WO2017084199A1 - 基于无人飞行器的海上搜救系统 - Google Patents

基于无人飞行器的海上搜救系统 Download PDF

Info

Publication number
WO2017084199A1
WO2017084199A1 PCT/CN2016/070529 CN2016070529W WO2017084199A1 WO 2017084199 A1 WO2017084199 A1 WO 2017084199A1 CN 2016070529 W CN2016070529 W CN 2016070529W WO 2017084199 A1 WO2017084199 A1 WO 2017084199A1
Authority
WO
WIPO (PCT)
Prior art keywords
rescue
search
aerial vehicle
unmanned aerial
navigator
Prior art date
Application number
PCT/CN2016/070529
Other languages
English (en)
French (fr)
Inventor
张贯京
陈兴明
葛新科
Original Assignee
深圳市易特科信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市易特科信息技术有限公司 filed Critical 深圳市易特科信息技术有限公司
Publication of WO2017084199A1 publication Critical patent/WO2017084199A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/80Transport or storage specially adapted for UAVs by vehicles
    • B64U80/84Waterborne vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C2009/0017Life-saving in water characterised by making use of satellite radio beacon positioning systems, e.g. the Global Positioning System [GPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/20UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the utility model relates to the field of maritime search and rescue, in particular to a maritime search and rescue system based on an unmanned aerial vehicle.
  • the ability to effectively and quickly find search and rescue targets and implement rescue is of great significance for reducing life and property losses. Since the search and rescue targets are easily affected by the combined effects of wind, waves, and current factors, especially the shipwreck accidents often occur under severe meteorological conditions, making it difficult to determine the location of the search and rescue targets. Therefore, how to accurately determine the search and rescue The target search and rescue area has become one of the important links in the search and rescue process.
  • the search and rescue equipments provided by domestic maritime search and rescue organizations are still not perfect.
  • Some simple search and rescue equipments are used to assist the completion of search and rescue work and rely on human visual observation for search and rescue.
  • Subjective factors and uncertainties are large, and human vision is easy to be affected.
  • the effects of fatigue and environmental factors are particularly difficult to find for small targets (such as water users, survival craft, etc.) in wind and low light conditions.
  • small targets such as water users, survival craft, etc.
  • the eyesight of the human eye can hardly work. Therefore, at present, maritime search and rescue equipment is basically unable to search and rescue at sea.
  • the main purpose of the utility model is to provide a maritime search and rescue system based on an unmanned aerial vehicle, which aims to solve the problem that the current maritime search and rescue equipment cannot perform maritime search and rescue at night.
  • the present invention provides an unmanned aerial vehicle based maritime search and rescue system, the maritime search and rescue system including an unmanned aerial vehicle and a lifeboat, the unmanned aerial vehicle being wirelessly connected to the lifeboat through a communication network.
  • the unmanned aerial vehicle is provided with an infrared search and rescue device
  • the lifeboat is provided with an automatic navigation device.
  • the infrared search and rescue device is activated to collect the video image of the sea area where the shipwreck occurs and collect the image.
  • the video image is subjected to maritime search and rescue target detection.
  • the infrared search and rescue device When detecting the maritime search and rescue target, acquires the geographical location information of the maritime search and rescue target and sends the automatic navigation device to the lifeboat, and the automatic navigation device The lifeboat automatically navigates to the location of the maritime search and rescue target for rescue.
  • the automatic navigation device comprises an information receiving unit, a navigator and a display screen, the information receiving unit is connected to the navigator, and the navigator is connected to the display screen.
  • the infrared search and rescue device comprises a microcontroller and an autonomous flight unit, and the autonomous flight unit is connected to the microcontroller for setting an autonomous flight required for the unmanned aerial vehicle to fly into the sea area where the shipwreck occurs. route.
  • the automatic navigation device comprises an information receiving unit, a navigator and a display screen, the information receiving unit is connected to the navigator, and the navigator is connected to the display screen.
  • the infrared search and rescue device further includes a flight control unit connected to the microcontroller, the flight control unit is configured to control the unmanned aerial vehicle to fly to the sea area where the shipwreck occurs according to the set autonomous flight path. And controlling the UAV to hover over the sea area where the shipwreck occurred.
  • a flight control unit connected to the microcontroller, the flight control unit is configured to control the unmanned aerial vehicle to fly to the sea area where the shipwreck occurs according to the set autonomous flight path. And controlling the UAV to hover over the sea area where the shipwreck occurred.
  • the automatic navigation device comprises an information receiving unit, a navigator and a display screen, the information receiving unit is connected to the navigator, and the navigator is connected to the display screen.
