WO2017082164A1 - Polarizing plate and inspection method for polarizing plate - Google Patents

Polarizing plate and inspection method for polarizing plate Download PDF

Info

Publication number
WO2017082164A1
WO2017082164A1 PCT/JP2016/082786 JP2016082786W WO2017082164A1 WO 2017082164 A1 WO2017082164 A1 WO 2017082164A1 JP 2016082786 W JP2016082786 W JP 2016082786W WO 2017082164 A1 WO2017082164 A1 WO 2017082164A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
polarizing plate
adhesive layer
sensitive adhesive
pressure
Prior art date
Application number
PCT/JP2016/082786
Other languages
French (fr)
Japanese (ja)
Inventor
白石 貴志
亨 神野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201680065891.6A priority Critical patent/CN108291994B/en
Priority to KR1020187015671A priority patent/KR20180081540A/en
Publication of WO2017082164A1 publication Critical patent/WO2017082164A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a polarizing plate that can be used for various optical applications.
  • the present invention also relates to a method for inspecting a polarizing plate.
  • the polarizing plate used is also required to have higher brightness and thinner thickness.
  • Patent Document 1 discloses a thin and high-brightness polarizing plate in which a protective film made of a transparent resin, a polarizer in which iodine is adsorbed and oriented on a polyvinyl alcohol film, a pressure-sensitive adhesive layer, and a brightness enhancement film are laminated in this order. It is disclosed.
  • the polarizer is cracked.
  • Such cracking of the polarizer may be caused by, for example, biting of foreign matter into the surface of the protective film during the manufacturing process of the polarizing plate, biting of foreign matter when the protective film is laminated, and handling of the polarizing plate. It may be caused by a scratch generated near the part.
  • an object of the present invention is to provide a thin polarizing plate in which the polarizer is not easily cracked. Furthermore, an object of the present invention is to provide a polarizing plate in which occurrence of defective appearance such as cracking of a polarizer and light leakage is suppressed even when used in an environment where high and low temperatures are repeated.
  • the present invention includes the following. [1] Polarized light in which a first pressure-sensitive adhesive layer, a first protective film containing a cellulose ester resin, a polarizer having a thickness of 10 ⁇ m or less, a second pressure-sensitive adhesive layer, and a second protective film are laminated.
  • the second protective film has a scratch on at least one of the surface of the second protective film opposite to the second pressure-sensitive adhesive layer and the surface of the second protective film on the second pressure-sensitive adhesive layer side,
  • the scratch has a length of 0.001 to 500 ⁇ m, a width of 0.001 to 500 ⁇ m, and a depth of 0.001 to 10 ⁇ m, and a depth of 0.001 to 10 ⁇ m and an area of 0.001 to 1.0 mm 2.
  • a polarizing plate that is at least one of the scratches.
  • a method for inspecting a board (1) measuring the maximum dimension of the scratch in the second protective film; (2) The maximum dimension of the scratch in the second protective film is the surface of the second protective film opposite to the second pressure-sensitive adhesive layer and the surface of the second protective film on the second pressure-sensitive adhesive layer side.
  • At least one of the surface opposite to the second pressure-sensitive adhesive layer in the protective film and the surface on the second pressure-sensitive adhesive layer side of the second protective film has a depth of 0.001 to 10 ⁇ m and an area of 0.001 to A step of judging a polarizing plate having a thickness of 1.0 mm 2 as a non-defective product, The inspection method of a polarizing plate including these.
  • the polarizing plate of the present invention exhibits good polarization characteristics without causing light leakage or cracking of the polarizer even in an environment where high and low temperatures are repeated.
  • the polarizing plate of the present invention is a thin polarizing plate with excellent strength and durability.
  • FIG. 1 illustrates a schematic cross-sectional view of a preferred layer structure in the polarizing plate of the present invention.
  • the polarizing plate is formed by laminating a first pressure-sensitive adhesive layer, a first protective film, a polarizer having a thickness of 10 ⁇ m or less, a second pressure-sensitive adhesive layer, and a second protective film, These stacking orders are not particularly limited.
  • the polarizing plate 100 of the present invention includes a first pressure-sensitive adhesive layer 13, a first protective film 12, a polarizer 11, a second pressure-sensitive adhesive layer 23, and a second protective film 22. It may have a configuration in which layers are stacked in order.
  • the polarizer in the present invention is a member having a thickness of 10 ⁇ m or less and a function of converting light such as natural light into linearly polarized light.
  • the polarizer has a thickness of 8 ⁇ m or less.
  • the polarizer in the present invention usually has a thickness of 2 ⁇ m or more.
  • the second protective film in the present invention has a scratch on the surface on the side opposite to the second pressure-sensitive adhesive layer in the second protective film and / or the surface on the second pressure-sensitive adhesive layer side in the second protective film, A wound having a length of 0.001 to 500 ⁇ m, a width of 0.001 to 500 ⁇ m and a depth of 0.001 to 10 ⁇ m, and a wound having a depth of 0.001 to 10 ⁇ m and an area of 0.001 to 1.0 mm 2 At least one. Since the second protective film has scratches of such a size, the polarizing plate of the present invention has good polarization characteristics without causing light leakage or cracking even in an environment where high and low temperatures are repeated. Can show.
  • the shape of the “scratch” in the present invention is not limited as long as the size of the scratch is included in the above range.
  • the dimensions such as the depth and the width of the scratch may vary. For example, it may have a depth of 6 ⁇ m at a point with a flaw and a depth of 7 ⁇ m at another point of the flaw.
  • a conventional method for the measurement of the size of such a scratch, a conventional method is used, and examples thereof include measurement with a laser beam and measurement with a microscope.
  • the dimension of the scratch according to the present invention is the maximum value of the dimension of the largest scratch present in the second protective film.
  • the area of a flaw means the area in the surface parallel to the plane of a 2nd protective film. That is, the scratch area does not need to consider the depth of the scratch, and it is only necessary to measure the area of the scratch observed on the plane of the second protective film. Further, the area of the flaw can be calculated using a conventional method.
  • the position where the scratch exists is not particularly limited.
  • scratches may be present randomly throughout the film surface.
  • the scratch exists on the surface edge portion of the second protective film.
  • the scratch has, for example, dimensions of 0.001 to 500 ⁇ m in length, 0.001 to 500 ⁇ m in width, and 0.001 to 10 ⁇ m in depth.
  • At least one scratch is present on the surface of the second protective film, and the scratch exists at a density of 0.0001 to 0.001 per 1 mm 2 .
  • the scratch exists at a density of 0.0001 to 0.001 per 1 mm 2 .
  • the shape of the scratch formed in the depth direction of the second protective film may be formed in a direction perpendicular to the plane of the second protective film, and the plane of the second protective film. It may be formed in an oblique direction or may be a combination of these.
  • the method of forming scratches is not particularly limited.
  • the surface of the polarizing plate may be affected by the inclusion of foreign matter into the surface of the protective film during the manufacturing process of the polarizing plate, the inclusion of foreign matter when the protective film is laminated, and the handling of the polarizing plate. It is also possible to use scratches generated near the end.
  • a scratch may be provided on the surface end of the second protective film using a scratch hardness tester or the like.
  • the scratch can be a combination of the dimensions described below.
  • the length of the scratch is 0.001 to 500 ⁇ m, more preferably 0.001 to 400 ⁇ m.
  • the length of the scratch is indicated by the total length of the scratches.
  • the width of the scratch is preferably 0.001 to 500 ⁇ m, more preferably 0.001 to 400 ⁇ m.
  • the depth of the scratch is 0.001 to 10 ⁇ m, more preferably 1 to 10 ⁇ m.
  • a concave scratch in the case of a concave scratch, it has an area of 0.01 to 1.0 mm 2 , preferably an area of 0.1 to 0.50 mm 2 , more preferably 0.1 to 0.25 mm 2 . Has an area.
  • the wound has dimensions of length 0.001 to 500 ⁇ m, width 0.001 to 500 ⁇ m, and depth 0.001 to 10 ⁇ m.
  • the wound is 0.001 to 10 ⁇ m deep and has an area of 0.001 to 1.0 mm 2 .
  • the polarizer in the present invention generally has a transmission axis and an absorption axis.
  • a transmission axis direction of a polarizer is understood as a vibration direction of transmitted light when natural light is transmitted through the polarizer.
  • the absorption axis of the polarizer is orthogonal to the transmission axis of the polarizer.
  • the polarizer can be a stretched film, and the absorption axis direction of the polarizer coincides with the stretched direction.
  • direction parallel to the transmission axis direction of the polarizer refers to a direction that is parallel or substantially parallel (the angle formed is within ⁇ 7 degrees) with the transmission axis direction of the polarizer described above. .
  • the polarizer may be obtained by adsorbing and orienting a dichroic dye on a uniaxially stretched polyvinyl alcohol resin layer.
  • polyvinyl alcohol resin a saponified polyvinyl acetate resin
  • examples of the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acid, olefin, vinyl ether, unsaturated sulfonic acid, and acrylamide having an ammonium group.
  • the degree of saponification of the polyvinyl alcohol-based resin can be in the range of 80 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more.
  • the polyvinyl alcohol resin may be a modified polyvinyl alcohol partially modified.
  • the polyvinyl alcohol resin may be an olefin such as ethylene and propylene; an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, and crotonic acid. And those modified with alkyl esters of unsaturated carboxylic acids and acrylamide.
  • the average degree of polymerization of the polyvinyl alcohol resin is preferably 100 to 10,000, more preferably 1500 to 8000, and still more preferably 2000 to 5000.
  • a polarizer is a uniaxially stretched raw film made of polyvinyl alcohol resin, dyed with a dichroic dye (dyeing treatment), treated with an aqueous boric acid solution (boric acid treatment), and washed with water (washed with water). Treatment) and finally dried.
  • Uniaxial stretching of the polyvinyl alcohol-based resin film may be performed before dyeing with a dichroic dye, may be performed simultaneously with dyeing with a dichroic dye, or may be performed after dyeing with a dichroic dye. Good. When uniaxial stretching is performed after dyeing with a dichroic dye, this uniaxial stretching may be performed before boric acid treatment or during boric acid treatment. Of course, it is also possible to perform uniaxial stretching in these plural stages. In order to perform uniaxial stretching, the film may be stretched through rolls having different peripheral speeds, or may be stretched by a method of sandwiching between hot rolls.
  • atmosphere may be sufficient
  • stretches in the state swollen with the solvent may be sufficient.
  • the final draw ratio of the polyvinyl alcohol-based resin film is usually about 4 to 8 times.
  • the polyvinyl alcohol resin film is dyed with a dichroic dye, and the dichroic dye is adsorbed on the film.
  • a polyvinyl alcohol-based resin film may be immersed in an aqueous solution containing a dichroic dye.
  • iodine or a dichroic dye is used as the dichroic dye.
  • iodine When iodine is used as the dichroic dye, a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed.
  • the iodine content in this aqueous solution is usually about 0.01 to 0.5 parts by weight per 100 parts by weight of water, and the potassium iodide content is usually 0.5 to 10 parts by weight per 100 parts by weight of water. About a part.
  • the temperature of this aqueous solution is usually about 20 to 40 ° C., and the immersion time in this aqueous solution is usually about 30 to 300 seconds.
  • a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic dye is usually employed.
  • the content of the dichroic dye in this aqueous solution is usually about 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 parts by weight per 100 parts by weight of water.
  • This aqueous solution may contain an inorganic salt such as sodium sulfate.
  • the temperature of this aqueous solution is usually about 20 to 80 ° C., and the immersion time in this aqueous solution is usually about 30 to 300 seconds.
  • the boric acid treatment is performed, for example, by immersing a dyed polyvinyl alcohol resin film in an aqueous boric acid solution.
  • the boric acid content in the boric acid aqueous solution is usually about 2 to 15 parts by weight, preferably 5 to 12 parts by weight per 100 parts by weight of water.
  • the aqueous boric acid solution preferably contains potassium iodide.
  • the content of potassium iodide in the boric acid aqueous solution is usually about 2 to 20 parts by weight, preferably 5 to 15 parts by weight per 100 parts by weight of water.
  • the immersion time of the film in the boric acid aqueous solution is usually about 100 to 1200 seconds, preferably 150 seconds or more, more preferably 200 seconds or more, and preferably 600 seconds or less, more preferably 400 seconds or less. .
  • the temperature of the boric acid aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C.
  • sulfuric acid, hydrochloric acid, acetic acid, ascorbic acid or the like may be added as a pH adjuster.
  • the polyvinyl alcohol resin film after the boric acid treatment is usually subjected to a water washing treatment.
  • the water washing treatment is performed, for example, by immersing a boric acid-treated polyvinyl alcohol resin film in water. After washing with water, drying is performed to obtain a polarizer.
  • the temperature of water in the water washing treatment is usually about 5 to 40 ° C., and the immersion time is usually about 2 to 120 seconds.
  • the drying performed thereafter is usually performed using a hot air dryer or a far infrared heater.
  • the drying temperature is usually 40 to 100 ° C., and the drying time is usually about 120 to 600 seconds.
  • the first protective film and the polarizer are bonded via an adhesive layer.
  • the thickness of the adhesive layer is, for example, 0.001 ⁇ m to 10 ⁇ m.
  • the adhesive layer those known in the art can be used.
  • the first protective film containing the cellulose ester resin protects the dimensional change rate after 1 hour at 85 ° C. and 5% relative humidity in a direction parallel to the transmission axis direction of the polarizer.
  • Dimensional change rate of film (85 ° C)
  • the dimensional change rate of the protective film after 0.5 hours under the condition of 95% relative humidity at 30 ° C. in the direction parallel to the transmission axis direction of the polarizer was defined as the dimensional change rate of the protective film (30 ° C.).
  • the absolute value of the difference between the dimensional change rate of the protective film (85 ° C.) and the dimensional change rate of the protective film (30 ° C.) is, for example, 0.00 to 0.50.
  • the dimensional change rate after 1 hour under the condition of 85 ° C. and 5% relative humidity is measured according to the following formula.
  • the dimensional change rate after 1 hour under the condition of 85 ° C. and 5% relative humidity in the direction parallel to the transmission axis direction of the polarizer is expressed as the dimensional change rate of the protective film (85 ° C).
  • L0 means the film size of the cut film in a direction (long direction or width direction) parallel to the transmission axis direction of the polarizer
  • L85 means the film dimension in a direction (long direction or width direction) parallel to the transmission axis direction of the polarizer after 1 hour has passed under the condition of 85 ° C. and 5% relative humidity.
  • the dimension (L0) in the width direction is measured at the time of film cutting
  • the dimension (L85) in the width direction of the film is measured even after standing for 1 hour at 85 ° C. and 5% relative humidity. Calculate the rate of change.
  • the first protective film containing a cellulose ester resin having a positive dimensional change rate (85 ° C.) is made of, for example, a cellulose ester resin selected from cellulose triacetate and cellulose diacetate.
  • the calculation of the dimensional change rate after the elapse of 0.5 hours under the condition of 30 ° C. and relative humidity of 95% is performed on the film after measuring the dimensional change rate (85 ° C.). It is measured according to the following formula.
  • L0 30 means a film dimension after measuring a dimensional change rate (85 ° C.) in a direction (long direction or width direction) parallel to the transmission axis direction of the polarizer
  • L30 means the film dimension in a direction (long direction or width direction) parallel to the transmission axis direction of the polarizer after 0.5 hours have passed under the condition of 30 ° C. and a relative humidity of 95%.
  • the sample is allowed to stand at a temperature of 23 ° C. and a humidity of 55% for 15 minutes, and then L 30 can be measured.
  • the dimensional change rate (30 ° C.) calculated in this way may indicate either a positive value (ie, contraction) or a negative value (ie, expansion).
  • the protective film in the present invention has a sign of the dimensional change rate (85 ° C.) and the dimensional change rate.
  • the signs of (30 ° C.) may be the same sign (positive, negative or zero), or may be different signs.
  • the first protective film has an absolute value of a difference between a dimensional change rate of the first protective film (85 ° C.) and a dimensional change rate of the first protective film (30 ° C.) of 0.00 to 0. .50. More preferably, the absolute value of the difference between the dimensional change rate (85 ° C.) of the first protective film and the dimensional change rate (30 ° C.) of the first protective film is 0.02 to 0.30.
  • the first protective film has an absolute value of the difference in dimensional change rate in such a range, so that cracking and light leakage occurring in the polarizer under high temperature conditions and high humidity conditions can be further suppressed. Furthermore, it can have excellent durability. Furthermore, the polarizing plate having the protective film having such characteristics can make the polarizer thin, and can suppress cracking of the polarizer even when the surface of the protective film is scratched.
  • the first protective film contains a cellulose ester resin.
  • a 2nd protective film may be a transparent resin film comprised from a thermoplastic resin.
  • the thermoplastic resin include polyolefin resins such as chain polyolefin resins and cyclic polyolefin resins such as polypropylene resins; cellulose resins such as cellulose ester resins such as cellulose triacetate and cellulose diacetate; Polyester resins such as polyethylene terephthalate, polyethylene naphthalate and polybutylene terephthalate; polycarbonate resins; (meth) acrylic resins selected from polymethyl methacrylate resins; or a mixture of at least two of these. Moreover, you may use the copolymer of the at least 2 or more types of monomer which comprises the said resin.
  • Cyclic polyolefin resin is a general term for resins that are polymerized using cyclic olefin as a polymerization unit, and is described in, for example, JP-A Nos. 1-240517, 3-14882, 3-122137, etc. The resin currently used is mentioned.
  • cyclic polyolefin resins include ring-opening (co) polymers of cyclic olefins, addition polymers of cyclic olefins, and copolymers of chain olefins and cyclic olefins such as ethylene and propylene (typically Random copolymers), graft polymers obtained by modifying them with unsaturated carboxylic acids or derivatives thereof, and hydrides thereof.
  • norbornene resins using norbornene monomers such as norbornene and polycyclic norbornene monomers as cyclic olefins are preferably used.
  • cyclic polyolefin resins Various products are commercially available for cyclic polyolefin resins.
  • examples of commercial products of cyclic polyolefin resin are “TOPAS” (registered trademark) produced by TOPAS ⁇ ADVANCED POLYMERS GmbH and sold in Japan by Polyplastics Co., Ltd., JSR Corporation.
  • TOPAS registered trademark
  • Claron registered trademark
  • Zeon Corporation Zeon Corporation
  • ZEONOR registered trademark
  • ZEONEX registered trademark
  • a commercial product of the formed cyclic polyolefin resin film may be used as the protective film.
  • Examples of commercially available products are “Arton Film” sold by JSR Corporation (“Arton” is a registered trademark of the company) and “Essina” sold by Sekisui Chemical Co., Ltd. ( Registered trademark) and “SCA40”, “ZEONOR FILM” (registered trademark) sold by Zeon Corporation.
  • Cellulose ester resins are usually esters of cellulose and fatty acids. Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate. Moreover, those copolymerized with these, and those in which a part of the hydroxyl group is modified with another substituent can also be used. Among these, cellulose triacetate (triacetyl cellulose: TAC) is particularly preferable. Many products of cellulose triacetate are commercially available, which is advantageous in terms of availability and cost.
  • Examples of commercial products of cellulose triacetate are “Fujitac (registered trademark) TD80”, “Fujitac (registered trademark) TD80UF”, and “Fujitac (registered trademark) TD80UZ” sold by FUJIFILM Corporation. And “Fujitac (registered trademark) TD40UZ”, TAC films “KC8UX2M”, “KC2UA” and “KC4UY” manufactured by Konica Minolta Co., Ltd.
  • polymethacrylic acid esters and polyacrylic acid esters (hereinafter, polymethacrylic acid esters and polyacrylic acid esters may be collectively referred to as (meth) acrylic resins) can be easily obtained from the market.
  • Examples of (meth) acrylic resins include methacrylic acid alkyl esters or homopolymers of acrylic acid alkyl esters, and copolymers of methacrylic acid alkyl esters and acrylic acid alkyl esters.
  • Specific examples of the methacrylic acid alkyl ester include methyl methacrylate, ethyl methacrylate, and propyl methacrylate
  • specific examples of the acrylic acid alkyl ester include methyl acrylate, ethyl acrylate, and propyl acrylate.
  • a (meth) acrylic resin a commercially available (meth) acrylic resin can be used.
  • As the (meth) acrylic resin a so-called impact resistant (meth) acrylic resin may be used.
  • (Meth) acrylic resin is usually a polymer mainly composed of methacrylic acid ester.
  • the methacrylic resin may be a homopolymer of one kind of methacrylic acid ester or a copolymer of methacrylic acid ester with other methacrylic acid ester or acrylic acid ester.
  • the methacrylic acid esters include alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, butyl methacrylate and the like.
  • the alkyl group usually has about 1 to 4 carbon atoms.
  • cycloalkyl methacrylate such as cyclopentyl methacrylate, cyclohexyl methacrylate, methacrylic acid, aryl methacrylate such as phenyl methacrylate, cycloalkylalkyl methacrylate such as cyclohexylmethyl methacrylate, and aralkyl methacrylate such as benzyl methacrylate.
  • aryl methacrylate such as phenyl methacrylate
  • cycloalkylalkyl methacrylate such as cyclohexylmethyl methacrylate
  • aralkyl methacrylate such as benzyl methacrylate.
  • Examples of the other polymerizable monomer that can constitute the (meth) acrylic resin include acrylic acid esters and polymerizable monomers other than methacrylic acid esters and acrylic acid esters.
  • As the acrylate ester alkyl acrylate ester can be used.
  • alkyl acrylates having 1 to 8 carbon atoms in the alkyl group, such as t-butyl acid, 2-ethylhexyl acrylate, cyclohexyl acrylate, 2-hydroxyethyl acrylate, and the like.
  • the alkyl group preferably has 1 to 4 carbon atoms.
  • acrylic ester may be used alone or in combination of two or more.
  • polymerizable monomers other than methacrylic acid esters and acrylic acid esters include, for example, monofunctional monomers having one polymerizable carbon-carbon double bond in the molecule, and polymerizable carbon-carbon double bonds in the molecule. Can be mentioned, but a monofunctional monomer is preferably used.
  • the monofunctional monomer examples include styrene monomers such as styrene, ⁇ -methylstyrene, vinyl toluene, halogenated styrene, and hydroxystyrene; vinyl cyanide such as acrylonitrile and methacrylonitrile; acrylic acid, methacrylic acid, anhydrous Unsaturated acids such as maleic acid and itaconic anhydride; maleimides such as N-methylmaleimide, N-cyclohexylmaleimide and N-phenylmaleimide; allyl alcohols such as methacryl alcohol and allyl alcohol; vinyl acetate, vinyl chloride, ethylene, propylene, Including other monomers such as 4-methyl-1-pentene, 2-hydroxymethyl-1-butene, methyl vinyl ketone, N-vinyl pyrrolidone, N-vinyl carbazole.
  • styrene monomers such as styrene, ⁇ -methylst
  • polyfunctional monomer examples include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate; allyl acrylate, allyl methacrylate, allyl cinnamate Alkenyl esters of unsaturated carboxylic acids such as polyallyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate and triallyl isocyanurate, and aromatic polyalkenyl compounds such as divinylbenzene.
  • the polymerizable monomer other than the methacrylic acid ester and the acrylic acid ester only one kind may be used alone, or two or more kinds may be used in combination.
  • a preferred monomer composition of the (meth) acrylic resin is 50 to 100% by weight of methacrylic acid alkyl ester, 0 to 50% by weight of acrylic acid alkyl ester based on the total monomer amount, and 0 to 50% of other polymerizable monomers. 50% by weight, more preferably 50 to 99.9% by weight of methacrylic acid alkyl ester, 0.1 to 50% by weight of acrylic acid alkyl ester, and 0 to 49.9% by weight of other polymerizable monomers. is there.
  • the (meth) acrylic resin may have a ring structure in the polymer main chain because the durability of the film can be improved.
  • the ring structure is preferably a heterocyclic structure such as a cyclic acid anhydride structure, a cyclic imide structure, or a lactone ring structure.
  • Specific examples include cyclic acid anhydride structures such as glutaric anhydride structure and succinic anhydride structure, cyclic imide structures such as glutarimide structure and succinimide structure, and lactone ring structures such as butyrolactone and valerolactone.
  • the glass transition temperature of the (meth) acrylic resin can be increased.
  • the cyclic acid anhydride structure or cyclic imide structure is introduced by copolymerizing monomers having a cyclic structure such as maleic anhydride or maleimide, and the cyclic acid anhydride structure is introduced by dehydration / demethanol condensation reaction after polymerization. It can be introduced by a method, a method of reacting an amino compound and introducing a cyclic imide structure.
  • a resin having a lactone ring structure (polymer) is prepared by preparing a polymer having a hydroxyl group and an ester group in a polymer chain, and then heating the hydroxyl group and the ester group in the obtained polymer by heating. Accordingly, it can be obtained by a method in which a lactone ring structure is formed by cyclocondensation in the presence of a catalyst such as an organic phosphorus compound.
  • Polymers having a hydroxyl group and an ester group in the polymer chain include, for example, methyl 2- (hydroxymethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, isopropyl 2- (hydroxymethyl) acrylate, 2- It can be obtained by using a (meth) acrylic acid ester having a hydroxyl group and an ester group such as n-butyl (hydroxymethyl) acrylate and t-butyl 2- (hydroxymethyl) acrylate as a part of the monomer. .
  • a more specific method for preparing a polymer having a lactone ring structure is described in, for example, JP-A-2007-254726.
  • (Meth) acrylic resin can be prepared by radical polymerization of a monomer composition containing the monomer as described above.
  • a monomer composition can contain a solvent and a polymerization initiator as needed.
  • the (meth) acrylic resin may contain a resin other than the (meth) acrylic resin described above.
  • the content of the other resin is preferably 0 to 70% by weight, more preferably 0 to 50% by weight, and still more preferably 0 to 30% by weight.
  • the resin include olefin polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene); halogen-containing polymers such as vinyl chloride and chlorinated vinyl resins; polystyrene, styrene -Styrenic polymers such as methyl methacrylate copolymer and styrene-acrylonitrile copolymer; Polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; Polyarylate composed of aromatic diol and aromatic dicarboxylic acid; Polylactic acid, Biodegradable polyester such as polybutylene succinate; polycarbonate; polyamide such as nylon 6,
  • (Meth) acrylic resin may contain rubber particles from the viewpoint of improving the impact resistance and film-forming property of the film.
  • the rubber particle may be a particle composed only of a layer exhibiting rubber elasticity, or may be a particle having a multilayer structure having another layer together with a layer exhibiting rubber elasticity.
  • rubber elastic bodies include olefin-based elastic polymers, diene-based elastic polymers, styrene-diene-based elastic copolymers, and acrylic-based elastic polymers.
  • an acrylic elastic polymer is preferably used from the viewpoint of light resistance and transparency.
  • the acrylic elastic polymer may be a polymer mainly composed of alkyl acrylate, that is, a polymer containing 50 wt% or more of a structural unit derived from alkyl acrylate based on the total amount of monomers.
  • the acrylic elastic polymer may be a homopolymer of alkyl acrylate, and contains 50 wt% or more of structural units derived from alkyl acrylate and 50 wt% or less of structural units derived from other polymerizable monomers.
  • a copolymer may also be used.
  • alkyl acrylate constituting the acrylic elastic polymer those having 4 to 8 carbon atoms in the alkyl group are usually used.
  • the other polymerizable monomers include, for example, alkyl methacrylates such as methyl methacrylate and ethyl methacrylate; styrene monomers such as styrene and alkyl styrene; unsaturated nitriles such as acrylonitrile and methacrylonitrile; A monofunctional monomer, an alkenyl ester of an unsaturated carboxylic acid such as allyl (meth) acrylate and methacrylic (meth) acrylate; a dialkenyl ester of a dibasic acid such as diallyl maleate; an alkylene glycol di (meth) Polyfunctional monomers such as unsaturated carboxylic acid diesters of glycols such as acrylates.
  • the rubber particles containing an acrylic elastic polymer are preferably multi-layered particles having an acrylic elastic polymer layer. Specifically, a two-layer structure having a hard polymer layer mainly composed of alkyl methacrylate outside the acrylic elastic polymer layer, or an alkyl methacrylate inside the acrylic elastic polymer layer. And a three-layer structure having a hard polymer layer mainly composed of.
  • An example of the monomer composition in the polymer mainly composed of alkyl methacrylate constituting the hard polymer layer formed outside or inside the acrylic elastic polymer layer is given as an example of the (meth) acrylic resin.
  • This is the same as the monomer composition example of a polymer mainly composed of alkyl methacrylate, and a monomer composition mainly composed of methyl methacrylate is preferably used.
  • Such acrylic rubber elastic particles having a multilayer structure can be produced, for example, by the method described in Japanese Patent Publication No. 55-27576.
  • the rubber particles are included in the rubber elastic layer (acrylic elastic polymer layer) contained therein.
  • the average particle size is preferably in the range of 10 to 350 nm.
  • the average particle diameter is more preferably 30 nm or more, further 50 nm or more, and more preferably 300 nm or less, further 280 nm or less.
  • the average particle diameter of the rubber particles up to the rubber elastic layer is measured as follows. That is, when such rubber particles are mixed with a (meth) acrylic resin to form a film and the cross section thereof is dyed with an aqueous solution of ruthenium oxide, only the rubber elastic body layer is colored and observed in a substantially circular shape. This (meth) acrylic resin is not dyed. Therefore, from the cross section of the film dyed in this way, a thin piece is prepared using a microtome or the like, and this is observed with an electron microscope. And after extracting 100 dye
  • the outermost layer is a hard polymer mainly composed of methyl methacrylate, and rubber particles in which a rubber elastic layer (acrylic elastic polymer layer) is encapsulated, the matrix (meta )
  • the outermost layer of rubber particles is mixed with the base (meth) acrylic resin. Therefore, when the cross section is dyed with ruthenium oxide and observed with an electron microscope, the rubber particles are observed as particles in a state excluding the outermost layer.
  • the inner layer is an acrylic elastic polymer and the outer layer is a rubber particle having a two-layer structure, which is a hard polymer mainly composed of methyl methacrylate, the acrylic elastic polymer portion of the inner layer Are dyed and observed as particles having a single layer structure.
  • the innermost layer is a hard polymer mainly composed of methyl methacrylate
  • the intermediate layer is an acrylic elastic polymer
  • the outermost layer is a rigid polymer mainly composed of methyl methacrylate.
  • the central part of the innermost layer is not dyed, and only the acrylic elastic polymer part of the intermediate layer is dyed and observed as a two-layered particle.
  • the rubber particles are combined with the (meth) acrylic resin constituting the (meth) acrylic resin film. Is preferably 3 to 60% by weight, more preferably 45% by weight or less, and still more preferably 35% by weight or less. If the amount of the elastic rubber particles exceeds 60% by weight, the dimensional change of the film becomes large, and the heat resistance is lowered. On the other hand, when the amount of rubber elastic particles is less than 3% by weight, the heat resistance of the film is good, but the winding property during film formation is poor, and the productivity may be lowered.
  • the weight of the portion composed of the rubber elastic layer and the inner layer is determined.
  • the weight of the elastic rubber particles For example, when the acrylic rubber elastic particles having the above three-layer structure are used, the total weight of the acrylic rubber elastic polymer portion of the intermediate layer and the hard polymer portion mainly composed of methyl methacrylate of the innermost layer Is the weight of the rubber elastic particles.
  • the acrylic rubber elastic particles having the above three-layer structure are dissolved in acetone, the acrylic rubber elastic polymer portion of the intermediate layer and the hard polymer portion mainly composed of methyl methacrylate in the innermost layer are insoluble. Therefore, the total weight ratio of the intermediate layer and the innermost layer in the acrylic rubber elastic particles having a three-layer structure can be easily obtained.
  • the (meth) acrylic resin composition containing the rubber particles used for producing the film is obtained by melt-kneading the (meth) acrylic resin and the rubber particles.
  • it can be obtained by a method of first producing rubber particles and polymerizing a monomer composition as a raw material of the (meth) acrylic resin in the presence thereof.
  • the protective film may contain usual additives such as ultraviolet absorbers, organic dyes, pigments, inorganic dyes, antioxidants, antistatic agents, surfactants and the like.
  • an ultraviolet absorber is preferably used for improving weather resistance.
  • ultraviolet absorbers include 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (5 -Methyl-2-hydroxyphenyl) -2H-benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3,5-di -Tert-butyl-2-hydroxyphenyl) -2H-benzotriazole, 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chloro-2H-benzotriazole, 2- (3,5 -Di-tert-butyl-2-hydroxyphen
  • UV absorber Commercially available products may be used as the UV absorber.
  • a triazine UV absorber “Kemisorb 102” (registered trademark) manufactured by Chemipro Kasei Co., Ltd., “Adekastab (registered trademark)” manufactured by ADEKA Co., Ltd. “LA46”, “Adeka Stub (registered trademark) LAF70”, “TINUVIN (registered trademark) 460”, “TINUVIN (registered trademark) 405”, “TINUVIN (registered trademark) 400” and “TINUVIN (registered trademark) 477 manufactured by BASF Corporation "CYASORB (registered trademark) UV-1164” (all are trade names) manufactured by Sun Chemical Co., Ltd.
  • the (meth) acrylic resin film contains an ultraviolet absorber, the amount thereof is usually 0.1% by weight or more, preferably 0.3% by weight or more with respect to 100% by weight of the (meth) acrylic resin. And preferably 3% by weight or less.
  • a conventionally known film forming method can be employed for producing the (meth) acrylic resin film.
  • the (meth) acrylic resin film may have a multilayer structure, and the (meth) acrylic resin film having a multilayer structure is generally known in various ways such as a method using a feed block and a method using a multi-manifold die. Can be used. Among them, for example, a method of laminating via a feed block, multilayer melt extrusion from a T die, and forming a film by contacting at least one surface of the obtained laminated film with a roll or a belt is a film having good surface properties. It is preferable at the point obtained.
  • the film is obtained by bringing both sides of the laminated film obtained by the multilayer melt extrusion molding into contact with the roll surface or the belt surface.
  • the method of making is preferable.
  • the surface of the roll or belt in contact with the (meth) acrylic resin is a mirror surface for imparting smoothness to the (meth) acrylic resin film surface. Is preferred.
  • the (meth) acrylic resin film may be a film produced as described above and subjected to a stretching treatment.
  • a stretching process may be required to obtain a film having desired optical properties and mechanical properties.
  • Examples of the stretching treatment include uniaxial stretching and biaxial stretching.
  • Examples of the stretching direction include a machine flow direction (MD) of an unstretched film, a direction orthogonal to the machine flow direction (TD), and a direction oblique to the machine flow direction (MD).
  • Biaxial stretching may be simultaneous biaxial stretching in which stretching is performed simultaneously in two stretching directions, or sequential biaxial stretching in which stretching is performed in a predetermined direction and then stretching in another direction.
  • the second protective film may be a protective film having both optical functions such as a retardation film and a brightness enhancement film as long as it is included in the scope of the present invention.
  • a retardation film provided with an arbitrary retardation value by stretching a transparent resin film made of the above material (uniaxial stretching or biaxial stretching) or forming a liquid crystal layer or the like on the film. It can be.
  • the first protective film and the second protective film have surface treatment layers (coating layers) such as a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer and an antifouling layer on the surface opposite to the polarizer. It can also be formed. A well-known method can be used for forming the surface treatment layer on the surface of the protective film.
  • the first protective film and the second protective film may be the same protective film or different protective films.
  • Examples of cases where the protective film is different include combinations in which the types of thermoplastic resins constituting the protective film are at least different; presence / absence of the optical function of the protective film or combinations different in the type; presence / absence of a surface treatment layer formed on the surface Or there are at least different combinations of the types.
  • the thickness of the first protective film and the second protective film is preferably thin from the viewpoint of reducing the thickness of the polarizing plate, but if it is too thin, the strength is lowered and the workability is poor. Therefore, the thickness of the first protective film and the second protective film is preferably 5 to 90 ⁇ m or less, more preferably 60 ⁇ m or less, still more preferably 50 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
  • the pressure-sensitive adhesive forming the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer conventionally known ones may be appropriately selected, and a high-temperature environment, a humid heat environment or an environment where high and low temperatures are repeated are exposed to the polarizing plate. It is sufficient that the adhesive layer has a degree of adhesion that does not cause peeling. Specific examples include acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, and acrylic pressure-sensitive adhesives are particularly preferable in terms of transparency, weather resistance, heat resistance, and processability. Moreover, the 1st adhesive layer and the 2nd adhesive layer may use the same kind of adhesive, and may use a different kind of adhesive.
  • a tackifier for the adhesive, if necessary, a tackifier, plasticizer, glass fiber, glass beads, metal powder, other inorganic powders, fillers, pigments, colorants, fillers, antioxidants, UV absorbers Various additives such as an antistatic agent and a silane coupling agent may be appropriately blended.
  • the pressure-sensitive adhesive layer is usually formed by applying a pressure-sensitive adhesive solution onto a release sheet and drying.
  • a pressure-sensitive adhesive solution onto a release sheet and drying.
  • roll coating methods such as reverse coating and gravure coating, spin coating methods, screen coating methods, fountain coating methods, dipping methods, spraying methods and the like can be employed.
  • the release sheet provided with the pressure-sensitive adhesive layer is used by a method of transferring the release sheet.
  • the thickness of the pressure-sensitive adhesive layer is usually about 3 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the storage elastic modulus of the pressure-sensitive adhesive layer at 23 ° C. is preferably 0.01 MPa to 1 MPa.
  • the storage elastic modulus of the pressure-sensitive adhesive layer at 80 ° C. is 0.01 MPa to 1 MPa.
  • the present invention further provides a method for inspecting a polarizing plate.
  • the inspection method of the present invention comprises: Inspection of a polarizing plate in which a first pressure-sensitive adhesive layer, a first protective film containing a cellulose ester-based resin, a polarizer having a thickness of 10 ⁇ m or less, a second pressure-sensitive adhesive layer, and a second protective film are laminated.
  • a method (1) measuring the maximum dimension of the scratch in the second protective film; (2) The maximum dimension of the scratch in the second protective film is the surface of the second protective film opposite to the second pressure-sensitive adhesive layer and the surface of the second protective film on the second pressure-sensitive adhesive layer side.
  • At least one of the surface opposite to the second pressure-sensitive adhesive layer in the protective film and the surface on the second pressure-sensitive adhesive layer side of the second protective film has a depth of 0.001 to 10 ⁇ m and an area of 0.001 to
  • the maximum dimension of the scratch is measured in the step (1).
  • the maximum dimension of the polarizing plate that may have a scratch is measured using a conventional method, for example, an electron microscope or a laser microscope.
  • the maximum dimension of scratches in the second protective film is the surface opposite to the second pressure-sensitive adhesive layer in the second protective film.
  • a polarizing plate having a length of 0.001 to 500 ⁇ m, a width of 0.001 to 500 ⁇ m, and a depth of 0.001 to 10 ⁇ m on at least one of the surfaces of the second protective film on the second pressure-sensitive adhesive layer side, and / or The maximum dimension of the scratches in the second protective film has a depth of 0. 0 in at least one of the surface of the second protective film opposite to the second pressure-sensitive adhesive layer and the surface of the second protective film on the second pressure-sensitive adhesive layer side.
  • a step of judging a polarizing plate having an area of 001 to 10 ⁇ m and an area of 0.001 to 1.0 mm 2 as a good product is included.
  • a polarizing plate having an area of 001 to 10 ⁇ m and an area of 0.001 to 1.0 mm 2 as a good product.
  • the polarizing plate determined to be non-defective in the inspection method of the present invention can be used without being discarded.
  • the dimension of a flaw etc. may have the preferable range mentioned above.
  • the polarizing plate selected as a non-defective product in the step (2) can be used for various optical applications.
  • the polarizing plate selected as a non-defective product in the step (2) may be used as it is, or may be further processed as necessary.
  • the polarizing plate obtained through such an inspection process can exhibit good polarization characteristics without causing light leakage or cracking even in an environment where high and low temperatures are repeated. Moreover, it can contribute to thickness reduction of a polarizing plate.
  • the polarizing plate after panel bonding can also be inspected.
  • scratches and dents that may occur at the time of panel pasting, after panel pasting, and at the time of pasting the backlight unit are limited as long as they have a predetermined size. It can be included in the wound in the invention.
  • the present invention can further provide a liquid crystal panel in which the polarizing plate of the present invention is bonded to a liquid crystal cell via an adhesive layer.
  • an organic electroluminescent display apparatus can be obtained by bonding a polarizing plate to an organic electroluminescent display through an adhesive layer.
  • the film was washed with pure water at 26 ° C. for 20 seconds and then dried at 65 ° C. to obtain a 7 ⁇ m-thick polarizer in which iodine was adsorbed and oriented on a polyvinyl alcohol film.
  • First adhesive layer A commercially available pressure-sensitive adhesive sheet in which an acrylic pressure-sensitive adhesive layer having a thickness of 20 ⁇ m was laminated on a release-treated surface of a polyethylene terephthalate film (release film) having a thickness of 38 ⁇ m that had been subjected to the mold release treatment was used. No urethane acrylate oligomer is blended in the acrylic adhesive.
  • the storage elastic modulus of the pressure-sensitive adhesive layer obtained by removing the release film from the pressure-sensitive adhesive sheet was 0.05 MPa at 23 ° C. and 0.04 MPa at 80 ° C.
  • the surface was coated with a die coater so that the thickness after drying was 5 ⁇ m and dried to obtain a pressure-sensitive adhesive sheet on which a pressure-sensitive adhesive layer was laminated.
  • the storage elastic modulus of the pressure-sensitive adhesive layer obtained by removing the release film from the pressure-sensitive adhesive sheet was 0.40 MPa at 23 ° C. and 0.18 MPa at 80 ° C.
  • a brightness enhancement film (made by 3M, trade name Advanced Polarized Film, Version 3) having a thickness of 26 ⁇ m was used.
  • a first protective film-1 was laminated on one side of the polarizer via a water-based adhesive. After lamination, the first protective film and the polarizer were bonded by drying at 80 ° C. for 5 minutes.
  • stacked on the peeling film was bonded to the surface on the opposite side to the bonding surface with the 1st protective film in a polarizer.
  • stacked on the peeling film was bonded to the surface on the opposite side to the bonding surface with the polarizer in a 1st protective film. In addition, it bonded so that the transmission axis direction of a polarizer and the width direction of a protective film might become parallel.
  • a polarizing plate precursor A-1 in which the first pressure-sensitive adhesive layer, the protective film, the polarizer, and the second pressure-sensitive adhesive layer were laminated in this order was produced.
  • a polarizing plate precursor prepared using the first protective film-2 instead of the first protective film-1 was used as a polarizing plate precursor A-2.
  • a polarizing plate precursor was prepared in the same manner for other protective films.
  • the produced polarizing plate was cut into 100 mm ⁇ 60 mm.
  • the release film on the first pressure-sensitive adhesive layer was peeled off, and a polarizing plate was bonded to alkali-free glass (Corning Corporation, EAGLE XG (registered trademark)) via the first pressure-sensitive adhesive layer.
  • a 5 N load was applied to the surface of the polarizing plate by a scratch hardness meter (Model 318, ball diameter: 0.75 mm, manufactured by Eriksen, Germany) at a location 1.0 mm from the edge of the polarizing plate bonded to this glass, and pressed. I scratched it. That is, the surface of the second protective film opposite to the second pressure-sensitive adhesive layer was scratched.
  • the depth of the pressed wound was 2-5 ⁇ m or less and the diameter was 0.3 mm (the area of the wound was about 0.071 mm 2 ).
  • the sample which applied the load of 10N and 20N to the surface of the polarizing plate by the scratch-type hardness meter in the place of 1.0 mm from the edge part of another polarizing plate bonded to glass was also produced, respectively.
  • the depth of the pressed wound produced by applying a load of 10 N was 5 to 8 ⁇ m and the diameter was 0.4 mm (the area of the wound was about 0.13 mm 2 ).
  • the depth of the pressed wound produced by applying a load of 20 N was 11 to 15 ⁇ m and the diameter was 0.6 mm (the area of the wound was about 0.28 mm 2 ).
  • a thermal shock environment test (250 cycles) at a temperature of 85 ° C. and ⁇ 40 ° C. (one cycle for 30 minutes each) was performed on the polarizing plate having a 5N, 10N or 20N load and having a scratch on the surface.
  • Thermal shock test The thermal shock environment test is performed with a polarizing plate attached to a glass plate using a thermal shock test apparatus (product name “TSA-71L-A-3” sold by Espec Corporation) under high temperature conditions ( 85 ° C.) holding time of 30 minutes and low temperature condition ( ⁇ 40 ° C.) holding time of 30 minutes were performed as one cycle.
  • the temperature transition time was set to 1 minute, and conditions were set so that no external air was introduced and no condensation occurred on the optical member at a temperature transition time of 0 minutes during the temperature transition. This cycle was repeated 250 cycles for the test. The judgment was as follows. The results are shown in Table 1.
  • the polarizing plate of the present invention has an excellent effect in the thermal shock environment test. That is, according to the present invention, even in an environment where high and low temperatures are repeated, the polarizing plate of the present invention can exhibit good polarization characteristics without causing light leakage or cracks.
  • the polarizing plate of the present invention can exhibit good polarization characteristics without causing light leakage or cracks.
  • the polarizing plate of the present invention is a thin polarizing plate that is excellent in strength and durability.

