WO2017085766A1 - Centrifugal analysis device and centrifugal analysis chip - Google Patents

Centrifugal analysis device and centrifugal analysis chip Download PDF

Info

Publication number
WO2017085766A1
WO2017085766A1 PCT/JP2015/082133 JP2015082133W WO2017085766A1 WO 2017085766 A1 WO2017085766 A1 WO 2017085766A1 JP 2015082133 W JP2015082133 W JP 2015082133W WO 2017085766 A1 WO2017085766 A1 WO 2017085766A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
analysis
analysis chip
centrifugal
holding unit
Prior art date
Application number
PCT/JP2015/082133
Other languages
French (fr)
Japanese (ja)
Inventor
小林 照幸
内田 剛
千樹 酒井
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2015/082133 priority Critical patent/WO2017085766A1/en
Publication of WO2017085766A1 publication Critical patent/WO2017085766A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to a centrifugal analyzer and a centrifugal analysis chip.
  • a method is known in which a liquid sample is introduced into an analysis rotating device having a disk shape, and the sample is analyzed while the sample is centrifuged by rotating the device (see, for example, Patent Document 1). .
  • the present invention has been made in view of the above, and an object of the present invention is to provide a centrifugal analysis device and a centrifugal analysis chip capable of flexibly selecting analysis items.
  • a centrifugal analyzer is a flat plate having a flow path formed therein, and an analysis chip in which a sample has been placed inside the periphery of the rotating shaft.
  • a plurality of chip holders that can be held in the head, a drive unit that rotates the chip holder around the rotation axis, and a light source that irradiates the analysis chip held by the chip holder with measurement light, And a detector that detects light emitted from the analysis chip by irradiation of the measurement light from the light source.
  • the analysis using the light source and the detection unit can be performed by attaching a plurality of analysis chips around the rotation axis to the chip holding unit rotating around the rotation axis. . Therefore, it is possible to simultaneously perform analysis using centrifugal force related to different analysis items for each analysis chip. Moreover, since the analysis item can be selected by selecting the analysis chip, the analysis item can be selected flexibly.
  • the chip holding portion includes a pedestal that extends along a plane perpendicular to the rotation axis, and a wall that is provided on the pedestal and defines the upper surface of the pedestal. And a chip accommodating region for holding the analysis chip formed by the wall portion.
  • the chip holding part has the chip storage area for holding the analysis chip, the place for holding the analysis chip in the chip holding part becomes clear. On the other hand, it can be easily held. Therefore, the handleability of the centrifugal analyzer by the user of the centrifugal analyzer is improved.
  • the analysis chip may be provided with an inlet for the sample on the radially inner side with respect to the rotation axis, and the width of the sample increases in a plan view from the radially inner side to the radially outer side. .
  • the width increases toward the outside in the radial direction in which the sample moves due to the centrifugal force, so that the flow path design inside the analysis chip can be flexibly performed.
  • the fact that the width increases toward the radially outer side means that the shape of the radially outer end and the radially inner end are different, so that it can be prevented from being mistakenly attached to the centrifugal analyzer, etc. Improved handling by the user.
  • the embodiment may further include a balance adjusting unit that checks the weight balance of the chip holding unit in a state where the analysis chip is held and adjusts the balance based on the result of the checking.
  • the balance adjustment unit checks the weight balance of the chip holding unit and the analysis chip and adjusts it. Therefore, the user of the centrifugal analyzer can hold the analysis chip on the chip holding unit without considering how the analysis chip is arranged. Therefore, the handleability of the centrifugal analyzer by the user of the centrifugal analyzer is improved.
  • the centrifugal analysis chip has a flat plate shape, and a flow path is formed therein, and a centrifugal force generated by rotation about the rotation axis after the sample is put into the inside.
  • a centrifuge analysis chip for moving the sample wherein the sample inlet is provided radially inward with respect to the rotation axis, and the width increases in plan view from the radially inner side to the radially outer side. It is characterized by.
  • the width increases toward the radially outer side where the sample moves due to centrifugal force, it is possible to arrange a plurality around the rotating shaft with respect to the device for performing centrifugal analysis. . Therefore, in the centrifugal analysis using the centrifugal analysis chip, the analysis item can be selected flexibly. Moreover, since the width increases toward the radially outer side where the sample moves due to the centrifugal force, the flow path design inside the analysis chip can be flexibly performed.
  • the width increases toward the outer side in the radial direction prevents the wrong attachment to the apparatus for performing centrifugal analysis, etc., because the shapes of the outer end in the radial direction and the inner end in the radial direction are different. This improves the handling by the user.
  • centrifugal analyzer and a centrifugal analysis chip that can flexibly select analysis items are provided.
  • FIG. 1 is a functional block diagram of a centrifugal analyzer according to an embodiment of the present invention.
  • the centrifugal analyzer 1 includes a light source 10, a detection unit 20, a drive unit 30, a chip holding unit 40, a balance adjustment unit 50, a control unit 60, an output unit 70, and a result. And a storage unit 80.
  • the centrifugal analysis device 1 holds the analysis chip (centrifugation analysis chip) into which the liquid sample has been put in the chip holding unit 40, and then rotates the chip holding unit 40 by driving the driving unit 30 to obtain a centrifugal force. Is a device for moving the sample along the flow path provided in the analysis chip and performing an analysis on the sample in the analysis chip by an optical method.
  • the centrifugal analyzer 1 can perform biochemical analysis or immune analysis related to blood.
  • biochemical analysis relating to blood include measurement of the amount of a specific component.
  • immunoassay related to blood include allergy tests for specific substances (allergens), infectious disease tests, and the like.
  • the light source 10 and the detection unit 20 have a function of performing optical measurement related to the sample in the analysis chip. That is, measurement light is emitted from the light source 10 to the analysis chip.
  • the detection unit 20 has a function of detecting and analyzing light (transmitted light, reflected light, or diffuse reflected light) emitted from the analysis chip in response to the measurement light from the light source 10.
  • the light source 10 is realized by, for example, a halogen lamp.
  • the wavelength of the measurement light from the light source 10 can be appropriately selected according to the sample to be measured.
  • the measurement light from the light source 10 may be single-wavelength light or may include multiple-wavelength light.
  • the centrifugal analyzer 1 has a simpler configuration, the light source 10 may be a single wavelength light source. Note that the light source 10 can be omitted when measurement related to chemiluminescence is performed.
  • the light source 10 irradiates measurement light toward a predetermined area on the analysis chip attached to the chip holding unit 40.
  • the predetermined area is an area to which the measurement target area in the analysis chip is attached in the chip holding unit 40.
  • the detection unit 20 includes a light receiving element that receives light from the analysis chip, converts it into an electrical signal, and outputs it, and a processor that performs arithmetic processing related to the electrical signal from the light receiving element.
  • a light receiving element for example, a photodiode or a CCD (Charge Coupled Device) can be used.
  • a calculation process related to the light detected by the light receiving element a calculation process for performing analysis by converting the light amount of the detected light into some numerical value (for example, a component amount of a specific component) or the like. You may have the function to perform.
  • the driving unit 30 and the chip holding unit 40 have a function of rotating the analysis chip about the rotation axis in order to perform optical measurement related to the sample in the analysis chip.
  • the balance adjustment unit 50 has a function of performing balance adjustment for rotating the analysis chip around the rotation axis.
  • the drive unit 30, the chip holding unit 40, and the balance adjustment unit 50 will be described later.
  • the control unit 60 has a function of controlling the rotation and measurement of the analysis chip.
  • the output unit 70 has a function of outputting the result of analysis by the detection unit 20.
  • the result storage unit 80 has a function of holding the analysis result by the detection unit 20 for a predetermined period.
  • FIG. 2 is a schematic configuration diagram illustrating the driving unit 30 and the chip holding unit 40.
  • 3A is a plan view of the chip holding unit 40
  • FIG. 3B is a perspective view of the chip holding unit 40.
  • the drive unit 30 includes a motor 31 and a drive shaft 32 that rotates by the drive of the motor 31.
  • the drive shaft 32 rotates about the rotation axis X.
  • the chip holding unit 40 includes a disk-shaped pedestal 41 and a wall portion 42 provided on the pedestal 41 and defining the upper surface of the pedestal, and the center O of the pedestal 41 coincides with the rotation axis X. It is attached to the drive shaft 32.
  • the pedestal 41 extends along a plane perpendicular to the rotation axis X.
  • the light source 10 for irradiating the measurement light L 1 to the analysis chip 90 (shown by a broken line) attached to the chip holder 40, and the measurement light from the light source 10 And a detector 20 for detecting the light L2 emitted from the sample in the analysis chip 90.
  • the light source 10 and the detection unit 20 are provided above the chip holding unit 40, but the arrangement of the light source 10 and the detection unit 20 can be changed as appropriate.
  • the apparatus configuration can be simplified. Further, for example, an opening may be provided in the pedestal 41 of the chip holding unit 40 and at least one of the light source 10 and the detection unit 20 may be disposed below.
  • centrifugal analyzer 1 optical analysis using the light source 10 and the detection unit 20 is performed on the analysis chip 90 mounted on the chip holding unit 40, and thus the optical path of the measurement light from the light source 10 and the analysis chip.
  • the centrifugal analyzer 1 is designed so that the optical path from 90 to the detection unit 20 is a dark place.
  • the wall portion 42 on the pedestal 41 in the chip holding portion 40 is provided on the inner side of the annular peripheral wall 42 a provided on the peripheral edge of the disc-shaped pedestal 41 and the peripheral wall 42 a.
  • a partition wall 42b that partitions a region surrounded by the peripheral wall 42a.
  • a plurality of partition walls 42b are provided on the surface of the pedestal 41, and a plurality of partition walls 42b are provided so as to be circularly symmetric from the center O toward the radially outer peripheral wall 42a.
  • FIG. 3 shows an example in which the area surrounded by the peripheral wall 42a is divided into eight by the partition wall 42b. In this case, the regions surrounded by the peripheral wall 42a and the partition wall 42b are each fan-shaped.
  • the partition wall 42b is provided so that the fan-shaped regions formed on the pedestal 41 have the same shape. That is, eight regions having the same shape (fan shape) surrounded by the peripheral wall 42 a and the partition wall 42 b are formed on the base 41. These eight fan-shaped regions serve as chip storage regions 43 for storing analysis chips to be described later. That is, since the chip holding unit 40 includes the eight chip storage areas 43, it can store eight analysis chips.
  • the number of analysis chips that can be held by the chip holding unit 40 can be changed according to the shape of the analysis chip.
  • the number of analysis chips that can be held by the chip holding unit 40 can be changed by changing the number of chip receiving regions 43 formed on the base 41 of the chip holding unit 40 in accordance with the shape of the analysis chip. . That is, the maximum number of analysis chips that can be held by the chip holding unit 40 is not limited to eight.
  • “accommodating” the analysis chip 90 in the chip holder 40 means that the movement of the analysis chip 90 can be restricted when the chip holder 40 including the base 41 rotates. Means. Therefore, the height of the peripheral wall 42a and the partition wall 42b can be set regardless of the thickness of the analysis chip. And when the analysis chip 90 is accommodated in the chip accommodation region 43 surrounded by the peripheral wall 42a and the partition wall 42b, the case where the upper surface of the analysis chip is higher than the peripheral wall 42a and the partition wall 42b, As long as the movement of the analysis chip 90 is restricted, it can be said that the analysis chip 90 is accommodated.
  • FIG. 4A is a plan view of the analysis chip
  • FIG. 4B is a view taken along arrow IVB-IVB in FIG. 4A.
  • the analysis chip 90 is a flat plate-like member and has a fan shape in plan view.
  • the outer shape of the analysis chip 90 is a shape corresponding to the chip accommodation region 43 formed by the peripheral wall 42a and the partition wall 42b.
  • the thickness of the analysis chip 90 is about 1 mm to 10 mm.
  • the length in the radial direction is about 30 mm to 100 mm.
  • the size of the analysis chip 90 is appropriately selected depending on the type of sample, analysis items, and the like.
  • the center angle (inner angle) of the fan-shaped analysis chip 90 shown in FIG. 4 is set to about 45 °, the center angle can be changed as appropriate.
  • the central angle is reduced, the number of analysis chips that can be held by the chip holding unit 40 can be increased.
  • the area of the analysis chip 90 area of the main surface
  • various modifications such as increasing the internal flow path can be added.
  • the analysis chip 90 in order to irradiate the measurement light for optical measurement from the outside of the analysis chip 90, at least a region through which the measurement light passes and a region through which light emitted from the sample in the analysis chip 90 through the measurement light irradiation passes. Is formed of a light transmissive material. Further, the material or the like constituting the analysis chip 90 may be selected according to the sample, the analysis reagent, or the like put in the inside.
  • the number of analysis items (the number of items to be measured) per chip related to the sample put into the inside is set to be small (about 1-2). Even in the case of designing to perform analysis related to a plurality of items in the same analysis chip 90, it is preferable to select analysis items that are strongly related to each other. By setting the number of analysis items per chip small, it is possible to flexibly select analysis items by the user of the centrifugal analyzer 1.
  • an inlet 91 for introducing a sample is provided on the center side of the fan shape, and the internal flow path extends from the inlet provided on the center side of the fan shape to the arc side. Formed towards.
  • the outer shape of the analysis chip 90 is fan-shaped, and the width of the analysis chip 90 gradually increases from the insertion port 91 outward in the radial direction. Therefore, the flow path design inside the analysis chip 90 can be flexibly performed.
  • the design of the flow path in the analysis chip 90 can be changed as appropriate according to the analysis item.
  • a case where the analysis chip 90 is used for blood biochemical analysis will be described. More specifically, it is formed in the analysis chip 90 when optically measuring the result of the stepwise reaction with two types of reagents in the serum or plasma component obtained by removing the blood cell component from the blood using the analysis chip 90.
  • An example of the flow path will be described.
  • a blood cell separation unit 92 is formed continuously with the insertion port 91. Further, the radially outer end 92 a of the blood cell separation unit 92 is closed, and the blood cell component stays at the end 92 a of the blood cell separation unit 92 due to the centrifugal force generated by rotating the analysis chip 90.
  • the flow path is formed so that the serum or plasma component from which the blood cell component is separated from the blood moves to the first reaction unit 93 by centrifugal force due to rotation.
  • a first reagent holding unit 94 connected to the first reaction unit 93 via a flow path is provided on the radially inner side of the first reaction unit 93.
  • the first reagent is stored in the first reagent holding unit 94 in advance. Therefore, in the 1st reaction part 93, the serum or plasma part moved by the centrifugal force and the 1st reagent mix, and the reaction by a 1st reagent arises.
  • a flow path that is continuous radially outward from the first reaction section 93 is further provided, and a second reaction section 95 is provided downstream of the flow path.
  • a second reagent holding unit 96 connected to the second reaction unit 95 via a flow path is provided on the radially inner side of the second reaction unit 95.
  • the second reagent is stored in advance in the second reagent holding unit 96. Therefore, in the second reaction unit 95, the serum or plasma part after the reaction with the first reagent moved by the centrifugal force is mixed with the second reagent, and a reaction by the second reagent occurs.
  • the inside of the analysis chip 90 that is, the blood cell separation unit 92, the first reaction unit 93, the first reagent holding unit 94, the second reaction unit 95, the second reagent holding unit 96, and the flow path connecting them.
  • the length, size, arrangement, and the like are designed in consideration of the centrifugal force applied to the analysis chip 90, the moving speed of the sample to be analyzed, the reaction speed with the reagent, and the like.
  • a flow path may be provided after the second reaction unit 95.
  • the design of the flow path in the analysis chip 90 can be changed as appropriate.
  • the first reagent and the second reagent used in the analysis chip 90 are appropriately selected according to the analysis item in the analysis chip 90.
  • a mixed solution of dehydrogenase and L-aspartic acid and a mixed solution of L-aspartic acid and ⁇ -ketoglutaric acid can be used as the second reagent, respectively, but are not limited to these reagents.
  • the above-described analysis chip 90 can be created by, for example, overlapping two plate-like members as shown in FIG.
  • the analysis chip 90 is disposed on the upper side of the analysis chip 90, and has a first member 97 provided with a recess corresponding to a flow path including the input port 91, and the like.
  • positioned at the side is shown.
  • the second member 98 is overlapped with the first member 97 to constitute an inner channel such as an internal flow path and a reaction part.
  • the reagent held in the first reagent holding unit 94 and the second reagent holding unit 96 is transferred to the first reagent holding unit 94 and the second reagent holding unit 96 before the first member 97 and the second member 98 are overlapped. It is thrown in.
  • the analysis chip 90 is not limited to the method shown in FIG. 4B, and can be created using a known microfluidic chip ( ⁇ TAS: Total Analysis System) manufacturing method or the like.
