WO2017082640A1 - Oled device laminate using high-refractive-index and low-refractive-index organic/inorganic hybrid materials, oled device manufacturing method, and oled device manufactured thereby - Google Patents

Oled device laminate using high-refractive-index and low-refractive-index organic/inorganic hybrid materials, oled device manufacturing method, and oled device manufactured thereby Download PDF

Info

Publication number
WO2017082640A1
WO2017082640A1 PCT/KR2016/012897 KR2016012897W WO2017082640A1 WO 2017082640 A1 WO2017082640 A1 WO 2017082640A1 KR 2016012897 W KR2016012897 W KR 2016012897W WO 2017082640 A1 WO2017082640 A1 WO 2017082640A1
Authority
WO
WIPO (PCT)
Prior art keywords
light extraction
extraction layer
organic
oled device
inorganic hybrid
Prior art date
Application number
PCT/KR2016/012897
Other languages
French (fr)
Korean (ko)
Inventor
박수영
김기한
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2017082640A1 publication Critical patent/WO2017082640A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a laminate for an OLED device using a high refractive index and a low refractive organic / inorganic hybrid material, and a method for manufacturing the OLED device, and an OLED device produced thereby.
  • OLEDs organic light emitting diodes
  • OLEDs have been regarded as promising next generation displays due to the potential applicability of lighting, flat panel displays.
  • OLEDs have unique characteristics such as low power consumption, wide viewing angle, excellent color reproducibility, high contrast, fast response and flexibility.
  • OLEDs have recently become an important issue for achieving high efficiencies such as fluorescent tubes and other lighting technologies such as LEDs.
  • the internal quantum efficiency of OLEDs can reach 100% with the introduction of phosphorescence mechanisms, but the light extraction efficiency of back-emitting OLEDs is usually around 20%. This is because light loss occurs due to the difference in refractive index between the air / substrate and the substrate / indium tin oxide (ITO) interface, and the light loss is affected by total reflection of the substrate. The light emitted from the inside usually undergoes total internal reflection, and the light reflected from the inside of the device increases, so most of it is trapped in the device.
  • the method for enhancing the external quantum efficiency (EQE) is to introduce an extraction layer to reduce the difference in refractive index, and to break the conditions of total reflection.
  • the inner light extraction layer is positioned between the transparent conductive film (TCO) and the glass substrate, and the outer light extraction layer is located outside the device substrate.
  • An external light extracting layer located outside of the device substrate in a micro / nano-structure can redirect light reflected by total reflection at the substrate / air interface so as not to interfere with the device.
  • a micro / nano internal light extraction layer between the substrate and the ITO anode layer can interfere with total reflection in both the substrate and waveguide modes.
  • the light extraction efficiency of the OLED including the internal light extraction layer will be higher than that including the external light extraction layer.
  • the current technology of introducing light extraction layers into OLEDs is to increase the scattering of light by controlling the refractive index by mixing the inorganic particles with the polymer.
  • inorganic particles sometimes do not disperse well, and generate high roughness and wavy surfaces, thereby reducing the performance and life of the device.
  • Another problem in introducing the light extraction layer is low transmittance. Dispersion of inorganic particles in a polymer is an important problem. Aggregation of the inorganic particles reduces the transmittance of the light extraction layer, so as not to improve the light extraction of the OLED.
  • the internal and external light extraction layers require low roughness, high transmittance, low refractive index and high refractive index characteristics to reduce the refractive index difference between the substrate / ITO and the air / glass interface.
  • the present inventors synthesized an organic-inorganic hybrid material by a sol-gel process together with an alkoxide material containing tetraethyl orthosilicate (TEOS) and Ti as a high refractive index and a low refractive index to solve the problems of the prior art.
  • TEOS tetraethyl orthosilicate
  • the present invention has been completed by applying to OLEDs.
  • the present invention is to provide a laminate for an OLED device using a high or low refractive organic / inorganic hybrid material as a problem.
  • another object of the present invention is to provide a method for manufacturing an OLED device, including the laminate for OLED devices.
  • Another object of the present invention is to provide a high or low refractive green light emitting OLED device manufactured by the above method.
  • Another object of the present invention is to provide a display device manufactured using the high or low refractive green OLED device.
  • another object of the present invention is to provide a surface emitting light source manufactured using the high or low refractive green OLED device.
  • the laminate for OLED devices In the light-transmitting substrate and the laminate for OLED devices to form an internal light extraction layer or an external light extraction layer on one surface of the light-transmissive substrate,
  • the inner light extraction layer or the outer light extraction layer is a scattering region formed by coating of a high refractive index or a low refractive organic / inorganic hybrid material,
  • the high or low refractive organic / inorganic hybrid material is methyl methacrylate (MMA) and 3- (triethoxysilyl) propyl methacrylate (MSMA) as a precursor (P). It provides a laminate for an OLED device using an organic / inorganic hybrid material, characterized in that the copolymer is prepared by combining a refractive index functional metal alkoxide based on titanium or silica using the sol-gel method to the precursor (P). .
  • this invention for solving the another subject of this invention relates to providing the manufacturing method of the OLED element manufactured including the said laminated body for OLED elements.
  • the present invention for solving the other problem of the present invention relates to providing a high-refractive or low-refractive green light emitting OLED device manufactured by the method of manufacturing the OLED device.
  • the present invention for solving the other problem of the present invention relates to providing a display device manufactured using the high or low refractive green light emitting OLED device.
  • the present invention for solving the other problem of the present invention relates to providing a surface emitting light source manufactured using the high or low refractive green light emitting OLED device.
  • the laminate for an OLED device according to the present invention includes a scattering region composed of an internal light extraction layer or an external light extraction layer, thereby reducing the difference in refractive index by SiO 2 and TiO 2 nanoparticles to enhance light scattering. It has the effect of increasing the extraction.
  • this has the effect of increasing the efficiency, brightness, and lifetime of the OLED device.
  • FIG. 1 shows a schematic diagram of an OLED device according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the transmittance and haze of the inner light extraction layer and the outer light extraction layer according to an embodiment of the present invention.
  • Figure 3 shows a top-down SEM image of the precursor, the inner light extraction layer and the outer light extraction layer according to an embodiment of the present invention.
  • ITO 4 is a surface image of ITO / glass and ITO / internal light extraction layer / glass according to an embodiment of the present invention is measured by a 3D optical analyzer.
  • FIG. 5 is a graph showing the optimum transmittance according to the thickness of the ITO / internal light extraction layer / glass substrate according to an embodiment of the present invention.
  • FIG. 6 is a graph showing light extraction characteristics of a device according to an embodiment of the present invention.
  • FIG. 7 is a graph illustrating light extraction characteristics of a device according to an embodiment of the present invention.
  • FIG. 8 is a photograph showing light emission when a device is turned on according to an embodiment of the present invention.
  • the present invention relates to a laminate for an OLED device using a high refractive index and a low refractive organic / inorganic hybrid material, and a method for manufacturing the OLED device, and an OLED device produced thereby.
  • an OLED device laminate using the high refractive index and low refractive organic / inorganic hybrid materials of the present invention is provided.
  • the internal light extraction layer or the external light extraction layer is a high refractive index or low refractive organic / inorganic hybrid material
  • the high or low refractive organic / inorganic hybrid material is formed by the coating of Mn methacrylate (MMA) and 3- (triethoxysilyl) propyl methacrylate (3-) as a precursor (P).
  • the light transmissive substrate may be a material having a high transmittance to visible light, and a glass substrate or a plastic substrate may be used as the material having a high transmittance.
  • a glass substrate is used.
  • the functional metal alkoxide is a titanium-based metal alkoxide in the case of a high refractive material, and a silica-based metal alkoxide in the case of a low refractive material.
  • the functional metal alkoxide is TTIP (Titanium (IV) isopropoxide) in the case of a high refractive material, and tetraethyl orthosilicate (TEOS) in the case of a low refractive material.
  • the high refractive material is included in the internal light extraction layer
  • the low refractive material is characterized in that it is included in the external light extraction layer.
  • the high refractive material is included in the internal light extraction layer because it can reduce the refractive index difference between the substrate and ITO, and the low refractive material can be reduced in the external light extraction layer because it can reduce the refractive index difference between the external air and the substrate. It is included.
  • the scattering region is characterized in that it comprises a scattering element consisting of TiO 2 nanoparticles or SiO 2 nanoparticles.
  • the scattering elements are light incident directly into the light extraction layer, that is, light directly incident from the organic layer, as well as light totally reflected at the boundary between the translucent substrate and the air and then enter the internal light extraction layer, are randomly scattered by a plurality of scattering elements. In this process, light having an angle of incidence below the critical angle exits the outside of the light transmissive substrate, thereby improving light extraction efficiency.
  • the inner light extraction layer and the outer light extraction layer It is characterized by having a thickness in the range of 100 to 800 nm.
  • the minimum thickness required to maintain the flatness of the surface of the light extraction layer should be considered. Therefore, it is preferable that it is preferably 350 nm.
  • the thickness of the inner light extraction layer and the outer light extraction layer is 350 nm or less, it is not preferable because light loss occurs due to back reflection, and if it is 400 nm or more, light loss occurs due to back scattering. I can't.
  • a first step of preparing a high or low refractive organic / inorganic hybrid material A second step of forming an internal light extraction layer or an external light extraction layer by coating a high refractive index or a low refractive organic / inorganic hybrid material on one surface of the translucent substrate; In the second step, ITO, an organic layer, and a cathode are sequentially stacked on an upper surface of the inner light extraction layer formed of the coating of the high refractive material on one surface of the light transmissive substrate or on the upper surface of the translucent substrate on which the outer light extraction layer is formed of the low refractive material. And a third step of manufacturing the OLED device.
  • It provides a high or low refractive green light emitting OLED device manufactured by the method of manufacturing the OLED device.
  • a display device manufactured using the high refractive index or low refractive index green light emitting OLED device.
  • a surface emitting light source manufactured using the high or low refractive green OLED device.
  • MMA (1.001 g, 0.01 mole) and MSMA (0.828 g, 0.003 mole) were added with THF (21 mL) with BPO (0.121 g, 0.001 mole, a reaction initiator) for 2 h at 60 ° C. under nitrogen atmosphere.
  • BPO 0.121 g, 0.001 mole, a reaction initiator
  • TTIP (16.461 g, 0.058 mole, 90 wt%)
  • deionized water (1.04 mL)
  • THF 338.7 mL
  • ethanol 17. ml was used as a solvent because the by-product is alcohol in the sol-gel process and TEOS has good solubility in ethanol.
  • Synthesis of the precursor of the low refractive material is the same as the manufacturing method of the high refractive material except that ethanol is used instead of the THF solvent and the reaction temperature is 70 ° C.
  • Deionized water (0.18 mL), TEOS (2.778 g, 0.013 mole) and 2.5 M NaCl (0.015 g) were added to the precursor solution and stirred at 70 ° C. for 2 h.
  • FIG. 1A is a reference device
  • FIG. 1B is a device including an external light extraction layer
  • FIG. 1C is an internal light extraction.
  • the outer and inner light extraction layers of the OLED device were spin coated with low and high refractive hybrid materials.
  • Example 4-1 is a back-emitting green fluorescent OLED as a reference device, glass / ITO (140 nm) / NPB (100 nm) / Alq3: C545T (40nm) / Alq3 (25nm) / LiF (1nm) / Al (120 nm).
  • NPB was used as a hole transporting layer, Alq3 doped with 3wt% to C545T, an luminescent layer without undoped Alq3, a hole injection layer for LiF, and a high refractive index Al for the cathode.
  • the deposition rate of the organic layer was maintained at ⁇ 0.1 nm / s.
  • the organic and metal layers were vacuum deposited in a vacuum chamber and the pressure was ⁇ 10 ⁇ 6 torr.
  • the deposition area of the device was 2 x 2 mm 2 .
  • Sputtering of ITO was performed under 49.5 sccm Ar, 0.11 sccm O2 and 994 W radio frequency power (RF).
  • RF radio frequency power
  • the Example 4-2 device for the external light extraction structure was introduced with the low refractive layer as the external light extraction layer on the outer surface of the glass substrate of the Example 4-1 device.
  • the low refractive hybrid material was spin coated on a glass substrate at 500 to 5000 rpm for 40 seconds, left at 80 ° C. for 2 hours, washed several times with water to remove NaCl.
  • the device of Example 4-3 was fabricated by inserting a high refractive material between the ITO and the glass substrate of the device of Example 4-1 as an internal light extraction layer.
  • the high refractive hybrid material was spin coated on a glass substrate at 500 to 5000 rpm for 40 seconds and left at 80 ° C. for 2 hours.
  • a transparent ITO electrode having a sheet resistance of 35 kW / sq was deposited directly on a high refractive material coated with a radio frequency magnetron sputter.
  • the structure of the produced device is shown in the following Examples 4-1 to 4-3.
  • Example 4-1 The device was fabricated with glass / ITO (140 nm) / NPB (100 nm) / Alq3: C545T (40 nm) / Alq3 (25 nm) / LiF (1 nm) / Al (120 nm).
  • Example 4-2 The device was fabricated with an external light extraction layer / glass / ITO (140 nm) / NPB (100 nm) / Alq3: C545T (40nm) / Alq3 (25nm) / LiF (1nm) / Al (120nm).
  • Example 4-3 The device was fabricated with glass / internal light extraction layer / ITO (140 nm) / NPB (100 nm) / Alq3: C545T (40nm) / Alq3 (25nm) / LiF (1nm) / Al (120nm).
  • the microstructures of the low and high refractive hybrid materials were measured by scanning electron microscopy (FE-SEM, S-4800, Hitachi, Japan).
  • the transmittance and haze of the thin film were measured by UV spectrophotometer (CM-3600d, Konica Minolta Co., Japan) and the wavelength was found to be 360 ⁇ 740nm.
  • the refractive index and extinction coefficient of the thin film were measured with a spectroscopic ellipsometer (Elli-SE-U, Ellipsotechnology Co., Korea) and the wavelength was found to be 355-1030nm.
  • Preparation of samples for measurement in a spectroscopic ellipsometer and UV spectrophotometer was prepared by spin coating a solution on a glass substrate. Surface roughness and thickness of the light extraction layer were measured by a 3D optical analyzer (Nano-view NV-E1000, Nano system Co., Korea). I-V-L characteristics of the fabricated OLED device were measured with a spectroradiometer (PR-650, LMS Corp., Korea) in a black box under normal atmospheric conditions.
  • Table 1 summarizes the refractive indices and the extinction coefficients of the inner and outer light extraction layers at 550 nm.
  • the refractive index of the internal light extraction layer increased from 1.50 to 1.81 when 90 wt% TTIP was added, and the external light extraction layer decreased from 1.50 to 1.44 when 2.5M NaCl was added.
  • Such increases and decreases in refractive index are due to TiO 2 particles, which are heavier than precursor atoms, and SiO 2, which is relatively lighter.
  • TiO 2 and SiO 2 particles will be precipitated by the gelation of the reactants.
  • the loss of light is due to the difference in refractive index between the indium tin oxide (ITO) / glass substrate and the glass substrate / air. If high and low refractive hybrid materials are applied to the external and internal light extraction layers of the OLED, the light extraction efficiency of the OLED will be significantly improved as the difference in refractive index is reduced.
  • ITO indium tin oxide
  • 2 and 3 are graphs showing the transmittance and haze of the high refractive hybrid material and the low refractive hybrid material synthesized in Examples 1 and 2 and a top-down SEM image.
  • the transmittance and haze of the precursor copolymer were 92.0 and 0.2% of poly (MMA-co-MSMA) on the glass substrate, respectively. These values were similar to the transmittance and haze values of 91.3 and 0.2% of pure glass substrates.
  • the transmittance and haze of the 750 nm thick internal light extraction layer decreased and increased to 85.4 and 13.1%, respectively.
  • the transmittance and haze of the 800 nm thick external light extraction layer decreased and increased, respectively, at 89.3% and 23.8%.
  • the decrease of the transmittance and the increase of haze in the inner light extraction layer and the outer light extraction layer are caused by light scattering by titanium and silica particles in the poly (MMA-co-MSMA) matrix.
  • Table 2 The transmittance and haze values are summarized in Table 2 below.
  • FIG. 3 (a) shows a precursor
  • FIG. 3 (b) shows a top down SEM image of the inner light extraction layer
  • FIG. 3 (c) shows an outer light extraction layer.
  • the SEM photograph of the precursor of FIG. 3 (a) shows a non-characteristic form
  • the inner light extraction layer of FIG. 3 (b) and the outer light extraction layer of FIG. 3 (c) are well dispersed and It can be seen that it is uniform and has spherical inorganic particles having a diameter of 118.7 ⁇ 32.5 nm and 125.3 ⁇ 21.5 nm, respectively.
  • Example 1 Inorganic spherical particle diameter (nm) Example 1 - Example 2 118.7 ⁇ 32.5 Example 3 125.3 ⁇ 21.5
  • 4 (a) and 4 (b) show surface images of ITO / glass and ITO / internal light extraction layer / glass by 3D optical analyzer.
  • the roughness of the roughness (R a s) and the glass substrate containing no ITO thin film internal light extraction layer appeared to 1.05 ⁇ 0.09 and 0.85 ⁇ 0.04 nm, respectively ITO thin film and the internal light extraction layer, and The roughnesses of the internal light extraction layer and the glass substrate were 1.92 ⁇ 0.28 and 1.52 ⁇ 0.34 nm, respectively.
  • the organic-inorganic hybrid thin film as described above has a good planarity compared to the conventional manufacturing method. The planarity of the surface plays an important role in OLED applications. Rough or curved surfaces reduce the performance of the device and shorten its lifespan.
  • Planar layers deposited by plasma enhanced chemical vapor deposition (PECVD) and chemical mechanical polishing (CMP) are introduced over the light extraction layer to improve planarity.
  • PECVD plasma enhanced chemical vapor deposition
  • CMP chemical mechanical polishing
  • FIG. 5 is a graph showing the optimum transmittance according to the thickness of the ITO / internal light extraction layer / glass substrate.
  • the maximum values were found at 200, 400 and 600 nm, and the minimum values were found at 100, 300 and 500 nm.
  • the transmittance of FIG. 5 vibrates as the thickness of the internal light extracting layer increases, which is due to constructive interference and destructive interference.
  • the transmittance showed a maximum transmittance at 200 nm, which is similar to that of the ITO film only, indicating that the loss of transmittance can be minimized by adjusting the thickness of the internal light extraction layer.
  • the thickness, transmittance, refractive index and extinction coefficient of the ITO thin film were 140 nm, 78.4%, 2.07 and 2.3X10 -2 , respectively, and the transmittance of the ITO / internal light extraction layer / glass structure was calculated using the above values. .
  • 6 and 7 are graphs showing light extraction characteristics of devices fabricated in Examples 4-1 and 4-2.
  • FIGS. 6A to 6D show luminance, power, current efficiency, and EL spectrum according to voltages of Examples 4-1 and 4-2, respectively. .
  • the luminance, power, and current efficiency of the device of Example 4-2 are 16780 cd / m 2 at 14 V and 5.80 lm / W at 4 V, respectively.
  • the device was found to be 7.17 cd / A at 4 V, and the device of Example 4-1 was 13830 cd / m 2 at 14 V, 4.51 lm / W at 4 V, and 5.55 cd / A at 4 V, respectively.
  • the Example 4-2 device is 21.3, 28.6 and 29.1% more enhanced than the Example 4-1 device, respectively.
  • 6D shows that the improvement in luminance is shown in the entire spectral range, and it can be seen that the peak of the shape and wavelength of the EL spectrum is increased by the insertion of the external light extraction layer.
  • Light extraction depends on the concentration of scattering particles and the path of the light extraction layer.
  • the path of the light extraction layer depends on the thickness of the layer. When the concentration of scattering particles is low and the path of the light extraction layer is short, back reflection occurs at the interface into the device, and large light loss occurs. In the case where the concentration of scattering particles is high and the path of the light extraction layer is long, backscattering is a major cause of light loss. In the case of the effect of the thickness of the light extraction as described above, it will give the optimum thickness of the light extraction layer at 350 nm.
  • the external light extraction layer plays a positive role in increasing the light extraction of the OLED, which reduces the refractive index difference between the glass substrate and the air and between SiO 2 nanoparticles well dispersed in the external light extraction layer. Because it enhances the scattering of.
  • Table 5 The measured values of the light extraction characteristics of the OLED are summarized in Table 5 below.
  • Example 4-1 13830 cd / m 2 4.51 lm / W 5.55 cd / A
  • Example 4-2 16780 cd / m 2 5.80 lm / W 7.17 cd / A
  • the maximum light extraction has a maximum value when the thickness is 400 nm in terms of luminance, power, and current efficiency.
  • Example 4-3 The luminance, power and current efficiency of the device were found to be 22460 cd / m 2 at 14 V, 7.98 lm / W at 4 V and 8.84 cd / A at 4 V, respectively. In the case of, it was 13830 cd / m 2 at 14 V, 4.51 lm / W at 4 V and 5.55 cd / A at 4 V. In terms of brightness, power and current efficiency, it can be seen that the Example 4-3 device is 62.4, 76.9 and 59.2% more enhanced than the Example 4-1 device, respectively.
  • FIG. 7D shows EL spectra according to thicknesses of the internal light extraction layers of the Example 4-1 and Example 4-3 devices. EL intensity increases in the entire spectral region and has a maximum at 400 nm when the internal light extraction layer is introduced.
  • Table 6 The measured values of the light extraction characteristics of the OLED are summarized in Table 6 below.
  • Example 4-1 13830 cd / m 2 4.51 lm / W 5.55 cd / A
  • Example 4-3 22460 cd / m 2 7.98 lm / W 8.84 cd / A
  • the light emitting region of the device of Example 4-2 is wider than the light emitting region of the device of Example 4-1 because light extracted by glass is directly scattered by TiO 2 nanoparticles of the external light extraction layer. to be. It can be seen that the light emission of the Example 4-3 device is stronger than that of the Example 4-1 device because light trapped in the ITO layer and the organic layer is emitted by the internal light extraction layer.
  • Table 7 shows the CIE1931 (x, y) coordinates of the device of Examples 4-1 to 4-3.
  • Example 4-1 0.3022 0.6333
  • Example 4-2 0.3004 0.6348
  • Example 4-3 0.3013 0.6341
  • Example 4-2 device and the Example 4-3 device were shown in similar colors to those of the Example 4-1 device, which affected the influence of the internal and external light extraction layers. It means that it does not receive, it can be seen that the internal and external light extraction layer shows a stable color.
  • the present invention is an organic copolymer of methyl methacrylate (MMA) and 3- (trimethoxysilyl) propyl methacrylate (MSMA) (poly (MMA-co-MSMA)), which are random copolymers capped with trialkoxysilane in MSMA.
  • Inorganic hybrid materials were synthesized as precursors and titanium (IV) isopropoxide (TTIP) and TEOS were used with the precursors as high and low refractive materials. When 90 wt% TTIP, 2.5M NaCl, and 1.50 precursor were added, the refractive indices increased to 1.81 and decreased to 1.44, respectively.
  • Such high and low refractive hybrid materials have been used for the inner and outer light extraction layers.
  • the luminance, power and current efficiency of the device including the external light extraction layer was 21.3, 28.6 and 29.1% higher than those of the reference device.
  • the brightness, power and current efficiency of the device including the internal light extraction layer was 62.4, 76.9 and 59.2% were higher.
  • the inner and outer light extraction layers of the present invention are effective to reduce the total reflection of the substrate by reducing the refractive indices of the substrate / ITO and air / glass interface, and to the TiO 2 and SiO 2 nanoparticles of the inner and outer light extraction layers.
  • the scattering of light by the enhance the light extraction efficiency of the OLED. It can be seen that the high and low refractive materials are useful for improving the light extraction efficiency.