Abstract

[Problem] The purpose of the present invention is to provide a thin polarizing plate in which cracks do not easily form in the polarizer. The purpose of the present invention is also to provide a polarizing plate which suppresses the occurrence of appearance defects, such as cracks forming in the polarizer, in an environment that switches back and forth between high temperatures and low temperatures. [Solution] A polarizing plate in which a first adhesive layer, a first protective film comprising a cellulose ester resin, a polarizer having a thickness of 10 μm or less, a second adhesive layer, and a second protective film are layered, the second protective film having a cut in the surface of the second protective film on the opposite side from the second adhesive layer and/or in the surface of the second protective film on the second adhesive layer side, and the cut being a cut with a length of 0.001–500 μm, a width of 0.001–500 μm, and a depth of 0.001–10 μm and/or a cut with a depth of 0.001–10 μm and an area of 0.001–1.0 mm2.

Description

偏光板、および偏光板の検品方法Polarizing plate and inspection method of polarizing plate
 本発明は、様々な光学用途に使用できる偏光板に関する。また、本発明は、偏光板の検品方法に関する。 The present invention relates to a polarizing plate that can be used for various optical applications. The present invention also relates to a method for inspecting a polarizing plate.
 近年、スマートフォンのようなモバイル端末は、デザインや携帯性の面から大画面化、スリム化が急速に進みつつある。限られた厚みで長時間の駆動を実現するために、使用される偏光板についても高輝度化、薄型化が要望されている。 In recent years, mobile terminals such as smartphones are rapidly becoming larger and slimmer from the viewpoint of design and portability. In order to achieve long-time driving with a limited thickness, the polarizing plate used is also required to have higher brightness and thinner thickness.
 このような要望を解決するために、通常、偏光子の両面に貼合される透明樹脂からなる保護フィルムを片側のみに配置し、さらに輝度向上フィルムを貼合した偏光板が提案されている。例えば、特許文献1には、透明樹脂からなる保護フィルム、ポリビニルアルコールフィルムにヨウ素が吸着配向した偏光子、感圧接着剤層、輝度向上フィルムがこの順に積層された薄型で高輝度な偏光板が開示されている。 In order to solve such a demand, a polarizing plate is usually proposed in which a protective film made of a transparent resin bonded to both sides of a polarizer is disposed only on one side and a brightness enhancement film is bonded. For example, Patent Document 1 discloses a thin and high-brightness polarizing plate in which a protective film made of a transparent resin, a polarizer in which iodine is adsorbed and oriented on a polyvinyl alcohol film, a pressure-sensitive adhesive layer, and a brightness enhancement film are laminated in this order. It is disclosed.
特開2010-039458号公報JP 2010-039458 A
 しかしながら、偏光子の薄膜化が進んだ結果、引用文献1に記載されている偏光板において、高温と低温とを繰り返すような環境下で偏光板を使用すると、偏光子に割れが生じてしまう。
 このような偏光子の割れは、例えば、偏光板の製造過程における保護フィルムの表面への異物の噛み込み、保護フィルム積層時の異物の噛み込み、および偏光板の取り扱いなどにより偏光板表面の端部付近に生じた傷に起因して生じ得る。
However, as a result of the progress of thinning the polarizer, when the polarizing plate described in the cited document 1 is used in an environment where high and low temperatures are repeated, the polarizer is cracked.
Such cracking of the polarizer may be caused by, for example, biting of foreign matter into the surface of the protective film during the manufacturing process of the polarizing plate, biting of foreign matter when the protective film is laminated, and handling of the polarizing plate. It may be caused by a scratch generated near the part.
 近年の偏光板の薄型化に伴い、偏光子の割れはより発生しやすくなっていることから、解決策が求められている。 With the recent thinning of polarizing plates, cracks in the polarizer are more likely to occur, so a solution is required.
 そこで、本発明は、偏光子の割れが生じにくい薄型の偏光板を提供することを目的とする。さらに、本発明は、高温と低温とを繰り返すような環境下で使用しても、偏光子の割れ、光抜け等の外観不良の発生が抑制された偏光板を提供することを目的とする。 Therefore, an object of the present invention is to provide a thin polarizing plate in which the polarizer is not easily cracked. Furthermore, an object of the present invention is to provide a polarizing plate in which occurrence of defective appearance such as cracking of a polarizer and light leakage is suppressed even when used in an environment where high and low temperatures are repeated.
 本発明は、以下を含む。
[1]第1粘着剤層と、セルロースエステル系樹脂を含む第1保護フィルムと、厚さが10μm以下である偏光子と、第2粘着剤層と、第2保護フィルムが積層されている偏光板であって、
 前記第2保護フィルムは、前記第2保護フィルムにおける前記第2粘着剤層とは反対側の面および前記第2保護フィルムにおける前記第2粘着剤層側の面の少なくとも一方に傷を有し、前記傷は、長さ0.001~500μm、幅0.001~500μm、かつ深さ0.001~10μmである傷、および深さ0.001~10μm、かつ面積0.001~1.0mmである傷の少なくとも一方である、偏光板。
[2]前記第1粘着剤層と、前記第1保護フィルムと、前記偏光子と、前記第2粘着剤層と、前記第2保護フィルムとがこの順に積層されている、[1]に記載の偏光板。
[3]前記第2保護フィルムは、前記第2保護フィルムにおける前記第2粘着剤層とは反対側の面に傷を有する[1]または[2]に記載の偏光板。
[4]前記第2保護フィルムは、輝度向上フィルムである、[1]~[3]のいずれか1に記載の偏光板。
[5]第1粘着剤層と、セルロースエステル系樹脂を含む第1保護フィルムと、厚さが10μm以下である偏光子と、第2粘着剤層と、第2保護フィルムとが積層された偏光板の検品方法であって、
 (1)前記第2保護フィルムにおける傷の最大寸法を測定する工程と、
 (2)前記第2保護フィルムにおける傷の最大寸法が、前記第2保護フィルムにおける前記第2粘着剤層とは反対側の面および前記第2保護フィルムにおける前記第2粘着剤層側の面の少なくとも一方において、長さ0.001~500μm、幅0.001~500μm、かつ深さ0.001~10μmである偏光板、および/または
前記第2保護フィルムにおける傷の最大寸法が、前記第2保護フィルムにおける前記第2粘着剤層とは反対側の面および前記第2保護フィルムにおける前記第2粘着剤層側の面の少なくとも一方において、深さ0.001~10μm、かつ面積0.001~1.0mmである偏光板を、良品と判断する工程、
とを含む、偏光板の検品方法。
The present invention includes the following.
[1] Polarized light in which a first pressure-sensitive adhesive layer, a first protective film containing a cellulose ester resin, a polarizer having a thickness of 10 μm or less, a second pressure-sensitive adhesive layer, and a second protective film are laminated. A board,
The second protective film has a scratch on at least one of the surface of the second protective film opposite to the second pressure-sensitive adhesive layer and the surface of the second protective film on the second pressure-sensitive adhesive layer side, The scratch has a length of 0.001 to 500 μm, a width of 0.001 to 500 μm, and a depth of 0.001 to 10 μm, and a depth of 0.001 to 10 μm and an area of 0.001 to 1.0 mm 2. A polarizing plate that is at least one of the scratches.
[2] As described in [1], the first pressure-sensitive adhesive layer, the first protective film, the polarizer, the second pressure-sensitive adhesive layer, and the second protective film are laminated in this order. Polarizing plate.
[3] The polarizing plate according to [1] or [2], wherein the second protective film has a scratch on a surface of the second protective film opposite to the second pressure-sensitive adhesive layer.
[4] The polarizing plate according to any one of [1] to [3], wherein the second protective film is a brightness enhancement film.
[5] Polarized light in which a first pressure-sensitive adhesive layer, a first protective film containing a cellulose ester resin, a polarizer having a thickness of 10 μm or less, a second pressure-sensitive adhesive layer, and a second protective film are laminated. A method for inspecting a board,
(1) measuring the maximum dimension of the scratch in the second protective film;
(2) The maximum dimension of the scratch in the second protective film is the surface of the second protective film opposite to the second pressure-sensitive adhesive layer and the surface of the second protective film on the second pressure-sensitive adhesive layer side. In at least one of the polarizing plates having a length of 0.001 to 500 μm, a width of 0.001 to 500 μm, and a depth of 0.001 to 10 μm, and / or the maximum size of scratches in the second protective film, At least one of the surface opposite to the second pressure-sensitive adhesive layer in the protective film and the surface on the second pressure-sensitive adhesive layer side of the second protective film has a depth of 0.001 to 10 μm and an area of 0.001 to A step of judging a polarizing plate having a thickness of 1.0 mm 2 as a non-defective product,
The inspection method of a polarizing plate including these.
 本発明の偏光板は、高温と低温とを繰り返すような環境下においても、偏光子の光抜け、割れなどを生じることなく良好な偏光特性を示す。 The polarizing plate of the present invention exhibits good polarization characteristics without causing light leakage or cracking of the polarizer even in an environment where high and low temperatures are repeated.
 また、本発明の偏光板は、薄型であり、かつ、強度、耐久性に優れた偏光板である。 The polarizing plate of the present invention is a thin polarizing plate with excellent strength and durability.
図1は本発明の偏光板における好ましい層構成の概略断面図を例示したものである。FIG. 1 illustrates a schematic cross-sectional view of a preferred layer structure in the polarizing plate of the present invention.
 以下、本発明に係る偏光板について適宜図を用いて説明するが、本発明はこれらの実施形態に限定されるものではない。 Hereinafter, the polarizing plate according to the present invention will be described with reference to the drawings as appropriate, but the present invention is not limited to these embodiments.
 本発明において、偏光板は、第1粘着剤層と、第1保護フィルムと、厚さが10μm以下である偏光子と、第2粘着剤層と、第2保護フィルムとが積層されており、これらの積層順は特に限定されない。好ましい態様において、図1に示すように、本発明の偏光板100は、第1粘着剤層13、第1保護フィルム12、偏光子11、第2粘着剤層23、第2保護フィルム22がこの順に積層された構成を有し得る。 In the present invention, the polarizing plate is formed by laminating a first pressure-sensitive adhesive layer, a first protective film, a polarizer having a thickness of 10 μm or less, a second pressure-sensitive adhesive layer, and a second protective film, These stacking orders are not particularly limited. In a preferred embodiment, as shown in FIG. 1, the polarizing plate 100 of the present invention includes a first pressure-sensitive adhesive layer 13, a first protective film 12, a polarizer 11, a second pressure-sensitive adhesive layer 23, and a second protective film 22. It may have a configuration in which layers are stacked in order.
 本発明における偏光子は、厚さが10μm以下であり、自然光などの光を直線偏光に変換する機能を有する部材である。好ましくは、偏光子は8μm以下の厚さを有する。また、本発明における偏光子は、通常2μm以上の厚さを有する。 The polarizer in the present invention is a member having a thickness of 10 μm or less and a function of converting light such as natural light into linearly polarized light. Preferably, the polarizer has a thickness of 8 μm or less. The polarizer in the present invention usually has a thickness of 2 μm or more.
 本発明における第2保護フィルムは、第2保護フィルムにおける第2粘着剤層とは反対側の面および/または第2保護フィルムにおける第2粘着剤層側の面に傷を有し、傷は、長さ0.001~500μm、幅0.001~500μm、かつ深さ0.001~10μmである傷、および深さ0.001~10μm、かつ面積0.001~1.0mmである傷の少なくとも一方である。
 第2保護フィルムがこのようなサイズの傷を有することにより、高温と低温とを繰り返すような環境下においても、本発明の偏光板は、光抜け、割れなどを生じることなく良好な偏光特性を示すことができる。その理由は定かではないが、第1の保護フィルムが、セルロースエステル系樹脂を含むことにより、高温と低温とを繰り返すような環境下における第1の保護フィルムの挙動と偏光子の挙動との差が小さくなり、偏光子に加わる力を小さくすることができる。さらに、偏光板における第2保護フィルムが、その表面に上記範囲の傷を有することにより、高温と低温とを繰り返すような環境下で熱衝撃が加わったときに、傷を起点に偏光板内部の応力が逃げやすくなるためであると考えられる。一方、上記範囲を超える傷は、それ自体が視認性悪化の原因となり得る。
The second protective film in the present invention has a scratch on the surface on the side opposite to the second pressure-sensitive adhesive layer in the second protective film and / or the surface on the second pressure-sensitive adhesive layer side in the second protective film, A wound having a length of 0.001 to 500 μm, a width of 0.001 to 500 μm and a depth of 0.001 to 10 μm, and a wound having a depth of 0.001 to 10 μm and an area of 0.001 to 1.0 mm 2 At least one.
Since the second protective film has scratches of such a size, the polarizing plate of the present invention has good polarization characteristics without causing light leakage or cracking even in an environment where high and low temperatures are repeated. Can show. Although the reason is not certain, the difference between the behavior of the first protective film and the behavior of the polarizer in an environment in which high temperature and low temperature are repeated due to the first protective film containing a cellulose ester resin. Becomes smaller, and the force applied to the polarizer can be reduced. Furthermore, when the second protective film in the polarizing plate has scratches in the above range on the surface, when a thermal shock is applied in an environment where high and low temperatures are repeated, This is thought to be because stress easily escapes. On the other hand, a scratch exceeding the above range may itself cause deterioration in visibility.
 ここで、本発明における「傷」は、傷の寸法が上記範囲に含まれる限り、形状は限定されない。例えば、線状の傷、多角形状の傷、曲線状の傷、複数の傷が分岐した傷(例えば擦り傷状)、凹み(例えば、円柱、多角柱、円錐、多角錘、テーパー状)などが含まれる。 Here, the shape of the “scratch” in the present invention is not limited as long as the size of the scratch is included in the above range. For example, linear scratches, polygonal scratches, curved scratches, scratches with multiple scratches (eg, scratches), dents (eg, cylinders, polygonal columns, cones, polygonal pyramids, tapered shapes) It is.
 また、本発明における「傷」において、傷の寸法が上記範囲に含まれる限り、傷の深さ、および幅などの寸法は、変動していてもよい。例えば、傷のある地点では6μmの深さを有し、傷の別の地点では、7μmの深さを有してもよい。 Further, in the “scratch” in the present invention, as long as the size of the scratch is included in the above range, the dimensions such as the depth and the width of the scratch may vary. For example, it may have a depth of 6 μm at a point with a flaw and a depth of 7 μm at another point of the flaw.
 このような傷の寸法の計測は、常套の方法が用いられ、例えば、レーザー光による計測、顕微鏡による計測が挙げられる。 For the measurement of the size of such a scratch, a conventional method is used, and examples thereof include measurement with a laser beam and measurement with a microscope.
 本発明に係る傷の寸法は、第2保護フィルム存在する最も大きな傷における寸法の最大値を測定したものである。 The dimension of the scratch according to the present invention is the maximum value of the dimension of the largest scratch present in the second protective film.
 また、傷の面積とは、第2保護フィルムの平面に平行な面内における面積を意味する。
すなわち、傷の面積は、傷の深さを考慮しなくてもよく、単に、第2保護フィルムの平面に観察される傷の面積を測定すればよい。また、傷の面積は、常套の方法を用いて算出できる。
Moreover, the area of a flaw means the area in the surface parallel to the plane of a 2nd protective film.
That is, the scratch area does not need to consider the depth of the scratch, and it is only necessary to measure the area of the scratch observed on the plane of the second protective film. Further, the area of the flaw can be calculated using a conventional method.
 傷が存在する位置は、特に限定されない。例えば、フィルム表面の全域において、ランダムに傷は存在し得る。好ましくは、傷は、第2保護フィルムの表面端部に存在する。 The position where the scratch exists is not particularly limited. For example, scratches may be present randomly throughout the film surface. Preferably, the scratch exists on the surface edge portion of the second protective film.
 好ましくは、第2保護フィルムにおける第2粘着剤層とは反対側の面に傷が存在する。
この場合において、傷は、例えば、長さ0.001~500μm、幅0.001~500μm、かつ深さ0.001~10μmの寸法を有する。
Preferably, there is a scratch on the surface of the second protective film opposite to the second pressure-sensitive adhesive layer.
In this case, the scratch has, for example, dimensions of 0.001 to 500 μm in length, 0.001 to 500 μm in width, and 0.001 to 10 μm in depth.
 また、傷は、第2保護フィルムの表面に少なくとも1つ存在すればよく、1mmあたり0.0001~0.001個の密度で存在する。例えば、65mm×130mmサイズの偏光板の場合、約0.8~約8.5個の傷が存在し得る。傷の数が、このような範囲を超えて存在すると、偏光板のヘーズ値が高くなり、偏光板の光学特性が不十分となり得る。 Further, it is sufficient that at least one scratch is present on the surface of the second protective film, and the scratch exists at a density of 0.0001 to 0.001 per 1 mm 2 . For example, in the case of a 65 mm × 130 mm size polarizing plate, there may be about 0.8 to about 8.5 scratches. If the number of scratches exceeds such a range, the haze value of the polarizing plate becomes high, and the optical properties of the polarizing plate may be insufficient.
 また、第2保護フィルムの深さ方向に形成された傷の形状は、第2保護フィルムの平面に対して垂直方向に形成されたものであってもよく、第2保護フィルムの平面に対して斜め方向に形成されたものであってもよく、これらを組合せた形状であってもよい。 In addition, the shape of the scratch formed in the depth direction of the second protective film may be formed in a direction perpendicular to the plane of the second protective film, and the plane of the second protective film. It may be formed in an oblique direction or may be a combination of these.
 傷の形成方法は特に限定されず、例えば、偏光板の製造過程における保護フィルムの表面への異物の噛み込み、保護フィルム積層時の異物の噛み込み、および偏光板の取り扱いなどにより偏光板表面の端部付近に生じた傷を利用することもできる。また、偏光板の製造時に、例えば、第2保護フィルムの表面端部に所定の傷を設けてもよい。この場合、引っ掻き式硬度計などを用いて、で第2保護フィルムの表面端部に傷を設けてもよい。 The method of forming scratches is not particularly limited. For example, the surface of the polarizing plate may be affected by the inclusion of foreign matter into the surface of the protective film during the manufacturing process of the polarizing plate, the inclusion of foreign matter when the protective film is laminated, and the handling of the polarizing plate. It is also possible to use scratches generated near the end. Moreover, you may provide a predetermined | prescribed damage | wound in the surface edge part of a 2nd protective film at the time of manufacture of a polarizing plate, for example. In this case, a scratch may be provided on the surface end of the second protective film using a scratch hardness tester or the like.
 本発明における傷の寸法は、上記範囲に含まれる限り、以下に記載の寸法を組合せた傷であり得る。 As long as the dimensions of the scratch in the present invention are included in the above range, the scratch can be a combination of the dimensions described below.
 好ましくは、傷の長さは0.001~500μm、より好ましくは0.001~400μmである。なお、折れ曲がった傷の場合、傷の長さは、その傷の長さの合計で示される。 Preferably, the length of the scratch is 0.001 to 500 μm, more preferably 0.001 to 400 μm. In the case of a wound that is bent, the length of the scratch is indicated by the total length of the scratches.
 傷の幅は、好ましくは、0.001~500μm、より好ましくは0.001~400μmである。 The width of the scratch is preferably 0.001 to 500 μm, more preferably 0.001 to 400 μm.
 傷の深さは0.001~10μm、より好ましくは1~10μmである。 The depth of the scratch is 0.001 to 10 μm, more preferably 1 to 10 μm.
 例えば、凹状の傷の場合、0.01~1.0mmの面積を有し、好ましくは0.1~0.50mmの面積を有し、より好ましくは0.1~0.25mmの面積を有する。 For example, in the case of a concave scratch, it has an area of 0.01 to 1.0 mm 2 , preferably an area of 0.1 to 0.50 mm 2 , more preferably 0.1 to 0.25 mm 2 . Has an area.
 より好ましい実施態様において、傷は、長さ0.001~500μm、幅0.001~500μm、かつ深さ0.001~10μmの寸法を有する。 In a more preferred embodiment, the wound has dimensions of length 0.001 to 500 μm, width 0.001 to 500 μm, and depth 0.001 to 10 μm.
 より好ましい実施態様において、傷は、深さ0.001~10μmであり、かつ0.001~1.0mmの面積を有する。 In a more preferred embodiment, the wound is 0.001 to 10 μm deep and has an area of 0.001 to 1.0 mm 2 .
 [偏光子]
 本発明における偏光子は、一般に、透過軸と吸収軸とを有している。このような偏光子の透過軸方向は、偏光子に自然光を透過させたときの透過光の振動方向として理解される。一方、偏光子の吸収軸は、偏光子の透過軸に直交している。なお、偏光子は、一般に、延伸フィルムであり得、偏光子の吸収軸方向は、その延伸方向に一致する。
[Polarizer]
The polarizer in the present invention generally has a transmission axis and an absorption axis. Such a transmission axis direction of a polarizer is understood as a vibration direction of transmitted light when natural light is transmitted through the polarizer. On the other hand, the absorption axis of the polarizer is orthogonal to the transmission axis of the polarizer. In general, the polarizer can be a stretched film, and the absorption axis direction of the polarizer coincides with the stretched direction.
 本発明において、用語「偏光子の透過軸方向と平行な方向」は、上述した偏光子の透過軸方向と、平行であるかまたは略平行(なす角度が±7度以内)となる方向を示す。 In the present invention, the term “direction parallel to the transmission axis direction of the polarizer” refers to a direction that is parallel or substantially parallel (the angle formed is within ± 7 degrees) with the transmission axis direction of the polarizer described above. .
 偏光子は、一軸延伸されたポリビニルアルコール系樹脂層に二色性色素を吸着配向させたものであり得る。 The polarizer may be obtained by adsorbing and orienting a dichroic dye on a uniaxially stretched polyvinyl alcohol resin layer.
 ポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体が例示される。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸、オレフィン、ビニルエーテル、不飽和スルホン酸、アンモニウム基を有するアクリルアミドなどが挙げられる。 As the polyvinyl alcohol resin, a saponified polyvinyl acetate resin can be used. Examples of the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acid, olefin, vinyl ether, unsaturated sulfonic acid, and acrylamide having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、80モル%以上の範囲であり得るが、好ましくは90モル%以上、より好ましくは95モル%以上の範囲である。ポリビニルアルコール系樹脂は、一部が変性されている変性ポリビニルアルコールであってもよく、例えば、ポリビニルアルコール系樹脂をエチレンおよびプロピレン等のオレフィン;アクリル酸、メタクリル酸およびクロトン酸等の不飽和カルボン酸;不飽和カルボン酸のアルキルエステルおよびアクリルアミドなどで変性したものが挙げられる。ポリビニルアルコール系樹脂の平均重合度は、好ましくは100~10000であり、より好ましくは1500~8000であり、さらに好ましくは2000~5000である。 The degree of saponification of the polyvinyl alcohol-based resin can be in the range of 80 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more. The polyvinyl alcohol resin may be a modified polyvinyl alcohol partially modified. For example, the polyvinyl alcohol resin may be an olefin such as ethylene and propylene; an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, and crotonic acid. And those modified with alkyl esters of unsaturated carboxylic acids and acrylamide. The average degree of polymerization of the polyvinyl alcohol resin is preferably 100 to 10,000, more preferably 1500 to 8000, and still more preferably 2000 to 5000.
 偏光子は、例えば、ポリビニルアルコール系樹脂から構成される原反フィルムを一軸延伸し、二色性色素で染色し(染色処理)、ホウ酸水溶液で処理し(ホウ酸処理)、水洗し(水洗処理)、最後に乾燥させて製造することができる。 For example, a polarizer is a uniaxially stretched raw film made of polyvinyl alcohol resin, dyed with a dichroic dye (dyeing treatment), treated with an aqueous boric acid solution (boric acid treatment), and washed with water (washed with water). Treatment) and finally dried.
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素による染色の前に行ってもよいし、二色性色素による染色と同時に行ってもよいし、二色性色素による染色の後に行ってもよい。一軸延伸を二色性色素による染色後に行う場合、この一軸延伸は、ホウ酸処理の前に行ってもよいし、ホウ酸処理中に行ってもよい。またもちろん、これらの複数の段階で一軸延伸を行うことも可能である。一軸延伸を施すには、周速の異なるロール間を通して延伸してもよいし、熱ロールで挟む方法で延伸してもよい。また、大気中で延伸を行う乾式延伸であってもよいし、溶剤により膨潤した状態で延伸を行う湿式延伸であってもよい。ポリビニルアルコール系樹脂フィルムの最終的な延伸倍率は、通常4~8倍程度である。 Uniaxial stretching of the polyvinyl alcohol-based resin film may be performed before dyeing with a dichroic dye, may be performed simultaneously with dyeing with a dichroic dye, or may be performed after dyeing with a dichroic dye. Good. When uniaxial stretching is performed after dyeing with a dichroic dye, this uniaxial stretching may be performed before boric acid treatment or during boric acid treatment. Of course, it is also possible to perform uniaxial stretching in these plural stages. In order to perform uniaxial stretching, the film may be stretched through rolls having different peripheral speeds, or may be stretched by a method of sandwiching between hot rolls. Moreover, the dry-type extending | stretching which extends | stretches in air | atmosphere may be sufficient, and the wet extending | stretching which extends | stretches in the state swollen with the solvent may be sufficient. The final draw ratio of the polyvinyl alcohol-based resin film is usually about 4 to 8 times.
 染色処理では、ポリビニルアルコール系樹脂フィルムを二色性色素で染色し、フィルムに二色性色素を吸着させる。染色処理は、例えば、ポリビニルアルコール系樹脂フィルムを、二色性色素を含有する水溶液に浸漬させればよい。二色性色素としては、具体的に、ヨウ素または二色性染料が用いられる。 In the dyeing treatment, the polyvinyl alcohol resin film is dyed with a dichroic dye, and the dichroic dye is adsorbed on the film. For the dyeing treatment, for example, a polyvinyl alcohol-based resin film may be immersed in an aqueous solution containing a dichroic dye. Specifically, iodine or a dichroic dye is used as the dichroic dye.
 二色性色素としてヨウ素を用いる場合は、通常、ヨウ素およびヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液におけるヨウ素の含有量は、水100重量部あたり、通常0.01~0.5重量部程度であり、ヨウ化カリウムの含有量は、水100重量部あたり、通常 0.5~10重量部程度である。この水溶液の温度は、通常20~40℃程度であり、また、この水溶液への浸漬時間は、通常30~300秒程度である。 When iodine is used as the dichroic dye, a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed. The iodine content in this aqueous solution is usually about 0.01 to 0.5 parts by weight per 100 parts by weight of water, and the potassium iodide content is usually 0.5 to 10 parts by weight per 100 parts by weight of water. About a part. The temperature of this aqueous solution is usually about 20 to 40 ° C., and the immersion time in this aqueous solution is usually about 30 to 300 seconds.
 一方、二色性色素として二色性染料を用いる場合は、通常、水溶性二色性染料を含む水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液における二色性染料の含有量は、水100重量部あたり、通常1×10-3~1×10-2重量部程度である。この水溶液は、硫酸ナトリウムなどの無機塩を含有していてもよい。この水溶液の温度は、通常20~80℃程度であり、また、この水溶液への浸漬時間は、通常30~300秒程度である。 On the other hand, when a dichroic dye is used as the dichroic dye, a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic dye is usually employed. The content of the dichroic dye in this aqueous solution is usually about 1 × 10 −3 to 1 × 10 −2 parts by weight per 100 parts by weight of water. This aqueous solution may contain an inorganic salt such as sodium sulfate. The temperature of this aqueous solution is usually about 20 to 80 ° C., and the immersion time in this aqueous solution is usually about 30 to 300 seconds.
 ホウ酸処理は、例えば、染色されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液に浸漬させて行われる。ホウ酸水溶液におけるホウ酸の含有量は、水100重量部あたり、通常2~15重量部程度、好ましくは5~12重量部である。二色性色素としてヨウ素を用いる場合、このホウ酸水溶液は、ヨウ化カリウムを含有することが好ましい。ホウ酸水溶液におけるヨウ化カリウムの含有量は、水100重量部あたり、通常2~20重量部程度、好ましくは5~15重量部である。ホウ酸水溶液へのフィルムの浸漬時間は、通常100~1200秒程度であり、好ましくは150秒以上、さらに好ましくは200秒以上であり、また好ましくは600秒以下、さらに好ましくは400秒以下である。ホウ酸水溶液の温度は、通常50℃以上であり、好ましくは50~85℃である。ホウ酸水溶液には、pH調整剤として、硫酸、塩酸、酢酸、アスコルビン酸などを添加してもよい。 The boric acid treatment is performed, for example, by immersing a dyed polyvinyl alcohol resin film in an aqueous boric acid solution. The boric acid content in the boric acid aqueous solution is usually about 2 to 15 parts by weight, preferably 5 to 12 parts by weight per 100 parts by weight of water. When iodine is used as the dichroic dye, the aqueous boric acid solution preferably contains potassium iodide. The content of potassium iodide in the boric acid aqueous solution is usually about 2 to 20 parts by weight, preferably 5 to 15 parts by weight per 100 parts by weight of water. The immersion time of the film in the boric acid aqueous solution is usually about 100 to 1200 seconds, preferably 150 seconds or more, more preferably 200 seconds or more, and preferably 600 seconds or less, more preferably 400 seconds or less. . The temperature of the boric acid aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C. To the boric acid aqueous solution, sulfuric acid, hydrochloric acid, acetic acid, ascorbic acid or the like may be added as a pH adjuster.
 ホウ酸処理後のポリビニルアルコール系樹脂フィルムには通常、水洗処理が施される。
水洗処理は、例えば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬させて行われる。水洗後に乾燥が施され、偏光子が得られる。水洗処理における水の温度は、通常5~40℃程度であり、浸漬時間は、通常2~120秒程度である。その後に行われる乾燥は、通常、熱風乾燥機や遠赤外線ヒーターを用いて行われる。その乾燥温度は通常40~100℃であり、乾燥時間は通常120~600秒程度である。
The polyvinyl alcohol resin film after the boric acid treatment is usually subjected to a water washing treatment.
The water washing treatment is performed, for example, by immersing a boric acid-treated polyvinyl alcohol resin film in water. After washing with water, drying is performed to obtain a polarizer. The temperature of water in the water washing treatment is usually about 5 to 40 ° C., and the immersion time is usually about 2 to 120 seconds. The drying performed thereafter is usually performed using a hot air dryer or a far infrared heater. The drying temperature is usually 40 to 100 ° C., and the drying time is usually about 120 to 600 seconds.
 [保護フィルム]
 好ましい実施態様において、第1保護フィルムと、偏光子は、接着剤層を介して貼合されている。接着剤層の厚みは、例えば0.001μm~10μmである。接着剤層は、当該技術分野において公知のものを使用できる。第1保護フィルムと偏光子とを接着剤層を介して貼合することにより、高温と低温とを繰り返すような環境下においても、偏光子の光抜け、割れなどを抑制し得る。
[Protective film]
In a preferred embodiment, the first protective film and the polarizer are bonded via an adhesive layer. The thickness of the adhesive layer is, for example, 0.001 μm to 10 μm. As the adhesive layer, those known in the art can be used. By bonding the first protective film and the polarizer through the adhesive layer, light leakage, cracking, and the like of the polarizer can be suppressed even in an environment where high and low temperatures are repeated.
 好ましい実施態様において、セルロースエステル系樹脂を含む第1保護フィルムの、偏光子の透過軸方向と平行な方向における、85℃相対湿度5%の条件下で1時間経過後の寸法変化率を、保護フィルムの寸法変化率(85℃)とし、
保護フィルムの、偏光子の透過軸方向と平行な方向における、30℃相対湿度95%の条件下で0.5時間経過後の寸法変化率を、保護フィルムの寸法変化率(30℃)としたときに、保護フィルムの寸法変化率(85℃)と保護フィルムの寸法変化率(30℃)との差の絶対値は、例えば0.00~0.50である。
In a preferred embodiment, the first protective film containing the cellulose ester resin protects the dimensional change rate after 1 hour at 85 ° C. and 5% relative humidity in a direction parallel to the transmission axis direction of the polarizer. Dimensional change rate of film (85 ° C)
The dimensional change rate of the protective film after 0.5 hours under the condition of 95% relative humidity at 30 ° C. in the direction parallel to the transmission axis direction of the polarizer was defined as the dimensional change rate of the protective film (30 ° C.). Sometimes, the absolute value of the difference between the dimensional change rate of the protective film (85 ° C.) and the dimensional change rate of the protective film (30 ° C.) is, for example, 0.00 to 0.50.
 本発明において、85℃相対湿度5%の条件下で1時間経過後における寸法変化率は、以下の式に従い測定される。
 例えば、本発明において、保護フィルムの、偏光子の透過軸方向と平行な方向における、85℃相対湿度5%の条件下で1時間経過後の寸法変化率を、保護フィルムの寸法変化率(85℃)と記載する場合がある。
In the present invention, the dimensional change rate after 1 hour under the condition of 85 ° C. and 5% relative humidity is measured according to the following formula.
For example, in the present invention, the dimensional change rate after 1 hour under the condition of 85 ° C. and 5% relative humidity in the direction parallel to the transmission axis direction of the polarizer is expressed as the dimensional change rate of the protective film (85 ° C).
 保護フィルムの寸法変化率(85℃)=[(L0-L85)/L0]×100
[式中、L0は、偏光子の透過軸方向と平行な方向(長尺方向または幅方向)における、裁断されたフィルムのフィルム寸法を意味し、
L85は、85℃相対湿度5%の条件下で1時間経過後における、偏光子の透過軸方向と平行な方向(長尺方向または幅方向)のフィルム寸法を意味する。]
 例えば、フィルム裁断時に幅方向の寸法(L0)を測定した場合、85℃相対湿度5%の条件下で1時間静置した後においても、フィルムの幅方向の寸法(L85)を測定し、寸法変化率を算出する。また、偏光板を製造した後に、偏光板から偏光子等を除き得られる保護フィルムにおける偏光子の透過軸方向と平行な方向の寸法(L0)を測定した場合、85℃相対湿度5%の条件下で1時間静置した後においても、偏光子の透過軸方向と平行な方向の寸法(L85)を測定し、寸法変化率を算出する。
 このようにして算出された、寸法変化率(85℃)は、正の値(すなわち収縮)または負の値(すなわち膨張)のいずれを示してもよい。寸法変化率(85℃)が正の値であるセルロースエステル系樹脂を含む第1の保護フィルムは、例えば、セルローストリアセテートおよびセルロースジアセテートから選択されるセルロースエステル系樹脂などから構成される。
Dimensional change rate of protective film (85 ° C.) = [(L0−L85) / L0] × 100
[In the formula, L0 means the film size of the cut film in a direction (long direction or width direction) parallel to the transmission axis direction of the polarizer,
L85 means the film dimension in a direction (long direction or width direction) parallel to the transmission axis direction of the polarizer after 1 hour has passed under the condition of 85 ° C. and 5% relative humidity. ]
For example, when the dimension (L0) in the width direction is measured at the time of film cutting, the dimension (L85) in the width direction of the film is measured even after standing for 1 hour at 85 ° C. and 5% relative humidity. Calculate the rate of change. Moreover, after manufacturing a polarizing plate, when measuring the dimension (L0) of the direction parallel to the transmission-axis direction of a polarizer in the protective film obtained by removing a polarizer etc. from a polarizing plate, conditions of 85 degreeC relative humidity 5% Even after standing for 1 hour below, the dimension (L85) in the direction parallel to the transmission axis direction of the polarizer is measured, and the dimensional change rate is calculated.
The dimensional change rate (85 ° C.) calculated in this way may indicate either a positive value (ie, contraction) or a negative value (ie, expansion). The first protective film containing a cellulose ester resin having a positive dimensional change rate (85 ° C.) is made of, for example, a cellulose ester resin selected from cellulose triacetate and cellulose diacetate.
 上記と同様に、本発明において、30℃相対湿度95%の条件下で0.5時間経過後における寸法変化率の算出は、寸法変化率(85℃)を測定した後のフィルムに対して、以下の式に従い測定される。
 例えば、本発明において、保護フィルムの、偏光子の透過軸方向と平行な方向における、30℃相対湿度95%の条件下で0.5時間経過後における寸法変化率を、保護フィルムの寸法変化率(30℃)と記載する場合がある。
Similarly to the above, in the present invention, the calculation of the dimensional change rate after the elapse of 0.5 hours under the condition of 30 ° C. and relative humidity of 95% is performed on the film after measuring the dimensional change rate (85 ° C.). It is measured according to the following formula.
For example, in the present invention, the dimensional change rate of the protective film after passing 0.5 hours under the condition of 95% relative humidity at 30 ° C. in the direction parallel to the transmission axis direction of the polarizer, (30 ° C.).
 寸法変化率(30℃)=[(L030-L30)/L0]×100
[式中、L030は、偏光子の透過軸方向と平行な方向(長尺方向または幅方向)における、寸法変化率(85℃)を測定した後のフィルム寸法を意味し、
L30は、30℃相対湿度95%の条件下で0.5時間経過後における、偏光子の透過軸方向と平行な方向(長尺方向または幅方向)のフィルム寸法を意味する。]
 例えば、寸法変化率(85℃)を測定した後、温度23℃、湿度55%にて15分間放置した後、L030を測定し得る。
 このようにして算出された、寸法変化率(30℃)は、正の値(すなわち収縮)または負の値(すなわち膨張)のいずれを示してもよい。
Dimensional change rate (30 ° C.) = [(L0 30 −L30) / L0] × 100
[In the formula, L0 30 means a film dimension after measuring a dimensional change rate (85 ° C.) in a direction (long direction or width direction) parallel to the transmission axis direction of the polarizer,
L30 means the film dimension in a direction (long direction or width direction) parallel to the transmission axis direction of the polarizer after 0.5 hours have passed under the condition of 30 ° C. and a relative humidity of 95%. ]
For example, after measuring the dimensional change rate (85 ° C.), the sample is allowed to stand at a temperature of 23 ° C. and a humidity of 55% for 15 minutes, and then L 30 can be measured.
The dimensional change rate (30 ° C.) calculated in this way may indicate either a positive value (ie, contraction) or a negative value (ie, expansion).
 本発明における保護フィルムは、寸法変化率(85℃)と寸法変化率(30℃)の差の絶対値が本発明の範囲内である限り、寸法変化率(85℃)の符号と寸法変化率(30℃)の符号は、共に同じ符号(正、負またはゼロ)であってもよく、異なる符号であってもよい。 As long as the absolute value of the difference between the dimensional change rate (85 ° C.) and the dimensional change rate (30 ° C.) is within the scope of the present invention, the protective film in the present invention has a sign of the dimensional change rate (85 ° C.) and the dimensional change rate. The signs of (30 ° C.) may be the same sign (positive, negative or zero), or may be different signs.
 本発明において、好ましくは、第1保護フィルムは、第1保護フィルムの寸法変化率(85℃)と第1保護フィルムの寸法変化率(30℃)との差の絶対値が0.00~0.50である。さらに好ましくは、第1保護フィルムの寸法変化率(85℃)と第1保護フィルムの寸法変化率(30℃)との差の絶対値は、0.02~0.30である。 In the present invention, preferably, the first protective film has an absolute value of a difference between a dimensional change rate of the first protective film (85 ° C.) and a dimensional change rate of the first protective film (30 ° C.) of 0.00 to 0. .50. More preferably, the absolute value of the difference between the dimensional change rate (85 ° C.) of the first protective film and the dimensional change rate (30 ° C.) of the first protective film is 0.02 to 0.30.
 本発明の偏光板は、第1保護フィルムがこのような範囲に寸法変化率の差の絶対値を有することにより、高温条件、多湿条件下において偏光子に生じる割れ、光抜けをさらに抑制でき、さらに優れた耐久性を有し得る。さらに、このような特性を有する保護フィルムを有する偏光板は、偏光子を薄くでき、かつ、保護フィルムの表面にキズが発生した場合であっても偏光子の割れを抑制できる。 In the polarizing plate of the present invention, the first protective film has an absolute value of the difference in dimensional change rate in such a range, so that cracking and light leakage occurring in the polarizer under high temperature conditions and high humidity conditions can be further suppressed. Furthermore, it can have excellent durability. Furthermore, the polarizing plate having the protective film having such characteristics can make the polarizer thin, and can suppress cracking of the polarizer even when the surface of the protective film is scratched.
 第1保護フィルムは、セルロースエステル系樹脂を含む。第2保護フィルムは、熱可塑性樹脂から構成される透明樹脂フィルムであり得る。熱可塑性樹脂としては、例えば、ポリプロピレン系樹脂を例とする鎖状ポリオレフィン系樹脂および環状ポリオレフィン系樹脂等のポリオレフィン系樹脂;セルロース系樹脂、例えば、セルローストリアセテートおよびセルロースジアセテート等のセルロースエステル系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレートおよびポリブチレンテレフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂;ポリメチルメタクリレート樹脂から選択される(メタ)アクリル系樹脂;またはこれらの少なくとも2種以上の混合物などが挙げられる。また、上記樹脂を構成する少なくとも2種以上の単量体の共重合物を用いてもよい。 The first protective film contains a cellulose ester resin. A 2nd protective film may be a transparent resin film comprised from a thermoplastic resin. Examples of the thermoplastic resin include polyolefin resins such as chain polyolefin resins and cyclic polyolefin resins such as polypropylene resins; cellulose resins such as cellulose ester resins such as cellulose triacetate and cellulose diacetate; Polyester resins such as polyethylene terephthalate, polyethylene naphthalate and polybutylene terephthalate; polycarbonate resins; (meth) acrylic resins selected from polymethyl methacrylate resins; or a mixture of at least two of these. Moreover, you may use the copolymer of the at least 2 or more types of monomer which comprises the said resin.
 環状ポリオレフィン系樹脂は通常、環状オレフィンを重合単位として重合される樹脂の総称であり、例えば、特開平1-240517号公報、特開平3-14882号公報、特開平3-122137 号公報等に記載されている樹脂が挙げられる。環状ポリオレフィン系樹脂の具体例を挙げれば、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、エチレンおよびプロピレン等の鎖状オレフィンと環状オレフィンとの共重合体(代表的にはランダム共重合体)、およびこれらを不飽和カルボン酸やその誘導体で変性したグラフト重合体、並びにそれらの水素化物等である。中でも、環状オレフィンとしてノルボルネンや多環ノルボルネン系モノマー等のノルボルネン系モノマーを用いたノルボルネン系樹脂が好ましく用いられる。 Cyclic polyolefin resin is a general term for resins that are polymerized using cyclic olefin as a polymerization unit, and is described in, for example, JP-A Nos. 1-240517, 3-14882, 3-122137, etc. The resin currently used is mentioned. Specific examples of cyclic polyolefin resins include ring-opening (co) polymers of cyclic olefins, addition polymers of cyclic olefins, and copolymers of chain olefins and cyclic olefins such as ethylene and propylene (typically Random copolymers), graft polymers obtained by modifying them with unsaturated carboxylic acids or derivatives thereof, and hydrides thereof. Among these, norbornene resins using norbornene monomers such as norbornene and polycyclic norbornene monomers as cyclic olefins are preferably used.
 環状ポリオレフィン系樹脂は種々の製品が市販されている。環状ポリオレフィン系樹脂の市販品の例としては、いずれも商品名で、TOPAS ADVANCED POLYMERS GmbH にて生産され、日本ではポリプラスチックス株式会社から販売されている「TOPAS」(登録商標) 、JSR株式会社から販売されている「アートン」(登録商標)、日本ゼオン株式会社から販売されている「ゼオノア」(登録商標)および「ゼオネックス」(登録商標)、三井学株式会社から販売されている「アペル」(登録商標)などがある。 Various products are commercially available for cyclic polyolefin resins. Examples of commercial products of cyclic polyolefin resin are “TOPAS” (registered trademark) produced by TOPAS 生産 ADVANCED POLYMERS GmbH and sold in Japan by Polyplastics Co., Ltd., JSR Corporation. "Arton" (registered trademark) sold by Zeon Corporation, "ZEONOR" (registered trademark) and "ZEONEX" (registered trademark) sold by Nippon Zeon Co., Ltd., and "Appel" sold by Mitsui Manabu Co., Ltd. (Registered trademark).
 また、製膜された環状ポリオレフィン系樹脂フィルムの市販品を保護フィルムとして用いてもよい。市販品の例としては、いずれも商品名で、JSR株式会社から販売されている「アートンフィルム」(「アートン」は同社の登録商標)、積水化学工業株式会社から販売されている「エスシーナ」(登録商標)および「SCA40」、日本ゼオン株式会社から販売されている「ゼオノアフィルム」(登録商標)などが挙げられる。 Also, a commercial product of the formed cyclic polyolefin resin film may be used as the protective film. Examples of commercially available products are “Arton Film” sold by JSR Corporation (“Arton” is a registered trademark of the company) and “Essina” sold by Sekisui Chemical Co., Ltd. ( Registered trademark) and “SCA40”, “ZEONOR FILM” (registered trademark) sold by Zeon Corporation.
