WO2017081852A1 - マイクロ波加熱装置 - Google Patents

マイクロ波加熱装置 Download PDF

Info

Publication number
WO2017081852A1
WO2017081852A1 PCT/JP2016/004764 JP2016004764W WO2017081852A1 WO 2017081852 A1 WO2017081852 A1 WO 2017081852A1 JP 2016004764 W JP2016004764 W JP 2016004764W WO 2017081852 A1 WO2017081852 A1 WO 2017081852A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal pieces
electromagnetic field
field distribution
microwave
heating chamber
Prior art date
Application number
PCT/JP2016/004764
Other languages
English (en)
French (fr)
Inventor
大森 義治
吉野 浩二
橋本 修
良介 須賀
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2017549978A priority Critical patent/JPWO2017081852A1/ja
Publication of WO2017081852A1 publication Critical patent/WO2017081852A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/02Stoves or ranges heated by electric energy using microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/12Arrangement of elements for electric heating in or on furnaces with electromagnetic fields acting directly on the material being heated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/74Mode transformers or mode stirrers

Definitions

  • the present disclosure relates to a microwave heating device including an electromagnetic field distribution adjusting device.
  • Patent Documents 1 and 2 are typical techniques for uniformly heating an object to be heated in the field of microwave heating devices such as a microwave oven.
  • FIG. 8 is a cross-sectional view of the microwave oven described in Patent Document 1.
  • a turntable 25 is installed in the heating chamber 21.
  • the heated object 24 on the turntable 25 also rotates.
  • the microwave generated by the magnetron 22 is supplied into the heating chamber 21 through the waveguide 23.
  • FIG. 9 is a cross-sectional view of the microwave oven described in Patent Document 2.
  • the rotating antenna 26 is disposed below the mounting table on which the object to be heated 24 is mounted.
  • the microwave generated by the magnetron 22 propagates through the waveguide 23 and reaches the rotating antenna 26.
  • the rotating antenna 26 radiates microwaves into the heating chamber 21 while rotating.
  • a microwave heating apparatus includes a heating chamber that accommodates an object to be heated, a microwave generation unit that generates microwaves, and a microwave that is supplied to the heating chamber. And a power distribution unit for adjusting the electromagnetic field distribution provided in a two-dimensional region of at least a part of the wall surface of the heating chamber.
  • the electromagnetic field distribution adjusting device includes a ground conductor provided in the two-dimensional region, a plurality of metal pieces arranged two-dimensionally and periodically in parallel to the ground conductor, and two adjacent metals in the plurality of metal pieces. And a plurality of switches provided between the pieces.
  • the electromagnetic field distribution adjusting device is further configured so that the direction from one of the two adjacent metal pieces to the other differs from the excitation direction of the microwave supplied to the heating chamber.
  • the impedance in the vicinity of the electromagnetic field distribution adjusting device can be changed in accordance with the opening and closing of the plurality of switches. Thereby, the positions of the antinodes and nodes of the standing wave generated in the heating chamber are switched. As a result, uneven heating can be reduced.
  • FIG. 1 is a perspective view of the microwave heating apparatus according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the microwave heating apparatus according to the present embodiment.
  • FIG. 3 is a perspective view showing a part of the electromagnetic field distribution adjusting apparatus according to the present embodiment.
  • FIG. 4A is a diagram showing a standing wave generated by being reflected by an electromagnetic field distribution adjusting device in which a switch is closed.
  • FIG. 4B is a diagram showing a standing wave generated by reflection by the electromagnetic field distribution adjusting device with the switch opened.
  • FIG. 5 is a perspective view showing a part of an electromagnetic field distribution adjusting apparatus according to a modification of the present embodiment.
  • FIG. 6 is a plan view of the electromagnetic field distribution adjusting apparatus according to the present embodiment.
  • FIG. 1 is a perspective view of the microwave heating apparatus according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the microwave heating apparatus according to the present embodiment.
  • FIG. 3 is a perspective view showing a part of
  • FIG. 7A is a partially enlarged view of the electromagnetic field distribution adjusting apparatus 5 according to the present embodiment.
  • FIG. 7B is a partially enlarged view showing a virtual configuration for comparison with the present embodiment.
  • FIG. 8 is a cross-sectional view of a conventional microwave oven.
  • FIG. 9 is a cross-sectional view of a conventional microwave oven.
  • a microwave heating apparatus includes a heating chamber that accommodates an object to be heated, a microwave generation unit that generates microwaves, a power supply unit that supplies microwaves to the heating chamber, and a heating chamber An electromagnetic field distribution adjusting device provided in a two-dimensional region of at least a part of the wall surface.
  • the electromagnetic field distribution adjusting device includes a ground conductor provided in the two-dimensional region, a plurality of metal pieces arranged two-dimensionally and periodically in parallel to the ground conductor, and two adjacent metals in the plurality of metal pieces. And a plurality of switches provided between the pieces.