Abstract

The present invention relates to: an OLED device laminate using high-refractive-index and low-refractive-index organic/inorganic hybrid materials; an OLED device manufacturing method; and an OLED device manufactured thereby, and relates to an OLED device laminate using organic/inorganic hybrid materials, the laminate comprising: a light-transmitting substrate; and an internal optical extraction layer or an external optical extraction layer formed on one surface of the light-transmitting surface, wherein the internal optical extraction layer or the external optical extraction layer is a scattering region formed by coating a high-refractive-index or low-refractive-index organic/inorganic hybrid material, and the high-refractive-index or low-refractive-index organic/inorganic hybrid material is prepared by coupling a titanium- or silica-based refractive index-functional metal alkoxide to a copolymer of methyl methacrylate (MMA) and 3-(trimethoxysilyl) propyl methacrylate (MSMA) as a precursor (P) by using a sol-gel method.

Description

고굴절 및 저굴절 유/무기 하이브리드 재료를 이용한 OLED 소자용 적층체 및 OLED 소자의 제조방법, 이에 의해 제조되는 OLED 소자OLED device laminate and method for manufacturing OLED device using high refractive and low refractive organic / inorganic hybrid materials, OLED device manufactured thereby
본 발명은 고굴절 및 저굴절 유/무기 하이브리드 재료를 이용한 OLED 소자용 적층체 및 OLED 소자의 제조방법, 이에 의해 제조되는 OLED 소자에 관한 것이다. The present invention relates to a laminate for an OLED device using a high refractive index and a low refractive organic / inorganic hybrid material, and a method for manufacturing the OLED device, and an OLED device produced thereby.
많은 디스플레이 소자 중에서, 유기발광다이오드(OLED)는 조명, 평면 디스플레이의 잠재적인 적용가능성으로 유망한 차세대 디스플레이로 간주되어 왔다. OLED는 낮은 소비 전력, 넓은 시야각, 우수한 색 재현성, 높은 콘트라스트, 고속 응답 및 유연성과 같은 독특한 특성을 갖고 있다. Among many display devices, organic light emitting diodes (OLEDs) have been regarded as promising next generation displays due to the potential applicability of lighting, flat panel displays. OLEDs have unique characteristics such as low power consumption, wide viewing angle, excellent color reproducibility, high contrast, fast response and flexibility.
그러나 OLED의 전력, 전류 효율은 여전히 스마트폰, 태블릿 PC 및 조명과 같은 특정 애플리케이션에 충분하지 못하다. OLED의 광 추출 기술은 최근 형광 튜브 및 LED와 같은 다른 조명 기술과 같은 높은 효율을 달성하기 위해 중요한 문제가 되고 있다. However, the power and current efficiency of OLEDs are still not sufficient for certain applications such as smartphones, tablet PCs and lighting. The light extraction technology of OLEDs has recently become an important issue for achieving high efficiencies such as fluorescent tubes and other lighting technologies such as LEDs.
OLED의 내부 양자 효율은 인광 메커니즘을 도입함에 따라 100%에 도달할 수 있지만, 배면발광방식 OLED의 광 추출 효율은 보통 약 20% 정도이다. air/substrate와 substrate/indium tin oxide (ITO) 계면의 굴절률 차이로 광 손실이 일어나고, 상기 광 손실은 기판의 전반사에 영향을 받기 때문이다. 내부에서 방출된 빛은 보통 내부 전반사를 겪게 되고, 소자내부에서 반사되는 빛이 증가하여 대부분 소자에 갇히게 된다. 외부양자효율(EQE)을 강화시키기 위한 방안은 추출층을 도입하여 굴절률의 차이를 감소시키고, 전반사의 조건을 깨는 방법이 있다. The internal quantum efficiency of OLEDs can reach 100% with the introduction of phosphorescence mechanisms, but the light extraction efficiency of back-emitting OLEDs is usually around 20%. This is because light loss occurs due to the difference in refractive index between the air / substrate and the substrate / indium tin oxide (ITO) interface, and the light loss is affected by total reflection of the substrate. The light emitted from the inside usually undergoes total internal reflection, and the light reflected from the inside of the device increases, so most of it is trapped in the device. The method for enhancing the external quantum efficiency (EQE) is to introduce an extraction layer to reduce the difference in refractive index, and to break the conditions of total reflection.
최근 몇몇 연구에서 외부 또는 내부 광 추출층을 이용하여 OLED의 광 추출을 향상시키는 방법에 대해 보고되었다. 내부 광 추출층은 투명전도막(TCO)과 유리기판 사이에 위치하며 외부 광 추출층은 소자 기판의 외부에 위치한다. Recently, several studies have reported on the method of improving light extraction of OLEDs using an external or internal light extraction layer. The inner light extraction layer is positioned between the transparent conductive film (TCO) and the glass substrate, and the outer light extraction layer is located outside the device substrate.
마이크로/나노-구조로 소자 기판의 외부에 위치한 외부 광 추출층은 substrate/air 계면에서 전반사에 의해 반사되는 빛을 소자에 방해되지 않게끔 다시 재지정할 수 있다. 반면 기판과 ITO anode 층 사이에 있는 마이크로/나노 구조의 내부 광 추출층은 기판과 도파 모드 모두에서 전반사를 방해할 수 있다. An external light extracting layer located outside of the device substrate in a micro / nano-structure can redirect light reflected by total reflection at the substrate / air interface so as not to interfere with the device. In contrast, a micro / nano internal light extraction layer between the substrate and the ITO anode layer can interfere with total reflection in both the substrate and waveguide modes.
따라서 내부 광 추출층을 포함하는 OLED의 광 추출 효율이 외부 광 추출층을 포함하는 것보다 더 높을 것이다. OLED에 광 추출층을 도입하는 현재의 기술은 무기 입자를 고분자에 혼합하여 굴절률을 조절하여 빛의 산란을 증가시키는 것이다. 그러나, 무기입자는 가끔 잘 분산되지 않고, 높은 거칠기와 물결 모양의 표면을 발생시켜 소자의 성능저하 및 수명을 단축시킨다. Therefore, the light extraction efficiency of the OLED including the internal light extraction layer will be higher than that including the external light extraction layer. The current technology of introducing light extraction layers into OLEDs is to increase the scattering of light by controlling the refractive index by mixing the inorganic particles with the polymer. However, inorganic particles sometimes do not disperse well, and generate high roughness and wavy surfaces, thereby reducing the performance and life of the device.
상기 광 추출층을 도입하는 데 있어서 또 다른 문제는 낮은 투과율이다. 고분자 속 무기입자의 분산력은 하나의 중요한 문제가 된다. 상기 무기입자의 응집은 광 추출층의 투과도를 감소시켜, OLED의 광추출을 향상시키지 않게 한다. OLED의 외부 광 추출 효율을 향상시키기 위해, 내부 및 외부 광추출층은 낮은 거칠기, 높은 투과도, 저굴절 및 고굴절 특성이 substrate/ITO와 air/glass 계면의 굴절률 차이를 줄이기 위해 요구된다. Another problem in introducing the light extraction layer is low transmittance. Dispersion of inorganic particles in a polymer is an important problem. Aggregation of the inorganic particles reduces the transmittance of the light extraction layer, so as not to improve the light extraction of the OLED. In order to improve the external light extraction efficiency of the OLED, the internal and external light extraction layers require low roughness, high transmittance, low refractive index and high refractive index characteristics to reduce the refractive index difference between the substrate / ITO and the air / glass interface.
이에, 본 발명자는 상기 종래기술의 문제점을 해결하고자, 테트라 에틸 오쏘실리케이트(TEOS)와 Ti를 포함하는 알콕사이드 재료를 고굴절 및 저굴절 물질로써 함께 졸-겔 공정에 의해 유기-무기 하이브리드 재료를 합성하여 OLED에 적용함으로써 본 발명을 완성하였다.Accordingly, the present inventors synthesized an organic-inorganic hybrid material by a sol-gel process together with an alkoxide material containing tetraethyl orthosilicate (TEOS) and Ti as a high refractive index and a low refractive index to solve the problems of the prior art. The present invention has been completed by applying to OLEDs.
따라서 본 발명은 고굴절 또는 저굴절 유/무기 하이브리드 재료를 이용한 OLED 소자용 적층체를 제공하는 것을 그 해결과제로 한다.Therefore, the present invention is to provide a laminate for an OLED device using a high or low refractive organic / inorganic hybrid material as a problem.
또한, 본 발명은 상기 OLED 소자용 적층체를 포함하여 제조되는 OLED 소자의 제조방법을 제공하는 것을 다른 해결과제로 한다. In addition, another object of the present invention is to provide a method for manufacturing an OLED device, including the laminate for OLED devices.
또한, 본 발명은 상기 방법으로 제조되는 고굴절 또는 저굴절 녹색 발광 OLED 소자를 제공하는 것을 다른 해결과제로 한다.In addition, another object of the present invention is to provide a high or low refractive green light emitting OLED device manufactured by the above method.
또한, 본 발명은 상기 고굴절 또는 저굴절 녹색 발광 OLED 소자를 이용하여 제조되는 디스플레이 장치를 제공하는 것을 다른 해결과제로 한다. In addition, another object of the present invention is to provide a display device manufactured using the high or low refractive green OLED device.
또한, 본 발명은 상기 고굴절 또는 저굴절 녹색 발광 OLED 소자를 이용하여 제조되는 면발광 광원을 제공하는 것을 다른 해결과제로 한다. In addition, another object of the present invention is to provide a surface emitting light source manufactured using the high or low refractive green OLED device.
상기 본 발명의 과제를 해결하기 위한 본 발명의 일 측면에 따르면,According to an aspect of the present invention for solving the above problems of the present invention,
투광성 기판과, 상기 투광성 기판의 일면에 내부 광 추출층 또는 외부 광 추출층을 형성하는 OLED 소자용 적층체에 있어서,In the light-transmitting substrate and the laminate for OLED devices to form an internal light extraction layer or an external light extraction layer on one surface of the light-transmissive substrate,
상기 내부 광 추출층 또는 외부 광 추출층은 고굴절 또는 저굴절 유/무기 하이브리드 재료의 코팅으로 형성된 산란영역이고, The inner light extraction layer or the outer light extraction layer is a scattering region formed by coating of a high refractive index or a low refractive organic / inorganic hybrid material,
상기 고굴절 또는 저굴절 유/무기 하이브리드 재료는 전구체(P)로서 메틸 메타크릴레이트(methyl methacrylate; MMA)와 3-(트리에톡시실릴) 프로필 메타크릴레이트(3-(trimethoxysilyl) propyl methacrylate; MSMA)의 공중합체와 상기 전구체(P)에 졸-겔법을 이용하여 티타늄 또는 실리카 기반의 굴절률 기능성 금속 알콕사이드를 결합시켜 제조되는 것을 특징으로 하는, 유/무기 하이브리드 재료를 이용한 OLED 소자용 적층체를 제공한다.The high or low refractive organic / inorganic hybrid material is methyl methacrylate (MMA) and 3- (triethoxysilyl) propyl methacrylate (MSMA) as a precursor (P). It provides a laminate for an OLED device using an organic / inorganic hybrid material, characterized in that the copolymer is prepared by combining a refractive index functional metal alkoxide based on titanium or silica using the sol-gel method to the precursor (P). .
