WO2017081977A1 - Motor control device and elevator in which same is used - Google Patents

Motor control device and elevator in which same is used Download PDF

Info

Publication number
WO2017081977A1
WO2017081977A1 PCT/JP2016/080323 JP2016080323W WO2017081977A1 WO 2017081977 A1 WO2017081977 A1 WO 2017081977A1 JP 2016080323 W JP2016080323 W JP 2016080323W WO 2017081977 A1 WO2017081977 A1 WO 2017081977A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
control
suppression
unit
torque ripple
Prior art date
Application number
PCT/JP2016/080323
Other languages
French (fr)
Japanese (ja)
Inventor
孝志 保月
佐竹 彰
馬場 俊行
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020187007305A priority Critical patent/KR102088183B1/en
Priority to JP2017504203A priority patent/JP6157773B1/en
Priority to CN201680059706.2A priority patent/CN108352798B/en
Publication of WO2017081977A1 publication Critical patent/WO2017081977A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • B66B1/308Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor with AC powered elevator drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present invention relates to a motor control device such as a three-phase AC motor and an elevator using the same.
  • AC motors in particular PM motors (Permanent Magnet Synchronous Motors), are characterized by their small size and high efficiency, and in recent years have been widely used for industrial equipment.
  • the PM motor since the PM motor includes a harmonic component in the induced voltage due to its structure, an order component that is an integral multiple (mainly 6 times) the motor electrical angle with respect to the generated torque (hereinafter, this order component is referred to as a 6f component). ) With torque ripple that is a disturbance that vibrates. Since this torque ripple can cause problems such as vibration, noise, mechanical resonance, etc., its reduction technology (hereinafter referred to as torque ripple suppression control) is required.
  • FF method feed-forward method
  • FF method feedback method
  • the former FF method has the advantage of being able to suppress torque ripple with high response, it requires complicated pre-acquisition work of torque ripple information, and torque ripple information acquired in advance due to aging of motors and devices is appropriate. There is a disadvantage that it disappears.
  • the latter FB method does not require complicated acquisition of torque ripple information in advance, and has the advantage of being able to perform appropriate torque ripple suppression control in response to aging of motors and devices, but the torque ripple suppression response is torque ripple. There are disadvantages that it cannot be higher than the frequency and that there are high technical barriers to acquiring information equivalent to torque ripple online.
  • torque ripple suppression control can be performed by combining the advantages of both by appropriately switching between the FF method and the FB method.
  • the switching timing is not appropriate, an incorrect suppression command value is learned. Therefore, it is important to set an operation sequence for managing the switching timing.
  • torque ripple transfer characteristics cannot be accurately grasped, such as when estimating torque ripple based on motor parameters from electrical information to simplify the system.
  • FIG. 15 is an example showing a change in the q-axis magnetic flux ⁇ q when the q-axis current i q is increased in a state where the PM motor is controlled at a constant speed.
  • the slope in this figure is the q-axis inductance, but the following two points are problematic here.
  • the inductance is saturated and becomes smaller as the current increases, so that the torque transfer characteristics may differ due to an error between the motor circuit model recognized by the controller and that of the actual motor. It becomes a problem.
  • the present invention has been made to solve the above-described problems, and when performing torque ripple suppression control in accordance with changes in the speed and magnetic characteristics of the motor, the operation sequence is appropriately managed to achieve high accuracy.
  • An object of the present invention is to provide a motor control device capable of torque ripple suppression control and an elevator using the same.
  • a motor control device includes an AC motor, a current detection unit that detects a current of at least two phases of three phases, and a current control unit that generates a voltage command value in a control coordinate axis using the detected current value
  • a torque estimation unit that estimates the torque of the AC motor based on the voltage command value and the current detection value, a torque ripple suppression unit that generates a suppression command that suppresses torque ripple of the AC motor based on the estimated torque, and the suppression command
  • a suppression control parameter storage unit that stores the suppression control parameter for generating the motor in association with the speed and current command value of the AC motor, and according to the switching condition calculated from the magnetic characteristics of the AC motor, Online control mode in which torque ripple suppression is performed by the torque ripple suppression unit, and torque ripple by the torque ripple suppression unit.
  • the control mode includes a learning control mode in which the suppression control parameter is stored in the suppression control parameter storage unit and an offline control mode in which torque ripple suppression is performed by the suppression control parameter stored in the suppression control parameter storage unit.
  • the elevator according to the present invention includes the motor control device having the above-described configuration, a car, a counterweight, a rope that connects the car and the counterweight, and the rope that rotates by the driving force of the AC motor. And a drive sheave on which is wound.
  • the motor control device and an elevator using the motor control device have one of three control modes, an online control mode, a learning control mode, and an offline control mode, according to the switching condition based on the magnetic characteristics of the AC motor. Since the operation sequence to be selected is executed, it becomes possible to learn appropriate suppression control parameters and to effectively suppress torque ripple.
  • FIG. 1 is a block diagram showing a configuration of a motor control device according to Embodiment 1 of the present invention.
  • the motor control device controls a PM motor (hereinafter simply referred to as a motor) 9 that is an AC motor via a power converter 3.
  • the motor control device includes a current command generation unit 10 that outputs current command values i * d and i * q based on a torque command value ⁇ * , and an output of the current command generation unit 10 that outputs a current from the three-phase-dq converter 5.
  • the detected current obtained in step d is the d-axis current of the control coordinate axis. comprising a three-phase -dq converter 5 which converts the d and q-axis current i q.
  • the motor control device of the first embodiment associates the torque ripple suppression unit 80 that generates a suppression command for torque ripple suppression of the motor 9 and the suppression control parameter for torque ripple suppression with the speed of the motor 9 and the current command value.
  • a control unit 150 such as a microcomputer for controlling the suppression control parameter storage unit 120.
  • the torque ripple suppression unit 80 includes a torque estimation unit 90 that calculates the estimated torque value ⁇ of the motor 9 based on the voltage command value v * dq , the detected current value i * dq , and the rotational position ⁇ re of the motor 9, and the motor 9 Torque ripple compensation signal for generating a torque ripple compensation signal ⁇ * rip as a suppression command for suppressing torque ripple of the motor 9 based on the rotational position ⁇ re of the motor and the estimated torque value ⁇ from the torque estimating unit 90 and outputting it to the current command generating unit 10
  • the command generation unit 100 is included.
  • the control unit 150 controls the operation of the torque ripple suppression unit 80 and the suppression control parameter storage unit 120, and based on the speed of the motor 9 and the magnetic characteristics of the motor 9 (inductance characteristics shown in FIG. 15 above). Online suppression control mode in which torque ripple suppression is performed by the torque ripple suppression unit 80 and torque ripple suppression is performed by the torque ripple suppression unit 80 in accordance with the switching conditions ( ⁇ re_low , ⁇ re_high , i q_mg , i q_hys ) described later. At the same time, one of the three control modes of the learning control mode in which the suppression control parameter is stored in the suppression control parameter storage unit 120 and the offline control mode in which torque ripple suppression is performed using the suppression control parameter stored in the suppression control parameter storage unit 120. To select one It is to run the Sequence.
  • FIG. 2 is a block diagram showing an example of the configuration of the torque ripple compensation command generation unit 100 described above.
  • the configuration and operation of each part shown in FIGS. 1 and 2 are further clarified by the following description of the operation.
  • the torque estimation unit 90 includes a motor constant, an actual current vector i dq composed of dq axis actual currents i q and i d , and a voltage vector v * dq composed of voltage command values v * d and v * q to the motor 9.
  • an estimated voltage estimated value vector edq as an estimated induced voltage of the motor 9 is estimated by the calculation of the following equation (1).
  • R represents the winding resistance of the motor
  • L is the self-inductance
  • P m is the number of pole pairs
  • s is a differential operator
  • omega rm is mechanical angular
  • the omega re represents the speed of the motor 9 (electrical angular velocity).
  • the torque estimation unit 90 estimates the torque of the motor 9 by the following formula (2) based on the induced voltage estimated value vector edq and the actual current vector i dq obtained by the formula (1),
  • the estimated torque value ⁇ is output to the torque ripple compensation command generation unit 100.
  • the torque ripple compensation command generation unit 100 generates a torque ripple compensation signal ⁇ * rip that extracts the vibration component included in the estimated torque value ⁇ and cancels the vibration, and uses the torque ripple compensation signal ⁇ * rip as the current command generation unit 10. Output to.
  • a torque ripple compensation signal ⁇ * rip that extracts the vibration component included in the estimated torque value ⁇ and cancels the vibration
  • the torque ripple compensation signal ⁇ * rip is adopted. Yes.
  • a pulsation component included in the estimated torque value ⁇ is extracted by the extraction unit 101 a constituting the processing unit 101.
  • the calculation method any known technique can be used. For example, the calculation of the following equation (3) with reference to Fourier series expansion can be used for the estimated torque value ⁇ .
  • ⁇ Cn is the cosine coefficient of the estimated torque value ⁇
  • ⁇ Sn is the sine coefficient of the estimated torque value ⁇
  • F LPF (s) is the gain of the low-pass filter
  • n is the torque ripple order
  • ⁇ est is the actual value of the estimated torque value ⁇ .
  • This is a phase compensation setting value for compensating for the estimated delay from the torque, and is set in the phase compensation unit 101 b constituting the processing unit 101.
  • the compensation set value ⁇ est is obtained in advance from actual measurements or models.
  • the cosine coefficient ⁇ Cn and the sine coefficient ⁇ Sn obtained by the processing unit 101 are input to the subtracters 102a and 103a, respectively.
  • the subtractors 102a and 103a and the suppression control units 102b and 103b calculate a torque ripple amplitude suppression value by calculating the following equation (4), and calculate a torque ripple compensation cosine coefficient ⁇ * Cn and a torque ripple compensation sine coefficient ⁇ * Sn . And output to the multipliers 105b and 106b, respectively.
  • G rip (s) represents transfer characteristics of the suppression control units 102b and 103b
  • ⁇ ** Cn and ⁇ ** Sn represent torque ripple suppression command values.
  • the multipliers 105b and 106b and the adder 107 perform the calculation of the following equation (5) to convert them into a periodic signal as a conversion signal synchronized with the torque ripple period, and output a torque ripple compensation signal ⁇ * rip.
  • the compensation signal ⁇ * rip is input to the current command generator 10 to suppress torque ripple.
  • the periodic signal generators 105a and 106a are based on an electrical angular velocity (hereinafter simply referred to as speed) ⁇ re obtained by differentiating the electrical angle ⁇ re of the motor 9 obtained by the rotational position detector 8 by the differentiator 108.
  • a periodic signal that has undergone phase compensation is generated based on the phase compensation setting value ⁇ i corresponding to the control delay of the current control system.
  • ⁇ i represents a set value of phase compensation based on the control delay of the control system.
  • the phase compensation set value ⁇ i is obtained from actual measurements or models and set in advance.
  • the suppression control parameter storage unit 120 is in an operating state, and the suppression control unit 102b constituting the torque ripple compensation command generation unit 100, torque ripple compensation cosine coefficient tau * Cn outputted from the 103b, and the torque ripple compensation sine coefficient tau * Sn, as suppression control parameters for generating a torque ripple compensation signal tau * rip, velocity omega re and the q-axis current command of the motor 9 Stored in association with the value i * q .
  • the control unit 150 controls the suppression control parameters ⁇ * Cn and ⁇ * corresponding to the speed ⁇ re and the q-axis current command value i * q of the motor 9 stored in the suppression control parameter storage unit 120 .
  • Sn is read and output to the multipliers 105b and 106b.
  • the torque ripple frequency is low and the online control response cannot be increased, so the start-up is performed in the off-line control mode. Then, the speed omega re of the motor 9 until the predetermined first speed threshold omega Re_low than a preset continues the offline control mode as the activation period.
  • the switching threshold value for each control mode is set in advance for the q-axis current command value i * q .
  • the learning control mode is set in the steady state.
  • appropriate suppression control parameters ⁇ * Cn and ⁇ * Sn are obtained even in a steady state in the region where the magnetic saturation starts. Therefore, the learning control mode is not shifted to, but only the online control mode is operated.
  • the condition of the q-axis current command value i * q at which this magnetic saturation starts is set as the first current threshold i q_mg .
  • the control unit 150 matches the conditions of both the speed ⁇ re of the motor 9 and the magnetic characteristics (particularly, the inductance characteristics in this case) of the motor 9, and the online control mode and the learning control mode. Then, an operation sequence for selecting one of the three control modes of the offline control mode is executed.
  • step S101 is performed after starting, and operation
  • step S102 it is performed. That is, it is determined whether the speed omega re of the motor 9 is first velocity threshold omega Re_low more.
  • step S103 the switching condition relating to the inductance characteristic (q-axis current command value i * q ) is determined.
  • step S104 is executed only when step S102 and step S103 are both true, and the process shifts to the online control mode.
  • the switching condition relating to the inductance characteristic (q-axis current command value i * q ) is determined in step S105. That is, it is determined whether the q-axis current command value i * q is equal to or less than the first current threshold value i q_mg .
  • the determination of the switching condition on the velocity omega re carried out in step S106, S107. That is, in step S106, it is determined whether the motor is in a steady state without acceleration / deceleration.
  • Speed omega re step S107 the motor 9 is determined or less than a second speed threshold ⁇ re_high.
  • step S105 and step S106 are negative, a determination is further made in step S102 and step S103 to determine whether to continue the online control mode. If both steps S105 and S106 are true, a determination is made in step S107. If not in this case, step S101 is executed to shift to the offline control mode. If true in step S107, step S108 is executed to shift to the learning control mode.
  • steps S105, S106, and S107 are performed, and it is determined whether to continue the learning control mode or to shift to the offline control mode or the online control mode.
  • FIG. 7 is a graph schematically showing the switching of the control mode.
  • the horizontal axis represents the first speed threshold value ⁇ re_low and the second speed threshold value ⁇ re_high
  • the vertical axis represents the first current threshold value i q_mg and the second current threshold value i q_hys.
  • Each is divided into nine regions (I) to (IX).
  • the offline control mode is selected in all of the regions (I) to (III), (VI), and (VII) to (IX).
  • the online control mode is learned when not in the steady state, and the learning is performed in the steady state.
  • the control mode is selected, and the online control mode is selected in the region (V).
  • the online control mode, the learning control mode, and the offline control mode are matched to the conditions of both the speed ⁇ re of the motor 9 and the magnetic characteristics (particularly, the inductance characteristics in this case) of the motor 9. Since an operation sequence for selecting one of the three control modes is provided, it is possible to learn an appropriate suppression control parameter and to effectively suppress torque ripple.
  • the present invention is not limited to the case where each control mode is assigned to each of the regions (I) to (IX) shown in FIG. 7, but the q-axis current command value i * q is set to i q_mg ⁇ i as shown in FIG. In * q ⁇ i q_hys (region (V) in FIG. 8), the learning control mode may be selected instead of the online control mode. Further, the q-axis current command value i * q is i q > i q_hys (in the region (VI) in FIG. 8, the learning control mode cannot be performed, but the online control mode may be selected instead of the offline control mode). .
  • the online control mode, the learning control mode, and the offline control are performed in accordance with both conditions of the speed ⁇ re of the motor 9 and the q-axis current command value i * q that is the magnetic characteristic of the motor 9.
  • the three control modes are selected and switched, the present invention is not limited to this, and as shown in FIG. 9, one of the three control modes is selected according to only the condition of the q-axis current command value i * q. May be selected.
  • the offline control mode is all selected.
  • the learning control mode is selected in all cases where the current threshold value is less than or equal to the second current threshold value i q_hys (in the case of the regions (I), (II), (IV), (V), (VII), (VIII)).
  • FIG. FIG. 10 is a block diagram showing the configuration of the motor control apparatus according to Embodiment 2 of the present invention.
  • FIG. 11 is a block diagram during operation in the online control mode
  • FIG. 12 is a block diagram during operation in the learning control mode
  • FIG. 13 is a block diagram during operation in the offline control mode. , Respectively.
  • the feature of the second embodiment is that a rotational position estimation unit 130 is provided instead of the rotational position detector 8 of the first embodiment, and the estimated rotational position value ⁇ re is used for the control calculation. Since other configurations are the same as those of the first embodiment shown in FIGS. 1 and 2, detailed description thereof is omitted here.
  • Rotational position estimation of the motor 9 is roughly divided into two methods: a method using an induced voltage and a method of directly estimating a position using a high frequency voltage when the motor 9 has saliency.
  • the former method can estimate the rotational position only from the electrical information, but cannot estimate the position in a low speed region where the induced voltage is low.
  • the latter method can estimate the position from the low speed range to the zero speed range, but it is necessary to apply a high frequency voltage that may cause noise and vibration.
  • the rotational position of the motor 9 is generally determined by setting a certain speed threshold ⁇ sh and using a high-frequency voltage in a low speed range where the speed ⁇ re of the motor 9 is lower than the speed threshold ⁇ sh.
  • a method using an induced voltage is adopted, and both methods are often switched and used.
  • the first speed threshold value ⁇ re_low for switching the control mode is made to coincide with the switching speed threshold value ⁇ sh for using the induced voltage and using the high frequency, that is, ⁇ sh (switching).
  • (Speed threshold) ⁇ re — low (first speed threshold). Therefore, the control unit 150 calculates a rotational position estimation value ⁇ re by adopting a method of using a high frequency voltage in a low speed region equal to or lower than the first speed threshold value ⁇ re_low with respect to the rotational position estimation unit 130.
  • omega Re_low medium speeds or greater than calculates the rotational position estimate theta re employ a method of utilizing an induced voltage.
  • the control unit 150 controls the rotational position estimating unit 130 so that the calculation method of the rotational position estimated value ⁇ re is switched with the first speed threshold value ⁇ re_low as a boundary.
  • the rotational position estimator 130 is thus to estimate the rotational position estimate theta re using a high frequency voltage, in which case, torque ripple suppression
  • the unit 80 operates in the offline control mode, and can prevent the torque ripple suppression unit 80 from adversely using the rotational position estimation value ⁇ re in the control calculation in the low speed range.
  • the rotational position estimation unit 130 estimates the rotational position estimation value ⁇ re using the induced voltage.
  • the torque ripple suppression unit 80 Since the operation is performed in the online control mode or the learning control mode, the torque ripple suppression unit 80 can be prevented from having an adverse effect when the rotational position estimation value ⁇ re is used for the control calculation in a high speed range, and an appropriate suppression control parameter can be obtained. Learning is possible.
  • Embodiment 3 Since the configuration of the motor control apparatus in the third embodiment is the same as that of the first embodiment shown in FIGS. 1 and 2, detailed description thereof will be omitted here.
  • the control mode using the load device and not shown and is connected to it and the motor 9 is a speed omega Re_v that resonates with certain margin rate omega Re_m
  • Embodiment 4 Since the basic configuration of the motor control apparatus according to the fourth embodiment is the same as that of the first embodiment shown in FIGS. 1 and 2, detailed description thereof is omitted here.
  • a feature of the fourth embodiment is that a temperature detector (not shown) for detecting the temperature t m is provided for the motor 9 and a temperature threshold value t m_high is set for the detected temperature t m . Then, the control unit 150, so that to operate as an offline control mode in the case of t m_high ⁇ t m.
  • FIG. 14 is a flowchart showing an operation sequence when the control unit 150 selects and switches three control modes based on the switching condition in the fourth embodiment.
  • step S101 is shifted to the learning control mode (step S202) only when the mode is true.
  • the motor control device of the present invention is not limited to the configurations of the first to fourth embodiments described above, and each of the first to fourth embodiments described above can be used without departing from the spirit of the present invention. They can be freely combined, or the configurations of Embodiments 1 to 4 can be modified or omitted as appropriate.
  • FIG. FIG. 16 is a configuration diagram showing an example in which the motor control device of the first to fourth embodiments is applied to control a motor that rotates a drive sheave 205 provided in a hoist that raises and lowers an elevator car. is there.
  • a car 203 and a counterweight 204 are wound around a drive sheave 205 as a hoisting machine via a rope 202 and connected.
  • the drive sheave 205 is connected to the rotation shaft of the PM motor 9 and is driven to rotate by the PM motor 9.
  • the elevator also includes a rotational position detector 8 and a control device 201 for driving and controlling the PM motor 9 to raise and lower the car 203 in the hoistway.
  • the control device 201 in this case is composed of the remaining portions excluding the PM motor 9 and the rotational position detector 8 in FIGS. 1 and 2, and the basic configuration is the implementation shown in FIGS. 1 and 2. Therefore, detailed description of the configuration is omitted here.
  • the feature of the fifth embodiment is that a weight detector (not shown) is provided for the car 203, and a weight threshold value M m_high is set in advance for the car weight Mm to be detected and the weight Mw of the counterweight 204.
  • the unit 150 is configured to operate as the offline control mode when
  • the PM motor 9 is driven with a high torque from the start. That is, there may be a case where a current exceeding the current threshold value i q_hys (> i q_mg ) at which a hysteresis minor loop appears from the time of startup is required.
  • the fifth embodiment when it can be predicted in advance that such a hysteresis minor loop will appear, it can be operated in advance as an offline control mode, and thereafter, it shifts to an online control mode or a learning control mode. Whether or not it is determined twice based on the weight threshold value M m_high and the current threshold value i q_hys , so that it is possible to learn an appropriate suppression control parameter more safely.
  • step S an operation sequence when the control unit 150 selects and switches between the three control modes is shown in the flowchart of FIG. Reference sign S means a processing step.
  • FIG. 17 when compared with FIG. 6, the determination of the switching condition regarding the car weight Mm in step S ⁇ b> 203 is added as the determination of the transition from the offline control mode to the online control mode, and the determination result in step S ⁇ b> 203 is negative. Shifts to the offline control mode (step S101), and to the online control mode (step S103) only when it is true.
  • the elevator according to the fifth embodiment has been described on the assumption that the motor control device having the configuration of the first embodiment is provided.
  • the present invention is not limited to this, and the motor having the configurations of the other second to fourth embodiments. It is possible to apply a control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The invention is equipped with a control unit (150) that, according to switching criteria calculated from the magnetic characteristics of an AC motor (9), executes an operating sequence for selecting one of three control modes: an online control mode in which torque ripple suppression is performed using a torque ripple suppression unit (80), a learning control mode in which, at the same time torque ripple suppression is performed using the torque ripple suppression unit (80), suppression control parameters are stored in a suppression control parameter storage unit (120), and an offline control mode in which torque ripple suppression is performed using the suppression control parameters stored in the suppression control parameter storage unit (120).