  • the electromagnetic field distribution adjusting device is further configured so that the direction from one of the two adjacent metal pieces to the other differs from the excitation direction of the microwave supplied to the heating chamber.
  • the impedance in the vicinity of the electromagnetic field distribution adjusting device can be changed in accordance with the opening and closing of the plurality of switches. Thereby, the positions of the antinodes and nodes of the standing wave generated in the heating chamber are switched. As a result, uneven heating can be reduced.
  • the power feeding unit includes a slot-shaped opening formed in the wall surface of the heating chamber, and a waveguide that propagates the microwave to the opening. .
  • the direction from one of the two adjacent metal pieces to the other is not parallel to the longitudinal direction of the opening and is not vertical. According to this aspect, uneven heating can be reduced with a more inexpensive configuration.
  • the electromagnetic field distribution adjusting device further includes a plurality of metal pillars respectively connecting the plurality of metal pieces and the ground conductor. According to this aspect, uneven heating can be reduced with a more inexpensive configuration.
  • the electromagnetic field distribution adjusting device further includes a dielectric provided between the plurality of metal pieces and the ground conductor. According to this aspect, uneven heating can be reduced with a more inexpensive configuration.
  • the fifth aspect of the present disclosure in the first aspect, several switches among a plurality of switches are connected in parallel between two adjacent metal pieces. According to this aspect, uneven heating can be reduced with a more inexpensive configuration.
  • some of the plurality of switches are connected in series between two adjacent metal pieces. According to this aspect, uneven heating can be reduced with a more inexpensive configuration.
  • FIG. 1 and 2 are a perspective view and a cross-sectional view of a microwave oven that is a microwave heating apparatus according to the present embodiment, respectively.
  • the magnetron 2 is connected to one end of the waveguide 3.
  • the other end of the waveguide 3 is connected to a rectangular slot-shaped opening 8 provided on the top surface of the heating chamber 1.
  • Magnetron 2 generates a microwave having a predetermined operating frequency.
  • the microwave generated by the magnetron 2 propagates through the waveguide 3 and becomes an excitation electric field 6 at the opening 8.
  • the excitation electric field 6 has a direction perpendicular to the longitudinal direction of the opening 8.
  • the excitation electric field 6 is supplied into the heating chamber 1 and dielectrically heats an object to be heated 4 such as food.
  • the magnetron 2 corresponds to the microwave generation unit
  • the waveguide 3 and the opening 8 correspond to the power feeding unit.
  • the opening 8 is formed on the top surface of the heating chamber 1, but may be formed on another wall surface (for example, a side wall) of the heating chamber 1.
  • the electromagnetic field distribution adjusting device 5 is provided on the bottom surface of the heating chamber 1.
  • the object to be heated 4 is placed on the electromagnetic field distribution adjusting device 5.
  • the electromagnetic field distribution adjusting device 5 can change the electric field distribution in the vicinity thereof by changing the impedance of the surface. Thereby, the heating distribution of the to-be-heated material 4 can be changed, and the to-be-heated material 4 can be heated uniformly.
  • FIG. 3 is a perspective view showing a part of the electromagnetic field distribution adjusting apparatus 5 according to the present embodiment.
  • the electromagnetic field distribution adjusting device 5 includes a metal piece 10, a metal column 11, a ground conductor 12, and a switch 13, and is provided in a predetermined two-dimensional region in the heating chamber 1 shown in FIG. .
  • the predetermined two-dimensional region is the entire bottom surface of the heating chamber 1.
  • the predetermined two-dimensional region may be another wall surface (for example, a side wall) instead of the bottom surface, or may be a part instead of the whole.
  • the ground conductor 12 is provided in parallel to the bottom surface of the heating chamber 1 (see FIGS. 1 and 2).
  • the ground conductor 12 corresponds to the bottom surface of the electromagnetic field distribution adjusting device 5 and has a reference potential.
  • the metal piece 10 includes a plurality of metal pieces arranged two-dimensionally and periodically in parallel with the ground conductor 12.
  • Each metal piece of the metal piece 10 is a rectangular metal flat plate whose one side has a length equal to or less than half the wavelength of an electromagnetic wave having an operating frequency for microwave heating, for example.
  • To arrange two-dimensionally and periodically means to arrange a plurality of identical structures at regular intervals both vertically and horizontally.
  • the metal pillar 11 includes a plurality of metal pillars that connect each metal piece of the metal piece 10 to the ground conductor 12.
  • a combination of one metal piece and one metal column is called a unit cell having a mushroom structure.
  • the switch 13 is provided between two adjacent metal pieces in the metal piece 10, and includes a plurality of switches composed of transistors, for example.