또한, 본 발명의 다른 과제를 해결하기 위한 본 발명은, 상기 OLED 소자용 적층체를 포함하여 제조되는 OLED 소자의 제조방법을 제공하는 것에 관한 것이다.Moreover, this invention for solving the another subject of this invention relates to providing the manufacturing method of the OLED element manufactured including the said laminated body for OLED elements.
또한, 본 발명의 또 다른 과제를 해결하기 위한 본 발명은, 상기 OLED 소자의 제조방법으로 제조되는 고굴절 또는 저굴절 녹색 발광 OLED 소자를 제공하는 것에 관한 것이다.In addition, the present invention for solving the other problem of the present invention relates to providing a high-refractive or low-refractive green light emitting OLED device manufactured by the method of manufacturing the OLED device.
또한, 본 발명의 또 다른 과제를 해결하기 위한 본 발명은, 상기 고굴절 또는 저굴절 녹색 발광 OLED 소자를 이용하여 제조되는 디스플레이 장치를 제공하는 것에 관한 것이다.In addition, the present invention for solving the other problem of the present invention relates to providing a display device manufactured using the high or low refractive green light emitting OLED device.
또한, 본 발명의 또 다른 과제를 해결하기 위한 본 발명은, 상기 고굴절 또는 저굴절 녹색 발광 OLED 소자를 이용하여 제조되는 면발광 광원을 제공하는 것에 관한 것이다.In addition, the present invention for solving the other problem of the present invention relates to providing a surface emitting light source manufactured using the high or low refractive green light emitting OLED device.
본 발명에 따른 OLED 소자용 적층체는 내부 광 추출층 또는 외부 광 추출층으로 이루어진 산란영역을 포함함으로써, SiO2 및 TiO2 나노입자에 의해 굴절률 차를 감소시켜 빛의 산란을 강화시킴에 따라 광 추출을 증가하게 하는 효과가 있다. The laminate for an OLED device according to the present invention includes a scattering region composed of an internal light extraction layer or an external light extraction layer, thereby reducing the difference in refractive index by SiO 2 and TiO 2 nanoparticles to enhance light scattering. It has the effect of increasing the extraction.
또한, 이에 따라 OLED 소자의 효율과 휘도, 수명을 높일 수 있는 효과가 있다. In addition, this has the effect of increasing the efficiency, brightness, and lifetime of the OLED device.
또한, 본 발명의 OLED 소자를 간단한 공정과 저렴한 비용으로도 쉽게 양산 적용이 가능한 제조방법을 제공하는 장점이 있다. In addition, there is an advantage of providing a manufacturing method that can be easily mass-produced with a simple process and low cost of the OLED device of the present invention.
도 1은 본 발명의 일 실시예에 따른 OLED 소자의 모식도를 나타낸 것이다.1 shows a schematic diagram of an OLED device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 내부 광 추출층 및 외부 광 추출층의 투과율과 haze를 나타낸 그래프이다.2 is a graph showing the transmittance and haze of the inner light extraction layer and the outer light extraction layer according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 전구체, 내부 광 추출층 및 외부 광 추출층의 하향식 SEM 사진을 나타낸 것이다. Figure 3 shows a top-down SEM image of the precursor, the inner light extraction layer and the outer light extraction layer according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 ITO/glass와 ITO/internal light extraction layer/glass의 표면 이미지를 3D 광학 분석기로 측정한 것이다.4 is a surface image of ITO / glass and ITO / internal light extraction layer / glass according to an embodiment of the present invention is measured by a 3D optical analyzer.
도 5는 본 발명의 일 실시예에 따른 ITO/internal light extraction layer/glass substrate의 두께에 따른 최적의 투과율을 나타낸 그래프이다. 5 is a graph showing the optimum transmittance according to the thickness of the ITO / internal light extraction layer / glass substrate according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 소자의 광 추출 특성을 나타낸 그래프이다.6 is a graph showing light extraction characteristics of a device according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 소자의 광 추출 특성을 나타낸 그래프이다.7 is a graph illustrating light extraction characteristics of a device according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 소자의 불을 켰을 때, 발광하는 사진을 나타낸 것이다. 8 is a photograph showing light emission when a device is turned on according to an embodiment of the present invention.
이하 본 발명을 상세히 설명하기로 한다. Hereinafter, the present invention will be described in detail.
본 발명은 고굴절 및 저굴절 유/무기 하이브리드 재료를 이용한 OLED 소자용 적층체 및 OLED 소자의 제조방법, 이에 의해 제조되는 OLED 소자에 관한 것이다. The present invention relates to a laminate for an OLED device using a high refractive index and a low refractive organic / inorganic hybrid material, and a method for manufacturing the OLED device, and an OLED device produced thereby.
구체적으로 본 발명의 일 측면에 따르면 본 발명의 고굴절 및 저굴절 유/무기 하이브리드 재료를 이용한 OLED 소자용 적층체는, Specifically, according to an aspect of the present invention, an OLED device laminate using the high refractive index and low refractive organic / inorganic hybrid materials of the present invention,
투광성 기판과, 상기 투광성 기판의 일면에 내부 광 추출층 또는 외부 광 추출층을 형성하는 OLED 소자용 적층체에 있어서, 상기 내부 광 추출층 또는 외부 광 추출층은 고굴절 또는 저굴절 유/무기 하이브리드 재료의 코팅으로 형성된 산란영역이고, 상기 고굴절 또는 저굴절 유/무기 하이브리드 재료는 전구체(P)로서 메틸 메타크릴레이트(methyl methacrylate; MMA)와 3-(트리에톡시실릴) 프로필 메타크릴레이트(3-(trimethoxysilyl) propyl methacrylate; MSMA)의 공중합체와 상기 전구체(P)에 졸-겔법을 이용하여 티타늄 또는 실리카 기반의 굴절률 기능성 금속 알콕사이드를 결합시켜 제조되는 것을 특징으로 하는, 유/무기 하이브리드 재료를 이용하는 것에 관한 것이다. In the light-transmitting substrate and the OLED device laminate to form an internal light extraction layer or an external light extraction layer on one surface of the transparent substrate, the internal light extraction layer or the external light extraction layer is a high refractive index or low refractive organic / inorganic hybrid material The high or low refractive organic / inorganic hybrid material is formed by the coating of Mn methacrylate (MMA) and 3- (triethoxysilyl) propyl methacrylate (3-) as a precursor (P). (trimethoxysilyl) propyl methacrylate (MSMA) and the precursor (P) to the precursor (P) using a sol-gel method of the refractive index functional metal alkoxide is prepared by combining an organic / inorganic hybrid material, characterized in that It's about things.
상기 투광성 기판은 가시광에 대한 투과율이 높은 재료가 사용되고, 투과율이 높은 재료로는 유리기판이나 플라스틱 기판이 사용될 수 있으며, 바람직하게는 유리기판을 사용한다.The light transmissive substrate may be a material having a high transmittance to visible light, and a glass substrate or a plastic substrate may be used as the material having a high transmittance. Preferably, a glass substrate is used.
또한, 상기 기능성 금속 알콕사이드는 고굴절 재료인 경우에는 티타늄 기반 금속 알콕사이드이고, 저굴절 재료인 경우에는 실리카 기반 금속 알콕사이드인 것을 특징으로 한다. 바람직하게는 상기 기능성 금속 알콕사이드는 고굴절 재료인 경우에는 TTIP(Titanium(IV) isopropoxide)이고, 저굴절 재료인 경우에는 TEOS(Tetraethyl orthosilicate)를 사용한다. In addition, the functional metal alkoxide is a titanium-based metal alkoxide in the case of a high refractive material, and a silica-based metal alkoxide in the case of a low refractive material. Preferably, the functional metal alkoxide is TTIP (Titanium (IV) isopropoxide) in the case of a high refractive material, and tetraethyl orthosilicate (TEOS) in the case of a low refractive material.
또한, 상기 고굴절 재료는 내부 광 추출층에 포함되고, 상기 저굴절 재료는 외부 광 추출층에 포함되는 것을 특징으로 한다. 상기 고굴절 재료는 기판과 ITO 사이의 굴절률 차이를 줄여줄 수 있기 때문에 내부 광 추출층에 포함이 되고, 상기 저굴절 재료는 외부공기와 기판 사이의 굴절률 차이를 줄여줄 수 있기 때문에 외부 광 추출층에 포함이 된다. In addition, the high refractive material is included in the internal light extraction layer, the low refractive material is characterized in that it is included in the external light extraction layer. The high refractive material is included in the internal light extraction layer because it can reduce the refractive index difference between the substrate and ITO, and the low refractive material can be reduced in the external light extraction layer because it can reduce the refractive index difference between the external air and the substrate. It is included.
또한 상기 산란영역은, TiO2 나노입자 또는 SiO2 나노입자로 이루어진 산란요소를 포함하는 것을 특징으로 한다. 상기 산란요소는 광 추출층 안으로 입사된 빛, 즉 유기층에서 직접 입사된 빛은 물론 투광성 기판과 공기의 경계에서 전반사되어 다시 내부 광 추출층 안으로 들어온 빛은 다수의 산란요소에 의해 무작위적으로 산란되고, 이러한 과정에서 임계각 미만의 입사각을 가진 빛이 투광성 기판 외부로 빠져나가게 되어 광 추출 효율이 향상된다. In addition, the scattering region is characterized in that it comprises a scattering element consisting of TiO 2 nanoparticles or SiO 2 nanoparticles. The scattering elements are light incident directly into the light extraction layer, that is, light directly incident from the organic layer, as well as light totally reflected at the boundary between the translucent substrate and the air and then enter the internal light extraction layer, are randomly scattered by a plurality of scattering elements. In this process, light having an angle of incidence below the critical angle exits the outside of the light transmissive substrate, thereby improving light extraction efficiency.
또한, 상기 내부 광 추출층 및 외부 광 추출층은 100 내지 800 nm 범위의 두께를 가지는 것을 특징으로 한다. 상기 광 추출층의 두께가 얇을수록 흡광은 감소하고 광투과율은 증가한다는 측면에서 바람직하지만, 상기 광 추출층의 표면의 평탄도를 유지하기 위해서 요구되는 최소한의 두께를 고려해야 한다. 따라서 바람직하게는 350 nm 일 때가 바람직하다. 또한, 상기 내부 광 추출층 및 외부 광 추출층의 두께가 350 nm 이하일 경우에는 후방 반사에 의해 광 손실이 발생하기 때문에 바람직하지 못하고, 400 nm 이상일 경우에는 후방 산란에 의해 광 손실이 발생하기 때문에 바람직하지 못하다.In addition, the inner light extraction layer and the outer light extraction layer It is characterized by having a thickness in the range of 100 to 800 nm. The thinner the thickness of the light extraction layer is preferable in terms of decreasing the absorption and increasing the light transmittance. However, the minimum thickness required to maintain the flatness of the surface of the light extraction layer should be considered. Therefore, it is preferable that it is preferably 350 nm. Further, when the thickness of the inner light extraction layer and the outer light extraction layer is 350 nm or less, it is not preferable because light loss occurs due to back reflection, and if it is 400 nm or more, light loss occurs due to back scattering. I can't.
본 발명의 다른 측면에 따르면,According to another aspect of the invention,