 セルロースエステル系樹脂は通常、セルロースと脂肪酸とのエステルである。セルロースエステル系樹脂の具体例としては、セルローストリアセテート、セルロースジアセテート、セルローストリプロピオネート、セルロースジプロピオネートなどが挙げられる。また、これらの共重合させたものや、水酸基の一部が他の置換基で修飾されたものを用いることもできる。これらの中でも、セルローストリアセテート(トリアセチルセルロース:TAC)が特に好ましい。セルローストリアセテートは多くの製品が市販されており、入手容易性やコストの点でも有利である。セルローストリアセテートの市販品の例は、いずれも商品名で、富士フイルム株式会社から販売されている「フジタック(登録商標) TD80 」、「フジタック(登録商標) TD80UF」、「フジタック(登録商標) TD80UZ」および「フジタック(登録商標) TD40UZ 」、コニカミノルタ株式会社製のTACフィルム「KC8UX2M」、「KC2UA」および「KC4UY」などがある。 Cellulose ester resins are usually esters of cellulose and fatty acids. Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate. Moreover, those copolymerized with these, and those in which a part of the hydroxyl group is modified with another substituent can also be used. Among these, cellulose triacetate (triacetyl cellulose: TAC) is particularly preferable. Many products of cellulose triacetate are commercially available, which is advantageous in terms of availability and cost. Examples of commercial products of cellulose triacetate are “Fujitac (registered trademark) TD80”, “Fujitac (registered trademark) TD80UF”, and “Fujitac (registered trademark) TD80UZ” sold by FUJIFILM Corporation. And “Fujitac (registered trademark) TD40UZ”, TAC films “KC8UX2M”, “KC2UA” and “KC4UY” manufactured by Konica Minolta Co., Ltd.
 ポリメタクリル酸エステルおよびポリアクリル酸エステル(以下、ポリメタクリル酸エステルおよびポリアクリル酸エステルをまとめて(メタ)アクリル系樹脂ということがある。)は、市場から容易に入手できる。 Polymethacrylic acid esters and polyacrylic acid esters (hereinafter, polymethacrylic acid esters and polyacrylic acid esters may be collectively referred to as (meth) acrylic resins) can be easily obtained from the market.
 (メタ)アクリル系樹脂としては、例えば、メタクリル酸アルキルエステルまたはアクリル酸アルキルエステルの単独重合体や、メタクリル酸アルキルエステルとアクリル酸アルキルエステルとの共重合体などが挙げられる。メタクリル酸アルキルエステルとして具体的には、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレートなどが、またアクリル酸アルキルエステルとして具体的には、メチルアクリレート、エチルアクリレート、プロピルアクリレートなどがそれぞれ挙げられる。かかる(メタ)アクリル系樹脂には、汎用の(メタ)アクリル系樹脂として市販されているものが使用できる。(メタ)アクリル系樹脂として、耐衝撃(メタ)アクリル樹脂と呼ばれるものを使用してもよい。 Examples of (meth) acrylic resins include methacrylic acid alkyl esters or homopolymers of acrylic acid alkyl esters, and copolymers of methacrylic acid alkyl esters and acrylic acid alkyl esters. Specific examples of the methacrylic acid alkyl ester include methyl methacrylate, ethyl methacrylate, and propyl methacrylate, and specific examples of the acrylic acid alkyl ester include methyl acrylate, ethyl acrylate, and propyl acrylate. As such a (meth) acrylic resin, a commercially available (meth) acrylic resin can be used. As the (meth) acrylic resin, a so-called impact resistant (meth) acrylic resin may be used.
 (メタ)アクリル系樹脂は通常、メタクリル酸エステルを主体とする重合体である。メタクリル系樹脂は、1種類のメタクリル酸エステルの単独重合体であってもよいし、メタクリル酸エステルと他のメタクリル酸エステルやアクリル酸エステルなどとの共重合体であってもよい。メタクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等のメタクリル酸アルキルが挙げられ、そのアルキル基の炭素数は通常1~4程度である。また、メタクリル酸シクロペンチル、メタクリル酸シクロヘキシル、メタクリル等のメタクリル酸シクロアルキル、メタクリル酸フェニル等のメタクリル酸アリール、メタクリル酸シクロヘキシルメチル等のメタクリル酸シクロアルキルアルキル、メタクリル酸ベンジル等のメタクリル酸アラルキルを用いることもできる。 (Meth) acrylic resin is usually a polymer mainly composed of methacrylic acid ester. The methacrylic resin may be a homopolymer of one kind of methacrylic acid ester or a copolymer of methacrylic acid ester with other methacrylic acid ester or acrylic acid ester. Examples of the methacrylic acid esters include alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, butyl methacrylate and the like. The alkyl group usually has about 1 to 4 carbon atoms. Also, use cycloalkyl methacrylate such as cyclopentyl methacrylate, cyclohexyl methacrylate, methacrylic acid, aryl methacrylate such as phenyl methacrylate, cycloalkylalkyl methacrylate such as cyclohexylmethyl methacrylate, and aralkyl methacrylate such as benzyl methacrylate. You can also.
 (メタ)アクリル系樹脂を構成し得る上記他の重合性モノマーとしては、例えば、アクリル酸エステルや、メタクリル酸エステルおよびアクリル酸エステル以外の重合性モノマーを挙げることができる。アクリル酸エステルとしては、アクリル酸アルキルエステルを用いることができ、その具体例は、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸2-ヒドロキシエチル等のアルキル基の炭素数が1~8であるアクリル酸アルキルエステルを含む。アルキル基の炭素数は、好ましくは1~4である。(メタ)アクリル系樹脂において、アクリル酸エステルは、1種のみを単独で用いてもよいし、2種以上を併用してもよい。 Examples of the other polymerizable monomer that can constitute the (meth) acrylic resin include acrylic acid esters and polymerizable monomers other than methacrylic acid esters and acrylic acid esters. As the acrylate ester, alkyl acrylate ester can be used. Specific examples thereof include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, acrylic And alkyl acrylates having 1 to 8 carbon atoms in the alkyl group, such as t-butyl acid, 2-ethylhexyl acrylate, cyclohexyl acrylate, 2-hydroxyethyl acrylate, and the like. The alkyl group preferably has 1 to 4 carbon atoms. In the (meth) acrylic resin, acrylic ester may be used alone or in combination of two or more.
 メタクリル酸エステルおよびアクリル酸エステル以外の重合性モノマーとしては、例えば、分子内に重合性の炭素-炭素二重結合を1個有する単官能モノマーや、分子内に重合性の炭素-炭素二重結合を少なくとも2個有する多官能モノマーを挙げることができるが、単官能モノマーが好ましく用いられる。単官能モノマーの具体例は、スチレン、α-メチルスチレン、ビニルトルエン、ハロゲン化スチレン、ヒドロキシスチレン等のスチレン系単量体;アクリロニトリル、メタクリロニトリル等のシアン化ビニル;アクリル酸、メタクリル酸、無水マレイン酸、無水イタコン酸等の不飽和酸;N-メチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド等のマレイミド;メタクリルアルコール、アリルアルコール等のアリルアルコール;酢酸ビニル、塩化ビニル、エチレン、プロピレン、4-メチル-1-ペンテン、2-ヒドロキシメチル-1-ブテン、メチルビニルケトン、N-ビニルピロリドン、N-ビニルカルバゾールなどの他のモノマーを含む。 Examples of polymerizable monomers other than methacrylic acid esters and acrylic acid esters include, for example, monofunctional monomers having one polymerizable carbon-carbon double bond in the molecule, and polymerizable carbon-carbon double bonds in the molecule. Can be mentioned, but a monofunctional monomer is preferably used. Specific examples of the monofunctional monomer include styrene monomers such as styrene, α-methylstyrene, vinyl toluene, halogenated styrene, and hydroxystyrene; vinyl cyanide such as acrylonitrile and methacrylonitrile; acrylic acid, methacrylic acid, anhydrous Unsaturated acids such as maleic acid and itaconic anhydride; maleimides such as N-methylmaleimide, N-cyclohexylmaleimide and N-phenylmaleimide; allyl alcohols such as methacryl alcohol and allyl alcohol; vinyl acetate, vinyl chloride, ethylene, propylene, Including other monomers such as 4-methyl-1-pentene, 2-hydroxymethyl-1-butene, methyl vinyl ketone, N-vinyl pyrrolidone, N-vinyl carbazole.
 また、多官能モノマーの具体例は、エチレングリコールジメタクリレート、ブタンジオールジメタクリレート、トリメチロールプロパントリアクリレート等の多価アルコールのポリ不飽和カルボン酸エステル;アクリル酸アリル、メタクリル酸アリル、ケイ皮酸アリル等の不飽和カルボン酸のアルケニルエステル;フタル酸ジアリル、マレイン酸ジアリル、トリアリルシアヌレート、トリアリルイソシアヌレート等の多塩基酸のポリアルケニルエステル、ジビニルベンゼン等の芳香族ポリアルケニル化合物を含む。メタクリル酸エステルおよびアクリル酸エステル以外の重合性モノマーは、1種のみを単独で用いてもよいし、2種以上を併用してもよい。 Specific examples of the polyfunctional monomer include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate; allyl acrylate, allyl methacrylate, allyl cinnamate Alkenyl esters of unsaturated carboxylic acids such as polyallyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate and triallyl isocyanurate, and aromatic polyalkenyl compounds such as divinylbenzene. As the polymerizable monomer other than the methacrylic acid ester and the acrylic acid ester, only one kind may be used alone, or two or more kinds may be used in combination.
 (メタ)アクリル系樹脂の好ましいモノマー組成は、全モノマー量を基準に、メタクリル酸アルキルエステルが50~100重量%、アクリル酸アルキルエステルが0~50重量%、これら以外の重合性モノマーが0~50重量%であり、より好ましくは、メタクリル酸アルキルエステル50~99.9重量%、アクリル酸アルキルエステルが0.1~50重量%、これら以外の重合性モノマーが0~49.9重量%である。 A preferred monomer composition of the (meth) acrylic resin is 50 to 100% by weight of methacrylic acid alkyl ester, 0 to 50% by weight of acrylic acid alkyl ester based on the total monomer amount, and 0 to 50% of other polymerizable monomers. 50% by weight, more preferably 50 to 99.9% by weight of methacrylic acid alkyl ester, 0.1 to 50% by weight of acrylic acid alkyl ester, and 0 to 49.9% by weight of other polymerizable monomers. is there.
 また(メタ)アクリル系樹脂は、フィルムの耐久性を高め得ることから、高分子主鎖に環構造を有していてもよい。環構造は、環状酸無水物構造、環状イミド構造、ラクトン環構造等の複素環構造であることが好ましい。具体的には、無水グルタル酸構造、無水コハク酸構造等の環状酸無水物構造、グルタルイミド構造、コハクイミド構造等の環状イミド構造、ブチロラクトン、バレロラクトン等のラクトン環構造が挙げられる。主鎖中の環構造の含有量を大きくするほど(メタ)アクリル系樹脂のガラス転移温度を高くすることができる。環状酸無水物構造や環状イミド構造は、無水マレイン酸やマレイミド等の環状構造を有するモノマーを共重合することによって導入する方法、重合後脱水・脱メタノール縮合反応により環状酸無水物構造を導入する方法、アミノ化合物を反応させて環状イミド構造を導入する方法などによって導入することができる。ラクトン環構造を有する樹脂(重合体)は、高分子鎖にヒドロキシル基とエステル基とを有する重合体を調製した後、得られた重合体におけるヒドロキシル基とエステル基とを、加熱により、必要に応じて有機リン化合物のような触媒の存在下に環化縮合させてラクトン環構造を形成する方法によって得ることができる。 Also, the (meth) acrylic resin may have a ring structure in the polymer main chain because the durability of the film can be improved. The ring structure is preferably a heterocyclic structure such as a cyclic acid anhydride structure, a cyclic imide structure, or a lactone ring structure. Specific examples include cyclic acid anhydride structures such as glutaric anhydride structure and succinic anhydride structure, cyclic imide structures such as glutarimide structure and succinimide structure, and lactone ring structures such as butyrolactone and valerolactone. As the content of the ring structure in the main chain is increased, the glass transition temperature of the (meth) acrylic resin can be increased. The cyclic acid anhydride structure or cyclic imide structure is introduced by copolymerizing monomers having a cyclic structure such as maleic anhydride or maleimide, and the cyclic acid anhydride structure is introduced by dehydration / demethanol condensation reaction after polymerization. It can be introduced by a method, a method of reacting an amino compound and introducing a cyclic imide structure. A resin having a lactone ring structure (polymer) is prepared by preparing a polymer having a hydroxyl group and an ester group in a polymer chain, and then heating the hydroxyl group and the ester group in the obtained polymer by heating. Accordingly, it can be obtained by a method in which a lactone ring structure is formed by cyclocondensation in the presence of a catalyst such as an organic phosphorus compound.
 高分子鎖にヒドロキシル基とエステル基とを有する重合体は、例えば、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシメチル)アクリル酸イソプロピル、2-(ヒドロキシメチル)アクリル酸n-ブチル、2-(ヒドロキシメチル)アクリル酸t-ブチル等のヒドロキシル基とエステル基とを有する(メタ)アクリル酸エステルをモノマーの一部として用いることにより得ることができる。ラクトン環構造を有する重合体のより具体的な調製方法は、例えば特開2007-254726号公報に記載されている。 Polymers having a hydroxyl group and an ester group in the polymer chain include, for example, methyl 2- (hydroxymethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, isopropyl 2- (hydroxymethyl) acrylate, 2- It can be obtained by using a (meth) acrylic acid ester having a hydroxyl group and an ester group such as n-butyl (hydroxymethyl) acrylate and t-butyl 2- (hydroxymethyl) acrylate as a part of the monomer. . A more specific method for preparing a polymer having a lactone ring structure is described in, for example, JP-A-2007-254726.
 上記のようなモノマーを含むモノマー組成物をラジカル重合させることにより、(メタ)アクリル系樹脂を調製することができる。モノマー組成物は、必要に応じて溶剤や重合開始剤を含むことができる。 (Meth) acrylic resin can be prepared by radical polymerization of a monomer composition containing the monomer as described above. A monomer composition can contain a solvent and a polymerization initiator as needed.
 (メタ)アクリル系樹脂は、上述した(メタ)アクリル系樹脂以外の他の樹脂を含んでいてもよい。当該他の樹脂の含有率は、好ましくは0~70重量%、より好ましくは0~50重量%、さらに好ましくは0~30重量%である。当該樹脂は、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ(4-メチル-1-ペンテン)等のオレフィン系ポリマー;塩化ビニル、塩素化ビニル樹脂等の含ハロゲン系ポリマー;ポリスチレン、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体等のスチレン系ポリマー;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;芳香族ジオールと芳香族ジカルボン酸からなるポリアリレート;ポリ乳酸、ポリブチレンサクシネート等の生分解性ポリエステル;ポリカーボネート;ナイロン6、ナイロン66、ナイロン610等のポリアミド;ポリアセタール;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリエーテルニトリル;ポリサルホン;ポリエーテルサルホン;ポリオキシペンジレン;ポリアミドイミドなどであり得る。 The (meth) acrylic resin may contain a resin other than the (meth) acrylic resin described above. The content of the other resin is preferably 0 to 70% by weight, more preferably 0 to 50% by weight, and still more preferably 0 to 30% by weight. Examples of the resin include olefin polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene); halogen-containing polymers such as vinyl chloride and chlorinated vinyl resins; polystyrene, styrene -Styrenic polymers such as methyl methacrylate copolymer and styrene-acrylonitrile copolymer; Polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; Polyarylate composed of aromatic diol and aromatic dicarboxylic acid; Polylactic acid, Biodegradable polyester such as polybutylene succinate; polycarbonate; polyamide such as nylon 6, nylon 66, nylon 610; polyacetal; polyphenylene oxide; polyphenylene sulfide; Ether ketone; polyether nitrile; polysulfone; polyether sulfone; and the like polyamideimide; polyoxyethylene Penji Ren.
 (メタ)アクリル系樹脂は、フィルムの耐衝撃性や製膜性を向上させる観点から、ゴム粒子を含有してもよい。ゴム粒子は、ゴム弾性を示す層のみからなる粒子であってもよいし、ゴム弾性を示す層とともに他の層を有する多層構造の粒子であってもよい。ゴム弾性体としては、例えば、オレフィン系弾性重合体、ジエン系弾性重合体、スチレン-ジエン系弾性共重合体、アクリル系弾性重合体などが挙げられる。中でも、耐光性および透明性の観点から、アクリル系弾性重合体が好ましく用いられる。 (Meth) acrylic resin may contain rubber particles from the viewpoint of improving the impact resistance and film-forming property of the film. The rubber particle may be a particle composed only of a layer exhibiting rubber elasticity, or may be a particle having a multilayer structure having another layer together with a layer exhibiting rubber elasticity. Examples of rubber elastic bodies include olefin-based elastic polymers, diene-based elastic polymers, styrene-diene-based elastic copolymers, and acrylic-based elastic polymers. Among these, an acrylic elastic polymer is preferably used from the viewpoint of light resistance and transparency.
 アクリル系弾性重合体は、アクリル酸アルキルを主体とする、すなわち、全モノマー量を基準にアクリル酸アルキル由来の構成単位を50重量%以上含む重合体であり得る。アクリル系弾性重合体は、アクリル酸アルキルの単独重合体であってもよいし、アクリル酸アルキル由来の構成単位を50重量%以上と、他の重合性モノマー由来の構成単位を50重量%以下含む共重合体であってもよい。 The acrylic elastic polymer may be a polymer mainly composed of alkyl acrylate, that is, a polymer containing 50 wt% or more of a structural unit derived from alkyl acrylate based on the total amount of monomers. The acrylic elastic polymer may be a homopolymer of alkyl acrylate, and contains 50 wt% or more of structural units derived from alkyl acrylate and 50 wt% or less of structural units derived from other polymerizable monomers. A copolymer may also be used.
 アクリル系弾性重合体を構成するアクリル酸アルキルとしては通常、そのアルキル基の炭素数が4~8のものが用いられる。上記他の重合性モノマーの例を挙げれば、例えば、メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸アルキル;スチレン、アルキルスチレン等のスチレン系単量体;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル等の単官能モノマー、さらには、(メタ)アクリル酸アリル、(メタ)アクリル酸メタクリル等の不飽和カルボン酸のアルケニルエステル;マレイン酸ジアリル等の二塩基酸のジアルケニルエステル;アルキレングリコールジ(メタ)アクリレート等のグリコールの不飽和カルボン酸ジエステル等の多官能モノマーである。 As the alkyl acrylate constituting the acrylic elastic polymer, those having 4 to 8 carbon atoms in the alkyl group are usually used. Examples of the other polymerizable monomers include, for example, alkyl methacrylates such as methyl methacrylate and ethyl methacrylate; styrene monomers such as styrene and alkyl styrene; unsaturated nitriles such as acrylonitrile and methacrylonitrile; A monofunctional monomer, an alkenyl ester of an unsaturated carboxylic acid such as allyl (meth) acrylate and methacrylic (meth) acrylate; a dialkenyl ester of a dibasic acid such as diallyl maleate; an alkylene glycol di (meth) Polyfunctional monomers such as unsaturated carboxylic acid diesters of glycols such as acrylates.
 アクリル系弾性重合体を含むゴム粒子は、アクリル系弾性重合体の層を有する多層構造の粒子であることが好ましい。具体的には、アクリル系弾性重合体の層の外側にメタクリル酸アルキルを主体とする硬質の重合体層を有する2層構造のものや、さらにアクリル系弾性重合体の層の内側にメタクリル酸アルキルを主体とする硬質の重合体層を有する3層構造のものが挙げられる。 The rubber particles containing an acrylic elastic polymer are preferably multi-layered particles having an acrylic elastic polymer layer. Specifically, a two-layer structure having a hard polymer layer mainly composed of alkyl methacrylate outside the acrylic elastic polymer layer, or an alkyl methacrylate inside the acrylic elastic polymer layer. And a three-layer structure having a hard polymer layer mainly composed of.
 アクリル系弾性重合体の層の外側または内側に形成される硬質の重合体層を構成するメタクリル酸アルキルを主体とする重合体におけるモノマー組成の例は、(メタ)アクリル系樹脂の例として挙げたメタクリル酸アルキルを主体とする重合体のモノマー組成の例と同様であり、特にメタクリル酸メチルを主体とするモノマー組成が好ましく用いられる。
このような多層構造のアクリル系ゴム弾性体粒子は、例えば特公昭55-27576号公報に記載の方法によって製造することができる。
An example of the monomer composition in the polymer mainly composed of alkyl methacrylate constituting the hard polymer layer formed outside or inside the acrylic elastic polymer layer is given as an example of the (meth) acrylic resin. This is the same as the monomer composition example of a polymer mainly composed of alkyl methacrylate, and a monomer composition mainly composed of methyl methacrylate is preferably used.
Such acrylic rubber elastic particles having a multilayer structure can be produced, for example, by the method described in Japanese Patent Publication No. 55-27576.
 ゴム粒子は、(メタ)アクリル系樹脂の製膜性、フィルムの耐衝撃性、フィルム表面の滑り性の観点から、その中に含まれるゴム弾性体層(アクリル系弾性重合体の層)までの平均粒径が10~350nmの範囲にあることが好ましい。当該平均粒径は、より好ましくは30nm以上、さらには50nm以上であり、またより好ましくは300nm以下、さらには280nm以下である。 From the viewpoint of film-forming properties of (meth) acrylic resin, impact resistance of the film, and slipperiness of the film surface, the rubber particles are included in the rubber elastic layer (acrylic elastic polymer layer) contained therein. The average particle size is preferably in the range of 10 to 350 nm. The average particle diameter is more preferably 30 nm or more, further 50 nm or more, and more preferably 300 nm or less, further 280 nm or less.
 ゴム粒子におけるゴム弾性体層(アクリル系弾性重合体の層)までの平均粒径は、次のようにして測定される。すなわち、このようなゴム粒子を(メタ)アクリル系樹脂に混合してフィルム化し、その断面を酸化ルテニウムの水溶液で染色すると、ゴム弾性体層だけが着色してほぼ円形状に観察され、母層の(メタ)アクリル系樹脂は染色されない。そこで、このようにして染色されたフィルム断面から、ミクロトームなどを用いて薄片を調製し、これを電子顕微鏡で観察する。そして、無作為に100個の染色されたゴム粒子を抽出し、各々の粒子径(ゴム弾性体層までの径)を算出した後、その数平均値を上記平均粒径とする。このような方法で測定するため、得られる上記平均粒径は数平均粒径である。 The average particle diameter of the rubber particles up to the rubber elastic layer (acrylic elastic polymer layer) is measured as follows. That is, when such rubber particles are mixed with a (meth) acrylic resin to form a film and the cross section thereof is dyed with an aqueous solution of ruthenium oxide, only the rubber elastic body layer is colored and observed in a substantially circular shape. This (meth) acrylic resin is not dyed. Therefore, from the cross section of the film dyed in this way, a thin piece is prepared using a microtome or the like, and this is observed with an electron microscope. And after extracting 100 dye | stained rubber particles at random and calculating each particle diameter (diameter to a rubber elastic body layer), the number average value is made into the said average particle diameter. In order to measure by such a method, the obtained average particle diameter is a number average particle diameter.
