WO2017080464A1 - 一种聚四氟乙烯超细纤维管式膜 - Google Patents

一种聚四氟乙烯超细纤维管式膜 Download PDF

Info

Publication number
WO2017080464A1
WO2017080464A1 PCT/CN2016/105251 CN2016105251W WO2017080464A1 WO 2017080464 A1 WO2017080464 A1 WO 2017080464A1 CN 2016105251 W CN2016105251 W CN 2016105251W WO 2017080464 A1 WO2017080464 A1 WO 2017080464A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
mass
tubular membrane
polytetrafluoroethylene
fiber tubular
Prior art date
Application number
PCT/CN2016/105251
Other languages
English (en)
French (fr)
Inventor
叶雷
Original Assignee
重庆润泽医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆润泽医药有限公司 filed Critical 重庆润泽医药有限公司
Publication of WO2017080464A1 publication Critical patent/WO2017080464A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene

Definitions

  • the present invention relates to a porous material, in particular to a polytetrafluoroethylene fiber tubular membrane.
  • porous material A solid containing a certain number of pores is called a porous material and is a material that forms a network structure by through or closed pores.
  • porous materials Compared with continuous medium materials, porous materials generally have the advantages of low relative density, high specific strength, high specific surface area, light weight, sound insulation, heat insulation and good permeability.
  • the porous material can be divided into microporous (pore size less than 2 nm) material, mesoporous (pore size 2-50 nm) material and macroporous (pore size greater than 50 nm) material.
  • Porous materials are classified according to their materials and can be classified into metal porous materials and non-metallic porous materials.
  • Non-metallic porous materials generally have the characteristics of large specific surface area, small density, small thermal conductivity, small relative density, and high porosity. They are used in catalysts (including carriers), adsorbents, heat preservation, heat insulation, sewage and waste gas treatment, filtration of liquids, and Gas (even bacteria), lightweight building materials, environmental protection, soil improvement, chemical industry and other fields have broad application prospects.
  • the polytetrafluoroethylene porous membrane material has a wide application range due to its temperature stability, chemical stability, electrical insulation, flame retardancy and self-lubricating properties. However, due to the randomness and irregularity of the pore structure, it still cannot satisfy many application properties.
  • the porous material itself needs to be uniform, its pore size and pore distribution are uniform, so that the performance is uniform, but in fact, many porous materials do not meet this requirement, and their uniformity complements; although some materials claim to be self-proclaimed Achieve higher uniformity, but its uniformity is still uniformity on a large volume scale. If it is measured by a small volume scale, for example, if a plurality of three-dimensional bodies having a volume of not more than one cubic centimeter are taken on the material, respectively, The quality, the degree of uniformity is still very large, thus causing various properties of the polytetrafluoroethylene porous membrane material such as strength, elastic modulus, flux and the like, which seriously affect its function.
  • the object of the present invention is to provide a polytetrafluoroethylene fiber tubular membrane which is structurally suitable, controllable and highly uniform.
  • the object of the invention is achieved by the following measures:
  • a polytetrafluoroethylene microfiber tubular membrane comprising a body of polytetrafluoroethylene material, a polytetrafluoroethylene fiber, a fiber diameter of 30 to 200 nm, a bulk having a pore diameter of 10 nm to 1000 nm, and a three-dimensional space surrounding
  • the cavity wall formed by the cavity has a uniform distribution, and each cavity is three-dimensionally penetrated.
  • the uniform distribution of the cavity means that the cavity is uniformly distributed under arbitrary unit volume on the porous material; porosity ⁇ 75%, tensile strength 15 N/mm 2 or more, water pressure resistance 3 kg/cm 2 or more.
  • the above polytetrafluoroethylene fiber tubular membrane has a pore size of 30 to 1000 nm and a three-dimensional space.
  • a lower hole of 10 to 100 nm is disposed on the cavity wall, and each of the holes is three-dimensionally penetrated and the holes of each stage are also mutually connected; the holes are uniformly distributed, and the cavity is The uniformity distribution means that the pores are uniformly distributed at any unit volume on the porous material.
  • the above unit-level volume means a cubic centimeter-level or cubic millimeter-level or smaller unit-level volume.