상기 OLED 소자용 적층체를 포함하여 제조되는 OLED 소자의 제조방법은,Method for producing an OLED device including the laminate for OLED device,
고굴절 또는 저굴절 유/무기 하이브리드 재료를 준비하는 제1 단계; 투광성 기판의 일면에 고굴절 또는 저굴절 유/무기 하이브리드 재료를 코팅하여 내부 광추출층 또는 외부 광추출층을 형성하는 제2 단계; 상기 제2 단계에서 투광성 기판의 일면에 고굴절 재료의 코팅으로 형성된 내부 광추출층의 상면 또는 저굴절 재료의 코팅으로 외부 광추출층이 형성된 투광성 기판의 상면에 ITO, 유기층 및 캐소드를 순차적으로 적층하여 OLED 소자를 제조하는 제3 단계를 포함하여 제조된다. A first step of preparing a high or low refractive organic / inorganic hybrid material; A second step of forming an internal light extraction layer or an external light extraction layer by coating a high refractive index or a low refractive organic / inorganic hybrid material on one surface of the translucent substrate; In the second step, ITO, an organic layer, and a cathode are sequentially stacked on an upper surface of the inner light extraction layer formed of the coating of the high refractive material on one surface of the light transmissive substrate or on the upper surface of the translucent substrate on which the outer light extraction layer is formed of the low refractive material. And a third step of manufacturing the OLED device.
또한, 본 발명의 또 다른 측면에 따르면,Further, according to another aspect of the present invention,
상기 OLED 소자의 제조방법으로 제조되는 고굴절 또는 저굴절 녹색 발광 OLED 소자를 제공한다. It provides a high or low refractive green light emitting OLED device manufactured by the method of manufacturing the OLED device.
또한, 본 발명의 또 다른 측면에 따르면,Further, according to another aspect of the present invention,
상기 고굴절 또는 저굴절 녹색 발광 OLED 소자를 이용하여 제조되는 디스플레이 장치를 제공한다. Provided is a display device manufactured using the high refractive index or low refractive index green light emitting OLED device.
또한, 본 발명의 또 다른 측면에 따르면,Further, according to another aspect of the present invention,
상기 고굴절 또는 저굴절 녹색 발광 OLED 소자를 이용하여 제조되는 면발광 광원을 제공한다.Provided is a surface emitting light source manufactured using the high or low refractive green OLED device.
이하, 실시예 및 도면을 참고하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples and drawings.
이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
실시예Example
<실시예 1> poly(MMA-co-MSMA) 전구체의 합성.Example 1 Synthesis of poly (MMA-co-MSMA) Precursor
전구체를 합성하기 위해 MMA(1.001g, 0.01mole)와 MSMA(0.828g, 0.003mole)를 질소 분위기 하에 60 ℃에서 2 h 동안 BPO (0.121g, 0.001mole, a reaction initiator)와 함께 THF(21 mL)가 포함되어 있는 3구 둥근 플라스크에서 고분자화시켰다.To synthesize the precursor, MMA (1.001 g, 0.01 mole) and MSMA (0.828 g, 0.003 mole) were added with THF (21 mL) with BPO (0.121 g, 0.001 mole, a reaction initiator) for 2 h at 60 ° C. under nitrogen atmosphere. ) Was polymerized in a three-neck round flask containing.
<실시예 2> 고굴절 하이브리드 재료의 합성.Example 2 Synthesis of High Refractive Hybrid Material.
고굴절 물질을 합성하기 위해, TTIP (16.461g, 0.058mole, 90wt%), deionized water (1.04mL) 및 THF(338.7mL)를 상기 전구체 용액에 첨가하여 60 ℃에서 2 h 동안 교반하였다. 물의 양은 TTIP 와 물의 비율이 1:1 mole이 되도록 조절하였다.To synthesize the high refractive material, TTIP (16.461 g, 0.058 mole, 90 wt%), deionized water (1.04 mL) and THF (338.7 mL) were added to the precursor solution and stirred at 60 ° C. for 2 h. The amount of water was adjusted so that the ratio of TTIP and water was 1: 1 mole.
<실시예 3> 저굴절 하이브리드 재료의 합성.Example 3 Synthesis of Low Refractive Hybrid Material.
저굴절 물질을 합성하기 위해, 에탄올(17ml)을 용매로 사용하였으며, 이는 졸-겔 공정시 부산물이 알코올이고, TEOS가 에탄올에 대한 용해도가 좋기 때문이다. 저굴절 물질의 전구체를 합성하는 과정은 THF 용매 대신 에탄올을 사용하고, 반응온도를 70℃로 한 것 외에는 고굴절 물질의 제조방법과 동일하다. Deionized water (0.18mL), TEOS (2.778g, 0.013mole) 및 2.5M NaCl (0.015g)을 상기 전구체 용액에 첨가하여 70 ℃에서 2 h 동안 교반하였다.In order to synthesize the low refractive material, ethanol (17 ml) was used as a solvent because the by-product is alcohol in the sol-gel process and TEOS has good solubility in ethanol. Synthesis of the precursor of the low refractive material is the same as the manufacturing method of the high refractive material except that ethanol is used instead of the THF solvent and the reaction temperature is 70 ° C. Deionized water (0.18 mL), TEOS (2.778 g, 0.013 mole) and 2.5 M NaCl (0.015 g) were added to the precursor solution and stirred at 70 ° C. for 2 h.
<실시예 4> OLED 소자의 제조.Example 4 Fabrication of OLED Device.
본 발명에서는 세가지 종류의 OLED 소자를 제조하였다. OLED 소자의 구조는 도 1과 같으며, 도 1(a)는 기준 소자(reference device)이고, 도 1(b)는 외부 광 추출층을 포함하는 소자이며, 도 1(c)는 내부 광 추출층을 포함하는 소자이다. OLED 소자의 외부 및 내부 광 추출층은 저굴절 및 고굴절 하이브리드 재료를 스핀 코팅으로 코팅하였다. In the present invention, three kinds of OLED devices were manufactured. The structure of the OLED device is the same as that of FIG. 1, FIG. 1A is a reference device, FIG. 1B is a device including an external light extraction layer, and FIG. 1C is an internal light extraction. A device comprising a layer. The outer and inner light extraction layers of the OLED device were spin coated with low and high refractive hybrid materials.
실시예 4-1은 기준 소자(reference device)로 배면발광방식의 녹색 형광 OLED로써, glass / ITO(140nm) / NPB(100nm) / Alq3:C545T(40nm) / Alq3(25nm) / LiF(1nm) / Al(120nm) 로 제조되었다. NPB는 정공 수송층, C545T에 3wt%가 도핑된 Alq3는 발광층, 도핑되지 않은 Alq3는 전자 수송층, LiF는 정공주입층 그리고 고굴절 Al은 음극으로 사용되었다. 유기층의 용착속도는 ~0.1nm/s로 유지되었다. 유기와 금속 층은 진공 챔버 내에서 진공 증착되었고, 압력은 <10-6 torr였다. 소자의 증착 면적은 2 x 2mm2 였다. ITO의 스퍼터링(sputtering)은 49.5 sccm의 Ar, 0.11 sccm의 O2와 994 W의 RF(radio frequency power) 하에서 이루어졌다. 35 Ω/sq의 면저항을 갖는 투명한 ITO 전극이 유리에 증착되었다. Example 4-1 is a back-emitting green fluorescent OLED as a reference device, glass / ITO (140 nm) / NPB (100 nm) / Alq3: C545T (40nm) / Alq3 (25nm) / LiF (1nm) / Al (120 nm). NPB was used as a hole transporting layer, Alq3 doped with 3wt% to C545T, an luminescent layer without undoped Alq3, a hole injection layer for LiF, and a high refractive index Al for the cathode. The deposition rate of the organic layer was maintained at ˜0.1 nm / s. The organic and metal layers were vacuum deposited in a vacuum chamber and the pressure was <10 −6 torr. The deposition area of the device was 2 x 2 mm 2 . Sputtering of ITO was performed under 49.5 sccm Ar, 0.11 sccm O2 and 994 W radio frequency power (RF). A transparent ITO electrode having a sheet resistance of 35 kW / sq was deposited on the glass.
외부 광 추출 구조를 위한 실시예 4-2 소자는 실시예 4-1 소자의 유리 기판의 바깥 표면에 저굴절층을 외부 광 추출층으로써 도입되었다. 저굴절 하이브리드 물질은 유리기판에 40초 동안 500 ~ 5000 rpm 으로 스핀 코팅되었고, 80℃에서 2시간동안 방치하고, 물로 여러번 씻어내어 NaCl을 제거하였다.The Example 4-2 device for the external light extraction structure was introduced with the low refractive layer as the external light extraction layer on the outer surface of the glass substrate of the Example 4-1 device. The low refractive hybrid material was spin coated on a glass substrate at 500 to 5000 rpm for 40 seconds, left at 80 ° C. for 2 hours, washed several times with water to remove NaCl.
실시예 4-3 소자는 내부 광 추출 구조로서, 고굴절 물질을 내부 광 추출층으로써 실시예 4-1 소자의 ITO와 유리기판 사이에 삽입하여 제작되었다. 고굴절 하이브리드 물질은 유리기판에 40초 동안 500 ~ 5000 rpm 으로 스핀 코팅되었고, 80℃에서 2시간동안 방치해두었다. 고굴절물질로 코팅된 기판 위에 바로 35 Ω/sq의 면저항을 갖는 투명한 ITO 전극을 무선 주파수 마그네트론 스퍼터로 증착하였다. The device of Example 4-3 was fabricated by inserting a high refractive material between the ITO and the glass substrate of the device of Example 4-1 as an internal light extraction layer. The high refractive hybrid material was spin coated on a glass substrate at 500 to 5000 rpm for 40 seconds and left at 80 ° C. for 2 hours. A transparent ITO electrode having a sheet resistance of 35 kW / sq was deposited directly on a high refractive material coated with a radio frequency magnetron sputter.
제작된 소자의 구조는 하기 실시에 4-1 내지 4-3로 나타내었다.The structure of the produced device is shown in the following Examples 4-1 to 4-3.
실시예 4-1: glass / ITO(140nm) / NPB(100nm) / Alq3:C545T(40nm) / Alq3(25nm) / LiF(1nm) / Al(120nm)로 소자를 제작하였다. Example 4-1: The device was fabricated with glass / ITO (140 nm) / NPB (100 nm) / Alq3: C545T (40 nm) / Alq3 (25 nm) / LiF (1 nm) / Al (120 nm).
실시예 4-2: 저굴절층(external light extraction layer) / glass / ITO(140nm) / NPB(100nm) / Alq3:C545T(40nm) / Alq3(25nm) / LiF(1nm) / Al(120nm)로 소자를 제작하였다. Example 4-2: The device was fabricated with an external light extraction layer / glass / ITO (140 nm) / NPB (100 nm) / Alq3: C545T (40nm) / Alq3 (25nm) / LiF (1nm) / Al (120nm).
실시예 4-3: glass / 고굴절층(internal light extraction layer) / ITO(140nm) / NPB(100nm) / Alq3:C545T(40nm) / Alq3(25nm) / LiF(1nm) / Al(120nm)로 소자를 제작하였다. Example 4-3: The device was fabricated with glass / internal light extraction layer / ITO (140 nm) / NPB (100 nm) / Alq3: C545T (40nm) / Alq3 (25nm) / LiF (1nm) / Al (120nm).
또한 상기 제작된 소자의 특성을 분석하기 위해 저굴절 및 고굴절 하이브리드 물질의 미세 구조는 주사전자현미경(FE-SEM, S-4800, Hitachi, Japan)로 측정되었다. 박막의 투과율과 haze는 UV 분광광도계 (CM-3600d, Konica Minolta Co., Japan)로 측정되었으며, 파장은 360~ 740nm로 확인되었다. 박막의 굴절률과 흡광계수는 분광타원해석기 (Elli-SE-U, Ellipsotechnology Co., Korea) 로 측정되었으며, 파장은 355~ 1030nm로 확인되었다. In addition, in order to analyze the characteristics of the fabricated device, the microstructures of the low and high refractive hybrid materials were measured by scanning electron microscopy (FE-SEM, S-4800, Hitachi, Japan). The transmittance and haze of the thin film were measured by UV spectrophotometer (CM-3600d, Konica Minolta Co., Japan) and the wavelength was found to be 360 ~ 740nm. The refractive index and extinction coefficient of the thin film were measured with a spectroscopic ellipsometer (Elli-SE-U, Ellipsotechnology Co., Korea) and the wavelength was found to be 355-1030nm.
