN signal corresponding to the operating condition set by the setting circuit 53, and outputs the first PN signal and the second PN signal. It is. However, since the setting circuit 53 sets different operating conditions for the ⁇ modulation circuits 51 and 52, the first PN signal output from the PN signal generation circuit 72 of the ⁇ modulation circuit 51 and the PN of the ⁇ modulation circuit 52 are set. The signal is different from the first PN signal output from the signal generation circuit 72. Further, the second PN signal output from the PN signal generation circuit 72 of the ⁇ modulation circuit 51 is different from the second PN signal output from the PN signal generation circuit 72 of the ⁇ modulation circuit 52.
  • the offset generation circuit 73 is a circuit that generates an offset signal corresponding to the operating condition set by the setting circuit 53. However, since the setting circuit 53 sets different operating conditions for the ⁇ modulation circuits 51 and 52, the offset signal output from the offset generation circuit 73 of the ⁇ modulation circuit 51 and the offset generation circuit 73 of the ⁇ modulation circuit 52 It becomes a signal different from the offset signal to be output.
  • the adder 74 has a first signal input terminal connected to the signal output terminal of the modem 11, a second signal input terminal connected to the first signal output terminal of the initial value circuit 71, and a third signal input terminal
  • the digital modulation signal output from the modem 11 is A digital value obtained by adding the first initial value output from the initial value circuit 71 and the first PN signal output from the PN signal generation circuit 72 and adding the first initial value and the first PN signal.
  • the modulation signal is output to the ⁇ modulator 75.
  • the first PN signal output from the PN signal generation circuit 72 is added to the digital modulation signal output from the modem 11 to obtain the first PN signal.
  • a first adder that outputs a digital modulation signal obtained by adding to the ⁇ modulator 75.
  • the ⁇ modulator 75 has a signal input terminal connected to the signal output terminal of the adder 74, delta-sigma modulates the digital modulation signal output from the adder 74, and outputs a digital modulation signal after delta-sigma modulation. This is the first ⁇ modulator.
  • the adder 76 has a first signal input terminal connected to the signal output terminal of the ⁇ modulator 75, a second signal input terminal connected to the second signal output terminal of the initial value circuit 71, and a third signal input.
  • the terminal is connected to the second signal output terminal of the PN signal generation circuit 72, the fourth signal input terminal is connected to the offset generation circuit 73, and the first clock in the clock group indicating the operation timing is input.
  • the second PN signal output from the PN signal generation circuit 72 and the offset generation circuit 73 are output with respect to the digital modulation signal output from the ⁇ modulator 75.
  • the second adder outputs the digital modulation signal obtained by adding the offset signal and the second PN signal and the offset signal to the ⁇ modulator 77.
  • the ⁇ modulator 77 has a signal input terminal connected to the signal output terminal of the adder 76, and delta-sigma-modulates the digital modulation signal output from the adder 76 and outputs a digital modulation signal after delta-sigma modulation.
  • the adder 78 has a first signal input terminal connected to the ⁇ modulator 75 and a second signal input terminal connected to the ⁇ modulator 77, and the digital modulation signal output from the ⁇ modulator 75 and the ⁇ modulation.
  • the setting circuit 53 sets different operating conditions for the ⁇ modulation circuits 51 and 52.
  • the initial value circuit 71 of the ⁇ modulation circuits 51 and 52 adds the first initial value and the second initial value of the digital modulation signal corresponding to the operating condition to the adder 74 and
  • the first initial value output from the initial value circuit 71 of the ⁇ modulation circuit 51, and the ⁇ modulation circuit This is a value different from the first initial value output by the initial value circuit 71 of 52.
  • the second initial value output from the initial value circuit 71 of the ⁇ modulation circuit 51 is different from the second initial value output from the initial value circuit 71 of the ⁇ modulation circuit 52.
  • any initial value may be used as long as the initial value is different, and it may be appropriately determined at the time of design.
  • the PN signal generating circuit 72 of the ⁇ modulation circuits 51 and 52 When the setting circuit 53 sets an operating condition, the PN signal generating circuit 72 of the ⁇ modulation circuits 51 and 52 generates a first PN signal and a second PN signal corresponding to the operating condition, and the first PN signal is generated. The PN signal and the second PN signal are output to the adders 74 and 76, respectively. Since the setting circuit 53 sets different operating conditions for the ⁇ modulation circuits 51 and 52, the PN signal generation of the ⁇ modulation circuit 51 is performed. The first PN signal output from the circuit 72 is different from the first PN signal output from the PN signal generation circuit 72 of the ⁇ modulation circuit 52.
  • the second PN signal output from the PN signal generation circuit 72 of the ⁇ modulation circuit 51 is different from the second PN signal output from the PN signal generation circuit 72 of the ⁇ modulation circuit 52.
  • any PN signal may be used as long as the PN signals are different, and may be appropriately determined at the time of design.
  • the offset generating circuit 73 of the ⁇ modulation circuits 51 and 52 generates an offset signal corresponding to the operating condition and outputs the offset signal to the adder 76.
  • any offset signal may be used as long as the offset signals are different, and may be determined as appropriate at the time of design.
  • the adder 74 of the ⁇ modulation circuits 51 and 52 outputs the digital modulation signal output from the modem 11 from the initial value circuit 71 when the first clock of the clock group indicating the operation timing is input.
  • the first modulated initial value and the first PN signal output from the PN signal generation circuit 72 are added, and a digital modulation signal obtained by adding the first initial value and the first PN signal is added to the ⁇ modulator. Output to 75.
  • the adder 74 of the ⁇ modulation circuits 51 and 52 receives the first modulation signal output from the PN signal generation circuit 72 in response to the digital modulation signal output from the modem 11.
  • the digital modulation signal obtained by adding the PN signals and adding the first PN signal is output to the ⁇ modulator 75.
  • the ⁇ modulator 75 of the ⁇ modulation circuits 51 and 52 When receiving the digital modulation signal from the adder 74, the ⁇ modulator 75 of the ⁇ modulation circuits 51 and 52 performs delta sigma modulation on the digital modulation signal and outputs the digital modulation signal after the delta sigma modulation to the adders 76 and 78. To do.
  • the adder 76 of the ⁇ modulation circuits 51 and 52 receives an initial value circuit 71 for the digital modulation signal output from the ⁇ modulator 75 when the first clock of the clock group indicating the operation timing is input. , The second PN signal output from the PN signal generation circuit 72, and the offset signal output from the offset generation circuit 73 are added together to obtain a second initial value, A digital modulation signal obtained by adding the second PN signal and the offset signal is output to the ⁇ modulator 77. Further, when the second and subsequent clocks are input to the adder 76 of the ⁇ modulation circuits 51 and 52, the digital modulation signal output from the ⁇ modulator 75 is output from the PN signal generation circuit 72. The second PN signal and the offset signal output from the offset generation circuit 73 are added, and a digital modulation signal obtained by adding the second PN signal and the offset signal is output to the ⁇ modulator 77.
  • the ⁇ modulator 77 of the ⁇ modulation circuits 51 and 52 Upon receiving the digital modulation signal from the adder 76, the ⁇ modulator 77 of the ⁇ modulation circuits 51 and 52 performs delta sigma modulation on the digital modulation signal and outputs the digital modulation signal after the delta sigma modulation to the adder 78.
  • the adder 78 of the ⁇ modulation circuits 51 and 52 adds the digital modulation signal output from the ⁇ modulator 75 and the digital modulation signal output from the ⁇ modulator 77, and adds the added digital modulation signal to the high frequency circuit 21. , 22.
  • the first initial value, the first PN signal, the second initial value, the second PN signal, and the offset signal are all different from each other. If at least one of the first PN signal, the second initial value, the second PN signal, and the offset signal is different, the ⁇ noise characteristic is made incoherent, and the desired signal component is Can be coherent.
  • the modulation signal output circuit unit 5 is mounted with the ⁇ modulation circuits 51 and 52 having the same circuit configuration and is different from the ⁇ modulation circuits 51 and 52. Since the setting circuit 53 for setting the operating conditions is mounted, as in the first embodiment, the ⁇ noise associated with the delta-sigma modulation of the digital modulation signal can be reduced and the SNR can be increased. Compared with the case where the ⁇ modulation circuits 12 and 13 having different circuit configurations are mounted, the load required for the circuit development of the ⁇ modulation circuits 51 and 52 can be reduced.
  • the example in which the ⁇ modulators 75 and 77 having the same circuit configuration in the ⁇ modulation circuits 51 and 52 have a two-stage configuration is shown.
  • the ⁇ modulation circuits 51 and 52 are included in the internal circuit.
  • the delta-sigma modulator may have three or more stages.
  • the modulation signal output circuit unit 1 mounts one modem 11, and the modem 11 transmits the same digital modulation signal to the ⁇ modulation circuits 12, 13 (Alternatively, what is output to the ⁇ modulation circuits 51 and 52), the modulation signal output circuit unit has a plurality of modems that generate the same digital modulation signal, and a plurality of modems and a plurality of ⁇ modulations.
  • the circuits may be connected one to one.
  • the modulation signal output circuit unit 6 includes modems 11a and 11b, ⁇ modulation circuits 51 and 52, and a setting circuit 53.
  • the modem 11 a modulates communication data to generate a digital modulation signal, and outputs the digital modulation signal to the ⁇ modulation circuit 51.
  • the modem 11b modulates the communication data to generate a digital modulation signal that is the same as the digital modulation signal generated by the modem 11a, and outputs the digital modulation signal to the ⁇ modulation circuit 52.
  • FIG. 7 shows an example in which two modems are mounted, N modems and N ⁇ modulation circuits may be mounted.
  • the timing output from the ⁇ modulation circuit 51 to the high frequency circuit 21 and the ⁇ modulation circuit 52 If the output timing of the digital modulation signal from the modems 11a and 11b is controlled so that the timing output from the radio frequency circuit 22 to the high frequency circuit 22 is shifted, the radiation direction of the digital modulation signal radiated from the antennas 41 and 42 of the high frequency unit 4 is controlled. Can be controlled in any direction.
  • the modulation signal output circuit unit 6 mounts the two modems 11a and 11b, and outputs from the ⁇ modulation circuit 51 to the high frequency circuit 21 and from the ⁇ modulation circuit 52 to the high frequency circuit 22.
  • the output timing of the digital modulation signal from the modems 11a and 11b is controlled so that the timing is different from that of the modem 11a and 11b.
  • one modem 11 and the ⁇ modulation circuits 12 and 13 (or ⁇ modulation circuits 51 and 52).
  • a delay circuit may be inserted between the delay circuits to control the amount of delay of the digital modulation signal by the plurality of delay circuits.
  • the digital modulation signal radiated from the antennas 41 and 42 of the high-frequency unit 4 may be controlled.
  • the radiation direction can be controlled in an arbitrary direction.
  • FIG. 8 is a block diagram showing a modulation signal output circuit unit 7 of a digital transmitter according to Embodiment 7 of the present invention.
  • the modulation signal output circuit unit 7 includes a modem 11, ⁇ modulation circuits 51 and 52, a setting circuit 53, delay circuits 81 and 82, and a delay control circuit 83.
  • Delay circuits 81 and 82 are inserted between modem 11 and ⁇ modulation circuits 51 and 52, delay the digital modulation signal generated by modem 11, and output the delayed digital modulation signal to ⁇ modulation circuits 51 and 52. It is a circuit to do.
  • the delay control circuit 83 is a circuit that controls the delay amount of the digital modulation signal by the delay circuits 81 and 82.
  • the timing output from the ⁇ modulation circuit 51 to the high frequency circuit 21 and the ⁇ modulation circuit 52 If the delay control circuit 83 controls the amount of delay in the delay circuits 81 and 82 so that the timing output from the signal to the high-frequency circuit 22 is shifted, the digital modulation signal radiated from the antennas 41 and 42 of the high-frequency unit 4
  • the radiation direction can be controlled in an arbitrary direction.
  • Embodiment 8 FIG.
  • the modulation signal output circuit units 1, 5, 6 and 7 mount the ⁇ modulation circuits 12 and 13 (or ⁇ modulation circuits 51 and 52), and the ⁇ modulation circuits 12 and 13 (or The ⁇ modulation circuit 51 (or the ⁇ modulation circuit 51) and the ⁇ modulation circuit are used to reduce the ⁇ noise generated when the ⁇ modulation circuits 51, 52) perform delta-sigma modulation on the digital modulation signal and increase the SNR. 13 (or ⁇ modulation circuit 52) is different in circuit configuration or operating condition.
  • a pulse-width modulation circuit that performs pulse-width modulation on a digital modulation signal and outputs a PWM signal that is a digital modulation signal after pulse-width modulation is also mounted near the desired modulation signal band. Since noise is generated, the SNR that is the power ratio between the desired signal component and the noise component may deteriorate.
  • a digital transmitter capable of reducing the noise accompanying pulse width modulation of a digital modulation signal and increasing the SNR will be described.
  • FIG. 9 is a block diagram showing a digital transmitter according to Embodiment 8 of the present invention.
  • the modulation signal output circuit unit 91 includes a modem 11 and pulse width modulation circuits 101 and 102, and is a digital circuit that modulates communication data to generate a digital modulation signal and performs pulse width modulation on the digital modulation signal.
  • the pulse width modulation circuit 101 has a signal input terminal connected to a signal output terminal of the modem 11.
  • the pulse width modulation circuit 101 performs pulse width modulation on the digital modulation signal output from the modem 11, and a PWM signal which is a digital modulation signal after pulse width modulation. Is a digital circuit that outputs.
  • the pulse width modulation circuit 102 has a signal input terminal connected to the signal output terminal of the modem 11 and is different in circuit configuration from the pulse width modulation circuit 101, but is output from the modem 11 in the same manner as the pulse width modulation circuit 101.
  • the digital modulation signal is subjected to pulse width modulation, and a PWM signal which is a digital modulation signal after pulse width modulation is output.
  • the modem 11 of the modulation signal output circuit unit 91 receives communication data composed of various information from the outside, the modem 11 modulates the communication data to generate a digital modulation signal, and the digital modulation signal is converted into a pulse width modulation circuit. 101 and 102.
  • the pulse width modulation circuit 101 When the pulse width modulation circuit 101 receives the digital modulation signal from the modem 11, the pulse width modulation circuit 101 performs pulse width modulation on the digital modulation signal and outputs a PWM signal, which is a digital modulation signal after pulse width modulation, to the high frequency circuit 21.
  • the pulse width modulation circuit 102 receives the digital modulation signal from the modem 11, the pulse width modulation circuit 102 performs pulse width modulation on the digital modulation signal and outputs a PWM signal which is a digital modulation signal after pulse width modulation to the high frequency circuit 22.
  • the pulse width modulation by the pulse width modulation circuits 101 and 102 As the amplitude value of the digital modulation signal output from the modem 11 is larger, a pulse having a wider pulse width is generated and a PWM signal composed of a plurality of pulse sequences is output.
  • the characteristics of noise generated when the pulse width modulation circuits 101 and 102 perform pulse width modulation depend on the circuit configuration of the pulse width modulation circuits 101 and 102. This is the same as the characteristic of the ⁇ noise depending on the circuit configuration of the ⁇ modulation circuits 12 and 13.
  • the pulse width modulation circuit 101 and the pulse width modulation circuit 102 have different circuit configurations, and the pulse width modulation circuit 101 and the pulse width modulation circuit 102 have different circuit configurations.
  • the processing sequence of pulse width modulation is different, noise characteristics are different.
  • the noise component generated from the pulse width modulation circuit 101 and the noise component generated from the pulse width modulation circuit 102 are incoherent.
  • the pulse width modulation circuits 101 and 102 perform pulse width modulation on the same digital modulation signal output from the modem 11, a desired signal component of the digital modulation signal output from the pulse width modulation circuit 101, and The desired signal component of the digital modulation signal output from the pulse width modulation circuit 102 is coherent.
  • any circuit configuration may be used as long as the pulse width modulation circuit 101 and the pulse width modulation circuit 102 have different circuit configurations. Description of the detailed configuration is omitted. Various known configurations are known as the circuit configuration of the pulse width modulation circuit.
  • the high frequency circuit 21 When the high frequency circuit 21 receives the digital modulation signal after pulse width modulation from the pulse width modulation circuit 101, the high frequency circuit 21 converts the signal power of the digital modulation signal into a desired power level, and converts the frequency of the digital modulation signal from the IF frequency. The signal is converted into an RF frequency, and the converted digital modulation signal is output to the synthesis circuit 23.
  • the high frequency circuit 22 receives the digital modulation signal after the pulse width modulation from the pulse width modulation circuit 102, the high frequency circuit 22 converts the signal power of the digital modulation signal into a desired power level and converts the frequency of the digital modulation signal from the IF frequency. The signal is converted into an RF frequency, and the converted digital modulation signal is output to the synthesis circuit 23.
  • the converted digital modulation signal output from the high-frequency circuit 21 and the converted digital modulation signal output from the high-frequency circuit 22 have the same signal power and the same frequency.
  • the converted digital modulation signals output from the high-frequency circuits 21 and 22 also have a noise component incoherent, but a desired signal component of the digital modulation signal is coherent.
  • the synthesis circuit 23 synthesizes the converted digital modulation signal output from the high-frequency circuit 21 and the converted digital modulation signal output from the high-frequency circuit 22 to generate two signals. A composite signal of the digital modulation signal is output. At this time, since the desired signal components of the two digital modulation signals are coherent, the two desired signal components are voltage-added by the synthesis of the synthesis circuit 23. On the other hand, since the noise components of the two digital modulation signals are incoherent, the noise components of the two digital modulation signals are summed by the synthesis of the synthesis circuit 23.
  • the SNR which is the power ratio between the desired signal component and the noise component in the combined signal output from the combining circuit 23, is the desired signal component and the noise component in the digital modulation signals output from the high frequency circuits 21 and 22, respectively.
  • the theoretical improvement is 3 dB.
  • the modem 11 that modulates communication data to generate a digital modulation signal, and the pulse width modulation of the digital modulation signal generated by the modem 11
  • the pulse width modulation circuits 101 and 102 for outputting the modulated digital modulation signal, the signal power of the digital modulation signal output from the pulse width modulation circuits 101 and 102 are converted to a desired power level, and the digital modulation signal
  • the high frequency circuits 21 and 22 for converting the frequency from the IF frequency to the RF frequency, the digital modulation signal after the conversion by the high frequency circuit 21 and the digital modulation signal after the conversion by the high frequency circuit 22 are combined to generate two digital modulation signals.
  • a synthesis circuit 23 for outputting a synthesis signal and the circuit configuration of the pulse width modulation circuits 101 and 102. Since it configured to be different, to reduce the noise associated with the pulse width modulation of the digital modulation signal, an effect that can increase the SNR.
  • the modulation signal output circuit unit 91 is mounted with two pulse width modulation circuits 101 and 102 having different circuit configurations.
  • the modulation signal output circuit unit 91 has a circuit configuration.
  • the high-frequency unit 2 mounts N high-frequency circuits, and the synthesis circuit 23 synthesizes the converted digital modulation signals output from the N high-frequency circuits. You may do it.
  • the high frequency unit 2 converts the signal power of the digital modulation signal output from the pulse width modulation circuits 101 and 102 to a desired power level, and converts the frequency of the digital modulation signal from the IF frequency to the RF frequency.
  • the two digital modulation signals after the conversion are synthesized after being converted to the frequency.
  • the signal power of the combined signal may be converted to a desired power level, and the frequency of the combined signal may be converted from the IF frequency to the RF frequency.
  • FIG. 10 is a block diagram showing a digital transmitter according to Embodiment 9 of the present invention.
  • the combining circuit 31 combines the digital modulated signal after pulse width modulation output from the pulse width modulating circuit 101 and the digital modulated signal after pulse width modulation output from the pulse width modulating circuit 102 to generate two digital signals. A composite signal of the modulation signal is output. At this time, since the desired signal components of the two digital modulation signals are coherent, the two desired signal components are voltage-added by the synthesis of the synthesis circuit 31. On the other hand, since the noise components of the two digital modulation signals are incoherent, the noise components of the two digital modulation signals are summed by the synthesis of the synthesis circuit 31.
  • the SNR that is the power ratio between the desired signal component and the noise component in the combined signal output from the combining circuit 31 is the desired signal component and noise in the digital modulation signal output from each of the pulse width modulation circuits 101 and 102.
  • the SNR with the component there is a theoretical 3 dB improvement.
  • the high frequency circuit 32 When the high frequency circuit 32 receives the combined signal from the combining circuit 31, the high frequency circuit 32 converts the signal power of the combined signal into a desired power level and converts the frequency of the combined signal from the IF frequency to the RF frequency.
  • the modem 11 that modulates communication data to generate a digital modulation signal
  • Pulse width modulation circuits 101 and 102 that output a modulated digital modulation signal, a pulse width modulated digital modulation signal output from the pulse width modulation circuit 101, and a pulse width modulated output from the pulse width modulation circuit 102 are combined with each other, and a combined circuit 31 for outputting a combined signal of the two digital modulated signals is converted into a desired power level, and the combined signal output from the combined circuit 31 is converted into a desired power level.
  • a high-frequency circuit 32 for converting the frequency of IF from the IF frequency to the RF frequency, and the circuit of the pulse width modulation circuits 101 and 102 Since it is configured such that are different, by reducing the noise associated with the pulse width modulation of the digital modulation signal, an effect that can increase the SNR.
  • the high frequency unit 3 combines the digital modulation signals output from the pulse width modulation circuits 101 and 102, and then the power level and frequency of the signal power of the combined signal of the two digital modulation signals.
  • the number of high-frequency circuits can be reduced to one, and the circuit configuration can be simplified.
  • the modulation signal output circuit unit 91 is mounted with two pulse width modulation circuits 101 and 102 having different circuit configurations.
  • the modulation signal output circuit unit 91 has a circuit configuration. Different N pulse width modulation circuits may be mounted, and the synthesis circuit 31 of the high-frequency unit 2 may synthesize the pulse-modulated digital modulation signal output from the N pulse width modulation circuits.
  • the synthesis circuit 23 synthesizes the converted digital modulation signal output from the high frequency circuit 21 and the converted digital modulation signal output from the high frequency circuit 22 to generate two digital modulations.
  • the output of the combined signal is shown, antennas 41 and 42 that radiate the converted digital modulation signals output from the high-frequency circuits 21 and 22 to the space are provided, and the digital modulation radiated from the antennas 41 and 42 is provided.
  • the signals may be combined in space.
  • FIG. 11 is a block diagram showing a digital transmitter according to Embodiment 10 of the present invention.
  • the high frequency circuit 21 receives the digital modulation signal after the pulse width modulation from the pulse width modulation circuit 101, the high frequency circuit 21 converts the signal power of the digital modulation signal to a desired power level as in the eighth embodiment, and The frequency of the digital modulation signal is converted from the IF frequency to the RF frequency.
  • the high frequency circuit 22 When the high frequency circuit 22 receives the digital modulation signal after the pulse width modulation from the pulse width modulation circuit 102, the high frequency circuit 22 converts the signal power of the digital modulation signal to a desired power level as in the eighth embodiment, and The frequency of the digital modulation signal is converted from the IF frequency to the RF frequency.
  • the converted digital modulation signal output from the high-frequency circuit 21 and the converted digital modulation signal output from the high-frequency circuit 22 have the same signal power and the same frequency.
  • the converted digital modulation signals output from the high-frequency circuits 21 and 22 also have a noise component incoherent, but a desired signal component of the digital modulation signal is coherent.
  • the antenna 41 When receiving the converted digital modulation signal from the high-frequency circuit 21, the antenna 41 radiates the digital modulation signal to space.
  • the antenna 42 receives the converted digital modulation signal from the high frequency circuit 22, the antenna 42 radiates the digital modulation signal to space.
  • the digital modulation signal radiated from the antenna 41 and the digital modulation signal radiated from the antenna 42 are combined in space.
  • the two desired signal components of the two digital modulation signals output from the high-frequency circuits 21 and 22 are coherent, the two desired signal components are voltage-added by synthesis in space.
  • the noise components of the two digital modulation signals are incoherent, the noise components of the two digital modulation signals become power addition by combining in space.
  • the SNR which is the power ratio between the desired signal component and the noise component in the signal synthesized in space, is the SNR of the desired signal component and the noise component in the digital modulation signal output from each of the high frequency circuits 21 and 22.
  • 3 dB is obtained. Therefore, a receiver that is a communication target with the digital transmitter can receive a signal having a high SNR.
  • the modem 11 that modulates communication data to generate a digital modulation signal, and the pulse width modulation of the digital modulation signal generated by the modem 11
  • the pulse width modulation circuits 101 and 102 for outputting the modulated digital modulation signal, the signal power of the digital modulation signal output from the pulse width modulation circuits 101 and 102 are converted to a desired power level, and the digital modulation signal High-frequency circuits 21 and 22 for converting the frequency from IF frequency to RF frequency, and antennas 41 and 42 for radiating the converted digital modulation signals output from the high-frequency circuits 21 and 22 to the space, and a pulse width modulation circuit 101 , 102 are configured so as to have different circuit configurations, so that pulse width modulation of a digital modulation signal can be performed.
  • the synthesis circuit 23 is not necessary.
  • Embodiment 11 FIG.
  • the modulation signal output circuit unit 91 is mounted with the pulse width modulation circuits 101 and 102 having different circuit configurations. Since it is necessary to design each circuit configuration, the load of circuit development increases. Therefore, in the eleventh embodiment, a description will be given of a case where a plurality of pulse width modulation circuits having the same circuit configuration are mounted in the modulation signal output circuit section and different operating conditions are set for the plurality of pulse width modulation circuits.
  • FIG. 12 is a block diagram showing a digital transmitter according to Embodiment 11 of the present invention.
  • the modulation signal output circuit unit 92 is a digital circuit including the modem 11, pulse width modulation circuits 111 and 112, and a setting circuit 113.
  • the pulse width modulation circuit 111 has a signal input terminal connected to the signal output terminal of the modem 11.
  • the pulse width modulation circuit 111 performs pulse width modulation on the digital modulation signal output from the modem 11 and outputs a digital modulation signal after pulse width modulation.
  • the pulse width modulation circuit 112 is a circuit having the same circuit configuration as the pulse width modulation circuit 111.
  • the pulse width modulation circuit 112 has a signal input terminal connected to the signal output terminal of the modem 11.
  • the pulse width modulation circuit 112 performs pulse width modulation on the digital modulation signal output from the modem 11 and outputs a digital modulation signal after pulse width modulation.
  • the setting circuit 113 is a circuit that sets different operating conditions for the pulse width modulation circuits 111 and 112.
  • the setting circuit 113 sets different operating conditions for the pulse width modulation circuits 111 and 112.
  • the pulse width modulation circuit 111 When the pulse width modulation circuit 111 receives the digital modulation signal from the modem 11, the pulse width modulation circuit 111 performs pulse width modulation on the digital modulation signal in accordance with the operation condition set by the setting circuit 113, and converts the digital modulation signal after the pulse width modulation into a high frequency circuit. To 21.
  • the pulse width modulation circuit 112 receives the digital modulation signal from the modem 11, the pulse width modulation circuit 112 performs pulse width modulation on the digital modulation signal in accordance with the operation condition set by the setting circuit 113, and converts the digital modulation signal after the pulse width modulation into a high frequency circuit 22 to output.
  • the pulse width modulation circuit is similar to the pulse width modulation circuits 101 and 102 of FIG.
  • the noise component generated from 111 and the noise component generated from the pulse width modulation circuit 112 become incoherent.
  • the pulse width modulation circuits 111 and 112 perform pulse width modulation on the same digital modulation signal output from the modem 11, a desired signal component of the digital modulation signal output from the pulse width modulation circuit 111, and The desired signal component of the digital modulation signal output from the pulse width modulation circuit 112 becomes coherent.
  • the noise component becomes incoherent and the desired signal component becomes coherent when ⁇ modulation circuits 51 and 52 in FIG. 4 having the same circuit configuration are set with different operating conditions. This is the same as when the noise component becomes incoherent and the desired signal component becomes coherent.
  • the modulation signal output circuit unit 92 mounts the pulse width modulation circuits 111 and 112 having the same circuit configuration, and the pulse width modulation circuits 111 and 112 Since the setting circuit 113 for setting different operating conditions is mounted, the noise accompanying the pulse width modulation of the digital modulation signal can be reduced and the SNR can be increased as in the eighth embodiment. As compared with the case where the pulse width modulation circuits 101 and 102 having different circuit configurations are mounted, the load required for circuit development of the pulse width modulation circuits 111 and 112 can be reduced.
  • the modulation signal output circuit unit 91 mounts one modem 11, and the modem 11 transmits the same digital modulation signal to the pulse width modulation circuit 101, 102 (or pulse width modulation circuits 111 and 112), the modulation signal output circuit unit includes a plurality of modems that generate the same digital modulation signal, and a plurality of modems and a plurality of modems.
  • the modulation signal output circuit units may be connected one to one.
  • FIG. 13 is a block diagram showing a modulation signal output circuit section 93 of a digital transmitter according to Embodiment 12 of the present invention.
  • the modulation signal output circuit unit 93 includes modems 11a and 11b, pulse width modulation circuits 111 and 112, and a setting circuit 113.
  • FIG. 13 shows an example in which two modems are mounted, N modems and N pulse width modulation circuits may be mounted.
  • the modems 11a and 11b When the modems 11a and 11b generate the same digital modulation signal, the same operation as in the eleventh embodiment can be realized. If the pulse width modulation circuits 101 and 102 are mounted instead of the pulse width modulation circuits 111 and 112, the same operation as in the eighth to tenth embodiments can be realized. Further, when the modulation signal output circuit section 93 in FIG. 13 is connected to the high frequency section 4 in FIG.
  • the timing output from the pulse width modulation circuit 111 to the high frequency circuit 21 and the pulse width modulation If the output timing of the digital modulation signal from the modems 11a and 11b is controlled so that the timing output from the circuit 112 to the high frequency circuit 22 is shifted, the digital modulation signal radiated from the antennas 41 and 42 of the high frequency unit 4 is controlled.
  • the radiation direction can be controlled in an arbitrary direction.
  • the modulation signal output circuit unit 93 mounts the two modems 11a and 11b and outputs the timing from the pulse width modulation circuit 111 to the high frequency circuit 21, and from the pulse width modulation circuit 112 to the high frequency circuit 22.
  • the control of the output timing of the digital modulation signal from the modems 11a and 11b is shown so that the output timing is deviated, one modem 11 and the pulse width modulation circuits 101 and 102 (or the pulse width modulation circuit) are shown.
  • 111, 112) may be inserted respectively to control the amount of delay of the digital modulation signal by the plurality of delay circuits.
  • radiation is radiated from the antennas 41, 42 of the high-frequency unit 4.
  • the radiation direction of the digital modulation signal can be controlled in an arbitrary direction.
  • FIG. 14 is a block diagram showing a modulation signal output circuit unit 94 of a digital transmitter according to Embodiment 13 of the present invention.
  • the modulation signal output circuit unit 94 includes a modem 11, pulse width modulation circuits 111 and 112, a setting circuit 113, delay circuits 81 and 82, and a delay control circuit 83.
  • the timing output from the pulse width modulation circuit 111 to the high frequency circuit 21 and the pulse width modulation If the delay control circuit 83 controls the delay amount in the delay circuits 81 and 82 so that the timing output from the circuit 112 to the high-frequency circuit 22 is shifted, the digital signal radiated from the antennas 41 and 42 of the high-frequency unit 4 is controlled.
  • the radiation direction of the modulation signal can be controlled in an arbitrary direction.
  • the digital transmitter according to the present invention is suitable for a digital transmitter that needs to directly transmit a digital modulation signal generated by a digital circuit such as a modem in a high frequency band.