Description

モータ制御装置およびこれを用いたエレベータMotor control device and elevator using the same
 この発明は、三相交流電動機などのモータ制御装置およびこれを用いたエレベータに関するものである。 The present invention relates to a motor control device such as a three-phase AC motor and an elevator using the same.
 交流モータ、特にPMモータ(Permanent Magnet Synchronous Motor)は、小型かつ高効率という特徴を持ち、近年では、産業機器用などに広く利用されている。 AC motors, in particular PM motors (Permanent Magnet Synchronous Motors), are characterized by their small size and high efficiency, and in recent years have been widely used for industrial equipment.
 しかし、PMモータは、その構造上、誘起電圧に高調波成分を含むため、発生トルクに対してモータ電気角の整数倍(主として6倍)の次数成分(以下、この次数成分を6f成分と称する)で振動する外乱であるトルクリプルを持つ。このトルクリップルは振動や騒音、機械的共振等の問題を引き起こす原因となりうるため、その低減技術(以下、トルクリプル抑制制御と称する)が必要となる。 However, since the PM motor includes a harmonic component in the induced voltage due to its structure, an order component that is an integral multiple (mainly 6 times) the motor electrical angle with respect to the generated torque (hereinafter, this order component is referred to as a 6f component). ) With torque ripple that is a disturbance that vibrates. Since this torque ripple can cause problems such as vibration, noise, mechanical resonance, etc., its reduction technology (hereinafter referred to as torque ripple suppression control) is required.
 トルクリプル抑制制御を行うためには、その対象であるトルクリプルに相当する情報を取得する必要がある。それには、事前に試験や解析などを行って情報を取得しておき、制御装置に記憶させておくフィードフォワード方式(以下、FF方式と称する)と、モータ駆動中にオンラインで取得するフィードバック方式(以下、FB方式と称する)とに大別される。 In order to perform torque ripple suppression control, it is necessary to acquire information corresponding to the target torque ripple. For this purpose, a feed-forward method (hereinafter referred to as FF method) in which information is obtained by performing tests and analyzes in advance and stored in the control device, and a feedback method (hereinafter referred to as FF method) that is acquired online during motor driving ( Hereinafter, it is broadly classified as “FB method”.
 前者のFF方式は、高応答なトルクリプル抑制が可能となる長所がある反面、煩雑なトルクリプル情報の事前取得作業が必要となり、またモータや装置の経年変化によって事前取得したトルクリプル情報が適切なものでなくなるといった短所がある。
 後者のFB方式は、煩雑なトルクリプル情報の事前取得作業が必要でなく、モータや装置の経年変化に対応して適切なトルクリプル抑制制御が可能になるといった長所がある反面、トルクリプル抑制の応答をトルクリプル周波数以上に高くすることができないことや、トルクリプル相当の情報をオンラインで取得することそのものの技術的障壁も高いといった短所がある。
While the former FF method has the advantage of being able to suppress torque ripple with high response, it requires complicated pre-acquisition work of torque ripple information, and torque ripple information acquired in advance due to aging of motors and devices is appropriate. There is a disadvantage that it disappears.
The latter FB method does not require complicated acquisition of torque ripple information in advance, and has the advantage of being able to perform appropriate torque ripple suppression control in response to aging of motors and devices, but the torque ripple suppression response is torque ripple. There are disadvantages that it cannot be higher than the frequency and that there are high technical barriers to acquiring information equivalent to torque ripple online.
 そこで、これら二つの方式を組み合わせた学習制御方式が提案されている(例えば、下記の特許文献1参照)。すなわち、オンラインでFB方式として駆動している場合にはそのトルクリプル抑制指令値を記憶しておき、高応答性が必要となる場合には記憶しておいた抑制指令値を用いてFF方式で動作させたり、あるいは、基本的にはFF方式として駆動しておき、定常運転時にはFB方式で抑制指令値を更新するといった方法が挙げられている。 Therefore, a learning control method combining these two methods has been proposed (see, for example, Patent Document 1 below). That is, when driving as the FB system online, the torque ripple suppression command value is stored, and when high response is required, the stored command command value is used to operate in the FF system. In other words, there is a method of driving the FF system basically, and updating the suppression command value by the FB system during steady operation.
特許5434369号Japanese Patent No. 5434369
 このように、学習方式は、FF方式とFB方式の切り替えを適切に行うことで両者の長所を組み合わせた形でトルクリプル抑制制御を行うことが可能となる。しかしながら、この切り替えのタイミングが適切でない場合には、間違った抑制指令値を学習することになるため、切り替えのタイミングを管理する動作シーケンスの設定が重要となる。とりわけ、システムの簡易化のために電気的な情報からモータパラメータに基づいてトルクリプルを推定する場合など、トルクリプルの伝達特性を正確に把握できない場合には特に問題となる。 Thus, in the learning method, torque ripple suppression control can be performed by combining the advantages of both by appropriately switching between the FF method and the FB method. However, when the switching timing is not appropriate, an incorrect suppression command value is learned. Therefore, it is important to set an operation sequence for managing the switching timing. In particular, there is a problem particularly when torque ripple transfer characteristics cannot be accurately grasped, such as when estimating torque ripple based on motor parameters from electrical information to simplify the system.
 トルクリプル抑制制御のためには、上記6f成分の情報をオンラインで推定する必要があるが、一般的によく使われる回転座標(dq座標)上でのRL回路モデルではこれが非常に困難となるケースが存在する。 For torque ripple suppression control, it is necessary to estimate the information of the 6f component online, but this is very difficult in the RL circuit model on the commonly used rotational coordinates (dq coordinates). Exists.
 図15はPMモータをある一定の速度に制御した状態でq軸電流iを増加させた場合のq軸磁束φの変化を示した一例である。この図における傾きがq軸のインダクタンスとなるが、ここで問題となるのは以下の二点である。 FIG. 15 is an example showing a change in the q-axis magnetic flux φ q when the q-axis current i q is increased in a state where the PM motor is controlled at a constant speed. The slope in this figure is the q-axis inductance, but the following two points are problematic here.
(i)インダクタンスの基本波成分の変化、すなわち、モータの磁気飽和によりインダクタンスが電流に応じて変化すること。
(ii)インダクタンスの高調波成分の変化、すなわち、インダクタンスがヒステリシスマイナーループを形成すること。
 ここに、ヒステリシスマイナーループとは、図15の拡大図において、同じq軸電流iに対してもq軸磁束φが複数の値を取り得ることから、q軸磁束φが小さなループを形成するような変化をすることである。
(I) Changes in the fundamental wave component of the inductance, that is, the inductance changes according to the current due to the magnetic saturation of the motor.
(Ii) A change in the harmonic component of the inductance, that is, the inductance forms a hysteresis minor loop.
Here, the hysteresis minor loop, the enlarged view of FIG. 15, since the q-axis magnetic flux phi q can take multiple values even for the same q-axis current i q, the q-axis magnetic flux phi q is a small loop It is to change as it forms.
 上記(i)に関しては、電流が増大するほどインダクタンスが飽和して小さくなるため、制御器が認識するモータの回路モデルと実際のモータのそれとが誤差を持つことでトルクの伝達特性が異なることが問題となる。 With regard to (i) above, the inductance is saturated and becomes smaller as the current increases, so that the torque transfer characteristics may differ due to an error between the motor circuit model recognized by the controller and that of the actual motor. It becomes a problem.
 上記(ii)に関しては、同じ電流であっても回転子位置に応じてインダクタンスの値が異なることから、トルクリプルと同様に、モータ電気角に応じた高調波成分を持つため、ヒステリシスマイナーループを形成する。このような特性を持つ場合、磁気飽和特性を考慮して電流に応じてインダクタンスが変化するように設定していたとしても、高調波の座標上でみたインダクタンスは回転子位置に応じて変化することになる。すなわち、トルクの伝達特性が合っていてもトルクリプルの伝達特性が異なっているので、正確なトルクリプルの情報を取得することが困難となる。 As for (ii) above, since the inductance value differs depending on the rotor position even with the same current, a hysteresis minor loop is formed since it has a harmonic component corresponding to the motor electrical angle, similar to the torque ripple. To do. If it has such characteristics, even if it is set so that the inductance changes according to the current in consideration of the magnetic saturation characteristics, the inductance seen on the coordinates of the harmonics changes according to the rotor position. become. That is, even if the torque transmission characteristics are matched, the torque ripple transmission characteristics are different, so that it is difficult to obtain accurate torque ripple information.
 この発明は、上記の課題を解決するためになされたものであり、モータの速度や磁気特性の変化に応じてトルクリプル抑制制御を行う場合に、動作シーケンスを適切に管理することで、高精度にトルクリプル抑制制御が可能なモータ制御装置およびこれを用いたエレベータを提供することを目的とする。 The present invention has been made to solve the above-described problems, and when performing torque ripple suppression control in accordance with changes in the speed and magnetic characteristics of the motor, the operation sequence is appropriately managed to achieve high accuracy. An object of the present invention is to provide a motor control device capable of torque ripple suppression control and an elevator using the same.
 この発明に係るモータ制御装置は、交流モータと、三相の内少なくとも二相の電流を検出する電流検出部と、検出された電流値を用いて制御座標軸における電圧指令値を生成する電流制御部と、電圧指令値と電流検出値に基づき上記交流モータのトルクを推定するトルク推定部と、推定トルクに基づいて上記交流モータのトルクリプルを抑制する抑制指令を生成するトルクリプル抑制部と、上記抑制指令を生成するための抑制制御パラメータを上記交流モータの速度と電流指令値に対応付けて記憶する抑制制御パラメータ記憶部とを備えるとともに、上記交流モータの磁気特性から算出した切り替え条件に応じて、上記トルクリプル抑制部によりトルクリプル抑制を行うオンライン制御モードと、上記トルクリプル抑制部によりトルクリプル抑制を行うと同時に上記抑制制御パラメータ記憶部で抑制制御パラメータを記憶する学習制御モードと、上記抑制制御パラメータ記憶部に記憶された抑制制御パラメータによってトルクリプル抑制を行うオフライン制御モードとの3つの制御モードの内の一つを選択する動作シーケンスを実行する制御部を有する。
 また、この発明のエレベータは、上記構成のモータ制御装置と、かごと、釣り合い錘と、上記かごと上記釣り合い錘との間を連結するロープと、上記交流モータの駆動力によって回転して上記ロープが巻き掛けられている駆動シーブと、を備えている。
A motor control device according to the present invention includes an AC motor, a current detection unit that detects a current of at least two phases of three phases, and a current control unit that generates a voltage command value in a control coordinate axis using the detected current value A torque estimation unit that estimates the torque of the AC motor based on the voltage command value and the current detection value, a torque ripple suppression unit that generates a suppression command that suppresses torque ripple of the AC motor based on the estimated torque, and the suppression command And a suppression control parameter storage unit that stores the suppression control parameter for generating the motor in association with the speed and current command value of the AC motor, and according to the switching condition calculated from the magnetic characteristics of the AC motor, Online control mode in which torque ripple suppression is performed by the torque ripple suppression unit, and torque ripple by the torque ripple suppression unit. The control mode includes a learning control mode in which the suppression control parameter is stored in the suppression control parameter storage unit and an offline control mode in which torque ripple suppression is performed by the suppression control parameter stored in the suppression control parameter storage unit. A control unit that executes an operation sequence for selecting one of the above.
The elevator according to the present invention includes the motor control device having the above-described configuration, a car, a counterweight, a rope that connects the car and the counterweight, and the rope that rotates by the driving force of the AC motor. And a drive sheave on which is wound.
 この発明のモータ制御装置、およびこれを用いたエレベータは、交流モータの磁気特性に基づく切り替え条件に応じて、オンライン制御モード、学習制御モード、オフライン制御モードの3つの制御モードの内の一つを選択する動作シーケンスを実行するようにしたので、これによって、適切な抑制制御パラメータの学習が可能となり、トルクリプルを効果的に抑制することが可能となる。 The motor control device according to the present invention and an elevator using the motor control device have one of three control modes, an online control mode, a learning control mode, and an offline control mode, according to the switching condition based on the magnetic characteristics of the AC motor. Since the operation sequence to be selected is executed, it becomes possible to learn appropriate suppression control parameters and to effectively suppress torque ripple.