  • the infrared search and rescue device further includes an infrared camera connected to the microcontroller, the infrared camera is configured to take a video image of the sea area where the shipwreck occurs, and send the monitored video image to the office.
  • the microcontroller is described to identify the maritime search and rescue target.
  • the automatic navigation device comprises an information receiving unit, a navigator and a display screen, the information receiving unit is connected to the navigator, and the navigator is connected to the display screen.
  • the infrared search and rescue device further includes an open positioning unit connected to the microcontroller, and the positioning unit is configured to locate geographical location information of the maritime search and rescue target.
  • the automatic navigation device comprises an information receiving unit, a navigator and a display screen, the information receiving unit is connected to the navigator, and the navigator is connected to the display screen.
  • the infrared search and rescue device comprises an information sending unit connected to the microcontroller, and the information sending unit is configured to send the geographical location information of the maritime search and rescue target to the automatic navigation device of the lifeboat .
  • the automatic navigation device comprises an information receiving unit, a navigator and a display screen, the information receiving unit is connected to the navigator, and the navigator is connected to the display screen.
  • the information receiving unit is configured to receive geographic location information of the maritime search and rescue target from the infrared search and rescue device, and transmit the geographic location information to the navigator.
  • the navigator is configured to automatically plan and generate a sea route that the lifeboat arrives at the maritime search and rescue target according to the geographical location information, and display the sea route of the maritime search and rescue target on the display screen. .
  • the maritime search and rescue system based on the unmanned aerial vehicle uses the infrared camera equipped by the unmanned aerial vehicle itself, and according to the characteristics that the infrared imaging is sensitive to the human heat source, the shipwreck can be taken when searching and rescued at sea.
  • the video image of the sea area identifies the maritime search and rescue target from the video image, and quickly locates the rescue boat for search and rescue. Since the infrared camera can sense the presence of the drowning person through the temperature of the human body, and is not affected by the illuminance and the backlight, it can better assist the maritime search and rescue, solve the problem of difficult sea search and rescue at night, and realize rapid sea automatic Search for work.
  • FIG. 1 is a schematic structural view of a preferred embodiment of the maritime search and rescue system based on the unmanned aerial vehicle of the present invention
  • FIG. 2 is a schematic diagram showing the internal structure of a preferred embodiment of an infrared search and rescue device for an unmanned aerial vehicle in an unmanned aerial vehicle search and rescue system according to the present invention
  • FIG. 3 is a schematic diagram showing the internal structure of a preferred embodiment of an automatic navigation device for a lifeboat in an unmanned aerial vehicle based maritime search and rescue system according to the present invention.
  • FIG. 1 is a schematic structural view of a preferred embodiment of the maritime search and rescue system based on the unmanned aerial vehicle of the present invention.
  • the maritime search and rescue system includes an unmanned aerial vehicle 1 and a lifeboat 2, and the unmanned aerial vehicle 1 communicates wirelessly with the lifeboat 2 via the communication network 3.
  • the UAV 1 is a small unmanned aerial vehicle operated by a radio remote control device or its own program control device, such as an unmanned fixed wing aircraft, an unmanned multi-rotor aircraft, an unmanned airship, an unmanned airfoil aircraft, and the like. Unmanned aerial vehicle.
  • the lifeboat 2 is a life saving device or a water robot suitable for driving at sea, for example, a large tonnage ship or the like.
  • the communication network 3 is a remote wireless communication network, including but not limited to a GSM network, a GPRS network, and the like.
  • the UAV 1 is provided with an infrared search and rescue device 10, which is provided with an automatic navigation device 20.
  • the UAV 1 can fly to the sea area where the shipwreck occurs, and activate the infrared search and rescue device 10 to collect a video image of the sea area where the shipwreck occurs, and perform a sea search and rescue target (such as a water trap, a survival craft, etc.) for the captured video image.
  • a sea search and rescue target such as a water trap, a survival craft, etc.
  • FIG. 2 is a schematic diagram showing the internal structure of a preferred embodiment of the infrared search and rescue device 10 of the unmanned aerial vehicle in the unmanned aerial vehicle search and rescue system of the present invention.
  • the infrared search and rescue device 10 includes, but is not limited to, a microcontroller 101, an autonomous flight unit 102, a flight control unit 103, an infrared camera 104, a positioning unit 105, and an information transmitting unit 106.
  • the autonomous flight unit 102, the flight control unit 103, the infrared camera 104, the positioning unit 105, and the information transmitting unit 106 are all connected to the microcontroller 101.