Abstract

A digital transmitter comprising: a modem (11) that modulates communication data to generate a digital modulated signal; ΔΣ modulation circuits (12), (13) that delta-sigma modulate the digital modulated signal generated by the modem (11) to output the digital modulated signals as delta-sigma modulated; high frequency circuits (21), (22) that convert the signal powers of the digital modulated signals outputted from the ΔΣ modulation circuits (12), (13) to a desired power level, and convert the frequencies of the digital modulated signals from IF frequencies to an RF frequency; and a synthesizing circuit (23) that synthesizes the digital modulated signal as converted by the high frequency circuit (21) with the digital modulated signal as converted by the high frequency circuit (22) to output a synthesized signal of the two digital modulated signals, wherein the circuit configurations of the ΔΣ modulation circuits (12), (13) are different from each other.

Description

ディジタル送信機Digital transmitter
 この発明は、モデムなどのディジタル回路で生成されたディジタル変調信号を直接高周波帯で送信するディジタル送信機に関するものである。 The present invention relates to a digital transmitter for directly transmitting a digital modulation signal generated by a digital circuit such as a modem in a high frequency band.
 例えば、以下の非特許文献1には、モデムなどのディジタル回路で生成されたディジタル変調信号を直接高周波帯で送信するディジタル送信機が開示されている。
 このディジタル送信機では、モデムで生成されたディジタル変調信号を直接高周波帯で送信するため、ベースバンド周波数帯の変調信号を高周波帯の周波数に変換するためのアナログ回路が不要となり、回路構成を簡素化することができる。
 なお、このディジタル送信機では、モデムで生成されたディジタル変調信号を直接高周波帯で送信できるようにするために、モデムで生成されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力するΔΣ変調回路が実装されている。
 以下の非特許文献2には、ΔΣ変調回路の回路構成が開示されている。
For example, the following Non-Patent Document 1 discloses a digital transmitter that directly transmits a digital modulation signal generated by a digital circuit such as a modem in a high frequency band.
In this digital transmitter, the digital modulation signal generated by the modem is directly transmitted in the high frequency band, so that an analog circuit for converting the modulation signal in the baseband frequency band to the frequency in the high frequency band is not required, and the circuit configuration is simplified. Can be
In this digital transmitter, in order to directly transmit the digital modulation signal generated by the modem in the high frequency band, the digital modulation signal generated by the modem is delta-sigma-modulated and the digital signal after delta-sigma modulation is transmitted. A ΔΣ modulation circuit that outputs a modulation signal is mounted.
Non-Patent Document 2 below discloses a circuit configuration of a ΔΣ modulation circuit.
 従来のディジタル送信機は以上のように構成されているので、モデムで生成されたディジタル変調信号を直接高周波帯で送信することができる。しかし、モデムで生成されたディジタル変調信号をデルタシグマ変調する際、所望の変調信号帯域の近傍にΔΣノイズが発生するため、所望信号成分とノイズ成分との電力比である信号対雑音比(SNR)が劣化してしまうという課題があった。なお、このΔΣノイズは、隣接チャネルでの通信や近接周波数帯の他の通信に対して干渉し、通信品質の劣化を引き起こす原因となる。 Since the conventional digital transmitter is configured as described above, the digital modulation signal generated by the modem can be transmitted directly in the high frequency band. However, when the digital modulation signal generated by the modem is delta-sigma modulated, ΔΣ noise is generated in the vicinity of the desired modulation signal band. ) Deteriorated. Note that this ΔΣ noise interferes with communication in adjacent channels and other communication in the adjacent frequency band, and causes deterioration in communication quality.
 この発明は上記のような課題を解決するためになされたもので、ディジタル変調信号のデルタシグマ変調に伴うΔΣノイズを低減して、信号対雑音比を高めることができるディジタル送信機を得ることを目的とする。 The present invention has been made to solve the above-described problems, and it is an object of the present invention to obtain a digital transmitter capable of reducing ΔΣ noise accompanying delta-sigma modulation of a digital modulation signal and increasing a signal-to-noise ratio. Objective.
 この発明に係るディジタル送信機は、通信データを変調してディジタル変調信号を生成するモデムと、モデムにより生成されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力する複数のΔΣ変調回路と、複数のΔΣ変調回路から出力されたディジタル変調信号における信号レベル又は周波数のうち、少なくとも一方を変換してから変換後の複数のディジタル変調信号を合成、あるいは、複数のΔΣ変調回路から出力されたディジタル変調信号を合成してから、複数のディジタル変調信号の合成信号における信号レベル又は周波数のうち、少なくとも一方を変換する高周波部とを備え、複数のΔΣ変調回路の回路構成又は動作条件が異なっているようにしたものである。 A digital transmitter according to the present invention modulates communication data to generate a digital modulation signal, and delta-sigma modulates the digital modulation signal generated by the modem and outputs a digital modulation signal after delta-sigma modulation. A plurality of ΔΣ modulation circuits and a digital modulation signal output from the plurality of ΔΣ modulation circuits, at least one of the signal levels or frequencies is converted and then the plurality of converted digital modulation signals are combined, or a plurality of ΔΣ A circuit configuration of a plurality of ΔΣ modulation circuits, including a high frequency unit that synthesizes the digital modulation signals output from the modulation circuit and then converts at least one of the signal levels or frequencies in the combined signal of the plurality of digital modulation signals Alternatively, the operating conditions are different.
 この発明によれば、複数のΔΣ変調回路の回路構成又は動作条件が異なっているように構成したので、ディジタル変調信号のデルタシグマ変調に伴うΔΣノイズを低減して、信号対雑音比を高めることができる効果がある。 According to the present invention, since the circuit configurations or operating conditions of the plurality of ΔΣ modulation circuits are different, ΔΣ noise associated with delta-sigma modulation of the digital modulation signal is reduced, and the signal-to-noise ratio is increased. There is an effect that can.
この発明の実施の形態1によるディジタル送信機を示す構成図である。It is a block diagram which shows the digital transmitter by Embodiment 1 of this invention. この発明の実施の形態2によるディジタル送信機を示す構成図である。It is a block diagram which shows the digital transmitter by Embodiment 2 of this invention. この発明の実施の形態3によるディジタル送信機を示す構成図である。It is a block diagram which shows the digital transmitter by Embodiment 3 of this invention. この発明の実施の形態4によるディジタル送信機を示す構成図である。It is a block diagram which shows the digital transmitter by Embodiment 4 of this invention. この発明の実施の形態4によるディジタル送信機のΔΣ変調回路51,52を示す構成図である。It is a block diagram which shows the delta- sigma modulation circuits 51 and 52 of the digital transmitter by Embodiment 4 of this invention. この発明の実施の形態5によるディジタル送信機のΔΣ変調回路51,52を示す構成図である。It is a block diagram which shows the delta- sigma modulation circuits 51 and 52 of the digital transmitter by Embodiment 5 of this invention. この発明の実施の形態6によるディジタル送信機の変調信号出力回路部6を示す構成図である。It is a block diagram which shows the modulation signal output circuit part 6 of the digital transmitter by Embodiment 6 of this invention. この発明の実施の形態7によるディジタル送信機の変調信号出力回路部7を示す構成図である。It is a block diagram which shows the modulation signal output circuit part 7 of the digital transmitter by Embodiment 7 of this invention. この発明の実施の形態8によるディジタル送信機を示す構成図である。It is a block diagram which shows the digital transmitter by Embodiment 8 of this invention. この発明の実施の形態9によるディジタル送信機を示す構成図である。It is a block diagram which shows the digital transmitter by Embodiment 9 of this invention. この発明の実施の形態10によるディジタル送信機を示す構成図である。It is a block diagram which shows the digital transmitter by Embodiment 10 of this invention. この発明の実施の形態11によるディジタル送信機を示す構成図である。It is a block diagram which shows the digital transmitter by Embodiment 11 of this invention. この発明の実施の形態12によるディジタル送信機の変調信号出力回路部93を示す構成図である。It is a block diagram which shows the modulation signal output circuit part 93 of the digital transmitter by Embodiment 12 of this invention. この発明の実施の形態13によるディジタル送信機の変調信号出力回路部94を示す構成図である。It is a block diagram which shows the modulation signal output circuit part 94 of the digital transmitter by Embodiment 13 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面にしたがって説明する。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1はこの発明の実施の形態1によるディジタル送信機を示す構成図である。
 図1において、変調信号出力回路部1はモデム11とΔΣ変調回路12,13から構成されており、通信データを変調してディジタル変調信号を生成し、そのディジタル変調信号をデルタシグマ変調するディジタル回路である。
 モデム11は通信データを変調してディジタル変調信号を生成し、そのディジタル変調信号をΔΣ変調回路12,13に出力する。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a digital transmitter according to Embodiment 1 of the present invention.
In FIG. 1, a modulation signal output circuit unit 1 is composed of a modem 11 and ΔΣ modulation circuits 12 and 13, which modulate communication data to generate a digital modulation signal and delta-sigma modulate the digital modulation signal. It is.
The modem 11 modulates the communication data to generate a digital modulation signal, and outputs the digital modulation signal to the ΔΣ modulation circuits 12 and 13.
 ΔΣ変調回路12は信号入力端子がモデム11の信号出力端子と接続されており、モデム11から出力されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力するディジタル回路である。
 ΔΣ変調回路13は信号入力端子がモデム11の信号出力端子と接続されており、ΔΣ変調回路12と回路構成が異なっているが、ΔΣ変調回路12と同様に、モデム11から出力されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力する。
The ΔΣ modulation circuit 12 has a signal input terminal connected to a signal output terminal of the modem 11, and delta-sigma modulates the digital modulation signal output from the modem 11 and outputs a digital modulation signal after delta-sigma modulation. It is.
The ΔΣ modulation circuit 13 has a signal input terminal connected to the signal output terminal of the modem 11 and has a circuit configuration different from that of the ΔΣ modulation circuit 12, but the digital modulation output from the modem 11 is the same as the ΔΣ modulation circuit 12. The signal is delta-sigma modulated and a digitally modulated signal after delta-sigma modulation is output.
 高周波部2は高周波回路21,22と合成回路23から構成されている回路である。
 高周波回路21は信号入力端子がΔΣ変調回路12の信号出力端子と接続されており、ΔΣ変調回路12から出力されたディジタル変調信号の信号電力(信号レベル)を所望の電力レベル(信号レベル)に変換するとともに、そのディジタル変調信号の周波数をIF周波数(中間周波数)からRF周波数(無線周波数)に変換する。
 高周波回路22は信号入力端子がΔΣ変調回路13の信号出力端子と接続されており、ΔΣ変調回路13から出力されたディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換する。
 この実施の形態1では、高周波回路21,22が、ディジタル変調信号の信号電力の変換と周波数の変換を行う例を示しているが、信号電力又は周波数の変換のうち、いずれか一方の変換を行うものでもよい。
The high frequency unit 2 is a circuit composed of high frequency circuits 21 and 22 and a synthesis circuit 23.
The signal input terminal of the high frequency circuit 21 is connected to the signal output terminal of the ΔΣ modulation circuit 12, and the signal power (signal level) of the digital modulation signal output from the ΔΣ modulation circuit 12 is set to a desired power level (signal level). In addition to conversion, the frequency of the digital modulation signal is converted from IF frequency (intermediate frequency) to RF frequency (radio frequency).
The high-frequency circuit 22 has a signal input terminal connected to a signal output terminal of the ΔΣ modulation circuit 13, converts the signal power of the digital modulation signal output from the ΔΣ modulation circuit 13 to a desired power level, and the digital modulation signal Is converted from IF frequency to RF frequency.
In the first embodiment, an example is shown in which the high frequency circuits 21 and 22 convert the signal power of the digital modulation signal and the frequency, but either one of the signal power or the frequency conversion is converted. You can do it.
 なお、高周波回路21,22の具体的な構成として、例えば、1ビットのディジタル変調信号を入力してスッチング動作する増幅回路、そのディジタル変調信号の信号電力を所望の電力レベルに調整する可変利得回路、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換する周波数変換回路、そのディジタル変調信号に含まれている不要波を抑圧するフィルタ回路などの要素回路から構成されているものが考えられる。また、別の要素回路を含んでいてもよい。
 合成回路23は第1の信号入力端子が高周波回路21の信号出力端子と接続されて、第2の信号入力端子が高周波回路22の信号出力端子と接続されており、高周波回路21による変換後のディジタル変調信号と高周波回路22による変換後のディジタル変調信号とを合成して、2つのディジタル変調信号の合成信号を出力する。
As specific configurations of the high- frequency circuits 21 and 22, for example, an amplification circuit that inputs a 1-bit digital modulation signal and performs a switching operation, and a variable gain circuit that adjusts the signal power of the digital modulation signal to a desired power level It can be considered that the circuit is composed of element circuits such as a frequency conversion circuit that converts the frequency of the digital modulation signal from IF frequency to RF frequency, and a filter circuit that suppresses unnecessary waves contained in the digital modulation signal. Moreover, another element circuit may be included.
The synthesizing circuit 23 has a first signal input terminal connected to a signal output terminal of the high frequency circuit 21 and a second signal input terminal connected to a signal output terminal of the high frequency circuit 22. The digital modulation signal and the digital modulation signal converted by the high frequency circuit 22 are combined to output a combined signal of the two digital modulation signals.
 次に動作について説明する。
 変調信号出力回路部1のモデム11は、例えば、外部から各種の情報等からなる通信データを受けると、その通信データを変調してディジタル変調信号を生成し、そのディジタル変調信号をΔΣ変調回路12,13に出力する。
 ここで、モデム11により生成されるディジタル変調信号としては、例えば、一般的なモデムから出力されるアナログ変調信号の各時刻における振幅値を多ビットで表しているディジタル変調信号が考えられる。ただし、多ビットのディジタル変調信号に限るものではない。
Next, the operation will be described.
For example, when the modem 11 of the modulation signal output circuit unit 1 receives communication data including various kinds of information from the outside, the modem 11 modulates the communication data to generate a digital modulation signal, and the digital modulation signal is converted into the ΔΣ modulation circuit 12. , 13 are output.
Here, as the digital modulation signal generated by the modem 11, for example, a digital modulation signal in which an amplitude value at each time of an analog modulation signal output from a general modem is represented by multiple bits can be considered. However, the present invention is not limited to a multi-bit digital modulation signal.
 ΔΣ変調回路12は、モデム11からディジタル変調信号を受けると、そのディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を高周波回路21に出力する。
 ΔΣ変調回路13は、モデム11からディジタル変調信号を受けると、そのディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を高周波回路22に出力する。
 ここで、ΔΣ変調回路12,13から出力されるデルタシグマ変調後のディジタル変調信号は、高周波回路21,22の信号処理に適している1ビット又は多ビットのディジタル変調信号である。
When receiving the digital modulation signal from the modem 11, the ΔΣ modulation circuit 12 performs delta sigma modulation on the digital modulation signal and outputs the digital modulation signal after the delta sigma modulation to the high frequency circuit 21.
When receiving the digital modulation signal from the modem 11, the ΔΣ modulation circuit 13 performs delta sigma modulation on the digital modulation signal and outputs the digital modulation signal after the delta sigma modulation to the high frequency circuit 22.
Here, the digital modulation signal after delta-sigma modulation output from the ΔΣ modulation circuits 12 and 13 is a 1-bit or multi-bit digital modulation signal suitable for signal processing of the high- frequency circuits 21 and 22.
 ΔΣ変調回路12,13がデルタシグマ変調する際に発生するΔΣノイズの特性は、ΔΣ変調回路12,13の回路構成に依存する。
 この実施の形態1では、ΔΣ変調回路12とΔΣ変調回路13の回路構成が異なっているものを想定しており、ΔΣ変調回路12とΔΣ変調回路13の回路構成が異なっていれば、デルタシグマ変調の処理シーケンスが異なるため、ΔΣノイズの特性が異なる。
 これにより、ΔΣ変調回路12から発生するΔΣノイズの成分と、ΔΣ変調回路13から発生するΔΣノイズの成分とはインコヒーレントである。
 一方、ΔΣ変調回路12,13は、モデム11から出力された同一のディジタル変調信号をデルタシグマ変調するものであるため、ΔΣ変調回路12から出力されるディジタル変調信号の所望信号成分と、ΔΣ変調回路13から出力されるディジタル変調信号の所望信号成分とはコヒーレントである。
The characteristic of ΔΣ noise generated when the ΔΣ modulation circuits 12 and 13 perform delta-sigma modulation depends on the circuit configuration of the ΔΣ modulation circuits 12 and 13.
In the first embodiment, it is assumed that the circuit configurations of the ΔΣ modulation circuit 12 and the ΔΣ modulation circuit 13 are different. If the circuit configurations of the ΔΣ modulation circuit 12 and the ΔΣ modulation circuit 13 are different, the delta sigma is used. Since the modulation processing sequence is different, the characteristics of ΔΣ noise are different.
Thereby, the ΔΣ noise component generated from the ΔΣ modulation circuit 12 and the ΔΣ noise component generated from the ΔΣ modulation circuit 13 are incoherent.
On the other hand, since the ΔΣ modulation circuits 12 and 13 perform delta-sigma modulation on the same digital modulation signal output from the modem 11, the desired signal component of the digital modulation signal output from the ΔΣ modulation circuit 12 and the ΔΣ modulation are used. The desired signal component of the digital modulation signal output from the circuit 13 is coherent.
 ΔΣ変調回路12,13の具体的な回路構成としては、後述の実施の形態4で説明する内蔵のΔΣ変調器の段数が1段のΔΣ変調回路や、後述の実施の形態5で説明する内蔵のΔΣ変調器の段数が2段のΔΣ変調回路などが考えられる。
 例えば、ΔΣ変調回路12が内蔵しているΔΣ変調器の段数が1段で、ΔΣ変調回路13が内蔵しているΔΣ変調器の段数が2段であれば、ΔΣ変調回路12から発生するΔΣノイズの成分と、ΔΣ変調回路13から発生するΔΣノイズの成分とがインコヒーレントになる。
Specific circuit configurations of the ΔΣ modulation circuits 12 and 13 include a ΔΣ modulation circuit in which the number of stages of a built-in ΔΣ modulator described in a fourth embodiment described later is one, or a built-in circuit described in a fifth embodiment described later. A ΔΣ modulator circuit having two stages of ΔΣ modulators is conceivable.
For example, if the number of stages of the ΔΣ modulator included in the ΔΣ modulation circuit 12 is one and the number of stages of the ΔΣ modulator included in the ΔΣ modulation circuit 13 is 2, ΔΣ generated from the ΔΣ modulation circuit 12 The noise component and the ΔΣ noise component generated from the ΔΣ modulation circuit 13 become incoherent.
 高周波回路21は、ΔΣ変調回路12からデルタシグマ変調後のディジタル変調信号を受けると、そのディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換し、変換後のディジタル変調信号を合成回路23に出力する。
 高周波回路22は、ΔΣ変調回路13からデルタシグマ変調後のディジタル変調信号を受けると、そのディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換し、変換後のディジタル変調信号を合成回路23に出力する。
 ここでは、高周波回路21から出力される変換後のディジタル変調信号と、高周波回路22から出力される変換後のディジタル変調信号とは、信号電力が同一で、周波数が同一であるものとする。
 高周波回路21,22から出力される変換後のディジタル変調信号についても、ΔΣノイズ成分がインコヒーレントであるが、ディジタル変調信号の所望信号成分はコヒーレントである。
When the high frequency circuit 21 receives the digital modulation signal after the delta sigma modulation from the ΔΣ modulation circuit 12, the high frequency circuit 21 converts the signal power of the digital modulation signal into a desired power level and converts the frequency of the digital modulation signal from the IF frequency to the RF frequency. The frequency is converted to a frequency, and the converted digital modulation signal is output to the synthesis circuit 23.
When the high frequency circuit 22 receives the digital modulation signal after delta-sigma modulation from the ΔΣ modulation circuit 13, the high frequency circuit 22 converts the signal power of the digital modulation signal to a desired power level, and changes the frequency of the digital modulation signal from the IF frequency to the RF frequency. The frequency is converted to a frequency, and the converted digital modulation signal is output to the synthesis circuit 23.
Here, it is assumed that the converted digital modulation signal output from the high-frequency circuit 21 and the converted digital modulation signal output from the high-frequency circuit 22 have the same signal power and the same frequency.
Also for the converted digital modulation signals output from the high- frequency circuits 21 and 22, the ΔΣ noise component is incoherent, but the desired signal component of the digital modulation signal is coherent.
 合成回路23は、高周波回路21から出力された変換後のディジタル変調信号と、高周波回路22から出力された変換後のディジタル変調信号とを合成して、2つのディジタル変調信号の合成信号を出力する。
 このとき、2つのディジタル変調信号の所望信号成分はコヒーレントであるため、合成回路23の合成によって、2つの所望信号成分が電圧加算となる。一方、2つのディジタル変調信号のΔΣノイズ成分はインコヒーレントであるため、合成回路23の合成によって、2つのディジタル変調信号のΔΣノイズ成分が電力加算となる。
 その結果、合成回路23から出力される合成信号における所望信号成分とΔΣノイズ成分との電力比である信号対雑音比(SNR)は、各々の高周波回路21,22から出力されるディジタル変調信号における所望信号成分とΔΣノイズ成分とのSNRと比べて、理論的には3dB改善される。
The combining circuit 23 combines the converted digital modulation signal output from the high frequency circuit 21 and the converted digital modulation signal output from the high frequency circuit 22 and outputs a combined signal of the two digital modulation signals. .
At this time, since the desired signal components of the two digital modulation signals are coherent, the two desired signal components are voltage-added by the synthesis of the synthesis circuit 23. On the other hand, since the ΔΣ noise components of the two digital modulation signals are incoherent, the ΔΣ noise components of the two digital modulation signals are added by the synthesis of the synthesis circuit 23.
As a result, the signal-to-noise ratio (SNR), which is the power ratio between the desired signal component and the ΔΣ noise component in the combined signal output from the combining circuit 23, is the digital modulation signal output from each of the high frequency circuits 21 and 22. The SNR of the desired signal component and the ΔΣ noise component is theoretically improved by 3 dB.
 以上で明らかなように、この実施の形態1によれば、通信データを変調してディジタル変調信号を生成するモデム11と、モデム11により生成されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力するΔΣ変調回路12,13と、ΔΣ変調回路12,13から出力されたディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換する高周波回路21,22と、高周波回路21による変換後のディジタル変調信号と高周波回路22による変換後のディジタル変調信号とを合成して、2つのディジタル変調信号の合成信号を出力する合成回路23とを備え、ΔΣ変調回路12,13の回路構成が異なっているように構成したので、ディジタル変調信号のデルタシグマ変調に伴うΔΣノイズを低減して、SNRを高めることができる効果を奏する。 As is apparent from the above, according to the first embodiment, the modem 11 that modulates communication data to generate a digital modulation signal, and the digital modulation signal generated by the modem 11 are delta-sigma modulated to produce a delta-sigma ΔΣ modulation circuits 12 and 13 that output the modulated digital modulation signal, and the signal power of the digital modulation signal output from the ΔΣ modulation circuits 12 and 13 is converted to a desired power level, and the frequency of the digital modulation signal is changed. The high frequency circuits 21 and 22 for converting the IF frequency to the RF frequency, the digital modulation signal after the conversion by the high frequency circuit 21 and the digital modulation signal after the conversion by the high frequency circuit 22 are combined, and a combined signal of the two digital modulation signals And the circuit configuration of the ΔΣ modulation circuits 12 and 13 is different. Since it is configured, by reducing the ΔΣ noise associated with the delta-sigma modulation of digital modulation signals, an effect that can increase the SNR.
 この実施の形態1では、変調信号出力回路部1が、回路構成が異なる2つのΔΣ変調回路12,13を実装している例を示したが、変調信号出力回路部1が、回路構成が異なるN個のΔΣ変調回路を実装するとともに、高周波部2が、N個の高周波回路を実装し、合成回路23が、N個の高周波回路から出力された変換後のディジタル変調信号を合成するようにしてもよい。 In the first embodiment, the modulation signal output circuit unit 1 includes two ΔΣ modulation circuits 12 and 13 having different circuit configurations. However, the modulation signal output circuit unit 1 has a different circuit configuration. In addition to mounting N ΔΣ modulation circuits, the high-frequency unit 2 mounts N high-frequency circuits, and the combining circuit 23 combines the converted digital modulation signals output from the N high-frequency circuits. May be.
実施の形態2.
 上記実施の形態1では、高周波部2が、ΔΣ変調回路12,13から出力されたディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換してから、変換後の2つのディジタル変調信号を合成するものを示したが、ΔΣ変調回路12,13から出力されたディジタル変調信号を合成してから、2つのディジタル変調信号の合成信号の信号電力を所望の電力レベルに変換するとともに、その合成信号の周波数をIF周波数からRF周波数に変換するようにしてもよい。
Embodiment 2. FIG.
In the first embodiment, the high frequency unit 2 converts the signal power of the digital modulation signal output from the ΔΣ modulation circuits 12 and 13 to a desired power level, and changes the frequency of the digital modulation signal from the IF frequency to the RF frequency. In this example, the two digital modulation signals after the conversion are combined, and the digital modulation signals output from the ΔΣ modulation circuits 12 and 13 are combined and then the combined signal of the two digital modulation signals. May be converted to a desired power level, and the frequency of the combined signal may be converted from the IF frequency to the RF frequency.