この発明の実施の形態1に係るモータ制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the motor control apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1のモータ制御装置のトルクリプル補償指令生成部の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the torque ripple compensation instruction | command production | generation part of the motor control apparatus of Embodiment 1 of this invention. この発明の実施の形態1のモータ制御装置のオンライン制御モードの動作を示すブロック図である。It is a block diagram which shows operation | movement of the online control mode of the motor control apparatus of Embodiment 1 of this invention. この発明の実施の形態1のモータ制御装置の学習制御モードの動作を示すブロック図である。It is a block diagram which shows operation | movement of the learning control mode of the motor control apparatus of Embodiment 1 of this invention. この発明の実施の形態1のモータ制御装置のオフライン制御モードの動作を示すブロック図である。It is a block diagram which shows operation | movement of the offline control mode of the motor control apparatus of Embodiment 1 of this invention. この発明の実施の形態1のモータ制御装置における制御モードの切り替え動作シーケンスを示すフローチャートである。It is a flowchart which shows the switching operation sequence of the control mode in the motor control apparatus of Embodiment 1 of this invention. この発明の実施の形態1のモータ制御装置における制御モードの切り替え動作シーケンスを模式的に示すグラフである。It is a graph which shows typically the switching operation sequence of the control mode in the motor control device of Embodiment 1 of this invention. この発明の実施の形態1のモータ制御装置における制御モードの他の切り替え動作シーケンスを模式的に示すグラフである。It is a graph which shows typically the other switching operation sequence of the control mode in the motor control apparatus of Embodiment 1 of this invention. この発明の実施の形態1のモータ制御装置における制御モードのさらに他の切り替え動作シーケンスを模式的に示すグラフである。It is a graph which shows typically the other switching operation sequence of the control mode in the motor control apparatus of Embodiment 1 of this invention. この発明の実施の形態2に係るモータ制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the motor control apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態2のモータ制御装置のオンライン制御モードの動作を示すブロック図である。It is a block diagram which shows operation | movement of the on-line control mode of the motor control apparatus of Embodiment 2 of this invention. この発明の実施の形態2のモータ制御装置の学習制御モードの動作を示すブロック図である。It is a block diagram which shows operation | movement of the learning control mode of the motor control apparatus of Embodiment 2 of this invention. この発明の実施の形態2モータ制御装置のオフライン制御モードの動作を示すブロック図である。It is a block diagram which shows operation | movement of the offline control mode of Embodiment 2 motor control apparatus of this invention. この発明の実施の形態4のモータ制御装置における制御モードの切り替え動作シーケンスを示すフローチャートである。It is a flowchart which shows the switching operation sequence of the control mode in the motor control apparatus of Embodiment 4 of this invention. 交流モータの磁気飽和特性の一例を示す特性図である。It is a characteristic view which shows an example of the magnetic saturation characteristic of an AC motor. この発明におけるモータ制御装置をエレベータに適用した実施の形態5における概略構成図である。It is a schematic block diagram in Embodiment 5 which applied the motor control apparatus in this invention to the elevator. この発明の実施の形態5のエレベータが備えるモータ制御装置における制御モードの切り替え動作シーケンスを示すフローチャートである。It is a flowchart which shows the switching operation sequence of the control mode in the motor control apparatus with which the elevator of Embodiment 5 of this invention is provided.
実施の形態1.
 図1は、この発明の実施の形態1におけるモータ制御装置の構成を示すブロック図である。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of a motor control device according to Embodiment 1 of the present invention.
 この実施の形態1のモータ制御装置は、電力変換器3を介して交流モータであるPMモータ(以下、単にモータと称する)9を制御するものである。このモータ制御装置は、トルク指令値τに基づいて電流指令値i 、i を出力する電流指令生成部10、この電流指令生成部10の出力から三相-dq変換器5の出力を減算する減算器6及び7、これら減算器6および7の出力を用いて制御座標軸における電圧指令値v 、v を生成する電流制御部1、この電流制御部1からの電圧指令値v 、v に基づいて三相交流電圧を生成するdq-三相変換器2、このdq-三相変換器2の出力に基づいてモータ9への供給電力を制御する電力変換器3、モータ9に供給する三相の電流の内の少なくとも二相の電流を検出する電流検出部4、モータ9の回転位置を検出するエンコーダ等の回転位置検出器8、電流検出部4で得られた検出電流を制御座標軸のd軸電流iとq軸電流iに変換する三相-dq変換器5を備える。 The motor control device according to the first embodiment controls a PM motor (hereinafter simply referred to as a motor) 9 that is an AC motor via a power converter 3. The motor control device includes a current command generation unit 10 that outputs current command values i * d and i * q based on a torque command value τ * , and an output of the current command generation unit 10 that outputs a current from the three-phase-dq converter 5. Subtractors 6 and 7 for subtracting the output, current control unit 1 for generating voltage command values v * d and v * q on the control coordinate axes using the outputs of these subtractors 6 and 7, and the voltage from this current control unit 1 Dq-three-phase converter 2 that generates a three-phase AC voltage based on the command values v * d and v * q, and electric power that controls the power supplied to the motor 9 based on the output of the dq-three-phase converter 2 Converter 3, current detector 4 that detects at least two of the three-phase currents supplied to motor 9, rotational position detector 8 such as an encoder that detects the rotational position of motor 9, and current detector 4 The detected current obtained in step d is the d-axis current of the control coordinate axis. comprising a three-phase -dq converter 5 which converts the d and q-axis current i q.
 さらに、この実施の形態1のモータ制御装置は、モータ9のトルクリプル抑制用の抑制指令を生成するトルクリプル抑制部80、トルクリプル抑制のための抑制制御パラメータをモータ9の速度と電流指令値に対応付けて記憶する抑制制御パラメータ記憶部120、および上記のトルクリプル抑制部80と、抑制制御パラメータ記憶部120を制御するマイクロコンピュータなどの制御部150を有する。 Furthermore, the motor control device of the first embodiment associates the torque ripple suppression unit 80 that generates a suppression command for torque ripple suppression of the motor 9 and the suppression control parameter for torque ripple suppression with the speed of the motor 9 and the current command value. And a control unit 150 such as a microcomputer for controlling the suppression control parameter storage unit 120.
 そして、トルクリプル抑制部80は、電圧指令値v dq、電流検出値i dq、およびモータ9の回転位置θreに基づきモータ9のトルク推定値τを算出するトルク推定部90と、モータ9の回転位置θreとトルク推定部90からのトルク推定値τに基づいてモータ9のトルクリプルを抑制する抑制指令としてのトルクリプル補償信号τ ripを生成して電流指令生成部10に出力するトルクリプル補償指令生成部100とを含んでいる。 The torque ripple suppression unit 80 includes a torque estimation unit 90 that calculates the estimated torque value τ of the motor 9 based on the voltage command value v * dq , the detected current value i * dq , and the rotational position θ re of the motor 9, and the motor 9 Torque ripple compensation signal for generating a torque ripple compensation signal τ * rip as a suppression command for suppressing torque ripple of the motor 9 based on the rotational position θ re of the motor and the estimated torque value τ from the torque estimating unit 90 and outputting it to the current command generating unit 10 The command generation unit 100 is included.
 制御部150は、上記のトルクリプル抑制部80と、抑制制御パラメータ記憶部120の動作を制御するとともに、モータ9の速度、およびモータ9の磁気特性(先の図15に示したインダクタンス特性)に基づいて設定された切り替え条件(後述のωre_low、ωre_high、iq_mg、iq_hys)に応じて、トルクリプル抑制部80によりトルクリプル抑制を行うオンライン抑制制御モードと、トルクリプル抑制部80によりトルクリプル抑制を行うと同時に抑制制御パラメータ記憶部120で抑制制御パラメータを記憶する学習制御モードと、抑制制御パラメータ記憶部120に記憶された抑制制御パラメータによってトルクリプル抑制を行うオフライン制御モードとの3つの制御モードの内の一つを選択する動作シーケンスを実行するものである。 The control unit 150 controls the operation of the torque ripple suppression unit 80 and the suppression control parameter storage unit 120, and based on the speed of the motor 9 and the magnetic characteristics of the motor 9 (inductance characteristics shown in FIG. 15 above). Online suppression control mode in which torque ripple suppression is performed by the torque ripple suppression unit 80 and torque ripple suppression is performed by the torque ripple suppression unit 80 in accordance with the switching conditions (ω re_low , ω re_high , i q_mg , i q_hys ) described later. At the same time, one of the three control modes of the learning control mode in which the suppression control parameter is stored in the suppression control parameter storage unit 120 and the offline control mode in which torque ripple suppression is performed using the suppression control parameter stored in the suppression control parameter storage unit 120. To select one It is to run the Sequence.
 図2は上記のトルクリプル補償指令生成部100の構成の一例を示すブロック図である。なお、図1、図2に示した各部の構成、作用は、以下の動作説明によりさらに一層明確にされる。 FIG. 2 is a block diagram showing an example of the configuration of the torque ripple compensation command generation unit 100 described above. The configuration and operation of each part shown in FIGS. 1 and 2 are further clarified by the following description of the operation.
 次に、上記構成を有するモータ制御装置において、モータ9に供給される電圧と電流とからモータ9の電力を推定し、推定した電力に基づいてトルクリプルを抑制するオンライン制御モードの動作について、図3を用いて説明する。 Next, in the motor control device having the above-described configuration, the operation of the online control mode for estimating the power of the motor 9 from the voltage and current supplied to the motor 9 and suppressing the torque ripple based on the estimated power will be described with reference to FIG. Will be described.
 トルク推定部90は、モータ定数と、dq軸実電流i、iからなる実電流ベクトルidqと、モータ9への電圧指令値v ,v からなる電圧ベクトルv dqと、回転位置検出器8によって検出されたモータの電気角θreに基づき、以下の式(1)の演算によってモータ9の推定誘起電圧としての誘起電圧推定値ベクトルedqを推定する。 The torque estimation unit 90 includes a motor constant, an actual current vector i dq composed of dq axis actual currents i q and i d , and a voltage vector v * dq composed of voltage command values v * d and v * q to the motor 9. Based on the electrical angle θ re of the motor detected by the rotational position detector 8, an estimated voltage estimated value vector edq as an estimated induced voltage of the motor 9 is estimated by the calculation of the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Rはモータの巻線抵抗、Lは自己インダクタンス、Pは極対数、sは微分演算子、ωrmは機械角速度、ωreはモータ9の速度(電気角速度)を表している。 Here, R represents the winding resistance of the motor, L is the self-inductance, P m is the number of pole pairs, s is a differential operator, omega rm is mechanical angular, the omega re represents the speed of the motor 9 (electrical angular velocity).
 さらに、トルク推定部90は、上記式(1)で得られた誘起電圧推定値ベクトルedqと実電流ベクトルidqとに基づいて、以下の式(2)によってモータ9のトルクを推定し、このトルク推定値τをトルクリプル補償指令生成部100へ出力する。 Further, the torque estimation unit 90 estimates the torque of the motor 9 by the following formula (2) based on the induced voltage estimated value vector edq and the actual current vector i dq obtained by the formula (1), The estimated torque value τ is output to the torque ripple compensation command generation unit 100.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 トルクリプル補償指令生成部100は、トルク推定値τに含まれる振動成分を抽出してその振動を打ち消すようなトルクリプル補償信号τ ripを生成し、このトルクリプル補償信号τ ripを電流指令生成部10へ出力する。なお、このトルク推定値τに基づくトルクリプル補償信号τ ripの生成方法に関しては多数の公知技術があるが、ここでは一例として、図2に示す構成を有するトルクリプル補償指令生成部100を採用している。 The torque ripple compensation command generation unit 100 generates a torque ripple compensation signal τ * rip that extracts the vibration component included in the estimated torque value τ and cancels the vibration, and uses the torque ripple compensation signal τ * rip as the current command generation unit 10. Output to. There are a number of known techniques for generating the torque ripple compensation signal τ * rip based on the estimated torque value τ. Here, as an example, the torque ripple compensation command generation unit 100 having the configuration shown in FIG. 2 is adopted. Yes.