  • the length of each side of the metal piece 10 is set so that the electromagnetic field distribution adjusting device 5 functions as a magnetic wall with respect to an electromagnetic wave having an operating frequency for microwave heating.
  • the dimensions such as the height and the height of the metal pillar 11 are designed.
  • FIG. 4A shows a standing wave 14a generated by being reflected by the electromagnetic field distribution adjusting device 5 in which the switch 13 shown in FIG. 3 is closed.
  • FIG. 4B shows the standing wave 14b generated by reflection by the electromagnetic field distribution adjusting device 5 in which the switch 13 is opened.
  • a plane including the switch 13 and the metal piece 10 forms a short-circuit plane.
  • the electromagnetic wave is reflected by the short-circuited surface, a standing wave having a node on the surface of the short-circuited surface, that is, the metal piece 10 is formed.
  • the electromagnetic field distribution adjusting device 5 functions as an electric wall having substantially zero impedance.
  • the electromagnetic field distribution adjusting device 5 When the switch 13 is opened, the electromagnetic field distribution adjusting device 5 constitutes a meta-material in which a large number of mushroom unit cells are arranged two-dimensionally and periodically.
  • the electromagnetic field distribution adjusting device 5 functions as a magnetic wall having substantially infinite impedance in the vicinity of the metal piece 10.
  • the plane including the switch 13 and the metal piece 10 constitutes an open plane.
  • a standing wave having an antinode is formed on the open surface, that is, the surface of the metal piece 10.
  • the electromagnetic field distribution adjusting device 5 can change the position of the node of the standing wave and the position of the antinode reflected by the electromagnetic field distribution adjusting device 5 by changing the impedance thereof.
  • FIG. 5 is a perspective view showing a part of the electromagnetic field distribution adjusting apparatus 5 according to a modification of the present embodiment. Unlike the electromagnetic field distribution adjusting device 5 shown in FIG. 3, the electromagnetic field distribution adjusting device 5 according to the present modification includes a dielectric 15 disposed between the metal piece 10 and the ground conductor 12 instead of the metal pillar 11. The
  • the switch 13 may be an element having breakdown voltage characteristics such as a Zener diode.
  • a predetermined threshold value breakdown voltage
  • breakdown voltage is applied to two metal pieces connected to both ends of one switch due to electromagnetic waves arriving near each switch of the switch 13.
  • the electromagnetic field distribution adjusting device 5 automatically switches the impedance to substantially zero in a portion where the electromagnetic field is strong, thereby generating a standing wave node in this portion and weakening the electromagnetic field. Thereby, uneven heating can be automatically suppressed.
  • FIG. 6 is a top view of the electromagnetic field distribution adjusting device 5. As described above, the excitation electric field 6 has a direction perpendicular to the longitudinal direction of the opening 8 (see FIGS. 1 and 2).
  • FIG. 7A is a partially enlarged view of the electromagnetic field distribution adjusting apparatus 5 according to the present embodiment.
  • FIG. 7B is a partially enlarged view showing a virtual configuration for comparison with the present embodiment.
  • the direction of the current flowing through the switch 13 makes an angle of 45 degrees with the direction of the excitation electric field 6. That is, the direction of current flowing from one of the two adjacent metal pieces to the other is not parallel or perpendicular to the longitudinal direction of the opening 8 and is different from the excitation direction.
  • the direction of the current flowing through the switch 13 is parallel or perpendicular to the direction of the excitation electric field 6.
  • the electric field in the vicinity of the electromagnetic field distribution adjusting device 5 has a direction parallel to the excitation electric field 6. For this reason, electric force lines 7 in the direction from left to right are generated between two adjacent metal pieces as shown in FIG. 7B. In this case, all currents flowing through two adjacent metal pieces pass through one switch. Therefore, each switch of the switch 13 requires a high breakdown voltage.
  • the direction from one of the two adjacent metal pieces in the metal piece 10 to the other is different from the excitation direction of the microwave supplied to the heating chamber 1.
  • the electric lines of force 7 are dispersed, and the voltage applied to the switch is also dispersed.
  • an inexpensive switch with a lower breakdown voltage can be used.
  • one switch is installed between two adjacent metal pieces.
  • the present embodiment is not limited to this.
  • Several switches may be installed in parallel between two adjacent metal pieces, or may be installed in series. For example, when two switches are installed in parallel, the current flowing through one switch is halved, and when two switches are installed in series, the voltage applied to one switch is halved.
  • the electromagnetic field distribution adjusting device according to the present disclosure can be applied to other heating devices using dielectric heating, such as a garbage disposal machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