  • the uniform distribution of the above-mentioned cavities means that each of the three-dimensional bodies having a volume of not more than one cubic centimeter and the same size on the porous material is substantially equivalent in mass.
  • the above-mentioned mass is substantially equivalent to a plurality of three-dimensional bodies having a volume of not more than one cubic centimeter and the same size, which are respectively referred to as a mass, and an average value of their masses is obtained, and any three-dimensional mass is relatively
  • the absolute value of the deviation from the mass average is not more than 4% of the average of the three-dimensional body mass.
  • the three-dimensional bodies of the same size having a volume of not more than one cubic millimeter on the multi-stage material are substantially equivalent in mass.
  • the mass is substantially equivalent to a plurality of three-dimensional bodies of the same size having a volume of not more than one cubic millimeter on the porous material, respectively referred to as masses, and an average value of their masses is obtained, and any three-dimensional mass is obtained.
  • the absolute value of the deviation from the mass average is not more than 4% of the average of the three-dimensional body mass.
  • the polytetrafluoroethylene fiber tubular membrane is composed of a multi-stage porous material
  • the body is a cavity which is classified by a material pore size, and a cavity wall which surrounds the cavity in a three-dimensional space, and a lower cavity is arranged on the cavity wall.
  • the cavities of each stage are each three-dimensionally penetrated and the cavities of the respective stages are also mutually connected.
  • the next level of porous material constitutes the wall of the cavity of the upper stage.
  • the cavity wall of the upper cavity is composed of a multi-stage porous material of its lower stage or a composite of porous materials of the lower stage, so that the material can meet specific functional requirements.
  • each stage of the porous material of the material body is self-contained as a continuous structure.
  • the maximum outer boundary of each level of porous material is comparable to the entire material body space boundary. That is, each grade of porous material can exist in the bulk as a first-order independent porous material, and has its own physical and chemical properties. Such a structure can make the physical and chemical properties of the porous materials of different levels different, and have different physical and chemical properties in the entire space of the relatively fixed materials, and better meet various functional requirements.
  • the present invention provides a polytetrafluoroethylene fiber tubular membrane having a porous structure, and the structural form thereof is clarified, and the hierarchical structure of the pore cavity and the uniform structure thereof can satisfy various functional requirements.
  • the present invention provides a specific and clear measurement method for the uniform distribution of the pores of the polytetrafluoroethylene fiber tubular membrane, and it is clarified that the pores of the porous material and the multi-stage structure are uniformly distributed on the scale of the small unit volume. Sexually, such a porous structure is highly uniform, thereby ensuring uniformity of the properties of the porous material.
  • the polytetrafluoroethylene fiber tubular membrane of the present invention is three-dimensionally penetrated, including three-dimensional communication of each level of holes, and holes of each level It is three-dimensionally connected to each other and has good penetration, which can fully meet the functional requirements of materials.
  • the polytetrafluoroethylene fiber tubular film of the present invention is a hydrophobic surface having a multistage roughness structure.
  • the surface water contact angle can reach 160° or more.
  • Polytetrafluoroethylene porous fiber membrane such as pore distribution, hierarchical structure, porosity, pore shape and other structural characteristics, processes and the like are related to mechanical properties such as mechanical strength, water pressure resistance, etc., and the polytetrafluoroethylene fiber tube of the present invention
  • the membrane does not need support, the shape is stable, the thickness is controllable, and it is applied to the membrane distillation process.
  • the flux is >42L/m 2 ⁇ h, the rejection is above 99.8%, the tensile strength can reach 30N/mm 2 or more, and the water pressure is 5kg/ Cm 2 or more.