 最外層がメタクリル酸メチルを主体とする硬質の重合体であり、その中にゴム弾性体層(アクリル系弾性重合体の層)が包み込まれているゴム粒子である場合、それを母体の(メタ)アクリル系樹脂に混合すると、ゴム粒子の最外層が母体の(メタ)アクリル系樹脂と混和する。そのため、その断面を酸化ルテニウムで染色し、電子顕微鏡で観察すると、ゴム粒子は、最外層を除いた状態の粒子として観察される。具体的には、内層がアクリル系弾性重合体であり、外層がメタクリル酸メチルを主体とする硬質の重合体である2層構造のゴム粒子である場合には、内層のアクリル系弾性重合体部分が染色されて単層構造の粒子として観察される。また、最内層がメタクリル酸メチルを主体とする硬質の重合体であり、中間層がアクリル系弾性重合体であり、最外層がメタクリル酸メチルを主体とする硬質の重合体である3層構造のゴム粒子の場合には、最内層の粒子中心部分が染色されず、中間層のアクリル系弾性重合体部分のみが染色された2層構造の粒子として観察されることになる。 When the outermost layer is a hard polymer mainly composed of methyl methacrylate, and rubber particles in which a rubber elastic layer (acrylic elastic polymer layer) is encapsulated, the matrix (meta ) When mixed with an acrylic resin, the outermost layer of rubber particles is mixed with the base (meth) acrylic resin. Therefore, when the cross section is dyed with ruthenium oxide and observed with an electron microscope, the rubber particles are observed as particles in a state excluding the outermost layer. Specifically, when the inner layer is an acrylic elastic polymer and the outer layer is a rubber particle having a two-layer structure, which is a hard polymer mainly composed of methyl methacrylate, the acrylic elastic polymer portion of the inner layer Are dyed and observed as particles having a single layer structure. The innermost layer is a hard polymer mainly composed of methyl methacrylate, the intermediate layer is an acrylic elastic polymer, and the outermost layer is a rigid polymer mainly composed of methyl methacrylate. In the case of rubber particles, the central part of the innermost layer is not dyed, and only the acrylic elastic polymer part of the intermediate layer is dyed and observed as a two-layered particle.
 (メタ)アクリル系樹脂の製膜性、フィルムの耐衝撃性、フィルム表面の滑り性の観点から、ゴム粒子は、(メタ)アクリル系樹脂フィルムを構成する(メタ)アクリル系樹脂との合計量を基準に、3重量%以上、60重量%以下の割合で配合されることが好ましく、より好ましくは45重量%以下、さらに好ましくは35重量%以下である。ゴム弾性体粒子が60重量%より多くなると、フィルムの寸法変化が大きくなり、耐熱性が低下する。一方、ゴム弾性体粒子が3重量%より少ないと、フィルムの耐熱性は良好であるものの、フィルム製膜時の巻き取り性が悪く、生産性が低下してしまうことがある。なお、本発明においては、ゴム弾性体粒子として、ゴム弾性を示す層とともに他の層を有する多層構造の粒子を用いた場合は、ゴム弾性を示す層とその内側の層からなる部分の重量を、ゴム弾性体粒子の重量とする。例えば、上述の3層構造のアクリル系ゴム弾性体粒子を用いた場合は、中間層のアクリル系ゴム弾性重合体部分と最内層のメタクリル酸メチルを主体とする硬質の重合体部分との合計重量を、ゴム弾性体粒子の重量とする。上述の3層構造のアクリル系ゴム弾性体粒子をアセトンに溶解させると、中間層のアクリル系ゴム弾性重合体部分と最内層のメタクリル酸メチルを主体とする硬質の重合体部分とは、不溶分として残るので、3層構造のアクリル系ゴム弾性体粒子に占める中間層と最内層の合計の重量割合は、容易に求めることができる。 From the viewpoint of the film-forming property of the (meth) acrylic resin, the impact resistance of the film, and the slipperiness of the film surface, the rubber particles are combined with the (meth) acrylic resin constituting the (meth) acrylic resin film. Is preferably 3 to 60% by weight, more preferably 45% by weight or less, and still more preferably 35% by weight or less. If the amount of the elastic rubber particles exceeds 60% by weight, the dimensional change of the film becomes large, and the heat resistance is lowered. On the other hand, when the amount of rubber elastic particles is less than 3% by weight, the heat resistance of the film is good, but the winding property during film formation is poor, and the productivity may be lowered. In the present invention, when the rubber elastic particle is a multi-layered particle having another layer together with the rubber elastic layer, the weight of the portion composed of the rubber elastic layer and the inner layer is determined. The weight of the elastic rubber particles. For example, when the acrylic rubber elastic particles having the above three-layer structure are used, the total weight of the acrylic rubber elastic polymer portion of the intermediate layer and the hard polymer portion mainly composed of methyl methacrylate of the innermost layer Is the weight of the rubber elastic particles. When the acrylic rubber elastic particles having the above three-layer structure are dissolved in acetone, the acrylic rubber elastic polymer portion of the intermediate layer and the hard polymer portion mainly composed of methyl methacrylate in the innermost layer are insoluble. Therefore, the total weight ratio of the intermediate layer and the innermost layer in the acrylic rubber elastic particles having a three-layer structure can be easily obtained.
 (メタ)アクリル系樹脂フィルムがゴム粒子を含む場合において、当該フィルムの作製に用いられるゴム粒子を含有する(メタ)アクリル系樹脂組成物は、(メタ)アクリル系樹脂とゴム粒子とを溶融混練などにより混合することによって得ることができるほか、まずゴム粒子を作製し、その存在下に(メタ)アクリル系樹脂の原料となるモノマー組成物を重合させる方法によっても得ることができる。 When the (meth) acrylic resin film contains rubber particles, the (meth) acrylic resin composition containing the rubber particles used for producing the film is obtained by melt-kneading the (meth) acrylic resin and the rubber particles. In addition, it can be obtained by a method of first producing rubber particles and polymerizing a monomer composition as a raw material of the (meth) acrylic resin in the presence thereof.
 保護フィルムには、通常の添加剤、例えば、紫外線吸収剤、有機系染料、顔料、無機系色素、酸化防止剤、帯電防止剤、界面活性剤などを含有させてもよい。中でも紫外線吸収剤は、耐候性を高めるうえで好ましく用いられる。紫外線吸収剤の例としては、2,2’-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕、2-(5-メチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-〔2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル〕-2H-ベンゾトリアゾール、2-(3,5-ジ-tert-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(3-tert-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(3,5-ジ-tert-ブチル-2-ヒドロキシフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(3,5-ジ-tert-アミル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)-2H-ベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収剤;2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクチルオキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-クロロベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等の2-ヒドロキシベンゾフェノン系紫外線吸収剤;p-tert-ブチルフェニルサリチル酸エステル、p-オクチルフェニルサリチル酸エステル等のサリチル酸フェニルエステル系紫外線吸収剤;2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシルオキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヒドロキシフェニル、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、2-[2,6-ジ(2,4-キシリル)-1,3,5-トリアジン-2-イル]-5-オクチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイル)エトキシ]フェノール、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メトキシフェニル)-1,3,5トリアジン等のトリアジン系紫外線吸収剤などが挙げられ、必要に応じてそれらの2種以上を用いてもよい。 The protective film may contain usual additives such as ultraviolet absorbers, organic dyes, pigments, inorganic dyes, antioxidants, antistatic agents, surfactants and the like. Among these, an ultraviolet absorber is preferably used for improving weather resistance. Examples of ultraviolet absorbers include 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (5 -Methyl-2-hydroxyphenyl) -2H-benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3,5-di -Tert-butyl-2-hydroxyphenyl) -2H-benzotriazole, 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chloro-2H-benzotriazole, 2- (3,5 -Di-tert-butyl-2-hydroxyphenyl) -5-chloro-2H-benzotriazole, 2- (3,5-di-tert-amyl-2-hydroxypheny ) Benzotriazole UV absorbers such as -2H-benzotriazole, 2- (2'-hydroxy-5'-tert-octylphenyl) -2H-benzotriazole; 2-hydroxy-4-methoxybenzophenone, 2-hydroxy -4-octyloxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorobenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4 2-hydroxybenzophenone ultraviolet absorbers such as' -dimethoxybenzophenone; salicylic acid phenyl ester ultraviolet absorbers such as p-tert-butylphenylsalicylic acid ester and p-octylphenylsalicylic acid ester; 2,4-diphenyl-6- (2 -Hide Xyl-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- ( 2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6 -(2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2, 4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) ) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl) -1,3,5-triazine, 2- (2-hydroxy-4- [1 -Octyloxycarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine, 4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4- Dibutoxyphenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3- (2′-ethyl) hexyloxy] -2-hydroxyphenyl] -4,6-bis (2, 4-dimethylphenyl) -1,3,5-triazine, 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hydroxyphenyl, -[4,6-bis (2 , 4-Dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- [2,6-di (2,4-xylyl) -1,3,5- Triazin-2-yl] -5-octyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- [2- (2-ethylhexanoyl) ethoxy] phenol , 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methoxyphenyl) -1,3,5 triazine and other triazine-based UV absorbers, etc. The above may be used.
 紫外線吸収剤としては、市販品を使用してもよく、例えば、トリアジン系紫外線吸収剤として、ケミプロ化成株式会社製の「Kemisorb 102」(登録商標)、株式会社ADEKA製の「アデカスタブ(登録商標) LA46」、「アデカスタブ(登録商標) LAF70」、BASF社製の「TINUVIN(登録商標) 460」、「TINUVIN(登録商標) 405」、「TINUVIN(登録商標) 400」および 「TINUVIN(登録商標) 477」、サンケミカル株式会社製の「CYASORB(登録商標) UV-1164 」(以上、いずれも商品名)などがある。ベンゾトリアゾール系紫外線吸収剤としては、株式会社ADEKA製の「アデカスタブ LA31」および「アデカスタブ LA36」、住化ケムテックス株式会社製の「スミソーブ(登録商標) 200」、「スミソーブ(登録商標) 250」、「スミソーブ(登録商標) 300」、「スミソーブ(登録商標) 340」および「スミソーブ(登録商標) 350」、ケミプロ化成株式会社製の「Kemisorb 74」(登録商標)、「Kemisorb 79」(登録商標)および「Kemisorb 279」(登録商標)、BASF社製の「TINUVIN(登録商標) 99-2」、「TINUVIN(登録商標) 900」および「TINUVIN(登録商標) 928」(以上、いずれも商品名)などが挙げられる。(メタ)アクリル系樹脂フィルムに紫外線吸収剤が含まれる場合、その量は、(メタ)アクリル系樹脂100重量%に対して、通常0.1重量%以上、好ましくは0.3重量%以上であり、また好ましくは3重量%以下である。 Commercially available products may be used as the UV absorber. For example, as a triazine UV absorber, “Kemisorb 102” (registered trademark) manufactured by Chemipro Kasei Co., Ltd., “Adekastab (registered trademark)” manufactured by ADEKA Co., Ltd. “LA46”, “Adeka Stub (registered trademark) LAF70”, “TINUVIN (registered trademark) 460”, “TINUVIN (registered trademark) 405”, “TINUVIN (registered trademark) 400” and “TINUVIN (registered trademark) 477 manufactured by BASF Corporation "CYASORB (registered trademark) UV-1164" (all are trade names) manufactured by Sun Chemical Co., Ltd. As the benzotriazole-based ultraviolet absorbers, “ADEKA STAB LA31” and “ADEKA STAB LA36” manufactured by ADEKA Corporation, “Sumisorb (registered trademark) 200”, “Sumisorb (registered trademark) 250”, “Sumisorb (registered trademark) 250” manufactured by Sumika Chemtex Co., Ltd. "Sumisorb (registered trademark) 300", "Sumisorb (registered trademark) 340" and "Sumisorb (registered trademark) 350", "Kemisorb 74" (registered trademark), "Kemisorb 79" (registered trademark) manufactured by Chemipro Kasei Co., Ltd. and “Kemisorb 279” (registered trademark), “TINUVIN (registered trademark) 99-2”, “TINUVIN (registered trademark) 900” and “TINUVIN (registered trademark) 928” (all are trade names) manufactured by BASF, etc. Is mentioned. When the (meth) acrylic resin film contains an ultraviolet absorber, the amount thereof is usually 0.1% by weight or more, preferably 0.3% by weight or more with respect to 100% by weight of the (meth) acrylic resin. And preferably 3% by weight or less.
 (メタ)アクリル系樹脂フィルムの作製には従来公知の製膜方法を採用することができる。(メタ)アクリル系樹脂フィルムは多層構造を有していてもよく、多層構造の(メタ)アクリル系樹脂フィルムは、フィードブロックを用いる方法、マルチマニホールドダイを用いる方法など、一般に知られる種々の方法を用いることができる。中でも、例えばフィードブロックを介して積層し、Tダイから多層溶融押出成形し、得られる積層フィルム状物の少なくとも片面をロールまたはベルトに接触させて製膜する方法は、表面性状の良好なフィルムが得られる点で好ましい。とりわけ、(メタ)アクリル系樹脂フィルムの表面平滑性および表面光沢性を向上させる観点からは、上記多層溶融押出成形して得られる積層フィルム状物の両面をロール表面またはベルト表面に接触させてフィルム化する方法が好ましい。この際に用いるロールまたはベルトにおいて、(メタ)アクリル系樹脂と接するロール表面またはベルト表面は、(メタ)アクリル系樹脂フィルム表面への平滑性付与のために、その表面が鏡面となっているものが好ましい。 A conventionally known film forming method can be employed for producing the (meth) acrylic resin film. The (meth) acrylic resin film may have a multilayer structure, and the (meth) acrylic resin film having a multilayer structure is generally known in various ways such as a method using a feed block and a method using a multi-manifold die. Can be used. Among them, for example, a method of laminating via a feed block, multilayer melt extrusion from a T die, and forming a film by contacting at least one surface of the obtained laminated film with a roll or a belt is a film having good surface properties. It is preferable at the point obtained. In particular, from the viewpoint of improving the surface smoothness and surface gloss of the (meth) acrylic resin film, the film is obtained by bringing both sides of the laminated film obtained by the multilayer melt extrusion molding into contact with the roll surface or the belt surface. The method of making is preferable. In the roll or belt used in this case, the surface of the roll or belt in contact with the (meth) acrylic resin is a mirror surface for imparting smoothness to the (meth) acrylic resin film surface. Is preferred.
 (メタ)アクリル系樹脂フィルムは、以上のようにして作製されたフィルムに対して延伸処理を施したものであってもよい。所望の光学特性や機械特性を有するフィルムを得るために延伸処理を要することがある。延伸処理としては、一軸延伸や二軸延伸などが挙げられる。延伸方向としては、未延伸フィルムの機械流れ方向(MD)、これに直交する方向(TD)、機械流れ方向(MD)に斜交する方向などが挙げられる。二軸延伸は、2つの延伸方向に同時に延伸する同時二軸延伸でもよく、所定方向に延伸した後で他の方向に延伸する逐次二軸延伸であってもよい。 The (meth) acrylic resin film may be a film produced as described above and subjected to a stretching treatment. A stretching process may be required to obtain a film having desired optical properties and mechanical properties. Examples of the stretching treatment include uniaxial stretching and biaxial stretching. Examples of the stretching direction include a machine flow direction (MD) of an unstretched film, a direction orthogonal to the machine flow direction (TD), and a direction oblique to the machine flow direction (MD). Biaxial stretching may be simultaneous biaxial stretching in which stretching is performed simultaneously in two stretching directions, or sequential biaxial stretching in which stretching is performed in a predetermined direction and then stretching in another direction.
 第2保護フィルムは、本発明の範囲に含まれる限り、位相差フィルムおよび輝度向上フィルム等の光学機能を併せ持つ保護フィルムであることもできる。例えば、上記材料からなる透明樹脂フィルムを延伸(一軸延伸または二軸延伸等)したり、該フィルム上に液晶層等を形成したりすることにより、任意の位相差値が付与された位相差フィルムとすることができる。 The second protective film may be a protective film having both optical functions such as a retardation film and a brightness enhancement film as long as it is included in the scope of the present invention. For example, a retardation film provided with an arbitrary retardation value by stretching a transparent resin film made of the above material (uniaxial stretching or biaxial stretching) or forming a liquid crystal layer or the like on the film. It can be.
 第1保護フィルムおよび第2保護フィルムは、偏光子とは反対側の表面に、ハードコート層、防眩層、反射防止層、帯電防止層および防汚層等の表面処理層(コーティング層)を形成することもできる。保護フィルム表面に表面処理層を形成する方法には、公知の方法を用いることができる。 The first protective film and the second protective film have surface treatment layers (coating layers) such as a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer and an antifouling layer on the surface opposite to the polarizer. It can also be formed. A well-known method can be used for forming the surface treatment layer on the surface of the protective film.
 第1保護フィルムおよび第2保護フィルムは、互いに同一の保護フィルムであってもよいし、異なる保護フィルムであってもよい。保護フィルムが異なる場合の例としては、保護フィルムを構成する熱可塑性樹脂の種類が少なくとも異なる組み合わせ;保護フィルムの光学機能の有無またはその種類において少なくとも異なる組み合わせ;表面に形成される表面処理層の有無またはその種類において少なくとも異なる組み合わせなどがある。 The first protective film and the second protective film may be the same protective film or different protective films. Examples of cases where the protective film is different include combinations in which the types of thermoplastic resins constituting the protective film are at least different; presence / absence of the optical function of the protective film or combinations different in the type; presence / absence of a surface treatment layer formed on the surface Or there are at least different combinations of the types.
 第1保護フィルムおよび第2保護フィルムの厚さは、偏光板の薄膜化の観点から薄いことが好ましいが、薄すぎると強度が低下して加工性に劣る。したがって、第1保護フィルムおよび第2保護フィルムの厚さは、5~90μm以下が好ましく、より好ましくは60μm以下、さらに好ましくは50μm以下であり、特に好ましくは30μm以下である。 The thickness of the first protective film and the second protective film is preferably thin from the viewpoint of reducing the thickness of the polarizing plate, but if it is too thin, the strength is lowered and the workability is poor. Therefore, the thickness of the first protective film and the second protective film is preferably 5 to 90 μm or less, more preferably 60 μm or less, still more preferably 50 μm or less, and particularly preferably 30 μm or less.
 (粘着剤)
 第1粘着剤層および第2粘着剤層を形成する粘着剤としては、従来公知のものを適宜選択すればよく、偏光板がさらされる高温環境、湿熱環境または高温と低温が繰り返されるような環境下において、剥れなどが生じない程度の接着性を有するものであればよい。具体的には、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤などを挙げることができ、透明性、耐候性、耐熱性、加工性の点で、アクリル系粘着剤が特に好ましい。
 また、第1粘着剤層および第2粘着剤層は同種の粘着剤を用いてもよく、異なる種類の粘着剤を用いてもよい。
(Adhesive)
As the pressure-sensitive adhesive forming the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer, conventionally known ones may be appropriately selected, and a high-temperature environment, a humid heat environment or an environment where high and low temperatures are repeated are exposed to the polarizing plate. It is sufficient that the adhesive layer has a degree of adhesion that does not cause peeling. Specific examples include acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, and acrylic pressure-sensitive adhesives are particularly preferable in terms of transparency, weather resistance, heat resistance, and processability.
Moreover, the 1st adhesive layer and the 2nd adhesive layer may use the same kind of adhesive, and may use a different kind of adhesive.
 粘着剤には、必要に応じ、粘着付与剤、可塑剤、ガラス繊維、ガラスビーズ、金属粉、その他の無機粉末等からなる充填剤、顔料、着色剤、充填剤、酸化防止剤、紫外線吸収剤、帯電防止剤、シランカップリング剤など、各種の添加剤を適宜に配合してもよい。 For the adhesive, if necessary, a tackifier, plasticizer, glass fiber, glass beads, metal powder, other inorganic powders, fillers, pigments, colorants, fillers, antioxidants, UV absorbers Various additives such as an antistatic agent and a silane coupling agent may be appropriately blended.
 粘着剤層は、通常、粘着剤の溶液を離型シート上に粘着剤を塗布し、乾燥することにより形成される。離型シート上への塗布は、例えば、リバースコーティング、グラビアコーティング等のロールコーティング法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法などを採用できる。粘着剤層を設けた離型シートは、これを転写する方法等により利用される。粘着剤層の厚さは、通常3~100μm程度であり、好ましくは5~50μmである。 The pressure-sensitive adhesive layer is usually formed by applying a pressure-sensitive adhesive solution onto a release sheet and drying. For application onto the release sheet, for example, roll coating methods such as reverse coating and gravure coating, spin coating methods, screen coating methods, fountain coating methods, dipping methods, spraying methods and the like can be employed. The release sheet provided with the pressure-sensitive adhesive layer is used by a method of transferring the release sheet. The thickness of the pressure-sensitive adhesive layer is usually about 3 to 100 μm, preferably 5 to 50 μm.
 好ましくは、粘着剤層の23℃における貯蔵弾性率は0.01MPa~1MPaであることが好ましい。粘着剤層の貯蔵弾性率が0.01MPa未満であると、高温試験時における偏光板の収縮を抑制できずに、剥がれ等の外観不良が生じやすくなる傾向がある。また、粘着剤層の貯蔵弾性率が1MPaより大きいと、冷熱衝撃試験時にガラスと偏光板間に生じる歪を粘着剤が緩和できず、偏光板にクラックが発生しやすくなる傾向がある。
 好ましい実施態様において、粘着剤層の80℃における貯蔵弾性率は0.01MPa~1MPaである。
Preferably, the storage elastic modulus of the pressure-sensitive adhesive layer at 23 ° C. is preferably 0.01 MPa to 1 MPa. When the storage elastic modulus of the pressure-sensitive adhesive layer is less than 0.01 MPa, shrinkage of the polarizing plate during a high temperature test cannot be suppressed, and appearance defects such as peeling tend to occur. On the other hand, when the storage elastic modulus of the pressure-sensitive adhesive layer is greater than 1 MPa, the pressure-sensitive adhesive cannot relieve the strain generated between the glass and the polarizing plate during the thermal shock test, and cracks tend to occur in the polarizing plate.
In a preferred embodiment, the storage elastic modulus of the pressure-sensitive adhesive layer at 80 ° C. is 0.01 MPa to 1 MPa.
 [偏光板の検品方法]
 本発明は、さらに、偏光板の検品方法を提供する。本発明の検品方法は、
 第1粘着剤層と、セルロースエステル系樹脂を含む第1保護フィルムと、厚さが10μm以下である偏光子と、第2粘着剤層と、第2保護フィルムとが積層された偏光板の検品方法であって、
 (1)第2保護フィルムにおける傷の最大寸法を測定する工程と、