  • the flow path of the analysis chip 90 is designed so that it can be used even when the analysis items (items to be subjected to optical measurement) related to the sample to be inserted are different, Manufacturing costs of a plurality of types of analysis chips 90 manufactured every time can be reduced. In this case, since the analysis chip 90 can be applied to other analysis items by changing the type of reagent put into the first reagent holding unit 94, the second reagent holding unit 96, etc., the manufacture of the chip Cost can be suppressed.
  • the analysis chip 90 has the same outer shape even when the analysis items relating to the sample put in the inside are different as described above. This is because the analysis chip 90 can be accommodated anywhere in the plurality of chip accommodation regions 43 of the centrifugal analyzer 1. Therefore, the outline of the analysis chip 90 cannot distinguish items that can be analyzed using the chip. Thus, a code (for example, a 2D barcode) corresponding to an item that can be analyzed can be attached to the front or back surface of the analysis chip 90. In this case, by providing the centrifugal analyzer 1 with a means for reading the code, the centrifugal analyzer 1 can automatically determine items to be analyzed using the analysis chip 90.
  • a code for example, a 2D barcode
  • the analysis chip 90 is prepared (S01).
  • the preparation of the analysis chip 90 means that a sample is input to the input port 91 of the analysis chip 90.
  • the method of loading the sample into the analysis chip 90 is not particularly limited, but can be loaded into the loading port 91 using an instrument such as a dropper, for example.
  • the sample since the sample is liquid, the sample can be adsorbed by another member such as a sponge and then introduced into the insertion port 91.
  • the input amount of the sample can be changed as appropriate, but can be about 1 ⁇ L to 30 ⁇ L. It should be noted that the input amount of the sample may be changed depending on the shape and length of the flow path.
  • the analysis chip 90 is attached to the chip holder 40 of the centrifugal analyzer 1 (S02). Specifically, the analysis chip 90 is accommodated in the chip accommodation area 43 of the chip holding unit 40. Since the outer shape of the analysis chip 90 corresponds to the shape of the chip storage area 43, the analysis chip 90 is fixed to the chip holder 40 by storing the analysis chip 90 in the chip storage area 43. It becomes a state. In the case of the chip holding unit 40 of this embodiment, since up to eight analysis chips 90 can be attached, one or more analysis chips 90 are prepared according to the item to be analyzed, and the chip holding unit 40 is prepared. Attach to. Note that the chip holding unit 40 may further include a cover or the like that supports the analysis chip 90 from above.
  • the weight balance is confirmed by the analysis chip 90 attached to the base 41 of the chip holding unit 40 (S11).
  • the analysis chip 90 is attached to the chip holder 40 by being accommodated in the chip accommodation region 43.
  • the weight balance may be biased. It is conceivable that the center of gravity of the holding unit 40 and the analysis chip 90 is at a position different from the rotation axis X. If the tip holder 40 is rotated while the center of gravity of the tip holder 40 and the analysis chip 90 is away from the rotation axis X, shaft shake or the like may occur and the apparatus may be damaged.
  • the weight balance is confirmed by confirming the arrangement of the analysis chip 90 on the chip holding unit 40 before performing the analysis using the centrifugal force.
  • the method for checking the weight balance is not particularly limited. For example, when the code is read (S03), the arrangement of the analysis chip 90 on the chip holding unit 40 (in which chip storage area 43 the analysis chip 90 is stored) ) Can be considered.
  • a device for detecting the center of gravity of the chip holding unit 40 may be provided separately.
  • the control unit 60 determines whether or not adjustment is necessary (S12). If it is determined that adjustment is not necessary (S12-NO), the process proceeds to the next step. On the other hand, when it is determined that adjustment is necessary (S12-YES), balance adjustment is performed (S13).
  • FIG. 7A An example of a balance adjustment method by the balance adjustment unit 50 will be described with reference to FIG. As shown in FIG. 7A, it is assumed that the analysis chip 90 is housed in only one chip housing area 43 among the 8 chip housing areas 43 of the chip holding unit 40. In this case, the center of gravity of the chip holding unit 40 and the analysis chip 90 is moved toward the analysis chip 90 with respect to the center O of the chip holding unit 40.
  • the analysis chip 90 is used for the chip storage area 43A that is symmetric with respect to the chip storage area 43 in which the analysis chip 90 is stored via the center O.
  • a weight W capable of returning the moved center of gravity with respect to the center O is disposed.
  • the weight of the weight W for returning the center of gravity moved by the analysis chip 90 to the center O may vary depending on the analysis chip 90. However, for example, if the weight of the chip and the amount of the sample to be input at the time of analysis are unified for the analysis chips 90 having different analysis items, the weight of the analysis chip 90 after the sample is input becomes substantially the same. be able to.
  • the centrifugal analyzer 1 side can detect in which chip storage area 43 the analysis chip 90 is stored, it can be known in advance how much the center of gravity moves according to the arrangement of the analysis chip 90. Adjustment of the weight balance (movement of the center of gravity) can be realized with a simpler device configuration.
  • the shape of the weight W can be changed as appropriate. For example, if the shape is the same as that of the analysis chip 90, the weight W is accommodated in the chip accommodation area 43 so that the weight W is also rotated when the chip holding unit 40 rotates. It can be held stably. Moreover, since the weight W is previously accommodated in the centrifugal analyzer 1, it is possible to reduce the size of the apparatus by reducing the weight W. However, since it is necessary to regulate the movement of the weight W due to the centrifugal force due to the rotation of the tip holding part 40, a recess capable of accommodating the weight W is provided in advance, the magnetic force by the electromagnet, etc. The weight W used must be fixed to the chip holding unit 40.
  • the weight W When the weight W is not used, it is necessary to arrange the weight W at a position that does not affect the center of gravity of the chip holding unit 40 and the analysis chip 90. Therefore, the weight W is disposed above (or below) the chip holding unit 40 so as to be separated. Alternatively, the weight W can be arranged above the center O of the chip holding unit 40 as a position that does not affect the center of gravity of the chip holding unit 40 and the analysis chip 90.
  • the centrifugal analyzer 1 after performing the balance adjustment (S04) using the weight W by the balance adjustment unit 50 as described above, optical measurement and analysis by the light source 10 and the detection unit 20 are performed ( S05).
  • the chip holding unit 40 is rotated by driving the driving unit 30.
  • the centrifugal force applied to the analysis chip 90 by the rotation of the chip holding unit 40 can be set to 300 to 3000 G, for example.
  • the sample in the analysis chip 90 and the reagent put in advance move along the flow path, and a predetermined reaction is performed.
  • the rotating analysis chip 90 is irradiated with the measurement light from the light source 10, and the light emitted from the sample in the analysis chip 90 due to the measurement light irradiation is detected by the detection unit 20.
  • the target for optical measurement is the serum or plasma portion that has reacted with the second reagent. That is, the 2nd reaction part 95 turns into a measurement object area
  • the light L2 emitted from the sample in the chip 90 is detected by the detection unit 20. Since the analysis chip 90 rotates about the rotation axis X on the chip holding unit 40, the light L2 detected by the detection unit 20 is emitted from the sample of the second reaction unit 95 in the analysis chip 90. It can be considered that light different from the emitted light is included. On the other hand, in the centrifugal analyzer 1, light different from the light from the sample in the analysis chip 90 (for example, light from the material of the analysis chip 90) based on the data of the light L ⁇ b> 2 detected by the detection unit 20. It is possible to cope with this by providing a configuration in which the data detected is removed and used for analysis.
  • the centrifugal analyzer 1 grasps in advance the rotational speed of the chip holding unit 40 and the arrangement of the analysis chip 90 on the chip holding unit 40, so that the measurement light L ⁇ b> 1 from the light source 10 is transmitted to the analysis chip 90.
  • the timing of irradiating the second reaction unit 95 can be specified. Therefore, it can be specified that the light L2 detected by the detection unit 20 at that timing is light from the sample in the second reaction unit 95.
  • the detection unit 20 specifies information related to light from the sample in the second reaction unit 95 based on the rotation speed of the chip holding unit 40 and the arrangement of the analysis chip 90 on the chip holding unit 40. Thus, data used for optical measurement and analysis (S05) may be selected.
  • the above method can also be applied to distinguishing light from a plurality of analysis chips 90 when a plurality of types of analysis chips 90 having different analysis items are arranged on the chip holding unit 40. Accordingly, the centrifugal analyzer 1 can collectively perform optical measurement and analysis related to a plurality of analysis items.
  • the timing of optical measurement and analysis by the light source 10 and the detection unit 20 can be changed according to the analysis item.
  • the analysis result in the detection unit 20 is stored in the result storage unit 80 and is output from the output unit 70 (S06).
  • the analysis by the centrifugal analyzer 1 is completed.
  • a plurality of analysis chips 90 are arranged around the rotation axis X with respect to the chip holding unit 40 that is disk-shaped and rotates around the rotation axis X. Can be installed and analyzed. Therefore, analysis using centrifugal force related to a plurality of analysis items can be performed simultaneously.
  • a disk-shaped cartridge capable of performing analysis related to a plurality of analysis items using centrifugal force at a time has been known.
  • analysis items are determined in advance in such a disk-shaped cartridge, for example, even when it is desired to know the analysis results of only some analysis items, it is necessary to perform analysis for all analysis items. There was a possibility of waste in terms of cost.
  • a disk-shaped cartridge capable of performing an analysis related to only one analysis item was also known, but in the case of this cartridge, it is difficult to simultaneously perform an analysis related to a plurality of analysis items, The time required for a series of analyzes can be prolonged.
  • the chip holding unit is driven by the drive unit 30 with a plurality of fan-shaped analysis chips 90 attached to the periphery of the rotation axis X with respect to the chip holding unit 40.
  • the analysis concerning a plurality of analysis items can be performed at a time.
  • analysis can be performed by selecting different analysis chips 90 for each analysis item. Therefore, when it is desired to know the analysis result of only a specific analysis item, only the analysis chip 90 related to the item can be used, and when it is desired to know the analysis result of a plurality of analysis items, a plurality of analysis items are used.
  • a plurality of types of analysis chips 90 corresponding to the above can be used.
  • the chip holding unit 40 has the chip storage area 43 in which the analysis chip 90 can be stored, the place where the analysis chip 90 is held becomes clear. Therefore, since the analysis chip 90 can be easily held on the chip holding unit 40, the handleability of the centrifugal analyzer 1 by the user of the centrifugal analyzer is improved.
  • the analysis chip 90 used in the centrifugal analyzer 1 gradually increases in width from the sample inlet 91 toward the radially outer side.
  • the chip housing area 43 that houses the analysis chip 90 in the chip holding unit 40 also corresponds to the outer shape of the analysis chip 90. Therefore, the flow path design inside the analysis chip 90 can be flexibly performed.
  • the configuration in which the width of the analysis chip 90 increases from the radially inner side to the radially outer side means that the width of the analysis chip 90 at the radially inner end and the analysis tip at the radially outer end. It means that the width of the chip 90 is different from each other.
  • the analysis chip 90 in the present embodiment “the width of which increases in a plan view from the radially inner side to the radially outer side” refers to the analysis chip 90 at the radially inner end portion.
  • the width and the width of the analyzing chip 90 at the radially outer end are different from each other. Therefore, for example, a chip whose width is not changed or narrowed partially when viewed from the radially inner side to the radially outer side is also included in the analysis chip 90 according to the present embodiment.
  • the width of the portion may be reduced. Even if it has a shape, it can be included in the analysis chip 90 according to the present embodiment “its width increases in a plan view from the radially inner side to the radially outer side”.
  • the balance adjusting unit 50 has a function of checking the weight balance of the chip holding unit 40 and the analysis chip 90 and adjusting the weight balance. Therefore, the user of the centrifugal analyzer 1 and the analysis chip 90 can attach the analysis chip 90 to the chip holder 40 without considering how the analysis chip 90 is arranged. . Therefore, the handleability of the centrifugal analyzer 1 by the user of the centrifugal analyzer 1 and the analysis chip 90 is improved.
  • the shapes of the centrifugal analyzer 1 and the analysis chip 90 described in the above embodiment can be changed as appropriate.
  • the chip holding area 43 is formed by the pedestal 41 and the wall 42 in the chip holding part 40 has been described.
  • the chip holding unit 40 can hold a plurality of analysis chips 90 and can reliably support (fix) the analysis chip 90 even when rotated about the rotation axis X.
  • Any possible configuration can be changed as appropriate. Therefore, for example, by providing a projecting portion or the like projecting from the pedestal 41 instead of the wall portion 42, it is possible to change the configuration to hold the analysis chip 90.
  • the peripheral wall 42a and the partition wall 42b may be discontinuous. Further, the peripheral wall 42a and the partition wall 42b need not be continuous.
  • the chip holding unit 40 when the chip holding unit 40 includes a cover that supports the analysis chip 90 from above, the chip holding unit 40 is provided on the base 41 in order to restrict the movement of the analysis chip 90 in the chip holding unit 40.
  • a part of the function of the wall portion 42 may be provided on the cover side.
  • a part or all of the peripheral wall 42a of the wall portion 42 may be provided on the upper cover on the pedestal 41 side.
  • a part or all of the inner partition wall 42b may be provided in the upper cover.
  • a wall portion may be formed on both the pedestal 41 and the cover so that the movement of the analysis chip 90 relative to the chip holding portion 40 can be restricted when combined.
  • the “cover that supports the analysis chip 90 from above” may be a cover provided inside the apparatus, or functions as a cover that supports the analysis chip 90 with respect to a cover that divides the inside and outside of the apparatus.
  • the structure to which the part is attached may be sufficient. In any case, since the portion functioning as the cover needs to support the analysis chip 90 during rotation, it can be rotated around the rotation axis X together with the base 41.
  • the chip holding unit 40 may be configured to include a pedestal 41 and a plurality of chip accommodation units having recesses that can accommodate one analysis chip 90 disposed on the pedestal 41.
  • the balance adjustment by the balance adjusting portion 50 can also be realized by moving the plurality of chip accommodating portions.
  • FIG. 8A it is assumed that eight chip accommodating portions 45 are arranged on the base 41 of the chip holding portion 40.
  • the analysis chip 90 is accommodated only in one chip accommodating portion 45. In this case, the center of gravity of the chip holding unit 40 and the analysis chip 90 is moved toward the analysis chip 90 with respect to the center O of the chip holding unit 40.
  • the analysis chip is moved by moving the symmetric chip storage section 45 via the center O with respect to the chip storage section 45 in which the analysis chip 90 is stored.
  • the center of gravity moved by 90 is returned to the center O.
  • the chip housing portions 45B and 45C adjacent to the chip housing portion 45A facing the chip housing portion 45 housing the analysis chip 90 are moved to the chip housing portion 45A side.
  • the load on the chip accommodating portion 45A side is increased to move the center of gravity toward the center O side.
  • a rail for prescribing the movement path of the chip accommodating part 45 is provided on the pedestal 41 in advance, and the chip accommodating part 45 is moved along the rail.
  • the chip holding unit 40 can be appropriately changed, and the balance adjustment method by the balance adjusting unit 50 can be appropriately changed according to the change in the shape of the chip holding unit 40.
  • the centrifugal analyzer 1 can be configured not to include the balance adjusting unit 50. In this case, the user can use the centrifugal analyzer 1 to adjust the balance when attaching the analysis chip 90 to the chip holding unit 40. Even in this case, the analysis item can be selected flexibly by selecting the analysis chip 90.
  • the analysis chip 90 has a fan shape in plan view.
  • the shape of the analysis chip 90 in plan view is not limited to the above.
  • the analysis chip 90 in the case of an apparatus configuration in which the drive shaft 32 of the drive unit 30 passes through the opening formed in the center of the pedestal 41, the analysis chip 90 has an annular shape around the center opening of the pedestal 41 (donut Arranged).
  • the analysis chip 90 can have a shape that is not a sector shape but a part of the ring. Even when the analysis chip 90 has a shape obtained by cutting a part of the ring, the width of the analysis chip 90 at the radially inner end and the width of the analysis chip 90 at the radially outer end are different from each other.
  • the analysis chip 90 may have a shape such as a triangle, for example, but when a plurality of analysis chips 90 are attached to the chip holding unit 40, a gap generated between adjacent analysis chips 90. Since the ratio of the analysis chip 90 occupying the chip holding part 40 can be increased when the outer shape of the analysis chip 90 is as small as possible, the flow path design inside the analysis chip 90 can be made flexible. It can be carried out.
  • the shape of the pedestal 41 can be changed as appropriate.
  • the case where the pedestal 41 has a disk shape has been described.
  • it may be a flat plate member having a polygonal shape in plan view.
  • the shape of the pedestal 41 is not limited to a disk shape as long as the pedestal 41 is configured to be rotatable around the rotation axis X without causing shaft shake.
  • the analysis object using the centrifuge analyzer 1 and the analysis chip 90 is blood. It is not limited to the analysis of.
  • Other objects of analysis using the centrifugal analyzer 1 and the analysis chip 90 include, for example, environmental analysis such as water quality analysis, agricultural chemical analysis, food analysis such as nutritional components or additives, and the like.