  • the microcontroller 101 is a microprocessor, a data processing chip, or a micro control unit (MCU) having data processing functions.
  • the autonomous flight unit 102 is configured to set an autonomous flight path of the unmanned aerial vehicle 1 to the sea area where the shipwreck occurs.
  • the data interface of the autonomous flight unit 201 can be connected to the interface of the GPS system or the Beidou navigation system, and can quickly introduce the navigation map information of the unmanned aerial vehicle 1 to the sea area where the shipwreck occurs.
  • the flight control unit 103 controls the unmanned aerial vehicle 1 to fly into the sea area where the shipwreck occurs according to the set autonomous flight path, and controls the unmanned aerial vehicle 1 to hover over the sea area where the shipwreck occurs.
  • the microcontroller 101 turns on the infrared camera 104 to take a video image of the sea area where the shipwreck occurred, and transmits the monitored video image to the microcontroller 101. .
  • the microcontroller 101 identifies a maritime search and rescue target (for example, a marine drowning person) from the video image according to the principle of infrared imaging sensitivity to human body heat source, and opens the positioning unit 105 to accurately locate the geographical location information of the maritime search and rescue target, including Latitude information and longitude information to pinpoint maritime search and rescue targets.
  • the positioning unit 105 is a chip with a GPS positioning function, a Beidou positioning function or other positioning function, and can accurately locate the geographical location information of the maritime search and rescue target.
  • the information sending unit 106 is a wireless communication interface with a remote wireless communication function, for example, a communication interface supporting communication technologies such as GSM, GPRS, CDMA, and WiMAX, and capable of wirelessly communicating with the automatic navigation device 20 of the lifeboat 2 .
  • the information transmitting unit 106 transmits the geographical location information of the maritime search and rescue target to the automatic navigation device 20 of the lifeboat 2 so that the lifeboat 2 quickly reaches the search and rescue target position for rescue.
  • FIG. 3 is a schematic diagram showing the internal structure of a preferred embodiment of the automatic navigation device for a lifeboat in the maritime search and rescue system based on the unmanned aerial vehicle of the present invention.
  • the automatic navigation device 20 includes, but is not limited to, an information receiving unit 201, a navigator 202, and a display screen 203.
  • the information receiving unit 201 is connected to a navigator 202, which is connected to the display screen 203.
  • the information receiving unit 201 and the information sending unit 106 match each other, that is, the information receiving unit 201 is also a communication interface capable of supporting communication technologies such as GSM, GPRS, CDMA, and WiMAX.
  • the information receiving unit 201 is configured to receive geographic location information of the maritime search and rescue target sent by the information transmitting unit 106 in the unmanned aerial vehicle 1 and transmit the geographical location information to the navigator 202.
  • the navigator 202 automatically plans and generates a sea route of the lifeboat 2 to the sea search and rescue target according to the geographical location information, and displays the sea route of the maritime search and rescue target on the display screen 203 for the lifeboat 2 to be fast. Reach the search and rescue target location for rescue.
  • the unmanned aerial vehicle 1 is parked on the splint of the lifeboat 2, and when the lifeboat 2 travels to the vicinity of the sea where the shipwreck occurs, the fly The unmanned aerial vehicle 1 takes off from the lifeboat 2 and flies to the sea area where the shipwreck occurred according to the established autonomous flight path, and hovering over the sea area where the shipwreck occurred.
  • the UAV 1 patrols the sea area where the shipwreck occurs according to the mounted infrared search and rescue device 10, and the infrared camera 104 in the infrared search and rescue device 10 is in a continuous working state to take in a video image of the sea area where the shipwreck occurs, and the microcontroller 101 In the video image, the maritime search and rescue target (for example, a marine water trapper) is identified, and the positioning unit 105 is opened to accurately locate the geographical location information of the maritime search and rescue target, thereby accurately searching for the maritime search and rescue target.
  • the infrared search and rescue device 10 will be sent to the automatic navigation device 20 of the lifeboat 2 so that the lifeboat 2 can quickly reach the search and rescue target position for rescue.
  • the utility model utilizes an infrared camera equipped with an unmanned aerial vehicle, and according to the characteristics that the infrared imaging is sensitive to the human body heat source, the sea video image of the shipwreck can be taken during the sea search and rescue, and the sea search and rescue target is recognized from the video image, and Quickly locate and facilitate the rescue boat for search and rescue. Since the infrared camera can sense the presence of the drowning person through the temperature of the human body, and is not affected by the illuminance and the backlight, it can better assist the maritime search and rescue, solve the problem of difficult sea search and rescue at night, and realize accurate and rapid sea automatic. Search for work.