マイクロ波加熱装置は、被加熱物(4)を収容する加熱室(1)と、マイクロ波を生成するマイクロ波生成部(2)と、マイクロ波を加熱室(1)に供給する給電部(3、8)と、加熱室(1)の壁面の少なくとも一部の二次元領域に設けられた電磁界分布調整装置(5)とを有する。電磁界分布調整装置(5)は、上記二次元領域に設けられた接地導体と、接地導体に平行に二次元的かつ周期的に配列された複数の金属片と、複数の金属片における隣り合う二つの金属片の間にそれぞれ設けられた複数のスイッチとを有する。電磁界分布調整装置(5)はさらに、隣り合う二つの金属片の一方から他方への方向が、加熱室(1)に供給されたマイクロ波の励振方向(6)と異なるように構成される。本構成によれば、より安価な構成で加熱むらを低減することができる。

Description

マイクロ波加熱装置
 本開示は、電磁界分布調整装置を備えたマイクロ波加熱装置に関する。
 特許文献1および2に記載された技術は、電子レンジなどのマイクロ波加熱装置の分野において、被加熱物を均一に加熱するための代表的な技術である。
 図8は、特許文献1に記載された電子レンジの断面図である。図8に示すように、加熱室21内にターンテーブル25が設置される。ターンテーブル25が回転すると、ターンテーブル25上の被加熱物24も回転する。マグネトロン22により生成されたマイクロ波は、導波管23により加熱室21内に供給される。
 図9は、特許文献2に記載された電子レンジの断面図である。図9に示すように、回転アンテナ26が、被加熱物24が載置された載置台の下方に配置される。マグネトロン22により生成されたマイクロ波は、導波管23内を伝播し、回転アンテナ26に到達する。回転アンテナ26は、回転しながらマイクロ波を加熱室21内に放射する。
 これらの従来技術は、被加熱物またはアンテナを回転させて、マイクロ波を被加熱物に均等に供給することで、被加熱物を均一に加熱することを意図したものである。
実公昭58-005842号公報 特開昭53-092939号公報
 しかしながら、特許文献1に記載の構成では、加熱室内に定在波が発生する。被加熱物は同じところを繰り返し通過するので、定在波により同心円状に加熱むらが発生する。
 特許文献2に記載の構成では、アンテナに近い場所では加熱が強く、アンテナから遠い場所では加熱が弱く、その結果、加熱むらが発生する。回転アンテナにより、加熱室内に定在波が発生することを完全に防止するのは困難である。
 さらに、特許文献1および2に記載の構成では、回転駆動のための装置を必要とするため、コスト削減が困難である。
 上記従来の問題を解決するために、本開示の一態様のマイクロ波加熱装置は、被加熱物を収容する加熱室と、マイクロ波を生成するマイクロ波生成部と、マイクロ波を加熱室に供給する給電部と、加熱室の壁面の少なくとも一部の二次元領域に設けられた電磁界分布調整装置とを有する。
 電磁界分布調整装置は、上記二次元領域に設けられた接地導体と、接地導体に平行に二次元的かつ周期的に配列された複数の金属片と、複数の金属片における隣り合う二つの金属片の間にそれぞれ設けられた複数のスイッチとを有する。
 電磁界分布調整装置はさらに、隣り合う二つの金属片の一方から他方への方向が、加熱室に供給されたマイクロ波の励振方向と異なるように構成される。
 本態様によれば、複数のスイッチの開閉に応じて、電磁界分布調整装置の近傍のインピーダンスを変化させることができる。これにより、加熱室内に発生した定在波の腹および節の位置が入れ替わる。その結果、加熱むらを低減することができる。
 さらに、複数のスイッチを閉じた場合に、隣り合う二つの金属片の間を流れる電流の方向が、加熱室に供給されたマイクロ波の励振方向と異なる。これにより、一つのスイッチに流れる電流を低減させることができる。その結果、本態様は、より低い耐圧で安価なスイッチを使用可能とし、コスト削減に貢献する。
図1は、本実施の形態に係るマイクロ波加熱装置の斜視図である。 図2は、本実施の形態に係るマイクロ波加熱装置の断面図である。 図3は、本実施の形態に係る電磁界分布調整装置の一部分を示す斜視図である。 図4Aは、スイッチが閉じられた電磁界分布調整装置で反射して発生した定在波を示す図である。 図4Bは、スイッチが開けられた電磁界分布調整装置で反射して発生した定在波を示す図である。 図5は、本実施の形態の変形例に係る電磁界分布調整装置の一部分を示す斜視図である。 図6は、本実施の形態に係る電磁界分布調整装置の平面図である。 図7Aは、本実施の形態に係る電磁界分布調整装置5の部分拡大図である。 図7Bは、本実施の形態と比較するための仮想的な構成を示す部分拡大図である。 図8は、従来の電子レンジの断面図である。 図9は、従来の電子レンジの断面図である。
 本開示の第1の態様のマイクロ波加熱装置は、被加熱物を収容する加熱室と、マイクロ波を生成するマイクロ波生成部と、マイクロ波を加熱室に供給する給電部と、加熱室の壁面の少なくとも一部の二次元領域に設けられた電磁界分布調整装置とを有する。