 (2)前記第2保護フィルムにおける傷の最大寸法が、前記第2保護フィルムにおける前記第2粘着剤層とは反対側の面および前記第2保護フィルムにおける前記第2粘着剤層側の面の少なくとも一方において、長さ0.001~500μm、幅0.001~500μm、かつ深さ0.001~10μmである偏光板、および/または
前記第2保護フィルムにおける傷の最大寸法が、前記第2保護フィルムにおける前記第2粘着剤層とは反対側の面および前記第2保護フィルムにおける前記第2粘着剤層側の面の少なくとも一方において、深さ0.001~10μm、かつ面積0.001~1.0mmである偏光板を、良品と判断する工程、
とを含む、偏光板の検品方法である。
[Inspection method of polarizing plate]
The present invention further provides a method for inspecting a polarizing plate. The inspection method of the present invention comprises:
Inspection of a polarizing plate in which a first pressure-sensitive adhesive layer, a first protective film containing a cellulose ester-based resin, a polarizer having a thickness of 10 μm or less, a second pressure-sensitive adhesive layer, and a second protective film are laminated. A method,
(1) measuring the maximum dimension of the scratch in the second protective film;
(2) The maximum dimension of the scratch in the second protective film is the surface of the second protective film opposite to the second pressure-sensitive adhesive layer and the surface of the second protective film on the second pressure-sensitive adhesive layer side. In at least one of the polarizing plates having a length of 0.001 to 500 μm, a width of 0.001 to 500 μm, and a depth of 0.001 to 10 μm, and / or the maximum size of scratches in the second protective film, At least one of the surface opposite to the second pressure-sensitive adhesive layer in the protective film and the surface on the second pressure-sensitive adhesive layer side of the second protective film has a depth of 0.001 to 10 μm and an area of 0.001 to A step of judging a polarizing plate having a thickness of 1.0 mm 2 as a non-defective product,
Is a method for inspecting a polarizing plate.
 本発明の検品方法は、(1)工程において、傷の最大寸法が測定される。 In the inspection method of the present invention, the maximum dimension of the scratch is measured in the step (1).
 (1)工程において、傷を有し得る偏光板における最大寸法の測定は、常套の方法を用いて行われ、例えば、電子顕微鏡、レーザー顕微鏡により行われる。 (1) In the step (1), the maximum dimension of the polarizing plate that may have a scratch is measured using a conventional method, for example, an electron microscope or a laser microscope.
 続く(2)工程において、前記(1)工程で最大寸法が測定された偏光板について、第2保護フィルムにおける傷の最大寸法が、第2保護フィルムにおける第2粘着剤層とは反対側の面および第2保護フィルムにおける第2粘着剤層側の面の少なくとも一方において、長さ0.001~500μm、幅0.001~500μm、かつ深さ0.001~10μmである偏光板、および/または
第2保護フィルムにおける傷の最大寸法が、第2保護フィルムにおける第2粘着剤層とは反対側の面および第2保護フィルムにおける第2粘着剤層側の面の少なくとも一方において、深さ0.001~10μm、かつ面積0.001~1.0mmである偏光板を、良品と判断する工程を含む。
 ここで、第2保護フィルムにおける傷の最大寸法が、上記範囲に含まれる場合、このような偏光板は、良品として判断される。本発明の検品方法において良品と判断された偏光板は、廃棄されることなく使用できる。なお、傷の寸法などは、上述した好ましい範囲を有し得る。
In the subsequent step (2), for the polarizing plate whose maximum dimension was measured in the step (1), the maximum dimension of scratches in the second protective film is the surface opposite to the second pressure-sensitive adhesive layer in the second protective film. And / or a polarizing plate having a length of 0.001 to 500 μm, a width of 0.001 to 500 μm, and a depth of 0.001 to 10 μm on at least one of the surfaces of the second protective film on the second pressure-sensitive adhesive layer side, and / or The maximum dimension of the scratches in the second protective film has a depth of 0. 0 in at least one of the surface of the second protective film opposite to the second pressure-sensitive adhesive layer and the surface of the second protective film on the second pressure-sensitive adhesive layer side. A step of judging a polarizing plate having an area of 001 to 10 μm and an area of 0.001 to 1.0 mm 2 as a good product is included.
Here, when the maximum dimension of the scratch | flaw in a 2nd protective film is contained in the said range, such a polarizing plate is judged as a good product. The polarizing plate determined to be non-defective in the inspection method of the present invention can be used without being discarded. In addition, the dimension of a flaw etc. may have the preferable range mentioned above.
 前記工程(2)において良品として選択された偏光板は、様々な光学用途に使用できる。工程(2)において良品として選択された偏光板は、そのままの状態で使用してもよく、必要に応じて更なる加工を施してもよい。 The polarizing plate selected as a non-defective product in the step (2) can be used for various optical applications. The polarizing plate selected as a non-defective product in the step (2) may be used as it is, or may be further processed as necessary.
 このような検品工程を経て得られた偏光板は、高温と低温とを繰り返すような環境下においても、光抜け、割れなどを生じることなく良好な偏光特性を示すことができる。また、偏光板の薄型化に寄与できる。 The polarizing plate obtained through such an inspection process can exhibit good polarization characteristics without causing light leakage or cracking even in an environment where high and low temperatures are repeated. Moreover, it can contribute to thickness reduction of a polarizing plate.
 本発明に係る偏光板の検品方法によると、例えば、パネル貼合後の偏光板についても検品できる。パネル貼合後の偏光板の検品を行う場合、例えば、パネル貼合時、パネル貼合後、およびバックライトユニットの貼り合せ時に発生し得る傷および凹みなどは、所定のサイズを有する限り、本発明における傷に含まれ得る。 According to the inspection method of the polarizing plate according to the present invention, for example, the polarizing plate after panel bonding can also be inspected. When inspecting the polarizing plate after panel pasting, for example, scratches and dents that may occur at the time of panel pasting, after panel pasting, and at the time of pasting the backlight unit are limited as long as they have a predetermined size. It can be included in the wound in the invention.
 本発明は、さらに、粘着剤層を介して本発明の偏光板を液晶セルに貼合せた液晶パネルを得ることができる。また、粘着剤層を介して偏光板を有機エレクトロルミネッセンスディスプレイに貼合することにより、有機エレクトロルミネッセンス表示装置を得ることができる。 The present invention can further provide a liquid crystal panel in which the polarizing plate of the present invention is bonded to a liquid crystal cell via an adhesive layer. Moreover, an organic electroluminescent display apparatus can be obtained by bonding a polarizing plate to an organic electroluminescent display through an adhesive layer.
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、含有量または使用量を表す%および部は、特記ない限り重量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In the examples, “%” and “part” representing the content or the amount used are based on weight unless otherwise specified.
 [偏光子の製造]
 厚さ20μmのポリビニルアルコールフィルム(平均重合度約2,400、ケン化度99.9モル%以上)を、乾式延伸により約5倍に一軸延伸し、さらに緊張状態を保ったまま、60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.05/5/100の水溶液に28℃で60秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100の水溶液に72℃で300秒間浸漬した。引き続き26℃の純水で20秒間洗浄した後、65℃で乾燥し、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚さ7μmの偏光子を得た。
[Manufacture of polarizers]
A 20 μm-thick polyvinyl alcohol film (average polymerization degree of about 2,400, saponification degree of 99.9 mol% or more) was uniaxially stretched about 5 times by dry stretching, and further kept at 60 ° C. while maintaining the tension state. After being immersed in pure water for 1 minute, it was immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds. Then, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds. Subsequently, the film was washed with pure water at 26 ° C. for 20 seconds and then dried at 65 ° C. to obtain a 7 μm-thick polarizer in which iodine was adsorbed and oriented on a polyvinyl alcohol film.
 [第1粘着剤層]
 離型処理が施された厚みが38μmのポリエチレンテレフタレートフィルム(剥離フィルム)の離型処理面に厚さ20μmのアクリル系粘着剤層が積層された市販の粘着剤シートを用いた。アクリル系粘着剤に、ウレタンアクリレートオリゴマーは配合されていない。粘着剤シートから剥離フィルムを取り除いた粘着剤層の貯蔵弾性率は、23℃において0.05MPa、80℃において0.04MPaであった。
[First adhesive layer]
A commercially available pressure-sensitive adhesive sheet in which an acrylic pressure-sensitive adhesive layer having a thickness of 20 μm was laminated on a release-treated surface of a polyethylene terephthalate film (release film) having a thickness of 38 μm that had been subjected to the mold release treatment was used. No urethane acrylate oligomer is blended in the acrylic adhesive. The storage elastic modulus of the pressure-sensitive adhesive layer obtained by removing the release film from the pressure-sensitive adhesive sheet was 0.05 MPa at 23 ° C. and 0.04 MPa at 80 ° C.
 [第2粘着剤層]
 アクリル酸ブチルとアクリル酸との共重合体にウレタンアクリレートオリゴマーおよびイソシアネート系架橋剤を添加した有機溶剤溶液を、離型処理が施された厚さ38μmのポリエチレンテレフタレートフィルム(剥離フィルム)の離型処理面に、ダイコーターにより乾燥後の厚みが5μmとなるように塗工し、乾燥させ、粘着剤層が積層された粘着剤シートを得た。粘着剤シートから剥離フィルムを取り除いた粘着剤層の貯蔵弾性率は、23℃において0.40MPa、80℃において0.18MPaであった。
[Second adhesive layer]
Mold release treatment of a 38 μm thick polyethylene terephthalate film (release film) obtained by subjecting an organic solvent solution obtained by adding a urethane acrylate oligomer and an isocyanate crosslinking agent to a copolymer of butyl acrylate and acrylic acid. The surface was coated with a die coater so that the thickness after drying was 5 μm and dried to obtain a pressure-sensitive adhesive sheet on which a pressure-sensitive adhesive layer was laminated. The storage elastic modulus of the pressure-sensitive adhesive layer obtained by removing the release film from the pressure-sensitive adhesive sheet was 0.40 MPa at 23 ° C. and 0.18 MPa at 80 ° C.
 [第3粘着剤層]
 アクリル酸ブチルとアクリル酸との共重合体にウレタンアクリレートオリゴマーおよびイソシアネート系架橋剤を添加した有機溶剤溶液を、離型処理が施された厚さ38μmのポリエチレンテレフタレートフィルム(剥離フィルム)の離型処理面に、ダイコーターにより乾燥後の厚みが5μmとなるように塗工し、乾燥させ、粘着剤シートを得た。粘着剤シートから剥離フィルムを取り除いた粘着剤層の貯蔵弾性率は、23℃において0.40MPa、80℃において0.18MPaであった。
[Third pressure-sensitive adhesive layer]
Mold release treatment of a 38 μm thick polyethylene terephthalate film (release film) obtained by subjecting an organic solvent solution obtained by adding a urethane acrylate oligomer and an isocyanate crosslinking agent to a copolymer of butyl acrylate and acrylic acid. The surface was coated with a die coater so that the thickness after drying was 5 μm and dried to obtain an adhesive sheet. The storage elastic modulus of the pressure-sensitive adhesive layer obtained by removing the release film from the pressure-sensitive adhesive sheet was 0.40 MPa at 23 ° C. and 0.18 MPa at 80 ° C.
[第1保護フィルム-1]
 コニカミノルタ株式会社製のトリアセチルセルロースフィルム(厚み20μm、波長590nmでの面内位相差値=1.2nm、波長590nmでの厚み方向位相差値=1.3nm)
[First protective film-1]
Triacetylcellulose film manufactured by Konica Minolta Co., Ltd. (thickness 20 μm, in-plane retardation value at wavelength 590 nm = 1.2 nm, thickness direction retardation value at wavelength 590 nm = 1.3 nm)
[第1保護フィルム-2]
 厚みが13μmのシクロオレフィン樹脂フィルム(日本ゼオン株式会社製)を用いた。
波長590nmでの面内位相差値(Re(590))=0.8nm、波長590nmでの厚み方向の位相差値(Rth(590))=3.4nm、波長483nmでの厚み方向の位相差値(Rth(483))=3.5nm、波長755nmでの厚み方向の位相差値(Rth(755))=2.8nmであった。
[First protective film-2]
A cycloolefin resin film (manufactured by Nippon Zeon Co., Ltd.) having a thickness of 13 μm was used.
In-plane retardation value at wavelength 590 nm (Re (590)) = 0.8 nm, thickness direction retardation value at wavelength 590 nm (Rth (590)) = 3.4 nm, thickness direction retardation at wavelength 483 nm Value (Rth (483)) = 3.5 nm, thickness direction retardation value at wavelength 755 nm (Rth (755)) = 2.8 nm.
[第2保護フィルム]
 厚みが26μmの輝度向上フィルム(3M製、商品名 Advanced Polarized Film, Version 3)を使用した。
[Second protective film]
A brightness enhancement film (made by 3M, trade name Advanced Polarized Film, Version 3) having a thickness of 26 μm was used.
[水系接着剤の調製]
 水100部に対して、カルボキシル基変性ポリビニルアルコール(株式会社クラレ製のKL-318)3部を溶解し、その水溶液に、水溶性エポキシ化合物であるポリアミドエポキシ系添加剤(住化ケムテックス株式会社製のスミレーズレジン(登録商標)650(30)、固形分濃度30%の水溶液〕1.5部を添加して、水系接着剤とした。
[Preparation of water-based adhesive]
3 parts of carboxyl group-modified polyvinyl alcohol (KL-318 manufactured by Kuraray Co., Ltd.) is dissolved in 100 parts of water, and a polyamide-epoxy additive which is a water-soluble epoxy compound (manufactured by Sumika Chemtex Co., Ltd.) is dissolved in the aqueous solution. Of Sumirez Resin (registered trademark) 650 (30), aqueous solution with a solid content of 30%] was added 1.5 parts to obtain an aqueous adhesive.
[偏光板前駆体Aの作製]
 上記偏光子の片面に、水系接着剤を介して、第1保護フィルム-1を積層した。積層後、80℃で5分間乾燥することにより、第1保護フィルムと偏光子とを貼合した。偏光子における第1保護フィルムとの貼合面とは反対側の面に、剥離フィルム上に積層された第2の粘着剤層を貼合した。第1保護フィルムにおける偏光子との貼合面とは反対側の面に、剥離フィルム上に積層された第1の粘着剤層を貼合した。
 なお、偏光子の透過軸方向と、保護フィルムの幅方向が平行となるように貼合した。
 このようにして、第1の粘着剤層、保護フィルム、偏光子および第2の粘着剤層がこの順に積層された偏光板前駆体A-1を作製した。
 同様にして、第1保護フィルム-1の代わりに第1保護フィルム-2を用いて作成した偏光板前駆体を偏光板前駆体A-2とした。その他の保護フィルムについても、同様にして、偏光板前駆体を作成した。
[Preparation of Polarizing Plate Precursor A]
A first protective film-1 was laminated on one side of the polarizer via a water-based adhesive. After lamination, the first protective film and the polarizer were bonded by drying at 80 ° C. for 5 minutes. The 2nd adhesive layer laminated | stacked on the peeling film was bonded to the surface on the opposite side to the bonding surface with the 1st protective film in a polarizer. The 1st adhesive layer laminated | stacked on the peeling film was bonded to the surface on the opposite side to the bonding surface with the polarizer in a 1st protective film.
In addition, it bonded so that the transmission axis direction of a polarizer and the width direction of a protective film might become parallel.
Thus, a polarizing plate precursor A-1 in which the first pressure-sensitive adhesive layer, the protective film, the polarizer, and the second pressure-sensitive adhesive layer were laminated in this order was produced.
Similarly, a polarizing plate precursor prepared using the first protective film-2 instead of the first protective film-1 was used as a polarizing plate precursor A-2. A polarizing plate precursor was prepared in the same manner for other protective films.
[偏光板Aの作製]
 上記偏光板前駆体における第2の粘着剤層上の剥離フィルムを剥がした。偏光板前駆体Aにおける第2の粘着剤層と輝度向上フィルムとを貼り合わせ、第1の粘着剤層、第1保護フィルム、偏光子、第2の粘着剤層、輝度向上フィルム(第2保護フィルム)、がこの順に積層された偏光板Aを得た。例えば、第1保護フィルム-1(偏光板前駆体A-1)を用いて作成した偏光板を偏光板A1とした。同様に、第1保護フィルム-2(偏光板前駆体A-2)を用いて作成したこのような構造を有する偏光板を偏光板A2とした。
[Preparation of Polarizing Plate A]
The release film on the second pressure-sensitive adhesive layer in the polarizing plate precursor was peeled off. The second pressure-sensitive adhesive layer and the brightness enhancement film in the polarizing plate precursor A are bonded together, and the first pressure-sensitive adhesive layer, the first protective film, the polarizer, the second pressure-sensitive adhesive layer, and the brightness enhancement film (second protection) A polarizing plate A was obtained, which was laminated in this order. For example, a polarizing plate prepared using the first protective film-1 (polarizing plate precursor A-1) was designated as polarizing plate A1. Similarly, a polarizing plate having such a structure prepared using the first protective film-2 (polarizing plate precursor A-2) was designated as polarizing plate A2.
 作製した偏光板を100mm×60mmに裁断した。第一の粘着剤層上の剥離フィルムを剥がし、第一の粘着剤層を介して無アルカリガラス(コーニング社製、EAGLE XG(登録商標))に偏光板を貼合した。このガラスへ貼合した偏光板の端部から1.0mmの場所に引っ掻き式硬度計(ドイツ・エリクセン社製、モデル318 ボール直径0.75mm)により5Nの荷重を偏光板の表面に加え、押し傷を付けた。すなわち、前記第2保護フィルムにおける前記第2粘着剤層とは反対側の面に押し傷を付けた。押し傷の深さは2~5μm以下であり、直径0.3mmであった(傷の面積は約0.071mmであった)。 The produced polarizing plate was cut into 100 mm × 60 mm. The release film on the first pressure-sensitive adhesive layer was peeled off, and a polarizing plate was bonded to alkali-free glass (Corning Corporation, EAGLE XG (registered trademark)) via the first pressure-sensitive adhesive layer. A 5 N load was applied to the surface of the polarizing plate by a scratch hardness meter (Model 318, ball diameter: 0.75 mm, manufactured by Eriksen, Germany) at a location 1.0 mm from the edge of the polarizing plate bonded to this glass, and pressed. I scratched it. That is, the surface of the second protective film opposite to the second pressure-sensitive adhesive layer was scratched. The depth of the pressed wound was 2-5 μm or less and the diameter was 0.3 mm (the area of the wound was about 0.071 mm 2 ).
 また、ガラスへ貼合した別の偏光板の端部から1.0mmの場所に引っ掻き式硬度計により10N、及び20Nの荷重を偏光板の表面に加えた試料もそれぞれ作製した。10Nの荷重を加えて作製した押し傷の深さは5~8μmであり、直径0.4mmであった(傷の面積は約0.13mmであった)。20Nの荷重を加えて作製した押し傷の深さは11~15μmであり、直径0.6mmであった(傷の面積は約0.28mmであった)。 Moreover, the sample which applied the load of 10N and 20N to the surface of the polarizing plate by the scratch-type hardness meter in the place of 1.0 mm from the edge part of another polarizing plate bonded to glass was also produced, respectively. The depth of the pressed wound produced by applying a load of 10 N was 5 to 8 μm and the diameter was 0.4 mm (the area of the wound was about 0.13 mm 2 ). The depth of the pressed wound produced by applying a load of 20 N was 11 to 15 μm and the diameter was 0.6 mm (the area of the wound was about 0.28 mm 2 ).
 5N、10Nまたは20Nの荷重加え、表面に押し傷を有する偏光板について、温度85℃及び-40℃(各30分間で1サイクル)の冷熱衝撃環境試験(250サイクル)を実施した。 A thermal shock environment test (250 cycles) at a temperature of 85 ° C. and −40 ° C. (one cycle for 30 minutes each) was performed on the polarizing plate having a 5N, 10N or 20N load and having a scratch on the surface.
[冷熱衝撃環境試験]
 冷熱衝撃環境試験は、偏光板をガラス板に貼り合わせた状態で、冷熱衝撃試験装置〔エスペック株式会社から販売されている製品名「TSA-71L-A-3」 〕を用いて、高温条件(85℃)保持時間30分と、低温条件(―40℃)保持時間30分とを1サイクルとして行った。なお、温度移行時間を1分とし、温度移行時の温度移行時間0分において、外気を導入せず、光学部材に結露を発生させない条件を設定した。このサイクルを250サイクル繰り返して試験を実施した。判定は以下のようにした。結果を表1に示す。
[Thermal shock test]
The thermal shock environment test is performed with a polarizing plate attached to a glass plate using a thermal shock test apparatus (product name “TSA-71L-A-3” sold by Espec Corporation) under high temperature conditions ( 85 ° C.) holding time of 30 minutes and low temperature condition (−40 ° C.) holding time of 30 minutes were performed as one cycle. The temperature transition time was set to 1 minute, and conditions were set so that no external air was introduced and no condensation occurred on the optical member at a temperature transition time of 0 minutes during the temperature transition. This cycle was repeated 250 cycles for the test. The judgment was as follows. The results are shown in Table 1.
 [判定]
 冷熱衝撃環境試験(サイクル数:250回)を行った後、光抜けの有無を目視で確認した。試験前と変化がなく、試験後にクロスニコル下で光抜けが発生しなかったものを「○」、試験後にクロスニコル下で光抜けが発生したものを「×」とした。
[Judgment]
After conducting a thermal shock environment test (number of cycles: 250), the presence or absence of light leakage was visually confirmed. No change was observed before and after the test, and no light leakage occurred under the crossed Nicols after the test.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この結果より、本発明の偏光板は、冷熱衝撃環境試験において、優れた効果を有することが分かる。すなわち、本発明によれば、高温と低温とを繰り返すような環境下においても、本発明の偏光板は、光抜け、割れなどを生じることなく良好な偏光特性を示すことができる。 From this result, it can be seen that the polarizing plate of the present invention has an excellent effect in the thermal shock environment test. That is, according to the present invention, even in an environment where high and low temperatures are repeated, the polarizing plate of the present invention can exhibit good polarization characteristics without causing light leakage or cracks.
 本発明によれば高温と低温とを繰り返すような環境下においても、本発明の偏光板は、光抜け、割れなどを生じることなく良好な偏光特性を示すことができる。また、本発明の偏光板は、薄型であり、かつ、強度、耐久性に優れた偏光板である。 According to the present invention, even in an environment where high and low temperatures are repeated, the polarizing plate of the present invention can exhibit good polarization characteristics without causing light leakage or cracks. The polarizing plate of the present invention is a thin polarizing plate that is excellent in strength and durability.
  11 偏光子
  12 第1保護フィルム
  13 第1粘着剤層
  22 第2保護フィルム
  23 第2粘着剤層
  100 偏光板
DESCRIPTION OF SYMBOLS 11 Polarizer 12 1st protective film 13 1st adhesive layer 22 2nd protective film 23 2nd adhesive layer 100 Polarizing plate