  • the polytetrafluoroethylene fiber tubular membrane of the invention has a secondary pore structure, wherein the cavity wall of the first-stage cavity uniformly distributed and interpenetrating has a second-stage cavity uniformly distributed and mutually penetrated, and two The stepped holes also penetrate each other, and the through holes are three-dimensionally penetrated.
  • Each level of porous material of the material body is self-contained as a continuous structure.
  • the total effective porosity is 75%
  • the fiber diameter is 150 ⁇ 20 nm
  • the macroporous average pore diameter is 0.45 ⁇ m
  • the preparation method of the polytetrafluoroethylene porous material is:
  • a polytetrafluoroethylene emulsion having a solid content of 60%, a chitosan having a particle size of 30 nm, a 5% (mass ratio) polyacrylic acid solution, and a 20 wt% starch emulsion are uniformly mixed according to the mass of 50:25:4:4. Ratio, formulated into a spinning solution;
  • the precursor film is wound into 5 layers to a cylindrical support mold of 4-25 mm in diameter, and sent to a tube furnace for sintering in a vacuum or a protective atmosphere.
  • the sintering is sequentially sintered by a program controlled temperature section at 5 ° C / min.
  • the temperature is raised from room temperature to 160 ° C, incubated at 160 ° C for 80 min; at a rate of 5 ° C / min to 280 ° C, 280 ° C for 60 min; at a rate of 2 ° C / min to 360 ° C, at 360 ° C for 20 min;
  • the temperature was raised to 400 ° C at a rate of 6 ° C / min, and incubated at 400 ° C for 60 min.
  • the PTFE fiber tubular membrane does not need support, has stable shape and controllable thickness, and can be used for gas-liquid separation and liquid-liquid separation to achieve precise grading filtration, for example, it is suitable for filtration of two-component or multi-component gas (liquid) body.
  • the flux is large, the rejection rate is high, and it is not easy to be polluted (such as multi-liquid immersion membrane pollution), and has the advantages of high efficiency and long-term efficiency.
  • the film water contact angle was 168°; the tensile strength was 30 N/mm 2 , and the water pressure resistance was 5 kg/cm 2 .
  • Volatile alcohol/acid separation factor [alcohol / acid mass fraction in distillate ⁇ (1 - raw material liquid alcohol / acid mass fraction)] ⁇ [raw material liquid alcohol / acid mass fraction ⁇ (1- distillate alcohol / acid mass fraction)] can reach 10 the above.
  • the polytetrafluoroethylene fiber tubular membrane of the present invention has a three-stage pore structure, wherein the cavity wall of the first-stage cavity uniformly distributed and interpenetrating has a second-stage cavity uniformly distributed and mutually penetrating, and two The stepped holes also penetrate each other, and the through holes are three-dimensionally penetrated.
  • Each level of porous material of the material body is self-contained as a continuous structure.
  • the total effective porosity is 85%, the fiber diameter is 180 ⁇ 20 nm, the macroporous average pore diameter is 800 nm, and there are average secondary pores of 60 nm in the cavity wall of the macropores, and there is an average on the pore walls of the second-stage pores.
  • a third-stage hole having a pore diameter of 10 nm.
  • the preparation method of the polytetrafluoroethylene porous material is:
  • the precursor film is wound up to 5 layers to a 4-25 mm diameter cylindrical support mold, sent to a tube furnace for sintering in a vacuum or a protective atmosphere, and the sintering is sequentially sintered by a programmed temperature control at 5 ° C/min.
  • the temperature is raised from room temperature to 160 ° C, incubated at 160 ° C for 80 min; at a rate of 5 ° C / min to 290 ° C, 290 ° C for 60 min; at a rate of 2 ° C / min to 360 ° C, at 360 ° C for 20 min; Increasing to 400 ° C at a rate of 6 ° C / min, holding at 400 ° C for 60 min;
  • the PTFE fiber tubular membrane does not need support, has stable shape and controllable thickness, and can be used for gas-liquid separation and liquid-liquid separation to achieve precise grading filtration, for example, it is suitable for filtration of two-component or multi-component gas (liquid) body.
  • the flux is large, the rejection rate is high, and it is not easy to be polluted (such as multi-liquid immersion membrane pollution), and has the advantages of high efficiency and long-term efficiency.
  • the film water contact angle was 170°; the tensile strength was 28 N/mm 2 , and the water pressure resistance was 7 kg/cm 2 .
  • Alcohol/acid separation factor [alcohol/acid mass fraction in distillate ⁇ (1 - raw material liquid ethanol mass fraction)] ⁇ [raw material liquid alcohol / acid mass fraction ⁇ (1-distillate alcohol / acid mass fraction)] Can reach more than 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