분광타원해석기와 UV 분광광도계에서 측정하기 위해 시료의 준비는 유리기판에 용액을 스핀 코팅하여 준비하였다. 광추출층의 표면 거칠기 및 두께는 3D 광학 분석기(Nano-view NV-E1000, Nano system Co., Korea)로 측정하였다. 제작된 OLED 소자의 I-V-L 특성은 일반 대기 조건에서 검은 상자 내에서 분광복사기 (PR-650, LMS Corp., Korea)로 측정하였다. Preparation of samples for measurement in a spectroscopic ellipsometer and UV spectrophotometer was prepared by spin coating a solution on a glass substrate. Surface roughness and thickness of the light extraction layer were measured by a 3D optical analyzer (Nano-view NV-E1000, Nano system Co., Korea). I-V-L characteristics of the fabricated OLED device were measured with a spectroradiometer (PR-650, LMS Corp., Korea) in a black box under normal atmospheric conditions.
이하, 상기 실시예의 결과를 도면을 참고하여 설명하기로 한다.Hereinafter, the result of the above embodiment will be described with reference to the drawings.
1. 광학적 특성 (Optical properties)1. Optical properties
하기 표 1은 550 nm에서 내부 및 외부 광 추출층의 굴절률과 흡광계수를 정리한 것이다.Table 1 summarizes the refractive indices and the extinction coefficients of the inner and outer light extraction layers at 550 nm.
내부 광 추출층Internal light extraction layer 외부 광 추출층External light extraction layer
굴절률Refractive index 1.811.81 1.441.44
흡광계수Extinction coefficient 2.4 x 10-2 2.4 x 10 -2 9.58 x 10-3 9.58 x 10 -3
표 1을 참고하면, 내부 광 추출층의 굴절률은 90 wt% TTIP를 첨가하면 1.50에서 1.81로 증가하고, 외부광 추출층은 2.5M NaCl을 첨가하면 굴절률이 1.50에서 1.44로 감소하였다. 상기와 같은 굴절률의 증가 및 감소는 전구체 원자보다 상대적으로 더 무거운 TiO2 입자와 상대적으로 더 가벼운 SiO2에 의한 것이다. 내부 및 외부 광추출층을 위한 혼합용액에서 TTIP와 NaCl의 양이 각각 90wt%, 2.5M 보다 더 많을 때, TiO2와 SiO2 입자는 반응물질의 겔화에 의해서 침전될 것이다. 종래의 배면발광식 OLED의 경우, 빛의 손실은 indium tin oxide (ITO)/glass substrate 와 glass substrate/air간의 굴절률의 차이에 의한 것이다. 고굴절 및 저굴절 하이브리드 물질이 OLED의 외부 및 내부 광추출층으로 적용된다면 OLED의 광추출효율은 굴절률의 차이를 감소시킴에 따라서 현저히 향상될 것이다. Referring to Table 1, the refractive index of the internal light extraction layer increased from 1.50 to 1.81 when 90 wt% TTIP was added, and the external light extraction layer decreased from 1.50 to 1.44 when 2.5M NaCl was added. Such increases and decreases in refractive index are due to TiO 2 particles, which are heavier than precursor atoms, and SiO 2, which is relatively lighter. When the amount of TTIP and NaCl in the mixed solution for the inner and outer light extraction layers is more than 90wt% and 2.5M, respectively, TiO 2 and SiO 2 particles will be precipitated by the gelation of the reactants. In conventional back-emitting OLEDs, the loss of light is due to the difference in refractive index between the indium tin oxide (ITO) / glass substrate and the glass substrate / air. If high and low refractive hybrid materials are applied to the external and internal light extraction layers of the OLED, the light extraction efficiency of the OLED will be significantly improved as the difference in refractive index is reduced.
도 2 및 도 3은 실시예 1 및 실시예 2에서 합성한 고굴절 하이브리드 재료 및 저굴절 하이브리드 재료의 투과율과 haze를 나타낸 그래프와 하향식 SEM 사진을 나타낸 것이다.2 and 3 are graphs showing the transmittance and haze of the high refractive hybrid material and the low refractive hybrid material synthesized in Examples 1 and 2 and a top-down SEM image.
도 2를 참고하면, 전구체 공중합체의 투과율과 haze는 유리기판 위의 poly(MMA-co-MSMA)가 각각 92.0 그리고 0.2 %로 나타났다. 상기와 같은 값은 순수한 유리기판의 투과율과 haze 값인 91.3 과 0.2 %와 유사하게 나타났다. 750 nm 두께의 내부 광 추출층의 투과율과 haze는 각각 감소하고 증가하여 85.4와 13.1 %로 나타났다. 800 nm 두께의 외부 광 추출층의 투과율과 haze는 각각 감소하고 증가하여 89.3 %와 23.8 %로 나타났다. 내부 광 추출층 및 외부 광 추출층에서 투과율의 감소와 haze의 증가는 poly(MMA-co-MSMA) matrix의 티타늄 및 실리카 입자에 의한 빛의 산란에 의한 것이다. 상기 투과율과 haze값은 하기 표 2에 정리하였다. Referring to FIG. 2, the transmittance and haze of the precursor copolymer were 92.0 and 0.2% of poly (MMA-co-MSMA) on the glass substrate, respectively. These values were similar to the transmittance and haze values of 91.3 and 0.2% of pure glass substrates. The transmittance and haze of the 750 nm thick internal light extraction layer decreased and increased to 85.4 and 13.1%, respectively. The transmittance and haze of the 800 nm thick external light extraction layer decreased and increased, respectively, at 89.3% and 23.8%. The decrease of the transmittance and the increase of haze in the inner light extraction layer and the outer light extraction layer are caused by light scattering by titanium and silica particles in the poly (MMA-co-MSMA) matrix. The transmittance and haze values are summarized in Table 2 below.
투과율Transmittance hazehaze
실시예 1Example 1 92.0 %92.0% 0.2 %0.2%
실시예 2Example 2 85.4 %85.4% 13.1 %13.1%
실시예 3Example 3 89.3 %89.3% 23.8 %23.8%
도 3(a)는 전구체, 도 3(b)는 내부 광 추출층 그리고 도 3(c)는 외부 광 추출층의 하향식 SEM 사진을 나타낸 것이다. 도 3을 참고하면, 도 3(a) 전구체의 SEM 사진은 특색이 없는 형태를 보여주고 있는 반면, 도 3(b) 내부 광 추출층 및 도 3(c) 외부 광 추출층은 잘 분산되어 있고 균일하며, 각각 118.7 ± 32.5 nm와 125.3 ± 21.5 nm 지름의 구형의 무기입자를 갖는 것을 알 수 있다. 상기 무기구형입자는 OLED에 적용되었을 때, 발광되는 빛을 효율적으로 추출할 수 있게 되어 굴절률을 조절할 수 있으므로, 내부 및 외부 광 추출층에 긍정적인 영향을 미친다. 상기 무기구형입자의 지름을 측정한 값은 하기 표 3에 정리하였다. 3 (a) shows a precursor, FIG. 3 (b) shows a top down SEM image of the inner light extraction layer, and FIG. 3 (c) shows an outer light extraction layer. Referring to FIG. 3, while the SEM photograph of the precursor of FIG. 3 (a) shows a non-characteristic form, the inner light extraction layer of FIG. 3 (b) and the outer light extraction layer of FIG. 3 (c) are well dispersed and It can be seen that it is uniform and has spherical inorganic particles having a diameter of 118.7 ± 32.5 nm and 125.3 ± 21.5 nm, respectively. When the inorganic spherical particles are applied to the OLED, it is possible to efficiently extract the light emitted to adjust the refractive index, which has a positive effect on the internal and external light extraction layer. The measured values of the diameters of the inorganic spherical particles are summarized in Table 3 below.
무기구형입자 지름(nm)Inorganic spherical particle diameter (nm)
실시예 1Example 1 --
실시예 2Example 2 118.7 ± 32.5118.7 ± 32.5
실시예 3Example 3 125.3 ± 21.5125.3 ± 21.5
2. 고유의 특성 (Characteristic properties)2. Characteristic properties
도 4(a)와 도 4(b)는 ITO/glass와 ITO/internal light extraction layer/glass의 표면 이미지를 3D 광학 분석기로 측정한 것이다.4 (a) and 4 (b) show surface images of ITO / glass and ITO / internal light extraction layer / glass by 3D optical analyzer.
도 4를 참고하면, 내부 광 추출층을 포함하지 않은 ITO 박막의 거칠기(Ras)와 유리 기판의 거칠기는 각각 1.05 ± 0.09와 0.85 ± 0.04 nm로 나타났고 ITO 박막과 내부 광 추출층, 그리고 내부 광 추출층과 유리기판의 거칠기는 각각 1.92 ± 0.28, 1.52 ± 0.34 nm로 나타났다. 상기와 같은 유기-무기 하이브리 박막은 종래의 제조방법에 비해 평면성이 좋다. 표면의 평면성은 OLED 적용에 있어서 중요한 역할을 한다. 표면이 거칠거나 굴곡이 있다면 소자의 성능을 저하시키고, 수명을 단축시키게 된다. 플라즈마 강화 화학증기증착(PECVD)과 화학적 기계 연마(CMP)로 증착된 평면층은 광추출층 위에 평면성을 향상시키기 위해 도입된다. 상기 ITO 박막 및 유리기판의 거칠기를 측정한 값은 하기 표 4에 정리하였다. Referring to FIG. 4, the roughness of the roughness (R a s) and the glass substrate containing no ITO thin film internal light extraction layer appeared to 1.05 ± 0.09 and 0.85 ± 0.04 nm, respectively ITO thin film and the internal light extraction layer, and The roughnesses of the internal light extraction layer and the glass substrate were 1.92 ± 0.28 and 1.52 ± 0.34 nm, respectively. The organic-inorganic hybrid thin film as described above has a good planarity compared to the conventional manufacturing method. The planarity of the surface plays an important role in OLED applications. Rough or curved surfaces reduce the performance of the device and shorten its lifespan. Planar layers deposited by plasma enhanced chemical vapor deposition (PECVD) and chemical mechanical polishing (CMP) are introduced over the light extraction layer to improve planarity. The measured values of roughness of the ITO thin film and the glass substrate are summarized in Table 4 below.
박막pellicle 거칠기(Ras)Roughness (R a s)
ITOITO 1.05 ± 0.09 nm1.05 ± 0.09 nm
glassglass 0.85 ± 0.04 nm0.85 ± 0.04 nm
ITO + internal light extraction layer + glassITO + internal light extraction layer + glass 1.92 ± 0.28 nm1.92 ± 0.28 nm
internal light extraction layer + glassinternal light extraction layer + glass 1.52 ± 0.34 nm1.52 ± 0.34 nm
3. 두께의 최적화 (Optimization for thickness)3. Optimization for thickness
도 5는 ITO/internal light extraction layer/glass substrate의 두께에 따른 최적의 투과율을 나타낸 그래프이다. 5 is a graph showing the optimum transmittance according to the thickness of the ITO / internal light extraction layer / glass substrate.
도 5를 참고하면, 최고값은 200, 400 그리고 600 nm에서 나타났고, 최소값은 100, 300 그리고 500 nm에서 나타났다. 도 5의 투과율은 내부광추출층의 두께가 증가할수록 진동하는데 이는 보강 간섭과 상쇄 간섭에 의한 것이다. 투과율은 200 nm에서 최대 투과율을 나타냈고, 이는 ITO 필름만 있는 것과 유사한데 상기와 같은 결과는 내부광추출층의 두께를 조절함으로써 투과율의 손실을 최소화할 수 있음을 나타낸다. 또한, ITO 박막의 두께, 투과율, 굴절률 및 흡광계수는 각 140 nm, 78.4 %, 2.07 그리고 2.3X10-2로 나타났고, 상기 값을 이용하여 ITO/internal light extraction layer/glass 구조의 투과율을 계산하였다.Referring to FIG. 5, the maximum values were found at 200, 400 and 600 nm, and the minimum values were found at 100, 300 and 500 nm. The transmittance of FIG. 5 vibrates as the thickness of the internal light extracting layer increases, which is due to constructive interference and destructive interference. The transmittance showed a maximum transmittance at 200 nm, which is similar to that of the ITO film only, indicating that the loss of transmittance can be minimized by adjusting the thickness of the internal light extraction layer. In addition, the thickness, transmittance, refractive index and extinction coefficient of the ITO thin film were 140 nm, 78.4%, 2.07 and 2.3X10 -2 , respectively, and the transmittance of the ITO / internal light extraction layer / glass structure was calculated using the above values. .
4. OLED의 광 추출 (Light extraction of the OLEDs)4.Light extraction of the OLEDs
도 6 및 도 7은 실시예 4-1 및 실시예 4-2에서 제조된 소자의 광 추출 특성을 나타낸 그래프이다.6 and 7 are graphs showing light extraction characteristics of devices fabricated in Examples 4-1 and 4-2.