Claims (5)

  1.  第1粘着剤層と、セルロースエステル系樹脂を含む第1保護フィルムと、厚さが10μm以下である偏光子と、第2粘着剤層と、第2保護フィルムとが積層された偏光板であって、
     前記第2保護フィルムは、前記第2保護フィルムにおける前記第2粘着剤層とは反対側の面および前記第2保護フィルムにおける前記第2粘着剤層側の面の少なくとも一方に傷を有し、
     前記傷は、長さ0.001~500μm、幅0.001~500μm、かつ深さ0.001~10μmである傷、および深さ0.001~10μm、かつ面積0.001~1.0mmである傷の少なくとも一方である、偏光板。
    A polarizing plate in which a first pressure-sensitive adhesive layer, a first protective film containing a cellulose ester resin, a polarizer having a thickness of 10 μm or less, a second pressure-sensitive adhesive layer, and a second protective film are laminated. And
    The second protective film has a scratch on at least one of the surface of the second protective film opposite to the second pressure-sensitive adhesive layer and the surface of the second protective film on the second pressure-sensitive adhesive layer side,
    The scratch has a length of 0.001 to 500 μm, a width of 0.001 to 500 μm, and a depth of 0.001 to 10 μm, and a depth of 0.001 to 10 μm and an area of 0.001 to 1.0 mm 2. A polarizing plate that is at least one of the scratches.
  2.  前記第1粘着剤層と、前記第1保護フィルムと、前記偏光子と、前記第2粘着剤層と、前記第2保護フィルムとがこの順に積層された、請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the first pressure-sensitive adhesive layer, the first protective film, the polarizer, the second pressure-sensitive adhesive layer, and the second protective film are laminated in this order.
  3.  前記第2保護フィルムは、前記第2保護フィルムにおける前記第2粘着剤層とは反対側の面に傷を有する、請求項1または2に記載の偏光板。 The polarizing plate according to claim 1 or 2, wherein the second protective film has a scratch on a surface of the second protective film opposite to the second pressure-sensitive adhesive layer.
  4.  前記第2保護フィルムは、輝度向上フィルムである、請求項1~3のいずれか1項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 3, wherein the second protective film is a brightness enhancement film.
  5.  第1粘着剤層と、セルロースエステル系樹脂を含む第1保護フィルムと、厚さが10μm以下である偏光子と、第2粘着剤層と、第2保護フィルムとが積層された偏光板の検品方法であって、
     (1)前記第2保護フィルムにおける傷の最大寸法を測定する工程と、
     (2)前記第2保護フィルムにおける傷の最大寸法が、前記第2保護フィルムにおける前記第2粘着剤層とは反対側の面および前記第2保護フィルムにおける前記第2粘着剤層側の面の少なくとも一方において、長さ0.001~500μm、幅0.001~500μm、かつ深さ0.001~10μmである偏光板、および/または
    前記第2保護フィルムにおける傷の最大寸法が、前記第2保護フィルムにおける前記第2粘着剤層とは反対側の面および前記第2保護フィルムにおける前記第2粘着剤層側の面の少なくとも一方において、深さ0.001~10μm、かつ面積0.001~1.0mmである偏光板を、良品と判断する工程、
    とを含む、偏光板の検品方法。
    Inspection of a polarizing plate in which a first pressure-sensitive adhesive layer, a first protective film containing a cellulose ester-based resin, a polarizer having a thickness of 10 μm or less, a second pressure-sensitive adhesive layer, and a second protective film are laminated. A method,
    (1) measuring the maximum dimension of the scratch in the second protective film;
    (2) The maximum dimension of the scratch in the second protective film is the surface of the second protective film opposite to the second pressure-sensitive adhesive layer and the surface of the second protective film on the second pressure-sensitive adhesive layer side. In at least one of the polarizing plates having a length of 0.001 to 500 μm, a width of 0.001 to 500 μm, and a depth of 0.001 to 10 μm, and / or the maximum size of scratches in the second protective film, At least one of the surface opposite to the second pressure-sensitive adhesive layer in the protective film and the surface on the second pressure-sensitive adhesive layer side of the second protective film has a depth of 0.001 to 10 μm and an area of 0.001 to A step of judging a polarizing plate having a thickness of 1.0 mm 2 as a non-defective product,
    The inspection method of a polarizing plate including these.
PCT/JP2016/082786 2015-11-13 2016-11-04 Polarizing plate and inspection method for polarizing plate WO2017082164A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680065891.6A CN108291994B (en) 2015-11-13 2016-11-04 Polarizing plate and method for inspecting polarizing plate
KR1020187015671A KR20180081540A (en) 2015-11-13 2016-11-04 How to inspect polarizer and polarizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015223444A JP6234419B2 (en) 2015-11-13 2015-11-13 Polarizing plate and inspection method of polarizing plate
JP2015-223444 2015-11-13