 図2はこの発明の実施の形態2によるディジタル送信機を示す構成図であり、図2において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 高周波部3は合成回路31と高周波回路32から構成されている回路である。
 合成回路31は第1の信号入力端子がΔΣ変調回路12の信号出力端子と接続されて、第2の信号入力端子がΔΣ変調回路13の信号出力端子と接続されており、ΔΣ変調回路12から出力されたデルタシグマ変調後のディジタル変調信号と、ΔΣ変調回路13から出力されたデルタシグマ変調後のディジタル変調信号とを合成し、2つのディジタル変調信号の合成信号を高周波回路32に出力する。
 高周波回路32は信号入力端子が合成回路31の信号出力端子と接続されており、合成回路31から出力された合成信号の信号電力を所望の電力レベルに変換するとともに、その合成信号の周波数をIF周波数からRF周波数に変換する。
 この実施の形態2では、高周波回路32が、合成信号の信号電力の変換と周波数の変換を行う例を示しているが、信号電力又は周波数の変換のうち、いずれか一方の変換を行うものでもよい。
FIG. 2 is a block diagram showing a digital transmitter according to Embodiment 2 of the present invention. In FIG. 2, the same reference numerals as those in FIG.
The high frequency unit 3 is a circuit composed of a synthesis circuit 31 and a high frequency circuit 32.
The combining circuit 31 has a first signal input terminal connected to the signal output terminal of the ΔΣ modulation circuit 12, and a second signal input terminal connected to the signal output terminal of the ΔΣ modulation circuit 13. The output digital modulation signal after delta sigma modulation and the digital modulation signal after delta sigma modulation output from the ΔΣ modulation circuit 13 are combined, and a combined signal of the two digital modulation signals is output to the high frequency circuit 32.
The high frequency circuit 32 has a signal input terminal connected to a signal output terminal of the synthesis circuit 31, converts the signal power of the synthesis signal output from the synthesis circuit 31 to a desired power level, and converts the frequency of the synthesis signal to IF. Convert from frequency to RF frequency.
In the second embodiment, an example is shown in which the high-frequency circuit 32 performs conversion of the signal power and frequency of the combined signal. However, any one of the conversion of signal power or frequency may be performed. Good.
 次に動作について説明する。
 変調信号出力回路部1については、上記実施の形態1と同様であるため、ここでは、高周波部3について説明する。
 合成回路31は、ΔΣ変調回路12から出力されたデルタシグマ変調後のディジタル変調信号と、ΔΣ変調回路13から出力されたデルタシグマ変調後のディジタル変調信号とを合成して、2つのディジタル変調信号の合成信号を出力する。
 このとき、2つのディジタル変調信号の所望信号成分はコヒーレントであるため、合成回路31の合成によって、2つの所望信号成分が電圧加算となる。一方、2つのディジタル変調信号のΔΣノイズ成分はインコヒーレントであるため、合成回路31の合成によって、2つのディジタル変調信号のΔΣノイズ成分が電力加算となる。
 その結果、合成回路31から出力される合成信号における所望信号成分とΔΣノイズ成分との電力比であるSNRは、各々のΔΣ変調回路12,13から出力されるディジタル変調信号における所望信号成分とΔΣノイズ成分とのSNRと比べて、理論的には3dB改善される。
Next, the operation will be described.
Since the modulation signal output circuit unit 1 is the same as that of the first embodiment, only the high frequency unit 3 will be described here.
The synthesizing circuit 31 synthesizes the digital modulation signal after the delta-sigma modulation output from the ΔΣ modulation circuit 12 and the digital modulation signal after the delta-sigma modulation output from the ΔΣ modulation circuit 13 to synthesize two digital modulation signals. The combined signal is output.
At this time, since the desired signal components of the two digital modulation signals are coherent, the two desired signal components are voltage-added by the synthesis of the synthesis circuit 31. On the other hand, since the ΔΣ noise components of the two digital modulation signals are incoherent, the synthesis of the synthesis circuit 31 causes the ΔΣ noise components of the two digital modulation signals to be power addition.
As a result, the SNR that is the power ratio between the desired signal component and the ΔΣ noise component in the combined signal output from the combining circuit 31 is equal to the desired signal component in the digital modulation signal output from each of the ΔΣ modulation circuits 12 and 13 and ΔΣ. Compared to the SNR with the noise component, the theoretical improvement is 3 dB.
 高周波回路32は、合成回路31から合成信号を受けると、その合成信号の信号電力を所望の電力レベルに変換するとともに、その合成信号の周波数をIF周波数からRF周波数に変換する。 When the high frequency circuit 32 receives the combined signal from the combining circuit 31, the high frequency circuit 32 converts the signal power of the combined signal into a desired power level and converts the frequency of the combined signal from the IF frequency to the RF frequency.
 以上で明らかなように、この実施の形態2によれば、通信データを変調してディジタル変調信号を生成するモデム11と、モデム11により生成されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力するΔΣ変調回路12,13と、ΔΣ変調回路12から出力されたデルタシグマ変調後のディジタル変調信号と、ΔΣ変調回路13から出力されたデルタシグマ変調後のディジタル変調信号とを合成し、2つのディジタル変調信号の合成信号を出力する合成回路31と、合成回路31から出力された合成信号の信号電力を所望の電力レベルに変換するとともに、その合成信号の周波数をIF周波数からRF周波数に変換する高周波回路32とを備え、ΔΣ変調回路12,13の回路構成が異なっているように構成したので、ディジタル変調信号のデルタシグマ変調に伴うΔΣノイズを低減して、SNRを高めることができる効果を奏する。
 また、この実施の形態2では、高周波部3が、ΔΣ変調回路12,13から出力されたディジタル変調信号を合成してから、2つのディジタル変調信号の合成信号の信号電力の電力レベルや周波数を変換するようにしているので、高周波回路の個数を1個にすることができ、回路構成の簡単化を図ることができる効果を奏する。
As is apparent from the above, according to the second embodiment, the modem 11 that modulates communication data to generate a digital modulation signal, and the digital modulation signal generated by the modem 11 are delta-sigma modulated to produce a delta-sigma ΔΣ modulation circuits 12 and 13 for outputting the modulated digital modulation signal, the digital modulation signal after the delta-sigma modulation output from the ΔΣ modulation circuit 12, and the digital modulation after the delta-sigma modulation output from the ΔΣ modulation circuit 13 And combining the signal and outputting a combined signal of the two digital modulation signals, converting the signal power of the combined signal output from the combining circuit 31 to a desired power level, and changing the frequency of the combined signal And a high-frequency circuit 32 for converting the IF frequency to the RF frequency, and the ΔΣ modulation circuits 12 and 13 have different circuit configurations. With this configuration, it is possible to reduce the ΔΣ noise associated with the delta-sigma modulation of the digital modulation signal and increase the SNR.
In the second embodiment, the high frequency unit 3 combines the digital modulation signals output from the ΔΣ modulation circuits 12 and 13 and then sets the power level and frequency of the signal power of the combined signal of the two digital modulation signals. Since conversion is performed, the number of high-frequency circuits can be reduced to one, and the circuit configuration can be simplified.
 この実施の形態2では、変調信号出力回路部1が、回路構成が異なる2つのΔΣ変調回路12,13を実装している例を示したが、変調信号出力回路部1が、回路構成が異なるN個のΔΣ変調回路を実装するとともに、高周波部2の合成回路31が、N個のΔΣ変調回路から出力されたデルタシグマ変調後のディジタル変調信号を合成するようにしてもよい。 In the second embodiment, the modulation signal output circuit unit 1 includes two ΔΣ modulation circuits 12 and 13 having different circuit configurations. However, the modulation signal output circuit unit 1 has a different circuit configuration. N number of ΔΣ modulation circuits may be mounted, and the combining circuit 31 of the high-frequency unit 2 may combine the delta-sigma modulated digital modulation signals output from the N ΔΣ modulation circuits.
実施の形態3.
 上記実施の形態1では、合成回路23が、高周波回路21から出力された変換後のディジタル変調信号と、高周波回路22から出力された変換後のディジタル変調信号とを合成して、2つのディジタル変調信号の合成信号を出力するものを示したが、高周波回路21,22から出力された変換後のディジタル変調信号を空間に放射する複数のアンテナを備え、複数のアンテナから放射されたディジタル変調信号が空間で合成されるようにしてもよい。
Embodiment 3 FIG.
In the first embodiment, the synthesis circuit 23 synthesizes the converted digital modulation signal output from the high-frequency circuit 21 and the converted digital modulation signal output from the high-frequency circuit 22 to produce two digital modulations. Although the output of the composite signal of the signal is shown, the digital modulation signal radiated from the plurality of antennas is provided with a plurality of antennas that radiate the converted digital modulation signals output from the high- frequency circuits 21 and 22 to the space. You may make it synthesize | combine in space.
 図3はこの発明の実施の形態3によるディジタル送信機を示す構成図であり、図3において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 高周波部4は高周波回路21,22とアンテナ41,42から構成されている回路である。
 アンテナ41は高周波回路21の信号出力端子と接続されており、高周波回路21から出力された変換後のディジタル変調信号を空間に放射する。
 アンテナ42は高周波回路22の信号出力端子と接続されており、高周波回路22から出力された変換後のディジタル変調信号を空間に放射する。
3 is a block diagram showing a digital transmitter according to Embodiment 3 of the present invention. In FIG. 3, the same reference numerals as those in FIG.
The high frequency section 4 is a circuit composed of high frequency circuits 21 and 22 and antennas 41 and 42.
The antenna 41 is connected to the signal output terminal of the high-frequency circuit 21 and radiates the converted digital modulation signal output from the high-frequency circuit 21 to the space.
The antenna 42 is connected to the signal output terminal of the high-frequency circuit 22 and radiates the converted digital modulation signal output from the high-frequency circuit 22 into space.
 次に動作について説明する。
 変調信号出力回路部1については、上記実施の形態1と同様であるため、ここでは、高周波部4について説明する。
 高周波回路21は、ΔΣ変調回路12からデルタシグマ変調後のディジタル変調信号を受けると、上記実施の形態1と同様に、そのディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換し、変換後のディジタル変調信号を出力する。
 高周波回路22は、ΔΣ変調回路13からデルタシグマ変調後のディジタル変調信号を受けると、上記実施の形態1と同様に、そのディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換し、変換後のディジタル変調信号を出力する。
 ここでは、高周波回路21から出力される変換後のディジタル変調信号と、高周波回路22から出力される変換後のディジタル変調信号とは、信号電力が同一で、周波数が同一であるものとする。
 高周波回路21,22から出力される変換後のディジタル変調信号についても、ΔΣノイズ成分がインコヒーレントであるが、ディジタル変調信号の所望信号成分はコヒーレントである。
Next, the operation will be described.
Since the modulation signal output circuit unit 1 is the same as that in the first embodiment, the high-frequency unit 4 will be described here.
When receiving the digital modulation signal after the delta-sigma modulation from the ΔΣ modulation circuit 12, the high frequency circuit 21 converts the signal power of the digital modulation signal to a desired power level as well as the digital modulation signal, as in the first embodiment. The frequency of the modulation signal is converted from the IF frequency to the RF frequency, and the converted digital modulation signal is output.
When receiving the digital modulation signal after the delta sigma modulation from the ΔΣ modulation circuit 13, the high frequency circuit 22 converts the signal power of the digital modulation signal to a desired power level as well as the digital modulation signal, as in the first embodiment. The frequency of the modulation signal is converted from the IF frequency to the RF frequency, and the converted digital modulation signal is output.
Here, it is assumed that the converted digital modulation signal output from the high-frequency circuit 21 and the converted digital modulation signal output from the high-frequency circuit 22 have the same signal power and the same frequency.
Also for the converted digital modulation signals output from the high- frequency circuits 21 and 22, the ΔΣ noise component is incoherent, but the desired signal component of the digital modulation signal is coherent.
 アンテナ41は、高周波回路21から変換後のディジタル変調信号を受けると、そのディジタル変調信号を空間に放射する。
 アンテナ42は、高周波回路22から変換後のディジタル変調信号を受けると、そのディジタル変調信号を空間に放射する。
 アンテナ41から放射されたディジタル変調信号と、アンテナ42から放射されたディジタル変調信号とは、空間で合成される。
When receiving the converted digital modulation signal from the high-frequency circuit 21, the antenna 41 radiates the digital modulation signal to space.
When the antenna 42 receives the converted digital modulation signal from the high frequency circuit 22, the antenna 42 radiates the digital modulation signal to space.
The digital modulation signal radiated from the antenna 41 and the digital modulation signal radiated from the antenna 42 are combined in space.
 このとき、高周波回路21,22から出力された2つのディジタル変調信号の所望信号成分はコヒーレントであるため、空間での合成によって、2つの所望信号成分が電圧加算となる。一方、2つのディジタル変調信号のΔΣノイズ成分はインコヒーレントであるため、空間での合成によって、2つのディジタル変調信号のΔΣノイズ成分が電力加算となる。
 その結果、空間で合成された信号における所望信号成分とΔΣノイズ成分との電力比であるSNRは、各々の高周波回路21,22から出力されるディジタル変調信号における所望信号成分とΔΣノイズ成分とのSNRと比べて、理論的には3dB改善される。したがって、当該ディジタル送信機との通信対象である受信機は、SNRが高い信号を受信することができる。
At this time, since the desired signal components of the two digital modulation signals output from the high- frequency circuits 21 and 22 are coherent, the two desired signal components are voltage-added by synthesis in space. On the other hand, since the ΔΣ noise components of the two digital modulation signals are incoherent, the ΔΣ noise components of the two digital modulation signals are summed by combining in space.
As a result, the SNR, which is the power ratio between the desired signal component and the ΔΣ noise component in the signal synthesized in space, is the difference between the desired signal component and the ΔΣ noise component in the digital modulation signal output from each of the high frequency circuits 21 and 22. Compared to the SNR, the theoretical improvement is 3 dB. Therefore, a receiver that is a communication target with the digital transmitter can receive a signal having a high SNR.
 以上で明らかなように、この実施の形態3によれば、通信データを変調してディジタル変調信号を生成するモデム11と、モデム11により生成されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力するΔΣ変調回路12,13と、ΔΣ変調回路12,13から出力されたディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換する高周波回路21,22と、高周波回路21,22から出力された変換後のディジタル変調信号を空間に放射するアンテナ41,42とを備え、ΔΣ変調回路12,13の回路構成が異なっているように構成したので、ディジタル変調信号のデルタシグマ変調に伴うΔΣノイズを低減して、SNRを高めることができる効果を奏する。
 また、この実施の形態3では、合成回路23が不要になる。
As is apparent from the above, according to the third embodiment, the modem 11 that modulates communication data to generate a digital modulation signal, and the digital modulation signal generated by the modem 11 are delta-sigma modulated to produce a delta-sigma ΔΣ modulation circuits 12 and 13 that output the modulated digital modulation signal, and the signal power of the digital modulation signal output from the ΔΣ modulation circuits 12 and 13 is converted to a desired power level, and the frequency of the digital modulation signal is changed. High- frequency circuits 21 and 22 that convert IF frequencies to RF frequencies, and antennas 41 and 42 that radiate converted digital modulation signals output from the high- frequency circuits 21 and 22 into space. Since the circuit configuration is different, ΔΣ noise associated with delta-sigma modulation of digitally modulated signals is reduced. As a result, the SNR can be increased.
In the third embodiment, the synthesis circuit 23 is not necessary.
実施の形態4.
 上記実施の形態1~3では、変調信号出力回路部1が、回路構成が異なるΔΣ変調回路12,13を実装しているものを示したが、この場合、ΔΣ変調回路12,13の回路構成をそれぞれ設計する必要があるため、回路開発の負荷が増大する。
 そこで、この実施の形態4では、回路構成が同一のΔΣ変調回路を変調信号出力回路部に複数実装し、複数のΔΣ変調回路に対して異なる動作条件を設定するものについて説明する。
Embodiment 4 FIG.
In the first to third embodiments, the modulation signal output circuit unit 1 is mounted with the ΔΣ modulation circuits 12 and 13 having different circuit configurations. In this case, the circuit configuration of the ΔΣ modulation circuits 12 and 13 is provided. Therefore, the load of circuit development increases.
In the fourth embodiment, therefore, a case where a plurality of ΔΣ modulation circuits having the same circuit configuration are mounted in the modulation signal output circuit section and different operating conditions are set for the plurality of ΔΣ modulation circuits will be described.
 図4はこの発明の実施の形態4によるディジタル送信機を示す構成図であり、図4において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 図4の例では、ディジタル送信機が高周波部2を実装している例を示しているが、ディジタル送信機が図2の高周波部3や図3の高周波部4を実装しているものであってもよい。
 変調信号出力回路部5はモデム11、ΔΣ変調回路51,52及び設定回路53から構成されているディジタル回路である。
4 is a block diagram showing a digital transmitter according to Embodiment 4 of the present invention. In FIG. 4, the same reference numerals as those in FIG.
In the example of FIG. 4, an example is shown in which the digital transmitter is mounted with the high-frequency unit 2, but the digital transmitter is mounted with the high-frequency unit 3 of FIG. 2 or the high-frequency unit 4 of FIG. 3. May be.
The modulation signal output circuit unit 5 is a digital circuit including a modem 11, ΔΣ modulation circuits 51 and 52, and a setting circuit 53.
 ΔΣ変調回路51は信号入力端子がモデム11の信号出力端子と接続されており、モデム11から出力されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力するディジタル回路である。
 ΔΣ変調回路52はΔΣ変調回路51と回路構成が同一の回路である。ΔΣ変調回路52は信号入力端子がモデム11の信号出力端子と接続されており、モデム11から出力されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力する。
 設定回路53はΔΣ変調回路51,52に対して異なる動作条件を設定する回路である。
The ΔΣ modulation circuit 51 has a signal input terminal connected to the signal output terminal of the modem 11, and delta-sigma modulates the digital modulation signal output from the modem 11 and outputs a digital modulation signal after delta-sigma modulation. It is.
The ΔΣ modulation circuit 52 is a circuit having the same circuit configuration as the ΔΣ modulation circuit 51. The ΔΣ modulation circuit 52 has a signal input terminal connected to the signal output terminal of the modem 11, delta-sigma-modulates the digital modulation signal output from the modem 11, and outputs a digital modulation signal after delta-sigma modulation.
The setting circuit 53 is a circuit for setting different operating conditions for the ΔΣ modulation circuits 51 and 52.
 図5はこの発明の実施の形態4によるディジタル送信機のΔΣ変調回路51,52を示す構成図である。
 図5において、初期値回路61は設定回路53により設定された動作条件に対応するディジタル変調信号の初期値を出力する回路である。
 ただし、設定回路53が、ΔΣ変調回路51,52に対して異なる動作条件を設定するため、ΔΣ変調回路51の初期値回路61が出力する初期値と、ΔΣ変調回路52の初期値回路61が出力する初期値とは異なる値になる。
 PN信号生成回路62は設定回路53により設定された動作条件に対応するPN信号(疑似雑音信号)を生成して、そのPN信号を出力する回路である。
 ただし、設定回路53が、ΔΣ変調回路51,52に対して異なる動作条件を設定するため、ΔΣ変調回路51のPN信号生成回路62が出力するPN信号と、ΔΣ変調回路52のPN信号生成回路62が出力するPN信号とは異なる信号になる。
FIG. 5 is a block diagram showing ΔΣ modulation circuits 51 and 52 of a digital transmitter according to Embodiment 4 of the present invention.
In FIG. 5, an initial value circuit 61 is a circuit that outputs an initial value of a digital modulation signal corresponding to the operating condition set by the setting circuit 53.
However, since the setting circuit 53 sets different operating conditions for the ΔΣ modulation circuits 51 and 52, the initial value output from the initial value circuit 61 of the ΔΣ modulation circuit 51 and the initial value circuit 61 of the ΔΣ modulation circuit 52 are It becomes a value different from the initial value to be output.
The PN signal generation circuit 62 is a circuit that generates a PN signal (pseudo noise signal) corresponding to the operating condition set by the setting circuit 53 and outputs the PN signal.
However, since the setting circuit 53 sets different operating conditions for the ΔΣ modulation circuits 51 and 52, the PN signal output from the PN signal generation circuit 62 of the ΔΣ modulation circuit 51 and the PN signal generation circuit of the ΔΣ modulation circuit 52 are set. The signal is different from the PN signal output by 62.
 加算器63は第1の信号入力端子がモデム11の信号出力端子と接続され、第2の信号入力端子が初期値回路61の信号出力端子と接続され、第3の信号入力端子がPN信号生成回路62の信号出力端子と接続されており、動作タイミングを示すクロック群のうち、1番目のクロックが入力されると、モデム11から出力されたディジタル変調信号に対して、初期値回路61から出力された初期値と、PN信号生成回路62から出力された疑似雑音信号とを加算して、初期値及び疑似雑音信号を加算したディジタル変調信号をΔΣ変調器64に出力する。また、2番目以降のクロックが入力されると、モデム11から出力されたディジタル変調信号に対して、PN信号生成回路62から出力された疑似雑音信号を加算して、疑似雑音信号を加算したディジタル変調信号をΔΣ変調器64に出力する。
 ΔΣ変調器64は信号入力端子が加算器63の信号出力端子と接続されており、加算器63から出力されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力するディジタル回路である。
The adder 63 has a first signal input terminal connected to the signal output terminal of the modem 11, a second signal input terminal connected to the signal output terminal of the initial value circuit 61, and a third signal input terminal generating a PN signal. When connected to the signal output terminal of the circuit 62 and the first clock of the clock group indicating the operation timing is input, the digital modulation signal output from the modem 11 is output from the initial value circuit 61. The initial value and the pseudo noise signal output from the PN signal generation circuit 62 are added, and a digital modulation signal obtained by adding the initial value and the pseudo noise signal is output to the ΔΣ modulator 64. When the second and subsequent clocks are input, the digital noise signal output from the PN signal generation circuit 62 is added to the digital modulation signal output from the modem 11 to add the pseudo noise signal. The modulation signal is output to the ΔΣ modulator 64.
The signal input terminal of the ΔΣ modulator 64 is connected to the signal output terminal of the adder 63, and the digital modulation signal output from the adder 63 is delta-sigma-modulated to output a digital modulation signal after delta-sigma modulation. It is a digital circuit.
 次に動作について説明する。
 変調信号出力回路部5以外は、上記実施の形態1~3と同様であるため、ここでは、変調信号出力回路部5について説明する。
 まず、設定回路53は、ΔΣ変調回路51,52に対して異なる動作条件を設定する。
 ΔΣ変調回路51,52の初期値回路61は、設定回路53が動作条件を設定すると、その動作条件に対応するディジタル変調信号の初期値を加算器63に出力するが、設定回路53が、ΔΣ変調回路51,52に対して異なる動作条件を設定するため、ΔΣ変調回路51の初期値回路61が出力する初期値と、ΔΣ変調回路52の初期値回路61が出力する初期値とは異なる値になる。この実施の形態4では、初期値が異なっていれば、どのような初期値であってもよく、設計時に適宜決定されればよい。
Next, the operation will be described.
Since the configuration other than the modulation signal output circuit section 5 is the same as in the first to third embodiments, the modulation signal output circuit section 5 will be described here.
First, the setting circuit 53 sets different operating conditions for the ΔΣ modulation circuits 51 and 52.
When the setting circuit 53 sets an operating condition, the initial value circuit 61 of the ΔΣ modulation circuits 51 and 52 outputs an initial value of a digital modulation signal corresponding to the operating condition to the adder 63. Since different operating conditions are set for the modulation circuits 51 and 52, the initial value output from the initial value circuit 61 of the ΔΣ modulation circuit 51 is different from the initial value output from the initial value circuit 61 of the ΔΣ modulation circuit 52. become. In the fourth embodiment, any initial value may be used as long as the initial value is different, and it may be appropriately determined at the time of design.
 ΔΣ変調回路51,52のPN信号生成回路62は、設定回路53が動作条件を設定すると、その動作条件に対応するPN信号を生成して、そのPN信号を加算器63に出力するが、設定回路53が、ΔΣ変調回路51,52に対して異なる動作条件を設定するため、ΔΣ変調回路51のPN信号生成回路62が出力するPN信号と、ΔΣ変調回路52のPN信号生成回路62が出力するPN信号とは異なる信号になる。この実施の形態4では、PN信号が異なっていれば、どのようなPN信号であってもよく、設計時に適宜決定されればよい。 When the setting circuit 53 sets an operating condition, the PN signal generating circuit 62 of the ΔΣ modulation circuits 51 and 52 generates a PN signal corresponding to the operating condition and outputs the PN signal to the adder 63. Since the circuit 53 sets different operating conditions for the ΔΣ modulation circuits 51 and 52, the PN signal output from the PN signal generation circuit 62 of the ΔΣ modulation circuit 51 and the PN signal generation circuit 62 of the ΔΣ modulation circuit 52 output. The PN signal is different from the PN signal. In the fourth embodiment, any PN signal may be used as long as the PN signals are different, and may be appropriately determined at the time of design.
 ΔΣ変調回路51,52の加算器63は、動作タイミングを示すクロック群のうち、1番目のクロックが入力されると、モデム11から出力されたディジタル変調信号に対して、初期値回路61から出力された初期値と、PN信号生成回路62から出力された疑似雑音信号とを加算して、初期値及び疑似雑音信号を加算したディジタル変調信号をΔΣ変調器64に出力する。
 また、ΔΣ変調回路51,52の加算器63は、2番目以降のクロックが入力されると、モデム11から出力されたディジタル変調信号に対して、PN信号生成回路62から出力された疑似雑音信号を加算して、疑似雑音信号を加算したディジタル変調信号をΔΣ変調器64に出力する。