 図2において、まず、処理部101を構成する抽出部101aでトルク推定値τに含まれる脈動成分が抽出される。その演算方法としては、任意の公知技術を用いることができるが、例えばトルク推定値τに対してフーリエ級数展開を参考にした次式(3)の演算を用いることができる。 In FIG. 2, first, a pulsation component included in the estimated torque value τ is extracted by the extraction unit 101 a constituting the processing unit 101. As the calculation method, any known technique can be used. For example, the calculation of the following equation (3) with reference to Fourier series expansion can be used for the estimated torque value τ.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、τCnはトルク推定値τの余弦係数、τSnはトルク推定値τの正弦係数、FLPF(s)はローパスフィルタのゲイン、nはトルクリプル次数、Δθestはトルク推定値τの実トルクからの推定遅れを補償するための位相の補償設定値であり、処理部101を構成する位相補償部101bにおいて設定される。なお、この場合の補償設定値Δθestは、実測やモデルから求めて予め設定される。 Where τ Cn is the cosine coefficient of the estimated torque value τ, τ Sn is the sine coefficient of the estimated torque value τ, F LPF (s) is the gain of the low-pass filter, n is the torque ripple order, and Δθ est is the actual value of the estimated torque value τ. This is a phase compensation setting value for compensating for the estimated delay from the torque, and is set in the phase compensation unit 101 b constituting the processing unit 101. In this case, the compensation set value Δθ est is obtained in advance from actual measurements or models.
 次に、処理部101で得られた上記の余弦係数τCn、および正弦係数τSnは、それぞれ減算器102a、103aへ入力される。減算器102a、103aおよび抑制制御部102b,103bは、次の式(4)の演算によってトルクリプル振幅抑制値の演算を行い、トルクリプル補償余弦係数τ Cn、およびトルクリプル補償正弦係数τ Snを演算し、それぞれ乗算器105b、106bへ出力する。 Next, the cosine coefficient τ Cn and the sine coefficient τ Sn obtained by the processing unit 101 are input to the subtracters 102a and 103a, respectively. The subtractors 102a and 103a and the suppression control units 102b and 103b calculate a torque ripple amplitude suppression value by calculating the following equation (4), and calculate a torque ripple compensation cosine coefficient τ * Cn and a torque ripple compensation sine coefficient τ * Sn . And output to the multipliers 105b and 106b, respectively.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、Grip(s)は抑制制御部102b,103bの伝達特性、τ** Cn、τ** Snはトルクリプル抑制指令値を表している。 Here, G rip (s) represents transfer characteristics of the suppression control units 102b and 103b, and τ ** Cn and τ ** Sn represent torque ripple suppression command values.
 乗算器105b、106bおよび加算器107において次の式(5)の演算を行ってトルクリプルの周期に同期した変換信号としての周期信号へと変換し、トルクリプル補償信号τ ripが出力され、このトルクリプル補償信号τ ripが電流指令生成部10へ入力されてトルクリプルが抑制される。 The multipliers 105b and 106b and the adder 107 perform the calculation of the following equation (5) to convert them into a periodic signal as a conversion signal synchronized with the torque ripple period, and output a torque ripple compensation signal τ * rip. The compensation signal τ * rip is input to the current command generator 10 to suppress torque ripple.
 なお、周期信号生成部105a,106aは、回転位置検出器8で得られるモータ9の電気角θreを微分器108で微分して得られる電気角速度(以下、単に速度という)ωreに基づき、電流制御系の持つ制御遅れに対応する位相補償設定値Δθにより位相補償を行った周期信号を生成する。 The periodic signal generators 105a and 106a are based on an electrical angular velocity (hereinafter simply referred to as speed) ω re obtained by differentiating the electrical angle θ re of the motor 9 obtained by the rotational position detector 8 by the differentiator 108. A periodic signal that has undergone phase compensation is generated based on the phase compensation setting value Δθ i corresponding to the control delay of the current control system.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ただし、Δθは制御系がもつ制御遅れに基づく位相補償の設定値を表している。この場合、位相補償設定値Δθは、実測やモデルから求めて、予め設定される。 However, Δθ i represents a set value of phase compensation based on the control delay of the control system. In this case, the phase compensation set value Δθ i is obtained from actual measurements or models and set in advance.
 次に、図4で表される学習制御モードの動作について説明する。
 この学習制御モードでは、上記のオンライン制御モードの動作を行うのと並行して、これに加えて抑制制御パラメータ記憶部120が動作状態となり、トルクリプル補償指令生成部100を構成する抑制制御部102b、103bから出力されるトルクリプル補償余弦係数τ Cn、およびトルクリプル補償正弦係数τ Snを、トルクリプル補償信号τ ripを生成するための抑制制御パラメータとして、モータ9の速度ωreおよびq軸電流指令値i と対応付けて記憶する。
Next, the operation in the learning control mode shown in FIG. 4 will be described.
In this learning control mode, in parallel to the operation in the online control mode, in addition to this, the suppression control parameter storage unit 120 is in an operating state, and the suppression control unit 102b constituting the torque ripple compensation command generation unit 100, torque ripple compensation cosine coefficient tau * Cn outputted from the 103b, and the torque ripple compensation sine coefficient tau * Sn, as suppression control parameters for generating a torque ripple compensation signal tau * rip, velocity omega re and the q-axis current command of the motor 9 Stored in association with the value i * q .
 次に、図5で表されるオフライン制御モードの動作について説明する。
 このオフライン制御モードでは、トルク推定部90は停止状態にある。このため、トルクリプル補償指令生成部100の抑制制御部102b,103bの制御動作も停止状態にある。したがって、この場合には、制御部150により、抑制制御パラメータ記憶部120内に記憶されたモータ9の速度ωreおよびq軸電流指令値i に対応した抑制制御パラメータτ Cn、τ Snを読み出して乗算器105b、106bへ出力する。これにより、前述の式(4)、式(5)に基づく演算が行われ、トルクリプル補償指令生成部100からオフラインでトルクリプル補償信号τ ripが生成され、このトルクリプル補償信号τ ripが電流指令生成部10へ入力されてトルクリプルが抑制される。
Next, the operation in the offline control mode shown in FIG. 5 will be described.
In the offline control mode, the torque estimation unit 90 is in a stopped state. For this reason, the control operation of the suppression control units 102b and 103b of the torque ripple compensation command generation unit 100 is also stopped. Therefore, in this case, the control unit 150 controls the suppression control parameters τ * Cn and τ * corresponding to the speed ωre and the q-axis current command value i * q of the motor 9 stored in the suppression control parameter storage unit 120 . Sn is read and output to the multipliers 105b and 106b. Thereby, the calculation based on the above-described equations (4) and (5) is performed, and the torque ripple compensation signal τ * rip is generated off-line from the torque ripple compensation command generation unit 100, and this torque ripple compensation signal τ * rip is converted into the current command. The torque ripple is suppressed by being input to the generation unit 10.
 次に、上記の3つの制御モードを相互に切り替えるシーケンス動作について説明する。これには、(a)モータ9の速度ωreに対して適切な制御モードを設定するための切り替え条件と、(b)モータ9の磁気特性(先の図15に示したインダクタンス特性)を表すq軸電流指令値i に対して適切な制御モードを設定するための切り替え条件とに分けられる。
 まず、上記(a)のモータ9の速度ωreに対して適切な制御モードを設定するための切り替え条件について説明する。
Next, a sequence operation for switching the above three control modes to each other will be described. To do this, represents: (a) a switching condition for setting the appropriate control mode for speed omega re of the motor 9, (b) the magnetic characteristics of the motor 9 (inductance characteristics shown above in FIG. 15) It is divided into switching conditions for setting an appropriate control mode for the q-axis current command value i * q .
First, a description will be given switching condition for setting the appropriate control mode for speed omega re of the motor 9 in the (a).
 最初の起動時には、トルクリプル周波数が低く、オンライン制御の応答を高くできないため、オフライン制御モードで起動する。そして、モータ9の速度ωreが予め設定した所定の第1の速度閾値ωre_low以上となるまでは起動期間としてオフライン制御モードを継続する。 At the first start-up, the torque ripple frequency is low and the online control response cannot be increased, so the start-up is performed in the off-line control mode. Then, the speed omega re of the motor 9 until the predetermined first speed threshold omega Re_low than a preset continues the offline control mode as the activation period.
 ここで、上記の第1の速度閾値ωre_lowの設定の一例として、トルクリプルが速度応答ωsc以上の周波数となるまでオフライン制御モードで動作させたい場合について説明する。先に説明したようにトルクリプルはモータ電気角の整数倍の次数成分で発生する振動であるため、その周波数はnωreとなる。したがってトルクリプル周波数が速度応答ωsc以上となるような速度条件はωsc<nωre⇔ωre>ωsc/nである。すなわち、ωre_low>ωsc/n[rad/sec]と設定すればトルクリプルが速度応答以上の周波数となるまではオフライン制御モードの動作を継続させることができる。 Here, as an example of the setting of the first velocity threshold omega Re_low above, torque ripple will be described when it is desired to operate in the offline control mode until more frequency velocity response omega sc. Since the torque ripple as previously described is a vibration generated in order component of an integral multiple of motor electrical angle, the frequency is nω re. Therefore, the speed condition in which the torque ripple frequency is equal to or higher than the speed response ω sc is ω sc <nω re ⇔ω re > ω sc / n. That is, if ω re — low > ω sc / n [rad / sec] is set, the operation in the offline control mode can be continued until the torque ripple becomes a frequency equal to or higher than the speed response.
 モータ9の速度ωreが第1の速度閾値ωre_low以上になっても、加減速中は抑制制御パラメータτ Cn、τ Snが変化し続けるため、抑制制御パラメータτ Cn、τ Snの学習は行わず、オンライン制御モードに移行する。 Since the velocity omega re of the motor 9 is also equal to or more than the first speed threshold omega Re_low, during acceleration and deceleration reduction control parameter τ * Cn, τ * Sn keep changing, suppressing control parameter τ * Cn, τ * Sn The learning process is not performed, and the online control mode is entered.
 加減速が完了して定常動作に入ると、オンライン制御モードから学習制御モードへ移行して抑制制御パラメータτ Cn、τ Snを、モータ9の速度ωreおよびq軸電流指令値i と対応付けて抑制制御パラメータ記憶部120に記憶する。 Once in steady operation deceleration is completed, proceeds suppressing control parameter from the online control mode to the learning control mode τ * Cn, τ * Sn and speed of the motor 9 omega re and q-axis current command value i * q And stored in the suppression control parameter storage unit 120.
 また、この定常動作において、モータ9の速度ωreがあまりに高速であると、トルクリプルが制御系の帯域を上回るような高周波となる場合もある。そのような場合には、トルクリプルを適切に抑制することは難しく、その時に得られる抑制制御パラメータτ Cn、τ Snも適切なものとはならない。そこで、予め所定の第2の速度閾値ωre_high(>ωre_low)を設定しておき、モータ9の速度ωreが第2の速度閾値ωre_high以上であった場合には、オンライン制御モードや学習制御モードには移行せずに、オフライン制御モードへ移行する。 Further, in this steady operation, when the speed omega re of the motor 9 is at too high speed, there is a case where the torque ripple is high frequency such as exceed the bandwidth of the control system. In such a case, it is difficult to appropriately suppress the torque ripple, and the suppression control parameters τ * Cn and τ * Sn obtained at that time are not appropriate. Therefore, set in advance predetermined second speed threshold ω re_high (> ω re_low), when the speed omega re of the motor 9 was a second speed threshold omega Re_high above, online control mode or learning Shift to the offline control mode without shifting to the control mode.
 ここで、上記の第2の速度閾値ωre_highの設定の一例について説明する。本実施の形態ではq軸電流指令値i を補正して電流制御部1を介してトルクリプル抑制を行うため、その補正信号の周波数が電流制御部1における電流制御応答ωcc以上である場合にはその影響は減衰する。すなわちトルクリプル周波数nωreと電流制御応答ωccとの間にωcc>nωre⇔ωre<ωcc/nの関係が成り立つ場合であれば精度よくオンライン制御が機能する。したがってωre_high<ωcc/n[rad/sec]と設定することで適切なオンライン制御モードや学習制御モードの動作が可能となる。 Here, an example of setting the second speed threshold value ωre_high will be described. In this embodiment, when the q-axis current command value i * q is corrected and torque ripple is suppressed via the current control unit 1, the frequency of the correction signal is equal to or higher than the current control response ω cc in the current control unit 1. The effect is attenuated. That is, on-line control functions accurately if the relationship of ω cc > nω re ⇔ω recc / n holds between the torque ripple frequency nω re and the current control response ω cc . Accordingly, by setting ω re_highcc / n [rad / sec], an appropriate online control mode or learning control mode can be operated.
 次に、上記(b)のモータ9の磁気特性に対して適切な制御モードを設定するための切り替え条件について、モータ9が図15に示したようなインダクタンス特性を持つ場合を例にとって説明する。 Next, switching conditions for setting an appropriate control mode for the magnetic characteristics of the motor 9 in (b) will be described by taking as an example the case where the motor 9 has an inductance characteristic as shown in FIG.