먼저, 도 6(a)-(d)는 각각 실시예 4-1 및 실시예 4-2의 전압에 따른 휘도(luminance), 전력(power), 전류효율(current efficiency) 그리고 EL 스펙트럼을 나타낸 것이다. First, FIGS. 6A to 6D show luminance, power, current efficiency, and EL spectrum according to voltages of Examples 4-1 and 4-2, respectively. .
도 6을 참고하면, 외부 광 추출층의 두께가 350 nm 일 때, 실시예 4-2 소자의 경우 휘도, 전력 및 전류효율은 각각 14 V에서 16780 cd/m2, 4 V에서 5.80 lm/W 그리고 4 V에서 7.17 cd/A로 나타났고, 실시예 4-1 소자의 경우는 각각 14 V에서 13830 cd/m2, 4 V에서 4.51 lm/W 그리고 4 V에서 5.55 cd/A으로 나타났다. 휘도, 전력 및 전류 효율의 경우, 실시예 4-2 소자가 실시예 4-1 소자보다 각각 21.3, 28.6 그리고 29.1% 더 강화된 것을 알 수 있다. 도 6d는 휘도의 향상이 전체 스펙트럼 범위에 나타남을 보여주고 있고, EL 스펙트럼의 모양과 파장의 피크는 외부광추출층의 삽입에 의해 증가됨을 알 수 있다. 광 추출은 산란입자의 농도와 광 추출층의 경로에 따라 달라진다. 광 추출층의 경로는 층의 두께에 의존한다. 산란입자의 농도가 낮고, 광 추출층의 경로가 짧은 경우 계면에서 소자내부로 후방 반사가 일어나고, 큰 광 손실이 일어나게 된다. 산란입자의 농도가 높고, 광 추출층의 경로가 긴 경우에는 후방 산란이 광 손실의 주요 원인이다. 상기와 같은 광 추출의 두께의 효과의 경우, 350 nm에서 광추출층의 최적의 두께를 부여하게 될 것이다. 따라서, 외부 광 추출층은 OLED의 광 추출의 증가에 있어서 긍정적인 역할을 하게 되는데 이는 유리기판과 공기 사이 및 외부 광 추출층에 잘 분산된 SiO2 나노입자 사이의 굴절률 차를 감소시켜 OLED에서 빛의 산란을 강화시키기 때문이다. 상기 OLED의 광 추출 특성을 측정한 값은 하기 표 5에 정리하였다.Referring to FIG. 6, when the thickness of the external light extraction layer is 350 nm, the luminance, power, and current efficiency of the device of Example 4-2 are 16780 cd / m 2 at 14 V and 5.80 lm / W at 4 V, respectively. In addition, the device was found to be 7.17 cd / A at 4 V, and the device of Example 4-1 was 13830 cd / m 2 at 14 V, 4.51 lm / W at 4 V, and 5.55 cd / A at 4 V, respectively. In terms of luminance, power and current efficiency, it can be seen that the Example 4-2 device is 21.3, 28.6 and 29.1% more enhanced than the Example 4-1 device, respectively. 6D shows that the improvement in luminance is shown in the entire spectral range, and it can be seen that the peak of the shape and wavelength of the EL spectrum is increased by the insertion of the external light extraction layer. Light extraction depends on the concentration of scattering particles and the path of the light extraction layer. The path of the light extraction layer depends on the thickness of the layer. When the concentration of scattering particles is low and the path of the light extraction layer is short, back reflection occurs at the interface into the device, and large light loss occurs. In the case where the concentration of scattering particles is high and the path of the light extraction layer is long, backscattering is a major cause of light loss. In the case of the effect of the thickness of the light extraction as described above, it will give the optimum thickness of the light extraction layer at 350 nm. Therefore, the external light extraction layer plays a positive role in increasing the light extraction of the OLED, which reduces the refractive index difference between the glass substrate and the air and between SiO 2 nanoparticles well dispersed in the external light extraction layer. Because it enhances the scattering of. The measured values of the light extraction characteristics of the OLED are summarized in Table 5 below.
소자device 휘도(luminance)Luminance 전력(power)Power 전류효율(current efficiency) Current efficiency
실시예 4-1Example 4-1 13830 cd/m2 13830 cd / m 2 4.51 lm/W4.51 lm / W 5.55 cd/A5.55 cd / A
실시예 4-2Example 4-2 16780 cd/m2 16780 cd / m 2 5.80 lm/W5.80 lm / W 7.17 cd/A7.17 cd / A
도 7(a)-(d)은 각각 실시예 4-1 및 실시예 4-3의 전압에 따른 휘도(luminance), 전력(power), 전류효율(current efficiency) 그리고 EL 스펙트럼을 나타낸 것이다. 7 (a)-(d) show luminance, power, current efficiency, and EL spectrum according to the voltages of Examples 4-1 and 4-3, respectively.
도 7을 참고하면, 휘도, 전력 및 전류 효율의 관점에서 최대 광 추출은 두께가 400 nm일때 최대값을 가진다. 실시예 4-3 소자의 휘도, 전력 및 전류 효율은 각각 14 V에서 22460 cd/m2, 4 V에서 7.98 lm/W 그리고 4 V에서 8.84 cd/A로 나타났으며, 실시예 4-1 소자의 경우는 14 V에서 13830 cd/m2, 4 V에서 4.51 lm/W 그리고 4 V에서 5.55 cd/A로 나타났다. 휘도, 전력 및 전류 효율의 경우, 실시예 4-3 소자가 실시예 4-1 소자보다 각각 62.4, 76.9 그리고 59.2 % 더 강화된 것을 알 수 있다. 도 7d는 실시예 4-1 및 실시예 4-3 소자의 내부 광 추출층의 두께에 따른 EL 스펙트럼을 나타낸 것이다. EL 강도는 전 스펙트럼 영역에서 증가하며 내부 광 추출층이 도입되었을 때 400 nm에서 최대값을 갖는다. 상기 OLED의 광 추출 특성을 측정한 값은 하기 표 6에 정리하였다.Referring to FIG. 7, the maximum light extraction has a maximum value when the thickness is 400 nm in terms of luminance, power, and current efficiency. Example 4-3 The luminance, power and current efficiency of the device were found to be 22460 cd / m 2 at 14 V, 7.98 lm / W at 4 V and 8.84 cd / A at 4 V, respectively. In the case of, it was 13830 cd / m 2 at 14 V, 4.51 lm / W at 4 V and 5.55 cd / A at 4 V. In terms of brightness, power and current efficiency, it can be seen that the Example 4-3 device is 62.4, 76.9 and 59.2% more enhanced than the Example 4-1 device, respectively. FIG. 7D shows EL spectra according to thicknesses of the internal light extraction layers of the Example 4-1 and Example 4-3 devices. EL intensity increases in the entire spectral region and has a maximum at 400 nm when the internal light extraction layer is introduced. The measured values of the light extraction characteristics of the OLED are summarized in Table 6 below.
소자device 휘도(luminance)Luminance 동력(power)Power 전류효율(current efficiency) Current efficiency
실시예 4-1Example 4-1 13830 cd/m2 13830 cd / m 2 4.51 lm/W4.51 lm / W 5.55 cd/A5.55 cd / A
실시예 4-3Example 4-3 22460 cd/m2 22460 cd / m 2 7.98 lm/W7.98 lm / W 8.84 cd/A8.84 cd / A
5. OLED의 발광(Emitting light)5.Emitting light of OLED
도 8(a)-(c)는 실시예 4-1 내지 실시예 4-3 소자의 불을 켰을 때, 발광하는 사진이다. 8 (a) to 8 (c) are photographs that emit light when the devices of Examples 4-1 to 4-3 are turned on.
도 8을 참고하면, 실시예 4-2 소자의 발광 영역은 실시예 4-1 소자의 발광 영역보다 넓은데 유리에 의해 추출되는 빛이 곧바로 외부 광 추출층의 TiO2 나노입자에 의해 산란되기 때문이다. 실시예 4-3 소자의 발광은 실시예 4-1 소자에 비해 더 강한 것을 알 수 있는데 이는 ITO 층 및 유기층에 갇혀있는 빛이 내부 광 추출층에 의해 방출되기 때문이다. Referring to FIG. 8, the light emitting region of the device of Example 4-2 is wider than the light emitting region of the device of Example 4-1 because light extracted by glass is directly scattered by TiO 2 nanoparticles of the external light extraction layer. to be. It can be seen that the light emission of the Example 4-3 device is stronger than that of the Example 4-1 device because light trapped in the ITO layer and the organic layer is emitted by the internal light extraction layer.
하기 표 7은 실시예 4-1 내지 실시예 4-3 소자의 CIE1931 (x,y) 좌표를 도시한 것이다. Table 7 below shows the CIE1931 (x, y) coordinates of the device of Examples 4-1 to 4-3.
소자device CIE (x) CIE (x) CIE (y) CIE (y)
실시예 4-1Example 4-1 0.30220.3022 0.63330.6333
실시예 4-2Example 4-2 0.30040.3004 0.63480.6348
실시예 4-3Example 4-3 0.30130.3013 0.63410.6341
표 1을 참고하면, 실시예 4-2 소자 및 실시예 4-3 소자의 CIE (x,y)는 실시예 4-1 소자와 유사한 색상으로 나타났고, 이는 내부 및 외부 광추출층의 영향을 받지 않는다는 것을 의미하며, 내부 및 외부 광 추출층이 안정적인 색상을 나타내는 것을 알 수 있다. Referring to Table 1, the CIE (x, y) of the Example 4-2 device and the Example 4-3 device were shown in similar colors to those of the Example 4-1 device, which affected the influence of the internal and external light extraction layers. It means that it does not receive, it can be seen that the internal and external light extraction layer shows a stable color.
본 발명은 MSMA에 트리알콕시실란으로 캡핑된 랜덤공중합체인 methyl methacrylate (MMA)와 3-(trimethoxysilyl)propyl methacrylate (MSMA) (poly(MMA-co-MSMA))를 acid-free 졸겔 공정에 의해 유기-무기 하이브리드 재료를 전구체로 합성하고, titanium (IV) isopropoxide(TTIP)와 TEOS를 상기 전구체와 함께 고굴절 및 저굴절 재료로써 사용하였다. 90 wt% TTIP와 2.5M NaCl, 그리고 1.50 전구체를 첨가시, 굴절률은 각각 1.81로 증가하였고, 1.44로 감소하였다. 상기와 같은 고굴절 및 저굴절 하이브리드 재료는 내부 및 외부 광 추출층에 사용되었다. 외부 광 추출층을 포함하는 소자의 휘도, 전력 및 전류 효율은 기준 소자와 비교하였을 때 21.3, 28.6 그리고 29.1% 높게 나타났고, 내부 광 추출층을 포함하는 소자의 휘도, 전력 및 전류 효율은 62.4, 76.9 그리고 59.2% 더 높게 나타났다. 본 발명의 내부 및 외부 광 추출층은 substrate/ITO와 air/glass 계면의 굴절률을 감소시킴으로써 기판의 전반사를 감소시키는데 효과적임을 알 수 있고, 내부 및 외부 광 추출층의 TiO2 및 SiO2 나노입자에 의한 빛의 산란은 OLED의 광 추출 효율을 강화시켰다. 고굴절 및 저굴절 물질은 광 추출 효율의 향상을 위해 유용한 것임을 확인할 수 있다.The present invention is an organic copolymer of methyl methacrylate (MMA) and 3- (trimethoxysilyl) propyl methacrylate (MSMA) (poly (MMA-co-MSMA)), which are random copolymers capped with trialkoxysilane in MSMA. Inorganic hybrid materials were synthesized as precursors and titanium (IV) isopropoxide (TTIP) and TEOS were used with the precursors as high and low refractive materials. When 90 wt% TTIP, 2.5M NaCl, and 1.50 precursor were added, the refractive indices increased to 1.81 and decreased to 1.44, respectively. Such high and low refractive hybrid materials have been used for the inner and outer light extraction layers. The luminance, power and current efficiency of the device including the external light extraction layer was 21.3, 28.6 and 29.1% higher than those of the reference device. The brightness, power and current efficiency of the device including the internal light extraction layer was 62.4, 76.9 and 59.2% were higher. It can be seen that the inner and outer light extraction layers of the present invention are effective to reduce the total reflection of the substrate by reducing the refractive indices of the substrate / ITO and air / glass interface, and to the TiO 2 and SiO 2 nanoparticles of the inner and outer light extraction layers. The scattering of light by the enhance the light extraction efficiency of the OLED. It can be seen that the high and low refractive materials are useful for improving the light extraction efficiency.
이제까지 본 발명에 대하여 바람직한 실시예를 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예는 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far I looked at the center of the preferred embodiment for the present invention. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