Publications (1)

Publication Number Publication Date
WO2017082164A1 true WO2017082164A1 (en) 2017-05-18

Family

ID=58695262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082786 WO2017082164A1 (en) 2015-11-13 2016-11-04 Polarizing plate and inspection method for polarizing plate

Country Status (5)

Country Link
JP (1) JP6234419B2 (en)
KR (1) KR20180081540A (en)
CN (1) CN108291994B (en)
TW (1) TWI701468B (en)
WO (1) WO2017082164A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112509472B (en) * 2020-12-23 2022-05-03 武汉华星光电半导体显示技术有限公司 Membrane layer protection structure and membrane layer attaching method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005984A1 (en) * 1996-08-05 1998-02-12 Teijin Limited Orientated film having pores
JP2006021459A (en) * 2004-07-09 2006-01-26 Konica Minolta Opto Inc Method for producing optical film
JP2007045071A (en) * 2005-08-11 2007-02-22 Konica Minolta Opto Inc Manufacturing method of optical film, optical film, and polarizing plate using the film
JP2007052333A (en) * 2005-08-19 2007-03-01 Konica Minolta Opto Inc Surface-roughened optical film, method for producing the same, polarizing plate and image display device
JP2007246907A (en) * 2006-03-16 2007-09-27 Dongwoo Fine-Chem Co Ltd Hard coating film having high hardness, and polarizing plate as well as display device using the same
JP2009075535A (en) * 2007-08-27 2009-04-09 Nitto Denko Corp Optical film, polarizing plate and image display device
JP2010039458A (en) * 2008-07-11 2010-02-18 Sumitomo Chemical Co Ltd Polarizing plate, manufacturing method therefor, and composite polarizing plate using the same
JP2010064327A (en) * 2008-09-10 2010-03-25 Fujifilm Corp Film, method for manufacturing the same, polarizing plate, and liquid crystal display
JP2010164733A (en) * 2009-01-15 2010-07-29 Dainippon Printing Co Ltd Optical film for protecting polarizer and method for producing the film, polarizing plate and display apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6235370B2 (en) * 2014-02-19 2017-11-22 住友化学株式会社 Production method of polarizing laminated film and polarizing plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005984A1 (en) * 1996-08-05 1998-02-12 Teijin Limited Orientated film having pores
JP2006021459A (en) * 2004-07-09 2006-01-26 Konica Minolta Opto Inc Method for producing optical film
JP2007045071A (en) * 2005-08-11 2007-02-22 Konica Minolta Opto Inc Manufacturing method of optical film, optical film, and polarizing plate using the film
JP2007052333A (en) * 2005-08-19 2007-03-01 Konica Minolta Opto Inc Surface-roughened optical film, method for producing the same, polarizing plate and image display device
JP2007246907A (en) * 2006-03-16 2007-09-27 Dongwoo Fine-Chem Co Ltd Hard coating film having high hardness, and polarizing plate as well as display device using the same
JP2009075535A (en) * 2007-08-27 2009-04-09 Nitto Denko Corp Optical film, polarizing plate and image display device
JP2010039458A (en) * 2008-07-11 2010-02-18 Sumitomo Chemical Co Ltd Polarizing plate, manufacturing method therefor, and composite polarizing plate using the same
JP2010064327A (en) * 2008-09-10 2010-03-25 Fujifilm Corp Film, method for manufacturing the same, polarizing plate, and liquid crystal display
JP2010164733A (en) * 2009-01-15 2010-07-29 Dainippon Printing Co Ltd Optical film for protecting polarizer and method for producing the film, polarizing plate and display apparatus

Also Published As

Publication number Publication date
JP2017090783A (en) 2017-05-25
KR20180081540A (en) 2018-07-16
CN108291994A (en) 2018-07-17
TWI701468B (en) 2020-08-11
TW201723542A (en) 2017-07-01
CN108291994B (en) 2020-10-16
JP6234419B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP7407158B2 (en) Polarizing plates, liquid crystal displays and organic electroluminescent displays
CN106054437B (en) Polarizing film set with adhesive layer, liquid crystal panel and liquid crystal display device
TW201804222A (en) Polarizing plate set
KR20170132112A (en) Polarizing plate and image display device
TW201804225A (en) Polarizing plate set
KR102593816B1 (en) Optical laminate and image display device using the optical laminate
JP6234419B2 (en) Polarizing plate and inspection method of polarizing plate
KR20170113168A (en) Optical film and polarizing plate
KR102418731B1 (en) Polarizer
KR20210147885A (en) Optical laminate and display device
JP2022145412A (en) Optical laminate, manufacturing method thereof and picture display unit
CN112505814A (en) Optical laminate and display device using same
JP2011227418A (en) Polarizing plate, method for manufacturing the same, and ips mode liquid crystal display device using the same
JP2013210640A (en) Set of polarizing plate, and liquid crystal panel and liquid crystal display device using the same
KR20110056936A (en) Method for polarizing plates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187015671

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187015671

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 16864127

Country of ref document: EP

Kind code of ref document: A1