 図15に示したようなモータ9のインダクタンス特性から、q軸電流指令値i に対して各制御モードの切り替え閾値を予め設定しておく。まず、定格100%以下の場合には、定常状態のときに学習制御モードになる。次に、定格100%を超えたところから磁気飽和が始まってインダクタンスが小さくなるため、この磁気飽和が始まる領域で定常状態になっても、適切な抑制制御パラメータτ Cn、τ Snを得るのが難しいため、学習制御モードには移行せず、オンライン制御モードとしてのみ動作させる。この磁気飽和が始まるq軸電流指令値i の条件を第1の電流閾値iq_mgとして設定する。 From the inductance characteristics of the motor 9 as shown in FIG. 15, the switching threshold value for each control mode is set in advance for the q-axis current command value i * q . First, when the rating is 100% or less, the learning control mode is set in the steady state. Next, since the magnetic saturation starts from the point where the rating exceeds 100% and the inductance becomes small, appropriate suppression control parameters τ * Cn and τ * Sn are obtained even in a steady state in the region where the magnetic saturation starts. Therefore, the learning control mode is not shifted to, but only the online control mode is operated. The condition of the q-axis current command value i * q at which this magnetic saturation starts is set as the first current threshold i q_mg .
 さらに、定格200%付近からインダクタンスのヒステリシスマイナーループが表れるため、適切な抑制制御パラメータτ Cn、τ Snが得られない。そこからマージンを持たせて、例えば、q軸電流指令値i が150%以上の負荷相当の値となっている場合には、常にオフライン制御モードとして動作するようにする。このヒステリシスマイナーループが表れるq軸電流指令値i の条件を第2の電流閾値iq_hys(>iq_mg)として設定する。 Furthermore, since an inductance hysteresis minor loop appears from around the rated value of 200%, appropriate suppression control parameters τ * Cn and τ * Sn cannot be obtained. For example, when the q-axis current command value i * q is a value corresponding to a load of 150% or more, a margin is provided so that the offline control mode is always operated. The condition of the q-axis current command value i * q in which this hysteresis minor loop appears is set as a second current threshold value i q_hys (> i q_mg ).
 このように、この実施の形態1では、制御部150が、モータ9の速度ωreおよびモータ9の磁気特性(特にここではインダクタンス特性)の双方の条件に合わせて、オンライン制御モード、学習制御モード、オフライン制御モードの3つの制御モードの一つを選択する動作シーケンスを実行する。 As described above, in the first embodiment, the control unit 150 matches the conditions of both the speed ωre of the motor 9 and the magnetic characteristics (particularly, the inductance characteristics in this case) of the motor 9, and the online control mode and the learning control mode. Then, an operation sequence for selecting one of the three control modes of the offline control mode is executed.
 この場合の制御部150が3つの制御モードを選択して切り替える際の動作シーケンスを、図6のフローチャートに示す。なお、符号Sは処理ステップを意味する。
 すなわち、起動後にステップS101を実行し、オフライン制御モードとして動作が開始される。オフライン制御モードの動作中にはステップS102でモータ9の速度ωreに関する切り替え条件の判定が行われる。すなわち、モータ9の速度ωreが第1の速度閾値ωre_low以上であるかを判定する。
 またステップS103でインダクタンス特性(q軸電流指令値i )に関する切り替え条件の判定が行われる。すなわち、q軸電流指令値i が第2の電流閾値iq_hys以下であるかを判定する。
 ステップS102とステップS103の少なくとも一方が否である場合にはオフライン制御モードを継続する。一方、ステップS102およびステップS103が共に真である場合のみステップS104が実行されてオンライン制御モードへと移行する。
The operation sequence when the control unit 150 selects and switches between the three control modes in this case is shown in the flowchart of FIG. Reference sign S means a processing step.
That is, step S101 is performed after starting, and operation | movement is started as an offline control mode. During operation of the offline control mode determination of the switching condition regarding speed omega re of the motor 9 in Step S102 it is performed. That is, it is determined whether the speed omega re of the motor 9 is first velocity threshold omega Re_low more.
In step S103, the switching condition relating to the inductance characteristic (q-axis current command value i * q ) is determined. That is, it is determined whether the q-axis current command value i * q is equal to or less than the second current threshold value i q_hys .
If at least one of step S102 and step S103 is negative, the offline control mode is continued. On the other hand, step S104 is executed only when step S102 and step S103 are both true, and the process shifts to the online control mode.
 オンライン制御モードでの動作中には、ステップS105でインダクタンス特性(q軸電流指令値i )に関する切り替え条件の判定が行われる。すなわち、q軸電流指令値i が第1の電流閾値iq_mg以下であるかを判定する。
 また、ステップS106、S107で速度ωreに関する切り替え条件の判定が行われる。すなわち、ステップS106ではモータが加減速せず、定常状態であるかを判定する。ステップS107ではモータ9の速度ωreが第2の速度閾値ωre_high以下であるかを判定する。
 ステップS105、ステップS106の少なくとも一方が否である場合には、さらにステップS102とステップS103による判定が行われてオンライン制御モードを継続するか否かが判断される。
 ステップS105およびS106がともに真である場合には、ステップS107による判定が行われ、このとき否である場合にはステップS101が実行されてオフライン制御モードへ移行する。ステップS107で真である場合にはステップS108が実行されて学習制御モードへと移行する
During the operation in the online control mode, the switching condition relating to the inductance characteristic (q-axis current command value i * q ) is determined in step S105. That is, it is determined whether the q-axis current command value i * q is equal to or less than the first current threshold value i q_mg .
Moreover, the determination of the switching condition on the velocity omega re carried out in step S106, S107. That is, in step S106, it is determined whether the motor is in a steady state without acceleration / deceleration. Speed omega re step S107 the motor 9 is determined or less than a second speed threshold ω re_high.
If at least one of step S105 and step S106 is negative, a determination is further made in step S102 and step S103 to determine whether to continue the online control mode.
If both steps S105 and S106 are true, a determination is made in step S107. If not in this case, step S101 is executed to shift to the offline control mode. If true in step S107, step S108 is executed to shift to the learning control mode.
 学習制御モードでの動作中にはステップS105、S106、S107による判定が行われており、学習制御モードを継続するか、オフライン制御モードあるいはオンライン制御モードへと移行するかが判断される。 During the operation in the learning control mode, the determinations in steps S105, S106, and S107 are performed, and it is determined whether to continue the learning control mode or to shift to the offline control mode or the online control mode.
 図7は、上記の制御モードの切り替えをグラフ化して模式的に示したものである。
 図7において、横軸を第1の速度閾値ωre_low、第2の速度閾値ωre_highの切り替え条件により、また縦軸を第1の電流閾値iq_mg、第2の電流閾値iq_hysの切り替え条件によりそれぞれ区分けして、9個の領域(I)~(IX)に分割する。この場合、領域(I)~(III)、(VI)、(VII)~(IX)では全てオフライン制御モードが選択され、領域(IV)では定常状態でないときにはオンライン制御モードが、定常状態では学習制御モードが選択され、また、領域(V)ではオンライン制御モードが選択される。
FIG. 7 is a graph schematically showing the switching of the control mode.
In FIG. 7, the horizontal axis represents the first speed threshold value ω re_low and the second speed threshold value ω re_high , and the vertical axis represents the first current threshold value i q_mg and the second current threshold value i q_hys. Each is divided into nine regions (I) to (IX). In this case, the offline control mode is selected in all of the regions (I) to (III), (VI), and (VII) to (IX). In the region (IV), the online control mode is learned when not in the steady state, and the learning is performed in the steady state. The control mode is selected, and the online control mode is selected in the region (V).
 このように、この実施の形態1では、モータ9の速度ωreおよびモータ9の磁気特性(特にここではインダクタンス特性)の双方の条件に合わせて、オンライン制御モード、学習制御モード、オフライン制御モードの3つの制御モードの一つを選択する動作シーケンスを持つようにしたので、これによって、適切な抑制制御パラメータの学習が可能となり、トルクリプルを効果的に抑制することができる。 As described above, in the first embodiment, the online control mode, the learning control mode, and the offline control mode are matched to the conditions of both the speed ωre of the motor 9 and the magnetic characteristics (particularly, the inductance characteristics in this case) of the motor 9. Since an operation sequence for selecting one of the three control modes is provided, it is possible to learn an appropriate suppression control parameter and to effectively suppress torque ripple.
 なお、図7に示した各領域(I)~(IX)に対して各制御モードを割り振る場合に限らず、例えば図8に示すように、q軸電流指令値i がiq_mg<i <iq_hys(図8の領域(V))では、オンライン制御モードに代えて、学習制御モードを選択してもよい。また、q軸電流指令値i がi>iq_hys(図8の領域(VI)では、学習制御モードは実施できないが、オフライン制御モードに代えて、オンライン制御モードを選択してもよい。 It should be noted that the present invention is not limited to the case where each control mode is assigned to each of the regions (I) to (IX) shown in FIG. 7, but the q-axis current command value i * q is set to i q_mg <i as shown in FIG. In * q <i q_hys (region (V) in FIG. 8), the learning control mode may be selected instead of the online control mode. Further, the q-axis current command value i * q is i q > i q_hys (in the region (VI) in FIG. 8, the learning control mode cannot be performed, but the online control mode may be selected instead of the offline control mode). .
 また、上記の実施の形態1では、モータ9の速度ωreおよびモータ9の磁気特性であるq軸電流指令値i の双方の条件に合わせて、オンライン制御モード、学習制御モード、オフライン制御モードの3つの制御モードを選択して切り替えるようにしたが、これに限らず、図9に示すように、q軸電流指令値i の条件だけに従って、3つの制御モードの内の一つを選択するようにしてもよい。 In the first embodiment, the online control mode, the learning control mode, and the offline control are performed in accordance with both conditions of the speed ωre of the motor 9 and the q-axis current command value i * q that is the magnetic characteristic of the motor 9. Although the three control modes are selected and switched, the present invention is not limited to this, and as shown in FIG. 9, one of the three control modes is selected according to only the condition of the q-axis current command value i * q. May be selected.
 すなわち、図9では、q軸電流指令値i が第2の電流閾値iq_hys以上の場合(領域(III)、(VI)、(IX)の場合)には全てオフライン制御モードを選択し、第2の電流閾値iq_hys以下の場合(領域(I)、(II)、(IV)、(V)、(VII)、(VIII)の場合)には全て学習制御モードを選択する。 That is, in FIG. 9, when the q-axis current command value i * q is greater than or equal to the second current threshold value i q_hys (in the case of regions (III), (VI), and (IX)), the offline control mode is all selected. The learning control mode is selected in all cases where the current threshold value is less than or equal to the second current threshold value i q_hys (in the case of the regions (I), (II), (IV), (V), (VII), (VIII)).
実施の形態2.
 図10は、この発明の実施の形態2におけるモータ制御装置の構成を示すブロック図である。なお、この実施の形態2において、図11はオンライン制御モードの動作時のブロック図を、図12は学習制御モードの動作時のブロック図を、図13はオフライン制御モードの動作時のブロック図を、それぞれ示している。
Embodiment 2. FIG.
FIG. 10 is a block diagram showing the configuration of the motor control apparatus according to Embodiment 2 of the present invention. In the second embodiment, FIG. 11 is a block diagram during operation in the online control mode, FIG. 12 is a block diagram during operation in the learning control mode, and FIG. 13 is a block diagram during operation in the offline control mode. , Respectively.
 この実施の形態2の特徴は、実施の形態1の回転位置検出器8に代わり、回転位置推定部130を設け、ここで推定された回転位置推定値θreを制御演算に用いる。
 その他の構成は、図1、図2に示した実施の形態1と同様であるから、ここでは詳しい説明は省略する。
The feature of the second embodiment is that a rotational position estimation unit 130 is provided instead of the rotational position detector 8 of the first embodiment, and the estimated rotational position value θre is used for the control calculation.
Since other configurations are the same as those of the first embodiment shown in FIGS. 1 and 2, detailed description thereof is omitted here.
 モータ9の回転位置推定は、誘起電圧を利用する方法と、モータ9に突極性がある場合に高周波電圧を利用して直接位置を推定する方法の二つに大別される。前者の方法は、電気的情報のみから回転位置を推定することが可能であるが、誘起電圧が低くなる低速域では位置推定が不能となる。一方、後者の方法は、低速域~ゼロ速域まで位置推定が可能であるが、騒音や振動を引き起こすこともあり得る高周波電圧を印加する必要がある。 Rotational position estimation of the motor 9 is roughly divided into two methods: a method using an induced voltage and a method of directly estimating a position using a high frequency voltage when the motor 9 has saliency. The former method can estimate the rotational position only from the electrical information, but cannot estimate the position in a low speed region where the induced voltage is low. On the other hand, the latter method can estimate the position from the low speed range to the zero speed range, but it is necessary to apply a high frequency voltage that may cause noise and vibration.