Claims (10)

  1. 투광성 기판과, 상기 투광성 기판의 일면에 내부 광추출층 또는 외부 광추출층을 형성하는 OLED 소자용 적층체에 있어서,In the light-transmissive substrate and the OLED device laminate in which an internal light extraction layer or an external light extraction layer is formed on one surface of the light-transmissive substrate,
    상기 내부 광추출층 또는 외부 광추출층은 고굴절 또는 저굴절 유/무기 하이브리드 재료의 코팅으로 형성된 산란영역이고, The inner light extraction layer or the outer light extraction layer is a scattering region formed by coating of a high refractive index or a low refractive organic / inorganic hybrid material,
    상기 고굴절 또는 저굴절 유/무기 하이브리드 재료는 전구체(P)로서 메틸 메타크릴레이트(methyl methacrylate; MMA)와 3-(트리에톡시실릴) 프로필 메타크릴레이트(3-(trimethoxysilyl) propyl methacrylate; MSMA)의 공중합체와 상기 전구체(P)에 졸-겔법을 이용하여 티타늄 또는 실리카 기반의 굴절률 기능성 금속 알콕사이드를 결합시켜 제조되는 것을 특징으로 하는, 유/무기 하이브리드 재료를 이용한 OLED 소자용 적층체.The high or low refractive organic / inorganic hybrid material is methyl methacrylate (MMA) and 3- (triethoxysilyl) propyl methacrylate (MSMA) as a precursor (P). The copolymer of and the precursor (P) by using a sol-gel method, characterized in that the titanium or silica-based refractive index functional metal alkoxide is prepared by combining, using an organic / inorganic hybrid material laminate.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 기능성 금속 알콕사이드는 고굴절 재료인 경우에는 티타늄 기반 금속 알콕사이드이고, 저굴절 재료인 경우에는 실리카 기반 금속 알콕사이드인 것을 특징으로 하는, 유/무기 하이브리드 재료를 이용한 OLED 소자용 적층체.The functional metal alkoxide is a titanium-based metal alkoxide in the case of a high refractive material, silica-based metal alkoxide in the case of a low refractive material, characterized in that the organic / inorganic hybrid material using a hybrid material.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 기능성 금속 알콕사이드는 고굴절 재료인 경우에는 TTIP(Titanium(IV) isopropoxide)이고, 저굴절 재료인 경우에는 TEOS(Tetraethyl orthosilicate)인 것을 특징으로 하는, 유/무기 하이브리드 재료를 이용한 OLED 소자용 적층체.The functional metal alkoxide is TTIP (Titanium (IV) isopropoxide) in the case of a high refractive material, and TEOS (Tetraethyl orthosilicate) in the case of a low refractive material, a laminate for an OLED device using an organic / inorganic hybrid material.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 고굴절 재료는 내부 광 추출층에 포함되고, 상기 저굴절 재료는 외부 광 추출층에 포함되는 것을 특징으로 하는, 유/무기 하이브리드 재료를 이용한 OLED 소자용 적층체.The high refractive material is included in the internal light extraction layer, the low refractive material is characterized in that included in the external light extraction layer, the organic / inorganic hybrid material using a hybrid material.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 산란영역은, TiO2 나노입자 또는 SiO2 나노입자로 이루어진 산란요소를 포함하는 것을 특징으로 하는, 유/무기 하이브리드 재료를 이용한 OLED 소자용 적층체.The scattering region, characterized in that it comprises a scattering element consisting of TiO 2 nanoparticles or SiO 2 nanoparticles, laminate for OLED devices using an organic / inorganic hybrid material.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 내부 및 외부 광 추출층은 100 내지 800 nm 범위의 두께를 가지는 것을 특징으로 하는, 유/무기 하이브리드 재료를 이용한 OLED 소자용 적층체. The inner and outer light extracting layer has a thickness in the range of 100 to 800 nm, OLED / laminated device using an organic / inorganic hybrid material.
  7. 고굴절 또는 저굴절 유/무기 하이브리드 재료를 준비하는 제1 단계;A first step of preparing a high or low refractive organic / inorganic hybrid material;
    투광성 기판의 일면에 고굴절 또는 저굴절 유/무기 하이브리드 재료를 코팅하여 내부 광추출층 또는 외부 광추출층을 형성하는 제2 단계; A second step of forming an internal light extraction layer or an external light extraction layer by coating a high refractive index or a low refractive organic / inorganic hybrid material on one surface of the translucent substrate;
    상기 제2 단계에서 투광성 기판의 일면에 고굴절 재료의 코팅으로 형성된 내부 광추출층의 상면 또는 저굴절 재료의 코팅으로 외부 광추출층이 형성된 투광성 기판의 상면에 ITO, 유기층 및 캐소드를 순차적으로 적층하여 OLED 소자를 제조하는 제3 단계를 포함하는, 유/무기 하이브리드 재료를 이용한 OLED 소자의 제조방법.In the second step, ITO, an organic layer, and a cathode are sequentially stacked on an upper surface of the inner light extraction layer formed of the coating of the high refractive material on one surface of the light transmissive substrate or on the upper surface of the translucent substrate having the outer light extraction layer formed of the coating of the low refractive material. A method for manufacturing an OLED device using an organic / inorganic hybrid material, comprising a third step of manufacturing the OLED device.
  8. 제 7 항에 의해 제조되는, 고굴절 또는 저굴절 녹색 발광 OLED 소자.A high or low refractive green light emitting OLED device prepared by claim 7.
  9. 제 8 항에 따른 녹색 발광 OLED 소자를 이용하여 제조되는 것을 특징으로 하는 디스플레이 장치.Display device, characterized in that the manufacturing using the green light emitting OLED device according to claim 8.
  10. 제 8 항에 따른 녹색 발광 OLED 소자를 이용하여 제조되는 것을 특징으로 하는 면발광 광원.A surface-emitting light source characterized in that it is produced using the green light emitting OLED device according to claim 8.
PCT/KR2016/012897 2015-11-10 2016-11-10 Oled device laminate using high-refractive-index and low-refractive-index organic/inorganic hybrid materials, oled device manufacturing method, and oled device manufactured thereby WO2017082640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0157160 2015-11-10
KR1020150157160A KR101735445B1 (en) 2015-11-10 2015-11-10 Layer of high and low refractive index organic-inorganic hybrid materials and manufacturing method of OLEDs, OLEDs made thereby