The adder 63 of the ΔΣ modulation circuits 51 and 52 outputs the digital modulation signal output from the modem 11 from the initial value circuit 61 when the first clock of the clock group indicating the operation timing is input. The initial value and the pseudo noise signal output from the PN signal generation circuit 62 are added, and a digital modulation signal obtained by adding the initial value and the pseudo noise signal is output to the ΔΣ modulator 64.
Further, when the second and subsequent clocks are input, the adder 63 of the ΔΣ modulation circuits 51 and 52 receives the pseudo noise signal output from the PN signal generation circuit 62 in response to the digital modulation signal output from the modem 11. And the digital modulation signal added with the pseudo noise signal is output to the ΔΣ modulator 64.
 ΔΣ変調回路51,52のΔΣ変調器64は、加算器63からディジタル変調信号を受けると、そのディジタル変調信号をデルタシグマ変調し、デルタシグマ変調後のディジタル変調信号を高周波回路21,22に出力する。
 ΔΣ変調回路51,52の回路構成が同一であっても、初期値とPN信号が異なれば、モデム11から出力されたディジタル変調信号をデルタシグマ変調する際に発生するΔΣノイズの特性がインコヒーレントになる。
 一方、初期値とPN信号が異なっていても、モデム11から出力された同一のディジタル変調信号をデルタシグマ変調するものであれば、所望信号成分はコヒーレントになる。
 この実施の形態4では、初期値とPN信号の双方が異なっている例を示したが、初期値又はPN信号のいずれか一方が異なっていれば、ΔΣノイズの特性をインコヒーレントにして、所望信号成分をコヒーレントにすることができる。したがって、ΔΣ変調回路51の初期値回路61が出力する初期値と、ΔΣ変調回路52の初期値回路61が出力する初期値とが異なっていれば、ΔΣ変調回路51,52のPN信号生成回路62が出力するPN信号が同一であってもよい。あるいは、ΔΣ変調回路51のPN信号生成回路62が出力するPN信号と、ΔΣ変調回路52のPN信号生成回路62が出力するPN信号とが異なっていれば、ΔΣ変調回路51,52の初期値回路61が出力する初期値が同一であってもよい。
When receiving the digital modulation signal from the adder 63, the ΔΣ modulator 64 of the ΔΣ modulation circuits 51 and 52 performs delta sigma modulation on the digital modulation signal and outputs the digital modulation signal after the delta sigma modulation to the high frequency circuits 21 and 22. To do.
Even if the circuit configurations of the ΔΣ modulation circuits 51 and 52 are the same, if the initial value and the PN signal are different, the characteristic of ΔΣ noise generated when delta-sigma modulation of the digital modulation signal output from the modem 11 is incoherent. become.
On the other hand, even if the initial value and the PN signal are different, the desired signal component becomes coherent if the same digital modulation signal output from the modem 11 is subjected to delta sigma modulation.
In the fourth embodiment, an example is shown in which both the initial value and the PN signal are different. However, if either the initial value or the PN signal is different, the ΔΣ noise characteristic is made incoherent and desired. The signal component can be made coherent. Therefore, if the initial value output from the initial value circuit 61 of the ΔΣ modulation circuit 51 and the initial value output from the initial value circuit 61 of the ΔΣ modulation circuit 52 are different, the PN signal generation circuit of the ΔΣ modulation circuits 51 and 52 The PN signals output from 62 may be the same. Alternatively, if the PN signal output from the PN signal generation circuit 62 of the ΔΣ modulation circuit 51 and the PN signal output from the PN signal generation circuit 62 of the ΔΣ modulation circuit 52 are different, the initial values of the ΔΣ modulation circuits 51 and 52 are set. The initial value output from the circuit 61 may be the same.
 以上で明らかなように、この実施の形態4によれば、変調信号出力回路部5が、回路構成が同一のΔΣ変調回路51,52を実装するとともに、ΔΣ変調回路51,52に対して異なる動作条件を設定する設定回路53を実装するように構成したので、上記実施の形態1と同様に、ディジタル変調信号のデルタシグマ変調に伴うΔΣノイズを低減して、SNRを高めることができるほか、回路構成が異なるΔΣ変調回路12,13を実装する場合よりも、ΔΣ変調回路51,52の回路開発に要する負荷を軽減することができる効果を奏する。 As is apparent from the above, according to the fourth embodiment, the modulation signal output circuit unit 5 is mounted with the ΔΣ modulation circuits 51 and 52 having the same circuit configuration and is different from the ΔΣ modulation circuits 51 and 52. Since the setting circuit 53 for setting the operating conditions is mounted, as in the first embodiment, the ΔΣ noise associated with the delta-sigma modulation of the digital modulation signal can be reduced and the SNR can be increased. Compared with the case where the ΔΣ modulation circuits 12 and 13 having different circuit configurations are mounted, the load required for the circuit development of the ΔΣ modulation circuits 51 and 52 can be reduced.
実施の形態5.
 上記実施の形態4では、回路構成が同一のΔΣ変調回路51,52が内蔵しているΔΣ変調器64の個数が1個である単段構成のΔΣ変調回路について示したが、回路構成が同一のΔΣ変調回路51,52が内蔵しているΔΣ変調器の個数が複数である複数段構成のΔΣ変調回路であってもよい。
Embodiment 5 FIG.
In the fourth embodiment, the single-stage ΔΣ modulation circuit in which the number of ΔΣ modulators 64 included in the ΔΣ modulation circuits 51 and 52 having the same circuit configuration is one is shown. However, the circuit configuration is the same. The delta- sigma modulation circuits 51 and 52 may include a plurality of delta-sigma modulators having a plurality of delta-sigma modulators.
 図6はこの発明の実施の形態5によるディジタル送信機のΔΣ変調回路51,52を示す構成図である。
 図6において、初期値回路71は設定回路53により設定された動作条件に対応するディジタル変調信号の第一の初期値と第二の初期値を出力する回路である。
 ただし、設定回路53が、ΔΣ変調回路51,52に対して異なる動作条件を設定するため、ΔΣ変調回路51の初期値回路71が出力する第一の初期値と、ΔΣ変調回路52の初期値回路71が出力する第一の初期値とは異なる値になる。また、ΔΣ変調回路51の初期値回路71が出力する第二の初期値と、ΔΣ変調回路52の初期値回路71が出力する第二の初期値とは異なる値になる。
FIG. 6 is a block diagram showing ΔΣ modulation circuits 51 and 52 of a digital transmitter according to Embodiment 5 of the present invention.
In FIG. 6, an initial value circuit 71 is a circuit that outputs a first initial value and a second initial value of a digital modulation signal corresponding to the operating condition set by the setting circuit 53.
However, since the setting circuit 53 sets different operating conditions for the ΔΣ modulation circuits 51 and 52, the first initial value output from the initial value circuit 71 of the ΔΣ modulation circuit 51 and the initial value of the ΔΣ modulation circuit 52 are set. It becomes a value different from the first initial value output from the circuit 71. Further, the second initial value output from the initial value circuit 71 of the ΔΣ modulation circuit 51 is different from the second initial value output from the initial value circuit 71 of the ΔΣ modulation circuit 52.
 PN信号生成回路72は設定回路53により設定された動作条件に対応する第一のPN信号と第二のPN信号を生成して、その第一のPN信号と第二のPN信号を出力する回路である。
 ただし、設定回路53が、ΔΣ変調回路51,52に対して異なる動作条件を設定するため、ΔΣ変調回路51のPN信号生成回路72が出力する第一のPN信号と、ΔΣ変調回路52のPN信号生成回路72が出力する第一のPN信号とは異なる信号になる。また、ΔΣ変調回路51のPN信号生成回路72が出力する第二のPN信号と、ΔΣ変調回路52のPN信号生成回路72が出力する第二のPN信号とは異なる信号になる。
 オフセット生成回路73は設定回路53により設定された動作条件に対応するオフセット信号を生成する回路である。
 ただし、設定回路53が、ΔΣ変調回路51,52に対して異なる動作条件を設定するため、ΔΣ変調回路51のオフセット生成回路73が出力するオフセット信号と、ΔΣ変調回路52のオフセット生成回路73が出力するオフセット信号とは異なる信号になる。
The PN signal generation circuit 72 generates a first PN signal and a second PN signal corresponding to the operating condition set by the setting circuit 53, and outputs the first PN signal and the second PN signal. It is.
However, since the setting circuit 53 sets different operating conditions for the ΔΣ modulation circuits 51 and 52, the first PN signal output from the PN signal generation circuit 72 of the ΔΣ modulation circuit 51 and the PN of the ΔΣ modulation circuit 52 are set. The signal is different from the first PN signal output from the signal generation circuit 72. Further, the second PN signal output from the PN signal generation circuit 72 of the ΔΣ modulation circuit 51 is different from the second PN signal output from the PN signal generation circuit 72 of the ΔΣ modulation circuit 52.
The offset generation circuit 73 is a circuit that generates an offset signal corresponding to the operating condition set by the setting circuit 53.
However, since the setting circuit 53 sets different operating conditions for the ΔΣ modulation circuits 51 and 52, the offset signal output from the offset generation circuit 73 of the ΔΣ modulation circuit 51 and the offset generation circuit 73 of the ΔΣ modulation circuit 52 It becomes a signal different from the offset signal to be output.
 加算器74は第1の信号入力端子がモデム11の信号出力端子と接続され、第2の信号入力端子が初期値回路71の第一の信号出力端子と接続され、第3の信号入力端子がPN信号生成回路72の第一の信号出力端子と接続されており、動作タイミングを示すクロック群のうち、1番目のクロックが入力されると、モデム11から出力されたディジタル変調信号に対して、初期値回路71から出力された第一の初期値と、PN信号生成回路72から出力された第一のPN信号とを加算して、第一の初期値及び第一のPN信号を加算したディジタル変調信号をΔΣ変調器75に出力する。また、2番目以降のクロックが入力されると、モデム11から出力されたディジタル変調信号に対して、PN信号生成回路72から出力された第一のPN信号を加算して、第一のPN信号を加算したディジタル変調信号をΔΣ変調器75に出力する第1の加算器である。
 ΔΣ変調器75は信号入力端子が加算器74の信号出力端子と接続されており、加算器74から出力されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力する第1のΔΣ変調器である。
The adder 74 has a first signal input terminal connected to the signal output terminal of the modem 11, a second signal input terminal connected to the first signal output terminal of the initial value circuit 71, and a third signal input terminal When connected to the first signal output terminal of the PN signal generation circuit 72 and the first clock of the clock group indicating the operation timing is input, the digital modulation signal output from the modem 11 is A digital value obtained by adding the first initial value output from the initial value circuit 71 and the first PN signal output from the PN signal generation circuit 72 and adding the first initial value and the first PN signal. The modulation signal is output to the ΔΣ modulator 75. When the second and subsequent clocks are input, the first PN signal output from the PN signal generation circuit 72 is added to the digital modulation signal output from the modem 11 to obtain the first PN signal. Is a first adder that outputs a digital modulation signal obtained by adding to the ΔΣ modulator 75.
The ΔΣ modulator 75 has a signal input terminal connected to the signal output terminal of the adder 74, delta-sigma modulates the digital modulation signal output from the adder 74, and outputs a digital modulation signal after delta-sigma modulation. This is the first ΔΣ modulator.
 加算器76は第1の信号入力端子がΔΣ変調器75の信号出力端子と接続され、第2の信号入力端子が初期値回路71の第二の信号出力端子と接続され、第3の信号入力端子がPN信号生成回路72の第二の信号出力端子と接続され、第4の信号入力端子がオフセット生成回路73と接続されており、動作タイミングを示すクロック群のうち、1番目のクロックが入力されると、ΔΣ変調器75から出力されたディジタル変調信号に対して、初期値回路71から出力された第二の初期値と、PN信号生成回路72から出力された第二のPN信号と、オフセット生成回路73から出力されたオフセット信号とを加算して、第二の初期値、第二のPN信号及びオフセット信号を加算したディジタル変調信号をΔΣ変調器77に出力する。また、2番目以降のクロックが入力されると、ΔΣ変調器75から出力されたディジタル変調信号に対して、PN信号生成回路72から出力された第二のPN信号と、オフセット生成回路73から出力されたオフセット信号とを加算して、第二のPN信号及びオフセット信号を加算したディジタル変調信号をΔΣ変調器77に出力する第2の加算器である。 The adder 76 has a first signal input terminal connected to the signal output terminal of the ΔΣ modulator 75, a second signal input terminal connected to the second signal output terminal of the initial value circuit 71, and a third signal input. The terminal is connected to the second signal output terminal of the PN signal generation circuit 72, the fourth signal input terminal is connected to the offset generation circuit 73, and the first clock in the clock group indicating the operation timing is input. Then, with respect to the digital modulation signal output from the ΔΣ modulator 75, the second initial value output from the initial value circuit 71, the second PN signal output from the PN signal generation circuit 72, The offset signal output from the offset generation circuit 73 is added, and a digital modulation signal obtained by adding the second initial value, the second PN signal, and the offset signal is output to the ΔΣ modulator 77. When the second and subsequent clocks are input, the second PN signal output from the PN signal generation circuit 72 and the offset generation circuit 73 are output with respect to the digital modulation signal output from the ΔΣ modulator 75. The second adder outputs the digital modulation signal obtained by adding the offset signal and the second PN signal and the offset signal to the ΔΣ modulator 77.
 ΔΣ変調器77は信号入力端子が加算器76の信号出力端子と接続されており、加算器76から出力されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力する第2のΔΣ変調器である。
 加算器78は第1の信号入力端子がΔΣ変調器75と接続され、第2の信号入力端子がΔΣ変調器77と接続されており、ΔΣ変調器75から出力されたディジタル変調信号とΔΣ変調器77から出力されたディジタル変調信号とを加算して、加算したディジタル変調信号を出力する第3の加算器である。
The ΔΣ modulator 77 has a signal input terminal connected to the signal output terminal of the adder 76, and delta-sigma-modulates the digital modulation signal output from the adder 76 and outputs a digital modulation signal after delta-sigma modulation. This is the second ΔΣ modulator.
The adder 78 has a first signal input terminal connected to the ΔΣ modulator 75 and a second signal input terminal connected to the ΔΣ modulator 77, and the digital modulation signal output from the ΔΣ modulator 75 and the ΔΣ modulation. This is a third adder that adds the digital modulation signal output from the unit 77 and outputs the added digital modulation signal.
 次に動作について説明する。
 変調信号出力回路部5以外は、上記実施の形態1~3と同様であるため、ここでは、変調信号出力回路部5について説明する。
 まず、設定回路53は、ΔΣ変調回路51,52に対して異なる動作条件を設定する。
 ΔΣ変調回路51,52の初期値回路71は、設定回路53が動作条件を設定すると、その動作条件に対応するディジタル変調信号の第一の初期値と第二の初期値をそれぞれ加算器74,76に出力するが、設定回路53が、ΔΣ変調回路51,52に対して異なる動作条件を設定するため、ΔΣ変調回路51の初期値回路71が出力する第一の初期値と、ΔΣ変調回路52の初期値回路71が出力する第一の初期値とは異なる値になる。また、ΔΣ変調回路51の初期値回路71が出力する第二の初期値と、ΔΣ変調回路52の初期値回路71が出力する第二の初期値とは異なる値になる。この実施の形態5では、初期値が異なっていれば、どのような初期値であってもよく、設計時に適宜決定されればよい。
Next, the operation will be described.
Since the configuration other than the modulation signal output circuit section 5 is the same as in the first to third embodiments, the modulation signal output circuit section 5 will be described here.
First, the setting circuit 53 sets different operating conditions for the ΔΣ modulation circuits 51 and 52.
When the setting circuit 53 sets the operating condition, the initial value circuit 71 of the ΔΣ modulation circuits 51 and 52 adds the first initial value and the second initial value of the digital modulation signal corresponding to the operating condition to the adder 74 and However, since the setting circuit 53 sets different operating conditions for the ΔΣ modulation circuits 51 and 52, the first initial value output from the initial value circuit 71 of the ΔΣ modulation circuit 51, and the ΔΣ modulation circuit This is a value different from the first initial value output by the initial value circuit 71 of 52. Further, the second initial value output from the initial value circuit 71 of the ΔΣ modulation circuit 51 is different from the second initial value output from the initial value circuit 71 of the ΔΣ modulation circuit 52. In the fifth embodiment, any initial value may be used as long as the initial value is different, and it may be appropriately determined at the time of design.
 ΔΣ変調回路51,52のPN信号生成回路72は、設定回路53が動作条件を設定すると、その動作条件に対応する第一のPN信号と第二のPN信号を生成して、その第一のPN信号と第二のPN信号をそれぞれ加算器74,76に出力するが、設定回路53が、ΔΣ変調回路51,52に対して異なる動作条件を設定するため、ΔΣ変調回路51のPN信号生成回路72が出力する第一のPN信号と、ΔΣ変調回路52のPN信号生成回路72が出力する第一のPN信号とは異なる信号になる。また、ΔΣ変調回路51のPN信号生成回路72が出力する第二のPN信号と、ΔΣ変調回路52のPN信号生成回路72が出力する第二のPN信号とは異なる信号になる。この実施の形態5では、PN信号が異なっていれば、どのようなPN信号であってもよく、設計時に適宜決定されればよい。
 ΔΣ変調回路51,52のオフセット生成回路73は、設定回路53が動作条件を設定すると、その動作条件に対応するオフセット信号を生成して、そのオフセット信号を加算器76に出力するが、設定回路53が、ΔΣ変調回路51,52に対して異なる動作条件を設定するため、ΔΣ変調回路51のオフセット生成回路73が出力するオフセット信号と、ΔΣ変調回路52のオフセット生成回路73が出力するオフセット信号とは異なる信号になる。この実施の形態5では、オフセット信号が異なっていれば、どのようなオフセット信号であってもよく、設計時に適宜決定されればよい。
When the setting circuit 53 sets an operating condition, the PN signal generating circuit 72 of the ΔΣ modulation circuits 51 and 52 generates a first PN signal and a second PN signal corresponding to the operating condition, and the first PN signal is generated. The PN signal and the second PN signal are output to the adders 74 and 76, respectively. Since the setting circuit 53 sets different operating conditions for the ΔΣ modulation circuits 51 and 52, the PN signal generation of the ΔΣ modulation circuit 51 is performed. The first PN signal output from the circuit 72 is different from the first PN signal output from the PN signal generation circuit 72 of the ΔΣ modulation circuit 52. Further, the second PN signal output from the PN signal generation circuit 72 of the ΔΣ modulation circuit 51 is different from the second PN signal output from the PN signal generation circuit 72 of the ΔΣ modulation circuit 52. In the fifth embodiment, any PN signal may be used as long as the PN signals are different, and may be appropriately determined at the time of design.
When the setting circuit 53 sets an operating condition, the offset generating circuit 73 of the ΔΣ modulation circuits 51 and 52 generates an offset signal corresponding to the operating condition and outputs the offset signal to the adder 76. 53 sets different operating conditions for the ΔΣ modulation circuits 51 and 52, so that the offset signal output from the offset generation circuit 73 of the ΔΣ modulation circuit 51 and the offset signal output from the offset generation circuit 73 of the ΔΣ modulation circuit 52 Is a different signal. In the fifth embodiment, any offset signal may be used as long as the offset signals are different, and may be determined as appropriate at the time of design.
 ΔΣ変調回路51,52の加算器74は、動作タイミングを示すクロック群のうち、1番目のクロックが入力されると、モデム11から出力されたディジタル変調信号に対して、初期値回路71から出力された第一の初期値と、PN信号生成回路72から出力された第一のPN信号とを加算して、第一の初期値及び第一のPN信号を加算したディジタル変調信号をΔΣ変調器75に出力する。
 また、ΔΣ変調回路51,52の加算器74は、2番目以降のクロックが入力されると、モデム11から出力されたディジタル変調信号に対して、PN信号生成回路72から出力された第一のPN信号を加算して、第一のPN信号を加算したディジタル変調信号をΔΣ変調器75に出力する。
The adder 74 of the ΔΣ modulation circuits 51 and 52 outputs the digital modulation signal output from the modem 11 from the initial value circuit 71 when the first clock of the clock group indicating the operation timing is input. The first modulated initial value and the first PN signal output from the PN signal generation circuit 72 are added, and a digital modulation signal obtained by adding the first initial value and the first PN signal is added to the ΔΣ modulator. Output to 75.
Further, when the second and subsequent clocks are input, the adder 74 of the ΔΣ modulation circuits 51 and 52 receives the first modulation signal output from the PN signal generation circuit 72 in response to the digital modulation signal output from the modem 11. The digital modulation signal obtained by adding the PN signals and adding the first PN signal is output to the ΔΣ modulator 75.
 ΔΣ変調回路51,52のΔΣ変調器75は、加算器74からディジタル変調信号を受けると、そのディジタル変調信号をデルタシグマ変調し、デルタシグマ変調後のディジタル変調信号を加算器76,78に出力する。 When receiving the digital modulation signal from the adder 74, the ΔΣ modulator 75 of the ΔΣ modulation circuits 51 and 52 performs delta sigma modulation on the digital modulation signal and outputs the digital modulation signal after the delta sigma modulation to the adders 76 and 78. To do.
 ΔΣ変調回路51,52の加算器76は、動作タイミングを示すクロック群のうち、1番目のクロックが入力されると、ΔΣ変調器75から出力されたディジタル変調信号に対して、初期値回路71から出力された第二の初期値と、PN信号生成回路72から出力された第二のPN信号と、オフセット生成回路73から出力されたオフセット信号とを加算して、第二の初期値、第二のPN信号及びオフセット信号を加算したディジタル変調信号をΔΣ変調器77に出力する。
 また、ΔΣ変調回路51,52の加算器76は、2番目以降のクロックが入力されると、ΔΣ変調器75から出力されたディジタル変調信号に対して、PN信号生成回路72から出力された第二のPN信号と、オフセット生成回路73から出力されたオフセット信号とを加算して、第二のPN信号及びオフセット信号を加算したディジタル変調信号をΔΣ変調器77に出力する。
The adder 76 of the ΔΣ modulation circuits 51 and 52 receives an initial value circuit 71 for the digital modulation signal output from the ΔΣ modulator 75 when the first clock of the clock group indicating the operation timing is input. , The second PN signal output from the PN signal generation circuit 72, and the offset signal output from the offset generation circuit 73 are added together to obtain a second initial value, A digital modulation signal obtained by adding the second PN signal and the offset signal is output to the ΔΣ modulator 77.
Further, when the second and subsequent clocks are input to the adder 76 of the ΔΣ modulation circuits 51 and 52, the digital modulation signal output from the ΔΣ modulator 75 is output from the PN signal generation circuit 72. The second PN signal and the offset signal output from the offset generation circuit 73 are added, and a digital modulation signal obtained by adding the second PN signal and the offset signal is output to the ΔΣ modulator 77.
 ΔΣ変調回路51,52のΔΣ変調器77は、加算器76からディジタル変調信号を受けると、そのディジタル変調信号をデルタシグマ変調し、デルタシグマ変調後のディジタル変調信号を加算器78に出力する。 Upon receiving the digital modulation signal from the adder 76, the ΔΣ modulator 77 of the ΔΣ modulation circuits 51 and 52 performs delta sigma modulation on the digital modulation signal and outputs the digital modulation signal after the delta sigma modulation to the adder 78.
 ΔΣ変調回路51,52の加算器78は、ΔΣ変調器75から出力されたディジタル変調信号とΔΣ変調器77から出力されたディジタル変調信号とを加算して、加算したディジタル変調信号を高周波回路21,22に出力する。
 この実施の形態5では、第一の初期値と第一のPN信号と第二の初期値と第二のPN信号とオフセット信号の全てが異なっている例を示したが、第一の初期値、第一のPN信号、第二の初期値、第二のPN信号及びオフセット信号のうち、少なくともいずれか1つ以上が異なっていれば、ΔΣノイズの特性をインコヒーレントにして、所望信号成分をコヒーレントにすることができる。
The adder 78 of the ΔΣ modulation circuits 51 and 52 adds the digital modulation signal output from the ΔΣ modulator 75 and the digital modulation signal output from the ΔΣ modulator 77, and adds the added digital modulation signal to the high frequency circuit 21. , 22.
In the fifth embodiment, the first initial value, the first PN signal, the second initial value, the second PN signal, and the offset signal are all different from each other. If at least one of the first PN signal, the second initial value, the second PN signal, and the offset signal is different, the ΔΣ noise characteristic is made incoherent, and the desired signal component is Can be coherent.
 以上で明らかなように、この実施の形態5によれば、変調信号出力回路部5が、回路構成が同一のΔΣ変調回路51,52を実装するとともに、ΔΣ変調回路51,52に対して異なる動作条件を設定する設定回路53を実装するように構成したので、上記実施の形態1と同様に、ディジタル変調信号のデルタシグマ変調に伴うΔΣノイズを低減して、SNRを高めることができるほか、回路構成が異なるΔΣ変調回路12,13を実装する場合よりも、ΔΣ変調回路51,52の回路開発に要する負荷を軽減することができる効果を奏する。 As is apparent from the above, according to the fifth embodiment, the modulation signal output circuit unit 5 is mounted with the ΔΣ modulation circuits 51 and 52 having the same circuit configuration and is different from the ΔΣ modulation circuits 51 and 52. Since the setting circuit 53 for setting the operating conditions is mounted, as in the first embodiment, the ΔΣ noise associated with the delta-sigma modulation of the digital modulation signal can be reduced and the SNR can be increased. Compared with the case where the ΔΣ modulation circuits 12 and 13 having different circuit configurations are mounted, the load required for the circuit development of the ΔΣ modulation circuits 51 and 52 can be reduced.
 この実施の形態5では、回路構成が同一のΔΣ変調回路51,52が内蔵しているΔΣ変調器75,77が2段構成である例を示したが、ΔΣ変調回路51,52が内蔵しているΔΣ変調器が3段構成以上であってもよいことは言うまでもない。 In the fifth embodiment, the example in which the ΔΣ modulators 75 and 77 having the same circuit configuration in the ΔΣ modulation circuits 51 and 52 have a two-stage configuration is shown. However, the ΔΣ modulation circuits 51 and 52 are included in the internal circuit. Needless to say, the delta-sigma modulator may have three or more stages.
実施の形態6.
 上記実施の形態1~5では、変調信号出力回路部1(または、変調信号出力回路部5)が1個のモデム11を実装し、モデム11が同一のディジタル変調信号をΔΣ変調回路12,13(または、ΔΣ変調回路51,52)に出力するものを示したが、変調信号出力回路部が、互いに同一のディジタル変調信号を生成する複数のモデムを実装し、複数のモデムと複数のΔΣ変調回路が一対一で接続されているようにしてもよい。
Embodiment 6 FIG.
In the first to fifth embodiments, the modulation signal output circuit unit 1 (or the modulation signal output circuit unit 5) mounts one modem 11, and the modem 11 transmits the same digital modulation signal to the ΔΣ modulation circuits 12, 13 (Alternatively, what is output to the ΔΣ modulation circuits 51 and 52), the modulation signal output circuit unit has a plurality of modems that generate the same digital modulation signal, and a plurality of modems and a plurality of ΔΣ modulations. The circuits may be connected one to one.
 図7はこの発明の実施の形態6によるディジタル送信機の変調信号出力回路部6を示す構成図であり、図7において、図4と同一符号は同一または相当部分を示すので説明を省略する。
 変調信号出力回路部6は、モデム11a,11b、ΔΣ変調回路51,52及び設定回路53から構成されている。