 このため、モータ9の回転位置推定は、一般的にはある速度閾値ωshを設定し、モータ9の速度ωreがこの速度閾値ωshよりも低い低速域では高周波電圧を利用する方法を採用し、速度閾値ωshよりも高い中速域以上では誘起電圧を利用する方法を採用し、両者の方法を切り替えて使用する場合が多い。 For this reason, the rotational position of the motor 9 is generally determined by setting a certain speed threshold ω sh and using a high-frequency voltage in a low speed range where the speed ω re of the motor 9 is lower than the speed threshold ω sh. However, in the middle speed range higher than the speed threshold value ω sh, a method using an induced voltage is adopted, and both methods are often switched and used.
 そこで、この実施の形態2では、制御モードの切り替えのための第1の速度閾値ωre_lowを、上記の誘起電圧利用と高周波利用の切り替え速度閾値ωshに一致するように、すなわちωsh(切り替え速度閾値)=ωre_low(第1の速度閾値)となるように設定する。したがって、制御部150は、回転位置推定部130に対して、第1の速度閾値ωre_low以下の低速域では高周波電圧を利用する方法を採用して回転位置推定値θreを算出し、また、第1の速度閾値ωre_lowよりも大きい中速域以上では誘起電圧を利用する方法を採用して回転位置推定値θreを算出する。このように、制御部150は、回転位置推定部130に対して、第1の速度閾値ωre_lowを境として回転位置推定値θreの算出方法が切り替わるように制御する。 Therefore, in the second embodiment, the first speed threshold value ω re_low for switching the control mode is made to coincide with the switching speed threshold value ω sh for using the induced voltage and using the high frequency, that is, ω sh (switching). (Speed threshold) = ω relow (first speed threshold). Therefore, the control unit 150 calculates a rotational position estimation value θ re by adopting a method of using a high frequency voltage in a low speed region equal to or lower than the first speed threshold value ω re_low with respect to the rotational position estimation unit 130. in the first speed threshold omega Re_low medium speeds or greater than calculates the rotational position estimate theta re employ a method of utilizing an induced voltage. As described above, the control unit 150 controls the rotational position estimating unit 130 so that the calculation method of the rotational position estimated value θ re is switched with the first speed threshold value ω re_low as a boundary.
 このようにすれば、第1の速度閾値ωre_low以下の低速域では、回転位置推定部130は回転位置推定値θreを高周波電圧を利用して推定することになるが、その場合、トルクリプル抑制部80は、オフライン制御モードで動作することになり、低速域においてトルクリプル抑制部80が回転位置推定値θreを制御演算に用いる際に悪影響を及ぼすのを防ぐことができる。 In this way, in the first speed threshold omega Re_low following the low-speed range, the rotational position estimator 130 is thus to estimate the rotational position estimate theta re using a high frequency voltage, in which case, torque ripple suppression The unit 80 operates in the offline control mode, and can prevent the torque ripple suppression unit 80 from adversely using the rotational position estimation value θ re in the control calculation in the low speed range.
 また、第1の速度閾値ωre_low以上の高速域では、回転位置推定部130は回転位置推定値θreを誘起電圧を利用して推定することになるが、その場合、トルクリプル抑制部80は、オンライン制御モードあるいは学習制御モードで動作することになり、高速域においてトルクリプル抑制部80が回転位置推定値θreを制御演算に用いる際に悪影響を及ぼすのを防ぐことができ、適切な抑制制御パラメータの学習が可能となる。 Further, in the high speed range equal to or higher than the first speed threshold value ω re — low , the rotational position estimation unit 130 estimates the rotational position estimation value θ re using the induced voltage. In this case, the torque ripple suppression unit 80 Since the operation is performed in the online control mode or the learning control mode, the torque ripple suppression unit 80 can be prevented from having an adverse effect when the rotational position estimation value θ re is used for the control calculation in a high speed range, and an appropriate suppression control parameter can be obtained. Learning is possible.
 その他の構成、および作用効果は実施の形態1の場合と同様であるから、ここでは詳しい説明は省略する。 Other configurations and operational effects are the same as in the case of the first embodiment, and detailed description thereof is omitted here.
実施の形態3.
 この実施の形態3におけるモータ制御装置の構成は、図1、図2に示した実施の形態1と同様であるので、ここではその構成についての詳しい説明は省略する。
Embodiment 3 FIG.
Since the configuration of the motor control apparatus in the third embodiment is the same as that of the first embodiment shown in FIGS. 1 and 2, detailed description thereof will be omitted here.
 この実施の形態3の特徴は、モータ9とそれに接続されている図示しない負荷装置とが共振する速度ωre_vと一定のマージン速度ωre_mとを用いて制御モードの切り替えのための第1の速度閾値ωre_lowを設定する。すなわち、ωre_low(第1の速度閾値)=ωre_v(モータと負荷装置が共振する速度)+ωre_m(マージン速度)となるように設定する。 First speed for switching this feature the third embodiment, the control mode using the load device and not shown and is connected to it and the motor 9 is a speed omega Re_v that resonates with certain margin rate omega Re_m The threshold value ωre_low is set. That is, ωre_low (first speed threshold) = ωre_v (speed at which the motor and the load device resonate) + ωre_m (margin speed) is set.
 これにより、機械的な共振の影響を避けてモータ9自身のトルクリプルが支配的となる場合のみ、オンライン制御モードや学習制御モードとして動作することになるため、適切な抑制制御パラメータの学習が可能となる。 As a result, only when the torque ripple of the motor 9 itself becomes dominant while avoiding the influence of mechanical resonance, it operates as the online control mode or the learning control mode, so that appropriate suppression control parameters can be learned. Become.
実施の形態4.
 この実施の形態4におけるモータ制御装置の基本的な構成は、図1、図2に示した実施の形態1と同様であるので、ここではその構成についての詳しい説明は省略する。
Embodiment 4 FIG.
Since the basic configuration of the motor control apparatus according to the fourth embodiment is the same as that of the first embodiment shown in FIGS. 1 and 2, detailed description thereof is omitted here.
 この実施の形態4の特徴は、モータ9に対してその温度tを検出する図示しない温度検出器を設けるとともに、その検出される温度tに対して温度閾値tm_highを設定する。そして、制御部150は、tm_high<tである場合にオフライン制御モードとして動作させようにしている。 A feature of the fourth embodiment is that a temperature detector (not shown) for detecting the temperature t m is provided for the motor 9 and a temperature threshold value t m_high is set for the detected temperature t m . Then, the control unit 150, so that to operate as an offline control mode in the case of t m_high <t m.
 これにより、モータ9の特性が大きく変化する高温領域を避けてオンライン制御モードや学習制御モードとして動作させることができるので、適切な抑制制御パラメータの学習が可能となる。 This makes it possible to operate in the online control mode or the learning control mode while avoiding a high temperature region in which the characteristics of the motor 9 greatly change, so that appropriate suppression control parameters can be learned.
 この実施の形態4において、制御部150が切り替え条件に基づいて3つの制御モードを選択して切り替える際の動作シーケンスを、図14のフローチャートに示す。 FIG. 14 is a flowchart showing an operation sequence when the control unit 150 selects and switches three control modes based on the switching condition in the fourth embodiment.
 図14では、図6と比較すると、オンライン制御モードから学習制御モードへの移行判定に、ステップS202による温度tに関する切り替え条件の判定が追加され、S202で判定が否である場合にはオフライン制御モード(ステップS101)へ、真である場合にのみ学習制御モード(ステップS202)へ移行する。 In FIG. 14, compared with FIG. 6, the determination of the switching condition related to the temperature t m in step S <b> 202 is added to the determination of the transition from the online control mode to the learning control mode. The mode (step S101) is shifted to the learning control mode (step S202) only when the mode is true.
 なお、この発明のモータ制御装置は、上記の実施の形態1~4の構成のみに限定されるものではなく、この発明の趣旨を逸脱しない範囲内において、上記の各実施の形態1~4を自由に組み合わせたり、各実施の形態1~4の構成を適宜、変形、省略することが可能である。 The motor control device of the present invention is not limited to the configurations of the first to fourth embodiments described above, and each of the first to fourth embodiments described above can be used without departing from the spirit of the present invention. They can be freely combined, or the configurations of Embodiments 1 to 4 can be modified or omitted as appropriate.
実施の形態5.
 図16は、エレベータのかごを昇降させる巻上機に備えられた駆動シーブ205を回転させるモータを制御するために、上記実施の形態1~4のモータ制御装置を適用した一例を示す構成図である。
Embodiment 5 FIG.
FIG. 16 is a configuration diagram showing an example in which the motor control device of the first to fourth embodiments is applied to control a motor that rotates a drive sheave 205 provided in a hoist that raises and lowers an elevator car. is there.
 この実施の形態5におけるエレベータは、かご203および釣り合い錘204がロープ202を介して巻上機としての駆動シーブ205に巻き掛けられて接続されている。そして、駆動シーブ205は、PMモータ9の回転軸と接続されており、PMモータ9によって回転駆動される。また、このエレベータは、PMモータ9を駆動制御してかご203を昇降路内で昇降させるために、回転位置検出器8と制御装置201とを備えている。 In the elevator according to the fifth embodiment, a car 203 and a counterweight 204 are wound around a drive sheave 205 as a hoisting machine via a rope 202 and connected. The drive sheave 205 is connected to the rotation shaft of the PM motor 9 and is driven to rotate by the PM motor 9. The elevator also includes a rotational position detector 8 and a control device 201 for driving and controlling the PM motor 9 to raise and lower the car 203 in the hoistway.
 この場合の制御装置201は、図1、図2におけるPMモータ9および回転位置検出器8を除く残りの部分で構成されており、その基本的な構成は、図1、図2に示した実施の形態1と同様であるので、ここではその構成についての詳しい説明は省略する。 The control device 201 in this case is composed of the remaining portions excluding the PM motor 9 and the rotational position detector 8 in FIGS. 1 and 2, and the basic configuration is the implementation shown in FIGS. 1 and 2. Therefore, detailed description of the configuration is omitted here.
 この実施の形態5の特徴は、かご203に対して図示しない重量検出器を設けるとともに、その検出されるかご重量Mmと釣り合い錘204の重量Mwに対して重量閾値Mm_highを予め設定し、制御部150は、|Mm_high-Mw|<|Mm」-Mw|である場合に、オフライン制御モードとして動作させるようにしている。 The feature of the fifth embodiment is that a weight detector (not shown) is provided for the car 203, and a weight threshold value M m_high is set in advance for the car weight Mm to be detected and the weight Mw of the counterweight 204. The unit 150 is configured to operate as the offline control mode when | M m_high −Mw | <| M m ” −Mw |.
 かご重量Mがある重量より重い場合には。起動時から高いトルクでPMモータ9を駆動させることになる。すなわち、起動時からヒステリシスマイナーループが表れる電流閾値iq_hys(>iq_mg)を上回るような電流が必要となる場合があり得る。 If heavier than the weight there is a car weight M m is. The PM motor 9 is driven with a high torque from the start. That is, there may be a case where a current exceeding the current threshold value i q_hys (> i q_mg ) at which a hysteresis minor loop appears from the time of startup is required.
 そこで、この実施の形態5では、このようなヒステリシスマイナーループが表れることが事前に予測できる場合には、予めオフライン制御モードとして動作させることができ、その後、オンライン制御モードや学習制御モードへ移行するか否かを重量閾値Mm_highと電流閾値iq_hysとで二重に判断することになるため、より安全に適切な抑制制御パラメータの学習が可能となる。 Therefore, in the fifth embodiment, when it can be predicted in advance that such a hysteresis minor loop will appear, it can be operated in advance as an offline control mode, and thereafter, it shifts to an online control mode or a learning control mode. Whether or not it is determined twice based on the weight threshold value M m_high and the current threshold value i q_hys , so that it is possible to learn an appropriate suppression control parameter more safely.
 この実施の形態5において、制御部150が3つの制御モードを選択して切り替える際の動作シーケンスを、図17のフローチャートに示す。なお、符号Sは処理ステップを意味する。
 図17では、図6と比較すると、オフライン制御モードからオンライン制御モードへの移行判定として、ステップS203による、かご重量Mmに関する切り替え条件の判定が追加され、ステップS203の判定結果が否である場合にはオフライン制御モード(ステップS101)へ、真である場合にのみオンライン制御モード(ステップS103)へと移行する。
In the fifth embodiment, an operation sequence when the control unit 150 selects and switches between the three control modes is shown in the flowchart of FIG. Reference sign S means a processing step.
In FIG. 17, when compared with FIG. 6, the determination of the switching condition regarding the car weight Mm in step S <b> 203 is added as the determination of the transition from the offline control mode to the online control mode, and the determination result in step S <b> 203 is negative. Shifts to the offline control mode (step S101), and to the online control mode (step S103) only when it is true.
 なお、この実施の形態5のエレベータは、実施の形態1の構成のモータ制御装置を備えることを前提として説明したが、これに限らず、他の実施の形態2~4の構成を備えたモータ制御装置を適用することが可能である。 The elevator according to the fifth embodiment has been described on the assumption that the motor control device having the configuration of the first embodiment is provided. However, the present invention is not limited to this, and the motor having the configurations of the other second to fourth embodiments. It is possible to apply a control device.