Abstract

A centrifugal analysis device is provided with: a chip-holding part with which it is possible to hold a plurality of flat analysis chips around the axis of rotation, channel being formed in the interior of each of the analysis chips, and a specimen being introduced into the interior of each of the analysis chips; a drive part for causing the chip-holding part to rotate about the axis of rotation; a light source with which the analysis chips held by the chip-holding part are irradiated with measurement light; and a detection part for detecting light emitted from the analysis chips due to having been irradiated with the measurement light from the light source.

Description

遠心分析装置及び遠心分析用チップCentrifugal analyzer and centrifugal analysis chip
 本発明は、遠心分析装置及び遠心分析用チップに関する。 The present invention relates to a centrifugal analyzer and a centrifugal analysis chip.
 ディスク形状を有する分析用回転装置に対して液状の試料を投入し、装置を回転させることで試料の遠心分離を行いながら試料の分析を行う手法が知られている(例えば、特許文献1参照)。 A method is known in which a liquid sample is introduced into an analysis rotating device having a disk shape, and the sample is analyzed while the sample is centrifuged by rotating the device (see, for example, Patent Document 1). .
特許第3061414号公報Japanese Patent No. 3061414
 しかしながら、特許文献1に記載の装置によれば、分析項目に応じて使用する分析用回転装置を選択する必要がある。したがって、例えば、試料に応じて分析項目を変更したい場合であっても、分析用回転装置単位での変更しかできないため、分析項目の選択の柔軟性に改善の余地があった。 However, according to the apparatus described in Patent Document 1, it is necessary to select an analysis rotating apparatus to be used according to the analysis item. Therefore, for example, even when it is desired to change the analysis item according to the sample, there is room for improvement in the flexibility of selection of the analysis item because it can only be changed in units of the rotating device for analysis.
 本発明は上記を鑑みてなされたものであり、分析項目の選択を柔軟に行うことが可能な遠心分析装置及び遠心分析用チップの提供を目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a centrifugal analysis device and a centrifugal analysis chip capable of flexibly selecting analysis items.
 上記目的を達成するため、本発明の一形態に係る遠心分析装置は、平板状であって内部に流路が形成されると共に当該内部に試料が投入された分析用チップを、回転軸の周囲に複数保持可能なチップ保持部と、前記回転軸を中心に前記チップ保持部を回転させる駆動部と、前記チップ保持部により保持された前記分析用チップに対して測定光を照射する光源と、前記光源からの前記測定光の照射によって前記分析用チップから出射される光を検出する検出部と、を備えることを特徴とする。 In order to achieve the above object, a centrifugal analyzer according to one aspect of the present invention is a flat plate having a flow path formed therein, and an analysis chip in which a sample has been placed inside the periphery of the rotating shaft. A plurality of chip holders that can be held in the head, a drive unit that rotates the chip holder around the rotation axis, and a light source that irradiates the analysis chip held by the chip holder with measurement light, And a detector that detects light emitted from the analysis chip by irradiation of the measurement light from the light source.
 上記の遠心分析装置によれば、回転軸を中心に回転するチップ保持部に対して、回転軸の周囲に複数の分析用チップを取り付けて、光源及び検出部を用いた分析を行うことができる。したがって、分析用チップ毎に互いに異なる分析項目に係る遠心力を利用した分析を同時に行うことができる。また、分析用チップの選択により分析項目の選択が可能となるため、分析項目の選択を柔軟に行うことが可能となる。 According to the above centrifugal analyzer, the analysis using the light source and the detection unit can be performed by attaching a plurality of analysis chips around the rotation axis to the chip holding unit rotating around the rotation axis. . Therefore, it is possible to simultaneously perform analysis using centrifugal force related to different analysis items for each analysis chip. Moreover, since the analysis item can be selected by selecting the analysis chip, the analysis item can be selected flexibly.
 ここで、上記作用を効果的に奏する構成として、前記チップ保持部は、前記回転軸に対して垂直な面に沿って延在する台座と、前記台座上に設けられ前記台座上面を区画する壁部と、前記壁部によって形成された前記分析用チップを保持するためのチップ収容領域と、を有する態様とすることができる。 Here, as a configuration that effectively exhibits the above-described operation, the chip holding portion includes a pedestal that extends along a plane perpendicular to the rotation axis, and a wall that is provided on the pedestal and defines the upper surface of the pedestal. And a chip accommodating region for holding the analysis chip formed by the wall portion.
 上記のように、チップ保持部が分析用チップを保持するためのチップ収容領域を有することで、チップ保持部において分析用チップを保持する場所が明確となるため、分析用チップをチップ保持部に対して容易に保持させることができる。したがって、遠心分析装置の使用者による遠心分析装置の取り扱い性が向上する。 As described above, since the chip holding part has the chip storage area for holding the analysis chip, the place for holding the analysis chip in the chip holding part becomes clear. On the other hand, it can be easily held. Therefore, the handleability of the centrifugal analyzer by the user of the centrifugal analyzer is improved.
 また、前記分析用チップは、前記回転軸に対する径方向内側に前記試料の投入口が設けられると共に、径方向内側から径方向外側に向かうにつれて平面視においてその幅が大きくなる態様とすることができる。 In addition, the analysis chip may be provided with an inlet for the sample on the radially inner side with respect to the rotation axis, and the width of the sample increases in a plan view from the radially inner side to the radially outer side. .
 上記の構成の場合、遠心力により試料が移動する径方向外側に向けて幅が大きくなるため、分析用チップの内部の流路設計を柔軟に行うことができる。また、径方向外側に向けて幅が大きくなるということは、径方向外側端部と径方向内側端部の形状が異なるため、遠心分析装置に対して間違えて取り付けること等を防ぐことができ、使用者による取り扱い性が向上する。 In the case of the above configuration, the width increases toward the outside in the radial direction in which the sample moves due to the centrifugal force, so that the flow path design inside the analysis chip can be flexibly performed. In addition, the fact that the width increases toward the radially outer side means that the shape of the radially outer end and the radially inner end are different, so that it can be prevented from being mistakenly attached to the centrifugal analyzer, etc. Improved handling by the user.
 前記分析用チップを保持した状態での前記チップ保持部の重量バランスを確認すると共に、当該確認の結果に基づいてバランスを調整するバランス調整部を更に備える態様とすることができる。 The embodiment may further include a balance adjusting unit that checks the weight balance of the chip holding unit in a state where the analysis chip is held and adjusts the balance based on the result of the checking.
 上記の構成の場合、バランス調整部がチップ保持部及び分析用チップの重量バランスを確認し、これを調整する。したがって、遠心分析装置の使用者は、分析用チップをどのように配置するか等を考慮することなく、分析用チップをチップ保持部に対して保持させることができる。したがって、遠心分析装置の使用者による遠心分析装置の取り扱い性が向上する。 In the case of the above configuration, the balance adjustment unit checks the weight balance of the chip holding unit and the analysis chip and adjusts it. Therefore, the user of the centrifugal analyzer can hold the analysis chip on the chip holding unit without considering how the analysis chip is arranged. Therefore, the handleability of the centrifugal analyzer by the user of the centrifugal analyzer is improved.
 また、本発明の一形態に係る遠心分析用チップは、平板状であって内部に流路が形成されると共に当該内部に試料を投入後に、回転軸を中心とする回転により発生する遠心力によって当該試料を移動させる遠心分析用チップであって、前記回転軸に対する径方向内側に前記試料の投入口が設けられると共に、径方向内側から径方向外側に向かうにつれて平面視においてその幅が大きくなることを特徴とする。 In addition, the centrifugal analysis chip according to one embodiment of the present invention has a flat plate shape, and a flow path is formed therein, and a centrifugal force generated by rotation about the rotation axis after the sample is put into the inside. A centrifuge analysis chip for moving the sample, wherein the sample inlet is provided radially inward with respect to the rotation axis, and the width increases in plan view from the radially inner side to the radially outer side. It is characterized by.
 上記の遠心分析用チップによれば、遠心力により試料が移動する径方向外側に向けて幅が大きくなるため、遠心分析を行う装置に対して回転軸の周囲に複数配置することが可能である。したがって、遠心分析用チップを用いた遠心分析において、分析項目の選択を柔軟に行うことが可能となる。また、遠心力により試料が移動する径方向外側に向けて幅が大きくなるため、分析用チップの内部の流路設計を柔軟に行うことができる。また、径方向外側に向けて幅が大きくなるということは、径方向外側端部と径方向内側端部の形状が異なるため、遠心分析を行う装置に対して間違えて取り付けること等を防ぐことができ、使用者による取り扱い性が向上する。 According to the above-mentioned centrifugal analysis chip, since the width increases toward the radially outer side where the sample moves due to centrifugal force, it is possible to arrange a plurality around the rotating shaft with respect to the device for performing centrifugal analysis. . Therefore, in the centrifugal analysis using the centrifugal analysis chip, the analysis item can be selected flexibly. Moreover, since the width increases toward the radially outer side where the sample moves due to the centrifugal force, the flow path design inside the analysis chip can be flexibly performed. In addition, the fact that the width increases toward the outer side in the radial direction prevents the wrong attachment to the apparatus for performing centrifugal analysis, etc., because the shapes of the outer end in the radial direction and the inner end in the radial direction are different. This improves the handling by the user.
 本発明によれば、分析項目の選択を柔軟に行うことが可能な遠心分析装置及び遠心分析用チップが提供される。 According to the present invention, a centrifugal analyzer and a centrifugal analysis chip that can flexibly select analysis items are provided.
本発明の一実施形態に係る遠心分析装置の機能ブロック図である。It is a functional block diagram of the centrifugal analyzer which concerns on one Embodiment of this invention. 駆動部及びチップ保持部について説明する概略構成図である。It is a schematic block diagram explaining a drive part and a chip | tip holding | maintenance part. チップ保持部についての説明図である。It is explanatory drawing about a chip | tip holding | maintenance part. 分析用チップについての説明図である。It is explanatory drawing about the chip | tip for analysis. 遠心分析装置を用いた分析方法について説明するフロー図である。It is a flowchart explaining the analysis method using a centrifuge analyzer. バランス調整の方法を説明するフロー図である。It is a flowchart explaining the method of balance adjustment. バランス調整部によるバランス調整例について説明する図である。It is a figure explaining the example of balance adjustment by a balance adjustment part. バランス調整部によるバランス調整の他の例について説明する図である。It is a figure explaining other examples of balance adjustment by a balance adjustment part.
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本発明の一実施形態に係る遠心分析装置の機能ブロック図である。図1に示すように、遠心分析装置1は、光源10と、検出部20と、駆動部30と、チップ保持部40と、バランス調整部50と、制御部60と、出力部70と、結果格納部80と、を含んで構成される。遠心分析装置1は、液状の試料を投入した分析用チップ(遠心分析用チップ)をチップ保持部40に保持させた後に、駆動部30の駆動によってチップ保持部40を回転させることで、遠心力によって分析用チップ内に設けられた流路に沿って試料を移動させると共に、光学的手法により分析用チップ内の試料に係る分析を行う装置である。以下、遠心分析装置1による分析対象の試料が血液又は血液に対して何らかの前処理を行った液体である場合について説明する。試料が血液である場合、遠心分析装置1によって血液に係る生化学分析又は免疫分析等を行うことができる。血液に係る生化学分析とは、例えば、特定成分の成分量の測定等が挙げられる。また、血液に係る免疫分析とは、例えば、特定物質(アレルゲン)に対するアレルギー検査、感染症検査等が挙げられる。 FIG. 1 is a functional block diagram of a centrifugal analyzer according to an embodiment of the present invention. As shown in FIG. 1, the centrifugal analyzer 1 includes a light source 10, a detection unit 20, a drive unit 30, a chip holding unit 40, a balance adjustment unit 50, a control unit 60, an output unit 70, and a result. And a storage unit 80. The centrifugal analysis device 1 holds the analysis chip (centrifugation analysis chip) into which the liquid sample has been put in the chip holding unit 40, and then rotates the chip holding unit 40 by driving the driving unit 30 to obtain a centrifugal force. Is a device for moving the sample along the flow path provided in the analysis chip and performing an analysis on the sample in the analysis chip by an optical method. Hereinafter, a case where the sample to be analyzed by the centrifugal analyzer 1 is blood or a liquid obtained by performing some kind of pretreatment on blood will be described. When the sample is blood, the centrifugal analyzer 1 can perform biochemical analysis or immune analysis related to blood. Examples of the biochemical analysis relating to blood include measurement of the amount of a specific component. Examples of the immunoassay related to blood include allergy tests for specific substances (allergens), infectious disease tests, and the like.
 光源10及び検出部20は、分析用チップ内の試料に係る光学測定を行う機能を有する。すなわち、光源10から分析用チップに対して測定光を出射する。また、検出部20は、光源10からの測定光に対応して分析用チップから出射される光(透過光又、反射光又は拡散反射光)を検出すると共にその分析を行う機能を有する。 The light source 10 and the detection unit 20 have a function of performing optical measurement related to the sample in the analysis chip. That is, measurement light is emitted from the light source 10 to the analysis chip. The detection unit 20 has a function of detecting and analyzing light (transmitted light, reflected light, or diffuse reflected light) emitted from the analysis chip in response to the measurement light from the light source 10.
 光源10は、例えばハロゲンランプ等によって実現される。光源10からの測定光の波長は、測定する試料に応じて適宜選択することができる。光源10からの測定光は、単波長の光であってもよいし、複数波長の光が含まれていてもよい。ただし、複数波長の光が含まれる測定光を用いる場合には、分光手段等を別途設ける必要が出てくることが考えられる。例えば、分光フィルタを用いて対象成分の異なるチップの分析を検出することもできるし、グレーチングを使った検出も可能である。もしくは、遠心分析装置1をより簡単な構成とする場合には、光源10を単波長光源とすることが考えられる。なお、化学発光に係る測定を行う場合には、光源10を省略することができる。 The light source 10 is realized by, for example, a halogen lamp. The wavelength of the measurement light from the light source 10 can be appropriately selected according to the sample to be measured. The measurement light from the light source 10 may be single-wavelength light or may include multiple-wavelength light. However, when using measurement light including light of a plurality of wavelengths, it may be necessary to separately provide spectroscopic means. For example, analysis of chips having different target components can be detected using a spectral filter, and detection using grating is also possible. Alternatively, when the centrifugal analyzer 1 has a simpler configuration, the light source 10 may be a single wavelength light source. Note that the light source 10 can be omitted when measurement related to chemiluminescence is performed.
 光源10は、チップ保持部40に取り付けられた分析用チップ上の所定の領域に向けて測定光を照射する。所定の領域とは、チップ保持部40において、分析用チップにおける測定対象領域が取り付けられる領域である。 The light source 10 irradiates measurement light toward a predetermined area on the analysis chip attached to the chip holding unit 40. The predetermined area is an area to which the measurement target area in the analysis chip is attached in the chip holding unit 40.
 検出部20は、分析用チップからの光を受光して電気信号に変換して出力する受光素子と、受光素子からの電気信号に係る演算処理等を行うプロセッサ等を含んで構成される。受光素子としては、例えば、フォトダイオード又はCCD(Charge Coupled Device)等を用いることができる。また、検出部20では、受光素子により検出された光に係る演算処理として、検出された光の光量を何らかの数値(例えば特定成分の成分量)に変換して分析を行うための演算処理等を行う機能を有していてもよい。 The detection unit 20 includes a light receiving element that receives light from the analysis chip, converts it into an electrical signal, and outputs it, and a processor that performs arithmetic processing related to the electrical signal from the light receiving element. As the light receiving element, for example, a photodiode or a CCD (Charge Coupled Device) can be used. In addition, in the detection unit 20, as a calculation process related to the light detected by the light receiving element, a calculation process for performing analysis by converting the light amount of the detected light into some numerical value (for example, a component amount of a specific component) or the like. You may have the function to perform.
 駆動部30及びチップ保持部40は、分析用チップ内の試料に係る光学測定を行うために回転軸を中心に分析用チップを回転させる機能を有する。また、バランス調整部50は、回転軸を中心に分析用チップを回転させるためのバランス調整を行う機能を有する。駆動部30、チップ保持部40、及びバランス調整部50については後述する。 The driving unit 30 and the chip holding unit 40 have a function of rotating the analysis chip about the rotation axis in order to perform optical measurement related to the sample in the analysis chip. The balance adjustment unit 50 has a function of performing balance adjustment for rotating the analysis chip around the rotation axis. The drive unit 30, the chip holding unit 40, and the balance adjustment unit 50 will be described later.
 制御部60は、分析用チップの回転及び測定を制御する機能を有する。また、出力部70は、検出部20による分析の結果を出力する機能を有する。また、結果格納部80は、検出部20による分析の結果を所定期間保持する機能を有する。 The control unit 60 has a function of controlling the rotation and measurement of the analysis chip. The output unit 70 has a function of outputting the result of analysis by the detection unit 20. In addition, the result storage unit 80 has a function of holding the analysis result by the detection unit 20 for a predetermined period.
 次に、図2及び図3を参照しながら駆動部30及びチップ保持部40について説明する。図2は、駆動部30及びチップ保持部40について説明する概略構成図である。また、図3(A)は、チップ保持部40の平面図であり、図3(B)は、チップ保持部40の斜視図である。 Next, the drive unit 30 and the chip holding unit 40 will be described with reference to FIGS. FIG. 2 is a schematic configuration diagram illustrating the driving unit 30 and the chip holding unit 40. 3A is a plan view of the chip holding unit 40, and FIG. 3B is a perspective view of the chip holding unit 40. FIG.