 モデム11aは通信データを変調してディジタル変調信号を生成し、そのディジタル変調信号をΔΣ変調回路51に出力する。
 モデム11bは通信データを変調することで、モデム11aにより生成されるディジタル変調信号と同一のディジタル変調信号を生成し、そのディジタル変調信号をΔΣ変調回路52に出力する。
 図7では、2個のモデムが実装されている例を示しているが、N個のモデムとN個のΔΣ変調回路が実装されているものであってもよい。
7 is a block diagram showing a modulation signal output circuit unit 6 of a digital transmitter according to Embodiment 6 of the present invention. In FIG. 7, the same reference numerals as those in FIG.
The modulation signal output circuit unit 6 includes modems 11a and 11b, ΔΣ modulation circuits 51 and 52, and a setting circuit 53.
The modem 11 a modulates communication data to generate a digital modulation signal, and outputs the digital modulation signal to the ΔΣ modulation circuit 51.
The modem 11b modulates the communication data to generate a digital modulation signal that is the same as the digital modulation signal generated by the modem 11a, and outputs the digital modulation signal to the ΔΣ modulation circuit 52.
Although FIG. 7 shows an example in which two modems are mounted, N modems and N ΔΣ modulation circuits may be mounted.
 モデム11a,11bが同一のディジタル変調信号を生成する場合、上記実施の形態4,5と同様の動作を実現することができる。ΔΣ変調回路51,52の代わりに、ΔΣ変調回路12,13を実装していれば、上記実施の形態1~3と同様の動作を実現することができる。
 さらに、図7の変調信号出力回路部6が、上記実施の形態3における図3の高周波部4と接続される場合、ΔΣ変調回路51から高周波回路21に出力されるタイミングと、ΔΣ変調回路52から高周波回路22に出力されるタイミングとがずれるように、モデム11a,11bからのディジタル変調信号の出力タイミングを制御すれば、高周波部4のアンテナ41,42から放射されるディジタル変調信号の放射方向を任意の方向に制御することが可能になる。
When the modems 11a and 11b generate the same digital modulation signal, the same operation as in the fourth and fifth embodiments can be realized. If ΔΣ modulation circuits 12 and 13 are mounted instead of ΔΣ modulation circuits 51 and 52, the same operation as in the first to third embodiments can be realized.
Furthermore, when the modulation signal output circuit unit 6 of FIG. 7 is connected to the high frequency unit 4 of FIG. 3 in the third embodiment, the timing output from the ΔΣ modulation circuit 51 to the high frequency circuit 21 and the ΔΣ modulation circuit 52 If the output timing of the digital modulation signal from the modems 11a and 11b is controlled so that the timing output from the radio frequency circuit 22 to the high frequency circuit 22 is shifted, the radiation direction of the digital modulation signal radiated from the antennas 41 and 42 of the high frequency unit 4 is controlled. Can be controlled in any direction.
実施の形態7.
 上記実施の形態6では、変調信号出力回路部6が2つのモデム11a,11bを実装し、ΔΣ変調回路51から高周波回路21に出力されるタイミングと、ΔΣ変調回路52から高周波回路22に出力されるタイミングとがずれるように、モデム11a,11bからのディジタル変調信号の出力タイミングを制御するものを示したが、1つのモデム11とΔΣ変調回路12,13(または、ΔΣ変調回路51,52)の間に遅延回路をそれぞれ挿入し、複数の遅延回路によるディジタル変調信号の遅延量を制御するようにしてもよく、この場合も、高周波部4のアンテナ41,42から放射されるディジタル変調信号の放射方向を任意の方向に制御することが可能になる。
Embodiment 7 FIG.
In the sixth embodiment, the modulation signal output circuit unit 6 mounts the two modems 11a and 11b, and outputs from the ΔΣ modulation circuit 51 to the high frequency circuit 21 and from the ΔΣ modulation circuit 52 to the high frequency circuit 22. In this example, the output timing of the digital modulation signal from the modems 11a and 11b is controlled so that the timing is different from that of the modem 11a and 11b. However, one modem 11 and the ΔΣ modulation circuits 12 and 13 (or ΔΣ modulation circuits 51 and 52). A delay circuit may be inserted between the delay circuits to control the amount of delay of the digital modulation signal by the plurality of delay circuits. In this case as well, the digital modulation signal radiated from the antennas 41 and 42 of the high-frequency unit 4 may be controlled. The radiation direction can be controlled in an arbitrary direction.
 図8はこの発明の実施の形態7によるディジタル送信機の変調信号出力回路部7を示す構成図であり、図8において、図4と同一符号は同一または相当部分を示すので説明を省略する。
 変調信号出力回路部7は、モデム11、ΔΣ変調回路51,52、設定回路53、遅延回路81,82及び遅延制御回路83から構成されている。
 遅延回路81,82はモデム11とΔΣ変調回路51,52の間に挿入され、モデム11により生成されたディジタル変調信号を遅延して、遅延後のディジタル変調信号をΔΣ変調回路51,52に出力する回路である。
 遅延制御回路83は遅延回路81,82によるディジタル変調信号の遅延量を制御する回路である。
FIG. 8 is a block diagram showing a modulation signal output circuit unit 7 of a digital transmitter according to Embodiment 7 of the present invention. In FIG. 8, the same reference numerals as those in FIG.
The modulation signal output circuit unit 7 includes a modem 11, ΔΣ modulation circuits 51 and 52, a setting circuit 53, delay circuits 81 and 82, and a delay control circuit 83.
Delay circuits 81 and 82 are inserted between modem 11 and ΔΣ modulation circuits 51 and 52, delay the digital modulation signal generated by modem 11, and output the delayed digital modulation signal to ΔΣ modulation circuits 51 and 52. It is a circuit to do.
The delay control circuit 83 is a circuit that controls the delay amount of the digital modulation signal by the delay circuits 81 and 82.
 次に動作について説明する。
 遅延回路81,82によるディジタル変調信号の遅延量が0である場合、上記実施の形態4,5と同様の動作を実現することができる。ΔΣ変調回路51,52の代わりに、ΔΣ変調回路12,13を実装していれば、上記実施の形態1~3と同様の動作を実現することができる。
 さらに、図8の変調信号出力回路部7が、上記実施の形態3における図3の高周波部4と接続される場合、ΔΣ変調回路51から高周波回路21に出力されるタイミングと、ΔΣ変調回路52から高周波回路22に出力されるタイミングとがずれるように、遅延制御回路83が、遅延回路81,82での遅延量を制御すれば、高周波部4のアンテナ41,42から放射されるディジタル変調信号の放射方向を任意の方向に制御することが可能になる。
Next, the operation will be described.
When the delay amount of the digital modulation signal by the delay circuits 81 and 82 is zero, the same operation as in the fourth and fifth embodiments can be realized. If ΔΣ modulation circuits 12 and 13 are mounted instead of ΔΣ modulation circuits 51 and 52, the same operation as in the first to third embodiments can be realized.
Further, when the modulation signal output circuit unit 7 of FIG. 8 is connected to the high frequency unit 4 of FIG. 3 in the third embodiment, the timing output from the ΔΣ modulation circuit 51 to the high frequency circuit 21 and the ΔΣ modulation circuit 52 If the delay control circuit 83 controls the amount of delay in the delay circuits 81 and 82 so that the timing output from the signal to the high-frequency circuit 22 is shifted, the digital modulation signal radiated from the antennas 41 and 42 of the high-frequency unit 4 The radiation direction can be controlled in an arbitrary direction.
実施の形態8.
 上記実施の形態1~7では、変調信号出力回路部1,5,6,7がΔΣ変調回路12,13(または、ΔΣ変調回路51,52)を実装し、ΔΣ変調回路12,13(または、ΔΣ変調回路51,52)がディジタル変調信号をデルタシグマ変調する際に発生するΔΣノイズを低減して、SNRを高めるために、ΔΣ変調回路12(または、ΔΣ変調回路51)とΔΣ変調回路13(または、ΔΣ変調回路52)の回路構成又は動作条件が異なっているものを示している。
 ΔΣ変調回路の代わりに、ディジタル変調信号をパルス幅変調して、パルス幅変調後のディジタル変調信号であるPWM信号を出力するパルス幅変調回路を実装する場合も、所望の変調信号帯域の近傍にノイズが発生するため、所望信号成分とノイズ成分との電力比であるSNRが劣化してしまうことがある。
 この実施の形態8では、ディジタル変調信号のパルス幅変調に伴うノイズを低減して、SNRを高めることができるディジタル送信機について説明する。
Embodiment 8 FIG.
In the first to seventh embodiments, the modulation signal output circuit units 1, 5, 6 and 7 mount the ΔΣ modulation circuits 12 and 13 (or ΔΣ modulation circuits 51 and 52), and the ΔΣ modulation circuits 12 and 13 (or The ΔΣ modulation circuit 51 (or the ΔΣ modulation circuit 51) and the ΔΣ modulation circuit are used to reduce the ΔΣ noise generated when the ΔΣ modulation circuits 51, 52) perform delta-sigma modulation on the digital modulation signal and increase the SNR. 13 (or ΔΣ modulation circuit 52) is different in circuit configuration or operating condition.
In place of the ΔΣ modulation circuit, a pulse-width modulation circuit that performs pulse-width modulation on a digital modulation signal and outputs a PWM signal that is a digital modulation signal after pulse-width modulation is also mounted near the desired modulation signal band. Since noise is generated, the SNR that is the power ratio between the desired signal component and the noise component may deteriorate.
In the eighth embodiment, a digital transmitter capable of reducing the noise accompanying pulse width modulation of a digital modulation signal and increasing the SNR will be described.
 図9はこの発明の実施の形態8によるディジタル送信機を示す構成図であり、図9において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 変調信号出力回路部91はモデム11とパルス幅変調回路101,102から構成されており、通信データを変調してディジタル変調信号を生成し、そのディジタル変調信号をパルス幅変調するディジタル回路である。
 パルス幅変調回路101は信号入力端子がモデム11の信号出力端子と接続されており、モデム11から出力されたディジタル変調信号をパルス幅変調して、パルス幅変調後のディジタル変調信号であるPWM信号を出力するディジタル回路である。
 パルス幅変調回路102は信号入力端子がモデム11の信号出力端子と接続されており、パルス幅変調回路101と回路構成が異なっているが、パルス幅変調回路101と同様に、モデム11から出力されたディジタル変調信号をパルス幅変調して、パルス幅変調後のディジタル変調信号であるPWM信号を出力する。
FIG. 9 is a block diagram showing a digital transmitter according to Embodiment 8 of the present invention. In FIG. 9, the same reference numerals as those in FIG.
The modulation signal output circuit unit 91 includes a modem 11 and pulse width modulation circuits 101 and 102, and is a digital circuit that modulates communication data to generate a digital modulation signal and performs pulse width modulation on the digital modulation signal.
The pulse width modulation circuit 101 has a signal input terminal connected to a signal output terminal of the modem 11. The pulse width modulation circuit 101 performs pulse width modulation on the digital modulation signal output from the modem 11, and a PWM signal which is a digital modulation signal after pulse width modulation. Is a digital circuit that outputs.
The pulse width modulation circuit 102 has a signal input terminal connected to the signal output terminal of the modem 11 and is different in circuit configuration from the pulse width modulation circuit 101, but is output from the modem 11 in the same manner as the pulse width modulation circuit 101. The digital modulation signal is subjected to pulse width modulation, and a PWM signal which is a digital modulation signal after pulse width modulation is output.
 次に動作について説明する。
 変調信号出力回路部91のモデム11は、例えば、外部から各種の情報等からなる通信データを受けると、その通信データを変調してディジタル変調信号を生成し、そのディジタル変調信号をパルス幅変調回路101,102に出力する。
Next, the operation will be described.
For example, when the modem 11 of the modulation signal output circuit unit 91 receives communication data composed of various information from the outside, the modem 11 modulates the communication data to generate a digital modulation signal, and the digital modulation signal is converted into a pulse width modulation circuit. 101 and 102.
 パルス幅変調回路101は、モデム11からディジタル変調信号を受けると、そのディジタル変調信号をパルス幅変調して、パルス幅変調後のディジタル変調信号であるPWM信号を高周波回路21に出力する。
 パルス幅変調回路102は、モデム11からディジタル変調信号を受けると、そのディジタル変調信号をパルス幅変調して、パルス幅変調後のディジタル変調信号であるPWM信号を高周波回路22に出力する。
 パルス幅変調回路101,102によるパルス幅変調では、モデム11から出力されたディジタル変調信号の振幅値が大きい程、パルス幅が広いパルスを生成し、複数のパルスの系列からなるPWM信号を出力することになるが、パルス幅変調回路101,102がパルス幅変調する際に発生するノイズの特性は、パルス幅変調回路101,102の回路構成に依存する。
 このことは、ΔΣノイズの特性が、ΔΣ変調回路12,13の回路構成に依存していることと同じである。
When the pulse width modulation circuit 101 receives the digital modulation signal from the modem 11, the pulse width modulation circuit 101 performs pulse width modulation on the digital modulation signal and outputs a PWM signal, which is a digital modulation signal after pulse width modulation, to the high frequency circuit 21.
When the pulse width modulation circuit 102 receives the digital modulation signal from the modem 11, the pulse width modulation circuit 102 performs pulse width modulation on the digital modulation signal and outputs a PWM signal which is a digital modulation signal after pulse width modulation to the high frequency circuit 22.
In the pulse width modulation by the pulse width modulation circuits 101 and 102, as the amplitude value of the digital modulation signal output from the modem 11 is larger, a pulse having a wider pulse width is generated and a PWM signal composed of a plurality of pulse sequences is output. However, the characteristics of noise generated when the pulse width modulation circuits 101 and 102 perform pulse width modulation depend on the circuit configuration of the pulse width modulation circuits 101 and 102.
This is the same as the characteristic of the ΔΣ noise depending on the circuit configuration of the ΔΣ modulation circuits 12 and 13.
 この実施の形態8では、パルス幅変調回路101とパルス幅変調回路102の回路構成が異なっているものを想定しており、パルス幅変調回路101とパルス幅変調回路102の回路構成が異なっていれば、パルス幅変調の処理シーケンスが異なるため、ノイズの特性が異なる。
 これにより、パルス幅変調回路101から発生するノイズの成分と、パルス幅変調回路102から発生するノイズの成分とはインコヒーレントである。
 一方、パルス幅変調回路101,102は、モデム11から出力された同一のディジタル変調信号をパルス幅変調するものであるため、パルス幅変調回路101から出力されるディジタル変調信号の所望信号成分と、パルス幅変調回路102から出力されるディジタル変調信号の所望信号成分とはコヒーレントである。
 この実施の形態8では、パルス幅変調回路101とパルス幅変調回路102の回路構成が異なっていれば、どのような回路構成であっても構わないため、パルス幅変調回路101,102の具体的な構成の説明は省略する。なお、パルス幅変調回路の回路構成として、各種の公知の構成が知られている。
In the eighth embodiment, it is assumed that the pulse width modulation circuit 101 and the pulse width modulation circuit 102 have different circuit configurations, and the pulse width modulation circuit 101 and the pulse width modulation circuit 102 have different circuit configurations. For example, since the processing sequence of pulse width modulation is different, noise characteristics are different.
Thereby, the noise component generated from the pulse width modulation circuit 101 and the noise component generated from the pulse width modulation circuit 102 are incoherent.
On the other hand, since the pulse width modulation circuits 101 and 102 perform pulse width modulation on the same digital modulation signal output from the modem 11, a desired signal component of the digital modulation signal output from the pulse width modulation circuit 101, and The desired signal component of the digital modulation signal output from the pulse width modulation circuit 102 is coherent.
In the eighth embodiment, any circuit configuration may be used as long as the pulse width modulation circuit 101 and the pulse width modulation circuit 102 have different circuit configurations. Description of the detailed configuration is omitted. Various known configurations are known as the circuit configuration of the pulse width modulation circuit.
 高周波回路21は、パルス幅変調回路101からパルス幅変調後のディジタル変調信号を受けると、そのディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換し、変換後のディジタル変調信号を合成回路23に出力する。
 高周波回路22は、パルス幅変調回路102からパルス幅変調後のディジタル変調信号を受けると、そのディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換し、変換後のディジタル変調信号を合成回路23に出力する。
 ここでは、高周波回路21から出力される変換後のディジタル変調信号と、高周波回路22から出力される変換後のディジタル変調信号とは、信号電力が同一で、周波数が同一であるものとする。
 高周波回路21,22から出力される変換後のディジタル変調信号についても、ノイズ成分がインコヒーレントであるが、ディジタル変調信号の所望信号成分はコヒーレントである。
When the high frequency circuit 21 receives the digital modulation signal after pulse width modulation from the pulse width modulation circuit 101, the high frequency circuit 21 converts the signal power of the digital modulation signal into a desired power level, and converts the frequency of the digital modulation signal from the IF frequency. The signal is converted into an RF frequency, and the converted digital modulation signal is output to the synthesis circuit 23.
When the high frequency circuit 22 receives the digital modulation signal after the pulse width modulation from the pulse width modulation circuit 102, the high frequency circuit 22 converts the signal power of the digital modulation signal into a desired power level and converts the frequency of the digital modulation signal from the IF frequency. The signal is converted into an RF frequency, and the converted digital modulation signal is output to the synthesis circuit 23.
Here, it is assumed that the converted digital modulation signal output from the high-frequency circuit 21 and the converted digital modulation signal output from the high-frequency circuit 22 have the same signal power and the same frequency.
The converted digital modulation signals output from the high- frequency circuits 21 and 22 also have a noise component incoherent, but a desired signal component of the digital modulation signal is coherent.
 合成回路23は、上記実施の形態1と同様に、高周波回路21から出力された変換後のディジタル変調信号と、高周波回路22から出力された変換後のディジタル変調信号とを合成して、2つのディジタル変調信号の合成信号を出力する。
 このとき、2つのディジタル変調信号の所望信号成分はコヒーレントであるため、合成回路23の合成によって、2つの所望信号成分が電圧加算となる。一方、2つのディジタル変調信号のノイズ成分はインコヒーレントであるため、合成回路23の合成によって、2つのディジタル変調信号のノイズ成分が電力加算となる。
 その結果、合成回路23から出力される合成信号における所望信号成分とノイズ成分との電力比であるSNRは、各々の高周波回路21,22から出力されるディジタル変調信号における所望信号成分とノイズ成分とのSNRと比べて、理論的には3dB改善される。
Similar to the first embodiment, the synthesis circuit 23 synthesizes the converted digital modulation signal output from the high-frequency circuit 21 and the converted digital modulation signal output from the high-frequency circuit 22 to generate two signals. A composite signal of the digital modulation signal is output.
At this time, since the desired signal components of the two digital modulation signals are coherent, the two desired signal components are voltage-added by the synthesis of the synthesis circuit 23. On the other hand, since the noise components of the two digital modulation signals are incoherent, the noise components of the two digital modulation signals are summed by the synthesis of the synthesis circuit 23.
As a result, the SNR, which is the power ratio between the desired signal component and the noise component in the combined signal output from the combining circuit 23, is the desired signal component and the noise component in the digital modulation signals output from the high frequency circuits 21 and 22, respectively. Compared to the SNR, the theoretical improvement is 3 dB.
 以上で明らかなように、この実施の形態8によれば、通信データを変調してディジタル変調信号を生成するモデム11と、モデム11により生成されたディジタル変調信号をパルス幅変調して、パルス幅変調後のディジタル変調信号を出力するパルス幅変調回路101,102と、パルス幅変調回路101,102から出力されたディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換する高周波回路21,22と、高周波回路21による変換後のディジタル変調信号と高周波回路22による変換後のディジタル変調信号とを合成して、2つのディジタル変調信号の合成信号を出力する合成回路23とを備え、パルス幅変調回路101,102の回路構成が異なっているように構成したので、ディジタル変調信号のパルス幅変調に伴うノイズを低減して、SNRを高めることができる効果を奏する。 As is apparent from the above, according to the eighth embodiment, the modem 11 that modulates communication data to generate a digital modulation signal, and the pulse width modulation of the digital modulation signal generated by the modem 11 The pulse width modulation circuits 101 and 102 for outputting the modulated digital modulation signal, the signal power of the digital modulation signal output from the pulse width modulation circuits 101 and 102 are converted to a desired power level, and the digital modulation signal The high frequency circuits 21 and 22 for converting the frequency from the IF frequency to the RF frequency, the digital modulation signal after the conversion by the high frequency circuit 21 and the digital modulation signal after the conversion by the high frequency circuit 22 are combined to generate two digital modulation signals. And a synthesis circuit 23 for outputting a synthesis signal, and the circuit configuration of the pulse width modulation circuits 101 and 102. Since it configured to be different, to reduce the noise associated with the pulse width modulation of the digital modulation signal, an effect that can increase the SNR.
 この実施の形態8では、変調信号出力回路部91が、回路構成が異なる2つのパルス幅変調回路101,102を実装している例を示したが、変調信号出力回路部91が、回路構成が異なるN個のパルス幅変調回路を実装するとともに、高周波部2が、N個の高周波回路を実装し、合成回路23が、N個の高周波回路から出力された変換後のディジタル変調信号を合成するようにしてもよい。 In the eighth embodiment, the modulation signal output circuit unit 91 is mounted with two pulse width modulation circuits 101 and 102 having different circuit configurations. However, the modulation signal output circuit unit 91 has a circuit configuration. In addition to mounting N different pulse width modulation circuits, the high-frequency unit 2 mounts N high-frequency circuits, and the synthesis circuit 23 synthesizes the converted digital modulation signals output from the N high-frequency circuits. You may do it.
実施の形態9.
 上記実施の形態8では、高周波部2が、パルス幅変調回路101,102から出力されたディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換してから、変換後の2つのディジタル変調信号を合成するものを示したが、パルス幅変調回路101,102から出力されたディジタル変調信号を合成してから、2つのディジタル変調信号の合成信号の信号電力を所望の電力レベルに変換するとともに、その合成信号の周波数をIF周波数からRF周波数に変換するようにしてもよい。
Embodiment 9 FIG.
In the eighth embodiment, the high frequency unit 2 converts the signal power of the digital modulation signal output from the pulse width modulation circuits 101 and 102 to a desired power level, and converts the frequency of the digital modulation signal from the IF frequency to the RF frequency. In this example, the two digital modulation signals after the conversion are synthesized after being converted to the frequency. However, after the digital modulation signals output from the pulse width modulation circuits 101 and 102 are synthesized, The signal power of the combined signal may be converted to a desired power level, and the frequency of the combined signal may be converted from the IF frequency to the RF frequency.
 図10はこの発明の実施の形態9によるディジタル送信機を示す構成図であり、図10において、図2及び図9と同一符号は同一または相当部分を示すので説明を省略する。 FIG. 10 is a block diagram showing a digital transmitter according to Embodiment 9 of the present invention. In FIG. 10, the same reference numerals as those in FIGS.
 次に動作について説明する。
 変調信号出力回路部91については、上記実施の形態8と同様であるため、ここでは、高周波部3について説明する。
 合成回路31は、パルス幅変調回路101から出力されたパルス幅変調後のディジタル変調信号と、パルス幅変調回路102から出力されたパルス幅変調後のディジタル変調信号とを合成して、2つのディジタル変調信号の合成信号を出力する。
 このとき、2つのディジタル変調信号の所望信号成分はコヒーレントであるため、合成回路31の合成によって、2つの所望信号成分が電圧加算となる。一方、2つのディジタル変調信号のノイズ成分はインコヒーレントであるため、合成回路31の合成によって、2つのディジタル変調信号のノイズ成分が電力加算となる。
 その結果、合成回路31から出力される合成信号における所望信号成分とノイズ成分との電力比であるSNRは、各々のパルス幅変調回路101,102から出力されるディジタル変調信号における所望信号成分とノイズ成分とのSNRと比べて、理論的には3dB改善される。
Next, the operation will be described.
Since the modulation signal output circuit unit 91 is the same as that of the eighth embodiment, only the high frequency unit 3 will be described here.
The combining circuit 31 combines the digital modulated signal after pulse width modulation output from the pulse width modulating circuit 101 and the digital modulated signal after pulse width modulation output from the pulse width modulating circuit 102 to generate two digital signals. A composite signal of the modulation signal is output.
At this time, since the desired signal components of the two digital modulation signals are coherent, the two desired signal components are voltage-added by the synthesis of the synthesis circuit 31. On the other hand, since the noise components of the two digital modulation signals are incoherent, the noise components of the two digital modulation signals are summed by the synthesis of the synthesis circuit 31.
As a result, the SNR that is the power ratio between the desired signal component and the noise component in the combined signal output from the combining circuit 31 is the desired signal component and noise in the digital modulation signal output from each of the pulse width modulation circuits 101 and 102. Compared to the SNR with the component, there is a theoretical 3 dB improvement.
 高周波回路32は、合成回路31から合成信号を受けると、その合成信号の信号電力を所望の電力レベルに変換するとともに、その合成信号の周波数をIF周波数からRF周波数に変換する。 When the high frequency circuit 32 receives the combined signal from the combining circuit 31, the high frequency circuit 32 converts the signal power of the combined signal into a desired power level and converts the frequency of the combined signal from the IF frequency to the RF frequency.
 以上で明らかなように、この実施の形態9によれば、通信データを変調してディジタル変調信号を生成するモデム11と、モデム11により生成されたディジタル変調信号をパルス幅変調して、パルス幅変調後のディジタル変調信号を出力するパルス幅変調回路101,102と、パルス幅変調回路101から出力されたパルス幅変調後のディジタル変調信号と、パルス幅変調回路102から出力されたパルス幅変調後のディジタル変調信号とを合成し、2つのディジタル変調信号の合成信号を出力する合成回路31と、合成回路31から出力された合成信号の信号電力を所望の電力レベルに変換するとともに、その合成信号の周波数をIF周波数からRF周波数に変換する高周波回路32とを備え、パルス幅変調回路101,102の回路構成が異なっているように構成したので、ディジタル変調信号のパルス幅変調に伴うノイズを低減して、SNRを高めることができる効果を奏する。
 また、この実施の形態9では、高周波部3が、パルス幅変調回路101,102から出力されたディジタル変調信号を合成してから、2つのディジタル変調信号の合成信号の信号電力の電力レベルや周波数を変換するようにしているので、高周波回路の個数を1個にすることができ、回路構成の簡単化を図ることができる効果を奏する。