Claims (9)

  1. 交流モータと、三相の内少なくとも二相の電流を検出する電流検出部と、上記電流検出部で検出された電流検出値を用いて制御座標軸における電圧指令値を生成する電流制御部と、電圧指令値と電流検出値に基づき上記交流モータのトルクを推定するトルク推定部と、上記トルク推定部で推定した推定トルクに基づいて上記交流モータのトルクリプルを抑制する抑制指令を生成するトルクリプル抑制部と、上記抑制指令を生成するための抑制制御パラメータを上記交流モータの速度と電流指令値に対応付けて記憶する抑制制御パラメータ記憶部とを備えるとともに、
    上記交流モータの磁気特性から算出した切り替え条件に応じて、上記トルクリプル抑制部によりトルクリプル抑制を行うオンライン制御モードと、上記トルクリプル抑制部によりトルクリプル抑制を行うと同時に上記抑制制御パラメータ記憶部で抑制制御パラメータを記憶する学習制御モードと、上記抑制制御パラメータ記憶部に記憶された抑制制御パラメータによってトルクリプル抑制を行うオフライン制御モードとの3つの制御モードの内の一つを選択する動作シーケンスを実行する制御部を有するモータ制御装置。
    An AC motor, a current detection unit that detects a current of at least two of the three phases, a current control unit that generates a voltage command value in the control coordinate axis using the current detection value detected by the current detection unit, and a voltage A torque estimation unit that estimates the torque of the AC motor based on the command value and the current detection value; and a torque ripple suppression unit that generates a suppression command that suppresses the torque ripple of the AC motor based on the estimated torque estimated by the torque estimation unit; A suppression control parameter storage unit that stores the suppression control parameter for generating the suppression command in association with the speed of the AC motor and the current command value, and
    In accordance with the switching condition calculated from the magnetic characteristics of the AC motor, an online control mode in which torque ripple suppression is performed by the torque ripple suppression unit, and torque ripple suppression by the torque ripple suppression unit, and at the same time, a suppression control parameter in the suppression control parameter storage unit A control unit that executes an operation sequence for selecting one of three control modes, namely, a learning control mode that stores torque and an offline control mode that performs torque ripple suppression using the suppression control parameter stored in the suppression control parameter storage unit A motor control device.
  2. 上記制御部は、上記動作シーケンスを実行する場合において、上記交流モータの電流に対する磁束の磁気特性がヒステリシスマイナーループを形成する場合には上記学習制御モードは選択しない請求項1に記載のモータ制御装置。 2. The motor control device according to claim 1, wherein the control unit does not select the learning control mode when the operation sequence is executed and the magnetic characteristic of the magnetic flux with respect to the current of the AC motor forms a hysteresis minor loop. 3. .
  3. 上記制御部は、上記動作シーケンスを実行する場合において、上記交流モータの電流に対する磁束の磁気特性がヒステリシスマイナーループを形成する条件に対応する電流閾値またはトルク閾値が設定され、上記電流閾値または上記トルク閾値に応じて上記学習制御モードの選択を行う請求項1に記載のモータ制御装置。 When the control unit executes the operation sequence, a current threshold value or a torque threshold value corresponding to a condition in which a magnetic characteristic of magnetic flux with respect to the current of the AC motor forms a hysteresis minor loop is set, and the current threshold value or the torque is set. The motor control device according to claim 1, wherein the learning control mode is selected according to a threshold value.
  4. 上記制御部は、上記動作シーケンスを実行する場合において、トルク指令値からトルク推定値までの伝達特性から算出した速度閾値に応じて上記3つの制御モードの内の一つを選択する請求項1から請求項3のいずれか1項に記載のモータ制御装置 The control unit, when executing the operation sequence, selects one of the three control modes according to a speed threshold value calculated from a transfer characteristic from a torque command value to a torque estimation value. The motor control device according to claim 3.
  5. 上記交流モータに速度推定部が設置されている場合、上記制御部は、上記動作シーケンスを実行する場合において、上記速度推定部の動作条件に合わせて上記3つの制御モードの内の一つを選択する請求項1から請求項3のいずれか1項に記載のモータ制御装置。 When the speed estimation unit is installed in the AC motor, the control unit selects one of the three control modes according to the operation condition of the speed estimation unit when executing the operation sequence. The motor control device according to any one of claims 1 to 3.
  6. 上記交流モータが任意の負荷装置と接続されている場合、上記制御部は、上記動作シーケンスを実行する場合において、上記負荷装置の共振特性から算出した速度閾値に応じて上記3つの制御モードの内の一つを選択する請求項1から請求項3のいずれか1項に記載のモータ制御装置。 When the AC motor is connected to an arbitrary load device, the control unit, when executing the operation sequence, selects one of the three control modes according to the speed threshold value calculated from the resonance characteristic of the load device. The motor control device according to any one of claims 1 to 3, wherein one of the two is selected.
  7. 上記制御部は、上記動作シーケンスを実行する場合において、上記交流モータの温度特性から算出した温度閾値に応じて上記3つの制御モードの内の一つを選択する請求項1から請求項6のいずれか1項に記載のモータ制御装置。 7. The control unit according to claim 1, wherein when the operation sequence is executed, the control unit selects one of the three control modes according to a temperature threshold value calculated from a temperature characteristic of the AC motor. The motor control apparatus of Claim 1.
  8. 請求項1から請求項7のいずれか1項に記載のモータ制御装置と、かごと、釣り合い錘と、上記かごと上記釣り合い錘との間を連結するロープと、上記交流モータの駆動力によって回転して上記ロープが巻き掛けられている駆動シーブと、を備えているエレベータ。 The motor control device according to any one of claims 1 to 7, a cage, a counterweight, a rope connecting the cage and the counterweight, and rotation by the driving force of the AC motor And a drive sheave around which the rope is wound.
  9. 上記制御部は、上記動作シーケンスを実行する場合において、上記かごの重量と上記釣り合い錘の重量とに基づいて算出した重量閾値に応じて上記3つの制御モードの内の一つを選択する請求項8に記載のエレベータ。 The said control part selects one of said three control modes according to the weight threshold value computed based on the weight of the said cage | basket, and the weight of the said counterweight, when performing the said operation | movement sequence. 8. The elevator according to 8.
PCT/JP2016/080323 2015-11-12 2016-10-13 Motor control device and elevator in which same is used WO2017081977A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187007305A KR102088183B1 (en) 2015-11-12 2016-10-13 Motor control device and elevator using the same
JP2017504203A JP6157773B1 (en) 2015-11-12 2016-10-13 Motor control device and elevator using the same
CN201680059706.2A CN108352798B (en) 2015-11-12 2016-10-13 Motor control device and elevator using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015221727 2015-11-12
JP2015-221727 2015-11-12