 電磁界分布調整装置は、上記二次元領域に設けられた接地導体と、接地導体に平行に二次元的かつ周期的に配列された複数の金属片と、複数の金属片における隣り合う二つの金属片の間にそれぞれ設けられた複数のスイッチとを有する。
 電磁界分布調整装置はさらに、隣り合う二つの金属片の一方から他方への方向が、加熱室に供給されたマイクロ波の励振方向と異なるように構成される。
 本態様によれば、複数のスイッチの開閉に応じて、電磁界分布調整装置の近傍のインピーダンスを変化させることができる。これにより、加熱室内に発生した定在波の腹および節の位置が入れ替わる。その結果、加熱むらを低減することができる。
 さらに、複数のスイッチを閉じた場合に、隣り合う二つの金属片の間を流れる電流の方向が、加熱室に供給されたマイクロ波の励振方向と異なる。これにより、一つのスイッチに流れる電流を低減させることができる。その結果、本態様は、より低い耐圧で安価なスイッチを使用可能とし、コスト削減に貢献する。
 本開示の第2の態様によれば、第1の態様において、給電部が、加熱室の壁面に形成されたスロット状の開口部と、マイクロ波を開口部に伝播させる導波管とを含む。隣り合う二つの金属片の一方から他方への方向が、開口部の長手方向と平行でなく、かつ、垂直でない。本態様によれば、より安価な構成で加熱むらを低減することができる。
 本開示の第3の態様によれば、第1の態様において、電磁界分布調整装置が、複数の金属片の各々と接地導体とをそれぞれ接続する複数の金属柱をさらに有する。本態様によれば、より安価な構成で加熱むらを低減することができる。
 本開示の第4の態様によれば、第1の態様において、電磁界分布調整装置が、複数の金属片と接地導体との間に設けられた誘電体をさらに有する。本態様によれば、より安価な構成で加熱むらを低減することができる。
 本開示の第5の態様によれば、第1の態様において、隣り合う二つの金属片の間に並列に、複数のスイッチのうちのいくつかのスイッチが接続される。本態様によれば、より安価な構成で加熱むらを低減することができる。
 本開示の第6の態様によれば、第1の態様において、隣り合う二つの金属片の間に直列に、複数のスイッチのうちのいくつかのスイッチが接続される。本態様によれば、より安価な構成で加熱むらを低減することができる。
 以下、本開示の実施の形態について、図面を参照しながら説明する。
 図1、図2はそれぞれ、本実施の形態に係るマイクロ波加熱装置である電子レンジの斜視図、断面図である。
 図1、図2に示すように、マグネトロン2が導波管3の一端に接続される。導波管3の他端は、加熱室1の天面に設けられた長方形のスロット状の開口部8に接続される。
 マグネトロン2は、所定の動作周波数を有するマイクロ波を生成する。マグネトロン2により生成されたマイクロ波は、導波管3を伝播して開口部8で励振電界6となる。励振電界6は、開口部8の長手方向と垂直な方向を有する。励振電界6は、加熱室1内に供給されて食品などの被加熱物4を誘電加熱する。
 本実施の形態では、マグネトロン2がマイクロ波生成部に、導波管3と開口部8とが給電部にそれぞれ相当する。開口部8は加熱室1の天面に形成されるが、加熱室1の他の壁面(例えば側壁)に形成されてもよい。
 電磁界分布調整装置5は、加熱室1の底面に設けられる。被加熱物4は、電磁界分布調整装置5の上に載置される。電磁界分布調整装置5は、その表面のインピーダンスを変化させて、その近傍の電界分布を変化させることができる。これにより、被加熱物4の加熱分布を変化させ、被加熱物4を均一に加熱することができる。
 図3は、本実施の形態に係る電磁界分布調整装置5の一部分を示す斜視図である。図3に示すように、電磁界分布調整装置5は、金属片10と金属柱11と接地導体12とスイッチ13とを備え、図1に示す加熱室1内の所定の二次元領域に設けられる。
 本実施の形態では、所定の二次元領域は加熱室1の底面全体である。しかしながら、所定の二次元領域が底面ではなく他の壁面(例えば側壁)でもよく、全体ではなく一部であってもよい。
 接地導体12は、加熱室1の底面に平行に設けられる(図1、図2参照)。接地導体12は、電磁界分布調整装置5の底面に相当し、基準電位を有する。
 金属片10は、接地導体12と平行に二次元的かつ周期的に配列された複数の金属片を含む。金属片10の各金属片は、一辺が、例えば、マイクロ波加熱のための動作周波数を有する電磁波の波長の半分以下の長さを有する四角形の金属平板である。二次元的かつ周期的に配列するとは、複数の同一構造体を縦横ともに一定間隔に配列することを意味する。
 金属柱11は、金属片10の各金属片を接地導体12にそれぞれ接続する複数の金属柱を含む。一つの金属片と一つの金属柱の組み合わせは、マッシュルーム(Mushroom)構造のユニットセル(Unit cell)と呼ばれる。
 スイッチ13は、金属片10における隣り合う二つの金属片の間にそれぞれ設けられ、例えばトランジスタで構成された複数のスイッチを含む。
 スイッチ13を開けたとき、マイクロ波加熱のための動作周波数を有する電磁波に対して、電磁界分布調整装置5が磁気壁(Magnetic wall)として機能するように、金属片10の各々の一辺の長さおよび金属柱11の高さなどの寸法が設計される。
