WO2017081990A1 - Precast structure, and construction method for underground structures - Google Patents

Precast structure, and construction method for underground structures Download PDF

Info

Publication number
WO2017081990A1
WO2017081990A1 PCT/JP2016/080709 JP2016080709W WO2017081990A1 WO 2017081990 A1 WO2017081990 A1 WO 2017081990A1 JP 2016080709 W JP2016080709 W JP 2016080709W WO 2017081990 A1 WO2017081990 A1 WO 2017081990A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
segments
ring
circumferential direction
precast
Prior art date
Application number
PCT/JP2016/080709
Other languages
French (fr)
Japanese (ja)
Inventor
昌弘 増田
徹人 川中
田中 秀夫
周作 高岡
康一 玉田
健雄 望戸
雅紀 松井
Original Assignee
鹿島建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015221499A external-priority patent/JP6572103B2/en
Priority claimed from JP2016114266A external-priority patent/JP6715092B2/en
Application filed by 鹿島建設株式会社 filed Critical 鹿島建設株式会社
Publication of WO2017081990A1 publication Critical patent/WO2017081990A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials

Definitions

  • the present invention relates to a precast structure that can be used for underground structures and the like.
  • the precast concrete having a substantially rectangular shape requires a wall thickness of a predetermined value or more in order to obtain a desired yield strength, and is not always efficient in the manufacturing, transportation, installation process, and the like.
  • Patent Document 2 it is difficult to ensure water-stopping by a method using arch-shaped precast concrete on a cast-in-place slab.
  • the conventional precast concrete is heavy, so it is difficult to carry and install.
  • there is a limit to increasing the size of precast concrete due to restrictions such as transport weight.
  • the present invention has been made in view of the above-mentioned problems, and it is possible to reduce the thickness of a member by using an arch action, which is lightweight, excellent in water stoppage, and can significantly reduce the work period.
  • An object of the present invention is to provide a precast structure and the like.
  • the first invention is a ring-shaped precast structure in which a plurality of segments having an arch shape are connected, and the segments are connected in the circumferential direction and the longitudinal direction. And prestress is applied in the circumferential direction and the longitudinal direction of the connected segments.
  • the segments may be connected to each other in the circumferential direction and the longitudinal direction via a water stop member.
  • a hollow portion of concrete may be provided inside the segment.
  • a foam may be embedded in the hollow portion.
  • a pipe may be embedded in the hollow portion.
  • the outer peripheral surface of the segment is provided with a first protrusion as a positioning guide in the longitudinal connection between the segments, and the first protrusions of the segments adjacent in the longitudinal direction are connecting members. It is connected and prestress may be given over the full length of the connected segment in the longitudinal direction.
  • a second protrusion for connecting the segments in the circumferential direction is provided, and the positions of the second protrusions of the segments adjacent in the circumferential direction are aligned.
  • the second protrusions may be tensioned by a tension member.
  • the end surfaces of the segments facing in the longitudinal direction may be provided with concave portions at mutually corresponding portions, and the concave portions may be filled with a filler and solidified.
  • the precast structure is composed of a plurality of segments having an arch shape
  • the member can be made thin by using the arch action. For this reason, a construction period can be shortened significantly.
  • the segment can be reduced in weight. For this reason, transportation and handling are easy. Further, since the segment can be reduced in weight, the size of the segment can be increased when there is a limit on the weight. As a result, it can be applied to a large structure. Moreover, since the width of the segment can be increased, the number of segments to be used can be reduced. As a result, the number of connecting portions between the segments can be reduced to improve the water stoppage, and the number of assembly steps can be reduced.
  • the hollow part can be easily formed by embedding a foam in the hollow part. That is, by placing the foam in the mold and filling the concrete, it is possible to easily form a concrete hollow body in which the foam is disposed.
  • the hollow portion can be easily formed by embedding a pipe in the hollow portion. That is, by placing the pipe in the mold and filling the concrete, it is possible to easily form a concrete hollow body in which the pipe is disposed.
  • the first protrusion as a guide can function as a positioning guide for connecting the segments in the longitudinal direction, and the segments can be easily positioned. Further, since prestress is applied over the entire length in the longitudinal direction of the segments positioned relative to each other, it is possible to increase the water stoppage.
  • recesses are provided on the end faces of the segments facing the longitudinal direction (width direction) perpendicular to the circumferential direction, and a predetermined number of ring-shaped structures adjacent in the longitudinal direction are connected, and then the recesses are filled with a filler from the outside.
  • the ring-like structures can be prevented from shifting by being solidified. At this time, even when the segment construction accuracy is somewhat worse than when using a metal key member or the like, it is possible to reliably prevent displacement.
  • the second invention is a method for constructing an underground structure, wherein a plurality of segments are surrounded by a step of installing an arched segment in an excavated portion from the ground and a platform that moves on the segment.
  • a step of constructing a ring-shaped structure by applying a prestress in the circumferential direction by connecting through a water stop member in a direction, and a predetermined number of the ring-shaped structures adjacent to the longitudinal direction perpendicular to the circumferential direction And a step of applying prestress in the longitudinal direction to each other through a water-stopping member, and a construction method for an underground structure.
  • 2nd invention is the construction method of an underground structure, Comprising a plurality of segments which have arch shape through the water stop member in the circumferential direction, Giving prestress in the circumferential direction, Ring shape Using the pedestal that moves in the existing ring-shaped structure, adjacent to the longitudinal direction in the circumferential direction. And a step of connecting a predetermined number of the ring-shaped structures via a water-stopping member and applying prestress in the longitudinal direction.
  • the gantry is movable inside the ring-shaped structure, and a part of the gantry can be expanded and contracted outward, and when the gantry is moved inside the ring-shaped structure.
  • a portion of the gantry is shrunk to prevent interference between the gantry and the inner surface of the segment, and when the gantry is moved outside the ring-shaped structure, a part of the gantry is removed from the ring. It may be possible to extend outward to the end face position of the shaped structure.
  • the ring-shaped structure is divided into four in the circumferential direction, and is configured by connecting a bottom segment, a pair of side segments, and a top segment, and is adjacent to the longitudinal direction perpendicular to the circumferential direction.
  • the bottom segments and the top segments may have different lengths.
  • the work is easy because the gantry that can move inside the segments is used.
  • the work space can be used effectively because no segment assembly work area is required in any part other than the excavation part.
  • the positions of the connecting portions in the circumferential direction can be shifted in the circumferential direction by changing the lengths of the bottom segments and the top segments.
  • a precast structure or the like that can reduce the thickness of a member by using an arch action, is lightweight, has excellent water-stopping properties, and can significantly shorten the work period. it can.
  • FIG. 1 The perspective view of the precast structure 1.
  • FIG. 1 The front view of the segment 3.
  • FIG. 3 is a cross-sectional view of the segment 3 taken along the line AA in FIG. 2. Sectional drawing of the other segment 3.
  • FIG. 1 The front view of the precast structure 1.
  • FIG. 4B is a sectional view taken along line BB in FIG. 4A.
  • the F arrow line view in the E section of FIG. FIG. 7B is a sectional view taken along line GG in FIG. 7A.
  • the front view of the precast structure 1a The front view of the precast structure 1a.
  • FIG. 1a The front view of the precast structure 1a.
  • FIG. 10 is a cross-sectional view taken along line II in the H portion of FIG. 9.
  • FIG. 11B is a sectional view taken along line KK in FIG. 11B.
  • FIG. 15B is a cross-sectional view taken along line LL in the M portion of FIG. 15A.
  • FIG. 16B is an OO arrow view of FIG. 16A.
  • FIG. 17B is a QQ arrow view of FIG. 17A.
  • FIG. 18B is an SS arrow view.
  • FIG. 19B is a view taken along the line U-U in FIG. 19A.
  • FIG. 20B is a WW arrow view of FIG. 20A.
  • the side view which shows the construction process of an underground structure The figure which shows a part of mount 21.
  • FIG. 4 is a partial cross-sectional view of a segment 3.
  • FIG. 4 is a partial cross-sectional view of a segment 3.
  • FIG. 4 is a partial cross-sectional view of a segment 3.
  • the side view which shows the construction process of another underground structure.
  • the top view which shows the construction process of another underground structure.
  • the side view which shows the construction process of an underground structure.
  • the side view which shows the construction process of an underground structure.
  • the front view which shows a double underground structure.
  • FIG. The figure which shows the process of towing the precast structure 57 to the sea.
  • FIG. 1 is a perspective view showing a precast structure 1.
  • illustration of the tension member etc. which are mentioned later is abbreviate
  • the precast structure 1 is composed of a plurality of segments 3. In the illustrated example, an example in which the precast structure 1 includes four segments 3 is shown. However, if the precast structure 1 includes a plurality of segments 3, the number of segments 3 is not limited. The number of connections in the longitudinal direction of each segment 3 is not limited to the illustrated example. In addition, when the precast structure 1 consists of the four segments 3, it is desirable to arrange
  • FIG. 2A is a front view of the segment 3, and FIG. 2B is a plan view of the segment 3.
  • FIG. 3A is a cross-sectional view taken along line AA of FIG. 2A.
  • the segment 3 is made of concrete and has substantially the same outer shape as the segment used for the shield tunnel. That is, the segment 3 is composed of arcuate (arch-shaped) curved surfaces facing each other and side surfaces connecting the curved surfaces.
  • a ring-shaped precast structure 1 can be formed by connecting a plurality of segments 3 in the circumferential direction. That is, the precast structure 1 composed of the segments 3 has a ring shape.
  • the segment 3 is provided with a hole 11 in the width direction (vertical direction in FIG. 2B), and a tension member to be described later is inserted inside. That is, the tension member penetrates in the width direction of the segment 3. Further, in the circumferential direction of the segment 3 (left-right direction in FIG. 2B), a hole 12 is formed along the curved shape of the segment 3, and a tension member, which will be described later, is inserted therein. That is, the tension member penetrates in the circumferential direction of the segment 3. As described above, the tension member holes 11 and 12 are provided in the circumferential direction and the width direction of the segment 3 so that prestress can be applied when the segments 3 are connected in the circumferential direction and the width direction.
  • the foam 16 is embedded in the part other than the tension member of the segment 3.
  • the foam 16 is made of a lightweight resin such as polystyrene foam. That is, a hollow portion is formed inside the concrete constituting the segment 3, and the foam 16 is provided in the hollow portion.
  • the hollow part inside the segment 3 in this invention points out a site
  • holes 12 through which tension members are inserted are provided in the vicinity of the four corners of the foam 16, and the reinforcing bars 14 are arranged along the circumferential direction of the segment 3 so as to cover the periphery of the foam 16.
  • the tension member 27 is inserted into the hole 12.
  • the segment 3 is formed by filling concrete with a gap and unboxing in a state where the reinforcing bars 14, the foams 16, etc. are arranged at predetermined positions inside the concrete outer shell. Such a segment 3 can be reduced in weight as compared with a solid concrete member up to the inside.
  • the pipe 16a is, for example, a winding pipe, and the segment 3 can be formed by filling the concrete with the pipe 16a and the like disposed therein and then unboxing the box.
  • the segment 3 can be reduced in weight. For this reason, transportation and handling are easy. Moreover, since the segment can be reduced in weight, the size of the segment 3 can be increased in the case of the same weight restriction. As a result, it can be applied to large structures. Further, since the width of the segment 3 can be increased, the number of segments 3 to be used can be reduced. As a result, it is possible to reduce the number of connecting portions and improve the water stoppage, and to reduce the number of assembly steps.
  • this invention if it is a segment which has a hollow part of concrete, about the formation method of a hollow part, it is not limited to the foam 16 and the pipe 16a mentioned above. Further, the hollow portion is not always essential, and a solid concrete segment may be used without providing the hollow portion.
  • FIG. 4A is a front view of the precast structure 1.
  • the precast structure 1 becomes ring-shaped by connecting the plurality of segments 3 in the circumferential direction.
  • the precast structure 1 is formed by connecting ring-shaped segment connection bodies in the width direction (longitudinal direction of the precast structure 1).
  • a detail is mentioned later.
  • water stop members 9a and 9b are provided on both side surfaces of the segment 3 in the width direction.
  • the segment 3 is connected via the water stop members 9a and 9b.
  • water stop members (not shown) are provided on both side surfaces of the segment 3 in the circumferential direction. That is, it is desirable that a water stop member is provided on the connection surface between the segments 3 and the segments 3 are connected to each other in the circumferential direction and the longitudinal direction via the water stop member.
  • FIG. 5 is a cross-sectional view taken along the line BB of FIG. 4A.
  • the hole 11 is provided at the approximate center in the thickness direction of the segment 3.
  • the tension member 5 is inserted into the hole 11.
  • the tension member 5 penetrates the plurality of segments 3.
  • Some or all of the segments 3 are provided with openings through which the holes 11 are exposed on the inner surface side of the curved shape. Therefore, the internal tension member 5 is exposed at the opening.
  • the end of the tension member 5 is fixed to the opening of the segment 3 by the anchor plate 18.
  • a coupler sleeve 18a is provided at the end of the tension member 5 and can be connected via a coupler joint 18b. For this reason, every time a predetermined number of segments 3 are connected in the longitudinal direction, the tension members 5 can be inserted and connected to each other. For this reason, a prestress can be provided over the full length of the longitudinal direction of the segment 3 connected.
  • tensioning and fixing of the tension member 5 may be performed every time one segment 3 is connected, or may be performed every time a plurality of segments 3 are connected.
  • the water stop members 9a and 9b are arranged on the opposing surfaces (end surfaces) of the segments 3. In this way, prestress is applied over the entire length of the connected segments 3 in the longitudinal direction, and the water-stop members 9a and 9b are disposed on the contact surfaces of each other in a double manner so that the water-stop properties of the contact surfaces between the segments 3 can be reduced. Can be secured.
  • the tension member 27 described above is used to connect the segments 3 in the circumferential direction.
  • the segments 3 are tensioned and connected in the circumferential direction by the tension members 27 penetrating in the circumferential direction. That is, prestress is applied to the segments 3 connected in the circumferential direction in the circumferential direction.
  • the precast structure 1 becomes substantially circular. For this reason, the arch action can be used from any direction. For this reason, the thickness of the precast structure 1 can be made thin.
  • the precast structure 1 since the segment 3 is connected via the water stop member in the circumferential direction and the longitudinal direction, and the precast structure 1 gives a prestressing force to the longitudinal and circumferential connecting portions, Aqueous property can be secured.
  • the shape of the precast structure 1 may not be a perfect circle, and may be another shape as long as an arch action can be used, such as an ellipse.
  • a tension member 27 a may be disposed on the outer periphery of the segment 3. That is, instead of inserting the tension member 27 into the segment 3, the tension member 27a may be arranged on the outer periphery of the ring-shaped member in a state where the segments 3 are connected in the circumferential direction, and barrel tightened.
  • the tension member 27a can use, for example, a steel wire coated with a resin such as epoxy.
  • FIG. 6 is a diagram showing the precast structure 1a.
  • the precast structure 1 a is substantially the same as the precast structure 1, but a coupling protrusion 7 is provided at a part of the connecting portion in the circumferential direction of the segment 3.
  • symbol same as the precast structure 1 is attached
  • a lower segment connection body (indicated by an arrow D in the figure) composed of one or a plurality of segments is referred to as a lower segment 3a, and an upper segment connection body (indicated by an arrow C in the figure).
  • the upper segment 3b Is referred to as the upper segment 3b. That is, in the precast structure 1a, the lower segment 3a and the upper segment 3b each have the coupling protrusion 7.
  • a pair of coupling protrusions 7 is formed at the tip of the semicircular lower segment 3a and upper segment 3b.
  • FIG. 7A is a view taken in the direction of arrow F in part E of FIG. 6, and FIG. 7B is a cross-sectional view taken along the line GG of FIG. 7A.
  • the coupling protrusions 7 face each other and come into contact with each other.
  • the coupling protrusion 7 is provided with a hole 24 penetrating vertically. The number of holes 24 is not limited to the illustrated example.
  • the hole 24 of the coupling protrusion 7 of the lower segment 3a and the hole 24 of the coupling protrusion 7 of the upper segment 3b are arranged on a substantially straight line, the hole 24 has a tension passing through the upper and lower coupling protrusions 7.
  • the member 27b is inserted.
  • the tension members 27b By fixing the tension members 27b on the upper and lower surfaces of the coupling protrusion 7 in a state where the positions of the coupling protrusions 7 of the lower segment 3a and the upper segment 3b adjacent to each other in the circumferential direction are aligned, the coupling protrusions 7 are tensioned.
  • the member 27b is tensioned.
  • water stop members 9c and 9d are arranged on the opposing surfaces (end surfaces) of the lower segment 3a and the upper segment 3b.
  • the lower segment 3a and the upper segment 3b connected in the circumferential direction are connected by being tensioned by the tension member 27b, and the water stop members 9c and 9d are disposed on the contact surfaces of the lower segment 3a. It is possible to ensure the water stoppage of the contact surface between 3a and the upper segment 3b.
  • the precast structure 1a uses the arch action, a tensile force is applied to the outer peripheral surface side in the vicinity of the coupling protrusion 7 of the precast structure 1a.
  • the coupling protrusion 7 is disposed on the outer peripheral surface of the lower segment 3a and the upper segment 3b, not only is the connection easy, but a compressive force can be applied to the outer peripheral surface side of the precast structure 1a. . For this reason, the connection part of the lower segment 3a and the upper segment 3b does not open, and a high water stoppage can be ensured.
  • FIG. 8 is a perspective view showing the precast structure 1b
  • FIG. 9 is a front view.
  • illustration of a tension member etc. is abbreviate
  • the precast structure 1b is substantially the same as the precast structure 1a, but is different in that a guide protrusion 8 is further provided.
  • symbol same as the precast structure 1a is attached
  • the precast structure 1b includes a lower segment 3a and an upper segment 3b.
  • the lower segment 3a and the upper segment 3b have an arch shape.
  • the precast structure 1b is an example including two segments (the lower segment 3a and the upper segment 3b).
  • the precast structure 1b may be composed of three or more segments. That is, also in the present embodiment, the lower segment 3a and the upper segment 3b may each be composed of a plurality of segments 3, as in the above-described embodiment.
  • Each of the lower segment 3a and the upper segment 3b has a guide protrusion 8 that is a first protrusion and a coupling protrusion 7 that is a second protrusion.
  • a pair of guide protrusions 8 are formed on the semicircular lower segment 3a and upper segment 3b on the arc. Further, like the precast structure 1a, a pair of coupling protrusions 7 are formed at the distal ends of the lower segment 3a and the upper segment 3b.
  • FIG. 10 is a cross-sectional view taken along the line II in H part of FIG.
  • FIG. 10 shows an example of the lower segment 3a
  • the upper segment 3b has the same structure.
  • the guide protrusion 8 is formed on the outer peripheral surface of the segment 3.
  • the guide protrusions 8 are formed on both sides of the segment 3 in the width direction (longitudinal direction of the precast structure 1b). That is, when the segments 3 are adjacent to each other in the width direction, the guide protrusions 8 face each other and contact each other.
  • a hole 8 a is formed in the guide protrusion 8.
  • the holes 8a are arranged on a substantially straight line.
  • the connecting member 8b is inserted through the holes 8a of the guide protrusions 8 of the segments 3 adjacent in the width direction.
  • the guide protrusions 8 are connected to each other by the connecting member 8b.
  • connection of the segments 3 by the connecting member 8b is for positioning the segments 3. That is, the guide protrusion 8 functions as a positioning guide for connecting the segments 3 in the longitudinal direction. Since the guide protrusion 8 is disposed on the outer peripheral surface of the segment 3, positioning is easy.
  • the segment 3 is provided with the hole 11 penetrating in the width direction.
  • the holes 11 are provided at substantially the same pitch in the circumferential direction.
  • the hole 11 is provided at the approximate center in the thickness direction of the segment 3.
  • the tension member 5 is inserted into the hole 11.
  • the tension member 5 penetrates the plurality of segments 3. As described above, since the segments 3 are previously positioned by the guide protrusions 8, the holes 11 are positioned and the tension member 5 can be easily inserted.
  • the construction method of the underground structure using the precast structure will be described.
  • the following description demonstrates the example to which the precast structure 1a is applied, you may use the precast structure 1 and 1b.
  • all the segments 3 may be assembled on site, or some or all of the segments 3 may be connected in advance to assemble a ring-shaped or semi-ring-shaped member on-site.
  • FIG. 11A is a diagram showing a process of arranging and connecting the lower segments 3a.
  • the lower segment 3a is composed of a plurality of segments 3 in advance, and is laid below (under the ground) the excavation part 31.
  • supporters 33 are arranged in the cut portion 31 at a predetermined interval. Therefore, the lower segment 3 a is suspended from the gap of the support 33 by the crane.
  • a rail 35 is laid along the longitudinal direction of the cut portion 31 below the cut portion 31.
  • the lower segment 3a arranged on the rail 35 by the crane can be moved by the winch 37 (in the direction of arrow J in the figure). Therefore, the lower segment 3a can be moved in the direction of the already installed lower segment 3a and connected in the longitudinal direction.
  • the water stop members 9 a and 9 b are arranged between the lower segments 3 a and are tensioned by the tension member 5.
  • the fluidized soil 39 may be filled around the lower segment 3a as shown in FIG. 11B.
  • FIG. 12 is a cross-sectional view taken along the line KK of FIG. 11B.
  • the fluidized soil 39 may be filled with a predetermined amount of fluidized soil 39 in the lower segment 3a.
  • the lower segment 3a precast structure
  • a scaffold in the lower segment 3a can be secured.
  • At least a part of the lower segment 3 a installed in this way is backfilled with the fluidized soil 39.
  • the upper segment 3b composed of a plurality of segments 3 is suspended in advance.
  • the rail 35 is laid on the fluidized soil 39 inside the lower segment 3 a, and the gantry 41 is further installed on the rail 35. Therefore, the gantry 41 is movable along the rail 35 in the longitudinal direction of the cut portion 31.
  • the gantry 41 on which the upper segment 3b is placed is moved by the winch 37 in the direction of the upper segment 3b that has already been installed, and the lower segments 3a are moved in the longitudinal direction. Can be linked to.
  • the water stop members 9 a and 9 b are arranged between the upper segments 3 b and are tensioned by the tension member 5.
  • the upper segment 3b is connected to the lower segment 3a.
  • the water stop members 9c and 9d are arrange
  • the precast structure 1a is constructed by connecting the lower segment 3a and the upper segment 3b in the circumferential direction and the longitudinal direction.
  • FIG. 14 is a diagram showing the underground structure 43 constructed as described above.
  • the underground structure 43 shows the example which is an underground tunnel, at least one part of a precast structure, such as a water and sewage storage part and an underground parking lot, is buried underground, and is a structure built underground. Any of them can be applied.
  • the precast structures 1, 1a, 1b may be substantially circular, or may have a form in which a plurality of circular cross sections are connected.
  • a coating film 45 may be applied to the connecting portion.
  • the coating film 45 is formed, for example, by spraying an ultrafast curing polyurethane resin.
  • the coating film 45 is applied to the outer periphery of the connecting portion in the longitudinal direction between the segments 3, the connecting portion in the circumferential direction (the connecting portion of the coupling protrusion 7), or the like.