 図2に示すように駆動部30は、モータ31と、モータ31の駆動によって回転する駆動軸32とを含んで構成される。モータ31の駆動によって、駆動軸32は、回転軸Xを中心に回転する。また、チップ保持部40は、円盤状の台座41と、台座41上に設けられて台座上面を区画する壁部42と、を有し、台座41の中心Oが回転軸Xと一致する状態で駆動軸32に対して取り付けられる。台座41は、回転軸Xに対して垂直な面に沿って延在する。また、チップ保持部40上には、チップ保持部40に取り付けられた分析用チップ90(破線で示す)に対して測定光L1を照射するための光源10と、光源10からの測定光に対して分析用チップ90内の試料から出射される光L2を検出するための検出部20とが設けられる。 As shown in FIG. 2, the drive unit 30 includes a motor 31 and a drive shaft 32 that rotates by the drive of the motor 31. By driving the motor 31, the drive shaft 32 rotates about the rotation axis X. Further, the chip holding unit 40 includes a disk-shaped pedestal 41 and a wall portion 42 provided on the pedestal 41 and defining the upper surface of the pedestal, and the center O of the pedestal 41 coincides with the rotation axis X. It is attached to the drive shaft 32. The pedestal 41 extends along a plane perpendicular to the rotation axis X. Further, on the chip holder 40, the light source 10 for irradiating the measurement light L 1 to the analysis chip 90 (shown by a broken line) attached to the chip holder 40, and the measurement light from the light source 10 And a detector 20 for detecting the light L2 emitted from the sample in the analysis chip 90.
 図2では、光源10及び検出部20がチップ保持部40の上方に設けられているが、光源10及び検出部20の配置は適宜変更することができる。ただし、光源10及び検出部20の配置が固定できるように分析用チップ90内の試料の流路を設計しておくと、装置構成をより簡便にすることができる。また、例えば、チップ保持部40の台座41に開口を設けて、光源10及び検出部20の少なくとも一方を下方に配置する構成とすることもできる。 In FIG. 2, the light source 10 and the detection unit 20 are provided above the chip holding unit 40, but the arrangement of the light source 10 and the detection unit 20 can be changed as appropriate. However, if the flow path of the sample in the analysis chip 90 is designed so that the arrangement of the light source 10 and the detection unit 20 can be fixed, the apparatus configuration can be simplified. Further, for example, an opening may be provided in the pedestal 41 of the chip holding unit 40 and at least one of the light source 10 and the detection unit 20 may be disposed below.
 なお、遠心分析装置1では、チップ保持部40上に取り付けられる分析用チップ90について、光源10及び検出部20を用いた光学測定を行うことから、光源10からの測定光の光路及び分析用チップ90からの検出部20までの光路は暗所となるように、遠心分析装置1は設計される。 In the centrifugal analyzer 1, optical analysis using the light source 10 and the detection unit 20 is performed on the analysis chip 90 mounted on the chip holding unit 40, and thus the optical path of the measurement light from the light source 10 and the analysis chip. The centrifugal analyzer 1 is designed so that the optical path from 90 to the detection unit 20 is a dark place.
 図3に示すように、チップ保持部40における台座41上の壁部42は、円盤状の台座41の周縁に設けられる円環状の周縁壁42aと、周縁壁42aよりも内側に設けられて、周縁壁42aに囲まれた領域を区画する区画壁42bと、を有する。区画壁42bは、台座41の表面に設けられて、中心Oから径方向外側の周縁壁42aに向けて、円対称となるように複数設けられる。図3では、区画壁42bによって周縁壁42aに囲まれた領域が8つに区画された例を示している。この場合、周縁壁42a及び区画壁42bによって囲われた領域は、それぞれ扇形状となる。また、区画壁42bは、台座41上に形成される扇形状の領域が互いに同じ形状となるように設けられる。すなわち、周縁壁42a及び区画壁42bによって囲われた8つの同じ形状(扇形状)の領域が台座41上に形成される。この8つの扇形状の領域は、それぞれ後述の分析用チップを収容するチップ収容領域43となる。すなわち、チップ保持部40は、8つのチップ収容領域43を備えているので、8つの分析用チップを収容することができる。チップ保持部40が保持できる分析用チップの数は分析用チップの形状に対応して変更することができる。分析用チップの形状に対応してチップ保持部40の台座41上に形成するチップ収容領域43の数を変化させることで、チップ保持部40が保持できる分析用チップの数を変化させることができる。すなわち、チップ保持部40が保持できる分析用チップの数の最大数は8に限定されない。 As shown in FIG. 3, the wall portion 42 on the pedestal 41 in the chip holding portion 40 is provided on the inner side of the annular peripheral wall 42 a provided on the peripheral edge of the disc-shaped pedestal 41 and the peripheral wall 42 a. And a partition wall 42b that partitions a region surrounded by the peripheral wall 42a. A plurality of partition walls 42b are provided on the surface of the pedestal 41, and a plurality of partition walls 42b are provided so as to be circularly symmetric from the center O toward the radially outer peripheral wall 42a. FIG. 3 shows an example in which the area surrounded by the peripheral wall 42a is divided into eight by the partition wall 42b. In this case, the regions surrounded by the peripheral wall 42a and the partition wall 42b are each fan-shaped. The partition wall 42b is provided so that the fan-shaped regions formed on the pedestal 41 have the same shape. That is, eight regions having the same shape (fan shape) surrounded by the peripheral wall 42 a and the partition wall 42 b are formed on the base 41. These eight fan-shaped regions serve as chip storage regions 43 for storing analysis chips to be described later. That is, since the chip holding unit 40 includes the eight chip storage areas 43, it can store eight analysis chips. The number of analysis chips that can be held by the chip holding unit 40 can be changed according to the shape of the analysis chip. The number of analysis chips that can be held by the chip holding unit 40 can be changed by changing the number of chip receiving regions 43 formed on the base 41 of the chip holding unit 40 in accordance with the shape of the analysis chip. . That is, the maximum number of analysis chips that can be held by the chip holding unit 40 is not limited to eight.
 なお、本実施形態において、分析用チップ90をチップ保持部40に「収容する」とは、台座41を含むチップ保持部40が回転した際に分析用チップ90の移動を規制できる状態にすることを意味する。したがって、周縁壁42a及び区画壁42bの高さは、分析用チップの厚さとは関係なく設定することができる。そして、周縁壁42a及び区画壁42bに囲まれるチップ収容領域43に分析用チップ90を収容した場合に、分析用チップの上面が周縁壁42a及び区画壁42bよりも高くなっている場合についても、分析用チップ90の移動が規制されている限り、分析用チップ90が収容された状態である、ということができる。 In this embodiment, “accommodating” the analysis chip 90 in the chip holder 40 means that the movement of the analysis chip 90 can be restricted when the chip holder 40 including the base 41 rotates. Means. Therefore, the height of the peripheral wall 42a and the partition wall 42b can be set regardless of the thickness of the analysis chip. And when the analysis chip 90 is accommodated in the chip accommodation region 43 surrounded by the peripheral wall 42a and the partition wall 42b, the case where the upper surface of the analysis chip is higher than the peripheral wall 42a and the partition wall 42b, As long as the movement of the analysis chip 90 is restricted, it can be said that the analysis chip 90 is accommodated.
 次に、図4を参照しながら分析用チップについて説明する。図4(A)は、分析用チップの平面図であり、図4(B)は、図4(A)のIVB-IVB矢視図である。分析用チップ90は平板状の部材であり、平面視で扇形状を呈している。分析用チップ90の外形は、周縁壁42a及び区画壁42bによって形成されるチップ収容領域43に対応した形状となっている。 Next, the analysis chip will be described with reference to FIG. 4A is a plan view of the analysis chip, and FIG. 4B is a view taken along arrow IVB-IVB in FIG. 4A. The analysis chip 90 is a flat plate-like member and has a fan shape in plan view. The outer shape of the analysis chip 90 is a shape corresponding to the chip accommodation region 43 formed by the peripheral wall 42a and the partition wall 42b.
 分析用チップ90の厚さは1mm~10mm程度である。また、径方向の長さは30mm~100mm程度である。なお、分析用チップ90の大きさは、試料の種類及び分析項目等により適宜選択される。また、図4に示す扇形状の分析用チップ90の中心角(内角)は45°程度に設定されているが、中心角は適宜変更できる。中心角を小さくすると、チップ保持部40で保持することができる分析用チップの数を増やすことが可能となる。また、中心角を大きくすると分析用チップ90の面積(主面の面積)が大きくなり、内部の流路を大きくする等種々の変更を加えることができる。 The thickness of the analysis chip 90 is about 1 mm to 10 mm. The length in the radial direction is about 30 mm to 100 mm. Note that the size of the analysis chip 90 is appropriately selected depending on the type of sample, analysis items, and the like. Moreover, although the center angle (inner angle) of the fan-shaped analysis chip 90 shown in FIG. 4 is set to about 45 °, the center angle can be changed as appropriate. When the central angle is reduced, the number of analysis chips that can be held by the chip holding unit 40 can be increased. Further, when the central angle is increased, the area of the analysis chip 90 (area of the main surface) is increased, and various modifications such as increasing the internal flow path can be added.
 また、分析用チップ90の外側から光学測定用の測定光を照射するため、少なくとも、測定光が通過する領域及び測定光の照射により分析用チップ90内の試料から出射される光が通過する領域は、光透過性の材料により形成される。また、分析用チップ90を構成する材料等は、内部に投入される試料及び分析用試薬等に応じて選択してもよい。 Further, in order to irradiate the measurement light for optical measurement from the outside of the analysis chip 90, at least a region through which the measurement light passes and a region through which light emitted from the sample in the analysis chip 90 through the measurement light irradiation passes. Is formed of a light transmissive material. Further, the material or the like constituting the analysis chip 90 may be selected according to the sample, the analysis reagent, or the like put in the inside.
 分析用チップ90では、内部に投入される試料に関するチップ1個あたりの分析項目数(測定対象となる項目数)を少なく(1~2程度)設定している。同一の分析用チップ90において複数の項目に係る分析を行うような設計をする場合であっても、互いの関連性が強い分析項目を選択することが好ましい。チップ1個あたりの分析項目数を少なく設定することで、遠心分析装置1のユーザによる分析項目の選択を柔軟に行うことを可能にしている。 In the analysis chip 90, the number of analysis items (the number of items to be measured) per chip related to the sample put into the inside is set to be small (about 1-2). Even in the case of designing to perform analysis related to a plurality of items in the same analysis chip 90, it is preferable to select analysis items that are strongly related to each other. By setting the number of analysis items per chip small, it is possible to flexibly select analysis items by the user of the centrifugal analyzer 1.
 図4(A)を参照しながら、分析用チップ90の内部について説明する。平面視が扇形状の分析用チップ90は、試料を投入するための投入口91が扇形の中心側に設けられ、内部の流路は、扇形の中心側に設けられた投入口から円弧側へ向けて形成される。分析用チップ90の外形が扇形状であり、投入口91から径方向外側に向けて分析用チップ90の幅が徐々に大きくなる。したがって、分析用チップ90の内部の流路設計を柔軟に行うことができる。 The inside of the analysis chip 90 will be described with reference to FIG. In the analysis chip 90 having a fan shape in plan view, an inlet 91 for introducing a sample is provided on the center side of the fan shape, and the internal flow path extends from the inlet provided on the center side of the fan shape to the arc side. Formed towards. The outer shape of the analysis chip 90 is fan-shaped, and the width of the analysis chip 90 gradually increases from the insertion port 91 outward in the radial direction. Therefore, the flow path design inside the analysis chip 90 can be flexibly performed.
 分析用チップ90内の流路の設計は、分析項目に応じて適宜変更することができる。ここでは、分析用チップ90が血液の生化学分析に用いられる場合について説明する。より具体的には、分析用チップ90を用いて血液から血球成分を取り除いた血清又は血漿成分における2種類の試薬による段階的な反応の結果を光学測定する場合に、分析用チップ90に形成される流路の一例について説明する。分析用チップ90では、投入口91に連続して血球分離部92が形成される。また、血球分離部92の径方向外側の端部92aは閉じていて、分析用チップ90を回転することによる遠心力により、血球成分が血球分離部92の端部92aに滞留する。一方、血液から血球成分が分離された血清又は血漿成分が回転による遠心力によって第1反応部93へ移動するように流路が形成される。第1反応部93よりも径方向内側には、第1反応部93に対して流路を介して接続された第1試薬保持部94が設けられている。第1試薬保持部94には予め第1試薬が貯留される。したがって、第1反応部93では、遠心力によって移動した血清又は血漿部分と第1試薬とが混合し、第1試薬による反応が生じる。分析用チップ90では、さらに第1反応部93から径方向外側に連続する流路が設けられていて、流路よりも下流側に第2反応部95が設けられている。第2反応部95よりも径方向内側には、第2反応部95に対して流路を介して接続された第2試薬保持部96が設けられている。第2試薬保持部96には予め第2試薬が貯留される。したがって、第2反応部95では、遠心力によって移動した第1試薬との反応後の血清又は血漿部分と第2試薬とが混合し、第2試薬による反応が発生する。 The design of the flow path in the analysis chip 90 can be changed as appropriate according to the analysis item. Here, a case where the analysis chip 90 is used for blood biochemical analysis will be described. More specifically, it is formed in the analysis chip 90 when optically measuring the result of the stepwise reaction with two types of reagents in the serum or plasma component obtained by removing the blood cell component from the blood using the analysis chip 90. An example of the flow path will be described. In the analysis chip 90, a blood cell separation unit 92 is formed continuously with the insertion port 91. Further, the radially outer end 92 a of the blood cell separation unit 92 is closed, and the blood cell component stays at the end 92 a of the blood cell separation unit 92 due to the centrifugal force generated by rotating the analysis chip 90. On the other hand, the flow path is formed so that the serum or plasma component from which the blood cell component is separated from the blood moves to the first reaction unit 93 by centrifugal force due to rotation. A first reagent holding unit 94 connected to the first reaction unit 93 via a flow path is provided on the radially inner side of the first reaction unit 93. The first reagent is stored in the first reagent holding unit 94 in advance. Therefore, in the 1st reaction part 93, the serum or plasma part moved by the centrifugal force and the 1st reagent mix, and the reaction by a 1st reagent arises. In the analysis chip 90, a flow path that is continuous radially outward from the first reaction section 93 is further provided, and a second reaction section 95 is provided downstream of the flow path. A second reagent holding unit 96 connected to the second reaction unit 95 via a flow path is provided on the radially inner side of the second reaction unit 95. The second reagent is stored in advance in the second reagent holding unit 96. Therefore, in the second reaction unit 95, the serum or plasma part after the reaction with the first reagent moved by the centrifugal force is mixed with the second reagent, and a reaction by the second reagent occurs.
 なお、分析用チップ90の内部、すなわち、血球分離部92、第1反応部93、第1試薬保持部94、第2反応部95、第2試薬保持部96、及びこれらを接続する流路の長さ、大きさ及び配置等は、分析用チップ90にかかる遠心力、分析対象の試料の移動速度、試薬との反応速度等を考慮して設計される。また、第2反応部95の後段にも流路を設ける構成としてもよい。このように、分析用チップ90における流路の設計は適宜変更することができる。 The inside of the analysis chip 90, that is, the blood cell separation unit 92, the first reaction unit 93, the first reagent holding unit 94, the second reaction unit 95, the second reagent holding unit 96, and the flow path connecting them. The length, size, arrangement, and the like are designed in consideration of the centrifugal force applied to the analysis chip 90, the moving speed of the sample to be analyzed, the reaction speed with the reagent, and the like. In addition, a flow path may be provided after the second reaction unit 95. Thus, the design of the flow path in the analysis chip 90 can be changed as appropriate.
 また、分析用チップ90に用いられる第1試薬及び第2試薬は、分析用チップ90における分析項目に応じて適宜選択される。例えば、分析用チップ90を用いて血液中のアスパラギン酸アミノトランスフェラーゼ(AST、肝機能検査)に係る測定及び分析を行う場合には、第1試薬としてニコチンアミドアデニンジヌクレオチド(還元型)、リンゴ酸脱水素酵素、L-アスパラギン酸の混合液を、第2試薬としてL-アスパラギン酸、α-ケトグルタル酸の混合液を、それぞれ用いることができるが、これらの試薬に限定されるものではない。 Further, the first reagent and the second reagent used in the analysis chip 90 are appropriately selected according to the analysis item in the analysis chip 90. For example, when measuring and analyzing aspartate aminotransferase (AST, liver function test) in blood using the analysis chip 90, nicotinamide adenine dinucleotide (reduced form), malic acid is used as the first reagent. A mixed solution of dehydrogenase and L-aspartic acid and a mixed solution of L-aspartic acid and α-ketoglutaric acid can be used as the second reagent, respectively, but are not limited to these reagents.
 上記の分析用チップ90は、例えば、図4(B)に示すように、2枚の板状の部材を重ね合わせることで作成することができる。図4(B)に示す例では、分析用チップ90が、分析用チップ90の上方側に配置され、投入口91を含む流路等に対応する凹部が設けられた第1部材97と、下方側に配置される平板状の第2部材98と、によって形成されている例を示している。第2部材98は、第1部材97と重ね合わせることで、内部の流路及び反応部等の内壁を構成する。第1試薬保持部94及び第2試薬保持部96で保持される試薬は、第1部材97と第2部材98とを重ね合わせる前に、第1試薬保持部94及び第2試薬保持部96に投入される。なお、分析用チップ90は、図4(B)に示す方法に限定されず、公知のマイクロ流体チップ(μTAS:Total Analysis System)の製造方法等を利用して作成することができる。 The above-described analysis chip 90 can be created by, for example, overlapping two plate-like members as shown in FIG. In the example shown in FIG. 4B, the analysis chip 90 is disposed on the upper side of the analysis chip 90, and has a first member 97 provided with a recess corresponding to a flow path including the input port 91, and the like. The example formed by the 2nd plate-shaped member 98 arrange | positioned at the side is shown. The second member 98 is overlapped with the first member 97 to constitute an inner channel such as an internal flow path and a reaction part. The reagent held in the first reagent holding unit 94 and the second reagent holding unit 96 is transferred to the first reagent holding unit 94 and the second reagent holding unit 96 before the first member 97 and the second member 98 are overlapped. It is thrown in. The analysis chip 90 is not limited to the method shown in FIG. 4B, and can be created using a known microfluidic chip (μTAS: Total Analysis System) manufacturing method or the like.
 なお、内部に投入される試料に係る分析項目(光学測定の対象となる項目)が異なる場合であっても流用可能となるように分析用チップ90の流路設計を行っておくと、分析項目毎に製造される複数種類の分析用チップ90の製造コストを抑制することができる。この場合、第1試薬保持部94及び第2試薬保持部96等に投入する試薬の種類を変更することで、分析用チップ90を他の分析項目にも適用することができるため、チップの製造コストを抑制することができる。 It should be noted that if the flow path of the analysis chip 90 is designed so that it can be used even when the analysis items (items to be subjected to optical measurement) related to the sample to be inserted are different, Manufacturing costs of a plurality of types of analysis chips 90 manufactured every time can be reduced. In this case, since the analysis chip 90 can be applied to other analysis items by changing the type of reagent put into the first reagent holding unit 94, the second reagent holding unit 96, etc., the manufacture of the chip Cost can be suppressed.