As is apparent from the above, according to the ninth embodiment, the modem 11 that modulates communication data to generate a digital modulation signal, and the pulse width modulation of the digital modulation signal generated by the modem 11 Pulse width modulation circuits 101 and 102 that output a modulated digital modulation signal, a pulse width modulated digital modulation signal output from the pulse width modulation circuit 101, and a pulse width modulated output from the pulse width modulation circuit 102 Are combined with each other, and a combined circuit 31 for outputting a combined signal of the two digital modulated signals is converted into a desired power level, and the combined signal output from the combined circuit 31 is converted into a desired power level. And a high-frequency circuit 32 for converting the frequency of IF from the IF frequency to the RF frequency, and the circuit of the pulse width modulation circuits 101 and 102 Since it is configured such that are different, by reducing the noise associated with the pulse width modulation of the digital modulation signal, an effect that can increase the SNR.
In the ninth embodiment, the high frequency unit 3 combines the digital modulation signals output from the pulse width modulation circuits 101 and 102, and then the power level and frequency of the signal power of the combined signal of the two digital modulation signals. Thus, the number of high-frequency circuits can be reduced to one, and the circuit configuration can be simplified.
 この実施の形態9では、変調信号出力回路部91が、回路構成が異なる2つのパルス幅変調回路101,102を実装している例を示したが、変調信号出力回路部91が、回路構成が異なるN個のパルス幅変調回路を実装するとともに、高周波部2の合成回路31が、N個のパルス幅変調回路から出力されたパルス幅変調後のディジタル変調信号を合成するようにしてもよい。 In the ninth embodiment, the modulation signal output circuit unit 91 is mounted with two pulse width modulation circuits 101 and 102 having different circuit configurations. However, the modulation signal output circuit unit 91 has a circuit configuration. Different N pulse width modulation circuits may be mounted, and the synthesis circuit 31 of the high-frequency unit 2 may synthesize the pulse-modulated digital modulation signal output from the N pulse width modulation circuits.
実施の形態10.
 上記実施の形態8では、合成回路23が、高周波回路21から出力された変換後のディジタル変調信号と、高周波回路22から出力された変換後のディジタル変調信号とを合成して、2つのディジタル変調信号の合成信号を出力するものを示したが、高周波回路21,22から出力された変換後のディジタル変調信号を空間に放射するアンテナ41,42を備え、アンテナ41,42から放射されたディジタル変調信号が空間で合成されるようにしてもよい。
Embodiment 10 FIG.
In the eighth embodiment, the synthesis circuit 23 synthesizes the converted digital modulation signal output from the high frequency circuit 21 and the converted digital modulation signal output from the high frequency circuit 22 to generate two digital modulations. Although the output of the combined signal is shown, antennas 41 and 42 that radiate the converted digital modulation signals output from the high- frequency circuits 21 and 22 to the space are provided, and the digital modulation radiated from the antennas 41 and 42 is provided. The signals may be combined in space.
 図11はこの発明の実施の形態10によるディジタル送信機を示す構成図であり、図11において、図3及び図9と同一符号は同一または相当部分を示すので説明を省略する。 FIG. 11 is a block diagram showing a digital transmitter according to Embodiment 10 of the present invention. In FIG. 11, the same reference numerals as those in FIGS.
 次に動作について説明する。
 変調信号出力回路部91については、上記実施の形態8と同様であるため、ここでは、高周波部4について説明する。
 高周波回路21は、パルス幅変調回路101からパルス幅変調後のディジタル変調信号を受けると、上記実施の形態8と同様に、そのディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換する。
 高周波回路22は、パルス幅変調回路102からパルス幅変調後のディジタル変調信号を受けると、上記実施の形態8と同様に、そのディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換する。
 ここでは、高周波回路21から出力される変換後のディジタル変調信号と、高周波回路22から出力される変換後のディジタル変調信号とは、信号電力が同一で、周波数が同一であるものとする。
 高周波回路21,22から出力される変換後のディジタル変調信号についても、ノイズ成分がインコヒーレントであるが、ディジタル変調信号の所望信号成分はコヒーレントである。
Next, the operation will be described.
Since the modulation signal output circuit unit 91 is the same as that of the eighth embodiment, only the high frequency unit 4 will be described here.
When the high frequency circuit 21 receives the digital modulation signal after the pulse width modulation from the pulse width modulation circuit 101, the high frequency circuit 21 converts the signal power of the digital modulation signal to a desired power level as in the eighth embodiment, and The frequency of the digital modulation signal is converted from the IF frequency to the RF frequency.
When the high frequency circuit 22 receives the digital modulation signal after the pulse width modulation from the pulse width modulation circuit 102, the high frequency circuit 22 converts the signal power of the digital modulation signal to a desired power level as in the eighth embodiment, and The frequency of the digital modulation signal is converted from the IF frequency to the RF frequency.
Here, it is assumed that the converted digital modulation signal output from the high-frequency circuit 21 and the converted digital modulation signal output from the high-frequency circuit 22 have the same signal power and the same frequency.
The converted digital modulation signals output from the high- frequency circuits 21 and 22 also have a noise component incoherent, but a desired signal component of the digital modulation signal is coherent.
 アンテナ41は、高周波回路21から変換後のディジタル変調信号を受けると、そのディジタル変調信号を空間に放射する。
 アンテナ42は、高周波回路22から変換後のディジタル変調信号を受けると、そのディジタル変調信号を空間に放射する。
 アンテナ41から放射されたディジタル変調信号と、アンテナ42から放射されたディジタル変調信号とは、空間で合成される。
When receiving the converted digital modulation signal from the high-frequency circuit 21, the antenna 41 radiates the digital modulation signal to space.
When the antenna 42 receives the converted digital modulation signal from the high frequency circuit 22, the antenna 42 radiates the digital modulation signal to space.
The digital modulation signal radiated from the antenna 41 and the digital modulation signal radiated from the antenna 42 are combined in space.
 このとき、高周波回路21,22から出力された2つのディジタル変調信号の所望信号成分はコヒーレントであるため、空間での合成によって、2つの所望信号成分が電圧加算となる。一方、2つのディジタル変調信号のノイズ成分はインコヒーレントであるため、空間での合成によって、2つのディジタル変調信号のノイズ成分が電力加算となる。
 その結果、空間で合成された信号における所望信号成分とノイズ成分との電力比であるSNRは、各々の高周波回路21,22から出力されるディジタル変調信号における所望信号成分とノイズ成分とのSNRと比べて、理論的には3dB改善される。したがって、当該ディジタル送信機との通信対象である受信機は、SNRが高い信号を受信することができる。
At this time, since the desired signal components of the two digital modulation signals output from the high- frequency circuits 21 and 22 are coherent, the two desired signal components are voltage-added by synthesis in space. On the other hand, since the noise components of the two digital modulation signals are incoherent, the noise components of the two digital modulation signals become power addition by combining in space.
As a result, the SNR, which is the power ratio between the desired signal component and the noise component in the signal synthesized in space, is the SNR of the desired signal component and the noise component in the digital modulation signal output from each of the high frequency circuits 21 and 22. Compared to the theoretical improvement, 3 dB is obtained. Therefore, a receiver that is a communication target with the digital transmitter can receive a signal having a high SNR.
 以上で明らかなように、この実施の形態10によれば、通信データを変調してディジタル変調信号を生成するモデム11と、モデム11により生成されたディジタル変調信号をパルス幅変調して、パルス幅変調後のディジタル変調信号を出力するパルス幅変調回路101,102と、パルス幅変調回路101,102から出力されたディジタル変調信号の信号電力を所望の電力レベルに変換するとともに、そのディジタル変調信号の周波数をIF周波数からRF周波数に変換する高周波回路21,22と、高周波回路21,22から出力された変換後のディジタル変調信号を空間に放射するアンテナ41,42とを備え、パルス幅変調回路101,102の回路構成が異なっているように構成したので、ディジタル変調信号のパルス幅変調に伴うノイズを低減して、SNRを高めることができる効果を奏する。
 また、この実施の形態10では、合成回路23が不要になる。
As is apparent from the above, according to the tenth embodiment, the modem 11 that modulates communication data to generate a digital modulation signal, and the pulse width modulation of the digital modulation signal generated by the modem 11 The pulse width modulation circuits 101 and 102 for outputting the modulated digital modulation signal, the signal power of the digital modulation signal output from the pulse width modulation circuits 101 and 102 are converted to a desired power level, and the digital modulation signal High- frequency circuits 21 and 22 for converting the frequency from IF frequency to RF frequency, and antennas 41 and 42 for radiating the converted digital modulation signals output from the high- frequency circuits 21 and 22 to the space, and a pulse width modulation circuit 101 , 102 are configured so as to have different circuit configurations, so that pulse width modulation of a digital modulation signal can be performed. By reducing cormorants noise, an effect that can increase the SNR.
In the tenth embodiment, the synthesis circuit 23 is not necessary.
実施の形態11.
 上記実施の形態8~10では、変調信号出力回路部91が、回路構成が異なるパルス幅変調回路101,102を実装しているものを示したが、この場合、パルス幅変調回路101,102の回路構成をそれぞれ設計する必要があるため、回路開発の負荷が増大する。
 そこで、この実施の形態11では、回路構成が同一のパルス幅変調回路を変調信号出力回路部に複数実装し、複数のパルス幅変調回路に対して異なる動作条件を設定するものについて説明する。
Embodiment 11 FIG.
In the above eighth to tenth embodiments, the modulation signal output circuit unit 91 is mounted with the pulse width modulation circuits 101 and 102 having different circuit configurations. Since it is necessary to design each circuit configuration, the load of circuit development increases.
Therefore, in the eleventh embodiment, a description will be given of a case where a plurality of pulse width modulation circuits having the same circuit configuration are mounted in the modulation signal output circuit section and different operating conditions are set for the plurality of pulse width modulation circuits.
 図12はこの発明の実施の形態11によるディジタル送信機を示す構成図であり、図12において、図9と同一符号は同一または相当部分を示すので説明を省略する。
 図12の例では、ディジタル送信機が高周波部2を実装している例を示しているが、ディジタル送信機が図10の高周波部3や図11の高周波部4を実装しているものであってもよい。
 変調信号出力回路部92はモデム11、パルス幅変調回路111,112及び設定回路113から構成されているディジタル回路である。
12 is a block diagram showing a digital transmitter according to Embodiment 11 of the present invention. In FIG. 12, the same reference numerals as those in FIG.
In the example of FIG. 12, an example is shown in which the digital transmitter is mounted with the high-frequency unit 2, but the digital transmitter is mounted with the high-frequency unit 3 of FIG. 10 and the high-frequency unit 4 of FIG. May be.
The modulation signal output circuit unit 92 is a digital circuit including the modem 11, pulse width modulation circuits 111 and 112, and a setting circuit 113.
 パルス幅変調回路111は信号入力端子がモデム11の信号出力端子と接続されており、モデム11から出力されたディジタル変調信号をパルス幅変調して、パルス幅変調後のディジタル変調信号を出力するディジタル回路である。
 パルス幅変調回路112はパルス幅変調回路111と回路構成が同一の回路である。パルス幅変調回路112は信号入力端子がモデム11の信号出力端子と接続されており、モデム11から出力されたディジタル変調信号をパルス幅変調して、パルス幅変調後のディジタル変調信号を出力する。
 設定回路113はパルス幅変調回路111,112に対して異なる動作条件を設定する回路である。
The pulse width modulation circuit 111 has a signal input terminal connected to the signal output terminal of the modem 11. The pulse width modulation circuit 111 performs pulse width modulation on the digital modulation signal output from the modem 11 and outputs a digital modulation signal after pulse width modulation. Circuit.
The pulse width modulation circuit 112 is a circuit having the same circuit configuration as the pulse width modulation circuit 111. The pulse width modulation circuit 112 has a signal input terminal connected to the signal output terminal of the modem 11. The pulse width modulation circuit 112 performs pulse width modulation on the digital modulation signal output from the modem 11 and outputs a digital modulation signal after pulse width modulation.
The setting circuit 113 is a circuit that sets different operating conditions for the pulse width modulation circuits 111 and 112.
 次に動作について説明する。
 変調信号出力回路部92以外は、上記実施の形態8~10と同様であるため、ここでは、変調信号出力回路部92について説明する。
 設定回路113は、パルス幅変調回路111,112に対して異なる動作条件を設定する。
Next, the operation will be described.
Since the configuration other than the modulation signal output circuit section 92 is the same as that of the above-described eighth to tenth embodiments, the modulation signal output circuit section 92 will be described here.
The setting circuit 113 sets different operating conditions for the pulse width modulation circuits 111 and 112.
 パルス幅変調回路111は、モデム11からディジタル変調信号を受けると、設定回路113によって設定された動作条件にしたがって、そのディジタル変調信号をパルス幅変調し、パルス幅変調後のディジタル変調信号を高周波回路21に出力する。
 パルス幅変調回路112は、モデム11からディジタル変調信号を受けると、設定回路113によって設定された動作条件にしたがって、そのディジタル変調信号をパルス幅変調し、パルス幅変調後のディジタル変調信号を高周波回路22に出力する。
When the pulse width modulation circuit 111 receives the digital modulation signal from the modem 11, the pulse width modulation circuit 111 performs pulse width modulation on the digital modulation signal in accordance with the operation condition set by the setting circuit 113, and converts the digital modulation signal after the pulse width modulation into a high frequency circuit. To 21.
When the pulse width modulation circuit 112 receives the digital modulation signal from the modem 11, the pulse width modulation circuit 112 performs pulse width modulation on the digital modulation signal in accordance with the operation condition set by the setting circuit 113, and converts the digital modulation signal after the pulse width modulation into a high frequency circuit 22 to output.
 ここでは、設定回路113が、パルス幅変調回路111,112に対して異なる動作条件を設定しているので、回路構成が異なる図9のパルス幅変調回路101,102と同様に、パルス幅変調回路111から発生するノイズの成分と、パルス幅変調回路112から発生するノイズの成分とはインコヒーレントになる。
 一方、パルス幅変調回路111,112は、モデム11から出力された同一のディジタル変調信号をパルス幅変調するものであるため、パルス幅変調回路111から出力されるディジタル変調信号の所望信号成分と、パルス幅変調回路112から出力されるディジタル変調信号の所望信号成分とはコヒーレントになる。
 このように、ノイズ成分がインコヒーレントになって、所望信号成分がコヒーレントになるのは、回路構成が同一である図4のΔΣ変調回路51,52に対して異なる動作条件を設定したとき、ΔΣノイズ成分がインコヒーレントになって、所望信号成分がコヒーレントになるのと同様である。
Here, since the setting circuit 113 sets different operating conditions for the pulse width modulation circuits 111 and 112, the pulse width modulation circuit is similar to the pulse width modulation circuits 101 and 102 of FIG. The noise component generated from 111 and the noise component generated from the pulse width modulation circuit 112 become incoherent.
On the other hand, since the pulse width modulation circuits 111 and 112 perform pulse width modulation on the same digital modulation signal output from the modem 11, a desired signal component of the digital modulation signal output from the pulse width modulation circuit 111, and The desired signal component of the digital modulation signal output from the pulse width modulation circuit 112 becomes coherent.
As described above, the noise component becomes incoherent and the desired signal component becomes coherent when ΔΣ modulation circuits 51 and 52 in FIG. 4 having the same circuit configuration are set with different operating conditions. This is the same as when the noise component becomes incoherent and the desired signal component becomes coherent.
 以上で明らかなように、この実施の形態11によれば、変調信号出力回路部92が、回路構成が同一のパルス幅変調回路111,112を実装するとともに、パルス幅変調回路111,112に対して異なる動作条件を設定する設定回路113を実装するように構成したので、上記実施の形態8と同様に、ディジタル変調信号のパルス幅変調に伴うノイズを低減して、SNRを高めることができるほか、回路構成が異なるパルス幅変調回路101,102を実装する場合よりも、パルス幅変調回路111,112の回路開発に要する負荷を軽減することができる効果を奏する。 As is apparent from the above, according to the eleventh embodiment, the modulation signal output circuit unit 92 mounts the pulse width modulation circuits 111 and 112 having the same circuit configuration, and the pulse width modulation circuits 111 and 112 Since the setting circuit 113 for setting different operating conditions is mounted, the noise accompanying the pulse width modulation of the digital modulation signal can be reduced and the SNR can be increased as in the eighth embodiment. As compared with the case where the pulse width modulation circuits 101 and 102 having different circuit configurations are mounted, the load required for circuit development of the pulse width modulation circuits 111 and 112 can be reduced.
実施の形態12.
 上記実施の形態8~11では、変調信号出力回路部91(または、変調信号出力回路部92)が1個のモデム11を実装し、モデム11が同一のディジタル変調信号をパルス幅変調回路101,102(または、パルス幅変調回路111,112)に出力するものを示したが、変調信号出力回路部が、互いに同一のディジタル変調信号を生成する複数のモデムを実装し、複数のモデムと複数の変調信号出力回路部が一対一で接続されているようにしてもよい。
Embodiment 12 FIG.
In the above eighth to eleventh embodiments, the modulation signal output circuit unit 91 (or the modulation signal output circuit unit 92) mounts one modem 11, and the modem 11 transmits the same digital modulation signal to the pulse width modulation circuit 101, 102 (or pulse width modulation circuits 111 and 112), the modulation signal output circuit unit includes a plurality of modems that generate the same digital modulation signal, and a plurality of modems and a plurality of modems. The modulation signal output circuit units may be connected one to one.
 図13はこの発明の実施の形態12によるディジタル送信機の変調信号出力回路部93を示す構成図であり、図13において、図12と同一符号は同一または相当部分を示すので説明を省略する。
 変調信号出力回路部93は、モデム11a,11b、パルス幅変調回路111,112及び設定回路113から構成されている。
 図13では、2個のモデムが実装されている例を示しているが、N個のモデムとN個のパルス幅変調回路が実装されているものであってもよい。
FIG. 13 is a block diagram showing a modulation signal output circuit section 93 of a digital transmitter according to Embodiment 12 of the present invention. In FIG. 13, the same reference numerals as those in FIG.
The modulation signal output circuit unit 93 includes modems 11a and 11b, pulse width modulation circuits 111 and 112, and a setting circuit 113.
Although FIG. 13 shows an example in which two modems are mounted, N modems and N pulse width modulation circuits may be mounted.
 モデム11a,11bが同一のディジタル変調信号を生成する場合、上記実施の形態11と同様の動作を実現することができる。パルス幅変調回路111,112の代わりに、パルス幅変調回路101,102を実装していれば、上記実施の形態8~10と同様の動作を実現することができる。
 さらに、図13の変調信号出力回路部93が、上記実施の形態10における図11の高周波部4と接続される場合、パルス幅変調回路111から高周波回路21に出力されるタイミングと、パルス幅変調回路112から高周波回路22に出力されるタイミングとがずれるように、モデム11a,11bからのディジタル変調信号の出力タイミングを制御すれば、高周波部4のアンテナ41,42から放射されるディジタル変調信号の放射方向を任意の方向に制御することが可能になる。
When the modems 11a and 11b generate the same digital modulation signal, the same operation as in the eleventh embodiment can be realized. If the pulse width modulation circuits 101 and 102 are mounted instead of the pulse width modulation circuits 111 and 112, the same operation as in the eighth to tenth embodiments can be realized.
Further, when the modulation signal output circuit section 93 in FIG. 13 is connected to the high frequency section 4 in FIG. 11 in the tenth embodiment, the timing output from the pulse width modulation circuit 111 to the high frequency circuit 21 and the pulse width modulation If the output timing of the digital modulation signal from the modems 11a and 11b is controlled so that the timing output from the circuit 112 to the high frequency circuit 22 is shifted, the digital modulation signal radiated from the antennas 41 and 42 of the high frequency unit 4 is controlled. The radiation direction can be controlled in an arbitrary direction.
実施の形態13.
 上記実施の形態12では、変調信号出力回路部93が2つのモデム11a,11bを実装し、パルス幅変調回路111から高周波回路21に出力されるタイミングと、パルス幅変調回路112から高周波回路22に出力されるタイミングとがずれるように、モデム11a,11bからのディジタル変調信号の出力タイミングを制御するものを示したが、1つのモデム11とパルス幅変調回路101,102(または、パルス幅変調回路111,112)の間に遅延回路をそれぞれ挿入し、複数の遅延回路によるディジタル変調信号の遅延量を制御するようにしてもよく、この場合も、高周波部4のアンテナ41,42から放射されるディジタル変調信号の放射方向を任意の方向に制御することが可能になる。
Embodiment 13 FIG.
In the twelfth embodiment, the modulation signal output circuit unit 93 mounts the two modems 11a and 11b and outputs the timing from the pulse width modulation circuit 111 to the high frequency circuit 21, and from the pulse width modulation circuit 112 to the high frequency circuit 22. Although the control of the output timing of the digital modulation signal from the modems 11a and 11b is shown so that the output timing is deviated, one modem 11 and the pulse width modulation circuits 101 and 102 (or the pulse width modulation circuit) are shown. 111, 112) may be inserted respectively to control the amount of delay of the digital modulation signal by the plurality of delay circuits. In this case as well, radiation is radiated from the antennas 41, 42 of the high-frequency unit 4. The radiation direction of the digital modulation signal can be controlled in an arbitrary direction.
 図14はこの発明の実施の形態13によるディジタル送信機の変調信号出力回路部94を示す構成図であり、図14において、図8及び図12と同一符号は同一または相当部分を示すので説明を省略する。
 変調信号出力回路部94は、モデム11、パルス幅変調回路111,112、設定回路113、遅延回路81,82及び遅延制御回路83から構成されている。
FIG. 14 is a block diagram showing a modulation signal output circuit unit 94 of a digital transmitter according to Embodiment 13 of the present invention. In FIG. 14, the same reference numerals as those in FIGS. 8 and 12 indicate the same or corresponding parts. Omitted.
The modulation signal output circuit unit 94 includes a modem 11, pulse width modulation circuits 111 and 112, a setting circuit 113, delay circuits 81 and 82, and a delay control circuit 83.
 次に動作について説明する。
 遅延回路81,82によるディジタル変調信号の遅延量が0である場合、上記実施の形態11,12と同様の動作を実現することができる。パルス幅変調回路111,112の代わりに、パルス幅変調回路101,102を実装していれば、上記実施の形態8~10と同様の動作を実現することができる。
 さらに、図14の変調信号出力回路部94が、上記実施の形態10における図11の高周波部4と接続される場合、パルス幅変調回路111から高周波回路21に出力されるタイミングと、パルス幅変調回路112から高周波回路22に出力されるタイミングとがずれるように、遅延制御回路83が、遅延回路81,82での遅延量を制御すれば、高周波部4のアンテナ41,42から放射されるディジタル変調信号の放射方向を任意の方向に制御することが可能になる。
Next, the operation will be described.
When the delay amount of the digital modulation signal by the delay circuits 81 and 82 is zero, the same operation as in the above-described eleventh and twelfth embodiments can be realized. If the pulse width modulation circuits 101 and 102 are mounted instead of the pulse width modulation circuits 111 and 112, the same operation as in the eighth to tenth embodiments can be realized.
Furthermore, when the modulation signal output circuit unit 94 in FIG. 14 is connected to the high frequency unit 4 in FIG. 11 in the tenth embodiment, the timing output from the pulse width modulation circuit 111 to the high frequency circuit 21 and the pulse width modulation If the delay control circuit 83 controls the delay amount in the delay circuits 81 and 82 so that the timing output from the circuit 112 to the high-frequency circuit 22 is shifted, the digital signal radiated from the antennas 41 and 42 of the high-frequency unit 4 is controlled. The radiation direction of the modulation signal can be controlled in an arbitrary direction.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .
 この発明に係るディジタル送信機は、モデムなどのディジタル回路で生成されたディジタル変調信号を直接高周波帯で送信する必要があるものに適している。 The digital transmitter according to the present invention is suitable for a digital transmitter that needs to directly transmit a digital modulation signal generated by a digital circuit such as a modem in a high frequency band.
 1,5,6,7 変調信号出力回路部、2,3,4 高周波部、11,11a,11b モデム、12,13 ΔΣ変調回路、21,22 高周波回路、23 合成回路、31 合成回路、32 高周波回路、41,42 アンテナ、51,52 ΔΣ変調回路、53 設定回路、61 初期値回路、62 PN信号生成回路、63 加算器、64 ΔΣ変調器、71 初期値回路、72 PN信号生成回路、73 オフセット生成回路、74 加算器(第1の加算器)、75 ΔΣ変調器(第1のΔΣ変調器)、76 加算器(第2の加算器)、77 ΔΣ変調器(第2のΔΣ変調器)、78 加算器(第3の加算器)、81,82 遅延回路、83 遅延制御回路、91,92,93,94 変調信号出力回路部、101,102 パルス幅変調回路、111,112 パルス幅変調回路,113 設定回路。 1, 5, 6, 7 modulation signal output circuit section, 2, 3, 4 high frequency section, 11, 11a, 11b modem, 12, 13 ΔΣ modulation circuit, 21, 22 high frequency circuit, 23 synthesis circuit, 31 synthesis circuit, 32 High frequency circuit, 41, 42 antenna, 51, 52 ΔΣ modulation circuit, 53 setting circuit, 61 initial value circuit, 62 PN signal generation circuit, 63 adder, 64 ΔΣ modulator, 71 initial value circuit, 72 PN signal generation circuit, 73 offset generation circuit, 74 adder (first adder), 75 ΔΣ modulator (first ΔΣ modulator), 76 adder (second adder), 77 ΔΣ modulator (second ΔΣ modulation) ), 78 adder (third adder), 81, 82 delay circuit, 83 delay control circuit, 91, 92, 93, 94 modulation signal output circuit section, 101, 102 pulse width modulation Circuit, 111, 112 pulse width modulation circuit, 113 setting circuit.