一种聚四氟乙烯纤维管式膜,包括聚四氟乙烯材料本体,聚四氟乙烯呈纤维状,纤维直径为30~200nm,本体具有10nm~1000nm孔径的孔腔以及呈三维空间围绕孔腔形成的腔壁,孔腔呈均匀性分布,各孔腔均三维贯通,孔腔呈均匀性分布是指各孔腔在多孔材料上任意单位级体积下呈均匀性分布,孔隙率≥75%,拉伸强度15N/mm 2以上,耐水压3kg/cm 2以上。

Description

一种聚四氟乙烯超细纤维管式膜 技术领域
本发明涉及一种多孔材料,具体是一种聚四氟乙烯纤维管式膜。
背景技术
含一定数量孔洞的固体叫多孔材料,是一种由贯通或封闭的孔洞构成网络结构的材料。相对连续介质材料而言,多孔材料一般具有相对密度低、比强度高、比表面积高、重量轻、隔音、隔热、渗透性好等优点。按照孔径大小的不同,多孔材料又可以分为微孔(孔径小于2nm)材料、介孔(孔径2-50nm)材料和大孔(孔径大于50nm)材料。
多孔材料按其材质区分,可分为金属多孔材料和非金属多孔材料。非金属多孔材料一般具有比表面积大、密度小、热导率小、相对密度小、孔隙率大等特点,在催化剂(包括载体)、吸附剂、保温、绝热、污水和废气处理、过滤液体和气体(甚至细菌)、轻质建筑材料,环保、改良土壤、化工等领域具有广泛的应用前景。其中,聚四氟乙烯多孔膜材料以其温度稳定性、化学稳定性、电绝缘、阻燃、自润滑等性能,其应用范围极广。然而,由于孔结构的随机性、不规则性,其仍然不能满足很多应用性能。
在很多应用中,都需要其多孔材料本身均匀,其孔径大小、孔的分布均匀,使得性能均匀一致,但实际上,很多多孔材料达不到此要求,其均匀性补足;尽管有的材料自称达到了较高的均匀性,但其均匀性仍是大体积尺度下的均匀性,若用小体积尺度进行衡量,比如在材料上任取多块体积不大于一立方厘米的三维体,分别测其质量,其均匀程度差异仍然非常大,因此造成聚四氟乙烯多孔膜材料的各种性能如强度、弹性模量、通量等的不均匀,严重影响其功能。
发明内容
本发明的目的在于给出结构适宜、可控、高度均匀的聚四氟乙烯纤维管式膜。
本发明的目的是通过以下措施实现的:
一种聚四氟乙烯超细纤维管式膜,包括聚四氟乙烯材料本体,聚四氟乙烯呈纤维状,纤维直径为30~200nm,本体具有10nm~1000nm孔径的孔腔以及呈三维空间围绕孔腔形成的腔壁,其孔腔呈均匀性分布,各孔腔均三维贯通,孔腔呈均匀性分布是指各孔腔在多孔材料上任意单位级体积下呈均匀性分布;孔隙率≥75%,拉伸强度15N/mm2以上,耐水压3kg/cm2以上。
具体的,上述聚四氟乙烯纤维管式膜,具有30~1000nm孔径的孔腔以及呈三维空间 围绕孔腔形成的腔壁,腔壁上设置10~100nm的下级孔腔,各级孔腔均各自三维贯通且各级孔腔相互间也彼此贯通;孔腔均呈均匀性分布,孔腔呈均匀性分布是指各孔腔在多孔材料上任意单位级体积下呈均匀性分布。
具体地,上述单位级体积是指立方厘米级或立方毫米级或更小单位级体积。
更具体地,上述孔腔呈均匀性分布是指在该多孔材料上任取的体积不大于一立方厘米且相同大小的各三维体,它们的质量基本相当。
更具体地,上述质量基本相当是指在多孔材料上任取的多个体积不大于一立方厘米且相同大小的三维体,分别称其质量,得到它们质量的平均值,而任一三维体质量相对于质量平均值的偏差绝对值不大于三维体质量平均值的4%。
进一步地,在该多级材料上任取的体积不大于一立方毫米的相同大小的三维体,它们质量基本相当。
更具体地,所述质量基本相当是指在多孔材料上任取的多个体积不大于一立方毫米的相同大小的三维体,分别称其质量,得到它们质量的平均值,而任一三维体质量相对于质量平均值的偏差绝对值不大于三维体质量平均值的4%。
优选地,上述聚四氟乙烯纤维管式膜由多级多孔材料构成,本体是以材料孔径大小进行分级的孔腔,及呈三维空间围绕孔腔的腔壁构成,腔壁上设置下级孔腔,各级孔腔均各自三维贯通且各级孔腔相互间也彼此贯通。更具体地,下一级多孔材料构成上一级孔腔的腔壁。上级孔腔的腔壁是由其下级的多级多孔材料复合构成,或是由其下级的各级多孔材料复合构成,可使得材料满足特定的功能需求。