  • FIG. 15B is a cross-sectional view taken along line LL in part M in FIG. 15A. It is difficult to spray the coating film 45 below the precast structure 1a. For this reason, the waterproof sheet 47 may be further sandwiched between the opposing surfaces of the lower segments 3a. Moreover, you may provide the coating film 45 in the inner surface side of the precast structure 1a. Thus, if the coating film 45 etc. are used, even if the positional accuracy of segments is low compared with the case where the water stop members 9a and 9b etc. are used, a water stop can be ensured.
  • the precast structure 1, 1a, 1b of the present embodiment is composed of a plurality of segments 3 having an arch shape, so that the member is thinned by using the arch action. Can do. For this reason, a construction period can be shortened significantly.
  • the segments 3 are connected to each other in the circumferential direction and the longitudinal direction via the water-stopping member, it is possible to secure higher water-stopping performance together with the effect of the prestress.
  • the segment can be reduced in weight. For this reason, transportation and handling are easy. Further, since the width of the segment 3 can be increased, the number of segments 3 to be used can be reduced. As a result, the number of connecting portions between the segments 3 can be reduced to improve the water stoppage, and the number of assembling steps can be reduced. *
  • the guide protrusion 8 can function as a positioning guide for connecting the segments 3 in the longitudinal direction, and positioning of the segments 3 is facilitated. Further, since prestress is applied over the entire length in the longitudinal direction of the segments 3 positioned relative to each other, it is possible to increase the water stoppage.
  • the coupling protrusion 7 for connecting the segments in the circumferential direction and tensioning them with a tension member, the water stoppage of the connection part between the segments 3 in the circumferential direction can be further increased.
  • FIG. 16A is a side view showing the construction process of the underground structure
  • FIG. 16B is a view taken along the line OO in FIG. 16A.
  • FIG. 16A is a diagram showing a state in which the bottom segment 4a is further arranged on the extension of the existing ring-shaped structure 10 (P portion) in the longitudinal direction.
  • the bottom segment 4a, the side segment 4b, and the top segment 4c are collectively referred to as a segment 3.
  • the bottom segment 4a, the side segment 4b, and the top segment 4c are made of precast concrete and each have an arch shape.
  • the ring-shaped structure 10 can be formed by connecting the bottom segment 4a, the side segment 4b, and the top segment 4c in the circumferential direction.
  • the ring-shaped structure 10 is divided into four in the circumferential direction, and is configured by connecting a bottom segment 4a, a pair of side segments 4b, and a top segment 4c.
  • the bottom segment 4a is installed on the excavation part 31 by a crane or the like not shown from the ground.
  • a retaining wall and a supporting work are installed in the excavation part 31 .
  • the bottom segments 4a adjacent to each other in the longitudinal direction of the underground structure (the horizontal direction in FIG. 16A and the width direction perpendicular to the circumferential direction of each segment) have different circumferential lengths.
  • the water stop member 2a is disposed on the circumferential end surface of the bottom segment 4a. Moreover, the hole 11 and the recessed part 13 are provided in the width direction (longitudinal direction of an underground structure) end surface of the bottom part segment 4a. The holes 11 and the recesses 13 of the bottom segments 4a adjacent to each other in the longitudinal direction of the underground structure (the left-right direction in FIG. 16A) are formed at positions corresponding to each other. Further, a water stop member 2b (corresponding to the water stop members 9a and 9b in FIG. 4A) is arranged on the end surface in the width direction of the bottom segment 4a.
  • FIG. 17A is a view showing a state in which the gantry 21 is moved on the installed bottom segment 4a
  • FIG. 17B is a view taken along arrows QQ in FIG. 17A.
  • a rail 9 is installed on the inner surface side (upper surface) of the bottom segment 4a.
  • the rail 9 is formed so as to be continuous with the rail 9 inside the existing segment (ring-shaped structure 10).
  • the mount 21 is installed on the rail 9.
  • a chill tank (not shown) is provided at the lower part of the gantry 21, and the gantry 21 can move on the bottom segment 4a (on the rail 9). Therefore, as shown in FIG. 17B, the gantry 21 can be moved from the inside of the ring-shaped structure 10 onto the newly installed bottom segment 4a (arrow R in the figure).
  • a gripping device 21 a is provided at the tip of the gantry 21.
  • the gripping device 21a can be expanded and contracted by a hydraulic jack or the like (not shown). When moving the gantry 21 within the ring-shaped structure 10, the gripping device 21a can be pulled back to prevent interference between the gripping device 21a and the segment 3.
  • FIG. 18A is a view showing a state in which the side segment 4b is installed on the installed bottom segment 4a
  • FIG. 18B is a view taken along the line SS in FIG. 18A.
  • the side segment 4b is installed on the bottom segment 4a by a crane or the like not shown from the ground.
  • a part of the gripping device 21a is extended (arrow T in the figure), and the side segment 4b is supported by the gripping device 21a. That is, the side segment 4b is positioned by the gripping device 21a.
  • the water stop member 2a described above is sandwiched between the circumferential end surface of the bottom segment 4a and the circumferential end surface of the side segment 4b. Moreover, the water stop member 2a is newly arrange
  • the hole 11 and the recessed part 13 are provided in the width direction (longitudinal direction of an underground structure) end face of the side segment 4b similarly to the bottom segment 4a. Moreover, the water stop member 2b is arrange
  • the holes 11 and the recesses 13 of the side segments 4b adjacent to each other in the longitudinal direction of the underground structure (left and right direction in FIG. 18A) are formed at positions corresponding to each other.
  • FIG. 19A is a diagram showing a state where the top segment 4c is further installed on the installed side segment 4b
  • FIG. 19B is a view taken along the line U-U in FIG. 19A.
  • the top segment 4c is installed on the side segment 4b by a crane or the like not shown from the ground.
  • the gripping device 21a is extended (arrow V in the figure), and the top segment 4c is supported by the gripping device 21a. That is, the top segment 4c is positioned by the gripping device 21a.
  • the water-stop member 2a described above is sandwiched between the circumferential end surface of the side segment 4b and the circumferential end surface of the top segment 4c.
  • the hole 11 and the recessed part 13 are provided in the width direction (longitudinal direction of an underground structure) end surface of the top segment 4c similarly to the bottom segment 4a. Moreover, the water stop member 2b is arrange
  • the hole 11 and the recessed part 13 of the top segments 4c adjacent to each other in the longitudinal direction of the underground structure (the left-right direction in FIG. 19A) are formed at positions corresponding to each other.
  • the segment 3 can be formed in a ring shape by arranging the bottom segment 4a, the side segment 4b, and the top segment 4c in the circumferential direction via the water stop member 2a.
  • top segments 4c adjacent to each other in the longitudinal direction of the underground structure have different circumferential lengths.
  • the long and short bottom segments 4a and the top segments 4c alternately in the longitudinal direction of the underground structure so that the sum of the circumferential lengths of the bottom segment 4a and the top segment 4c is the same, The position of the connecting portion between the segments 3 can be shifted.
  • FIG. 20A is a view showing a state in which the tension members 5a are arranged with respect to the segments 3 arranged in a ring shape
  • FIG. 20B is a view taken along the line WW in FIG. 20A.
  • a sheath is disposed inside each segment 3 along an arc shape in the circumferential direction.
  • the sheath is arranged so as to be continuous in the circumferential direction of the segments arranged in a ring shape.
  • the tension member 5a is inserted through the sheath.
  • prestress can be applied in the circumferential direction of the segments 3 arranged in a ring shape, and the ring-shaped structure 10 can be constructed.
  • the water stop member 2a between each segment is compressed by prestress, and the water stop of the circumferential direction can be ensured reliably.
  • a predetermined number of ring-shaped structures 10 to which prestress is applied in the circumferential direction are formed by the same procedure.
  • FIG. 21A is a diagram showing a state in which the tension members 5 are arranged in a predetermined number of ring-shaped structures 10 adjacent in the longitudinal direction in this way.
  • a hole 11 penetrating in the longitudinal direction is formed in a corresponding portion in the circumferential direction of each ring-shaped structure 10.
  • the tension member 5 is inserted into the hole 11 and connected to a jack 17 disposed on the end surface of the segment 3 on the end side.
  • the other end of the tension member 5 is connected to the tension member 5 of the existing ring-shaped structure 10.
  • a water-stop member 2b is disposed between the ring-shaped structures 10 (including the existing ring-shaped structures 10).
  • prestress can be applied in the longitudinal direction of a predetermined number of ring-shaped structures 10 adjacent in the longitudinal direction. It can. Under the present circumstances, the water stop member 2b between each ring-shaped structure 10 is compressed by prestress, and the water stop of a longitudinal direction can be ensured reliably.
  • FIG. 22A is a diagram showing an end portion of the gantry 21.
  • the gripping device 21 a is provided at the end of the gantry 21.
  • the platform 21 is provided with a work scaffold 21b.
  • a part of the gantry 21 can be expanded and contracted outward, and as shown in FIG. 22B, the work scaffold 21b can be extended outward (arrow Y in the figure).
  • expansion / contraction mechanism at the tip of the gantry 21 may be a slide mechanism as illustrated, but may also be a foldable type.
  • FIG. 23A is a partial cross-sectional view of adjacent ring-shaped structures 10. For simplicity, only the facing portion between the two ring-shaped structures 10 is illustrated. As described above, the recess 13 is formed on the end surface in the width direction of the segment 3. Since the recessed part 13 is formed in the site
  • Each inlet 13 is provided with an inlet that communicates with the inner or outer surface of the segment 3. Therefore, as shown in FIG. 23B, the filler 23 can be filled into the space inside the recess 13 from one injection port in a state where the ring-shaped structures 10 are connected to each other in the longitudinal direction of the underground structure.
  • the filler is, for example, mortar, and can be solidified in a predetermined time after filling the recess 13. In this way, by filling the recess 13 with the filler 23 and solidifying it, the filler 23 functions as a key material, and it is possible to prevent the ring-shaped structures 10 from shifting with respect to the shearing force of the underground structure. .
  • the segment 3 used in the present invention is larger than the segment used in the shield method when the ring inner diameter is the same.
  • it is necessary to manufacture the segment with the end face in the width direction facing up and down due to the size of the formwork support. There is. Therefore, it is difficult for the end surface in the width direction of the segment that becomes the upper surface side during manufacturing to be accurate with the mold.
  • the filling material 23 serving as the key material is filled into the recess 13 from the outside and solidified. For this reason, even if the accuracy such as the position of the concave portion 13 is somewhat poor, it is possible to reliably prevent the positional deviation.
  • the ring-shaped structure 10 is connected to a predetermined length, and the excavation part 31 around the ring-shaped structure 10 is backfilled, whereby the underground structure can be constructed.
  • the ring-shaped structure 10 may be fixed to the ground below the cut portion 31 with an anchor or the like.
  • the ring-shaped structure 10 consists of the some segment 3 which has an arch shape, and a member can be made thin by utilizing an arch action. For this reason, the construction period concerning construction of an underground structure can be significantly shortened.
  • the water stop members 2a and 2b are provided on the connecting surfaces of the segments 3, and the segments 3 are connected to each other via the water stop members 2a and 2b in the circumferential direction and the longitudinal direction.
  • the water stop members 2a and 2b are disposed on the circumferential surfaces and the longitudinal direction of the segment 3, the water stop members 2a and 2b are compressed when prestress is applied, respectively. Aqueous property can be secured.
  • the assembly work of the segment 3 can be performed using the mount 21 that moves on the segment 3, the work is easy. Further, the work scaffold at the tip of the gantry 21 is expanded and contracted, so that the work on the end face in the width direction of the segment 3 is easy.
  • the recessed part 13 is formed in the opposing part of the width direction end surfaces of the segment 3, and after connecting the predetermined number of ring-shaped structures 10 adjacent to a longitudinal direction, the recessed part 13 is filled with the filler 23 from the outside, By solidifying, the shift between the ring-shaped structures 10 can be prevented.
  • the lengths of the bottom segments 4a and the top segments 4c are different from each other with respect to the ring-shaped structures 10 adjacent in the longitudinal direction.
  • the positions of the connecting portions in the circumferential direction between the segments 3 can be shifted.
  • the ring-shaped structure 10 is not limited to four divisions, and may be divided into a plurality of divisions. Moreover, the number of connections in the longitudinal direction of the ring-shaped structure 10 is not limited to the illustrated example.
  • FIG. 24A is a side view showing a state in which the segments 3 are connected, for example, on the ground instead of the excavated portion
  • FIG. 24B is a plan view.
  • the assembly work of the ring-shaped structure 10 is performed outside the cut-out portion.
  • the bottom segment 4a, the side segment 4b, and the top segment 4c are placed in a laid state.
  • the tension member 5a is inserted into the circumferential sheath, and prestress is applied in the circumferential direction.
  • the water stop member 2a is arrange
  • FIG. 25A is a diagram showing a process of arranging the segment 3 in the cut-out part 31.
  • the ring-shaped structure 10 is disposed on a gantry 22 a installed below (underground) the excavation part 31.
  • a support work is arrange
  • the ring-shaped structure 10 disposed on the gantry 22a can be moved by the crane in the direction of the existing ring-shaped structure 10 (in the direction of arrow Z in the figure) as shown in FIG. 25B. Therefore, the ring-shaped structure 10 arranged on the gantry 22a can be moved in the direction of the already-installed ring-shaped structure 10 and connected in the longitudinal direction. At this time, the water stop member 2 b is disposed between the ring-shaped structures 10 and is tensioned by the tension member 5.
  • the underground structure constructed according to the present invention can be applied to any structure that is buried underground and constructed underground, such as underground tunnels, water supply and sewage storage units and underground parking lots. It is.
  • the ring-shaped structures 10 may be arranged in a direction perpendicular to the longitudinal direction (for example, in the horizontal direction as illustrated, or in the vertical direction). May be connected to each other.
  • a connecting portion 25 may be formed between the ring-shaped structures 10, and an opening may be formed in a part of the ring-shaped structure 10 in a space surrounded by the connecting portions 25. Good.
  • the inside of the adjacent ring-shaped structure 10 can be connected, for example, can also be utilized as a channel
  • FIG. 27 is a schematic cross-sectional view of the tunnel 51 in the longitudinal direction.
  • the tunnel 51 is configured by connecting a submarine tunnel portion 53 and a land tunnel portion 55.
  • the submarine tunnel 53 is buried under the seabed 61.
  • the submarine tunnel portion 53 and the land tunnel portion 55 are connected by a connection portion 59.
  • the connection part 59 serves as a ventilation tower, for example.
  • the tunnel 51 of the present invention is configured by connecting at least a submarine tunnel portion 53 with a plurality of precast structures 57.
  • the precast structure 57 is formed by closing the openings on the end faces of the precast structures 1, 1a, and 1b.
  • the precast structure 57 may have a substantially circular shape, or may have a form in which a plurality of circular cross sections are connected.
  • the precast structure 57 is embedded in the seabed 61.
  • the precast structure 57 is buried with crushed stone.
  • the crushed stone is disposed with a predetermined thickness, and the precast structure 57 is sunk thereon, and then the entire precast structure 57 is buried with the crushed stone.
  • a steel pipe sheet pile cylinder 79 is constructed between a submarine tunnel construction area 53a in which the submarine tunnel section 53 is constructed and a land tunnel construction area 55a in which the land tunnel section 55 is constructed.
  • the steel pipe sheet pile cylinder 79 is formed by connecting a plurality of steel pipe sheet piles.
  • the steel pipe sheet pile cylinder 79 is formed deeper than the connection part 59 (see FIG. 27) between the submarine tunnel part 53 and the land tunnel part 55.
  • the inner ground surrounded by the steel pipe sheet pile cylinder 79 is excavated, and the bottom plate 83 is constructed to a predetermined depth.
  • the bottom plate 83 is a part where the connecting portion 59 (see FIG. 27) is constructed. That is, the bottom plate 83 is formed at a position deeper than a portion where the submarine tunnel portion 53 and the land tunnel portion 55 are connected.
  • the production yard 89 is constructed in a predetermined range of the land tunnel construction range 55a on the land side of the steel pipe sheet pile cylinder 79.
  • the production yard 89 is formed by excavating part of the ground in the land tunnel construction range 55a. If the depth of the production yard 89 is lower than the water surface, it is not necessary to cut to the depth for constructing the land tunnel. That is, the production yard 89 may be formed using the entire land tunnel construction range 55a, or may be formed in a range smaller than the land tunnel construction range 55a using only a part of the land tunnel construction range 55a. Also good.
  • the above-described construction of the bottom plate 83 may be performed simultaneously with the construction of the production yard 89.
  • the production yard 89 is formed up to the steel pipe sheet pile cylinder 79. On the side of the production yard 89, a mountain stop is provided. That is, the pile is joined to the steel pipe sheet pile cylinder 79. Further, a part of the steel pipe sheet pile cylinder 79 is cut out to form a passage of the precast structure 57. That is, the production yard 89 communicates with the sea. In addition, since the gate 85 is formed in the surface facing the sea of the steel pipe sheet pile cylinder 79, it is prevented that seawater flows into the production yard 89 on the land side of the gate 85.
  • the precast structure 57 is assembled. For example, a ballast is provided inside the precast structure 57. Further, both end portions of the precast structure 57 are closed.
  • the gate 85 is opened and seawater is introduced into the production yard 89 as shown in FIG. 28A.
  • the material of the gate 85 is, for example, iron or concrete (precast), and the gate 85 is opened and closed by a method of pulling up with a large heavy machine or a method of a temporary sluice gate.
  • the precast structure 57 that has surfaced on the sea surface is towed to the sea side by the tow ship (arrow N in the figure). That is, the precast structure 57 is towed and moved from the production yard 89 to the sea of the installation site.
  • the gate 85 may not be moved up and down, but may be double open.
  • the precast structure 57 towed to the sea is towed to the settling site.
  • the seabed 61 where the precast structure 57 is set is excavated in advance to a predetermined depth, and crushed stone is laid as described above.
  • the bottom where the seabed 61 is excavated and crushed stone is laid is defined as the seabed 61a. That is, the precast structure 57 is set on the seabed 61a.
  • the precast structure 57 After towing the precast structure 57 to the settling location, water is introduced into the ballast to set the precast structure 57.
  • the precast structure 57 can be deposited on the seabed 61a at a desired location.
  • a part of the connecting portion 59 (see FIG. 27) is constructed on the bottom plate 83 by, for example, caisson or the like, excluding the passage portion of the precast structure 57 (upper portion of the steel pipe sheet pile cylinder 79), for example. Also good.
  • the precast structure 57 can be used as a buried box.
  • connection structure of the conventional box-shaped submerged box is provided with a flexible mechanism for absorbing surrounding deformation.
  • a flexible mechanism is not necessary for the connecting portion between the precast structures 57 of the present invention.
  • the precast structure 57 of the present invention is composed of a large number of segments 3, and displacement can be allowed little by little at the connecting portions between the individual annular members.
  • the precast structure 57 of the present invention is configured by connecting 80 to 100 annular members in the longitudinal direction
  • the flexible mechanism in the conventional connection structure allows deformation of about 100 mm
  • the deformation can be allowed by being dispersed by about 1 mm at the connecting portions of the annular members. For this reason, a flexible mechanism becomes unnecessary in the connection part between submerged boxes.
  • the submerged tunnel using the precast structure 57 of the present invention has substantially constant rigidity in the longitudinal direction, a large rigidity change part is not formed at the connection part as in the conventional case, and stress is reduced. Concentration is also unlikely to occur.
  • a sealing member is sandwiched between the precast structures 57, and hydraulic bonding is performed.
  • the precast structure 57 having the sealing member attached to the end face is attached to the other precast structure 57 and drawn by a drawing jack (not shown).
  • the sealing member is compressed by the force of the pulling jack to obtain a water stop effect.
  • an external water pressure and a differential pressure are generated on the opposite end face of the precast structure 57, and the seal member further increases the amount of compression, thereby ensuring safety. High water stopping effect is obtained.
  • a secondary lining may be placed on the inner surface of the precast structure 57 and the inner surface of the connecting portion.
  • the subcast tunnel 57 is completed by sinking the precast structure 57 over the entire length of the submarine tunnel 53 to complete the joining and backfilling the precast structure 57.
  • the precast structure 57 is connected and configured, an arch-shaped cross section can be easily formed. Therefore, the resistance to external pressure is improved as compared with a box-type submerged box formed by spot casting in a dry dog as in the prior art. For this reason, thickness can be made thin.
  • the land tunnel construction range 55a is used as the production yard 89 for assembling the precast structure 57. For this reason, the precast structure 57 can be assembled at a place close to the set place. Further, the production yard 89 formed by the excavation can be used as it is for the construction of the land tunnel portion 55 thereafter. Therefore, there is no waste and the tunnel 51 can be constructed efficiently.
  • the land-based tunnel portion 55 can be constructed by the above-described open-cut method, but can also be constructed as follows.
  • a production yard is newly constructed at, for example, the endmost part (the side far from the seabed tunnel part 53 and close to the ground surface).
  • the newly constructed production yard is formed at a position lower than the sea level.
  • a gate is provided at the sea side end of the production yard. The gate prevents seawater from flowing into the production yard. That is, seawater is introduced into the land tunnel construction area 55a outside the gate (sea side).
  • the precast structure 57 is assembled.
  • the gate is opened and seawater is introduced into the production yard in the same manner as described above.
  • the precast structure 57 that has surfaced on the water surface is towed to the sea by a towed ship. That is, the precast structure 57 is towed from the production yard to the settling site.
  • the precast structure 57 After the precast structure 57 has moved over the water to the settling site in the land tunnel construction area 55a, water is introduced into the ballast to set the precast structure 57. As described above, the precast structure 57 can be deposited at a desired place.
  • the precast structure 57 installed at the end of the land tunnel portion 55 is connected to the connection portion 59 between the submarine tunnel portion 53 and the land tunnel portion 55.
  • precast structure 57 Repeat the manufacturing, towing and laying of the precast structure 57 described above. After the plurality of precast structures 57 are deposited, adjacent precast structures 57 are connected to each other. The connection between the precast structures 57 is the same as the construction of the submarine tunnel portion 53.
  • pre-casting structure 57 After the pre-casting structure 57 is completely set, secondary lining is placed on the inner surface and the inner surface of the connecting portion. Thus, the connection between the precast structures 57 is completed.
  • the precast structure 57 is deposited over the entire length of the land tunnel portion 55 to complete the joining, and the precast structure 57 is backfilled to complete the land tunnel portion 55.
  • the land tunnel portion 55 can also be constructed by setting the precast structure 57. That is, the land tunnel part 55 using the segment 3 can be easily constructed even for the relatively shallow land tunnel part 55 where the shield method cannot be used.
  • Coupler sleeve 18b ......... Coupler joint 21 ......... Base 21a ......... Grip device 21b ......... Working scaffold 22, 22a ......... Base 23 ......... Filler 24 ... ... Hole 25 ......... Connecting part 27, 27a, 27b ......... Tensioning member 31 ......... Cut-off part 33 ......... Bearing 35 ......... Rail 37 ......... Winch 39 ......... Fluidized soil 41 ... together Stand 43 ......... Underground structure 45 ......... Coating film 47 ......... Waterproof sheet 51 ......... Tunnel 53 ......... Submarine tunnel 53a ......... Submarine tunnel construction area 55 ......... Onshore tunnel 55a ......... Tunnel construction area 59 ......... Connection 61, 61a ......... Submarine 79 ......... Steel sheet pile 83 ......... Bottom plate 85 ......... Gate 89 ......... Production yard