 図4Aは、図3に示すスイッチ13が閉じられた電磁界分布調整装置5で反射して発生した定在波14aを示す。図4Bは、スイッチ13が開けられた電磁界分布調整装置5で反射して発生した定在波14bを示す。
 スイッチ13を閉じると、スイッチ13と金属片10とを含む平面が短絡面(Short-circuit plane)を構成する。電磁波は短絡面で反射されると、その短絡面、すなわち、金属片10の表面に節(Node)を有する定在波(Standing wave)を形成する。
 これらの二つの金属片の近傍において、電磁界分布調整装置5は、実質的にゼロのインピーダンスを有する電気壁(Electric wall)として機能する。
 スイッチ13を開けると、電磁界分布調整装置5は、多数のマッシュルーム構造のユニットセルが二次元的かつ周期的に配列されたメタマテリアル(Meta-material)を構成する。電磁界分布調整装置5は、金属片10の近傍において実質的に無限大のインピーダンスを有する磁気壁として機能する。
 スイッチ13が開いても、隣り合う二つの金属片は、金属柱11と接地導体12とを介して導通するため、直流電流はこれらの金属片の間を流れることができる。しかしながら、電磁波は、金属片10および金属柱11の寸法により、これらの金属片の間を伝播することができない。
 従って、スイッチ13と金属片10とを含む平面が開放面(Open plane)を構成する。電磁波は開放面で反射されると、その開放面、すなわち、金属片10の表面に腹(Antinode)を有する定在波を形成する。
 このように、電磁界分布調整装置5は、そのインピーダンスを変化させることにより、電磁界分布調整装置5で反射して発生した定在波の節の位置と腹の位置とを入れ替えることができる。
 図5は、本実施の形態の変形例に係る電磁界分布調整装置5の一部分を示す斜視図である。本変形例に係る電磁界分布調整装置5は、図3に示す電磁界分布調整装置5と異なり、金属柱11の代わりに、金属片10と接地導体12との間に誘電体15が配置される。
 スイッチ13は、例えば、ツェナーダイオードなどの降伏電圧特性を有する素子であってもよい。スイッチ13が降伏電圧特性を有する素子である場合、スイッチ13の各スイッチの近傍に到来した電磁波により、一つのスイッチの両端に接続された二つの金属片に予め決められたしきい値(降伏電圧)より大きな電位差が発生したとき、スイッチが開状態から閉状態に切り替わる。
 従って、電磁界分布調整装置5は、電磁界が強い部分において自動的にインピーダンスを実質的にゼロに切り替えることで、この部分に定在波の節を発生させ、電磁界を弱める。これにより、加熱むらを自動的に抑制することができる。
 図6は、電磁界分布調整装置5の上面図である。上述のように、励振電界6は、開口部8の長手方向と垂直な方向を有する(図1、図2参照)。図7Aは、本実施の形態に係る電磁界分布調整装置5の部分拡大図である。図7Bは、本実施の形態と比較するための仮想的な構成を示す部分拡大図である。
 図6、図7Aに示すように、スイッチ13を流れる電流の方向は、励振電界6の方向と45度の角度をなす。すなわち、隣り合う二つの金属片の一方から他方へ流れる電流の方向は、開口部8の長手方向と平行でも垂直でもなく、励振方向と異なる。
 図7Bに示すように、スイッチ13を流れる電流の方向は、励振電界6の方向と平行または垂直である。
 電磁界分布調整装置5の近傍の電界は、励振電界6と平行な方向を有する。このため、隣り合う二つの金属片の間に、図7Bに示すように左から右への方向の電気力線7が発生する。この場合、隣り合う二つの金属片を流れるすべての電流が一つのスイッチを通過する。従って、スイッチ13の各スイッチは高い耐圧を要する。
 図7Aに示す構成において、図7Bと同様に、金属片間に電気力線7が発生する。しかしながら、この場合、電流は二方向に分岐する。
 すなわち、本実施の形態では、金属片10において隣り合う二つの金属片の一方から他方への方向は、加熱室1に供給されたマイクロ波の励振方向と異なる。これにより、電気力線7が分散されて、スイッチにかかる電圧も分散される。本実施の形態によれば、より低い耐圧で安価なスイッチを使用することができる。
 なお、本実施の形態では、隣り合う二つの金属片の間に、スイッチが一つずつ設置される。しかしながら、本実施の形態はこれに限定されない。隣り合う二つの金属片の間に、いくつかのスイッチを並列に設置してもよく、直列に設置してもよい。例えば、二つのスイッチを並列に設置すると、一つのスイッチを流れる電流が半減され、二つのスイッチを直列に設置すると、一つのスイッチにかかる電圧が半減される。
 以上のように、本開示に係る電磁界分布調整装置は、生ごみ処理機など、誘電加熱を利用した他の加熱装置にも適用可能である。
 1,21 加熱室
 2,22 マグネトロン
 3,23 導波管
 4,24 被加熱物
 5 電磁界分布調整装置
 6 励振電界
 7 電気力線
 8 開口部
 10 金属片
 11 金属柱
 12 接地導体
 13 スイッチ
 14a,14b 定在波
 15 誘電体
 25 ターンテーブル
 26 回転アンテナ