具体地,材料本体的每级多孔材料自为一连续结构体。每一级多孔材料的最大外边界与整个材料本体空间边界相当。即每级多孔材料可以作为一级独立的多孔材料存在于本体中,且具有其独自的物化性能。这样的结构可以使得各级多孔材料的物化性能有所差异,在相对固定的材料整个空间中具有不同的物化性能,更好的满足多方面的功能需求。
有益效果
1.本发明提供了一种具有多孔结构的聚四氟乙烯纤维管式膜,明确了其结构形式,其孔腔的分级结构形式及其均匀性结构使其能满足多种功能需求。
2.本发明对聚四氟乙烯纤维管式膜的孔腔分布均匀提出了具体而明确的度量方式,明确了是以小单位级体积的尺度下来度量多孔材料以及其多级结构的孔分布均匀性,这样的多孔结构是高度均匀的,从而保证了多孔材料的各个性能的均匀一致性。
3.本发明聚四氟乙烯纤维管式膜是三维贯通的,包括每级孔三维连通,以及各级孔 相互三维贯通,贯通性好,能充分满足材料的功能需求。
4.本发明的聚四氟乙烯纤维管式膜是具有多级粗糙结构的疏水表面。表面水接触角可达到160°以上。
5.聚四氟乙烯多孔纤维膜,如孔分布、分级结构、孔隙率、孔形等结构特性、工艺等与机械强度、耐水压等膜性能有关,本发明本发明的聚四氟乙烯纤维管式膜无需支撑,形态稳定,厚度可控,应用于膜蒸馏过程,通量>42L/m2·h,截留率在99.8%以上,拉伸强度可达到30N/mm2以上,耐水压5kg/cm2以上。
具体实施方式
具体实施方式以本发明技术方案为前提,给出了详细的实施方式,但本发明的保护范围不仅限于下述实施方式。在不脱离和改变本发明上述技术思想情况下,根据本领域的普通技术知识和/或惯用手段,显然还可以做出多种形式的替换或变更,并均应包括在本发明的范围之内。
实施例1
本发明的聚四氟乙烯纤维管式膜,具有二级孔结构,其中,均匀分布、相互贯通的第一级孔腔的腔壁上有均匀分布、相互贯通的第二级孔腔,且两级孔相互之间也彼此贯通,所述贯通为三维贯通。材料本体的每级多孔材料自为一连续结构体。总有效孔隙率为75%,纤维直径为150±20nm,大孔平均孔径为0.45μm,在大孔的腔壁上有平均孔径30nm的贯通小孔。
用机械加工方法在该多孔材料上任取9件10mm×10mm×10mm的相同尺寸的三维体,用梅特勒-托利多XP26Microbalance天平测试其质量,结果如表1所示,其中,相对于平均值的偏差绝对值用百分比表示,其值为相对于平均值的偏差绝对值除以质量平均值,由表1可知,其质量偏差不大于4%。
表1
件号 质量(mg) 相对于平均值的偏差绝对值(%)
1 655.308 0.9%
2 649.324 1.8%
3 657.930 0.5%
4 673.733 1.9%
5 657.430 0.6%
6 666.089 0.8%
7 662.578 0.2%
8 667.628 1.0%
9 660.041 0.2%
质量平均值 661.118  
该聚四氟乙烯多孔材料的制备方法是:
(1)将固含量60%的聚四氟乙烯乳液,粒径30nm壳聚糖、5%(质量比)聚丙烯酸溶液、20wt%淀粉乳液,均匀混合,按照50∶25∶4∶4的质量比,配成纺丝液;
(2)在真空条件下,在取向静电纺纤维丝装置中采用静电纺丝方法制取聚四氟乙烯前驱膜;
(3)将前驱膜缠绕5层到直径4-25mm圆筒支撑模上,送入管式炉中在真空或保护气氛中烧结,烧结采用程序控温分段连续烧结,以5℃/min的速率从室温升温到160℃,在160℃保温80min;以5℃/min的速率升温到280℃,在280℃保温60min;以2℃/min的速率升温到360℃,在360℃保温20min;以6℃/min的速率升温到400℃,在400℃保温60min。