Abstract

A segment 3 is made from concrete and has an external shape substantially the same as a segment used in shield tunneling. That is, the segment 3 comprises arc-shaped curved faces that face each other and side faces to couple the curved faces to each other. That is, a precast structure 1 comprising the segment 3 has a ring shape. A ring-shaped precast structure can be formed by connecting a plurality of segments 3 in the circumferential direction. Prestressing is applied by a tensioning member that spans the entire length of the connected segments 3 in the longitudinal direction. In the same manner, prestressing is applied by a tensioning member in the circumferential direction of the connected segments 3.

Description

プレキャスト構造体、地下構造物の施工方法Construction method of precast structure and underground structure
 本発明は、地下構造物などに利用可能なプレキャスト構造体等に関する。 The present invention relates to a precast structure that can be used for underground structures and the like.
 従来、地下に構造体を施工する方法としては、地上から地盤を開削し、場所打ちコンクリートによって地下の構造物を施工する方法がある。また、その一部にプレキャストコンクリートを用いる方法がある(例えば、特許文献1、特許文献2)。 Conventionally, as a method of constructing a structure underground, there is a method of excavating the ground from the ground and constructing an underground structure with cast-in-place concrete. Moreover, there exists the method of using precast concrete for the part (for example, patent document 1, patent document 2).
特開2008-2154号公報JP 2008-2154 A 特開2000-337092号公報JP 2000-337092 A
 しかし、特許文献1のように、略矩形のプレキャストコンクリートでは、所望の耐力を得るために、所定以上の肉厚が必要であり、製造から運搬、設置過程などにおいて、必ずしも効率的ではなかった。 However, as in Patent Document 1, the precast concrete having a substantially rectangular shape requires a wall thickness of a predetermined value or more in order to obtain a desired yield strength, and is not always efficient in the manufacturing, transportation, installation process, and the like.
 また、特許文献2のように、場所打ち底版上に、アーチ形状のプレキャストコンクリートを用いる方法では、止水性の確保が困難である。 Further, as in Patent Document 2, it is difficult to ensure water-stopping by a method using arch-shaped precast concrete on a cast-in-place slab.
 また、従来のプレキャストコンクリートは、重量があるため、運搬や設置作業が困難である。また、運搬重量などの制約のために、プレキャストコンクリートの大型化にも限界がある。 Also, the conventional precast concrete is heavy, so it is difficult to carry and install. In addition, there is a limit to increasing the size of precast concrete due to restrictions such as transport weight.
 本発明は、前述した問題点に鑑みてなされたもので、アーチアクションを利用して、部材の厚みを薄くすることが可能で、軽量であり、止水性にも優れ、大幅な工期短縮が可能なプレキャスト構造体等を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and it is possible to reduce the thickness of a member by using an arch action, which is lightweight, excellent in water stoppage, and can significantly reduce the work period. An object of the present invention is to provide a precast structure and the like.
 前述した目的を達成するために、第1の発明は、アーチ形状を有する複数のセグメントが連結されたリング状のプレキャスト構造体であって、前記セグメント同士は、周方向および長手方向に連結されており、連結された前記セグメントの周方向および長手方向にプレストレスが付与されていることを特徴とするプレキャスト構造体である。 In order to achieve the above-described object, the first invention is a ring-shaped precast structure in which a plurality of segments having an arch shape are connected, and the segments are connected in the circumferential direction and the longitudinal direction. And prestress is applied in the circumferential direction and the longitudinal direction of the connected segments.
 前記セグメント同士は、周方向および長手方向に止水部材を介して連結されてもよい。 The segments may be connected to each other in the circumferential direction and the longitudinal direction via a water stop member.
 前記セグメントの内部にはコンクリートの中空部が設けられてもよい。 A hollow portion of concrete may be provided inside the segment.
 前記中空部には、発泡体が埋設されてもよい。 A foam may be embedded in the hollow portion.
 前記中空部には、パイプが埋設されてもよい。 A pipe may be embedded in the hollow portion.
 前記セグメントの外周面には、前記セグメント同士の長手方向の連結における位置決めガイドとしての第1の突部が設けられ、長手方向に隣接する前記セグメントの前記第1の突部同士は、連結部材で連結されており、連結された前記セグメントの長手方向の全長にわたってプレストレスが付与されてもよい。 The outer peripheral surface of the segment is provided with a first protrusion as a positioning guide in the longitudinal connection between the segments, and the first protrusions of the segments adjacent in the longitudinal direction are connecting members. It is connected and prestress may be given over the full length of the connected segment in the longitudinal direction.
 前記セグメントの外周面には、前記セグメント同士を周方向に連結するための第2の突部が設けられ、周方向に隣接する前記セグメントの前記第2の突部同士の位置を合わせた状態で、前記第2の突部同士が緊張部材で緊張されてもよい。 In the outer peripheral surface of the segment, a second protrusion for connecting the segments in the circumferential direction is provided, and the positions of the second protrusions of the segments adjacent in the circumferential direction are aligned. The second protrusions may be tensioned by a tension member.
 長手方向に対向する前記セグメントの端面には、互いに対応する部位に凹部が設けられ、前記凹部には充填材が充填されて固化していてもよい。 The end surfaces of the segments facing in the longitudinal direction may be provided with concave portions at mutually corresponding portions, and the concave portions may be filled with a filler and solidified.
 第1の発明によれば、プレキャスト構造体が、アーチ形状を有する複数のセグメントからなるため、アーチアクションを利用することで部材を薄くすることができる。このため、工期を大幅に短縮することができる。 According to the first invention, since the precast structure is composed of a plurality of segments having an arch shape, the member can be made thin by using the arch action. For this reason, a construction period can be shortened significantly.
 また、セグメント同士が、周方向および長手方向に対して、止水部材を介して連結されれば、プレストレスの効果とあいまって、より高い止水性を確保することができる。 Further, if the segments are connected to each other in the circumferential direction and the longitudinal direction via a water-stopping member, higher water-stopping performance can be secured in combination with the effect of prestress.
 また、セグメントの内部に、コンクリートの中空部が設けられれば、セグメントを軽量化することができる。このため、運搬や取扱いが容易である。また、セグメントを軽量化できるため、重量の制限がある場合において、セグメントのサイズを大きくすることができる。この結果、大型の構造物にも適用が可能である。また、セグメントの幅を広くすることができるため、使用するセグメントの個数を減らすことができる。この結果、セグメント同士の接続部の数を減らして、止水性を向上することができるとともに、組み立て工数を削減することができる。 Also, if a concrete hollow is provided inside the segment, the segment can be reduced in weight. For this reason, transportation and handling are easy. Further, since the segment can be reduced in weight, the size of the segment can be increased when there is a limit on the weight. As a result, it can be applied to a large structure. Moreover, since the width of the segment can be increased, the number of segments to be used can be reduced. As a result, the number of connecting portions between the segments can be reduced to improve the water stoppage, and the number of assembly steps can be reduced.
 また、中空部に発泡体を埋設することで、容易に中空部を形成可能である。すなわち、発泡体を型枠内に配置してコンクリートを充填することで、容易に内部に発泡体が配置されたコンクリートの中空体を形成可能である。 Moreover, the hollow part can be easily formed by embedding a foam in the hollow part. That is, by placing the foam in the mold and filling the concrete, it is possible to easily form a concrete hollow body in which the foam is disposed.
 同様に、中空部にパイプを埋設することで、容易に中空部を形成可能である。すなわち、パイプを型枠内に配置してコンクリートを充填することで、容易に内部にパイプが配置されたコンクリートの中空体を形成可能である。 Similarly, the hollow portion can be easily formed by embedding a pipe in the hollow portion. That is, by placing the pipe in the mold and filling the concrete, it is possible to easily form a concrete hollow body in which the pipe is disposed.
 また、ガイドとしての第1の突部を設ければ、セグメント同士の長手方向の連結における位置決めガイドとして機能させることができ、セグメント同士の位置決めが容易となる。さらに、互いに位置決めされたセグメントの長手方向の全長にわたってプレストレスが付与されるため、止水性を高めることができる。 Also, if the first protrusion as a guide is provided, it can function as a positioning guide for connecting the segments in the longitudinal direction, and the segments can be easily positioned. Further, since prestress is applied over the entire length in the longitudinal direction of the segments positioned relative to each other, it is possible to increase the water stoppage.
 また、セグメント同士を周方向に連結するための第2の突部を設け、緊張部材で緊張することで、周方向のセグメント同士の接続部の止水性をさらに高めることができる。 Also, by providing a second protrusion for connecting the segments in the circumferential direction and tensioning them with a tension member, it is possible to further increase the water stoppage of the connection portion between the segments in the circumferential direction.
 また、周方向に垂直な長手方向(幅方向)に対向するセグメントの端面に凹部を設け、長手方向に隣接する所定数のリング状の構造体を連結した後、凹部に外部から充填材を充填して固化させることで、リング状の構造体同士のずれを防止することができる。この際、金属製のキー部材などを用いる場合と比較して、セグメントの施工精度が多少悪くても、確実にずれを防止することができる。 Also, recesses are provided on the end faces of the segments facing the longitudinal direction (width direction) perpendicular to the circumferential direction, and a predetermined number of ring-shaped structures adjacent in the longitudinal direction are connected, and then the recesses are filled with a filler from the outside. Thus, the ring-like structures can be prevented from shifting by being solidified. At this time, even when the segment construction accuracy is somewhat worse than when using a metal key member or the like, it is possible to reliably prevent displacement.
 第2の発明は、地下構造物の施工方法であって、アーチ形状を有するセグメントを地上からの開削部に設置する工程と、前記セグメント上を移動する架台を用いて、複数のセグメント同士を周方向に止水部材を介して連結し、周方向にプレストレスを付与し、リング状の構造体を構築する工程と、周方向に垂直な長手方向に隣接する所定数の前記リング状の構造体を、止水部材を介して連結し、長手方向にプレストレスを付与する工程と、を具備することを特徴とする地下構造物の施工方法である。 The second invention is a method for constructing an underground structure, wherein a plurality of segments are surrounded by a step of installing an arched segment in an excavated portion from the ground and a platform that moves on the segment. A step of constructing a ring-shaped structure by applying a prestress in the circumferential direction by connecting through a water stop member in a direction, and a predetermined number of the ring-shaped structures adjacent to the longitudinal direction perpendicular to the circumferential direction And a step of applying prestress in the longitudinal direction to each other through a water-stopping member, and a construction method for an underground structure.
 また、第2の発明は、地下構造物の施工方法であって、アーチ形状を有する複数のセグメント同士を周方向に止水部材を介して連結し、周方向にプレストレスを付与し、リング状の構造体を構築する工程と、前記リング状の構造体を地上から開削部に設置する工程と、既設のリング状の構造体内を移動する架台を用いて、周方向に垂直な長手方向に隣接する所定数の前記リング状の構造体を、止水部材を介して連結し、長手方向にプレストレスを付与する工程と、を具備することを特徴とする地下構造物の施工方法である。 Moreover, 2nd invention is the construction method of an underground structure, Comprising a plurality of segments which have arch shape through the water stop member in the circumferential direction, Giving prestress in the circumferential direction, Ring shape Using the pedestal that moves in the existing ring-shaped structure, adjacent to the longitudinal direction in the circumferential direction. And a step of connecting a predetermined number of the ring-shaped structures via a water-stopping member and applying prestress in the longitudinal direction.
 前記架台は、前記リング状の構造体の内部を移動可能であるとともに、前記架台の一部が外方に向けて伸縮可能であり、前記架台を前記リング状の構造体の内部で移動させる際には、前記架台の一部を縮め、前記架台と前記セグメントの内面との干渉を防ぎ、前記架台を前記リング状の構造体の外部に移動した際には、前記架台の一部を前記リング状の構造体の端面位置まで外方に伸ばすことが可能であってもよい。 The gantry is movable inside the ring-shaped structure, and a part of the gantry can be expanded and contracted outward, and when the gantry is moved inside the ring-shaped structure. A portion of the gantry is shrunk to prevent interference between the gantry and the inner surface of the segment, and when the gantry is moved outside the ring-shaped structure, a part of the gantry is removed from the ring. It may be possible to extend outward to the end face position of the shaped structure.
 前記リング状の構造体は、周方向に4分割されており、底部セグメントと、一対の側部セグメントと、頂部セグメントが連結されて構成され、周方向に垂直な長手方向に隣り合う前記リング状の構造体において、前記底部セグメント同士および前記頂部セグメント同士の長さが異なってもよい。 The ring-shaped structure is divided into four in the circumferential direction, and is configured by connecting a bottom segment, a pair of side segments, and a top segment, and is adjacent to the longitudinal direction perpendicular to the circumferential direction. In the structure, the bottom segments and the top segments may have different lengths.
 第2の発明によれば、セグメント同士の組み立て等において、セグメントの内部を移動可能な架台を用いるため、作業が容易である。 According to the second invention, in assembling the segments, the work is easy because the gantry that can move inside the segments is used.
 この際、開削部の内部でセグメントを組み立てれば、開削部以外の部位において、セグメントの組み立て作業エリアが不要であるため、作業スペースを有効に利用することができる。 At this time, if the segments are assembled inside the excavation part, the work space can be used effectively because no segment assembly work area is required in any part other than the excavation part.
 また、セグメントをリング状に組み立てた状態で開削部に設置することもできる。このようにすることで、セグメントの組み立て作業を、セグメントを寝かせた状態で行うことができる。 Also, it can be installed in the cut-out part with the segments assembled in a ring shape. By doing in this way, the assembly operation of a segment can be performed in the state which laid the segment.
 また、架台の一部が外方に向けて伸縮可能であれば、架台をリング状の構造体の外部に移動させた状態で、架台の一部をリング状の構造体の端面位置まで外方に伸ばすことができる。このため、長手方向にプレストレスを付与する際など、セグメントの幅方向端面での作業が容易である。 In addition, if a part of the gantry can be expanded and contracted outward, the part of the gantry is moved outward to the end surface position of the ring-shaped structure with the gantry moved outside the ring-shaped structure. Can be stretched. For this reason, when applying prestress in the longitudinal direction, the work on the end surface in the width direction of the segment is easy.
 また、長手方向に隣り合うリング状の構造体において、底部セグメント同士および頂部セグメント同士の長さを変えることで、周方向の連結部位置を周方向にずらすことができる。 In addition, in the ring-shaped structures adjacent in the longitudinal direction, the positions of the connecting portions in the circumferential direction can be shifted in the circumferential direction by changing the lengths of the bottom segments and the top segments.
 本発明によれば、アーチアクションを利用して、部材の厚みを薄くすることが可能で、軽量であり、止水性にも優れ、大幅な工期短縮が可能なプレキャスト構造体等を提供することができる。 According to the present invention, it is possible to provide a precast structure or the like that can reduce the thickness of a member by using an arch action, is lightweight, has excellent water-stopping properties, and can significantly shorten the work period. it can.
プレキャスト構造体1の斜視図。The perspective view of the precast structure 1. FIG. セグメント3の正面図。The front view of the segment 3. FIG. セグメント3の平面図。The top view of the segment 3. FIG. セグメント3の断面図であって、図2のA-A線断面図。FIG. 3 is a cross-sectional view of the segment 3 taken along the line AA in FIG. 2. 他のセグメント3の断面図。Sectional drawing of the other segment 3. FIG. プレキャスト構造体1の正面図。The front view of the precast structure 1. FIG. プレキャスト構造体1の正面図。The front view of the precast structure 1. FIG. 図4AのB-B線断面図。FIG. 4B is a sectional view taken along line BB in FIG. 4A. プレキャスト構造体1aの正面図。The front view of the precast structure 1a. 図6のE部におけるF矢視図。The F arrow line view in the E section of FIG. 図7AのG-G線断面図。FIG. 7B is a sectional view taken along line GG in FIG. 7A. プレキャスト構造体1aの正面図。The front view of the precast structure 1a. プレキャスト構造体1aの正面図。The front view of the precast structure 1a. 図9のH部におけるI-I線断面図。FIG. 10 is a cross-sectional view taken along line II in the H portion of FIG. 9. 下部セグメント3aを設置する工程を示す図。The figure which shows the process of installing the lower segment 3a. 下部セグメント3aを設置する工程を示す図。The figure which shows the process of installing the lower segment 3a. 図11BのK-K線断面図。FIG. 11B is a sectional view taken along line KK in FIG. 11B. 上部セグメント3bを設置する工程を示す図。The figure which shows the process of installing the upper segment 3b. 上部セグメント3bを設置する工程を示す図。The figure which shows the process of installing the upper segment 3b. 地下構造物43を示す図。The figure which shows the underground structure 43. プレキャスト構造体1aの止水構造を示す側面図。The side view which shows the water stop structure of the precast structure 1a. 図15AのM部におけるL-L線断面図。FIG. 15B is a cross-sectional view taken along line LL in the M portion of FIG. 15A. 地下構造物の施工工程を示す側面図。The side view which shows the construction process of an underground structure. 図16AのO-O矢視図。FIG. 16B is an OO arrow view of FIG. 16A. 地下構造物の施工工程を示す側面図。The side view which shows the construction process of an underground structure. 図17AのQ-Q矢視図。FIG. 17B is a QQ arrow view of FIG. 17A. 地下構造物の施工工程を示す側面図。The side view which shows the construction process of an underground structure. 図18AのS-S矢視図。FIG. 18B is an SS arrow view. 地下構造物の施工工程を示す側面図。The side view which shows the construction process of an underground structure. 図19AのU-U矢視図。FIG. 19B is a view taken along the line U-U in FIG. 19A. 地下構造物の施工工程を示す側面図。The side view which shows the construction process of an underground structure. 図20AのW-W矢視図。FIG. 20B is a WW arrow view of FIG. 20A. 地下構造物の施工工程を示す側面図。The side view which shows the construction process of an underground structure. 地下構造物の施工工程を示す側面図。The side view which shows the construction process of an underground structure. 架台21の一部を示す図。The figure which shows a part of mount 21. 架台21の一部を示す図。The figure which shows a part of mount 21. セグメント3の部分断面図。FIG. 4 is a partial cross-sectional view of a segment 3. セグメント3の部分断面図。FIG. 4 is a partial cross-sectional view of a segment 3. 他の地下構造物の施工工程を示す側面図。The side view which shows the construction process of another underground structure. 他の地下構造物の施工工程を示す平面図。The top view which shows the construction process of another underground structure. 地下構造物の施工工程を示す側面図。The side view which shows the construction process of an underground structure. 地下構造物の施工工程を示す側面図。The side view which shows the construction process of an underground structure. 2連の地下構造物を示す正面図。The front view which shows a double underground structure. トンネル51を示す図。The figure which shows the tunnel 51. FIG. プレキャスト構造体57を海に曳航する工程を示す図。The figure which shows the process of towing the precast structure 57 to the sea. プレキャスト構造体57を海に曳航する工程を示す図。The figure which shows the process of towing the precast structure 57 to the sea.
 以下、図面に基づいて、本発明の実施の形態について詳細に説明する。図1は、プレキャスト構造体1を示す斜視図である。なお、図1においては、後述する緊張部材等の図示を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a precast structure 1. In addition, illustration of the tension member etc. which are mentioned later is abbreviate | omitted in FIG.
 プレキャスト構造体1は、複数のセグメント3からなる。なお、図示した例では、プレキャスト構造体1が、4つのセグメント3からなる例を示すが、複数のセグメント3から構成されれば、セグメント3の個数は限定されない。また、各セグメント3の長手方向の連結数は、図示した例には限られない。なお、プレキャスト構造体1が、4つのセグメント3からなる場合には、セグメント3の連結位置は、リングの中心から水平方向に対して±45°の位置に配置することが望ましい。例えば、地下にプレキャスト構造体1を埋設した際に、土圧によるモーメント分布を考慮すると、水平方向に対して±45°の位置が、モーメントの符号が変わる部位となり、最もモーメントの小さな部位となるためである。 The precast structure 1 is composed of a plurality of segments 3. In the illustrated example, an example in which the precast structure 1 includes four segments 3 is shown. However, if the precast structure 1 includes a plurality of segments 3, the number of segments 3 is not limited. The number of connections in the longitudinal direction of each segment 3 is not limited to the illustrated example. In addition, when the precast structure 1 consists of the four segments 3, it is desirable to arrange | position the connection position of the segment 3 in the position of +/- 45 degrees with respect to a horizontal direction from the center of a ring. For example, when the precast structure 1 is buried in the basement, considering the moment distribution due to earth pressure, the position of ± 45 ° with respect to the horizontal direction becomes the part where the sign of the moment changes and becomes the part with the smallest moment. Because.
 図2Aはセグメント3の正面図、図2Bはセグメント3の平面図である。また、図3Aは、図2AのA-A線断面図である。セグメント3は、コンクリート製であり、シールドトンネルに用いられるセグメントとほぼ同様の外形を有する。すなわち、セグメント3は、互いに対向する円弧状(アーチ形状)の曲面と、曲面同士を接続する側面とからなる。セグメント3を複数個周方向に連結することで、リング状のプレキャスト構造体1を形成することができる。すなわち、セグメント3で構成されるプレキャスト構造体1は、リング形状を有する。 FIG. 2A is a front view of the segment 3, and FIG. 2B is a plan view of the segment 3. FIG. 3A is a cross-sectional view taken along line AA of FIG. 2A. The segment 3 is made of concrete and has substantially the same outer shape as the segment used for the shield tunnel. That is, the segment 3 is composed of arcuate (arch-shaped) curved surfaces facing each other and side surfaces connecting the curved surfaces. A ring-shaped precast structure 1 can be formed by connecting a plurality of segments 3 in the circumferential direction. That is, the precast structure 1 composed of the segments 3 has a ring shape.
 セグメント3は、幅方向(図2Bの上下方向)にわたって孔11が設けられ、内部には、後述する緊張部材が挿通される。すなわち、緊張部材は、セグメント3の幅方向に貫通する。また、セグメント3の周方向(図2Bの左右方向)には、セグメント3の湾曲形状に沿って孔12が形成され、内部に後述する緊張部材が挿通される。すなわち、緊張部材は、セグメント3の周方向に貫通する。このように、セグメント3同士を周方向および幅方向に連結した際にプレストレスを付与することが可能な、緊張部材用の孔11、12がセグメント3の周方向および幅方向に設けられている The segment 3 is provided with a hole 11 in the width direction (vertical direction in FIG. 2B), and a tension member to be described later is inserted inside. That is, the tension member penetrates in the width direction of the segment 3. Further, in the circumferential direction of the segment 3 (left-right direction in FIG. 2B), a hole 12 is formed along the curved shape of the segment 3, and a tension member, which will be described later, is inserted therein. That is, the tension member penetrates in the circumferential direction of the segment 3. As described above, the tension member holes 11 and 12 are provided in the circumferential direction and the width direction of the segment 3 so that prestress can be applied when the segments 3 are connected in the circumferential direction and the width direction.
 セグメント3の緊張部材以外の部位には、発泡体16が埋設される。発泡体16は、発泡スチロールなどの軽量な樹脂製である。すなわち、セグメント3を構成するコンクリートの内部には、中空部が形成され、中空部には発泡体16が設けられる。なお、本発明におけるセグメント3内部の中空部とは、コンクリートの無い部位を指し、コンクリートの内部に他の部材が埋設されている場合も、中空部と称する。 In the part other than the tension member of the segment 3, the foam 16 is embedded. The foam 16 is made of a lightweight resin such as polystyrene foam. That is, a hollow portion is formed inside the concrete constituting the segment 3, and the foam 16 is provided in the hollow portion. In addition, the hollow part inside the segment 3 in this invention points out a site | part without concrete, and when another member is embed | buried under the concrete, it is also called a hollow part.
 図3Aに示すように、発泡体16の四隅近傍には、緊張部材が挿通される孔12が設けられ、発泡体16の周囲を覆うように鉄筋14がセグメント3の周方向に沿って配置される。なお、図示した状態では、孔12に緊張部材27が挿通された状態を示す。セグメント3は、コンクリート製の外殻の内部に、鉄筋14、発泡体16等を所定の位置に配置した状態で、コンクリートを空隙に充填して箱抜きすることで形成される。このようなセグメント3は、内部まで中実のコンクリート製の部材と比較して、軽量化することができる。 As shown in FIG. 3A, holes 12 through which tension members are inserted are provided in the vicinity of the four corners of the foam 16, and the reinforcing bars 14 are arranged along the circumferential direction of the segment 3 so as to cover the periphery of the foam 16. The In the illustrated state, the tension member 27 is inserted into the hole 12. The segment 3 is formed by filling concrete with a gap and unboxing in a state where the reinforcing bars 14, the foams 16, etc. are arranged at predetermined positions inside the concrete outer shell. Such a segment 3 can be reduced in weight as compared with a solid concrete member up to the inside.
 このように、コンクリートの圧縮およびせん断に対しては、一般的にコンクリート断面として余裕があるため、中空にしても問題がない。一方、コンクリートの引張に対しては、引張りに抵抗する鉄筋14の配置が可能なだけの、コンクリート部材としての部材高さ(部材厚さ)を確保できればよい。 As described above, there is no problem even if it is hollow because there is generally room for a concrete cross section against compression and shearing of concrete. On the other hand, with respect to concrete tension, it is only necessary to secure a member height (member thickness) as a concrete member that allows the reinforcing bars 14 to resist tension to be disposed.
 なお、図3Bに示すように、複数のパイプ16aを埋設することで、コンクリートの中空部を形成してもよい。パイプ16aは、例えばワインディングパイプであり、パイプ16a等を配置した状態でコンクリートを充填して箱抜きすることで、セグメント3を形成することができる。 In addition, as shown to FIG. 3B, you may form the hollow part of concrete by embedding the some pipe 16a. The pipe 16a is, for example, a winding pipe, and the segment 3 can be formed by filling the concrete with the pipe 16a and the like disposed therein and then unboxing the box.