Claims (6)

  1.  被加熱物を収容する加熱室と、
     マイクロ波を生成するマイクロ波生成部と、
     前記マイクロ波を前記加熱室に供給する給電部と、
     前記加熱室の壁面の少なくとも一部の二次元領域に設けられた電磁界分布調整装置と、
    を備え、
     前記電磁界分布調整装置は、前記二次元領域に設けられた接地導体と、前記接地導体に平行に二次元的かつ周期的に配列された複数の金属片と、前記複数の金属片における隣り合う二つの金属片の間にそれぞれ設けられた複数のスイッチと、を有し、
     前記電磁界分布調整装置は、前記隣り合う二つの金属片の一方から他方への方向が、前記加熱室に供給された前記マイクロ波の励振方向と異なるように構成されたマイクロ波加熱装置。
  2.  前記給電部が、前記加熱室の壁面に形成されたスロット状の開口部と、前記マイクロ波を前記開口部に伝播させる導波管とを含み、
     前記隣り合う二つの金属片の一方から他方への方向が、前記開口部の長手方向と平行でなく、かつ、垂直でない請求項1に記載のマイクロ波加熱装置。
  3.  前記電磁界分布調整装置が、前記複数の金属片の各々と前記接地導体とをそれぞれ接続する複数の金属柱をさらに有する請求項1に記載のマイクロ波加熱装置。
  4.  前記電磁界分布調整装置が、前記複数の金属片と前記接地導体との間に設けられた誘電体をさらに有する請求項1に記載のマイクロ波加熱装置。
  5.  前記隣り合う二つの金属片の間に並列に、前記複数のスイッチのうちのいくつかのスイッチが接続された請求項1に記載のマイクロ波加熱装置。
  6.  前記隣り合う二つの金属片の間に直列に、前記複数のスイッチのうちのいくつかのスイッチが接続された請求項1に記載のマイクロ波加熱装置。
PCT/JP2016/004764 2015-11-10 2016-10-31 マイクロ波加熱装置 WO2017081852A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017549978A JPWO2017081852A1 (ja) 2015-11-10 2016-10-31 マイクロ波加熱装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015220025 2015-11-10
JP2015-220025 2015-11-10