(4)烧结后程序控温冷却,按照常规技术后续处理,得到具有两级孔结构的多孔聚四氟乙烯纤维管式膜,厚度为156μm,管式膜直径4-25mm。
该聚四氟乙烯纤维管式膜无需支撑,形态稳定,厚度可控,可用于气液分离和液液分离,实现精确分级过滤,比如其适用于两元或多元气(液)体的滤过,其通量大,截留率高,不易被污染(如多元液体的浸润膜污染),具有高效长效的优势。膜水接触角168°;拉伸强度30N/mm2,耐水压5kg/cm2
如,应用于酸/醇-水-非挥发溶质体系的膜蒸馏中,总通量可达到42kg/m2·h以上,体系中非挥发溶质截留率在99.8%以上,挥发醇/酸分离因子=[馏出液中醇/酸质量分数×(1-原料液醇/酸质量分数)]÷[原料液醇/酸质量分数×(1-馏出液醇/酸质量分数)]可达到10以上。
实施例2
本发明的聚四氟乙烯纤维管式膜,具有三级孔结构,其中,均匀分布、相互贯通的第一级孔腔的腔壁上有均匀分布、相互贯通的第二级孔腔,且两级孔相互之间也彼此贯通,所述贯通为三维贯通。材料本体的每级多孔材料自为一连续结构体。总有效孔隙率为85%,纤维直径为180±20nm,大孔平均孔径为800nm,在大孔的腔壁上有平均孔径60nm的贯通二级孔,在第二级孔的孔壁上有平均孔径10nm贯通的第三级孔。
用机械加工方法在该多孔材料上任取9件10mm×10mm×10mm的相同尺寸的三维体,用梅特勒-托利多XP26Microbalance天平测试其质量,结果如表1所示,其中,相对于平均值的偏差绝对值用百分比表示,其值为相对于平均值的偏差绝对值除以质量平均值,由表2可知,其质量偏差不大于4%。
表2
件号 质量(mg) 相对于平均值的偏差绝对值(%)
1 512.939 0.0%
2 501.857 2.1%
3 512.371 0.1%
4 516.202 0.7%
5 526.150 2.6%
6 522.125 1.8%
7 514.616 0.4%
8 502.281 2.0%
9 506.518 1.2%
质量平均值 512.784  
该聚四氟乙烯多孔材料的制备方法是:
(1)将PTFE细粉末、分子量为1000的聚乙二醇混合,搅拌加热至380℃,持续搅拌60min,快速冷却至室温进行破碎,在零下摄氏度进行粉碎得到聚四氟乙烯颗粒;
(2)将粒径为200nm聚四氟乙烯颗粒分散配置为固含量60%乳液,将其与粒径100nm壳聚糖、5%(质量比)聚丙烯酸溶液、20wt%淀粉乳液,均匀混合,按照50∶25∶4∶4的质量比,配成纺丝液;
(3)在真空条件下,在取向静电纺纤维丝装置中采用静电纺丝方法制取聚四氟乙烯前驱膜;
(4)将前驱膜缠绕5层到直径4-25mm圆筒支撑模上,送入管式炉中在真空或保护气氛中烧结,烧结采用程序控温分段连续烧结,以5℃/min的速率从室温升温到160℃,在160℃保温80min;以5℃/min的速率升温到290℃,在290℃保温60min;以2℃/min的速率升温到360℃,在360℃保温20min;以6℃/min的速率升温到400℃,在400℃保温60min;
(5)烧结后程序控温冷却,按照常规技术后续处理,得到具有三级孔结构的多孔聚四氟乙烯管式膜,厚度为163μm,管式膜直径4-25mm。
该聚四氟乙烯纤维管式膜无需支撑,形态稳定,厚度可控,可用于气液分离和液液分离,实现精确分级过滤,比如其适用于两元或多元气(液)体的滤过,其通量大,截留率高,不易被污染(如多元液体的浸润膜污染),具有高效长效的优势。膜水接触角170°;拉伸强度28N/mm2,耐水压7kg/cm2
如,应用于多元(或混合)醇/酸-水-非挥发溶质体系的膜蒸馏中,总通量可达到42kg/m2·h以上,体系中非挥发溶质截留率在99.9%以上,挥发醇/酸分离因子=[馏出液中醇/酸质量分数×(1-原料液乙醇质量分数)]÷[原料液醇/酸质量分数×(1-馏出液醇/酸质量分数)]可达到10以上。