 このように、セグメント3の内部に、コンクリートの中空部が設けられるため、セグメント3を軽量化することができる。このため、運搬や取扱いが容易である。また、セグメントを軽量化できるため、同じ重量制限の場合においては、セグメント3のサイズを大きくすることができる。この結果、大型の構造物に適用が可能である。また、セグメント3の幅を広くすることができるため、使用するセグメント3の個数を減らすことができる。この結果、接続部の数を減らして、止水性を向上することができるとともに、組み立て工数を削減することができる。 Thus, since the concrete hollow portion is provided inside the segment 3, the segment 3 can be reduced in weight. For this reason, transportation and handling are easy. Moreover, since the segment can be reduced in weight, the size of the segment 3 can be increased in the case of the same weight restriction. As a result, it can be applied to large structures. Further, since the width of the segment 3 can be increased, the number of segments 3 to be used can be reduced. As a result, it is possible to reduce the number of connecting portions and improve the water stoppage, and to reduce the number of assembly steps.
 なお、本発明では、コンクリートの中空部を有するセグメントであれば中空部の形成方法については、前述した発泡体16やパイプ16aに限定されない。また、中空部は必ずしも必須ではなく、中空部を設けずに、中実のコンクリート製のセグメントであってもよい。 In addition, in this invention, if it is a segment which has a hollow part of concrete, about the formation method of a hollow part, it is not limited to the foam 16 and the pipe 16a mentioned above. Further, the hollow portion is not always essential, and a solid concrete segment may be used without providing the hollow portion.
 図4Aは、プレキャスト構造体1の正面図である。前述した様に、複数のセグメント3を周方向に連結することで、プレキャスト構造体1はリング状となる。さらに、リング状のセグメント連結体同士を幅方向(プレキャスト構造体1の長手方向)に連結することで、プレキャスト構造体1が形成される。なお、プレキャスト構造体の施工方法については詳細を後述する。 FIG. 4A is a front view of the precast structure 1. As described above, the precast structure 1 becomes ring-shaped by connecting the plurality of segments 3 in the circumferential direction. Furthermore, the precast structure 1 is formed by connecting ring-shaped segment connection bodies in the width direction (longitudinal direction of the precast structure 1). In addition, about the construction method of a precast structure, a detail is mentioned later.
 セグメント3の幅方向の両側面には、止水部材9a、9bが設けられることが望ましい。この場合、セグメント3は、止水部材9a、9bを介して連結される。また、セグメント3の周方向の両側面にも、図示を省略した止水部材が設けられることが望ましい。すなわち、セグメント3同士の連結面には止水部材が設けられ、セグメント3同士は、周方向および長手方向に止水部材を介して連結されることが望ましい。 It is desirable that water stop members 9a and 9b are provided on both side surfaces of the segment 3 in the width direction. In this case, the segment 3 is connected via the water stop members 9a and 9b. Further, it is desirable that water stop members (not shown) are provided on both side surfaces of the segment 3 in the circumferential direction. That is, it is desirable that a water stop member is provided on the connection surface between the segments 3 and the segments 3 are connected to each other in the circumferential direction and the longitudinal direction via the water stop member.
 セグメント3の幅方向(プレキャスト構造体1の長手方向)の連結には、緊張部材5が用いられる。図5は、図4AのB-B線断面図である。孔11は、セグメント3の厚み方向の略中央に設けられる。孔11には、緊張部材5が挿通される。緊張部材5は、複数のセグメント3を貫通する。 A tension member 5 is used to connect the segments 3 in the width direction (longitudinal direction of the precast structure 1). FIG. 5 is a cross-sectional view taken along the line BB of FIG. 4A. The hole 11 is provided at the approximate center in the thickness direction of the segment 3. The tension member 5 is inserted into the hole 11. The tension member 5 penetrates the plurality of segments 3.
 一部またはすべてのセグメント3は、湾曲形状の内面側に孔11が露出する開口部が設けられる。したがって、開口部において、内部の緊張部材5が露出する。緊張部材5の端部は、アンカープレート18によって、セグメント3の開口部に定着される。また、さらに、緊張部材5の端部にはカプラースリーブ18aが設けられ、カプラージョイント18bを介して接続可能である。このため、セグメント3を、長手方向に所定の数だけ連結するたびに、緊張部材5を挿通して、緊張部材5同士を連結することができる。このため、連結されたセグメント3の長手方向の全長にわたってプレストレスを付与することができる。 Some or all of the segments 3 are provided with openings through which the holes 11 are exposed on the inner surface side of the curved shape. Therefore, the internal tension member 5 is exposed at the opening. The end of the tension member 5 is fixed to the opening of the segment 3 by the anchor plate 18. Furthermore, a coupler sleeve 18a is provided at the end of the tension member 5 and can be connected via a coupler joint 18b. For this reason, every time a predetermined number of segments 3 are connected in the longitudinal direction, the tension members 5 can be inserted and connected to each other. For this reason, a prestress can be provided over the full length of the longitudinal direction of the segment 3 connected.
 なお、緊張部材5の緊張と定着は、一つのセグメント3を連結するたびに行ってもよく、複数個のセグメント3が連結されるたびに行ってもよい。 It should be noted that the tensioning and fixing of the tension member 5 may be performed every time one segment 3 is connected, or may be performed every time a plurality of segments 3 are connected.
 ここで、前述した様に、セグメント3同士の対向面(端面)には、止水部材9a、9bが配置される。このように、連結されたセグメント3の長手方向の全長にわたってプレストレスを付与し、互いの接触面に2重に止水部材9a、9bを配置することで、セグメント3同士の接触面の止水性を確保することができる。 Here, as described above, the water stop members 9a and 9b are arranged on the opposing surfaces (end surfaces) of the segments 3. In this way, prestress is applied over the entire length of the connected segments 3 in the longitudinal direction, and the water-stop members 9a and 9b are disposed on the contact surfaces of each other in a double manner so that the water-stop properties of the contact surfaces between the segments 3 can be reduced. Can be secured.
 同様に、セグメント3の周方向の連結には、前述した緊張部材27が用いられる。周方向に貫通する緊張部材27によって、セグメント3は周方向に緊張されて連結される。すなわち、周方向に連結されたセグメント3には、周方向にプレストレスが付与される。 Similarly, the tension member 27 described above is used to connect the segments 3 in the circumferential direction. The segments 3 are tensioned and connected in the circumferential direction by the tension members 27 penetrating in the circumferential direction. That is, prestress is applied to the segments 3 connected in the circumferential direction in the circumferential direction.
 前述した様に、セグメント3を周方向に連結すると、プレキャスト構造体1は、略円形となる。このため、いずれの方向からもアーチアクションを利用することができる。このため、プレキャスト構造体1の肉厚を薄くすることができる。 As described above, when the segments 3 are connected in the circumferential direction, the precast structure 1 becomes substantially circular. For this reason, the arch action can be used from any direction. For this reason, the thickness of the precast structure 1 can be made thin.
 このように、プレキャスト構造体1は、セグメント3が、周方向および長手方向に、止水部材を介して連結され、長手方向および周方向の連結部に、プレストレス力を付与するため、高い止水性を確保することができる。なお、プレキャスト構造体1の形状は、完全な円形でなくてもよく、楕円形など、アーチアクションを利用可能であれば、他の形状であってもよい。 Thus, since the segment 3 is connected via the water stop member in the circumferential direction and the longitudinal direction, and the precast structure 1 gives a prestressing force to the longitudinal and circumferential connecting portions, Aqueous property can be secured. In addition, the shape of the precast structure 1 may not be a perfect circle, and may be another shape as long as an arch action can be used, such as an ellipse.
 なお、図4Bに示すように、セグメント3の外周に、緊張部材27aを配置してもよい。すなわち、セグメント3の内部に緊張部材27を挿通するのではなく、セグメント3を周方向に連結した状態のリング状部材の外周に、緊張部材27aを配置して、樽締めしてもよい。この場合には、緊張部材27aは、例えば、エポキシなどの樹脂で被覆された鋼線を使用することができる。 In addition, as shown in FIG. 4B, a tension member 27 a may be disposed on the outer periphery of the segment 3. That is, instead of inserting the tension member 27 into the segment 3, the tension member 27a may be arranged on the outer periphery of the ring-shaped member in a state where the segments 3 are connected in the circumferential direction, and barrel tightened. In this case, the tension member 27a can use, for example, a steel wire coated with a resin such as epoxy.
 次に、他のプレキャスト構造体について説明する。図6は、プレキャスト構造体1aを示す図である。プレキャスト構造体1aはプレキャスト構造体1とほぼ同様であるが、セグメント3の周方向の連結部の一部に、結合突部7が設けられる。なお、プレキャスト構造体1と同様の機能を奏する構成については、プレキャスト構造体1と同一の符号を付し、重複する説明を省略する。 Next, other precast structures will be described. FIG. 6 is a diagram showing the precast structure 1a. The precast structure 1 a is substantially the same as the precast structure 1, but a coupling protrusion 7 is provided at a part of the connecting portion in the circumferential direction of the segment 3. In addition, about the structure which show | plays the function similar to the precast structure 1, the code | symbol same as the precast structure 1 is attached | subjected and the overlapping description is abbreviate | omitted.
 また、以下の説明において、一つまたは複数のセグメントからなる下方のセグメント連結体(図中矢印Dの部位)を下部セグメント3aと称し、複数のセグメントからなる上方のセグメント連結体(図中矢印Cの部位)を上部セグメント3bと称することとする。すなわち、プレキャスト構造体1aにおいて、下部セグメント3aおよび上部セグメント3bは、それぞれ、結合突部7を有する。結合突部7は、半円状の下部セグメント3aおよび上部セグメント3bの先端部に、一対形成される。 Further, in the following description, a lower segment connection body (indicated by an arrow D in the figure) composed of one or a plurality of segments is referred to as a lower segment 3a, and an upper segment connection body (indicated by an arrow C in the figure). Is referred to as the upper segment 3b. That is, in the precast structure 1a, the lower segment 3a and the upper segment 3b each have the coupling protrusion 7. A pair of coupling protrusions 7 is formed at the tip of the semicircular lower segment 3a and upper segment 3b.
 図7Aは、図6のE部におけるF矢視図であり、図7Bは、図7AのG-G線断面図である。下部セグメント3aと上部セグメント3bとを対向させて組み合わせると、結合突部7同士が対向して接触する。結合突部7には、上下に貫通する孔24が設けられる。なお、孔24の個数は、図示した例には限られない。 FIG. 7A is a view taken in the direction of arrow F in part E of FIG. 6, and FIG. 7B is a cross-sectional view taken along the line GG of FIG. 7A. When the lower segment 3a and the upper segment 3b are combined to face each other, the coupling protrusions 7 face each other and come into contact with each other. The coupling protrusion 7 is provided with a hole 24 penetrating vertically. The number of holes 24 is not limited to the illustrated example.
 下部セグメント3aの結合突部7の孔24と、上部セグメント3bの結合突部7の孔24とを略直線上に配置した状態で、孔24には、上下の結合突部7を貫通する緊張部材27bが挿通される。周方向に隣接する下部セグメント3aと上部セグメント3bの結合突部7同士の位置を合わせた状態で、緊張部材27bを結合突部7の上下面に定着することで、結合突部7同士が緊張部材27bで緊張される。 In a state where the hole 24 of the coupling protrusion 7 of the lower segment 3a and the hole 24 of the coupling protrusion 7 of the upper segment 3b are arranged on a substantially straight line, the hole 24 has a tension passing through the upper and lower coupling protrusions 7. The member 27b is inserted. By fixing the tension members 27b on the upper and lower surfaces of the coupling protrusion 7 in a state where the positions of the coupling protrusions 7 of the lower segment 3a and the upper segment 3b adjacent to each other in the circumferential direction are aligned, the coupling protrusions 7 are tensioned. The member 27b is tensioned.
 ここで、下部セグメント3aと上部セグメント3bの対向面(端面)には、止水部材9c、9d(図7B参照)が配置される。このように、周方向に連結された下部セグメント3aと上部セグメント3bを緊張部材27bで緊張して連結し、互いの接触面に2重に止水部材9c、9dを配置することで、下部セグメント3aと上部セグメント3bの接触面の止水性を確保することができる。 Here, water stop members 9c and 9d (see FIG. 7B) are arranged on the opposing surfaces (end surfaces) of the lower segment 3a and the upper segment 3b. In this way, the lower segment 3a and the upper segment 3b connected in the circumferential direction are connected by being tensioned by the tension member 27b, and the water stop members 9c and 9d are disposed on the contact surfaces of the lower segment 3a. It is possible to ensure the water stoppage of the contact surface between 3a and the upper segment 3b.
 また、プレキャスト構造体1aがアーチアクションを利用する際には、プレキャスト構造体1aの結合突部7付近では外周面側に引張力が付与される。しかし、結合突部7が、下部セグメント3a、上部セグメント3bの外周面に配置されるため、連結が容易であるのみではなく、プレキャスト構造体1aの外周面側に圧縮力を付与することができる。このため、下部セグメント3aと上部セグメント3bの接続部が開くことがなく、高い止水性を確保することができる。 Further, when the precast structure 1a uses the arch action, a tensile force is applied to the outer peripheral surface side in the vicinity of the coupling protrusion 7 of the precast structure 1a. However, since the coupling protrusion 7 is disposed on the outer peripheral surface of the lower segment 3a and the upper segment 3b, not only is the connection easy, but a compressive force can be applied to the outer peripheral surface side of the precast structure 1a. . For this reason, the connection part of the lower segment 3a and the upper segment 3b does not open, and a high water stoppage can be ensured.
 次に、さらに他のプレキャスト構造体について説明する。図8は、プレキャスト構造体1bを示す斜視図であり、図9は、正面図である。なお、図8、図9においては、緊張部材等の図示を省略する。 Next, still another precast structure will be described. FIG. 8 is a perspective view showing the precast structure 1b, and FIG. 9 is a front view. In addition, illustration of a tension member etc. is abbreviate | omitted in FIG. 8, FIG.
 プレキャスト構造体1bはプレキャスト構造体1aとほぼ同様であるが、さらにガイド突部8が設けられる点で異なる。なお、本実施形態において、プレキャスト構造体1aと同様の機能を奏する構成については、プレキャスト構造体1aと同一の符号を付し、重複する説明を省略する。 The precast structure 1b is substantially the same as the precast structure 1a, but is different in that a guide protrusion 8 is further provided. In addition, in this embodiment, about the structure which show | plays the function similar to the precast structure 1a, the code | symbol same as the precast structure 1a is attached | subjected, and the overlapping description is abbreviate | omitted.
 プレキャスト構造体1bは、下部セグメント3aと上部セグメント3bからなる。下部セグメント3aおよび上部セグメント3bは、アーチ形状を有する。なお、図示した例では、プレキャスト構造体1bが、二つのセグメント(下部セグメント3aと上部セグメント3b)からなる例を示すが、3つ以上のセグメントで構成されてもよい。すなわち、本実施形態においても、前述した実施形態と同様に、下部セグメント3a、上部セグメント3bを、それぞれ複数のセグメント3で構成してもよい。 The precast structure 1b includes a lower segment 3a and an upper segment 3b. The lower segment 3a and the upper segment 3b have an arch shape. In the illustrated example, the precast structure 1b is an example including two segments (the lower segment 3a and the upper segment 3b). However, the precast structure 1b may be composed of three or more segments. That is, also in the present embodiment, the lower segment 3a and the upper segment 3b may each be composed of a plurality of segments 3, as in the above-described embodiment.
 下部セグメント3aおよび上部セグメント3bは、それぞれ、第1の突部であるガイド突部8と、第2の突部である結合突部7を有する。ガイド突部8は、半円状の下部セグメント3aおよび上部セグメント3bの円弧上の部位に、一対形成される。また、結合突部7は、プレキャスト構造体1aと同様に、下部セグメント3aおよび上部セグメント3bの先端部に、一対形成される。 Each of the lower segment 3a and the upper segment 3b has a guide protrusion 8 that is a first protrusion and a coupling protrusion 7 that is a second protrusion. A pair of guide protrusions 8 are formed on the semicircular lower segment 3a and upper segment 3b on the arc. Further, like the precast structure 1a, a pair of coupling protrusions 7 are formed at the distal ends of the lower segment 3a and the upper segment 3b.
 図10は、図9のH部におけるI-I線断面図である。なお、図10においては、下部セグメント3aの例を示すが、上部セグメント3bも同様の構造である。ガイド突部8は、セグメント3の外周面に形成される。ガイド突部8は、セグメント3の幅方向(プレキャスト構造体1bの長手方向)の両側に形成される。すなわち、セグメント3同士を幅方向に隣接させた際に、互いのガイド突部8同士が対向して接触する。 FIG. 10 is a cross-sectional view taken along the line II in H part of FIG. Although FIG. 10 shows an example of the lower segment 3a, the upper segment 3b has the same structure. The guide protrusion 8 is formed on the outer peripheral surface of the segment 3. The guide protrusions 8 are formed on both sides of the segment 3 in the width direction (longitudinal direction of the precast structure 1b). That is, when the segments 3 are adjacent to each other in the width direction, the guide protrusions 8 face each other and contact each other.
 ガイド突部8には孔8aが形成される。幅方向に隣り合うセグメント3同士の孔8aの位置を合わせることで、互いの孔8aが略直線上に配列する。この状態で、幅方向に隣り合うセグメント3のガイド突部8のそれぞれの孔8aを貫通するように連結部材8bが挿通される。連結部材8bによって、ガイド突部8同士が連結する。 A hole 8 a is formed in the guide protrusion 8. By aligning the positions of the holes 8a of the segments 3 adjacent in the width direction, the holes 8a are arranged on a substantially straight line. In this state, the connecting member 8b is inserted through the holes 8a of the guide protrusions 8 of the segments 3 adjacent in the width direction. The guide protrusions 8 are connected to each other by the connecting member 8b.
 なお、連結部材8bによるセグメント3同士の連結は、セグメント3同士の位置決めを行うためのものである。すなわち、ガイド突部8は、セグメント3同士の長手方向の連結における位置決めガイドとして機能する。ガイド突部8が、セグメント3の外周面に配置されるため、位置決めが容易である。 In addition, the connection of the segments 3 by the connecting member 8b is for positioning the segments 3. That is, the guide protrusion 8 functions as a positioning guide for connecting the segments 3 in the longitudinal direction. Since the guide protrusion 8 is disposed on the outer peripheral surface of the segment 3, positioning is easy.
 また、前述したように、セグメント3には、幅方向に貫通する孔11が設けられる。孔11は、それぞれ周方向に略同一ピッチで設けられる。孔11は、セグメント3の厚み方向の略中央に設けられる。孔11には、緊張部材5が挿通される。緊張部材5は、複数のセグメント3を貫通する。前述した様に、先に、ガイド突部8によって、セグメント3同士の位置決めがなされているため、孔11が位置決めされ、緊張部材5の挿通が容易である。 As described above, the segment 3 is provided with the hole 11 penetrating in the width direction. The holes 11 are provided at substantially the same pitch in the circumferential direction. The hole 11 is provided at the approximate center in the thickness direction of the segment 3. The tension member 5 is inserted into the hole 11. The tension member 5 penetrates the plurality of segments 3. As described above, since the segments 3 are previously positioned by the guide protrusions 8, the holes 11 are positioned and the tension member 5 can be easily inserted.
 次に、プレキャスト構造体を用いた、地下構造物の施工方法について説明する。なお、以下の説明では、プレキャスト構造体1aを適用する例について説明するが、プレキャスト構造体1、1bを用いてもよい。この場合には、現場で全てのセグメント3を組み立ててもよく、予め一部またはすべてのセグメント3を連結して、リング状または半リング状の部材を現場で組み立ててもよい。 Next, the construction method of the underground structure using the precast structure will be described. In addition, although the following description demonstrates the example to which the precast structure 1a is applied, you may use the precast structure 1 and 1b. In this case, all the segments 3 may be assembled on site, or some or all of the segments 3 may be connected in advance to assemble a ring-shaped or semi-ring-shaped member on-site.
 図11Aは、下部セグメント3aを配置して連結する工程を示す図である。なお、以下の説明では、山留等の図示を省略する。下部セグメント3aは、予め複数のセグメント3によって構成され、開削部31の下方(地下)に敷設される。図11Aに示すように、開削部31には、所定の間隔で支保工33が配置される。したがって、下部セグメント3aは、支保工33の隙間からクレーンで吊降ろされる。開削部31の下部には、開削部31の長手方向に沿って、レール35が敷設される。 FIG. 11A is a diagram showing a process of arranging and connecting the lower segments 3a. In the following description, illustration of Yamatome etc. is omitted. The lower segment 3a is composed of a plurality of segments 3 in advance, and is laid below (under the ground) the excavation part 31. As shown in FIG. 11A, supporters 33 are arranged in the cut portion 31 at a predetermined interval. Therefore, the lower segment 3 a is suspended from the gap of the support 33 by the crane. A rail 35 is laid along the longitudinal direction of the cut portion 31 below the cut portion 31.
 クレーンによって、レール35上に配置された下部セグメント3aは、ウィンチ37によって、移動可能である(図中矢印J方向)。したがって、下部セグメント3aをすでに設置した下部セグメント3a方向に移動させて、長手方向に連結することができる。この際、下部セグメント3a同士の間には、止水部材9a、9bが配置されて、緊張部材5により緊張される。 The lower segment 3a arranged on the rail 35 by the crane can be moved by the winch 37 (in the direction of arrow J in the figure). Therefore, the lower segment 3a can be moved in the direction of the already installed lower segment 3a and connected in the longitudinal direction. At this time, the water stop members 9 a and 9 b are arranged between the lower segments 3 a and are tensioned by the tension member 5.
 所定長の下部セグメント3aの連結が終了すると、次に、図11Bに示すように、下部セグメント3aの周囲に、流動化処理土39を充填してもよい。 When the connection of the lower segment 3a having a predetermined length is completed, the fluidized soil 39 may be filled around the lower segment 3a as shown in FIG. 11B.
 図12は、図11BのK-K線断面図である。前述した様に、下部セグメント3aは、円弧状の形状であるため、開削部31の底面との隙間が大きく、流動化処理土39の充填が容易である。また、この際、下部セグメント3aの内部にも流動化処理土39が所定量の流動化処理土39を充填してもよい。このようにすることで、下部セグメント3a(プレキャスト構造体)の浮き上がりを防止することができるとともに、下部セグメント3a内の足場を確保することができる。このように設置された下部セグメント3aの少なくとも一部が流動化処理土39によって埋め戻される。 FIG. 12 is a cross-sectional view taken along the line KK of FIG. 11B. As described above, since the lower segment 3a has an arc shape, the gap with the bottom surface of the cut portion 31 is large, and the fluidized soil 39 can be easily filled. At this time, the fluidized soil 39 may be filled with a predetermined amount of fluidized soil 39 in the lower segment 3a. By doing in this way, the lower segment 3a (precast structure) can be prevented from being lifted, and a scaffold in the lower segment 3a can be secured. At least a part of the lower segment 3 a installed in this way is backfilled with the fluidized soil 39.
 次に、図13Aに示すように、予め複数のセグメント3によって構成される上部セグメント3bを吊降ろす。この際、図13Bに示すように、下部セグメント3a内部の流動化処理土39上には、レール35が敷設され、さらに、レール35上には、架台41が設置される。したがって、架台41は、レール35に沿って、開削部31の長手方向に移動可能である。 Next, as shown in FIG. 13A, the upper segment 3b composed of a plurality of segments 3 is suspended in advance. At this time, as shown in FIG. 13B, the rail 35 is laid on the fluidized soil 39 inside the lower segment 3 a, and the gantry 41 is further installed on the rail 35. Therefore, the gantry 41 is movable along the rail 35 in the longitudinal direction of the cut portion 31.
 クレーンによって、架台41上に上部セグメント3bを吊降ろすと、ウィンチ37によって、上部セグメント3bが載置された架台41を、すでに設置した上部セグメント3b方向に移動させて、下部セグメント3a同士を長手方向に連結することができる。この際、上部セグメント3b同士の間には、止水部材9a、9bが配置され、緊張部材5により緊張される。 When the upper segment 3b is suspended from the gantry 41 by the crane, the gantry 41 on which the upper segment 3b is placed is moved by the winch 37 in the direction of the upper segment 3b that has already been installed, and the lower segments 3a are moved in the longitudinal direction. Can be linked to. At this time, the water stop members 9 a and 9 b are arranged between the upper segments 3 b and are tensioned by the tension member 5.
 また、上部セグメント3bは、下部セグメント3aと連結される。この際、下部セグメント3aと上部セグメント3bの間には、止水部材9c、9dが配置される。このように、下部セグメント3aと上部セグメント3bを周方向および長手方向に連結することでプレキャスト構造体1aが構築される。 Further, the upper segment 3b is connected to the lower segment 3a. Under the present circumstances, the water stop members 9c and 9d are arrange | positioned between the lower segment 3a and the upper segment 3b. Thus, the precast structure 1a is constructed by connecting the lower segment 3a and the upper segment 3b in the circumferential direction and the longitudinal direction.
 図14は、このようにして構築された地下構造物43を示す図である。なお、地下構造物43は、地下トンネルである例を示すが、上下水貯留部や地下駐車場など、プレキャスト構造体の少なくとも一部が地下に埋設されて、地下に構築される構造物であれば、いずれにも適用可能である。また、プレキャスト構造体1、1a、1bは、略円形であってもよく、または、複数の円断面が連結した形態であってもよい。 FIG. 14 is a diagram showing the underground structure 43 constructed as described above. In addition, although the underground structure 43 shows the example which is an underground tunnel, at least one part of a precast structure, such as a water and sewage storage part and an underground parking lot, is buried underground, and is a structure built underground. Any of them can be applied. Further, the precast structures 1, 1a, 1b may be substantially circular, or may have a form in which a plurality of circular cross sections are connected.
 なお、プレキャスト構造体1aの止水性を確保するためには、図15Aに示すように、連結部に塗膜45を施してもよい。塗膜45は、例えば超速硬化ポリウレタン樹脂の吹付などによって形成される。例えば、セグメント3同士の長手方向の連結部の外周や、周方向の連結部(結合突部7の連結部)などに塗膜45が施される。 In addition, in order to ensure the water-stop property of the precast structure 1a, as shown in FIG. 15A, a coating film 45 may be applied to the connecting portion. The coating film 45 is formed, for example, by spraying an ultrafast curing polyurethane resin. For example, the coating film 45 is applied to the outer periphery of the connecting portion in the longitudinal direction between the segments 3, the connecting portion in the circumferential direction (the connecting portion of the coupling protrusion 7), or the like.
 図15Bは、図15AのM部におけるL-L線断面図である。プレキャスト構造体1aの下方においては、塗膜45の吹付が困難である。このため、下部セグメント3a同士の対向面にさらに防水シート47を挟み込んでもよい。また、塗膜45は、プレキャスト構造体1aの内面側に設けてもよい。このように、塗膜45等を用いれば、止水部材9a、9bなどを用いる場合と比較して、セグメント同士の位置精度が低くても、止水性を確保することができる。 FIG. 15B is a cross-sectional view taken along line LL in part M in FIG. 15A. It is difficult to spray the coating film 45 below the precast structure 1a. For this reason, the waterproof sheet 47 may be further sandwiched between the opposing surfaces of the lower segments 3a. Moreover, you may provide the coating film 45 in the inner surface side of the precast structure 1a. Thus, if the coating film 45 etc. are used, even if the positional accuracy of segments is low compared with the case where the water stop members 9a and 9b etc. are used, a water stop can be ensured.