Abstract

一种基于无人飞行器的海上搜救系统,包括无人飞行器(1)以及救生船(2),无人飞行器(1)通过通讯网络无线(3)连接至救生船(2),该无人飞行器(1)设置有红外搜救装置(10),救生船(2)设置有自动导航装置(20),当无人飞行器(1)飞抵海难发生海域的上空时,启动红外搜救装置(10)采集海难发生海域的视频图像并对采集到的视频图像进行海上搜救目标检测,当检测到海上搜救目标时,红外搜救装置(10)获取海上搜救目标的地理位置信息并发送至救生船(2)的自动导航装置(20),该自动导航装置(20)将救生船(2)自动导航到海上搜救目标的位置进行救援。本发明可以更好地辅助海上搜救,解决夜间海上搜救困难的问题。

Description

基于无人飞行器的海上搜救系统
技术领域
本实用新型涉及海上搜救领域,尤其涉及一种基于无人飞行器的海上搜救系统。
背景技术
海难事故发生后,能否有效迅速地找到搜救目标并实施救助,对于减少生命和财产损失具有重要意义。由于搜救目标易于受到风、浪、流等因素的综合影响而不断漂移,特别是海难事故往往发生在恶劣气象条件下,使得确定搜救目标的位置存在很大困难,因此,如何准确地确定包含搜救目标的搜救区域成为搜救过程中的重要环节之一。
目前国内海上搜救组织配备的搜救设备尚不完善,还是通过一些简单的搜救设备来辅助搜救工作的完成和依靠人眼视觉进行观察搜救,主观因素和不确定性较大,而且人眼视觉容易受疲劳和环境因素的影响,在风浪和低照度情况下发现弱小目标(例如落水人员、救生艇筏等)尤为困难。尤其在夜间时候,人眼的视力几乎不能起作用,因此,目前海上搜救设备在夜间基本上不能进行海上搜救。
实用新型内容
本实用新型的主要目的在于提供一种基于无人飞行器的海上搜救系统,旨在解决现有目前海上搜救设备在夜间不能进行海上搜救的问题。
为实现上述目的,本实用新型提供了一种基于无人飞行器的海上搜救系统,所述海上搜救系统包括无人飞行器以及救生船,所述无人飞行器通过通讯网络无线连接至所述救生船,该无人飞行器设置有红外搜救装置,所述救生船设置有自动导航装置,当无人飞行器飞抵海难发生海域的上空时,启动所述红外搜救装置采集海难发生海域的视频图像并对采集到的视频图像进行海上搜救目标检测,当检测到海上搜救目标时,所述红外搜救装置获取所述海上搜救目标的地理位置信息并发送至所述救生船的自动导航装置,该自动导航装置将所述救生船自动导航到所述海上搜救目标的位置进行救援。
优选的,所述自动导航装置包括信息接收单元、导航仪以及显示屏,所述信息接收单元连接至所述导航仪,该导航仪连接至所述显示屏。
优选的,所述红外搜救装置包括微控制器和自主飞行单元,该自主飞行单元连接至所述微控制器,用于设定所述无人飞行器飞抵所述海难发生海域所需的自主飞行路线。
优选的,所述自动导航装置包括信息接收单元、导航仪以及显示屏,所述信息接收单元连接至所述导航仪,该导航仪连接至所述显示屏。
优选的,所述红外搜救装置还包括一个连接至所述微控制器上的飞行控制单元,该飞行控制单元用于根据设定的自主飞行路线控制所述无人飞行器飞抵所述海难发生海域,并控制所述无人飞行器悬停在海难发生海域的上空。
优选的,所述自动导航装置包括信息接收单元、导航仪以及显示屏,所述信息接收单元连接至所述导航仪,该导航仪连接至所述显示屏。
优选的,所述红外搜救装置还包括一个连接至所述微控制器上的红外摄像仪,该红外摄像仪用于摄取所述海难发生海域的视频图像,并将监测到的视频图像发送至所述微控制器以识别出所述海上搜救目标。
优选的,所述自动导航装置包括信息接收单元、导航仪以及显示屏,所述信息接收单元连接至所述导航仪,该导航仪连接至所述显示屏。
优选的,所述红外搜救装置还包括一个连接至所述微控制器上的启定位单元,该定位单元用于定位所述海上搜救目标的地理位置信息。
优选的,所述自动导航装置包括信息接收单元、导航仪以及显示屏,所述信息接收单元连接至所述导航仪,该导航仪连接至所述显示屏。
优选的,所述红外搜救装置包括一个连接至所述微控制器上的信息发送单元,该信息发送单元用于将所述海上搜救目标的地理位置信息发送至所述救生船的自动导航装置中。
优选的,所述自动导航装置包括信息接收单元、导航仪以及显示屏,所述信息接收单元连接至所述导航仪,该导航仪连接至所述显示屏。
优选的,所述信息接收单元用于从所述红外搜救装置接收所述海上搜救目标的地理位置信息,并将该地理位置信息传送给所述导航仪。
优选的,所述导航仪用于根据所述地理位置信息自动规划并产生所述救生船处到达所述海上搜救目标的海上航线,并将该海上搜救目标的海上航线显示在所述显示屏上。
相较于现有技术,本实用新型所述基于无人飞行器的海上搜救系统利用无人飞行器自身搭载的红外摄像仪,根据红外成像对人体热源敏感这一特点,在海上搜救时候能够摄取海难发生海域的视频图像并从视频图像中识别出海上搜救目标,并快速定位出方便救生船进行搜救。由于红外摄像仪可以通过人体的温度感测到落水人员的存在,且不受光照度以及逆光的影响,所以可以更好的辅助海上搜救,解决夜间海上搜救困难的问题,并能实现快速地海上自动搜索工作。
附图说明
图1是本实用新型基于无人飞行器的海上搜救系统优选实施例的结构示意图;
图2是本实用新型基于无人飞行器的海上搜救系统中无人飞行器的红外搜救装置优选实施例的内部结构示意图;
图3是本实用新型基于无人飞行器的海上搜救系统中救生船的自动导航装置优选实施例的内部结构示意图。
本实用新型目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为更进一步阐述本实用新型为达成上述目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本实用新型的具体实施方式、结构、特征及其功效进行细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