Claims (16)

  1.  通信データを変調してディジタル変調信号を生成するモデムと、
     前記モデムにより生成されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力する複数のΔΣ変調回路と、
     前記複数のΔΣ変調回路から出力されたディジタル変調信号における信号レベル又は周波数のうち、少なくとも一方を変換してから変換後の複数のディジタル変調信号を合成、あるいは、前記複数のΔΣ変調回路から出力されたディジタル変調信号を合成してから、前記複数のディジタル変調信号の合成信号における信号レベル又は周波数のうち、少なくとも一方を変換する高周波部とを備え、
     前記複数のΔΣ変調回路の回路構成又は動作条件が異なっていることを特徴とするディジタル送信機。
    A modem that modulates communication data to generate a digitally modulated signal;
    A plurality of ΔΣ modulation circuits for delta-sigma modulating the digital modulation signal generated by the modem and outputting the digital modulation signal after delta-sigma modulation;
    Convert at least one of the signal levels or frequencies in the digital modulation signals output from the plurality of ΔΣ modulation circuits and then combine the converted digital modulation signals, or output from the plurality of ΔΣ modulation circuits. A high-frequency unit that converts at least one of the signal level or the frequency in the combined signal of the plurality of digital modulation signals after combining the digital modulation signal,
    A digital transmitter characterized in that circuit configurations or operating conditions of the plurality of ΔΣ modulation circuits are different.
  2.  前記高周波部は、
     前記ΔΣ変調回路から出力されたディジタル変調信号における信号レベル又は周波数のうち、少なくとも一方を変換する複数の高周波回路と、
     前記複数の高周波回路により変換されたディジタル変調信号を合成する合成回路とから構成されていることを特徴とする請求項1記載のディジタル送信機。
    The high-frequency part is
    A plurality of high-frequency circuits that convert at least one of the signal level or frequency in the digital modulation signal output from the ΔΣ modulation circuit;
    2. The digital transmitter according to claim 1, further comprising a synthesis circuit for synthesizing the digital modulation signals converted by the plurality of high frequency circuits.
  3.  前記高周波部は、
     前記複数のΔΣ変調回路から出力されたディジタル変調信号を合成して、前記複数のディジタル変調信号の合成信号を出力する合成回路と、
     前記合成回路から出力された合成信号における信号レベル又は周波数のうち、少なくとも一方を変換する高周波回路とから構成されていることを特徴とする請求項1記載のディジタル送信機。
    The high-frequency part is
    Combining a digital modulation signal output from the plurality of ΔΣ modulation circuits, and outputting a combined signal of the plurality of digital modulation signals;
    2. The digital transmitter according to claim 1, wherein the digital transmitter comprises a high-frequency circuit that converts at least one of a signal level and a frequency in the combined signal output from the combining circuit.
  4.  前記高周波部は、
     前記ΔΣ変調回路から出力されたディジタル変調信号における信号レベル又は周波数のうち、少なくとも一方を変換する複数の高周波回路と、
     前記高周波回路により変換されたディジタル変調信号を空間に放射する複数のアンテナとから構成されており、
     前記複数のアンテナから放射されたディジタル変調信号が空間で合成されることを特徴とする請求項1記載のディジタル送信機。
    The high-frequency part is
    A plurality of high-frequency circuits that convert at least one of the signal level or frequency in the digital modulation signal output from the ΔΣ modulation circuit;
    It is composed of a plurality of antennas that radiate digitally modulated signals converted by the high-frequency circuit into space,
    2. The digital transmitter according to claim 1, wherein the digital modulation signals radiated from the plurality of antennas are combined in space.
  5.  前記複数のΔΣ変調回路として、回路構成が同一のΔΣ変調回路が実装されており、
     前記複数のΔΣ変調回路に対して異なる動作条件を設定する設定回路を備えたことを特徴とする請求項1記載のディジタル送信機。
    The ΔΣ modulation circuit having the same circuit configuration is mounted as the plurality of ΔΣ modulation circuits,
    2. The digital transmitter according to claim 1, further comprising a setting circuit that sets different operating conditions for the plurality of ΔΣ modulation circuits.
  6.  前記複数のΔΣ変調回路は、
     前記設定回路により設定された動作条件に対応するディジタル変調信号の初期値を出力する初期値回路と、
     前記設定回路により設定された動作条件に対応する疑似雑音信号を生成するPN信号生成回路と、
     動作タイミングを示すクロック群のうち、1番目のクロックが入力されると、前記モデムにより生成されたディジタル変調信号に対して、前記初期値回路から出力された初期値と、前記PN信号生成回路により生成された疑似雑音信号とを加算して、前記初期値及び前記疑似雑音信号を加算したディジタル変調信号を出力し、2番目以降のクロックが入力されると、前記モデムにより生成されたディジタル変調信号に対して、前記PN信号生成回路により生成された疑似雑音信号を加算して、前記疑似雑音信号を加算したディジタル変調信号を出力する加算器と、
     前記加算器から出力されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力するΔΣ変調器とから構成されていることを特徴とする請求項5記載のディジタル送信機。
    The plurality of ΔΣ modulation circuits are
    An initial value circuit for outputting an initial value of a digital modulation signal corresponding to the operating condition set by the setting circuit;
    A PN signal generation circuit that generates a pseudo noise signal corresponding to the operating condition set by the setting circuit;
    When the first clock of the clock group indicating the operation timing is input, the initial value output from the initial value circuit and the PN signal generation circuit with respect to the digital modulation signal generated by the modem The generated pseudo noise signal is added to output a digital modulation signal obtained by adding the initial value and the pseudo noise signal, and when the second and subsequent clocks are input, the digital modulation signal generated by the modem In contrast, an adder that adds a pseudo noise signal generated by the PN signal generation circuit and outputs a digital modulation signal obtained by adding the pseudo noise signal;
    6. The digital transmitter according to claim 5, further comprising a delta-sigma modulator that delta-sigma-modulates the digital modulation signal output from the adder and outputs a digital modulation signal after delta-sigma modulation. .
  7.  前記複数のΔΣ変調回路は、
     前記設定回路により設定された動作条件に対応するディジタル変調信号の第一の初期値と第二の初期値を出力する初期値回路と、
     前記設定回路により設定された動作条件に対応する第一の疑似雑音信号と第二の疑似雑音信号を生成するPN信号生成回路と、
     前記設定回路により設定された動作条件に対応するオフセット信号を生成するオフセット生成回路と、
     動作タイミングを示すクロック群のうち、1番目のクロックが入力されると、前記モデムにより生成されたディジタル変調信号に対して、前記初期値回路から出力された第一の初期値と、前記PN信号生成回路により生成された第一の疑似雑音信号とを加算して、前記第一の初期値及び前記第一の疑似雑音信号を加算したディジタル変調信号を出力し、2番目以降のクロックが入力されると、前記モデムにより生成されたディジタル変調信号に対して、前記PN信号生成回路により生成された第一の疑似雑音信号を加算して、前記第一の疑似雑音信号を加算したディジタル変調信号を出力する第1の加算器と、
     前記第1の加算器から出力されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力する第1のΔΣ変調器と、
     前記1番目のクロックが入力されると、前記第1のΔΣ変調器から出力されたディジタル変調信号に対して、前記初期値回路から出力された第二の初期値と、前記PN信号生成回路により生成された第二の疑似雑音信号と、前記オフセット生成回路により生成されたオフセット信号とを加算して、前記第二の初期値、前記第二の疑似雑音信号及び前記オフセット信号を加算したディジタル変調信号を出力し、前記2番目以降のクロックが入力されると、前記第1のΔΣ変調器から出力されたディジタル変調信号に対して、前記PN信号生成回路により生成された第二の疑似雑音信号と、前記オフセット生成回路により生成されたオフセット信号とを加算して、前記第二の疑似雑音信号及び前記オフセット信号を加算したディジタル変調信号を出力する第2の加算器と、
     前記第2の加算器から出力されたディジタル変調信号をデルタシグマ変調して、デルタシグマ変調後のディジタル変調信号を出力する第2のΔΣ変調器と、
     前記第1のΔΣ変調器から出力されたディジタル変調信号と前記第2のΔΣ変調器から出力されたディジタル変調信号とを加算して、前記加算したディジタル変調信号を出力する第3の加算器とから構成されていることを特徴とする請求項5記載のディジタル送信機。
    The plurality of ΔΣ modulation circuits are
    An initial value circuit for outputting a first initial value and a second initial value of the digital modulation signal corresponding to the operating condition set by the setting circuit;
    A PN signal generation circuit for generating a first pseudo noise signal and a second pseudo noise signal corresponding to the operating conditions set by the setting circuit;
    An offset generation circuit that generates an offset signal corresponding to the operating condition set by the setting circuit;
    When the first clock of the clock group indicating the operation timing is input, the first initial value output from the initial value circuit with respect to the digital modulation signal generated by the modem, and the PN signal The first pseudo noise signal generated by the generation circuit is added to output a digital modulation signal obtained by adding the first initial value and the first pseudo noise signal, and the second and subsequent clocks are input. Then, the first pseudo noise signal generated by the PN signal generation circuit is added to the digital modulation signal generated by the modem, and the digital modulation signal obtained by adding the first pseudo noise signal is obtained. A first adder to output;
    A first ΔΣ modulator that delta-sigma-modulates the digital modulation signal output from the first adder and outputs a digital modulation signal after delta-sigma modulation;
    When the first clock is input, a second initial value output from the initial value circuit and a PN signal generation circuit are applied to the digital modulation signal output from the first ΔΣ modulator. Digital modulation obtained by adding the generated second pseudo noise signal and the offset signal generated by the offset generation circuit and adding the second initial value, the second pseudo noise signal, and the offset signal When the second and subsequent clocks are input, a second pseudo noise signal generated by the PN signal generation circuit is generated with respect to the digital modulation signal output from the first ΔΣ modulator. And the offset signal generated by the offset generation circuit are added to output a digital modulation signal obtained by adding the second pseudo noise signal and the offset signal. A second adder for,
    A second ΔΣ modulator that delta-sigma-modulates the digital modulation signal output from the second adder and outputs a digital modulation signal after delta-sigma modulation;
    A third adder that adds the digital modulation signal output from the first ΔΣ modulator and the digital modulation signal output from the second ΔΣ modulator, and outputs the added digital modulation signal; The digital transmitter according to claim 5, comprising:
  8.  前記モデムとして、互いに同一のディジタル変調信号を生成する複数のモデムが実装されて、前記複数のモデムと前記複数のΔΣ変調回路が一対一で接続されていることを特徴とする請求項1記載のディジタル送信機。 2. The modem according to claim 1, wherein a plurality of modems that generate the same digital modulation signal are mounted as the modem, and the plurality of modems and the plurality of ΔΣ modulation circuits are connected one-to-one. Digital transmitter.
  9.  前記複数のΔΣ変調回路の入力側に設けられ、前記モデムにより生成されたディジタル変調信号を遅延して、遅延後のディジタル変調信号を当該ΔΣ変調回路に出力する複数の遅延回路と、
     前記複数の遅延回路によるディジタル変調信号の遅延量を制御する遅延制御回路とを備えたことを特徴とする請求項1記載のディジタル送信機。
    A plurality of delay circuits that are provided on the input side of the plurality of ΔΣ modulation circuits, delay the digital modulation signal generated by the modem, and output the delayed digital modulation signal to the ΔΣ modulation circuit;
    2. The digital transmitter according to claim 1, further comprising a delay control circuit that controls a delay amount of the digital modulation signal by the plurality of delay circuits.
  10.  通信データを変調してディジタル変調信号を生成するモデムと、
     前記モデムにより生成されたディジタル変調信号をパルス幅変調して、パルス幅変調後のディジタル変調信号を出力する複数のパルス幅変調回路と、
     前記複数のパルス幅変調回路から出力されたディジタル変調信号における信号レベル又は周波数のうち、少なくとも一方を変換してから変換後の複数のディジタル変調信号を合成、あるいは、前記複数のパルス幅変調回路から出力されたディジタル変調信号を合成してから、前記複数のディジタル変調信号の合成信号における信号レベル又は周波数のうち、少なくとも一方を変換する高周波部とを備え、
     前記複数のパルス幅変調回路の回路構成又は動作条件が異なっていることを特徴とするディジタル送信機。
    A modem that modulates communication data to generate a digitally modulated signal;
    A plurality of pulse width modulation circuits that pulse-modulate the digital modulation signal generated by the modem and output a digital modulation signal after pulse width modulation;
    After converting at least one of the signal levels or frequencies in the digital modulation signals output from the plurality of pulse width modulation circuits, combining the plurality of digital modulation signals after conversion, or from the plurality of pulse width modulation circuits A high-frequency unit that synthesizes the output digital modulation signal and then converts at least one of the signal level or frequency in the combined signal of the plurality of digital modulation signals;
    A digital transmitter characterized in that circuit configurations or operating conditions of the plurality of pulse width modulation circuits are different.
  11.  前記高周波部は、
     前記パルス幅変調回路から出力されたディジタル変調信号における信号レベル又は周波数のうち、少なくとも一方を変換する複数の高周波回路と、
     前記複数の高周波回路により変換されたディジタル変調信号を合成する合成回路とから構成されていることを特徴とする請求項10記載のディジタル送信機。
    The high-frequency part is
    A plurality of high frequency circuits for converting at least one of the signal level or frequency in the digital modulation signal output from the pulse width modulation circuit;
    11. The digital transmitter according to claim 10, comprising a synthesis circuit for synthesizing digital modulation signals converted by the plurality of high frequency circuits.
  12.  前記高周波部は、
     前記複数のパルス幅変調回路から出力されたディジタル変調信号を合成して、前記複数のディジタル変調信号の合成信号を出力する合成回路と、
     前記合成回路から出力された合成信号における信号レベル又は周波数のうち、少なくとも一方を変換する高周波回路とから構成されていることを特徴とする請求項10記載のディジタル送信機。
    The high-frequency part is
    Combining a digital modulation signal output from the plurality of pulse width modulation circuits, and outputting a combined signal of the plurality of digital modulation signals;
    11. The digital transmitter according to claim 10, wherein the digital transmitter comprises a high-frequency circuit that converts at least one of a signal level and a frequency in the combined signal output from the combining circuit.
  13.  前記高周波部は、
     前記パルス幅変調回路から出力されたディジタル変調信号における信号レベル又は周波数のうち、少なくとも一方を変換する複数の高周波回路と、
     前記高周波回路により変換されたディジタル変調信号を空間に放射する複数のアンテナとから構成されており、
     前記複数のアンテナから放射されたディジタル変調信号が空間で合成されることを特徴とする請求項10記載のディジタル送信機。
    The high-frequency part is
    A plurality of high frequency circuits for converting at least one of the signal level or frequency in the digital modulation signal output from the pulse width modulation circuit;
    It is composed of a plurality of antennas that radiate digitally modulated signals converted by the high-frequency circuit into space,
    11. The digital transmitter according to claim 10, wherein the digital modulation signals radiated from the plurality of antennas are combined in space.
  14.  前記複数のパルス幅変調回路として、回路構成が同一のパルス幅変調回路が実装されており、
     前記複数のパルス幅変調回路に対して異なる動作条件を設定する設定回路を備えたことを特徴とする請求項10記載のディジタル送信機。
    As the plurality of pulse width modulation circuits, a pulse width modulation circuit having the same circuit configuration is mounted,
    11. The digital transmitter according to claim 10, further comprising a setting circuit for setting different operating conditions for the plurality of pulse width modulation circuits.
  15.  前記モデムとして、互いに同一のディジタル変調信号を生成する複数のモデムが実装されて、前記複数のモデムと前記複数のパルス幅変調回路が一対一で接続されていることを特徴とする請求項10記載のディジタル送信機。 11. A plurality of modems that generate the same digital modulation signal are mounted as the modem, and the plurality of modems and the plurality of pulse width modulation circuits are connected one-to-one. Digital transmitter.
  16.  前記複数のパルス幅変調回路の入力側に設けられ、前記モデムにより生成されたディジタル変調信号を遅延して、遅延後のディジタル変調信号を当該パルス幅変調回路に出力する複数の遅延回路と、
     前記複数の遅延回路によるディジタル変調信号の遅延量を制御する遅延制御回路とを備えたことを特徴とする請求項15記載のディジタル送信機。
    A plurality of delay circuits provided on the input side of the plurality of pulse width modulation circuits, delaying the digital modulation signal generated by the modem, and outputting the delayed digital modulation signal to the pulse width modulation circuit;
    16. The digital transmitter according to claim 15, further comprising a delay control circuit that controls a delay amount of the digital modulation signal by the plurality of delay circuits.
PCT/JP2015/082259 2015-11-17 2015-11-17 Digital transmitter WO2017085789A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017551425A JP6351871B2 (en) 2015-11-17 2015-11-17 Digital transmitter
PCT/JP2015/082259 WO2017085789A1 (en) 2015-11-17 2015-11-17 Digital transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082259 WO2017085789A1 (en) 2015-11-17 2015-11-17 Digital transmitter