 以上のように、本実施形態のプレキャスト構造体1、1a、1bによれば、プレキャスト構造体が、アーチ形状を有する複数のセグメント3からなるため、アーチアクションを利用することで部材を薄くすることができる。このため、工期を大幅に短縮することができる。 As described above, according to the precast structure 1, 1a, 1b of the present embodiment, the precast structure is composed of a plurality of segments 3 having an arch shape, so that the member is thinned by using the arch action. Can do. For this reason, a construction period can be shortened significantly.
 また、セグメント3同士が、周方向および長手方向に対して、止水部材を介して連結されるため、プレストレスの効果とあいまって、より高い止水性を確保することができる。 Moreover, since the segments 3 are connected to each other in the circumferential direction and the longitudinal direction via the water-stopping member, it is possible to secure higher water-stopping performance together with the effect of the prestress.
 また、セグメントの内部に、コンクリートの中空部が設けられるため、セグメントを軽量化することができる。このため、運搬や取扱いが容易である。また、セグメント3の幅を広くすることができるため、使用するセグメント3の個数を減らすことができる。この結果、セグメント3同士の接続部の数を減らして、止水性を向上することができるとともに、組み立て工数を削減することができる。    Also, since the concrete hollow is provided inside the segment, the segment can be reduced in weight. For this reason, transportation and handling are easy. Further, since the width of the segment 3 can be increased, the number of segments 3 to be used can be reduced. As a result, the number of connecting portions between the segments 3 can be reduced to improve the water stoppage, and the number of assembling steps can be reduced. *
 また、ガイド突部8を設ければ、セグメント3同士の長手方向の連結における位置決めガイドとして機能させることができ、セグメント3同士の位置決めが容易となる。さらに、互いに位置決めされたセグメント3の長手方向の全長にわたってプレストレスが付与されるため、止水性を高めることができる。 Also, if the guide protrusion 8 is provided, it can function as a positioning guide for connecting the segments 3 in the longitudinal direction, and positioning of the segments 3 is facilitated. Further, since prestress is applied over the entire length in the longitudinal direction of the segments 3 positioned relative to each other, it is possible to increase the water stoppage.
 また、セグメント同士を周方向に連結するための結合突部7を設け、緊張部材で緊張することで、周方向のセグメント3同士の接続部の止水性をさらに高めることができる。 Also, by providing the coupling protrusion 7 for connecting the segments in the circumferential direction and tensioning them with a tension member, the water stoppage of the connection part between the segments 3 in the circumferential direction can be further increased.
 次に、他の地下構造物の施工方法について説明する。図16Aは、地下構造物の施工工程を示す側面図、図16Bは図16AのO-O矢視図である。 Next, the construction method of other underground structures will be explained. 16A is a side view showing the construction process of the underground structure, and FIG. 16B is a view taken along the line OO in FIG. 16A.
 図16Aは、既設のリング状構造体10(P部)の長手方向の延長上にさらに底部セグメント4aが配置された状態を示す図である。なお、底部セグメント4a、側部セグメント4b、頂部セグメント4cを総称してセグメント3とする。 FIG. 16A is a diagram showing a state in which the bottom segment 4a is further arranged on the extension of the existing ring-shaped structure 10 (P portion) in the longitudinal direction. The bottom segment 4a, the side segment 4b, and the top segment 4c are collectively referred to as a segment 3.
 底部セグメント4a、側部セグメント4b、頂部セグメント4cは、プレキャストコンクリート製であり、それぞれアーチ形状を有する。底部セグメント4a、側部セグメント4b、頂部セグメント4cを周方向に連結することで、リング状構造体10を形成することができる。本実施形態では、リング状構造体10は、周方向に4分割され、底部セグメント4aと、一対の側部セグメント4bと、頂部セグメント4cが連結されて構成される。 The bottom segment 4a, the side segment 4b, and the top segment 4c are made of precast concrete and each have an arch shape. The ring-shaped structure 10 can be formed by connecting the bottom segment 4a, the side segment 4b, and the top segment 4c in the circumferential direction. In the present embodiment, the ring-shaped structure 10 is divided into four in the circumferential direction, and is configured by connecting a bottom segment 4a, a pair of side segments 4b, and a top segment 4c.
 まず、図16A、図16Bに示すように、地上から図示を省略したクレーン等によって開削部31に底部セグメント4aを設置する。なお、開削部31には、図示を省略した土留め壁および支保工が設置される。地下構造物の長手方向(図16Aの左右方向であって、各セグメントの周方向に垂直な幅方向)に隣り合う底部セグメント4a同士は、周方向の長さが異なる。 First, as shown in FIGS. 16A and 16B, the bottom segment 4a is installed on the excavation part 31 by a crane or the like not shown from the ground. In the excavation part 31, a retaining wall and a supporting work (not shown) are installed. The bottom segments 4a adjacent to each other in the longitudinal direction of the underground structure (the horizontal direction in FIG. 16A and the width direction perpendicular to the circumferential direction of each segment) have different circumferential lengths.
 底部セグメント4aの周方向端面には、止水部材2aが配置される。また、底部セグメント4aの幅方向(地下構造物の長手方向)端面には、孔11と凹部13が設けられる。地下構造物の長手方向(図16Aの左右方向)に隣り合う底部セグメント4a同士の孔11と凹部13は、互いに対応する位置に形成される。また、底部セグメント4aの幅方向端面には、止水部材2b(図4Aの止水部材9a、9bに相当する)が配置される。 The water stop member 2a is disposed on the circumferential end surface of the bottom segment 4a. Moreover, the hole 11 and the recessed part 13 are provided in the width direction (longitudinal direction of an underground structure) end surface of the bottom part segment 4a. The holes 11 and the recesses 13 of the bottom segments 4a adjacent to each other in the longitudinal direction of the underground structure (the left-right direction in FIG. 16A) are formed at positions corresponding to each other. Further, a water stop member 2b (corresponding to the water stop members 9a and 9b in FIG. 4A) is arranged on the end surface in the width direction of the bottom segment 4a.
 図17Aは、設置された底部セグメント4a上に、架台21を移動させた状態を示す図、図17Bは図17AのQ-Q矢視図である。底部セグメント4aの内面側(上面)には、レール9が設置される。レール9は、既設セグメント(リング状構造体10)内部のレール9と連続するように形成される。 FIG. 17A is a view showing a state in which the gantry 21 is moved on the installed bottom segment 4a, and FIG. 17B is a view taken along arrows QQ in FIG. 17A. A rail 9 is installed on the inner surface side (upper surface) of the bottom segment 4a. The rail 9 is formed so as to be continuous with the rail 9 inside the existing segment (ring-shaped structure 10).
 レール9上には架台21が設置される。架台21の下部には図示を省略したチルタンクなどが設けられ、架台21は底部セグメント4a上(レール9上)を移動可能である。したがって、図17Bに示すように、リング状構造体10の内部から、新たに設置された底部セグメント4a上に、架台21を移動させることができる(図中矢印R)。 The mount 21 is installed on the rail 9. A chill tank (not shown) is provided at the lower part of the gantry 21, and the gantry 21 can move on the bottom segment 4a (on the rail 9). Therefore, as shown in FIG. 17B, the gantry 21 can be moved from the inside of the ring-shaped structure 10 onto the newly installed bottom segment 4a (arrow R in the figure).
 架台21の先端部には、把持装置21aが設けられる。把持装置21aは、図示を省略した油圧ジャッキなどによって伸縮可能である。架台21をリング状構造体10内で移動させる際には、把持装置21aを引き戻すことで、把持装置21aとセグメント3の干渉を防止することができる。 A gripping device 21 a is provided at the tip of the gantry 21. The gripping device 21a can be expanded and contracted by a hydraulic jack or the like (not shown). When moving the gantry 21 within the ring-shaped structure 10, the gripping device 21a can be pulled back to prevent interference between the gripping device 21a and the segment 3.
 図18Aは、設置された底部セグメント4a上に、側部セグメント4bを設置した状態を示す図、図18Bは図18AのS-S矢視図である。図18A、図18Bに示すように、地上から図示を省略したクレーン等によって底部セグメント4a上に側部セグメント4bを設置する。この際、図18Bに示すように、一部の把持装置21aを伸長させて(図中矢印T)、把持装置21aによって側部セグメント4bを支持する。すなわち、把持装置21aによって、側部セグメント4bの位置決めがなされる。 18A is a view showing a state in which the side segment 4b is installed on the installed bottom segment 4a, and FIG. 18B is a view taken along the line SS in FIG. 18A. As shown in FIGS. 18A and 18B, the side segment 4b is installed on the bottom segment 4a by a crane or the like not shown from the ground. At this time, as shown in FIG. 18B, a part of the gripping device 21a is extended (arrow T in the figure), and the side segment 4b is supported by the gripping device 21a. That is, the side segment 4b is positioned by the gripping device 21a.
 前述した止水部材2aは、底部セグメント4aの周方向端面と側部セグメント4bの周方向端面とで挟まれる。また、側部セグメント4bの逆側の周方向端面には、新たに止水部材2aが配置される。 The water stop member 2a described above is sandwiched between the circumferential end surface of the bottom segment 4a and the circumferential end surface of the side segment 4b. Moreover, the water stop member 2a is newly arrange | positioned at the circumferential direction end surface of the reverse side of the side part segment 4b.
 側部セグメント4bの幅方向(地下構造物の長手方向)端面には、底部セグメント4aと同様に、孔11と凹部13が設けられる。また、側部セグメント4bの幅方向端面には、止水部材2bが配置される。地下構造物の長手方向(図18Aの左右方向)に隣り合う側部セグメント4b同士の孔11と凹部13は、互いに対応する位置に形成される。 The hole 11 and the recessed part 13 are provided in the width direction (longitudinal direction of an underground structure) end face of the side segment 4b similarly to the bottom segment 4a. Moreover, the water stop member 2b is arrange | positioned at the width direction end surface of the side part segment 4b. The holes 11 and the recesses 13 of the side segments 4b adjacent to each other in the longitudinal direction of the underground structure (left and right direction in FIG. 18A) are formed at positions corresponding to each other.
 図19Aは、設置された側部セグメント4b上にさらに頂部セグメント4cを設置した状態を示す図、図19Bは図19AのU-U矢視図である。図19A、図19Bに示すように、地上から図示を省略したクレーン等によって側部セグメント4b上に頂部セグメント4cを設置する。この際、図19Bに示すように、把持装置21aを伸長させて(図中矢印V)、把持装置21aによって頂部セグメント4cを支持する。すなわち、把持装置21aによって、頂部セグメント4cの位置決めがなされる。 FIG. 19A is a diagram showing a state where the top segment 4c is further installed on the installed side segment 4b, and FIG. 19B is a view taken along the line U-U in FIG. 19A. As shown in FIGS. 19A and 19B, the top segment 4c is installed on the side segment 4b by a crane or the like not shown from the ground. At this time, as shown in FIG. 19B, the gripping device 21a is extended (arrow V in the figure), and the top segment 4c is supported by the gripping device 21a. That is, the top segment 4c is positioned by the gripping device 21a.
 前述した止水部材2aは、側部セグメント4bの周方向端面と頂部セグメント4cの周方向端面とで挟まれる。 The water-stop member 2a described above is sandwiched between the circumferential end surface of the side segment 4b and the circumferential end surface of the top segment 4c.
 頂部セグメント4cの幅方向(地下構造物の長手方向)端面には、底部セグメント4a等と同様に、孔11と凹部13が設けられる。また、頂部セグメント4cの幅方向端面には、止水部材2bが配置される。地下構造物の長手方向(図19Aの左右方向)に隣り合う頂部セグメント4c同士の孔11と凹部13は、互いに対応する位置に形成される。 The hole 11 and the recessed part 13 are provided in the width direction (longitudinal direction of an underground structure) end surface of the top segment 4c similarly to the bottom segment 4a. Moreover, the water stop member 2b is arrange | positioned at the width direction end surface of the top segment 4c. The hole 11 and the recessed part 13 of the top segments 4c adjacent to each other in the longitudinal direction of the underground structure (the left-right direction in FIG. 19A) are formed at positions corresponding to each other.
 このようにして、底部セグメント4a、側部セグメント4b、頂部セグメント4cを、止水部材2aを介して周方向に配置することで、セグメント3をリング状にすることができる。 Thus, the segment 3 can be formed in a ring shape by arranging the bottom segment 4a, the side segment 4b, and the top segment 4c in the circumferential direction via the water stop member 2a.
 なお、地下構造物の長手方向に隣り合う頂部セグメント4c同士は、周方向の長さが異なる。例えば、底部セグメント4aと頂部セグメント4cの周方向長さの和が同じになるように、地下構造物の長手方向に交互に、長短の底部セグメント4aと頂部セグメント4cを組み合わせることで、周方向のセグメント3同士の連結部の位置をずらすことができる。 Note that the top segments 4c adjacent to each other in the longitudinal direction of the underground structure have different circumferential lengths. For example, by combining the long and short bottom segments 4a and the top segments 4c alternately in the longitudinal direction of the underground structure so that the sum of the circumferential lengths of the bottom segment 4a and the top segment 4c is the same, The position of the connecting portion between the segments 3 can be shifted.
 図20Aは、リング状に配置されたセグメント3に対して緊張部材5aを配置した状態を示す図、図20Bは図20AのW-W矢視図である。各セグメント3の内部には、周方向に円弧状の形状に沿って、シースが配置される。シースは、リング状に配置されたセグメントの周方向に連続するように配置される。シースには、緊張部材5aが挿通される。ジャッキ等によって緊張部材5aを緊張することで、リング状に配置されたセグメント3の周方向にプレストレスを付与し、リング状構造体10を構築することができる。この際、プレストレスによって、各セグメント間の止水部材2aが圧縮されて、確実に周方向の止水を確保することができる。 20A is a view showing a state in which the tension members 5a are arranged with respect to the segments 3 arranged in a ring shape, and FIG. 20B is a view taken along the line WW in FIG. 20A. A sheath is disposed inside each segment 3 along an arc shape in the circumferential direction. The sheath is arranged so as to be continuous in the circumferential direction of the segments arranged in a ring shape. The tension member 5a is inserted through the sheath. By tensioning the tension member 5a with a jack or the like, prestress can be applied in the circumferential direction of the segments 3 arranged in a ring shape, and the ring-shaped structure 10 can be constructed. Under the present circumstances, the water stop member 2a between each segment is compressed by prestress, and the water stop of the circumferential direction can be ensured reliably.
 同様の手順によって、周方向にプレストレスが付与されたリング状構造体10を所定数形成する。 A predetermined number of ring-shaped structures 10 to which prestress is applied in the circumferential direction are formed by the same procedure.
 図21Aは、この様にして、長手方向に隣接する所定数のリング状構造体10に、緊張部材5を配置した状態を示す図である。それぞれのリング状構造体10の周方向の対応する部位には、長手方向に貫通する孔11が形成される。孔11には、緊張部材5が挿通され、端部側のセグメント3の端面に配置されたジャッキ17と接続される。緊張部材5の他方の端部は、既設のリング状構造体10の緊張部材5と連結される。 FIG. 21A is a diagram showing a state in which the tension members 5 are arranged in a predetermined number of ring-shaped structures 10 adjacent in the longitudinal direction in this way. A hole 11 penetrating in the longitudinal direction is formed in a corresponding portion in the circumferential direction of each ring-shaped structure 10. The tension member 5 is inserted into the hole 11 and connected to a jack 17 disposed on the end surface of the segment 3 on the end side. The other end of the tension member 5 is connected to the tension member 5 of the existing ring-shaped structure 10.
 また、各リング状構造体10同士の間(既設のリング状構造体10との間も含む)には、止水部材2bが配置される。 Further, a water-stop member 2b is disposed between the ring-shaped structures 10 (including the existing ring-shaped structures 10).
 図21Bに示すように、ジャッキ17によって緊張部材5を緊張することで(図中矢印X)、長手方向に隣接する所定数のリング状構造体10の長手方向に、プレストレスを付与することができる。この際、プレストレスによって、各リング状構造体10間の止水部材2bが圧縮されて、確実に長手方向の止水を確保することができる。 As shown in FIG. 21B, by tensioning the tension member 5 with the jack 17 (arrow X in the figure), prestress can be applied in the longitudinal direction of a predetermined number of ring-shaped structures 10 adjacent in the longitudinal direction. it can. Under the present circumstances, the water stop member 2b between each ring-shaped structure 10 is compressed by prestress, and the water stop of a longitudinal direction can be ensured reliably.
 図22Aは、架台21の端部を示す図である。前述したように、架台21の端部には、把持装置21aが設けられる。また、架台21には、作業足場21bが設けられる。ここで、架台21の一部は、外方に向けて伸縮可能であり、図22Bに示すように、作業足場21bを外側に伸ばすことが可能である(図中矢印Y)。 FIG. 22A is a diagram showing an end portion of the gantry 21. As described above, the gripping device 21 a is provided at the end of the gantry 21. Further, the platform 21 is provided with a work scaffold 21b. Here, a part of the gantry 21 can be expanded and contracted outward, and as shown in FIG. 22B, the work scaffold 21b can be extended outward (arrow Y in the figure).
 架台21をリング状構造体10の内部で移動させる際には、架台21の一部(作業足場21b)を縮めることで、架台21とセグメント3の内面との干渉を防ぐことができる。また、架台21をリング状構造体10の外部に移動した際には、架台21の作業足場21bをリング状構造体10の端面位置まで外方に伸ばすことが可能である。このようにすることで、例えば、セグメント3の端面にジャッキ17を配置したり、緊張部材5を緊張する際には、作業足場21bをセグメント3の端面まで伸ばすことで、作業が容易となる。 When moving the gantry 21 inside the ring-shaped structure 10, interference between the gantry 21 and the inner surface of the segment 3 can be prevented by shrinking a part of the gantry 21 (working scaffold 21 b). Further, when the gantry 21 is moved to the outside of the ring-shaped structure 10, the work scaffold 21 b of the gantry 21 can be extended outward to the end surface position of the ring-shaped structure 10. By doing so, for example, when the jack 17 is disposed on the end surface of the segment 3 or when the tension member 5 is tensioned, the work scaffold 21b is extended to the end surface of the segment 3, thereby facilitating the work.
 なお、架台21の先端部の伸縮機構は、図示した様なスライド機構であってもよいが、折り畳み式などであってもよい。 It should be noted that the expansion / contraction mechanism at the tip of the gantry 21 may be a slide mechanism as illustrated, but may also be a foldable type.
 図23Aは、隣り合うリング状構造体10の部分断面図である。なお、簡単のため、二つのリング状構造体10同士の対向部のみを図示する。前述した様に、セグメント3の幅方向端面には、凹部13が形成される。凹部13は、隣り合うリング状構造体10の対応する部位に形成されるため、隣り合うリング状構造体10同士の対向部において、凹部13同士によって空間が形成される。 FIG. 23A is a partial cross-sectional view of adjacent ring-shaped structures 10. For simplicity, only the facing portion between the two ring-shaped structures 10 is illustrated. As described above, the recess 13 is formed on the end surface in the width direction of the segment 3. Since the recessed part 13 is formed in the site | part corresponding to the adjacent ring-shaped structure 10, a space is formed by the recessed parts 13 in the opposing part of adjacent ring-shaped structure 10.
 それぞれの凹部13には、セグメント3の内面または外面に連通する注入口が設けられる。したがって、図23Bに示すように、リング状構造体10同士を地下構造物の長手方向に連結した状態で、一方の注入口から凹部13の内部の空間に充填材23を充填することができる。 Each inlet 13 is provided with an inlet that communicates with the inner or outer surface of the segment 3. Therefore, as shown in FIG. 23B, the filler 23 can be filled into the space inside the recess 13 from one injection port in a state where the ring-shaped structures 10 are connected to each other in the longitudinal direction of the underground structure.
 充填材は、例えばモルタルなどであり、凹部13の内部に充填した後、所定時間で固化させることができる。このように、凹部13に充填材23を充填させて固化させることで、充填材23がキー材として機能し、地下構造物のせん断力に対するリング状構造体10同士のずれを防止することができる。 The filler is, for example, mortar, and can be solidified in a predetermined time after filling the recess 13. In this way, by filling the recess 13 with the filler 23 and solidifying it, the filler 23 functions as a key material, and it is possible to prevent the ring-shaped structures 10 from shifting with respect to the shearing force of the underground structure. .
 ここで、本発明で使用されるセグメント3は、リング内径が同等な場合のシールド工法などで使用されるセグメントと比較して大型である。このような大型のコンクリート製のセグメントを製造するためには、型枠の支保工のサイズなどの問題から、従来のセグメントとは異なり、セグメントの幅方向の端面を上下方向に向けて製造する必要がある。したがって、製造時に上面側となるセグメントの幅方向端面は、型枠によって精度を出すことが困難である。 Here, the segment 3 used in the present invention is larger than the segment used in the shield method when the ring inner diameter is the same. In order to manufacture such a large concrete segment, unlike the conventional segment, it is necessary to manufacture the segment with the end face in the width direction facing up and down due to the size of the formwork support. There is. Therefore, it is difficult for the end surface in the width direction of the segment that becomes the upper surface side during manufacturing to be accurate with the mold.
 このような場合において、例えば金属製のキー材を凹部13に嵌め合せようとすると、対向する凹部13同士の位置やサイズの精度によって、キー材を嵌め合わせることが困難となる場合がある。しかし、キー材を小さめに作成したのでは、位置ずれ防止の効果が小さくなる。 In such a case, for example, if a metal key material is to be fitted into the recess 13, it may be difficult to fit the key material depending on the position and size accuracy of the opposed recesses 13. However, if the key material is made smaller, the effect of preventing displacement will be reduced.
 これに対し、本実施形態では、セグメント同士を組み合わせて連結した後に、キー材となる充填材23を、外部から凹部13に充填して固化させる。このため、凹部13の位置などの精度が多少悪くても、確実に位置ずれを防止することができる。 On the other hand, in this embodiment, after the segments are combined and connected, the filling material 23 serving as the key material is filled into the recess 13 from the outside and solidified. For this reason, even if the accuracy such as the position of the concave portion 13 is somewhat poor, it is possible to reliably prevent the positional deviation.
 以上の工程を繰り返し、所定長さにリング状構造体10を連結し、リング状構造体10の周囲の開削部31を埋め戻すことで、地下構造物を施工することができる。なお、リング状構造体10の浮き上がり防止のために、開削部31の下部の地盤に対して、リング状構造体10をアンカ等で固定してもよい。 By repeating the above steps, the ring-shaped structure 10 is connected to a predetermined length, and the excavation part 31 around the ring-shaped structure 10 is backfilled, whereby the underground structure can be constructed. In addition, in order to prevent the ring-shaped structure 10 from being lifted, the ring-shaped structure 10 may be fixed to the ground below the cut portion 31 with an anchor or the like.
 以上、本実施の形態によれば、リング状構造体10が、アーチ形状を有する複数のセグメント3からなり、アーチアクションを利用することで部材を薄くすることができる。このため、地下構造物の施工にかかる工期を大幅に短縮することができる。 As mentioned above, according to this Embodiment, the ring-shaped structure 10 consists of the some segment 3 which has an arch shape, and a member can be made thin by utilizing an arch action. For this reason, the construction period concerning construction of an underground structure can be significantly shortened.
 また、セグメント3同士の連結面には止水部材2a、2bが設けられ、セグメント3同士は、周方向および長手方向に止水部材2a、2bを介して連結される。このように、セグメント3の周方向および長手方向の対向面に、止水部材2a、2bが配置されるため、それぞれプレストレスが付与される際に止水部材2a、2bが圧縮されて、止水性を確保することができる。 Moreover, the water stop members 2a and 2b are provided on the connecting surfaces of the segments 3, and the segments 3 are connected to each other via the water stop members 2a and 2b in the circumferential direction and the longitudinal direction. Thus, since the water stop members 2a and 2b are disposed on the circumferential surfaces and the longitudinal direction of the segment 3, the water stop members 2a and 2b are compressed when prestress is applied, respectively. Aqueous property can be secured.
 また、セグメント3上を移動する架台21を用いて、セグメント3の組み立て作業などを行うことができるため、作業が容易である。また、架台21の先端の作業足場が伸縮することで、セグメント3の幅方向端面における作業も容易である。 Also, since the assembly work of the segment 3 can be performed using the mount 21 that moves on the segment 3, the work is easy. Further, the work scaffold at the tip of the gantry 21 is expanded and contracted, so that the work on the end face in the width direction of the segment 3 is easy.
 また、セグメント3の幅方向端面同士の対向部に、凹部13が形成され、長手方向に隣接する所定数のリング状構造体10を連結した後、凹部13に外部から充填材23を充填し、固化することで、リング状構造体10同士のずれを防止することができる。 Moreover, the recessed part 13 is formed in the opposing part of the width direction end surfaces of the segment 3, and after connecting the predetermined number of ring-shaped structures 10 adjacent to a longitudinal direction, the recessed part 13 is filled with the filler 23 from the outside, By solidifying, the shift between the ring-shaped structures 10 can be prevented.
 また、リング状構造体10が周方向に4分割される場合において、長手方向に隣り合うリング状構造体10に対し、底部セグメント4a同士および頂部セグメント4c同士の長さが異なるようにすることで、セグメント3同士の周方向の連結部の位置をずらすことができる。 Moreover, when the ring-shaped structure 10 is divided into four in the circumferential direction, the lengths of the bottom segments 4a and the top segments 4c are different from each other with respect to the ring-shaped structures 10 adjacent in the longitudinal direction. The positions of the connecting portions in the circumferential direction between the segments 3 can be shifted.
 なお、リング状構造体10は、4分割には限られず、複数に分割されていればよい。また、リング状構造体10の長手方向の連結数は、図示した例には限られない。 Note that the ring-shaped structure 10 is not limited to four divisions, and may be divided into a plurality of divisions. Moreover, the number of connections in the longitudinal direction of the ring-shaped structure 10 is not limited to the illustrated example.
 次に、他の地下構造物の施工方法について説明する。図24Aは、開削部ではなく、例えば地上においてセグメント3を連結した状態を示す側面図であり、図24Bは平面図である。本実施形態では、リング状構造体10の組み立て作業が、開削部の外で行われる。 Next, the construction method of other underground structures will be explained. FIG. 24A is a side view showing a state in which the segments 3 are connected, for example, on the ground instead of the excavated portion, and FIG. 24B is a plan view. In this embodiment, the assembly work of the ring-shaped structure 10 is performed outside the cut-out portion.