 また、分析用チップ90は、上述のように内部に投入される試料に係る分析項目が異なる場合であっても、外形は同一とされている。これは、遠心分析装置1の複数のチップ収容領域43のうちのどこにでも分析用チップ90が収容可能な構成とするためである。そのため、分析用チップ90の外形では、そのチップを用いて分析可能な項目を区別することができない。そこで、分析用チップ90の表面又は裏面に、分析可能な項目に対応するコード(例えば、2Dバーコード等)を貼付する構成とすることができる。この場合、遠心分析装置1がコードを読み取る手段を備えることで、分析用チップ90を使用して分析を行う項目を、遠心分析装置1において自動的に判別することが可能となる。 Further, the analysis chip 90 has the same outer shape even when the analysis items relating to the sample put in the inside are different as described above. This is because the analysis chip 90 can be accommodated anywhere in the plurality of chip accommodation regions 43 of the centrifugal analyzer 1. Therefore, the outline of the analysis chip 90 cannot distinguish items that can be analyzed using the chip. Thus, a code (for example, a 2D barcode) corresponding to an item that can be analyzed can be attached to the front or back surface of the analysis chip 90. In this case, by providing the centrifugal analyzer 1 with a means for reading the code, the centrifugal analyzer 1 can automatically determine items to be analyzed using the analysis chip 90.
 次に、図5及び図6を参照しながら、遠心分析装置1を用いた分析用チップ90内の試料に係る分析方法について説明する。 Next, an analysis method related to the sample in the analysis chip 90 using the centrifugal analyzer 1 will be described with reference to FIGS.
 図5に示すように、まず、分析用チップ90の準備を行う(S01)。分析用チップ90の準備とは、試料を分析用チップ90の投入口91に投入することをいう。分析用チップ90に対する試料の投入方法は特に限定されないが、例えば、スポイト等の器具を用いて投入口91に投入することができる。また、試料は液体なので、試料をスポンジ等の他の部材に吸着させた後にこれを投入口91に投入する構成とすることもできる。試料の投入量も適宜変更できるが1μL~30μL程度とすることができる。なお、試料の投入量は、流路の形状及び長さ等によっても変更することが考えられる。 As shown in FIG. 5, first, the analysis chip 90 is prepared (S01). The preparation of the analysis chip 90 means that a sample is input to the input port 91 of the analysis chip 90. The method of loading the sample into the analysis chip 90 is not particularly limited, but can be loaded into the loading port 91 using an instrument such as a dropper, for example. In addition, since the sample is liquid, the sample can be adsorbed by another member such as a sponge and then introduced into the insertion port 91. The input amount of the sample can be changed as appropriate, but can be about 1 μL to 30 μL. It should be noted that the input amount of the sample may be changed depending on the shape and length of the flow path.
 次に分析用チップ90を遠心分析装置1のチップ保持部40に取り付ける(S02)。具体的には、分析用チップ90をチップ保持部40のチップ収容領域43に収容する。分析用チップ90の外形はチップ収容領域43の形状に対応しているので、チップ収容領域43に分析用チップ90を収容することで、分析用チップ90がチップ保持部40に対して固定された状態となる。本実施形態のチップ保持部40の場合には、分析用チップ90を最大8つ取り付けることができるため、分析したい項目等に応じて1つ以上の分析用チップ90を準備し、チップ保持部40に取り付ける。なお、チップ保持部40は、上方から分析用チップ90を支持するカバー等をさらに備えていてもよい。 Next, the analysis chip 90 is attached to the chip holder 40 of the centrifugal analyzer 1 (S02). Specifically, the analysis chip 90 is accommodated in the chip accommodation area 43 of the chip holding unit 40. Since the outer shape of the analysis chip 90 corresponds to the shape of the chip storage area 43, the analysis chip 90 is fixed to the chip holder 40 by storing the analysis chip 90 in the chip storage area 43. It becomes a state. In the case of the chip holding unit 40 of this embodiment, since up to eight analysis chips 90 can be attached, one or more analysis chips 90 are prepared according to the item to be analyzed, and the chip holding unit 40 is prepared. Attach to. Note that the chip holding unit 40 may further include a cover or the like that supports the analysis chip 90 from above.
 次に、分析用チップ90にコードが貼付されている場合には、コードの読取りを行う(S03)。これにより、遠心分析装置1では、どの分析項目に対応した分析用チップ90がチップ保持部40に取り付けられたかを特定することができる。 Next, when a code is affixed to the analysis chip 90, the code is read (S03). Thereby, in the centrifugal analyzer 1, it is possible to specify which analysis item corresponds to the analysis chip 90 attached to the chip holding unit 40.
 次に、遠心分析装置1では、チップ保持部40及びチップ保持部40上の分析用チップ90に係るバランス調整を行う(S04)。 Next, in the centrifugal analyzer 1, the balance adjustment relating to the chip holding unit 40 and the analysis chip 90 on the chip holding unit 40 is performed (S04).
 バランス調整について、図6を参照しながら説明する。まず、チップ保持部40の台座41に取り付けられた分析用チップ90による重量バランスの確認を行う(S11)。分析用チップ90は、チップ収容領域43に収容することで、チップ保持部40に対して取り付けられるが、チップ保持部40に取り付ける分析用チップ90の個数及び配置によっては、重量バランスが偏り、チップ保持部40及び分析用チップ90の重心が回転軸Xとは異なる位置となることが考えられる。チップ保持部40及び分析用チップ90の重心と回転軸Xとが離れている状態で、チップ保持部40を回転させると、軸ぶれ等が発生し、装置が破損する可能性がある。したがって、遠心力を利用した分析を行う前に、チップ保持部40上の分析用チップ90の配置を確認すること等によって重量バランスの確認を行う。重量バランスの確認の方法は特に限定されないが、例えば、コードの読み取り(S03)時にチップ保持部40上での分析用チップ90の配置(どのチップ収容領域43に分析用チップ90が収容されているか)を確認する方法等が考えられる。また、チップ保持部40の重心を検知する装置等を別途設けてもよい。 The balance adjustment will be described with reference to FIG. First, the weight balance is confirmed by the analysis chip 90 attached to the base 41 of the chip holding unit 40 (S11). The analysis chip 90 is attached to the chip holder 40 by being accommodated in the chip accommodation region 43. However, depending on the number and arrangement of the analysis chips 90 attached to the chip holder 40, the weight balance may be biased. It is conceivable that the center of gravity of the holding unit 40 and the analysis chip 90 is at a position different from the rotation axis X. If the tip holder 40 is rotated while the center of gravity of the tip holder 40 and the analysis chip 90 is away from the rotation axis X, shaft shake or the like may occur and the apparatus may be damaged. Therefore, the weight balance is confirmed by confirming the arrangement of the analysis chip 90 on the chip holding unit 40 before performing the analysis using the centrifugal force. The method for checking the weight balance is not particularly limited. For example, when the code is read (S03), the arrangement of the analysis chip 90 on the chip holding unit 40 (in which chip storage area 43 the analysis chip 90 is stored) ) Can be considered. In addition, a device for detecting the center of gravity of the chip holding unit 40 may be provided separately.
 重量バランスを確認した結果、調整が必要であるか否かを制御部60で判断し(S12)、調整が不要であると判断した場合(S12-NO)には、そのまま次のステップに進む。一方、調整が必要であると判断した場合(S12-YES)には、バランス調整を行う(S13)。 As a result of checking the weight balance, the control unit 60 determines whether or not adjustment is necessary (S12). If it is determined that adjustment is not necessary (S12-NO), the process proceeds to the next step. On the other hand, when it is determined that adjustment is necessary (S12-YES), balance adjustment is performed (S13).
 バランス調整部50によるバランスの調整方法の一例について、図7を参照しながら説明する。図7(A)に示すように、チップ保持部40の8つのチップ収容領域43のうち、1つのチップ収容領域43のみに分析用チップ90が収容されていたとする。この場合、チップ保持部40及び分析用チップ90の重心は、チップ保持部40の中心Oに対して分析用チップ90側へ移動している。 An example of a balance adjustment method by the balance adjustment unit 50 will be described with reference to FIG. As shown in FIG. 7A, it is assumed that the analysis chip 90 is housed in only one chip housing area 43 among the 8 chip housing areas 43 of the chip holding unit 40. In this case, the center of gravity of the chip holding unit 40 and the analysis chip 90 is moved toward the analysis chip 90 with respect to the center O of the chip holding unit 40.
 そこで、図7(B)に示すように分析用チップ90が収容されているチップ収容領域43に対して中心Oを介して対称となる位置のチップ収容領域43Aに対して、分析用チップ90により移動した重心を中心Oに対して戻すことが可能な重量のおもりWを配置する。分析用チップ90により移動した重心を中心Oに対して戻すためのおもりWの重量は、分析用チップ90によって変動する可能性がある。ただし、例えば、分析項目が互いに異なる分析用チップ90について、チップの重量及び分析時に投入する試料の量を統一しておくと、試料を投入した後の分析用チップ90の重量をほぼ同一にすることができる。したがって、分析用チップ90をどのチップ収容領域43に収容したかを遠心分析装置1側で検知することができれば、分析用チップ90の配置に応じて重心がどれくらい移動するかが予め分かることから、重量バランスの調整(重心の移動)をより簡単な装置構成により実現することができる。 Therefore, as shown in FIG. 7B, the analysis chip 90 is used for the chip storage area 43A that is symmetric with respect to the chip storage area 43 in which the analysis chip 90 is stored via the center O. A weight W capable of returning the moved center of gravity with respect to the center O is disposed. The weight of the weight W for returning the center of gravity moved by the analysis chip 90 to the center O may vary depending on the analysis chip 90. However, for example, if the weight of the chip and the amount of the sample to be input at the time of analysis are unified for the analysis chips 90 having different analysis items, the weight of the analysis chip 90 after the sample is input becomes substantially the same. be able to. Therefore, if the centrifugal analyzer 1 side can detect in which chip storage area 43 the analysis chip 90 is stored, it can be known in advance how much the center of gravity moves according to the arrangement of the analysis chip 90. Adjustment of the weight balance (movement of the center of gravity) can be realized with a simpler device configuration.
 おもりWの形状は適宜変更することができるが、例えば分析用チップ90と同様の形状とすると、おもりWをチップ収容領域43に収容することでチップ保持部40が回転した際にもおもりWを安定して保持することができる。また、おもりWは、予め遠心分析装置1内に収容されているため、おもりWを小型化することで装置の小型化が実現可能である。ただし、チップ保持部40の回転によっておもりWが遠心力を受けて移動することを規制する必要があるため、おもりWを収容することができる凹部を予め設けておくことや、電磁石による磁力等を用いておもりWをチップ保持部40に対して固定しておく必要がある。また、おもりWを使用しない場合には、チップ保持部40及び分析用チップ90の重心に影響を与えない位置に配置しておく必要がある。そのため、おもりWはチップ保持部40の上方(又は下方)に離間して配置される。または、チップ保持部40及び分析用チップ90の重心に影響を与えない位置として、チップ保持部40の中心Oの上部におもりWを配置する構成とすることができる。 The shape of the weight W can be changed as appropriate. For example, if the shape is the same as that of the analysis chip 90, the weight W is accommodated in the chip accommodation area 43 so that the weight W is also rotated when the chip holding unit 40 rotates. It can be held stably. Moreover, since the weight W is previously accommodated in the centrifugal analyzer 1, it is possible to reduce the size of the apparatus by reducing the weight W. However, since it is necessary to regulate the movement of the weight W due to the centrifugal force due to the rotation of the tip holding part 40, a recess capable of accommodating the weight W is provided in advance, the magnetic force by the electromagnet, etc. The weight W used must be fixed to the chip holding unit 40. When the weight W is not used, it is necessary to arrange the weight W at a position that does not affect the center of gravity of the chip holding unit 40 and the analysis chip 90. Therefore, the weight W is disposed above (or below) the chip holding unit 40 so as to be separated. Alternatively, the weight W can be arranged above the center O of the chip holding unit 40 as a position that does not affect the center of gravity of the chip holding unit 40 and the analysis chip 90.
 なお、バランス調整(S13)の後は、再度重量バランスを確認し(S11)、調整が不要となる(S12-NO)まで、バランス調整(S13)及び確認(S11)を繰り返す。 After the balance adjustment (S13), the weight balance is confirmed again (S11), and the balance adjustment (S13) and confirmation (S11) are repeated until no adjustment is required (S12-NO).
 図5に戻り、遠心分析装置1では、上記のようにバランス調整部50によるおもりWを利用したバランス調整(S04)を行った後に、光源10及び検出部20による光学測定及び分析が行われる(S05)。光源10及び検出部20による光学測定及び分析をする際には、駆動部30の駆動によりチップ保持部40が回転する。チップ保持部40の回転によって分析用チップ90にかかる遠心力は、例えば、300~3000Gとすることができる。これにより、分析用チップ90内の試料及び予め投入されていた試薬が流路に沿って移動し、所定の反応が行われる。 Returning to FIG. 5, in the centrifugal analyzer 1, after performing the balance adjustment (S04) using the weight W by the balance adjustment unit 50 as described above, optical measurement and analysis by the light source 10 and the detection unit 20 are performed ( S05). When optical measurement and analysis are performed by the light source 10 and the detection unit 20, the chip holding unit 40 is rotated by driving the driving unit 30. The centrifugal force applied to the analysis chip 90 by the rotation of the chip holding unit 40 can be set to 300 to 3000 G, for example. As a result, the sample in the analysis chip 90 and the reagent put in advance move along the flow path, and a predetermined reaction is performed.
 また、遠心分析装置1では、回転する分析用チップ90に対して光源10から測定光を照射し、測定光の照射によって分析用チップ90内の試料から出射される光を検出部20で検出する。図4に示す分析用チップ90に試料である血液を投入した場合、光学測定を行う対象は第2試薬と反応した血清又は血漿部分となる。すなわち、第2反応部95が測定対象領域となる。したがって、回転する分析用チップ90の第2反応部95が通過する位置(図2参照)に対して、光源10から測定光L1を照射することで、光源10からの測定光L1に対して分析用チップ90内の試料から出射される光L2を検出部20で検出する。なお、分析用チップ90はチップ保持部40上で回転軸Xを中心に回転しているので、検出部20で検出する光L2には、分析用チップ90内の第2反応部95の試料から出射される光とは異なる光が含まれることが考えらえる。これに対して、遠心分析装置1では、検出部20で検出した光L2のデータから、分析用チップ90内の試料からの光とは異なる光(例えば、分析用チップ90の材料からの光)を検出したデータを除去して分析に用いる構成を備えることで対応できる。 In the centrifugal analyzer 1, the rotating analysis chip 90 is irradiated with the measurement light from the light source 10, and the light emitted from the sample in the analysis chip 90 due to the measurement light irradiation is detected by the detection unit 20. . When blood, which is a sample, is put into the analysis chip 90 shown in FIG. 4, the target for optical measurement is the serum or plasma portion that has reacted with the second reagent. That is, the 2nd reaction part 95 turns into a measurement object area | region. Therefore, the measurement light L1 from the light source 10 is analyzed by irradiating the measurement light L1 from the light source 10 to the position (see FIG. 2) through which the second reaction unit 95 of the rotating analysis chip 90 passes. The light L2 emitted from the sample in the chip 90 is detected by the detection unit 20. Since the analysis chip 90 rotates about the rotation axis X on the chip holding unit 40, the light L2 detected by the detection unit 20 is emitted from the sample of the second reaction unit 95 in the analysis chip 90. It can be considered that light different from the emitted light is included. On the other hand, in the centrifugal analyzer 1, light different from the light from the sample in the analysis chip 90 (for example, light from the material of the analysis chip 90) based on the data of the light L <b> 2 detected by the detection unit 20. It is possible to cope with this by providing a configuration in which the data detected is removed and used for analysis.
 また、チップ保持部40の回転速度及びチップ保持部40上での分析用チップ90の配置を予め遠心分析装置1が把握しておくことで、光源10からの測定光L1が分析用チップ90の第2反応部95を照射するタイミングを特定することができる。したがって、そのタイミングで検出部20が検出する光L2は、第2反応部95内の試料からの光であることを特定することができる。このように、検出部20において、第2反応部95内の試料からの光に係る情報をチップ保持部40の回転速度及びチップ保持部40上での分析用チップ90の配置に基づいて特定して光学測定及び分析(S05)に利用するデータを取捨選択してもよい。上記の手法は、チップ保持部40上に分析項目が異なる分析用チップ90を複数種類配置した場合の複数の分析用チップ90からの光の区別にも適用することができる。したがって、遠心分析装置1では、複数の分析項目に係る光学測定及び分析をまとめて実施することができる。 In addition, the centrifugal analyzer 1 grasps in advance the rotational speed of the chip holding unit 40 and the arrangement of the analysis chip 90 on the chip holding unit 40, so that the measurement light L <b> 1 from the light source 10 is transmitted to the analysis chip 90. The timing of irradiating the second reaction unit 95 can be specified. Therefore, it can be specified that the light L2 detected by the detection unit 20 at that timing is light from the sample in the second reaction unit 95. As described above, the detection unit 20 specifies information related to light from the sample in the second reaction unit 95 based on the rotation speed of the chip holding unit 40 and the arrangement of the analysis chip 90 on the chip holding unit 40. Thus, data used for optical measurement and analysis (S05) may be selected. The above method can also be applied to distinguishing light from a plurality of analysis chips 90 when a plurality of types of analysis chips 90 having different analysis items are arranged on the chip holding unit 40. Accordingly, the centrifugal analyzer 1 can collectively perform optical measurement and analysis related to a plurality of analysis items.
 なお、分析項目によっては、チップ保持部40の回転を停止させた後に光源10及び検出部20による分析を行うことが好ましいことも考えられる。光源10及び検出部20による光学測定及び分析のタイミングは分析項目に応じて変更することができる。 Note that, depending on the analysis item, it may be preferable to perform analysis by the light source 10 and the detection unit 20 after the rotation of the chip holding unit 40 is stopped. The timing of optical measurement and analysis by the light source 10 and the detection unit 20 can be changed according to the analysis item.
 その後、検出部20における分析結果は、結果格納部80に格納されると共に、出力部70から出力される(S06)。以上で遠心分析装置1による分析が終了する。 Thereafter, the analysis result in the detection unit 20 is stored in the result storage unit 80 and is output from the output unit 70 (S06). Thus, the analysis by the centrifugal analyzer 1 is completed.
 以上のように、本実施形態に係る遠心分析装置1では、円盤状であって回転軸Xを中心に回転するチップ保持部40に対して、回転軸Xの周囲に複数の分析用チップ90を取り付けて分析を行うことができる。したがって、複数の分析項目に係る遠心力を利用した分析を同時に行うことができる。 As described above, in the centrifugal analyzer 1 according to the present embodiment, a plurality of analysis chips 90 are arranged around the rotation axis X with respect to the chip holding unit 40 that is disk-shaped and rotates around the rotation axis X. Can be installed and analyzed. Therefore, analysis using centrifugal force related to a plurality of analysis items can be performed simultaneously.
 また、従来から、遠心力を利用した複数の分析項目に係る分析を一度に行うことが可能なディスク状のカートリッジは知られていた。しかしながら、このようなディスク状のカートリッジでは予め分析項目が決められているため、例えば、一部の分析項目のみの分析結果が知りたい場合であっても、全ての分析項目に係る分析を行う必要があり、コスト的にも無駄が生じる可能性があった。一方、1つの分析項目のみに係る分析を行うことが可能なディスク状のカートリッジも知られていたが、このカートリッジの場合には、複数の分析項目に係る分析を同時に行うことが困難であり、一連の分析についての所要時間が長期化することが考えられる。 Further, conventionally, a disk-shaped cartridge capable of performing analysis related to a plurality of analysis items using centrifugal force at a time has been known. However, since analysis items are determined in advance in such a disk-shaped cartridge, for example, even when it is desired to know the analysis results of only some analysis items, it is necessary to perform analysis for all analysis items. There was a possibility of waste in terms of cost. On the other hand, a disk-shaped cartridge capable of performing an analysis related to only one analysis item was also known, but in the case of this cartridge, it is difficult to simultaneously perform an analysis related to a plurality of analysis items, The time required for a series of analyzes can be prolonged.