如图1所示,图1是本实用新型基于无人飞行器的海上搜救系统优选实施例的结构示意图。在本实施例中,所述海上搜救系统包括无人飞行器1以及救生船2,所述无人飞行器1通过通讯网络3与救生船2进行无线通讯。所述无人飞行器1是一种由无线电遥控设备或自身程序控制装置操纵的小型无人驾驶飞行器,例如无人固定翼机、无人多旋翼飞行器、无人飞艇、无人伞翼机等小型无人飞行器。所述救生船2为一种适合海上行驶的救生装置或水上机器人,例如,大吨位的舰艇等。所述通讯网络3为一种远程无线通讯网络,包括但不仅限于,GSM网络、GPRS网络等。
在本实施例中,所述无人飞行器1设置有红外搜救装置10,所述救生船2设置有自动导航装置20。所述无人飞行器1能够飞抵海难发生海域,并启动所述红外搜救装置10采集海难发生海域的视频图像并对采集到的视频图像进行海上搜救目标(例如落水人员、救生艇筏等)检测,当检测到海上搜救目标时,获取所述海上搜救目标的地理位置信息并发送至所述救生船2的自动导航装置20,所述救生船2依据自动导航装置20产生的导航线路快速到达所述海上搜救目标的位置进行救援。
如图2所示,图2是本实用新型基于无人飞行器的海上搜救系统中无人飞行器的红外搜救装置10优选实施例的内部结构示意图。在本实施例中,所述红外搜救装置10包括,但不仅限于,微控制器101、自主飞行单元102、飞行控制单元103、红外摄像仪104、定位单元105以及信息发送单元106。所述自主飞行单元102、飞行控制单元103、红外摄像仪104、定位单元105和信息发送单元106均连接至微控制器101上。
所述微控制器101是一种微处理器、数据处理芯片、或者具有数据处理功能的微控制单元(MCU)等。所述自主飞行单元102用于设定所述无人飞行器1飞抵海难发生海域的自主飞行路线。该自主飞行单元201的数据接口能够与GPS系统或北斗导航系统的接口进行连接,并且能够快速导入所述无人飞行器1飞抵所述海难发生海域的导航地图信息。
所述飞行控制单元103根据设定的自主飞行路线控制所述无人飞行器1飞抵海难发生海域,并控制无人飞行器1悬停在所述海难发生海域的上空。当所述无人飞行器1悬停在海难发生海域上空时,所述微控制器101开启红外摄像仪104摄取海难发生海域的视频图像,并将监测到的视频图像发送至所述微控制器101。
所述微控制器101根据红外成像对人体热源敏感性原理从所述视频图像中识别出海上搜救目标(例如海上落水人员),并开启定位单元105精确定位出海上搜救目标的地理位置信息,包括纬度信息和经度信息,从而精确定位出海上搜救目标。所述定位单元105是一种具有GPS定位功能、北斗定位功能或其它具有定位功能的芯片,能够精确定位海上搜救目标的地理位置信息。
所述信息发送单元106为一种具有远程无线通讯功能的无线通讯接口,例如支持GSM、GPRS、CDMA以及WiMAX等通讯技术的通讯接口,能够与所述救生船2的自动导航装置20进行无线通讯。所述信息发送单元106将海上搜救目标的地理位置信息发送至所述救生船2的自动导航装置20,以便救生船2快速到达搜救目标位置进行救援。
如图3所示,图3是本实用新型基于无人飞行器的海上搜救系统中救生船的自动导航装置优选实施例的内部结构示意图。在本实施例中,所述自动导航装置20包括,但不仅限于,信息接收单元201、导航仪202和显示屏203。所述信息接收单元201连接至导航仪202,该导航仪202连接至显示屏203。
在本实施例中,所述信息接收单元201与所述信息发送单元106相互匹配,也就是说,该信息接收单元201也是一种能够支持GSM、GPRS、CDMA以及WiMAX等通讯技术的通讯接口。所述信息接收单元201用于接收所述无人飞行器1中信息发送单元106发送的海上搜救目标的地理位置信息,并将该地理位置信息传送给导航仪202上。该导航仪202根据所述地理位置信息自动规划并产生所述救生船2到达海上搜救目标的海上航线,并将该海上搜救目标的海上航线显示在显示屏203上,以供所救生船2快速到达搜救目标位置进行救援。
在使用本实用新型所述基于无人飞行器的海上搜救系统时,在所述无人飞行器1停在所述救生船2的夹板上,当救生船2行驶至海难发生海域附近时,所述飞无人飞行器1从所述救生船2上起飞并按照既定的自主飞行路线飞抵海难发生海域,并悬停在海难发生海域的上空。该无人飞行器1依据搭载的红外搜救装置10对海难发生海域进行巡视,所述红外搜救装置10中的红外摄像仪104处于持续工作状态以便摄取海难发生海域的视频图像,微控制器101从所述视频图像中识别出海上搜救目标(例如海上落水人员),并开启定位单元105精确定位出海上搜救目标的地理位置信息,从而精确搜寻到海上搜救目标。同时,所述红外搜救装置10将送至所述救生船2的自动导航装置20,以便救生船2快速到达搜救目标位置进行救援。
本实用新型利用无人飞行器搭载自身搭载的红外摄像仪,根据红外成像对人体热源敏感这一特点,在海上搜救时候能够摄取海难发生海域的视频图像并从视频图像中识别出海上搜救目标,并快速定位出方便救生船进行搜救。由于红外摄像仪可以通过人体的温度感测到落水人员的存在,且不受光照度以及逆光的影响,所以可以更好的辅助海上搜救,解决夜间海上搜救困难的问题,并实现精确快速地海上自动搜索工作。
以上仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效功能变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (14)