 まず、移動可能な架台22上において、底部セグメント4a、側部セグメント4b、頂部セグメント4cを寝かせた状態で配置する。リング状に配置された状態で、周方向のシースに緊張部材5aを挿通し、周方向にプレストレスを付与する。なお、各セグメント3の周方向の端面には、止水部材2aが配置される。すなわち、アーチ形状を有する複数のセグメント3同士が、周方向に止水部材2aを介してリング状に連結されて、周方向にプレストレスが付与されることで、リング状構造体10が構築される。 First, on the movable frame 22, the bottom segment 4a, the side segment 4b, and the top segment 4c are placed in a laid state. In a state of being arranged in a ring shape, the tension member 5a is inserted into the circumferential sheath, and prestress is applied in the circumferential direction. In addition, the water stop member 2a is arrange | positioned at the end surface of the circumferential direction of each segment 3. As shown in FIG. That is, the plurality of segments 3 having an arch shape are connected in a ring shape in the circumferential direction via the water stop member 2a, and prestress is applied in the circumferential direction, whereby the ring-shaped structure 10 is constructed. The
 図25Aは、セグメント3を開削部31に配置する工程を示す図である。リング状構造体10は、開削部31の下方(地下)に設置された架台22a上に配置される。なお、図25Aに示すように、開削部31には、所定の間隔で支保工が配置され、リング状構造体10は、支保工の隙間からクレーンで吊降ろされる。 FIG. 25A is a diagram showing a process of arranging the segment 3 in the cut-out part 31. The ring-shaped structure 10 is disposed on a gantry 22 a installed below (underground) the excavation part 31. In addition, as shown to FIG. 25A, a support work is arrange | positioned at the predetermined | prescribed space | interval in the excavation part 31, and the ring-shaped structure 10 is suspended with the crane from the clearance gap between support works.
 クレーンによって、架台22a上に配置されたリング状構造体10は、図25Bに示すように、既設のリング状構造体10の方向に移動可能である(図中矢印Z方向)。したがって、架台22aに配置したリング状構造体10をすでに設置されたリング状構造体10方向に移動させて、長手方向に連結することができる。この際、リング状構造体10同士の間には、止水部材2bが配置されて、緊張部材5により緊張される。 The ring-shaped structure 10 disposed on the gantry 22a can be moved by the crane in the direction of the existing ring-shaped structure 10 (in the direction of arrow Z in the figure) as shown in FIG. 25B. Therefore, the ring-shaped structure 10 arranged on the gantry 22a can be moved in the direction of the already-installed ring-shaped structure 10 and connected in the longitudinal direction. At this time, the water stop member 2 b is disposed between the ring-shaped structures 10 and is tensioned by the tension member 5.
 なお、この場合でも、セグメントの内部を移動可能な架台21を用いることで、止水部材2bの設置や、緊張部材5の緊張作業を容易に行うことができる。 Even in this case, the installation of the water stop member 2b and the tension work of the tension member 5 can be easily performed by using the gantry 21 that can move inside the segment.
 以上、本実施の形態によれば、前述した施工方法と同様の効果を得ることができる。 As mentioned above, according to this Embodiment, the effect similar to the construction method mentioned above can be acquired.
 なお、本発明で施工される地下構造物は、例えば、地下トンネル、上下水貯留部や地下駐車場など、地下に埋設されて、地下に構築される構造物であれば、いずれにも適用可能である。 The underground structure constructed according to the present invention can be applied to any structure that is buried underground and constructed underground, such as underground tunnels, water supply and sewage storage units and underground parking lots. It is.
 また、図26に示すように、地下構造物としては、リング状構造体10同士を、長手方向に垂直な方向(例えば、図示したように横方向であってもよく、上下方向であってもよい)に複数連結してもよい。この場合には、それぞれのリング状構造体10同士の間に、連結部25を形成し、連結部25によって囲まれる空間には、リング状構造体10の一部に開口部を形成してもよい。この様にすることで、隣り合うリング状構造体10の内部を連通させ、例えば通路として利用することもできる。 In addition, as shown in FIG. 26, as the underground structure, the ring-shaped structures 10 may be arranged in a direction perpendicular to the longitudinal direction (for example, in the horizontal direction as illustrated, or in the vertical direction). May be connected to each other. In this case, a connecting portion 25 may be formed between the ring-shaped structures 10, and an opening may be formed in a part of the ring-shaped structure 10 in a space surrounded by the connecting portions 25. Good. By doing in this way, the inside of the adjacent ring-shaped structure 10 can be connected, for example, can also be utilized as a channel | path.
 次に、海底トンネルの施工方法について説明する。図27は、トンネル51の長手方向の概略断面図である。トンネル51は、海底トンネル部53と陸上トンネル部55とが連結して構成される。 Next, the construction method of the submarine tunnel will be explained. FIG. 27 is a schematic cross-sectional view of the tunnel 51 in the longitudinal direction. The tunnel 51 is configured by connecting a submarine tunnel portion 53 and a land tunnel portion 55.
 海底トンネル部53は、海底61の下部に埋設される。海底トンネル部53と陸上トンネル部55とは接続部59で接続される。接続部59は、例えば、換気塔を兼ねる。本発明のトンネル51は、少なくとも海底トンネル部53が、複数のプレキャスト構造体57が連結されて構成される。プレキャスト構造体57は、プレキャスト構造体1、1a、1bの端面の開口部が塞がれたものである。なお、プレキャスト構造体57は、略円形であってもよく、または、複数の円断面が連結した形態であってもよい。 The submarine tunnel 53 is buried under the seabed 61. The submarine tunnel portion 53 and the land tunnel portion 55 are connected by a connection portion 59. The connection part 59 serves as a ventilation tower, for example. The tunnel 51 of the present invention is configured by connecting at least a submarine tunnel portion 53 with a plurality of precast structures 57. The precast structure 57 is formed by closing the openings on the end faces of the precast structures 1, 1a, and 1b. Note that the precast structure 57 may have a substantially circular shape, or may have a form in which a plurality of circular cross sections are connected.
 プレキャスト構造体57は、海底61に埋設される。例えば、プレキャスト構造体57は、砕石で埋設される。この場合、海底61を所定深さまで掘削した後、所定の厚みで砕石を配置し、その上にプレキャスト構造体57を沈設した後、プレキャスト構造体57の全体を砕石で埋設すればよい。また、必要に応じて、砕石を敷設する下部の地盤に対して地盤改良を行ってもよい。 The precast structure 57 is embedded in the seabed 61. For example, the precast structure 57 is buried with crushed stone. In this case, after excavating the seabed 61 to a predetermined depth, the crushed stone is disposed with a predetermined thickness, and the precast structure 57 is sunk thereon, and then the entire precast structure 57 is buried with the crushed stone. Moreover, you may perform ground improvement with respect to the lower ground which lays a crushed stone as needed.
 まず、図28Aに示すように、海底トンネル部53が施工される海底トンネル施工範囲53aと、陸上トンネル部55が施工される陸上トンネル施工範囲55aとの間に、鋼管矢板筒79を施工する。鋼管矢板筒79は、複数の鋼管矢板が連結されて形成される。なお、鋼管矢板筒79は、海底トンネル部53と陸上トンネル部55との接続部59(図27参照)よりも深く形成される。 First, as shown in FIG. 28A, a steel pipe sheet pile cylinder 79 is constructed between a submarine tunnel construction area 53a in which the submarine tunnel section 53 is constructed and a land tunnel construction area 55a in which the land tunnel section 55 is constructed. The steel pipe sheet pile cylinder 79 is formed by connecting a plurality of steel pipe sheet piles. The steel pipe sheet pile cylinder 79 is formed deeper than the connection part 59 (see FIG. 27) between the submarine tunnel part 53 and the land tunnel part 55.
 鋼管矢板筒79で囲まれた内部の地盤は掘削されて、所定の深さに底版83が施工される。底版83は、接続部59(図27参照)が施工される部位である。すなわち、底版83は、海底トンネル部53と、陸上トンネル部55とが接続される部位よりも深い位置に形成される。 The inner ground surrounded by the steel pipe sheet pile cylinder 79 is excavated, and the bottom plate 83 is constructed to a predetermined depth. The bottom plate 83 is a part where the connecting portion 59 (see FIG. 27) is constructed. That is, the bottom plate 83 is formed at a position deeper than a portion where the submarine tunnel portion 53 and the land tunnel portion 55 are connected.
 鋼管矢板筒79よりも陸側である陸上トンネル施工範囲55aの所定の範囲には製作ヤード89が施工される。製作ヤード89は、陸上トンネル施工範囲55aの一部の地盤を開削することで形成される。製作ヤード89の深さは、水面よりも低ければ、陸上トンネルを施工する深さまで開削する必要はない。すなわち、製作ヤード89は、陸上トンネル施工範囲55aの全体を利用して形成してもよく、陸上トンネル施工範囲55aの一部のみを利用して陸上トンネル施工範囲55aよりも小さい範囲に形成してもよい。なお、前述した底版83の施工は、製作ヤード89の施工と同時に行ってもよい。 The production yard 89 is constructed in a predetermined range of the land tunnel construction range 55a on the land side of the steel pipe sheet pile cylinder 79. The production yard 89 is formed by excavating part of the ground in the land tunnel construction range 55a. If the depth of the production yard 89 is lower than the water surface, it is not necessary to cut to the depth for constructing the land tunnel. That is, the production yard 89 may be formed using the entire land tunnel construction range 55a, or may be formed in a range smaller than the land tunnel construction range 55a using only a part of the land tunnel construction range 55a. Also good. The above-described construction of the bottom plate 83 may be performed simultaneously with the construction of the production yard 89.
 製作ヤード89は鋼管矢板筒79まで形成される。製作ヤード89の側面には、山留が設けられる。すなわち、山留は鋼管矢板筒79に接合される。また、鋼管矢板筒79の一部を切除して、プレキャスト構造体57の通路を形成する。すなわち、製作ヤード89と海とが連通する。なお、鋼管矢板筒79の海に面した面には、ゲート85が形成されるため、ゲート85よりも陸側の製作ヤード89へ海水が流入することが防止される。 The production yard 89 is formed up to the steel pipe sheet pile cylinder 79. On the side of the production yard 89, a mountain stop is provided. That is, the pile is joined to the steel pipe sheet pile cylinder 79. Further, a part of the steel pipe sheet pile cylinder 79 is cut out to form a passage of the precast structure 57. That is, the production yard 89 communicates with the sea. In addition, since the gate 85 is formed in the surface facing the sea of the steel pipe sheet pile cylinder 79, it is prevented that seawater flows into the production yard 89 on the land side of the gate 85.
 ドライドッグとして機能する製作ヤード89において、プレキャスト構造体57が組み立てられる。なお、プレキャスト構造体57の内部には、例えばバラストが設けられる。また、プレキャスト構造体57の両端部は塞がれる。 In the production yard 89 that functions as a dry dog, the precast structure 57 is assembled. For example, a ballast is provided inside the precast structure 57. Further, both end portions of the precast structure 57 are closed.
 プレキャスト構造体57の組み立てが完了すると、図28Aに示すように、ゲート85を開き、製作ヤード89内に、海水を導入する。なお、ゲート85の素材は、例えば鉄やコンクリート(プレキャスト)などであり、ゲート85は、大型重機などで引き上げる方法や、仮設水門のような方法で開閉される。 When the assembly of the precast structure 57 is completed, the gate 85 is opened and seawater is introduced into the production yard 89 as shown in FIG. 28A. The material of the gate 85 is, for example, iron or concrete (precast), and the gate 85 is opened and closed by a method of pulling up with a large heavy machine or a method of a temporary sluice gate.
 海面に浮上したプレキャスト構造体57は、図28Bに示すように、曳航船によって海側に曳航される(図中矢印N)。すなわち、プレキャスト構造体57は、製作ヤード89から沈設場所の海上まで曳航されて移動する。なお、ゲート85は、図示したように、上下に移動させる形態ではなく、両開きなどの形態でも良い。 As shown in FIG. 28B, the precast structure 57 that has surfaced on the sea surface is towed to the sea side by the tow ship (arrow N in the figure). That is, the precast structure 57 is towed and moved from the production yard 89 to the sea of the installation site. As shown in the figure, the gate 85 may not be moved up and down, but may be double open.
 海上に曳航されたプレキャスト構造体57は、沈設場所まで曳航される。この際、前述した様に、プレキャスト構造体57の沈設場所の海底61は、予め所定の深さまで掘削されて、前述した様に砕石が敷設される。なお、海底61を掘削して砕石が敷設された底を、海底61aとする。すなわち、プレキャスト構造体57は海底61aに沈設される。 The precast structure 57 towed to the sea is towed to the settling site. At this time, as described above, the seabed 61 where the precast structure 57 is set is excavated in advance to a predetermined depth, and crushed stone is laid as described above. The bottom where the seabed 61 is excavated and crushed stone is laid is defined as the seabed 61a. That is, the precast structure 57 is set on the seabed 61a.
 プレキャスト構造体57を沈設場所まで曳航した後、バラストに水を導入し、プレキャスト構造体57を沈設する。以上により、所望の場所の海底61aにプレキャスト構造体57を沈設することができる。なお、この時点で、例えばプレキャスト構造体57の通路部分(鋼管矢板筒79の上部)を除いて、底版83上に例えばケーソン等によって、接続部59(図27参照)の一部を構築してもよい。 After towing the precast structure 57 to the settling location, water is introduced into the ballast to set the precast structure 57. As described above, the precast structure 57 can be deposited on the seabed 61a at a desired location. At this time, a part of the connecting portion 59 (see FIG. 27) is constructed on the bottom plate 83 by, for example, caisson or the like, excluding the passage portion of the precast structure 57 (upper portion of the steel pipe sheet pile cylinder 79), for example. Also good.
 以上のプレキャスト構造体57の製造、曳航および沈設を繰り返す。複数のプレキャスト構造体57を沈設した後、隣り合うプレキャスト構造体57同士を接続する。なお、プレキャスト構造体57同士の接続には、通常のセグメント同士を連結できれば、いずれの構造であってもよい。また、全てのプレキャスト構造体57が鋼管矢板筒79の部位を通過した後、接続部59(図27参照)を地上まで完成させる。このように、プレキャスト構造体57を沈埋函体として利用することができる。 Repeat the manufacturing, towing and laying of the precast structure 57 described above. After the plurality of precast structures 57 are deposited, adjacent precast structures 57 are connected to each other. In addition, any structure may be sufficient for the connection of the precast structures 57, as long as normal segments can be connected. Moreover, after all the precast structures 57 have passed through the portion of the steel pipe sheet pile cylinder 79, the connecting portion 59 (see FIG. 27) is completed to the ground. Thus, the precast structure 57 can be used as a buried box.
 ここで、従来の箱型の沈埋函体の接続構造には、周囲の変形を吸収するための可撓性機構が設けられる。一方、本発明のプレキャスト構造体57同士の接続部には、可撓性機構は不要である。これは、本発明のプレキャスト構造体57が、多数のセグメント3で構成されており、個々の環状部材同士の接続部において、わずかずつ変位を許容することができるためである。例えば、本発明のプレキャスト構造体57が、80~100の環状部材が長手方向に連結されて構成される場合、従来の接続構造における可撓性機構が100mm程度の変形を許容するとすれば、本発明では、環状部材同士の接続部でそれぞれ1mm程度に分散して変形を許容できればよいこととなる。このため、沈埋函体同士の接続部には、可撓性機構が不要となる。 Here, the connection structure of the conventional box-shaped submerged box is provided with a flexible mechanism for absorbing surrounding deformation. On the other hand, a flexible mechanism is not necessary for the connecting portion between the precast structures 57 of the present invention. This is because the precast structure 57 of the present invention is composed of a large number of segments 3, and displacement can be allowed little by little at the connecting portions between the individual annular members. For example, when the precast structure 57 of the present invention is configured by connecting 80 to 100 annular members in the longitudinal direction, if the flexible mechanism in the conventional connection structure allows deformation of about 100 mm, In the invention, it suffices that the deformation can be allowed by being dispersed by about 1 mm at the connecting portions of the annular members. For this reason, a flexible mechanism becomes unnecessary in the connection part between submerged boxes.
 この結果、本発明のプレキャスト構造体57を用いた沈埋トンネルは、長手方向において、略一定の剛性となるため、従来のように、接続部で大きな剛性変化部が形成されることがなく、応力集中も生じにくい。 As a result, since the submerged tunnel using the precast structure 57 of the present invention has substantially constant rigidity in the longitudinal direction, a large rigidity change part is not formed at the connection part as in the conventional case, and stress is reduced. Concentration is also unlikely to occur.
 なお、プレキャスト構造体57同士を接続するには、プレキャスト構造体57同士の間にシール部材を挟み込んで水圧接合で行われる。水圧接合は、まず、シール部材が端面に取り付けたプレキャスト構造体57を、他方のプレキャスト構造体57に取り付けられ、図示を省略した引寄せジャッキで引き寄せる。この際、引寄せジャッキの力で、シール部材を圧縮し、止水効果を得る。次に、プレキャスト構造体57の端面とシール部材で囲まれた部分の水を排水すると、プレキャスト構造体57の反対側端面の外部水圧と差圧を生じ、シール部材は更に圧縮量を増し、安全性の高い止水効果が得られる。 In addition, in order to connect the precast structures 57 to each other, a sealing member is sandwiched between the precast structures 57, and hydraulic bonding is performed. In the hydraulic pressure bonding, first, the precast structure 57 having the sealing member attached to the end face is attached to the other precast structure 57 and drawn by a drawing jack (not shown). At this time, the sealing member is compressed by the force of the pulling jack to obtain a water stop effect. Next, when the water surrounded by the end face of the precast structure 57 and the seal member is drained, an external water pressure and a differential pressure are generated on the opposite end face of the precast structure 57, and the seal member further increases the amount of compression, thereby ensuring safety. High water stopping effect is obtained.
 プレキャスト構造体57の内面および接続部の内面には、二次覆工が打設されてもよい。以上により、プレキャスト構造体57同士の接続が完了する。海底トンネル部53の全長にわたってプレキャスト構造体57を沈設して接合が完了して、プレキャスト構造体57を埋め戻すことで、海底トンネル部53が完成する。 A secondary lining may be placed on the inner surface of the precast structure 57 and the inner surface of the connecting portion. Thus, the connection between the precast structures 57 is completed. The subcast tunnel 57 is completed by sinking the precast structure 57 over the entire length of the submarine tunnel 53 to complete the joining and backfilling the precast structure 57.
 このように、プレキャスト構造体57を連結して構成するため、アーチ形状の断面を容易に形成することができる。したがって、従来のように、ドライドッグにおいて場所打ちで形成される箱型の沈埋函体と比較して、耐外圧特性が向上する。このため、肉厚を薄くすることができる。 Thus, since the precast structure 57 is connected and configured, an arch-shaped cross section can be easily formed. Therefore, the resistance to external pressure is improved as compared with a box-type submerged box formed by spot casting in a dry dog as in the prior art. For this reason, thickness can be made thin.
 また、プレキャスト構造体57の組み立てを行う製作ヤード89として、陸上トンネル施工範囲55aが利用される。このため、沈設場所に近い場所でプレキャスト構造体57を組み立てることができる。また、開削によって形成される製作ヤード89は、その後の陸上トンネル部55の施工にそのまま利用することができる。したがって、無駄がなく、効率よくトンネル51を施工することができる。 Also, the land tunnel construction range 55a is used as the production yard 89 for assembling the precast structure 57. For this reason, the precast structure 57 can be assembled at a place close to the set place. Further, the production yard 89 formed by the excavation can be used as it is for the construction of the land tunnel portion 55 thereafter. Therefore, there is no waste and the tunnel 51 can be constructed efficiently.
 次に、陸上トンネル部55の施工方法について説明する。陸上トンネル部55は、前述した開削工法で施工することもできるが、以下のようにして施工することもできる。 Next, the construction method of the land tunnel 55 will be described. The land-based tunnel portion 55 can be constructed by the above-described open-cut method, but can also be constructed as follows.
 まず、陸上トンネル部55の施工領域のほぼ全域を開削して、例えば最端部(海底トンネル部53から遠い側であって、地表に近い側)に新たに製作ヤードを構築する。新たに構築された製作ヤードは、海面よりも低い位置に形成される。また、製作ヤードの海側の端部には、ゲートが設けられる。ゲートによって、製作ヤードへ海水が流入することが防止される。すなわち、ゲートの外側(海側)の陸上トンネル施工範囲55aには、海水が導入される。 First, almost the entire construction area of the land tunnel part 55 is excavated, and a production yard is newly constructed at, for example, the endmost part (the side far from the seabed tunnel part 53 and close to the ground surface). The newly constructed production yard is formed at a position lower than the sea level. A gate is provided at the sea side end of the production yard. The gate prevents seawater from flowing into the production yard. That is, seawater is introduced into the land tunnel construction area 55a outside the gate (sea side).
 ゲートによってドライドッグとして機能する製作ヤードでは、プレキャスト構造体57が組み立てられる。プレキャスト構造体57の組み立てが完了すると、前述の工程と同様に、ゲートを開き、製作ヤード内に、海水を導入する。水面に浮上したプレキャスト構造体57は、曳航船によって海側に曳航される。すなわち、プレキャスト構造体57は、製作ヤードから沈設場所まで曳航される。 In the production yard that functions as a dry dog by the gate, the precast structure 57 is assembled. When the assembly of the precast structure 57 is completed, the gate is opened and seawater is introduced into the production yard in the same manner as described above. The precast structure 57 that has surfaced on the water surface is towed to the sea by a towed ship. That is, the precast structure 57 is towed from the production yard to the settling site.
 プレキャスト構造体57が、陸上トンネル施工範囲55aにおける沈設場所まで水上を移動した後、バラストに水を導入し、プレキャスト構造体57を沈設する。以上により、所望の場所にプレキャスト構造体57を沈設することができる。なお、陸上トンネル部55の端部に設置されるプレキャスト構造体57は、海底トンネル部53と陸上トンネル部55の接続部59に接続される。 After the precast structure 57 has moved over the water to the settling site in the land tunnel construction area 55a, water is introduced into the ballast to set the precast structure 57. As described above, the precast structure 57 can be deposited at a desired place. The precast structure 57 installed at the end of the land tunnel portion 55 is connected to the connection portion 59 between the submarine tunnel portion 53 and the land tunnel portion 55.
 以上のプレキャスト構造体57の製造、曳航および沈設を繰り返す。複数のプレキャスト構造体57を沈設した後、隣り合うプレキャスト構造体57同士を接続する。なお、プレキャスト構造体57同士の接続には、海底トンネル部53の施工と同様である。 Repeat the manufacturing, towing and laying of the precast structure 57 described above. After the plurality of precast structures 57 are deposited, adjacent precast structures 57 are connected to each other. The connection between the precast structures 57 is the same as the construction of the submarine tunnel portion 53.
 全てのプレキャスト構造体57の沈設が完了した後、内面および接続部の内面に、二次覆工が打設される。以上により、プレキャスト構造体57同士の接続が完了する。陸上トンネル部55の全長にわたってプレキャスト構造体57を沈設して接合が完了して、プレキャスト構造体57を埋め戻すことで、陸上トンネル部55が完成する。 After the pre-casting structure 57 is completely set, secondary lining is placed on the inner surface and the inner surface of the connecting portion. Thus, the connection between the precast structures 57 is completed. The precast structure 57 is deposited over the entire length of the land tunnel portion 55 to complete the joining, and the precast structure 57 is backfilled to complete the land tunnel portion 55.
 以上のように、本発明では、陸上トンネル部55についても、プレキャスト構造体57の沈設によって施工することができる。すなわち、シールド工法が利用できないような比較的浅い陸上トンネル部55に対しても、セグメント3を利用した陸上トンネル部55を容易に施工することができる。 As described above, in the present invention, the land tunnel portion 55 can also be constructed by setting the precast structure 57. That is, the land tunnel part 55 using the segment 3 can be easily constructed even for the relatively shallow land tunnel part 55 where the shield method cannot be used.
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The embodiment of the present invention has been described above with reference to the accompanying drawings, but the technical scope of the present invention is not affected by the above-described embodiment. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
 例えば、前述した各実施形態は、互いに組み合わせることができることは言うまでもない。 For example, it goes without saying that the embodiments described above can be combined with each other.
 1、1a、1b、57………プレキャスト構造体
 2a、2b………止水部材
 3………セグメント
 3a………下部セグメント
 3b………上部セグメント
 4a………底部セグメント
 4b………側部セグメント
 4c………頂部セグメント
 5、5a………緊張部材
 7………結合突部
 8………ガイド突部
 8a………孔
 8b………連結部材
 9………レール
 9a、9b、9c、9d………止水部材
 10………リング状構造体
 11、12………孔
 13………凹部
 14………鉄筋
 16………発泡体
 16a………パイプ
 17………ジャッキ
 18………アンカープレート
 18a………カプラースリーブ
 18b………カプラージョイント
 21………架台
 21a………把持装置
 21b………作業足場
 22、22a………架台
 23………充填材
 24………孔
 25………連結部
 27、27a、27b………緊張部材
 31………開削部
 33………支保工
 35………レール
 37………ウィンチ
 39………流動化処理土
 41………架台
 43………地下構造物
 45………塗膜
 47………防水シート
 51………トンネル
 53………海底トンネル部
 53a………海底トンネル施工範囲
 55………陸上トンネル部
 55a………陸上トンネル施工範囲
 59………接続部
 61、61a………海底
 79………鋼管矢板筒
 83………底版
 85………ゲート
 89………製作ヤード
1, 1a, 1b, 57 ......... Precast structure 2a, 2b ......... Water stop member 3 ......... Segment 3a ......... Lower segment 3b ......... Upper segment 4a ......... Bottom segment 4b ......... Side Section segment 4c ......... Top segment 5, 5a ... ... Tension member 7 ... ... Connecting projection 8 ... ... Guide projection 8a ... ... Hole 8b ... ... Connecting member 9 ... ... Rails 9a, 9b, 9c, 9d ............ Water stop member 10 ......... Ring-shaped structure 11, 12 ......... Hole 13 ......... Recess 14 ......... Rebar 16 ......... Foam 16a ......... Pipe 17 ......... Jack 18 ......... Anchor plate 18a ......... Coupler sleeve 18b ......... Coupler joint 21 ......... Base 21a ......... Grip device 21b ......... Working scaffold 22, 22a ......... Base 23 ......... Filler 24 ... ... Hole 25 ......... Connecting part 27, 27a, 27b ......... Tensioning member 31 ......... Cut-off part 33 ......... Bearing 35 ......... Rail 37 ......... Winch 39 ......... Fluidized soil 41 ... …… Stand 43 ……… Underground structure 45 ……… Coating film 47 ……… Waterproof sheet 51 ……… Tunnel 53 ……… Submarine tunnel 53a ……… Submarine tunnel construction area 55 ……… Onshore tunnel 55a ......... Tunnel construction area 59 ......... Connection 61, 61a ......... Submarine 79 ......... Steel sheet pile 83 ......... Bottom plate 85 ......... Gate 89 ......... Production yard