Claims (11)

  1. 一种聚四氟乙烯纤维管式膜,包括聚四氟乙烯材料本体,聚四氟乙烯呈纤维状,纤维直径为30~200nm,本体具有10nm~1000nm孔径的孔腔以及呈三维空间围绕孔腔形成的腔壁,孔腔呈均匀性分布,各孔腔均三维贯通,孔腔呈均匀性分布是指各孔腔在多孔材料上任意单位级体积下呈均匀性分布;孔隙率≥75%,拉伸强度15N/mm2以上,耐水压3kg/cm2以上。
  2. 如权利要求1所述聚四氟乙烯纤维管式膜,具有30~1000nm孔径的孔腔以及呈三维空间围绕孔腔形成的腔壁,腔壁上设置10~100nm的下级孔腔,各级孔腔均各自三维贯通且各级孔腔相互间也彼此贯通;孔腔均呈均匀性分布,孔腔呈均匀性分布是指各孔腔在多孔材料上任意单位级体积下呈均匀性分布。
  3. 如权利要求1或2所述的聚四氟乙烯纤维管式膜,所述单位级体积是指立方厘米级或立方毫米级或更小单位级体积。
  4. 如权利要求1、2或3所述的聚四氟乙烯纤维管式膜,所孔腔呈均匀性分布是指在该多孔材料上任取的体积不大于一立方厘米且相同大小的各三维体,它们的质量基本相当。
  5. 如权利要求4所述的聚四氟乙烯纤维管式膜,所述质量基本相当是指在多孔材料上任取的多个体积不大于一立方厘米且相同大小的三维体,分别称其质量,得到它们质量的平均值,而任一三维体质量相对于质量平均值的偏差绝对值不大于三维体质量平均值的4%。
  6. 如权利要求1-5任一所述的聚四氟乙烯纤维管式膜,在该多级材料上任取的体积不大于一立方毫米的相同大小的三维体,它们质量基本相当。
  7. 如权利要求6所述的聚四氟乙烯纤维管式膜,所述质量基本相当是指在多孔材料上任取的多个体积不大于一立方毫米的相同大小的三维体,分别称其质量,得到它们质量的平均值,而任一三维体质量相对于质量平均值的偏差绝对值不大于三维体质量平均值的4%。
  8. 如权利要求1-7任一所述的聚四氟乙烯纤维管式膜,由多级多孔材料构成,本体是以材料孔径大小进行分级的孔腔,及呈三维空间围绕孔腔的腔壁构成,腔壁上设置下级孔腔,各级孔腔均各自三维贯通且各级孔腔相互间也彼此贯通。
  9. 如权利要求1-8任一所述的聚四氟乙烯纤维管式膜,下一级多孔材料构成上一级孔腔的腔壁。
  10. 如权利要求1-8任一所述的聚四氟乙烯纤维管式膜,上级孔腔的腔壁是由其下级的多级多孔材料复合构成。
  11. 如权利要求1-8任一所述的聚四氟乙烯纤维管式膜,上级孔腔的腔壁是由其下级的各级多孔材料复合构成。
PCT/CN2016/105251 2015-11-11 2016-11-09 一种聚四氟乙烯超细纤维管式膜 WO2017080464A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510766523.1 2015-11-11
CN201510766523.1A CN106669453B (zh) 2015-11-11 2015-11-11 一种聚四氟乙烯超细纤维管式膜

Publications (1)

Publication Number Publication Date
WO2017080464A1 true WO2017080464A1 (zh) 2017-05-18

Family

ID=58694447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105251 WO2017080464A1 (zh) 2015-11-11 2016-11-09 一种聚四氟乙烯超细纤维管式膜

Country Status (2)