  1. 一种基于无人飞行器的海上搜救系统,其特征在于,所述海上搜救系统包括无人飞行器以及救生船,所述无人飞行器通过通讯网络无线连接至所述救生船,该无人飞行器设置有红外搜救装置,所述救生船设置有自动导航装置,当无人飞行器飞抵海难发生海域的上空时,启动所述红外搜救装置采集海难发生海域的视频图像并对采集到的视频图像进行海上搜救目标检测,当检测到海上搜救目标时,所述红外搜救装置获取所述海上搜救目标的地理位置信息并发送至所述救生船的自动导航装置,该自动导航装置将所述救生船自动导航到所述海上搜救目标的位置进行救援。
  2. 如权利要求1所述的基于无人飞行器的海上搜救系统,其特征在于,所述自动导航装置包括信息接收单元、导航仪以及显示屏,所述信息接收单元连接至所述导航仪,该导航仪连接至所述显示屏。
  3. 如权利要求1所述的基于无人飞行器的海上搜救系统,其特征在于,所述红外搜救装置包括微控制器和自主飞行单元,该自主飞行单元连接至所述微控制器,用于设定所述无人飞行器飞抵所述海难发生海域所需的自主飞行路线。
  4. 如权利要求3所述的基于无人飞行器的海上搜救系统,其特征在于,所述自动导航装置包括信息接收单元、导航仪以及显示屏,所述信息接收单元连接至所述导航仪,该导航仪连接至所述显示屏。
  5. 如权利要求3所述的基于无人飞行器的海上搜救系统,其特征在于,所述红外搜救装置还包括一个连接至所述微控制器上的飞行控制单元,该飞行控制单元用于根据设定的自主飞行路线控制所述无人飞行器飞抵所述海难发生海域,并控制所述无人飞行器悬停在该海难发生海域的上空。
  6. 如权利要求5所述的基于无人飞行器的海上搜救系统,其特征在于,所述自动导航装置包括信息接收单元、导航仪以及显示屏,所述信息接收单元连接至所述导航仪,该导航仪连接至所述显示屏。
  7. 如权利要求3所述的基于无人飞行器的海上搜救系统,其特征在于,所述红外搜救装置还包括一个连接至所述微控制器上的红外摄像仪,该红外摄像仪用于摄取所述海难发生海域的视频图像,并将监测到的视频图像发送至所述微控制器以识别出所述海上搜救目标。
  8. 如权利要求7所述的基于无人飞行器的海上搜救系统,其特征在于,所述自动导航装置包括信息接收单元、导航仪以及显示屏,所述信息接收单元连接至所述导航仪,该导航仪连接至所述显示屏。
  9. 如权利要求3所述的基于无人飞行器的海上搜救系统,其特征在于,所述红外搜救装置还包括一个连接至所述微控制器上的启定位单元,该定位单元用于定位所述海上搜救目标的地理位置信息。
  10. 如权利要求9所述的基于无人飞行器的海上搜救系统,其特征在于,所述自动导航装置包括信息接收单元、导航仪以及显示屏,所述信息接收单元连接至所述导航仪,该导航仪连接至所述显示屏。
  11. 如权利要求3所述的基于无人飞行器的海上搜救系统,其特征在于,所述红外搜救装置包括一个连接至所述微控制器上的信息发送单元,该信息发送单元用于将所述海上搜救目标的地理位置信息发送至所述救生船的自动导航装置中。
  12. 如权利要求11所述的基于无人飞行器的海上搜救系统,其特征在于,所述自动导航装置包括信息接收单元、导航仪以及显示屏,所述信息接收单元连接至所述导航仪,该导航仪连接至所述显示屏。
  13. 如权利要求12所述的基于无人飞行器的海上搜救系统,其特征在于,所述信息接收单元用于从所述红外搜救装置接收所述海上搜救目标的地理位置信息,并将该地理位置信息传送给所述导航仪。
  14. 如权利要求12所述的基于无人飞行器的海上搜救系统,其特征在于,所述导航仪用于根据所述地理位置信息自动规划并产生所述救生船处到达所述海上搜救目标的海上航线,并将该海上搜救目标的海上航线显示在所述显示屏上。
PCT/CN2016/070529 2015-11-21 2016-01-09 基于无人飞行器的海上搜救系统 WO2017084199A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520935375.7U CN205168848U (zh) 2015-11-21 2015-11-21 基于无人飞行器的海上搜救系统
CN201520935375.7 2015-11-21