Publications (1)

Publication Number Publication Date
WO2017081977A1 true WO2017081977A1 (en) 2017-05-18

Family

ID=58695051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080323 WO2017081977A1 (en) 2015-11-12 2016-10-13 Motor control device and elevator in which same is used

Country Status (4)

Country Link
JP (1) JP6157773B1 (en)
KR (1) KR102088183B1 (en)
CN (1) CN108352798B (en)
WO (1) WO2017081977A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964526A (en) * 2018-06-27 2018-12-07 苏州汇川技术有限公司 Motor torque oscillation compensation method, apparatus and motor control assembly
CN111489740A (en) * 2020-04-23 2020-08-04 北京声智科技有限公司 Voice processing method and device and elevator control method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6856591B2 (en) * 2018-09-11 2021-04-07 ファナック株式会社 Control device, CNC device and control method of control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230797A (en) * 2007-03-22 2008-10-02 Mitsubishi Electric Corp Control device for elevator
JP5434369B2 (en) * 2009-08-25 2014-03-05 株式会社明電舎 Torque pulsation suppression system for electric motor
JP2014204489A (en) * 2013-04-02 2014-10-27 三菱電機株式会社 Rotary machine control device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830737B2 (en) 2000-07-17 2006-10-11 三菱電機株式会社 Electric power steering control device
EP2164165A1 (en) * 2008-09-16 2010-03-17 ABB Research Ltd. Method and apparatus for reducing torque ripple in permanent magnet synchronous machines
JP2011019336A (en) 2009-07-08 2011-01-27 Toshiba Corp Electric motor control device
WO2011101978A1 (en) * 2010-02-19 2011-08-25 三菱電機株式会社 Elevator device
JP5446988B2 (en) * 2010-02-25 2014-03-19 株式会社明電舎 Torque ripple suppression control device and control method for rotating electrical machine
IN2014CN02926A (en) * 2011-09-30 2015-07-03 Mitsubishi Electric Corp
WO2013073264A1 (en) * 2011-11-14 2013-05-23 株式会社安川電機 Motor and motor system
CN103066910B (en) * 2012-12-19 2015-04-15 天津大学 Direct torque control method capable of hindering torque impulse

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230797A (en) * 2007-03-22 2008-10-02 Mitsubishi Electric Corp Control device for elevator
JP5434369B2 (en) * 2009-08-25 2014-03-05 株式会社明電舎 Torque pulsation suppression system for electric motor
JP2014204489A (en) * 2013-04-02 2014-10-27 三菱電機株式会社 Rotary machine control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964526A (en) * 2018-06-27 2018-12-07 苏州汇川技术有限公司 Motor torque oscillation compensation method, apparatus and motor control assembly
CN111489740A (en) * 2020-04-23 2020-08-04 北京声智科技有限公司 Voice processing method and device and elevator control method and device

Also Published As

Publication number Publication date
JPWO2017081977A1 (en) 2017-11-09
KR102088183B1 (en) 2020-03-12
KR20180040672A (en) 2018-04-20
CN108352798B (en) 2021-05-11
CN108352798A (en) 2018-07-31
JP6157773B1 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP4284355B2 (en) High response control device for permanent magnet motor
JP4712585B2 (en) Electric motor control device
JP2009232498A (en) Motor control device
JP2014200154A (en) Motor controller and magnetic pole position estimation method
JP5168536B2 (en) Motor control device
JP6015486B2 (en) Variable speed controller for synchronous motor
JPWO2015025356A1 (en) Motor drive system and motor control device
US9250614B2 (en) Motor control apparatus and motor control method
JP6157773B1 (en) Motor control device and elevator using the same
JP4522273B2 (en) Motor control device and motor drive system having the same
JP2018007473A (en) Control device for permanent magnet type synchronous motor
JP2014054172A (en) Apparatus for estimating parameter in induction motor
JP2017192294A (en) Motor control device
JP5908205B2 (en) Rotation sensorless control device
KR101979999B1 (en) Constant determination device and method of permanent magnet synchronization motor
JP5361452B2 (en) Sensorless control device for synchronous motor
US20230198438A1 (en) Rotary machine control device
JP5641774B2 (en) Method and apparatus for estimating rotor position and speed of stepping motor
JP2011147272A (en) Motor control device
JP5106295B2 (en) Rotor position estimation device for synchronous motor
Liu et al. An on-line position error compensation method for sensorless IPM motor drives using high frequency injection
JP2014230311A (en) Drive control device for motor
JP7226211B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
JP2022116488A (en) Device for estimating temperature of rotor magnet of permanent magnet synchronous motor, and method for estimating temperature of the rotor magnet
JP2022121778A (en) Control device for high efficiency operation and control method for high efficiency operation of permanent magnet synchronous motor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017504203

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187007305

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863941

Country of ref document: EP

Kind code of ref document: A1