Country Link
CN (1) CN106669453B (zh)
WO (1) WO2017080464A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402873A (zh) * 2017-08-18 2019-03-01 重庆润泽医药有限公司 一种高分子半透材料
CN113058441B (zh) * 2021-04-25 2022-03-22 浙江理工大学 一种具有三级结构的聚四氟乙烯微纳米纤维膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011224A (ja) * 1999-06-29 2001-01-16 Nitto Denko Corp 多孔質チューブの製造方法及び多孔質チューブの使用方法
CN101530750A (zh) * 2009-04-20 2009-09-16 浙江理工大学 聚四氟乙烯超细纤维多孔膜的制备方法
CN102151493A (zh) * 2011-03-18 2011-08-17 上腾新材料科技(苏州)有限公司 一种纳米级聚四氟乙烯微孔膜的制备方法
CN103212308A (zh) * 2012-08-01 2013-07-24 上海市凌桥环保设备厂有限公司 一种净化pm2.5的聚四氟乙烯微孔膜
CN105013344A (zh) * 2014-04-22 2015-11-04 成都百途医药科技有限公司 一种超疏水聚四氟乙烯纤维膜的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659241B2 (ja) * 2001-03-19 2011-03-30 ジャパンゴアテックス株式会社 ポリテトラフルオロエチレン膜及びその製造方法
CN107670514B (zh) * 2014-03-13 2020-02-07 成都百途医药科技有限公司 一种聚四氟乙烯膜及其制备方法
CN103894077B (zh) * 2014-04-10 2016-02-24 江南大学 一种多维度孔隙结构复合过滤膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011224A (ja) * 1999-06-29 2001-01-16 Nitto Denko Corp 多孔質チューブの製造方法及び多孔質チューブの使用方法
CN101530750A (zh) * 2009-04-20 2009-09-16 浙江理工大学 聚四氟乙烯超细纤维多孔膜的制备方法
CN102151493A (zh) * 2011-03-18 2011-08-17 上腾新材料科技(苏州)有限公司 一种纳米级聚四氟乙烯微孔膜的制备方法
CN103212308A (zh) * 2012-08-01 2013-07-24 上海市凌桥环保设备厂有限公司 一种净化pm2.5的聚四氟乙烯微孔膜
CN105013344A (zh) * 2014-04-22 2015-11-04 成都百途医药科技有限公司 一种超疏水聚四氟乙烯纤维膜的制备方法

Also Published As

Publication number Publication date
CN106669453A (zh) 2017-05-17
CN106669453B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2017080467A1 (zh) 一种聚四氟乙烯纤维管式膜
WO2017080476A1 (zh) 一种聚四氟乙烯纤维膜
WO2017080457A1 (zh) 一种聚四氟乙烯中空纤维膜
WO2017080474A1 (zh) 一种聚四氟乙烯超细纤维膜
WO2017080470A1 (zh) 一种聚四氟乙烯纤维管式膜
WO2017080464A1 (zh) 一种聚四氟乙烯超细纤维管式膜
WO2017080418A1 (zh) 一种聚四氟乙烯超细纤维管式膜
WO2017080465A1 (zh) 一种聚四氟乙烯超细纤维管式膜
WO2017080466A1 (zh) 一种聚四氟乙烯超细纤维管式膜
WO2017080462A1 (zh) 一种聚四氟乙烯中空纤维膜
WO2017080455A1 (zh) 一种聚四氟乙烯超细中空纤维膜
WO2017080473A1 (zh) 一种聚四氟乙烯超细纤维膜
WO2017080469A1 (zh) 一种聚四氟乙烯纤维管式膜
WO2017080460A1 (zh) 一种聚四氟乙烯中空纤维膜
WO2017080475A1 (zh) 一种聚四氟乙烯纤维膜
WO2017080415A1 (zh) 一种多孔非金属材料
WO2017080417A1 (zh) 一种聚四氟乙烯超细中空纤维膜
WO2017080479A1 (zh) 一种聚四氟乙烯纤维膜
WO2017080419A1 (zh) 一种聚四氟乙烯超细纤维膜
WO2017080458A1 (zh) 一种聚四氟乙烯中空纤维膜
WO2017080468A1 (zh) 一种聚四氟乙烯纤维管式膜
WO2017080463A1 (zh) 一种聚四氟乙烯中空纤维膜
WO2017080477A1 (zh) 一种聚四氟乙烯纤维膜
WO2017080456A1 (zh) 一种聚四氟乙烯超细中空纤维膜
WO2017080478A1 (zh) 一种聚四氟乙烯纤维膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863640

Country of ref document: EP

Kind code of ref document: A1