 これに対して、本実施形態に係る遠心分析装置1では、チップ保持部40に対して扇形状の分析用チップ90を回転軸Xの周囲に複数取り付けた状態で、駆動部30よってチップ保持部40を回転させることで、複数の分析項目に係る分析を一度に行うことができる。また、分析項目毎に互いに異なる分析用チップ90を選択して分析を行うことができる。したがって、特定の分析項目のみの分析結果が知りたい場合には当該項目に係る分析用チップ90のみを使用することができると共に、複数の分析項目の分析結果が知りたい場合には複数の分析項目に対応した複数種類の分析用チップ90を使用することができる。このように、遠心分析装置1及び分析用チップ90によれば、分析項目の選択を柔軟に行うことが可能となる。 On the other hand, in the centrifugal analyzer 1 according to the present embodiment, the chip holding unit is driven by the drive unit 30 with a plurality of fan-shaped analysis chips 90 attached to the periphery of the rotation axis X with respect to the chip holding unit 40. By rotating 40, the analysis concerning a plurality of analysis items can be performed at a time. Further, analysis can be performed by selecting different analysis chips 90 for each analysis item. Therefore, when it is desired to know the analysis result of only a specific analysis item, only the analysis chip 90 related to the item can be used, and when it is desired to know the analysis result of a plurality of analysis items, a plurality of analysis items are used. A plurality of types of analysis chips 90 corresponding to the above can be used. Thus, according to the centrifugal analyzer 1 and the analysis chip 90, it is possible to flexibly select analysis items.
 さらに、チップ保持部40が、分析用チップ90を収容可能なチップ収容領域43を有することで、分析用チップ90を保持する場所が明確となる。したがって、分析用チップ90をチップ保持部40に対して容易に保持させることができることから、遠心分析装置の使用者による遠心分析装置1の取り扱い性が向上する。 Furthermore, since the chip holding unit 40 has the chip storage area 43 in which the analysis chip 90 can be stored, the place where the analysis chip 90 is held becomes clear. Therefore, since the analysis chip 90 can be easily held on the chip holding unit 40, the handleability of the centrifugal analyzer 1 by the user of the centrifugal analyzer is improved.
 また、遠心分析装置1に用いられる分析用チップ90は、試料の投入口91から径方向外側に向けて、分析用チップ90の幅が徐々に大きくなる。また、チップ保持部40において分析用チップ90を収容するチップ収容領域43も、分析用チップ90の外形に対応している。したがって、分析用チップ90の内部の流路設計を柔軟に行うことができる。また、径方向内側から径方向外側に向かうにつれて分析用チップ90の幅が大きくなる構成とは、すなわち、径方向内側の端部における分析用チップ90の幅と径方向外側の端部における分析用チップ90の幅とが互いに異なることを意味する。したがって、分析用チップ90をチップ収容領域43に収容する際に、径方向内側と径方向外側とを間違えて取り付けること等を防ぐことができる。したがって、遠心分析装置1及び分析用チップ90の使用者による取り扱い性が向上する。 Further, the analysis chip 90 used in the centrifugal analyzer 1 gradually increases in width from the sample inlet 91 toward the radially outer side. In addition, the chip housing area 43 that houses the analysis chip 90 in the chip holding unit 40 also corresponds to the outer shape of the analysis chip 90. Therefore, the flow path design inside the analysis chip 90 can be flexibly performed. The configuration in which the width of the analysis chip 90 increases from the radially inner side to the radially outer side means that the width of the analysis chip 90 at the radially inner end and the analysis tip at the radially outer end. It means that the width of the chip 90 is different from each other. Therefore, when the analysis chip 90 is accommodated in the chip accommodation region 43, it is possible to prevent the wrong attachment of the radially inner side and the radially outer side. Therefore, the handling by the user of the centrifugal analyzer 1 and the analysis chip 90 is improved.
 なお、上述したように、本実施形態における「径方向内側から径方向外側に向かうにつれて平面視においてその幅が大きくなる」分析用チップ90とは、径方向内側の端部における分析用チップ90の幅と径方向外側の端部における分析用チップ90の幅とが互いに異なるものである。したがって、例えば径方向内側から径方向外側に見たときに、一部分においてその幅が変わっていない又は狭くなっているものも、本実施形態に係る分析用チップ90に含まれる。具体的には、例えば、分析用チップ90の保持しやすさ等を考慮して側面の傾斜を変更したり凹凸を設けたりすると、その部分の幅が小さくなることが考えられるが、そのような形状を有する場合も本実施形態に係る「径方向内側から径方向外側に向かうにつれて平面視においてその幅が大きくなる」分析用チップ90に含めることができる。 As described above, the analysis chip 90 in the present embodiment “the width of which increases in a plan view from the radially inner side to the radially outer side” refers to the analysis chip 90 at the radially inner end portion. The width and the width of the analyzing chip 90 at the radially outer end are different from each other. Therefore, for example, a chip whose width is not changed or narrowed partially when viewed from the radially inner side to the radially outer side is also included in the analysis chip 90 according to the present embodiment. Specifically, for example, if the inclination of the side surface is changed or unevenness is provided in consideration of the ease of holding the analysis chip 90 or the like, the width of the portion may be reduced. Even if it has a shape, it can be included in the analysis chip 90 according to the present embodiment “its width increases in a plan view from the radially inner side to the radially outer side”.
 また、遠心分析装置1では、バランス調整部50がチップ保持部40及び分析用チップ90の重量バランスを確認し、これを調整する機能を有する。したがって、遠心分析装置1及び分析用チップ90の使用者は、分析用チップ90をどのように配置するか等を考慮することなく、分析用チップ90をチップ保持部40に対して取り付けることができる。したがって、遠心分析装置1及び分析用チップ90の使用者による遠心分析装置1の取り扱い性が向上する。 In the centrifugal analyzer 1, the balance adjusting unit 50 has a function of checking the weight balance of the chip holding unit 40 and the analysis chip 90 and adjusting the weight balance. Therefore, the user of the centrifugal analyzer 1 and the analysis chip 90 can attach the analysis chip 90 to the chip holder 40 without considering how the analysis chip 90 is arranged. . Therefore, the handleability of the centrifugal analyzer 1 by the user of the centrifugal analyzer 1 and the analysis chip 90 is improved.
 以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で以下のような様々な変形が可能である。 The present invention has been described in detail above based on the embodiments. However, the present invention is not limited to the above embodiment. The present invention can be modified in various ways as described below without departing from the scope of the invention.
 例えば、上記実施形態で説明した遠心分析装置1及び分析用チップ90の形状は適宜変更することができる。上記実施形態では、チップ保持部40では台座41及び壁部42によってチップ収容領域43が形成されている場合について説明した。しかしながら、チップ保持部40は、複数の分析用チップ90を保持することが可能であり、且つ、回転軸Xを中心として回転した際にも分析用チップ90を確実に支持(固定)することが可能な構成であれば、適宜変更することができる。したがって、例えば壁部42に代えて台座41から突起する突起部等を設けることで、分析用チップ90を保持する構成に変更することもできる。また、台座41に壁部42を設ける場合であっても、周縁壁42a及び区画壁42bはそれぞれ不連続であってもよい。また、周縁壁42aと区画壁42bとについても連続している必要はない。 For example, the shapes of the centrifugal analyzer 1 and the analysis chip 90 described in the above embodiment can be changed as appropriate. In the above embodiment, the case where the chip holding area 43 is formed by the pedestal 41 and the wall 42 in the chip holding part 40 has been described. However, the chip holding unit 40 can hold a plurality of analysis chips 90 and can reliably support (fix) the analysis chip 90 even when rotated about the rotation axis X. Any possible configuration can be changed as appropriate. Therefore, for example, by providing a projecting portion or the like projecting from the pedestal 41 instead of the wall portion 42, it is possible to change the configuration to hold the analysis chip 90. Even when the wall portion 42 is provided on the pedestal 41, the peripheral wall 42a and the partition wall 42b may be discontinuous. Further, the peripheral wall 42a and the partition wall 42b need not be continuous.
 さらに、チップ保持部40が、上方から分析用チップ90を支持するカバーを備えている場合には、チップ保持部40において分析用チップ90の移動を規制するために台座41上に設けられている壁部42の機能の一部をカバー側に設けてもよい。例えば、台座41側には壁部42のうち周縁壁42aの一部又は全部が上方のカバーに設けられる構成とすることもできる。また、内側の区画壁42bについても一部又は全部が上方のカバーに設けられる構成としてもよい。ただし、チップ保持部40を保持するための位置決めを容易にすることを考えると、少なくとも一部の区画壁42bは台座41側にあることが好ましい場合がある。また、台座41及びカバーの双方に壁部を形成して、組み合わせたときに、チップ保持部40に対する分析用チップ90の移動を規制する構成とすることもできる。このように、台座41とカバーとを組み合わせたときに分析用チップ90の移動を規制することが可能であれば、壁部の配置及びその構成は適宜変更することができる。なお、「上方から分析用チップ90を支持するカバー」とは、装置内部に設けられるカバーであってもよいし、装置内外を区切るカバーに対して、分析用チップ90を支持するカバーとして機能する部分が取り付けられている構成であってもよい。いずれにしろ、カバーとして機能する部分は回転中も分析用チップ90を支持する必要があるため、台座41と一緒に回転軸Xを中心として回転可能な構成とされる。 Further, when the chip holding unit 40 includes a cover that supports the analysis chip 90 from above, the chip holding unit 40 is provided on the base 41 in order to restrict the movement of the analysis chip 90 in the chip holding unit 40. A part of the function of the wall portion 42 may be provided on the cover side. For example, a part or all of the peripheral wall 42a of the wall portion 42 may be provided on the upper cover on the pedestal 41 side. In addition, a part or all of the inner partition wall 42b may be provided in the upper cover. However, in view of facilitating positioning for holding the chip holding portion 40, it may be preferable that at least a part of the partition wall 42b is on the pedestal 41 side. Further, a wall portion may be formed on both the pedestal 41 and the cover so that the movement of the analysis chip 90 relative to the chip holding portion 40 can be restricted when combined. Thus, if the movement of the analysis chip 90 can be restricted when the pedestal 41 and the cover are combined, the arrangement of the wall portion and the configuration thereof can be changed as appropriate. The “cover that supports the analysis chip 90 from above” may be a cover provided inside the apparatus, or functions as a cover that supports the analysis chip 90 with respect to a cover that divides the inside and outside of the apparatus. The structure to which the part is attached may be sufficient. In any case, since the portion functioning as the cover needs to support the analysis chip 90 during rotation, it can be rotated around the rotation axis X together with the base 41.
 また、チップ保持部40が、台座41と、台座41上に配置された1つの分析用チップ90を収容可能な凹部を有する複数のチップ収容部とを含む構成とすることもできる。ここで、複数のチップ収容部が台座41上を移動可能な構成をさらに備えている場合には、バランス調整部50によるバランスの調整を複数のチップ収容部の移動によって実現することもできる。 Further, the chip holding unit 40 may be configured to include a pedestal 41 and a plurality of chip accommodation units having recesses that can accommodate one analysis chip 90 disposed on the pedestal 41. Here, in the case where the plurality of chip accommodating portions are further provided with a configuration capable of moving on the base 41, the balance adjustment by the balance adjusting portion 50 can also be realized by moving the plurality of chip accommodating portions.
 図8(A)に示すように、チップ保持部40の台座41上に8つのチップ収容部45が配置されているとする。ここで、1つのチップ収容部45のみに分析用チップ90が収容されていたとする。この場合、チップ保持部40及び分析用チップ90の重心は、チップ保持部40の中心Oに対して分析用チップ90側へ移動している。 As shown in FIG. 8A, it is assumed that eight chip accommodating portions 45 are arranged on the base 41 of the chip holding portion 40. Here, it is assumed that the analysis chip 90 is accommodated only in one chip accommodating portion 45. In this case, the center of gravity of the chip holding unit 40 and the analysis chip 90 is moved toward the analysis chip 90 with respect to the center O of the chip holding unit 40.
 そこで、図8(B)に示すように分析用チップ90が収容されているチップ収容部45に対して中心Oを介して対称となる側のチップ収容部45が移動することで、分析用チップ90により移動した重心を中心Oに対して戻す。図8(B)に示す例では、分析用チップ90が収容されたチップ収容部45と対向するチップ収容部45Aの両隣のチップ収容部45B,45Cが、チップ収容部45A側へ移動することで、チップ収容部45A側の荷重を大きくして重心を中心O側に移動させている。台座41上でのチップ収容部45の移動については、例えば、予めチップ収容部45の移動経路を規定するためのレールを台座41上に設けておき、レールに沿ってチップ収容部45を移動させる構成を用いることが考えられるが、これに限定されるものではない。 Therefore, as shown in FIG. 8B, the analysis chip is moved by moving the symmetric chip storage section 45 via the center O with respect to the chip storage section 45 in which the analysis chip 90 is stored. The center of gravity moved by 90 is returned to the center O. In the example shown in FIG. 8B, the chip housing portions 45B and 45C adjacent to the chip housing portion 45A facing the chip housing portion 45 housing the analysis chip 90 are moved to the chip housing portion 45A side. The load on the chip accommodating portion 45A side is increased to move the center of gravity toward the center O side. Regarding the movement of the chip accommodating part 45 on the pedestal 41, for example, a rail for prescribing the movement path of the chip accommodating part 45 is provided on the pedestal 41 in advance, and the chip accommodating part 45 is moved along the rail. Although it is conceivable to use a configuration, the present invention is not limited to this.
 このように、チップ保持部40は適宜変更することができ、チップ保持部40の形状の変更に応じて、バランス調整部50によるバランス調整の手法も適宜変更することができる。 As described above, the chip holding unit 40 can be appropriately changed, and the balance adjustment method by the balance adjusting unit 50 can be appropriately changed according to the change in the shape of the chip holding unit 40.
 また、遠心分析装置1は、バランス調整部50を備えていない構成とすることもできる。この場合は、遠心分析装置1の使用者が分析用チップ90をチップ保持部40に取り付ける際にバランス調整を行う構成とすることができる。この場合であっても、分析用チップ90の選択によって、分析項目の選択を柔軟に行うことが可能である。 Further, the centrifugal analyzer 1 can be configured not to include the balance adjusting unit 50. In this case, the user can use the centrifugal analyzer 1 to adjust the balance when attaching the analysis chip 90 to the chip holding unit 40. Even in this case, the analysis item can be selected flexibly by selecting the analysis chip 90.
 また、上記実施形態では、分析用チップ90が平面視で扇形状である場合について説明したが、分析用チップ90の平面視での形状は上記に限定されない。例えば、台座41の中央に形成された開口を駆動部30の駆動軸32が貫通するような装置構成である場合には、分析用チップ90は台座41の中央の開口の周囲に円環状(ドーナツ状)に配置される。この場合、分析用チップ90は扇形形状ではなく、円環の一部を切り取ったような形状とすることができる。分析用チップ90が円環の一部を切り取った形状である場合でも、径方向内側の端部における分析用チップ90の幅と径方向外側の端部における分析用チップ90の幅とが互いに異なり、径方向外側に設けて徐々に幅が大きくなる構成を実現することができる。また、分析用チップ90は、例えば三角形等の形状とすることもできるが、チップ保持部40に対して分析用チップ90を複数取り付けた場合に、隣接する分析用チップ90との間に生じる隙間ができるだけ小さくなるような分析用チップ90の外形であるほうが、チップ保持部40上における分析用チップ90の占める割合を大きくすることができるため、分析用チップ90の内部の流路設計を柔軟に行うことができる。 In the above embodiment, the analysis chip 90 has a fan shape in plan view. However, the shape of the analysis chip 90 in plan view is not limited to the above. For example, in the case of an apparatus configuration in which the drive shaft 32 of the drive unit 30 passes through the opening formed in the center of the pedestal 41, the analysis chip 90 has an annular shape around the center opening of the pedestal 41 (donut Arranged). In this case, the analysis chip 90 can have a shape that is not a sector shape but a part of the ring. Even when the analysis chip 90 has a shape obtained by cutting a part of the ring, the width of the analysis chip 90 at the radially inner end and the width of the analysis chip 90 at the radially outer end are different from each other. It is possible to realize a configuration in which the width is gradually increased by providing the outer side in the radial direction. In addition, the analysis chip 90 may have a shape such as a triangle, for example, but when a plurality of analysis chips 90 are attached to the chip holding unit 40, a gap generated between adjacent analysis chips 90. Since the ratio of the analysis chip 90 occupying the chip holding part 40 can be increased when the outer shape of the analysis chip 90 is as small as possible, the flow path design inside the analysis chip 90 can be made flexible. It can be carried out.
 また、台座41の形状についても適宜変更することができる。上記実施形態では、台座41が円盤状である場合について説明したが、平面視多角形の平板状の部材とすることもできる。台座41は、回転軸Xを中心にして軸ぶれを発生させることなく回転可能な構成であれば、その形状は円盤状に限定されない。 Also, the shape of the pedestal 41 can be changed as appropriate. In the above embodiment, the case where the pedestal 41 has a disk shape has been described. However, it may be a flat plate member having a polygonal shape in plan view. The shape of the pedestal 41 is not limited to a disk shape as long as the pedestal 41 is configured to be rotatable around the rotation axis X without causing shaft shake.
 また、上記実施形態では、遠心分析装置1及び分析用チップ90を用いた分析の対象試料が血液である場合について説明したが、遠心分析装置1及び分析用チップ90を用いた分析の対象は血液の分析に限定されない。遠心分析装置1及び分析用チップ90を用いた分析のその他の対象としては、例えば、水質分析等の環境分析、農薬分析、栄養成分又は添加物等の食品分析等が挙げられる。 Moreover, although the said embodiment demonstrated the case where the analysis object sample using the centrifuge analyzer 1 and the analysis chip 90 was blood, the analysis object using the centrifuge analyzer 1 and the analysis chip 90 is blood. It is not limited to the analysis of. Other objects of analysis using the centrifugal analyzer 1 and the analysis chip 90 include, for example, environmental analysis such as water quality analysis, agricultural chemical analysis, food analysis such as nutritional components or additives, and the like.
 1…遠心分析装置、10…光源、20…検出部、30…駆動部、40…チップ保持部、41…台座、42…壁部、43…チップ収容領域、50…バランス調整部、90…分析用チップ。 DESCRIPTION OF SYMBOLS 1 ... Centrifugal analyzer 10 ... Light source 20 ... Detection part 30 ... Drive part 40 ... Chip holding part 41 ... Pedestal 42 ... Wall part 43 ... Chip accommodation area 50 ... Balance adjustment part 90 ... Analysis For chips.