Publications (1)

Publication Number Publication Date
WO2017081852A1 true WO2017081852A1 (ja) 2017-05-18

Family

ID=58695133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004764 WO2017081852A1 (ja) 2015-11-10 2016-10-31 マイクロ波加熱装置

Country Status (2)

Country Link
JP (1) JPWO2017081852A1 (ja)
WO (1) WO2017081852A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197906A1 (zh) * 2022-04-11 2023-10-19 湖南大学 一种利用电磁超材料改善微波处理均匀性的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529261A (ja) * 2000-03-29 2003-09-30 エイチアールエル ラボラトリーズ,エルエルシー 同調可能インピーダンス面
US20060102621A1 (en) * 2004-11-12 2006-05-18 Daniel Gregoire Meta-surface waveguide for uniform microwave heating
EP1863114A1 (en) * 2006-06-01 2007-12-05 BSH Bosch und Siemens Hausgeräte GmbH Electromagnetic bandgap seal for microwave energy
WO2011021368A1 (ja) * 2009-08-20 2011-02-24 パナソニック株式会社 電磁波加熱装置
CN103032906A (zh) * 2011-06-17 2013-04-10 深圳光启高等理工研究院 一种微波炉
WO2015133081A1 (ja) * 2014-03-03 2015-09-11 パナソニック株式会社 電磁界分布調整装置とその制御方法、およびマイクロ波加熱装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529261A (ja) * 2000-03-29 2003-09-30 エイチアールエル ラボラトリーズ,エルエルシー 同調可能インピーダンス面
US20060102621A1 (en) * 2004-11-12 2006-05-18 Daniel Gregoire Meta-surface waveguide for uniform microwave heating
EP1863114A1 (en) * 2006-06-01 2007-12-05 BSH Bosch und Siemens Hausgeräte GmbH Electromagnetic bandgap seal for microwave energy
WO2011021368A1 (ja) * 2009-08-20 2011-02-24 パナソニック株式会社 電磁波加熱装置
CN103032906A (zh) * 2011-06-17 2013-04-10 深圳光启高等理工研究院 一种微波炉
WO2015133081A1 (ja) * 2014-03-03 2015-09-11 パナソニック株式会社 電磁界分布調整装置とその制御方法、およびマイクロ波加熱装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197906A1 (zh) * 2022-04-11 2023-10-19 湖南大学 一种利用电磁超材料改善微波处理均匀性的方法

Also Published As

Publication number Publication date
JPWO2017081852A1 (ja) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6558361B2 (ja) 電磁界分布調整装置とその制御方法、およびマイクロ波加熱装置
EP2741574B1 (en) Microwave heating device
WO2017081855A1 (ja) マイクロ波加熱装置
WO2015146028A1 (ja) マイクロ波処理装置
AU2018267603B2 (en) Electronic oven with reflective energy steering
WO2017081852A1 (ja) マイクロ波加熱装置
WO2019194098A1 (ja) 高周波加熱装置
JP7230802B2 (ja) マイクロ波処理装置
CN110140424B (zh) 电磁场分布调整装置和微波加热装置
JP7380221B2 (ja) マイクロ波処理装置
JP7124714B2 (ja) 電磁界分布調整装置、および、マイクロ波加熱装置
JP5169254B2 (ja) マイクロ波処理装置
JP2014089942A (ja) マイクロ波加熱装置
JP2013222672A (ja) 高周波加熱装置
JP2015162321A (ja) 高周波加熱装置
JP2014067696A (ja) マイクロ波加熱装置
KR20000008418A (ko) 전자레인지의 도파관 시스템
JP2015185409A (ja) マイクロ波処理装置
JP2004063312A (ja) 高周波加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017549978

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863819

Country of ref document: EP

Kind code of ref document: A1