Claims (12)

  1.  アーチ形状を有する複数のセグメントが連結されたリング状のプレキャスト構造体であって、
     前記セグメント同士は、周方向および長手方向に連結されており、
     連結された前記セグメントの周方向および長手方向にプレストレスが付与されていることを特徴とするプレキャスト構造体。
    A ring-shaped precast structure in which a plurality of segments having an arch shape are connected,
    The segments are connected in the circumferential direction and the longitudinal direction,
    A precast structure, wherein prestress is applied in a circumferential direction and a longitudinal direction of the connected segments.
  2.  前記セグメント同士は、周方向および長手方向に止水部材を介して連結されていることを特徴とする請求項1記載のプレキャスト構造体。 The precast structure according to claim 1, wherein the segments are connected to each other in the circumferential direction and the longitudinal direction via a water stop member.
  3.  前記セグメントの内部にはコンクリートの中空部が設けられていることを特徴とする請求項1記載のプレキャスト構造体。 The precast structure according to claim 1, wherein a hollow portion of concrete is provided inside the segment.
  4.  前記中空部には、発泡体が埋設されることを特徴とする請求項3記載のプレキャスト構造体。 The precast structure according to claim 3, wherein a foam is embedded in the hollow portion.
  5.  前記中空部には、パイプが埋設されることを特徴とする請求項3記載のプレキャスト構造体。 The precast structure according to claim 3, wherein a pipe is embedded in the hollow portion.
  6.  前記セグメントの外周面には、前記セグメント同士の長手方向の連結における位置決めガイドとしての第1の突部が設けられ、
     長手方向に隣接する前記セグメントの前記第1の突部同士は、連結部材で連結されており、
     連結された前記セグメントの長手方向の全長にわたってプレストレスが付与されていることを特徴とする請求項1記載のプレキャスト構造体。
    The outer peripheral surface of the segment is provided with a first protrusion as a positioning guide in the longitudinal connection between the segments,
    The first protrusions of the segments adjacent in the longitudinal direction are connected by a connecting member,
    2. A precast structure according to claim 1, wherein prestress is applied over the entire length of the connected segments in the longitudinal direction.
  7.  前記セグメントの外周面には、前記セグメント同士を周方向に連結するための第2の突部が設けられ、
     周方向に隣接する前記セグメントの前記第2の突部同士の位置を合わせた状態で、前記第2の突部同士が緊張部材で緊張されていることを特徴とする請求項1記載のプレキャスト構造体。
    The outer peripheral surface of the segment is provided with a second protrusion for connecting the segments in the circumferential direction,
    The precast structure according to claim 1, wherein the second protrusions are tensioned by a tension member in a state where the positions of the second protrusions of the segments adjacent in the circumferential direction are matched. body.
  8.  長手方向に対向する前記セグメントの端面には、互いに対応する部位に凹部が設けられ、前記凹部には充填材が充填されて固化していることを特徴とする請求項1記載のプレキャスト構造体。 2. The precast structure according to claim 1, wherein the end faces of the segments facing each other in the longitudinal direction are provided with concave portions at mutually corresponding portions, and the concave portions are filled with a filler and solidified.
  9.  地下構造物の施工方法であって、
     アーチ形状を有するセグメントを地上からの開削部に設置する工程と、
     前記セグメント上を移動する架台を用いて、複数のセグメント同士を周方向に止水部材を介して連結し、周方向にプレストレスを付与し、リング状の構造体を構築する工程と、
     周方向に垂直な長手方向に隣接する所定数の前記リング状の構造体を、止水部材を介して連結し、長手方向にプレストレスを付与する工程と、
     を具備することを特徴とする地下構造物の施工方法。
    A construction method for an underground structure,
    Installing a segment having an arch shape in the excavation part from the ground;
    Using a gantry that moves on the segments, connecting a plurality of segments to each other via a water stop member in the circumferential direction, applying prestress in the circumferential direction, and building a ring-shaped structure;
    Connecting a predetermined number of the ring-shaped structures adjacent to each other in the longitudinal direction perpendicular to the circumferential direction via a water stop member, and applying prestress in the longitudinal direction;
    The construction method of an underground structure characterized by comprising.
  10.  地下構造物の施工方法であって、
     アーチ形状を有する複数のセグメント同士を周方向に止水部材を介して連結し、周方向にプレストレスを付与し、リング状の構造体を構築する工程と、
     前記リング状の構造体を地上から開削部に設置する工程と、
     既設のリング状の構造体内を移動する架台を用いて、周方向に垂直な長手方向に隣接する所定数の前記リング状の構造体を、止水部材を介して連結し、長手方向にプレストレスを付与する工程と、
     を具備することを特徴とする地下構造物の施工方法。
    A construction method for an underground structure,
    Connecting a plurality of segments having an arch shape in the circumferential direction via a water stop member, applying prestress in the circumferential direction, and building a ring-shaped structure;
    Installing the ring-shaped structure from the ground to the excavation part;
    A predetermined number of the ring-shaped structures adjacent to each other in the longitudinal direction perpendicular to the circumferential direction are connected via a water-stopping member using a platform that moves in an existing ring-shaped structure, and prestressed in the longitudinal direction. A step of providing
    The construction method of an underground structure characterized by comprising.
  11.  前記架台は、前記リング状の構造体の内部を移動可能であるとともに、前記架台の一部が外方に向けて伸縮可能であり、
     前記架台を前記リング状の構造体の内部で移動させる際には、前記架台の一部を縮め、前記架台と前記セグメントの内面との干渉を防ぎ、
     前記架台を前記リング状の構造体の外部に移動した際には、前記架台の一部を前記リング状の構造体の端面位置まで外方に伸ばすことが可能であることを特徴とする請求項9または請求項10記載の地下構造物の施工方法。
    The gantry is movable inside the ring-shaped structure, and a part of the gantry can be expanded and contracted outward.
    When moving the gantry inside the ring-shaped structure, shrinking a part of the gantry, preventing interference between the gantry and the inner surface of the segment,
    When the gantry is moved to the outside of the ring-shaped structure, a part of the gantry can be extended outward to an end face position of the ring-shaped structure. The construction method of the underground structure of Claim 9 or Claim 10.
  12.  前記リング状の構造体は、周方向に4分割されており、底部セグメントと、一対の側部セグメントと、頂部セグメントが連結されて構成され、
     周方向に垂直な長手方向に隣り合う前記リング状の構造体において、前記底部セグメント同士および前記頂部セグメント同士の長さが異なることを特徴とする請求項9または請求項10記載の地下構造物の施工方法。
    The ring-shaped structure is divided into four in the circumferential direction, and is configured by connecting a bottom segment, a pair of side segments, and a top segment,
    11. The underground structure according to claim 9, wherein in the ring-shaped structures adjacent to each other in a longitudinal direction perpendicular to a circumferential direction, the bottom segments and the top segments are different in length. Construction method.
PCT/JP2016/080709 2015-11-11 2016-10-17 Precast structure, and construction method for underground structures WO2017081990A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-221499 2015-11-11
JP2015221499A JP6572103B2 (en) 2015-11-11 2015-11-11 Precast structures, underground structures, offshore floating structures and segments
JP2016-114266 2016-06-08
JP2016114266A JP6715092B2 (en) 2016-06-08 2016-06-08 Construction method of underground structure