Publications (1)

Publication Number Publication Date
WO2017082640A1 true WO2017082640A1 (en) 2017-05-18

Family

ID=58695735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012897 WO2017082640A1 (en) 2015-11-10 2016-11-10 Oled device laminate using high-refractive-index and low-refractive-index organic/inorganic hybrid materials, oled device manufacturing method, and oled device manufactured thereby

Country Status (2)

Country Link
KR (1) KR101735445B1 (en)
WO (1) WO2017082640A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101884567B1 (en) 2017-05-24 2018-08-01 단국대학교 산학협력단 Method of manufacturing organic light emitting diode comprising light extraction layer with bending stability
KR101883600B1 (en) 2017-05-24 2018-07-30 단국대학교 산학협력단 Method of manufacturing organic light emitting diode comprising light extraction layer with flexibility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080169758A1 (en) * 2007-01-15 2008-07-17 Cok Ronald S Light-emitting device having improved light output
JP2009070815A (en) * 2007-08-21 2009-04-02 Fujifilm Corp Organic electroluminescent display device
KR20110104037A (en) * 2008-12-17 2011-09-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Light extraction film with nanoparticle coatings
KR101176885B1 (en) * 2010-06-25 2012-08-27 서울대학교산학협력단 Organic Light Emission Device Comprising the Nanostructure Planarizated and Method for Preparing the Same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8040046B2 (en) 2007-08-21 2011-10-18 Fujifilm Corporation Organic electroluminescent display having light scattering film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080169758A1 (en) * 2007-01-15 2008-07-17 Cok Ronald S Light-emitting device having improved light output
JP2009070815A (en) * 2007-08-21 2009-04-02 Fujifilm Corp Organic electroluminescent display device
KR20110104037A (en) * 2008-12-17 2011-09-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Light extraction film with nanoparticle coatings
KR101176885B1 (en) * 2010-06-25 2012-08-27 서울대학교산학협력단 Organic Light Emission Device Comprising the Nanostructure Planarizated and Method for Preparing the Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG, HONGPU ET AL.: "Synthesis and Comparison of Two Poly (methyl methacrylate-b-3-(trimethoxysilyl)propyl Methacrylate)/SiO2 Hybrids by Grafting-to Approach", JOURNAL OF COLOID AND INTERFACE SCIENCE, vol. 433, 1 November 2014 (2014-11-01), pages 133 - 140, XP029054892 *

Also Published As

Publication number Publication date
KR101735445B1 (en) 2017-05-15

Similar Documents

Publication Publication Date Title
US8427045B2 (en) Translucent substrate, process for producing the same, organic LED element and process for producing the same
JP6156366B2 (en) Gas barrier film, substrate for electronic device and electronic device
KR101160736B1 (en) Surface light emitting body
EP2219416B1 (en) Light transmitting substrate, method for manufacturing light transmitting substrate, organic led element and method for manufacturing organic led element
WO2012091415A2 (en) Substrate for an organic light-emitting device, and method for manufacturing same
WO2012033322A2 (en) Substrate for an organic electronic device and an organic electronic device comprising the same
EP2704527A1 (en) Light extraction transparent substrate for organic electroluminescent element and organic electroluminescent element using same
US9690033B2 (en) Waveguides comprising light scattering surfaces and display devices comprising the same
Kim et al. Enhancing light-extraction efficiency of OLEDs with high-and low-refractive-index organic–inorganic hybrid materials
WO2012007575A1 (en) Transluscent conductive substrate for organic light emitting devices
JPWO2010084923A1 (en) Electronic device substrate and electronic device using the same
CN103219357A (en) Display apparatus
JP2010049210A (en) Coating composition, method for producing the same, translucent light-scattering film, organic electroluminescence display element and planar light source
JP5994884B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
CN110491899A (en) Display panel and its manufacturing method, display device
WO2017082640A1 (en) Oled device laminate using high-refractive-index and low-refractive-index organic/inorganic hybrid materials, oled device manufacturing method, and oled device manufactured thereby
KR20070058765A (en) Light emitting diode
US9570709B2 (en) Method for manufacturing ultrathin organic light-emitting device
US20180175315A1 (en) Gas barrier film, transparent electroconductive member, and organic electroluminescence element, and method for producing gas barrier film, method for producing transparent electroconductive member, and method for producing organic electroluminescence element
WO2015108384A1 (en) Barrier film and method for producing same
KR20140108434A (en) Light extraction layer for light emitting apparatus and method of forming the light extraction layer
JP5708677B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP2011150803A (en) Organic electroluminescence element and lighting system
JP2004303562A (en) Substrate for organic electroluminescent element
JP6331681B2 (en) Resin composition for light scattering layer, light scattering layer, and organic electroluminescence device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864566

Country of ref document: EP

Kind code of ref document: A1