Publications (1)

Publication Number Publication Date
WO2017084199A1 true WO2017084199A1 (zh) 2017-05-26

Family

ID=55732865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070529 WO2017084199A1 (zh) 2015-11-21 2016-01-09 基于无人飞行器的海上搜救系统

Country Status (2)

Country Link
CN (1) CN205168848U (zh)
WO (1) WO2017084199A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107571977A (zh) * 2017-09-27 2018-01-12 陕西科技大学 一种基于fpga的中小型水域自主救生系统及救生方法
CN111459191A (zh) * 2020-03-16 2020-07-28 天津大学 适用于无人艇-无人机联合的海上搜救方法
CN113271438A (zh) * 2021-05-13 2021-08-17 烟台文化旅游职业学院 一种海水浴场安全监管系统
WO2021224667A1 (en) * 2020-05-06 2021-11-11 Jorge Alberto Ferreira Noras Automatic method for releasing and guiding rescue and life-saving appliances that implement the method
CN114348264A (zh) * 2022-01-29 2022-04-15 国家海洋环境预报中心 一种基于海洋环境的无人机搜救方法及系统

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205131675U (zh) * 2015-11-14 2016-04-06 深圳市易特科信息技术有限公司 基于红外线远程侦测目标的智能无人机系统
CN106828826B (zh) * 2017-02-27 2018-11-23 上海交通大学 一种自动化海上救援方法
CN107813914B (zh) * 2017-03-24 2018-09-14 吴叔枚 一种水上救援装备
CN107117268B (zh) * 2017-05-12 2019-04-30 西南科技大学 一种异构系统的海洋垃圾回收方法及系统
CN107200145A (zh) * 2017-05-31 2017-09-26 佛山市神风航空科技有限公司 一种无人机的抗洪救灾方式及装置
CN107161299A (zh) * 2017-05-31 2017-09-15 佛山市神风航空科技有限公司 一种海上无人机的救援方式及装置
CN107140157A (zh) * 2017-06-08 2017-09-08 广东容祺智能科技有限公司 一种无人机水上应急救援装置及方法
CN108298043B (zh) * 2018-01-29 2020-06-19 李颖 一种基于无人机和救生圈联动的水上智能救生装置
CN108544497B (zh) * 2018-03-30 2023-08-11 武汉理工大学 一种面向水上搜救的无人机自动取放装置
CN109080793B (zh) * 2018-07-04 2020-01-14 上海海事大学 一种基于无人机的海上搜救系统及其搜救方法和控制方法
CN109358653A (zh) * 2018-09-03 2019-02-19 济源维恩科技开发有限公司 海上无人机分布式智能搜救系统
CN109436247A (zh) * 2018-11-30 2019-03-08 湖南华诺星空电子技术有限公司 一种具有自寻功能的落水目标搜救方法及搜救系统
US10771948B2 (en) 2018-12-03 2020-09-08 Rohde & Schwarz Gmbh & Co. Kg System and method for monitoring a spatial position of a mobile transmitter, man-over-board detection system
CN109787679A (zh) * 2019-03-15 2019-05-21 郭欣 基于多旋翼无人机的警用红外搜捕系统及方法
CN110149138B (zh) * 2019-04-19 2020-09-18 中国人民解放军军事科学院国防科技创新研究院 天基海上搜救信息融合处理装置及处理方法
CN110576951B (zh) * 2019-07-31 2022-03-22 安徽科微智能科技有限公司 一种水上救援系统及其方法
CN110775275B (zh) * 2019-10-28 2021-10-15 深圳市赛为智能股份有限公司 无人机救援物资释放方法、装置、计算机设备及存储介质
CN111722646B (zh) * 2020-06-24 2022-01-25 汕头大学 一种基于无人机群和无人船群协作的海上搜寻方法及系统
CN111731453A (zh) * 2020-07-08 2020-10-02 海南大学 一种基于搭载无人机的救生无人船的海上救援方法和系统
CN113342019B (zh) * 2021-06-07 2023-02-03 广州智航船舶科技有限公司 一种基于无人机的海上搜救方法、系统、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979961A (zh) * 2010-05-18 2011-02-23 中国地震局地球物理研究所 一种灾情获取系统