Claims (5)

  1.  平板状であって内部に流路が形成されると共に当該内部に試料が投入された分析用チップを、回転軸の周囲に複数保持可能なチップ保持部と、
     前記回転軸を中心に前記チップ保持部を回転させる駆動部と、
     前記チップ保持部により保持された前記分析用チップに対して測定光を照射する光源と、
     前記光源からの前記測定光の照射によって前記分析用チップから出射される光を検出する検出部と、
     を備える遠心分析装置。
    A chip holding part capable of holding a plurality of analysis chips, each having a flat plate shape and having a flow path formed therein, and a sample placed therein, around the rotation axis;
    A drive unit that rotates the chip holding unit about the rotation axis;
    A light source for irradiating measurement light to the analysis chip held by the chip holding unit;
    A detection unit for detecting light emitted from the analysis chip by irradiation of the measurement light from the light source;
    A centrifugal analyzer.
  2.  前記チップ保持部は、
     前記回転軸に対して垂直な面に沿って延在する台座と、前記台座上に設けられ前記台座上面を区画する壁部と、前記壁部によって形成された前記分析用チップを保持するためのチップ収容領域と、を有する請求項1に記載の遠心分析装置。
    The chip holding part is
    A pedestal extending along a plane perpendicular to the rotation axis, a wall provided on the pedestal and defining the upper surface of the pedestal, and for holding the analysis chip formed by the wall The centrifugal analysis device according to claim 1, further comprising a chip receiving area.
  3.  前記分析用チップは、前記回転軸に対する径方向内側に前記試料の投入口が設けられると共に、径方向内側から径方向外側に向かうにつれて平面視においてその幅が大きくなる請求項1又は2に記載の遠心分析装置。 3. The analysis chip according to claim 1, wherein the analysis chip is provided with an inlet for the sample on a radially inner side with respect to the rotation shaft, and the width thereof increases in a plan view from a radially inner side toward a radially outer side. Centrifugal analyzer.
  4.  前記分析用チップを保持した状態での前記チップ保持部の重量バランスを確認すると共に、当該確認の結果に基づいてバランスを調整するバランス調整部を更に備える請求項1~3のいずれか一項に記載の遠心分析装置。 4. The balance adjustment unit according to claim 1, further comprising a balance adjustment unit that confirms a weight balance of the chip holding unit in a state where the analysis chip is held and adjusts the balance based on a result of the confirmation. The centrifugal analyzer as described.
  5.  平板状であって内部に流路が形成されると共に当該内部に試料を投入後に、回転軸を中心とする回転により発生する遠心力によって当該試料を移動させる遠心分析用チップであって、
     前記回転軸に対する径方向内側に前記試料の投入口が設けられると共に、径方向内側から径方向外側に向かうにつれて平面視においてその幅が大きくなる遠心分析用チップ。
    A chip for centrifugal analysis that is flat and has a flow path formed therein, and moves the sample by centrifugal force generated by rotation about the rotation axis after the sample is put into the interior,
    A centrifuge analysis chip in which the inlet for the sample is provided on the inner side in the radial direction with respect to the rotation shaft, and the width increases in a plan view from the inner side in the radial direction toward the outer side in the radial direction.
PCT/JP2015/082133 2015-11-16 2015-11-16 Centrifugal analysis device and centrifugal analysis chip WO2017085766A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082133 WO2017085766A1 (en) 2015-11-16 2015-11-16 Centrifugal analysis device and centrifugal analysis chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082133 WO2017085766A1 (en) 2015-11-16 2015-11-16 Centrifugal analysis device and centrifugal analysis chip