Publications (1)

Publication Number Publication Date
WO2017081990A1 true WO2017081990A1 (en) 2017-05-18

Family

ID=58695092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080709 WO2017081990A1 (en) 2015-11-11 2016-10-17 Precast structure, and construction method for underground structures

Country Status (1)

Country Link
WO (1) WO2017081990A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108203992A (en) * 2017-12-01 2018-06-26 太原双鼎科技有限公司 A kind of assembled underground pipe gallery
CN108729346A (en) * 2018-07-02 2018-11-02 长沙理工大学 A kind of ring orientation prestress pipeline configuration and production method
CN108979690A (en) * 2018-09-30 2018-12-11 西南石油大学 A kind of shield tunnel anti-floating control structure and application method
CN110158646A (en) * 2019-05-21 2019-08-23 西安交通大学 The two-tube prefabricated waterproof pipe gallery of one kind and installation method
CN110593897A (en) * 2019-09-26 2019-12-20 同济大学 Prefabricated hollow concrete segment and prefabricating method
CN110685343A (en) * 2019-09-26 2020-01-14 同济大学 Prefabricated built-in light filling body concrete pipe ring and prefabricating method
CN110685344A (en) * 2019-09-26 2020-01-14 同济大学 Prefabricated hollow concrete pipe ring and prefabricating method
CN110744677A (en) * 2019-09-26 2020-02-04 同济大学 Prefabricated built-in light filling body concrete segment and prefabricating method
CN114351759A (en) * 2021-12-31 2022-04-15 中交二公局第六工程有限公司 Prefabricated pipe gallery assembling system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960487A (en) * 1995-08-25 1997-03-04 Nippon Zenisupaipu Kk Construction method for tunnel
JPH09268890A (en) * 1996-03-28 1997-10-14 Kumagai Gumi Co Ltd Segment for tunnel lining
JP2003184495A (en) * 2001-10-12 2003-07-03 Sanyo Chem Ind Ltd Seal material
JP2007039898A (en) * 2005-08-01 2007-02-15 Haneda Concrete Industrial Co Ltd Arch member for tunnel
JP2008019599A (en) * 2006-07-12 2008-01-31 Ishikawajima Constr Materials Co Ltd Method of constructing tunnel in mound
JP2009133181A (en) * 2007-11-08 2009-06-18 Sumitomo Rubber Ind Ltd Construction method of shield tunnel
JP2015059364A (en) * 2013-09-19 2015-03-30 株式会社大林組 Precast arch tunnel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960487A (en) * 1995-08-25 1997-03-04 Nippon Zenisupaipu Kk Construction method for tunnel
JPH09268890A (en) * 1996-03-28 1997-10-14 Kumagai Gumi Co Ltd Segment for tunnel lining
JP2003184495A (en) * 2001-10-12 2003-07-03 Sanyo Chem Ind Ltd Seal material
JP2007039898A (en) * 2005-08-01 2007-02-15 Haneda Concrete Industrial Co Ltd Arch member for tunnel
JP2008019599A (en) * 2006-07-12 2008-01-31 Ishikawajima Constr Materials Co Ltd Method of constructing tunnel in mound
JP2009133181A (en) * 2007-11-08 2009-06-18 Sumitomo Rubber Ind Ltd Construction method of shield tunnel
JP2015059364A (en) * 2013-09-19 2015-03-30 株式会社大林組 Precast arch tunnel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Japan Society of Civil Engineers Tunnel Kogaku Iinkai", JAPANESE STANDARD FOR SHIELD TUNNELING, EDITION OF THE YEAR HEISEI 8, 10 July 1996 (1996-07-10), pages 32 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108203992A (en) * 2017-12-01 2018-06-26 太原双鼎科技有限公司 A kind of assembled underground pipe gallery
CN108729346A (en) * 2018-07-02 2018-11-02 长沙理工大学 A kind of ring orientation prestress pipeline configuration and production method
CN108979690A (en) * 2018-09-30 2018-12-11 西南石油大学 A kind of shield tunnel anti-floating control structure and application method
CN110158646A (en) * 2019-05-21 2019-08-23 西安交通大学 The two-tube prefabricated waterproof pipe gallery of one kind and installation method
CN110158646B (en) * 2019-05-21 2020-07-28 西安交通大学 Double-pipe prefabricated waterproof comprehensive pipe gallery and installation method
CN110593897A (en) * 2019-09-26 2019-12-20 同济大学 Prefabricated hollow concrete segment and prefabricating method
CN110685343A (en) * 2019-09-26 2020-01-14 同济大学 Prefabricated built-in light filling body concrete pipe ring and prefabricating method
CN110685344A (en) * 2019-09-26 2020-01-14 同济大学 Prefabricated hollow concrete pipe ring and prefabricating method
CN110744677A (en) * 2019-09-26 2020-02-04 同济大学 Prefabricated built-in light filling body concrete segment and prefabricating method
CN114351759A (en) * 2021-12-31 2022-04-15 中交二公局第六工程有限公司 Prefabricated pipe gallery assembling system

Similar Documents

Publication Publication Date Title
WO2017081990A1 (en) Precast structure, and construction method for underground structures
JP2018162655A (en) Final joint of immersed tunnel as well as prefabrication method and installation method
US10544581B2 (en) Prestressed tube section structure and construction method thereof
JP2007205077A (en) Temporary coffering method
JP6449041B2 (en) Submarine tunnel construction method and onshore tunnel construction method
KR102011321B1 (en) Construction method of foundation using rectangular pipe and its foundation
JP6449040B2 (en) Connection structure between submerged boxes, submarine tunnel construction method
KR102431393B1 (en) Construction Method of Underground Structures
JP6572103B2 (en) Precast structures, underground structures, offshore floating structures and segments
JP2017218805A (en) Construction method of underground structure
KR101167511B1 (en) Underpass using precast concrete pile and method for constructing the same
KR20070002328A (en) Construction method of pipe roof structures
CN210380191U (en) Lightweight power communication combination prefabricated cable channel
JP6444839B2 (en) Construction method for underground structures
CN111576488A (en) Sewage pipe jacking pipe construction fabricated working well structure and construction process
JP4944691B2 (en) Water stop structure and water stop method for temporary closing
JP2006057312A (en) Joint method of pile body and pre-cast slab
CN210141142U (en) Underground structure is built in same direction as digging in hole stake secret
JP2017155538A (en) Construction method of underground tank structure and underground tank structure
JP7021419B2 (en) Construction method of underground widening part
CN112012771A (en) Underground excavation and sequential construction underground structure of hole piles and construction method thereof
JP4475116B2 (en) Vertical shaft structure and its construction method
KR101285987B1 (en) Improved Compound Roof Tunnel Method
JP6935640B2 (en) Construction method of underground widening part
JP2022160049A (en) Precast concrete member with sheath pipe, and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863954

Country of ref document: EP

Kind code of ref document: A1