CN202103789U (zh) * 2011-06-03 2012-01-04 滨州职业学院 一种无人机无线视频监控系统
CN104743084A (zh) * 2015-03-27 2015-07-01 徐州飞梦电子科技有限公司 一种水面综合救援系统及其方法
CN204507218U (zh) * 2015-03-31 2015-07-29 马鞍山市赛迪智能科技有限公司 一种搭载无人机的水上搜救设备
KR20150118499A (ko) * 2014-04-14 2015-10-22 (주)에스앤티 무인기를 이용한 인명 구조 시스템 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979961A (zh) * 2010-05-18 2011-02-23 中国地震局地球物理研究所 一种灾情获取系统
CN202103789U (zh) * 2011-06-03 2012-01-04 滨州职业学院 一种无人机无线视频监控系统
KR20150118499A (ko) * 2014-04-14 2015-10-22 (주)에스앤티 무인기를 이용한 인명 구조 시스템 및 방법
CN104743084A (zh) * 2015-03-27 2015-07-01 徐州飞梦电子科技有限公司 一种水面综合救援系统及其方法
CN204507218U (zh) * 2015-03-31 2015-07-29 马鞍山市赛迪智能科技有限公司 一种搭载无人机的水上搜救设备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107571977A (zh) * 2017-09-27 2018-01-12 陕西科技大学 一种基于fpga的中小型水域自主救生系统及救生方法
CN111459191A (zh) * 2020-03-16 2020-07-28 天津大学 适用于无人艇-无人机联合的海上搜救方法
WO2021224667A1 (en) * 2020-05-06 2021-11-11 Jorge Alberto Ferreira Noras Automatic method for releasing and guiding rescue and life-saving appliances that implement the method
CN113271438A (zh) * 2021-05-13 2021-08-17 烟台文化旅游职业学院 一种海水浴场安全监管系统
CN114348264A (zh) * 2022-01-29 2022-04-15 国家海洋环境预报中心 一种基于海洋环境的无人机搜救方法及系统
CN114348264B (zh) * 2022-01-29 2022-08-02 国家海洋环境预报中心 一种基于海洋环境的无人机搜救方法及系统

Also Published As

Publication number Publication date
CN205168848U (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2017084199A1 (zh) 基于无人飞行器的海上搜救系统
US11814173B2 (en) Systems and methods for unmanned aerial vehicles
CN109080793B (zh) 一种基于无人机的海上搜救系统及其搜救方法和控制方法
CN204415734U (zh) 救援设备的投放装置
CN104700576A (zh) 一种水上快速救援系统及其方法
CN201302609Y (zh) 海上个人应急示位跟踪设备
CN104554657A (zh) 一种利用无人机投放救援设备的方法
CN101661094A (zh) 海上个人应急示位跟踪设备及其定位方法
CN107145146A (zh) 用于灾区搜救的无人机及其搜救方法
WO2017080028A1 (zh) 用于定位核辐射放射源的无人机系统
CN111953937B (zh) 落水人员救生系统及落水人员救生方法
KR101724049B1 (ko) 쌍방향 의사소통이 가능한 드론 시스템
CN109298724A (zh) 无人机搜寻救援系统及其方法
CN105962908B (zh) 飞行体温检测器控制方法及装置
CN204432992U (zh) 无人机救援设备
CN112384440A (zh) 用于救援任务协助的方法和设备
CN205131695U (zh) 一种带有热成像装置的无人机
CN104743084A (zh) 一种水面综合救援系统及其方法
CN201334116Y (zh) 带红外线测距空中悬停警用侦察飞行器
CN203865010U (zh) 自动追踪视频识别智能航拍导航飞行器
CN105763842A (zh) 带有消防探测功能的飞行器
CN105208346B (zh) 基于无人机的输电设备辨认方法
CN108196588A (zh) 一种基于无人机的山地旅游紧急救援系统
CN205404813U (zh) 一种基于无人机寻址警示辅助追踪装置
CN107908163A (zh) 一种基于无人舰艇的无人机侦查系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865382

Country of ref document: EP

Kind code of ref document: A1