Publications (1)

Publication Number Publication Date
WO2017085789A1 true WO2017085789A1 (en) 2017-05-26

Family

ID=58718548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082259 WO2017085789A1 (en) 2015-11-17 2015-11-17 Digital transmitter

Country Status (2)

Country Link
JP (1) JP6351871B2 (en)
WO (1) WO2017085789A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111510119A (en) * 2020-04-30 2020-08-07 矽力杰半导体技术(杭州)有限公司 Frequency modulation circuit and transmitter using the same
RU2758587C1 (en) * 2021-05-11 2021-11-01 Акционерное общество Научно-производственный центр "Электронные вычислительно-информационные системы" (АО НПЦ "ЭЛВИС") High-speed data transmission device using digital modulation and pseudorandom adjustment of the operating frequency (options)
WO2023199394A1 (en) * 2022-04-12 2023-10-19 三菱電機株式会社 Digital sender
WO2023223523A1 (en) * 2022-05-20 2023-11-23 三菱電機株式会社 Delta-sigma modulation circuit, digital transmission circuit, and digital transmitter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003204294A (en) * 2002-01-08 2003-07-18 Nec Saitama Ltd Transmission diversity delay correction system
EP2506426A1 (en) * 2011-03-31 2012-10-03 Alcatel Lucent A method for amplification of a signal, and an amplifying device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003204294A (en) * 2002-01-08 2003-07-18 Nec Saitama Ltd Transmission diversity delay correction system
EP2506426A1 (en) * 2011-03-31 2012-10-03 Alcatel Lucent A method for amplification of a signal, and an amplifying device therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111510119A (en) * 2020-04-30 2020-08-07 矽力杰半导体技术(杭州)有限公司 Frequency modulation circuit and transmitter using the same
CN111510119B (en) * 2020-04-30 2023-10-27 矽力杰半导体技术(杭州)有限公司 Frequency modulation circuit and transmitter using same
RU2758587C1 (en) * 2021-05-11 2021-11-01 Акционерное общество Научно-производственный центр "Электронные вычислительно-информационные системы" (АО НПЦ "ЭЛВИС") High-speed data transmission device using digital modulation and pseudorandom adjustment of the operating frequency (options)
WO2023199394A1 (en) * 2022-04-12 2023-10-19 三菱電機株式会社 Digital sender
WO2023223523A1 (en) * 2022-05-20 2023-11-23 三菱電機株式会社 Delta-sigma modulation circuit, digital transmission circuit, and digital transmitter

Also Published As

Publication number Publication date
JP6351871B2 (en) 2018-07-04
JPWO2017085789A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
US7729445B2 (en) Digital outphasing transmitter architecture
EP1235403B1 (en) Combined frequency and amplitude modulation
JP6351871B2 (en) Digital transmitter
US20030210746A1 (en) Radio transmission frequency digital signal generation
KR101944205B1 (en) System and method for generating a multi-band signal
CN110574294B (en) Radio Frequency (RF) transmitter and noise reduction apparatus
WO2014042270A1 (en) Transmitter
US10523478B1 (en) System and method for generating high speed digitized-RF signals
JP7034316B2 (en) Mixed mode millimeter wave transmitter
US10516420B1 (en) High speed digital bit generator for optical frontal interface
CN101273529B (en) System and method for adjusting dither in a delta sigma modulator
US20040037369A1 (en) Data generating method, data generator, and transmitter using the same
JP5892162B2 (en) Digital modulator
US7460843B2 (en) Amplifier apparatus, polar modulation transmission apparatus and wireless communication apparatus
US8559553B2 (en) Transmitter apparatus
US20220416826A1 (en) Multi-band transmitter
US20090253398A1 (en) Modulation and upconversion techniques
JP6502218B2 (en) Transmit / receive module and active phased array antenna
JP6229738B2 (en) Transmitting apparatus and control method thereof
JP4076914B2 (en) Data generation method, data generator, and transmitter using the same
JP4128488B2 (en) Transmission circuit device and wireless communication device
WO2023199394A1 (en) Digital sender
JP5584180B2 (en) Sampling clock frequency setting method for direct RF modulation transmitter
US6987473B1 (en) Digital signal-rate converter and systems incorporating same
WO2023223523A1 (en) Delta-sigma modulation circuit, digital transmission circuit, and digital transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551425

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908729

Country of ref document: EP

Kind code of ref document: A1