Publications (1)

Publication Number Publication Date
WO2017085766A1 true WO2017085766A1 (en) 2017-05-26

Family

ID=58718581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082133 WO2017085766A1 (en) 2015-11-16 2015-11-16 Centrifugal analysis device and centrifugal analysis chip

Country Status (1)

Country Link
WO (1) WO2017085766A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2736038A1 (en) * 2018-06-22 2019-12-23 Univ Burgos DEVICE FOR THE DETECTION AND MEASUREMENT OF AT LEAST ONE ANALYTE IN THE MEDIA AND THE PROCEDURE FOR USING THE SAME (Machine-translation by Google Translate, not legally binding)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114438A (en) * 2003-10-03 2005-04-28 National Institute For Materials Science Method of using chip, and inspection chip
JP2011007778A (en) * 2009-05-18 2011-01-13 F Hoffmann-La Roche Ag Centrifugal force based micro-fluidic system and method for automatic analysis of sample
JP2011053043A (en) * 2009-09-01 2011-03-17 Ushio Inc Clinical inspection apparatus
JP2013213814A (en) * 2012-03-05 2013-10-17 Rohm Co Ltd Centrifugal force application apparatus for microchip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114438A (en) * 2003-10-03 2005-04-28 National Institute For Materials Science Method of using chip, and inspection chip
JP2011007778A (en) * 2009-05-18 2011-01-13 F Hoffmann-La Roche Ag Centrifugal force based micro-fluidic system and method for automatic analysis of sample
JP2011053043A (en) * 2009-09-01 2011-03-17 Ushio Inc Clinical inspection apparatus
JP2013213814A (en) * 2012-03-05 2013-10-17 Rohm Co Ltd Centrifugal force application apparatus for microchip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2736038A1 (en) * 2018-06-22 2019-12-23 Univ Burgos DEVICE FOR THE DETECTION AND MEASUREMENT OF AT LEAST ONE ANALYTE IN THE MEDIA AND THE PROCEDURE FOR USING THE SAME (Machine-translation by Google Translate, not legally binding)

Similar Documents

Publication Publication Date Title
US8696990B2 (en) Device for the photometric examination of samples
US9446411B2 (en) Sample assembly for a measurement device
JP5264999B2 (en) Medical diagnostic analysis
WO2020066165A1 (en) Reaction vessel for automated analyzer
EP2873963B1 (en) Centrifugal analysis system and analysis method thereof
KR20080023107A (en) Microchip inspection apparatus
JP6096809B2 (en) Sample carrier centrifuge
US9669406B2 (en) Sample assembly for a measurement device
US6653122B2 (en) Indentification test device in a random access microbiological analyzer
WO2017085766A1 (en) Centrifugal analysis device and centrifugal analysis chip
KR20110009022A (en) Disk type microfluidic device and blood testing apparatus using the same
US11833528B2 (en) Centrifuge apparatus for a processing cartridge having a rotary plate and a stopping element
JP6087272B2 (en) Analysis board
CN107064526B (en) Analysis device
CN107037226B (en) Analysis device
JP2017058262A (en) Automatic analyzer
WO2018123837A1 (en) Analysis device
CN110609148A (en) Support adjustment member, container storage holder, and analyzer
JP6638303B2 (en) Analyzer chip holder and analyzer
JP2016142548A (en) Inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP